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ON THE NUMERICAL APPROXIMATION OF AN
OPTIMAL CORRECTION PROBLEM*

M. C. BANCORA-IMBERT’I, P. L. CHOWS, AND J. L. MENALDI$

Abstract. The numerical solution of an optimal correction problem for a damped random linear oscillator
is studied. A numerical algorithm for the discretized system ofthe associated dynamic programming equation
is given. To initiate the computation, we adopt a numerical scheme derived from the deterministic version
of the problem. Next, a correction-type algorithm based on a discrete maximum principle is introduced to
ensure the convergence of the iteration procedure.
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1. Introduction. We consider the control of a damped linear oscillator excited by
a random noise

x"(t)+px’(t)+q2x(t)=rw’(t)+v’(t), O<t<=T,
(1)

x(0) x, x’(0) y,

where p and q are the damping and spring constants; x and y denote the initial position
and velocity; r is the intensity of the white-noise w’(t); v(t) is the control momentum
at the time t; and T is the horizon. The prime denotes the time derivative. When we
set y x’, (1) may be interpreted as a stochastic differential equation in the Ito sense:

dx(s) y(s) ds,

(2)
dy(s) -[py(s) + q2x(s)] ds + r dw(s) + dr(s),

dt(s)=ds,

x(0)=x, y(0)=y, t(0)=t,

which is defined on a standard Wiener space (1, o%, P, w(t), (t), _-> 0) satisfying the
usual conditions [7]. An admissible control (v(t), => 0) is a stochastic right-continuous
process adapted to (of(t), => 0), having locally bounded variation. The fact that the
control momentum is required to have bounded variation means that the control is
derived from a finite-resource or finite-fuel constraint instead of from the classical
finite-energy constraint.

Also, for simplicity, we assume that the expected cost function is ofthe special form

(3) J(x, y, t, v(. )) E{f(x( T- t), y( T- t))+ clv( T- t)l},
where f is a smooth function with growth bounded by a polynomial, c is a positive
constant, and Iv(T)l denotes the total variation on [0, T] of the process (v(t), >= 0).
Clearly, f measures the deviations from the rest position and c represents the unit cost
of the resource. If we denote by u the minimum cost function, i.e.,

(4) u(x, y, t)= inf {J(x, y, t, v(. )): v(. )},
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then, by properly using the dynamic programming argument, we can show that u
satisfies the following differential inequalities"

(i)
Ou
+Lu >= O,
Ot

()
(ii)

OY
with the complementary Oondition

(6) (t +Lu)(y+ c)(- c) =O
and the terminal condition

(7) u(.,., T)=f,

where 0-< t_-< T, x, yin and

.20u(x,Y, t)
(8) Lu(x, y, t)=- Oy

Ou(x,y,t) Ou(x,y,t)
-(py+ q2x) - yOy Ox

A theoretical study of this problem can be found in [3], Sun and Menaldi [14]; more
general similar problems are considered in Menaldi and Robin [11], [12] and Chow
et al. [5]. We refer also to Gorbunov [9] for a similar setting of this problem. The
preliminary results of this work were summarized in [4].

To solve the problem numerically, we approximate the unknown value function
u(x, y, t) as well as an optimal feedback law. Then we replace the unbounded domain
in the (x, y, t) space by a rectangular box

(9) B {(x, y, t) 6 3: Ix 1<__ a, ]y[-< b, 0=< t_<- T},

and we introduce a finite-difference scheme to approximate the variational inequality
(5)-(7) and some appropriate condition on the boundary surface of B. To this end,
we let

a b T
(10) Ax=-, Ay=-, At

N

for some positive integers M, N. Let Q(M, N) denote the set of meshpoints in B, i.e.,

(11)
Q(M, N)= {(xi, yj, t,)" X iAx, yj =jAy, t, nat, i,j=O,

+1,.’., +M, n =0, 1,..-, N}.

The nodal value of the approximate solution t of u(x, y, t) at a meshpoint (xi, yj, tn)
is denoted by

(12)

In what follows, we shall present two numerical procedures for solving the problem
(5)-(7) corresponding to two different finite-difference schemes for variational
inequalities. The first procedure is adapted from a deterministic version of the problem,
whereas the second procedure deals with the full problem directly. For convenience,
they will be called the first-order and second-order methods, respectively. The former
method is simple and explicit, but less accurate, and some condition is needed to

ensure stability and convergence. The latter is an implicit scheme, which is always
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stable and convergent, as a direct result of the maximum principle. By using the
first-order procedure as an initial approximation, the speed of convergence for the
second-order procedure is increased.

Let us point out that, roughly speaking, the present problem corresponds to a
time-dependent two-dimensional variational inequality, with constraints on the first
derivative and with degeneracy in one space-variable. Due mainly to these characteris-
tics, standard algorithms do not produce satisfactory results.

We remark that the same algorithm can be applied to other problems where, for
instance, a more general differential operator L can be considered.

2. A first-order numerical method. We discretize the differential operator (8) as
follows:

n+l(13) (ui,j ui3)(At) -1,
at

021 r2 r2(un+l _2un+l n+l -2(14)
2 oy 2 "/ ’ + ui’-)(AY)

-(PY + q2x) -O-fy IPJ + q-iax(ay)-l

(15) {(uT,_- uT,)II(pj + qiAx(Ay)- > O) + (uT,/ uT,)
II(pj + qiAx(Ay)- < 0)},

(16) Yox IJlay(Ax)-[(u’/’-u")II(j>O)+(u’-’-u")II(<O)]’

where H(. denotes the characteristic function, i.e.,

(17) II(j>0)= ifj>0 and =0otherwise.

Then, the inequalities (5) become

< (i,j)ui,j "+-c2(i,j)1/2(U n+gli,j C1
n+l n+l

i,j+l -[- Ui,j--1)
(18)

-k c3( i,j)uin,j+ -k c4( i,j)uin,j_, q- c( i,j)uin+l,j + c6( i,j)uin_l,j,
< +cAy,(19) ui.j--- lgi,j+

< +cAy,(20) ui3= Ill,j-1

Co( i, j) (at)- + IpJ + qiax(aY)-l + IJ IaY(aX)-,
c(i, j) [(At)-- r(Ay)-2][ Co(i, j)]-,

c2(i, j) r2(Ay)-2][ co(i, j)]-,

c3(i, j) pj + q:iAx(Ay)-l]-[ Co(i, j)]-,

c4(i, j) [pj + qZiAx(Ay)-]+[ co(i, j)]-,

cs(i,j) (j)+Ay(Ax)-[co(i,j)]-,
c6(i, j) (j)-Ay(Ax)-[ Co(i, j)]-,

and p, q, r, c, are the constants in (1), (2), (3), and [. ]/ or [. ]- denotes the positive
or negative part of a real number.

If we impose the stability condition

(21) r2At<(Ay)2,
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then
6

Y Ck= l Vi, j,
1=1

(22)
Ck(i,j)>--O Vi, j, k.

To the inequalities (18), (19), and (20) we should add the terminal condition
N(23) Ui, ---f,j,

where f,j is the value of the data f(x, y) for x iAx, y =jAy.

2.1. Numerical method. Before describing the method, let us introduce some
short-hand notation. We shall denote a double array or a matrix, say, (f,j, i, j=
0,+l,+2,...,+M) by f and a triple array, {ui",j,i,j=O,+l,’’’,+M,n=
0,1,...,N) by . Similarly we shall write a,=(ui",j,i,j=0,+l,’’’,+M),
n,k-"(lgi, i,j=O, +1,’’’, +M) and Ilk "-’(n,k, n=0, 1 N)--(u n’k

i,j

i,j=O, +/-1,..’, +/-M, n =0, 1,..., N). For the double array f, ,..., define

max (or min)j max (or min){f/,j, i,j=O, +1,..., +/-M},

and set

min { g",’’’}=/
where

hi, min {f,j, gi,j, "}
Similar conventions are in effect for triple arrays.

Vi, j.

For brevity, the meshpoint (xi, y, t,) will be denoted simply by (i, j, n). Let D be
the mesh

(24) D={(i,j)" i,j=O, +1,..., +M},

which consists of all the spatial meshpoints. Define

(25) ko=pq-ZAx(Ay)- and io= koM
such that 0 < ko < 1 and io is an integer. Subdivide the set D into four parts, D1, D2,
03, 04, by the lines i+ koj =0 and j=0, as shown in Fig. 1. Let F1 denote all points
(i, j) on the boundary F of D such that one of the following conditions holds:

(a) i=M andj=l,2,...,M.

0

D

FIG. 1. First-order method. The values at points marked "x" are given and those marked "o" are to be
computed. Initial values are prescribed at points along OM.
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(b) i=-M and j =-1,-2,..., -M,
(c) i=-M,-M+I,..- ,-io and j= M,
(d) i=io, io+l,...,M andj=-M.

The set F will be called the prescribed boundary of D. The numerical method is an
iterative scheme in the form ak+ Tak, k 0, 1, 2,’’ ". The general procedure will be
outlined in what follows.

Initialization. To initiate the iteration, choose the initial iterate rio with constant
entries

(26) u i,j min f /i, j, n,

which satisfy the inequalities (18)-(20).
Iteration. Given the kth iterate ak, the next iterate ak+ is computed, for k=

1, 2,. ., according to the following steps"
Step 1. The terminal condition for fik+ is given by

N,k+l =f, k =0, 1,

Step 2. For n N- 1, N-2,. , 1, 0, determine the triple array Ck+ by setting

Ck+ min {f,j,f,j+ + cAy, f,j_ + cAy}

on the prescribed boundary F, and, in components,

n,k+l tn+l,k -1 n+l,k n+lkaid c,(i,j) i,j + c2(i,j)2 (ui,:+, + Ui,j---- C i, j) n,k n,k n,k n,k
uid+, + c4(i,j) + cs(i,j)u + c6(i,j)u’l i,j--1 + ,j ,j

on the complement F (D-F1) of F.
Step 3. For n N-1, N-2,..., 1, 0, compute the triple array/3k+ by setting

flk+ min {f/,j, f/.j+a + cAy}

on the upper boundary F- with j M, and

n,k+ n,k[3i,j ui,j+ + cAy on (D-F-).

Step 4. For n N- 1, N-2, , 1, 0, find the triple array /k+l by letting

’k+l--min {fi,j,fi,j-1 + ray}

on the lower boundary F- and

’)/ in,ik+ Uy.,)k_ -[" cAy on (D- F-).

Step 5. Forn=N-1, N-2,...,1,0, set

ak+ rain {ck+, flk+, A+},

where by convention the minimum is taken pointwise in (i,j, n).

Similarly, we construct a sequence 0k, k 0, 1, 2,’" ", of triple arrays by means of the
iterative procedure 0k+ TOk as given in Steps 1-5, but, instead of (26), with the initial
iterate 0o given by

(27) v"’i,j =maxf /i,j, n.

As to be shown later, we claim that the sequences {k} and {Ok} converge to the same
limit , which is the unique solution of the problem.
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2.2. Algorithm. To implement the above numerical method, we propose a regress-
ive iteration scheme, by which we mean that the iteration process is carried out at each
timestep n while the time goes backward step by step. In contrast to a straightforward
iteration on the triple array ffk or k, the proposed scheme yields a more efficient
algorithm. Again referring to Fig. 1 and the notation used in 2.1, given the terminal
condition, choose a suitable initial iterate and assign appropriate data on F, as well
as on the line segment OM {0-< =< M, j 0}. This additional set of data is necessary
to initiate the iteration process. For each timestep n, the computation will be carried
out by parts, from D to D4 in the counterclockwise direction, comparing the calculated
values on OM with their previous values. The counterclockwise iteration process will
be continued if the absolute value of the difference is greater than a preset precision
constant e, using the new values as the data on OM. Otherwise, change n to n- 1 and
repeat the sweeping process as before. For convenience, we say that "the iteration
converges with e-precision" if, for some integer K > 0, the following condition holds"

(28) ]max (a: :_)1 < e.

Set a a: and call this a relaxed solution. The proposed numerical algorithm will
be given in detail as follows:

(29)

(1) First set the terminal condition

fin =.
(2) For the timesteps n N- 1, N-2,. , 1, 0 (in decreasing n), execute Steps

3-7 successively.
(3) Introduce the initial-boundary conditions:
(3.1) On the slit OM, set

U min f Vn, i, j) OM.

(3.2) On the prescribed boundary, set

(30) uij=min{fi,j,fi,j+l+cAy, fi,j_,+cAy} Vn, (i,j)er,.

(4) To calculate the missing values of in in D, for M- 1, M- 2, , 1, 0 (in
decreasing i), proceed as follows:

(4.1) For j 1, 2, , M (in increasing j) with + koj >= O, compute cn by com-
ponents,

n+l n+l
ai,j=min {c,(i,j)ui3 +c2(i,j)1/2(u n+li3+1 + ui3-) + c4(i,j)ui3-

+ cs(i,j)U+l,j, U,j_ + cAy}.

(4.2) For j M 1, , 1, 0 (in decreasing j), with + koj >= O, compute n by

=min{a a +cAy}.g i,j i,j, i,j+

(5) To find n in D2, for i=-koM,-k0(M-1),...,-M (in decreasing i),
proceed as follows:

(5.1) Forj M 1, , 1, 0 (in decreasing j) with + koj < 0, compute cn accord-
ing to

n+l n+l
ai,j=min {ca(i,j)u,.j + c2(i,j)1/2(u n+i,j+ + ui,j-) + c3( i,j)ui,j+

at- cs(i,j)Ui+l,j, Ui,j+l -!1- cAy}.

(5.2) For j 1, 2, , M (in increasing j) with + koj < 0, compute n by

U i,j min {a ,, a ,3- + cAy}.
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(6) To determine a, in D3, for i=-M,-M+ 1,...,-1, 0 (in increasing i),
proceed as follows"

(6.1) For j=-l,-2,...,-M (in decreasing j) with i+koj<-O, compute c, by
setting

n+l /,/n+la,,g=min {Cl(i,j)tti, + c2(i,j)1/2(tt n+li,g+ + i,g-i)+ c3(i,j)ui,g+
+ c6(i,j)ui_,g, ui,g+ + cAy}.

(6.2) For j -M+ 1, , -1, 0 (in increasing j) with + koj <- O, find ft, in com-
ponents,

/n, min {a a i,j- + cAy}.

(7) Finally to compute t, in D4, for koM, koM + 1, , M, proceed as follows"
(7.1) For j=-M+ 1,...,-1, 0 (in increasing j) with i+ koj> O, find the com-

ponents of k, by

ce i, min {l(i,j)tln+l n+l
i,: + c2(i,j)(u n+’i,+1 + ui,.i-1) + Ca(i,j)ui,:-i

+ cs(i,j)ui+l,j+ c6(i,j)uil,j, u,j-1 + cay}.

(7.2) For j =-1,-2,...,-M (in decreasing j) with i+ koj> O, compute by

ui,: min {a,:, c i,+1 + cAy}.

(8) At the end of step (7), compare the values of with those obtained previously
to start step (4). If the precision condition (28) is not satisfied, repeat steps (4)-(7).
If satisfied, go backward to the (n 1 )th timestep and restart the above iteration process.

This algorithm yields a sequence {tTk} of arrays that converges with e-precision
to a relaxed solution. Similarly, by changing the initial data in (3) to

v i", max f fn, i, j) OM,
we construct a sequence {k}, which also approaches a relaxed solution.

2.3. Convergence. Under the stability condition (21), it will be shown in 4 that
two sequences {tTk} and {3k}, as defined above, actually converge to the same limit
array t7 and satisfy the following properties"

(1) Fork=0,1,2,...,wehave

(31) /k /’k+l / k+l
which is understood to hold componentwise.

(2) For every point not on the prescribed boundary F1, at least one of the
inequalities (18), (19), and (20) is verified as an equality.

(3) The array t is the maximal subsolution of problem (18)-(20) and (22), i.e.,
if is any other solution to the problem satisfying the terminal condition (29) and
the boundary condition (30) (where all equalities are replaced by inequalities), we
have _-< t7 pointwise.

(4) The array t7 is also the minimal supersolution of problem (18)-(20) and (22),
i.e., if is any array satisfying at least one of the inequalities in a reversed sense, which
also satisfies terminal condition (29) and boundary condition (30), then t7 _-< .

Note that, in view of the monotonicity property (31), the sequences {tTk} and
converge monotonically to the same limit tT, which is the unique solution to the problem.

3. A second-order numerical method. Here, instead of using (14), we discretize the
second-order differential operator as follows"

02 1Ir2 rE(u,,;+l- 2u",; + u",;+l)(Ay)--(32)
2 0y2 2
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(33)
(34)

(35)
where

Then the inequalities (5) become

/,/n+lui.j < dl(i,j) i,j + d2(i,j)ui,j+, + d3(i,j)ui,j-, + d4(i,j)ui+,,j+ ds(i,j)ui_,,j,
< + cAy,1, U j+

< +cAy,[,l U i,j_

do( i, j) (At)-’ + r2(Ay) -2 + IPJ + qiAx(AY)-l + Ij[Ay(Ax) -’,
dl(i,j) (At)-l[do(i,j)] -1,
d( i, j) [1/2 r(Ay)-+ pj + q2iAx(Ay)-)-][ do( i, j) ]-1,
d3(i,j) =1/2r2(Ay)-+(pj+ q2iAx(Ay)-)+][do(i,j)]-,
d4( i, j) (j)+Ay(Ax)- do( i, j)]-,
d(i,j) (j)-Ay(Ax)-l[do(i,j)]-,

and p, q, r, c, are the constants in (1), (2), (3).
Notice that without any stability condition we have

, dk(i,j)= 1 Vi, j,
k=l

(36)
d(i,j)>-O Vi, j, k.

As previously, the terminal condition
N(37) Ui, ---fi,

is added to the inequalities (33), (34), and (35).
3.1. Numerical method. As with the first-order scheme, the proposed method is

an iterative procedure of the form tTk+ StT, k =0, 1, 2,. .. In this case, the spatial
mesh D is divided into two parts, the upper half D+ and the lower half D-, as shown
in Fig. 2. The prescribed boundary F2 here is the set of points (i, j) satisfying one of
the following conditions"

(a) i=M andj=l,2,...,M,
(b) i:-M andj=-l,-2,...,-M,
(c) i=O, +1,..., =i=M and j M,
(d) i=O, +1,..., +M and j=-M.

[" M

D/

FIG. 2. Second-order method. The values at points marked "x" are given and those marked "o" are to

be computed.
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In what follows, the general numerical procedure will be presented.
Initialization. Take the initial iterate to to be of constant components

n,0
ui, minf Vi, j, n.

Iteration. Given the kth iterate k, compute k+ for k 1, 2, , by the following
steps"

Step 1. For the terminal condition, set

N,k+l--- k=0, 1,2,’".

Step 2. For n =0, 1, 2,..., set

ffk+l k on F
and, in components,

n,k+l n+l n,k n,k,, dl(i,j)ui, + d2(i,j)u,j+ + d3(i,j)ui,-i + d4(i,j)u,+ d(i,j)u "’k
i--l,j

on the complement F (D- Fz).
Step 3. For n N- 1, N-2,. , 1,0, set

fl+l ak on the upper boundary F+ with j M,

and, by components,

n,k+l n,kfl, u,+ + cAy on (D-F+).

Step4. Forn=N-1, N-2,...,1,0, set

k+l k on the lower boundary F- with j =-M,

and, in components,

k+l min {k+l, fig+i, k+}.

Step 5. For n=N-1, N-2,...,1,0, set

k+ min {k+l, fig+i, k+}.

Similarly we may construct a sequence {k} of arrays by the same iterative procedure
k+ Sk, k =0, 1, 2," ", by Steps 1-5, but with the initial iterate

Dn,0, =maxf Vi, j, n.

3.2. Algorithm. As before, we adopt a regressive iteration process. Referring to
Fig. 2, the mesh D is divided into upper and lower pas D+ and D-. Given the
terminal condition, assign appropriate boundary data on the prescribed boundary F2.
For each n, the iterations will be executed alternately between D+ and D- until the
sequence {fig} or {Ok} converges with e-precision. Then change n to n- 1 and repeat
the iteration process. To be specific, we propose the following algorithm"

(1) Fix the terminal condition

(2) For n N- 1, N-2,. ., 1, 0 (in decreasing n), follow steps (3)-(6) below.
(3) Assign the boundary data for every (i,j) on F,
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(4) Choose the values of the initial iterate in (D-F2) to be

ui",j min ’(i, j) F2,

or other suitable data, if available.
(5) Compute the values of t/n in D/: For i= M,. ., 0,-1,. .,-M+I, -M (in

decreasing i) and j 1, 2, , M (in increasing j), set
n+l

ui,j--min {dl(i,j)u,,j + d2(i,j)ui,j+l-F d3(i,j)ui,j_
(38)

+ cAy}.+ d4(i,j)ui+l,j, ui,j+ -- cAy, Ui,j_

(6) Compute t/ in D-: For i=-M,...,-1,0, 1,..., M (in increasing i) and
j =-M,...,-1, 0 (in increasing j), set

u,",j min {dl(i,j)u+1
(39)

"J + d2(i,j)ui,+l + d3(i,j)u,,_l

+ ds(i,j)u’]_l,)+, u,)+l + cAy, u,i_ + cAy}.

(7) Repeat steps (5) and (6) with the updated values until the iteration converges
with e-precision. Then reset the timestep to n- 1.

Similarly we may proceed to calculate G by the same steps except in step (4),
replacing min f by max f.

3.3. Convergence. The above algorithm defines two sequences {G} and {G}. In
4 we show that they converge to the same limit a, which satisfies the system of

inequalities (33)-(35) subject to terminal condition (37). Furthermore the following
properties hold:

(1) Fork=0,1,2,...,wehave

(40) fik <= fik+1 <= fi <= G+1 <= G.
(2) For every point in (D-F2), at least one of the inequalities (33)-(35) yields

an equality for ft.

(3) The array fi is the maximal subsolution of problem (33)-(34) and (35), along
with (36), (37) and the boundary condition in the sense explained in 2.3.

(4) The array t] is also the minimal supersolution of the system in the sense
explained in 2.3.
In view of property (40), again we have a monotone convergence for both sequences
as in the first-order case.

4. Proof of convergence. The key properties that allow us to show convergence
are (22) and (36). Consider the vector space V of all two-dimensional arrays of the form

(41) v=(v,d; i,j=O, +1,’.., +M).

On the space V, we define the operators

TlV)i,j Cl(i,j)vid+ c2(i,j)1/2(Vid+l + Vial-l),
(42)

Tav)i,j c3( i, j)vid+, + c4(i, j)vid-, + cs(i, j)vi+,d + c6( i, j)Vi-l,j,

(43) (Mlv)i.; vi,;+l + cAy, (M2v)id rid-1 + cAy,

(s,v)i,; d,(i,j)v,,;,
(44)

(&v),,;= d2(i,j)v,,;+, + d3(i,j)v,;_, + d4(i,j)v,+,,;+ &(i,j)vi_,,;,

for every i, j whenever the above expressions are meaningful, and

(45) Tv Tlv+ T2v, Sv= SlVq- S2v
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(46)

(47)

(48)

(Tv),,= v,, if(i,j)eF,,

(Sv)i,j-- vi, if(i,j)er,

Mv), v,,j ifj M,

(M2v),,j v, ifj =-M.

Discrete Maximum Principle. Let u, v be two arrays of the form (41), i.e., u, v in
V. Then the condition

(49)

implies that

ui, <= vi, l i, j

(Tku)i.j(Tkv)i,j, (MkU)id<--(MkV)id,
(o)

(Sku),.j <- (Sky),d Vi, j and k= 1, 2.

This property is a direct consequence of the fact that the coefficients Ck( i j) and dk(i, j)
are nonnegative.

Now the convergence of both algorithms is deduced from this discrete maximum
principle. The sequences tik and 6k, k 0, 1," generated by the first-order algorithm
satisfy

(51)
uk+, min{Tu + Tak, Mk,

Uk+ min {T -n/l
Vk +T2Vk, Mvk, M2Vk},

for any k=0, 1, 2,. and n =0, 1,..., N-1. We say that ti is a subsolution if

t7 -< min { T a + T2 ti, M, a, M:a}

We say that 3 is a supersolution if

min { T,3 + T2t3, M,7, M2t3} 3

Since rio is constant in i, j, n, we start from
-n+l

rio T UOUO

and also

< Mkti k=l 2t/0

(pointwise sense).

(pointwise sense).

so that

(pointwise sense)

-"<Tlf+ T2$10 $10

where

(1,1n, k.(52) tik ,,j i,j=O, +l, +M), f=(fd;i,j=O, +1,..., +M).

Then (51) implies

and by means of the discrete maximum principle (49) and (50), we get

Mkti < Mkti 1,T,a, <- Tkti1, k 1 2,

from which

1--- 2

follows. On the other hand, t3o satisfies

-n+lvo TlVo + T2vo, Vo=< Mk, k=1,2
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and also

Then (51) gives

> Tf+ T2gI)0

n< Vo

and again, by means of the discrete maximum principle (49) and (50), we obtain

"<Mk k=l 2< TO, Mk5T,

and therefore

We also have

l)2 I.)

an<o1=

and, by induction,

(53) -"<a" <fi" <-n <-,<-n Vn, k./’/0 k k+l Lk+l Ok

Hence, the sequences generated by the first-order algorithm converge to a unique limit
array a=(ui,j,i,j=0,+/-l +M;n=O, N) satisfying

(54) a" min {T,a"+’+ T2ft",Mlft",Mzft"},

(55) a,=
The fact that a is the maximum subsolution follows in a similar way from the discrete
maximum principle.

Analogously, the convergence of the second-order algorithm can be proved. The
two sequences ak and 5k, k 0, 1," generated by the second-order algorithm satisfy

tT" M2tTk},k+l min {S -n+l
Uk + S2Uk Mk

(56)
Vk+-" =min {SO,+I+ S2Vk,-" MXVk,-" Mz,}

for any k =0, 1,. and n =0, 1,. , N- 1. Then by induction we can show that (53)
and (55) hold for these new sequences and also the limit array satisfies

(57) a" min {S,a"+’ + S2an, ma", Mzan}.

Therefore, we have proved the convergence of both (first-order and second-order)
algorithms with the error estimate (55).

We remark that several variants ofthese algorithms can be considered, for instance,
the use of other additional boundary conditions together with changes in the definitions
(40), (47). Similar algorithms for first-order equations and other kinds of Hamilton-
Jacobi-Bellman equations have been used by Falcone [6], Gonzalez and Rofman [8],
Bancora-Imbert, Gonzalez, Miellou, and Rofman [1], and others.

5. Numerical results. The second-order algorithm was applied to solve the problem
(5)-(7) numerically. As a special case, we took the physical constants in this problem
as follows: q 0.1, r 0.2, and c 0.1.

The program was executed with positive p 0.01, p =0, and negative p =-0.01.
The corresponding numerical results remain unchanged up to three digits after the
decimal point. This is due to the fact that the algorithm is unconditionally stable. The
negative constant p was chosen in order to test the efficiency of the algorithm in the
case where the physical system would be destabilized by negative damping.
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The cost function f was assumed to be of the form

f(x, y) x2 + y2.
A mesh was defined on the box B {(x, y, t)e 3, ixl_< a, lyl--< , 0<_-t<_-3}. The

precision constant was chosen to be e 10-15.
Solutions were computed backward in time, with the condition (28) satisfied for

each timestep.
We have considered two cases of initializing the iterates

n,0Case 1 ui,j =minf, for all n (v i,j maxf,j).
N--l,0Case 2. ui, =minf, (or the min of a solution coming from a coarser mesh);

n,0 -n+l
u,j min for all n # N- 1 whereu,j , is the relaxed solution obtained in the
previous timestep.

The second initialization procedure accelerates the convergence, because we start
with a better subsolution.

In the initial phase of computation, we can apply the first-order numerical method
with the finest possible mesh to ensure the satisfaction of the stability condition (21),
which in our case yields mesh sizes Ax Ay 0.25 and At 1.

This scheme has proved to be faster in obtaining a first approximation to the
solution than the second-order one with the same mesh.

+ (jAy) inAs explained in 2.2, we took the terminal values Ui,j--fi,j--(iAx)2 2

D, the boundary values uj=min{f.,f,j++O.O25,f,j_+O.025} on the prescribed
boundary F and the initial value ui, =0 on the slit OM (see Fig. 1).

Then, following the iterative algorithm given in 2.3, we obtained a relaxed
solution a with precision e 10-15.

In Case 2, the relaxed solution thus obtained was used as the initialization data
for the second-order numerical scheme with a refined mesh, in which the missing initial
values were obtained by interpolation.

In computations we took M=8, N=3 so that Ax=Ay=0.125, At=l, and
cAy =0.0125.

The terminal and boundary values are the same as before, but with the prescribed
boundary F replaced by F2 (see Fig. 2). However, the initial data (iterate) is changed
to a min a at every point in D. Here the second-order algorithm in 3.2, can be
put in the following form.

(1) Initialization as described above.
(2) Time loop n=N-1, N-2,...,1,0

Loop i= M, M- 1, , 1, 0, -1, , -M+ 1, -M

Loopj 1, 2,..., M

/,/n n+l
i,j min {dlUi, + -I-d3 ,j- 1,j,d2ui,j+ u n d4ui+

ui,j+ + cAy,u,_l + cAy}

Loop =-M, -M+ 1, , -1, 0, 1, , M- 1, M

Loopj=-M, -M+ 1,...,-1, 0
n+l

Ui, min {du, + dzu -+- d3u q- dsui,j+l i,j--1 i--l,j,

l,ln,j+ + cAy, ui,j- + cAy},

where (,) stands for "Repeat until the iteration converges with e-precision."

Later on we made a mesh refinement with M 16 so that Ax Ay 0.0625 Some
ofthe results will be shown in the saturation graphs (Figs. 11-13). Here the initialization
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data came from the second-order results with a coarser mesh (M 8) since the
first-order method is unstable at M 8 for our example.

We have also carried out the calculations on the different meshes with initialization
values equal to vn’ maxf for all n. This yields a decreasing sequence of supersolutions
converging to the same solution as obtained by the convergent subsolutions. This was
predicted by the theoretical results.

Some numerical results are displayed in the subsequent Figs. 3-17. They were
obtained on a computer running with the INTEL 80286 processor (8 MHz 0-wait
state) and a 80287 math-coprocessor. Our computer programs were written in (Turbo)
Pascal language.

To get some idea about the change in computing time-scale involved, we experi-
mented with mesh refinements. As examples, some execution times versus mesh sizes
are given as follows"

Mesh size (Ax Ay) 0.250 0.125 0.062

Execution time 15 sec. 1 min. 40 sec. 16 min. (per timestep)

We see that the execution time increases rapidly, like a negative cubic power in
Ax, as the mesh size decreases. If K is the number of nodes, then the execution time
is proportional to K In K.

Also we wish to point out that the advantage in the use of the mathematical
coprocessor is a 40 percent reduction in execution times.

In Figs. 3-6, the graphs show various y-sectional curves for the minimum cost
function u(x, y, t) as a function of x, at 2, where y varies from -1 to 1 with the
increment Ay =0.125. All curves are convex as expected from the analytical result [3].
We also have symmetry on both variables x, y with respect to the origin: u n(x, y)=
u’(-x,-y). The y-sections are asymmetric in x. The asymmetry is most pronounced
at high speeds (lYl near 1), as shown in Figs. 4 and 6.

z

0

z

0.3

0,2

0,1

0.0_1 ,C) _1,, C)IC) 0,51 ,C)

FIG. 3. y-sectional curves for the minimum cost function u(x, y, t) at 0, (the last computed timestep)
as y varies from -1 to -0.375 with the increment 0.125.

These curves show that, for example, given positive velocities, positive displace-
ments produce a higher cost than negative ones. This is because a control will be
necessary in the first case to bring the oscillator back to its rest position while it will
otherwise come back by itself.
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Z

z

0.3

0,2

0,1

-1,6

FiG. 4. y-sectional curves for the minimum cost function u(x, y, t) at 0, as y varies from -0.25 to 0
with the increment 0.125.

z o.31

’-5 016 ,5

FiG. 5. y-sectional curves for the minimum costfunction u(x, y, t) at 0, as y variesfrom 0 to 0.25 with
the increment 0.125.

o

FIG. 6. y-sectional curves for the minimum cost function u(x, y, t) at 0, as y varies from 0.375 to

with the increment 0.125.
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z

0,2

z

,0 0.0 0

FIG. 7. x-sectional curves for the minimum cost function u(x, y, t) at 0, as x varies from -1 to -0.375
with the increment 0.125.

z O.

_
z

0.0
01 0-1.0 -,5 ,0 0,5 1.

FIG. 8. x-sectional curves for the minimum cost function u(x, y, t) at t--0, as x varies from -0.25 to 0
with the increment 0.125.

z 0.3

0,2

0,1

FIG. 9. x-sectional curves for the minimum cost function u(x, y, t) at 0, as x varies from 0 to 0.25 with
the increment 0.125.
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Z

FIG. 10. x-sectional curves for the minimum cost function u(x, y, t) at 0, as x varies from 0.375 to

with the increment 0.125.

The next set of figures, Figs. 7-10, show the x-sectional curves for the minimum
cost function u as functions of y, at =2, where x varies from -1 to with the
increment Ax 0.125. Note that, at each velocity y, the cost increases with the displace-
ment Ixl, as expected. Also it is interesting to note the remarkable shift of the low cost
region, in Figs. 7 and 10, away from the center, y 0. This means that the velocity )7,
at which the cost attains its minimum, decreases for increasing positive displacements
and increases otherwise.

In Figs. 11-13 the so-called "saturation graphs" at 2, 1, 0, are exhibited. In
each figure, the computational domain, the unit square {-l < x _-< l, -l _-< y _<- l}, is
subdivided into three distinct regions, marked by "c, ’," and "$." The region "c"
is known as the "continuation" set, in which no control action is taken. As soon as
the state (x, y) of the system reaches a control region marked by arrows, a control will
be applied in the direction of the arrows to bring the system back to the boundary of
the region "c." Therefore they may be viewed as control charts at different instants of
time. These regions are determined from the numerical solution to the problem by
checking which inequality becomes an equality. In "c," the equality holds for (32).
Similarly, "$" and "’" designate the regions in which the equality holds for (31) and
(32), respectively.

FIG. 11. Saturation graph for two different meshes (M 8 and M 16) at 2, (the first computed time

step). The [-1, + [-1, + domain is represented, with (0, O) lying in the middle. In the region marked
"c," no control is to be applied. In the arrowed regions, a control is to be applied in the direction of an arrow.
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FIG. 12. Saturation graph for two different meshes (M =8 and M 16) at 1.

FIG. 13. Saturation graph for two different meshes (M =8 and M 16) at =0.

In Figs. 14-17 we show the three-dimensional representation of the minimum cost
function viewed from different rotation (Twist) and elevation (Tilt) angles. Twist angle
0 corresponds to a South-to-North view. Tilt angle 0 corresponds to no elevation, i.e.,
a view from the ground. The symmetry with respect to the origin can easily be seen.

We would like to emphasize that the proposed second-order numerical scheme
for degenerate problems under consideration is always stable. If regularization pro-
cedures, such as the penalty method, were used, we would have obtained a highly
ill-conditioned computational problem.

FIG. 14. Minimum cost function at O. Twist angle O. Tilt angle O.
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FIG. 15. Minimum cost function at t--O. Twist angle 45. Tilt angle 5.

FiG. 16. Minimum cost function at O. Twist angle 90. Tilt angle O.

FiG. 17. Minimum cost function at O. Twist angle =-45. Tilt angle 5.

Also we wish to point out another advantage of the present scheme. Namely, our
scheme is essentially "local" in the sense that the new value at each meshpoint is
determined by the value of its three immediate, right and left, neighbors (see Fig. 2).
Therefore the problem can be solved on computers of relatively small central memory.
This "local" characteristic is, of course, important when we embark on a large-scale
computation.
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6. Final comments. Regarding the relation between the discrete problem (54) or
(57) and the continuous problem (5), (6), (7), we would like to mention an error
estimate of order (At) 1/: with Ax, Ay dominated by At. That estimate (see Chow and
Menaldi [4]) is based on the approximation of the diffusion process (2) by a Markov
chain. From the probabilistic point of view, the approximations based on a weak
convergence in measure were considered by Kushner [10] and Quadrat [13]. For a
deterministic optimal control problem, an estimate of order At and other similar ones
can be found in Capuzzo-Dolcetta [2], Falcone [6], Gonzalez and Rofman [8].

Apparently, problem (57) seems to approximate the continuous problem (5), (6),
(7) better than problem (55). The reason is that problem (57) has an interpretation as
an optimal control problem similar to the continuous problem (2), (3), (4), in which
the diffusion process (2) is replaced by a Markov chain. This last argument also applies
to the problem (55), but the Markov chain thus obtained involves the variables x, y, t.

In order to find the optimal feedback law, we need to know at each point (i, j, n)
which of the three inequalities, in system (18), (19), (20) (respectively, (33), (34), (35)),
is indeed an equality. When (18) (respectively, (33)) is an equality, no control is used.
Otherwise an action, according to whether (19) or (20) becomes an equality, is taken
in the appropriate direction.

Let us make some comments regarding the boundary conditions due to the use
of a bounded mesh. In our example, we would get a better result by using some kind
of asymptotic behavior of u at the boundary y- +b. Formally we argue as follows.
For any x in [-a, a] and y +b with b large enough, we have

OU
--=c fory +b,(58)
Oy

since the terminal cost f(x, y) has a superlinear growth in y. On the other hand, for
x a, y in I-b, b], we suppose

(59) u(x, y, t)= uo(y, t),

from which the inequalities (5) become

(60)

where

(i)
OUo+Lyuo >= O,
Ot

OUo
(ii) -c<-<=c,

Oy

(61)
1 rzO:u_____qO(y, t)-(py+q:a) OuoLyuo(y, t):- Oy: (y’ t).

Similarly, for x =-a, y in [-b, b], we replace a by -a in the above expressions (60),
(61). In other words, we impose the boundary condition

OU
=0 for x +a,(62)
Ox

which gives a first-order approximation. Some more complicated conditions can also
be introduced. For instance, we may assume

(63) u(x, y, t) xlxl-Uo(y, t)+ Ixl u < t),
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where f(x, y) grows like Ix[" for large x. Then we obtain

{ l r2 02Uo OUo }20uOLu xlx[ m-2 Oy2 --py---y + myul --q [x[m-y +(m- 1)y[xlm-2ul

By keeping only the terms with ruth power in x, we deduce the inequalities

(i) Louo+OU---+myu>-O (-<O if x < O),

(64) (ii) q20Uo OUl+>-- O,oy ot

OUo
(iii) -e<-_<-c

Oy

with the complementary condition: If one of the inequalities of (iii) is strict, then (i)
as well as (ii) are equalities. So, for x q:a, y in [-b, b] with a sufficiently large x, we
suppose that (64) holds, subject to the above complementary conditions and an initial
condition at 0.

Finally, we wish to point out some possible extension of the proposed algorithms.
Suppose the differential operator L is of the form

1 02 0 0
(65) L=- cr2(x’ Y)--yz+p(x’ Y)-y + q(x’ y)

Ox

Then, we can discretize it similarly to (13), (14), where r is replaced by r(i, Ax, jAy)
and

p(x, y)-O-fy Ip(iAx, jAy)l[(u,,j_, u,d)II(p(iAx, jAy) < O)

+ (u i",+- u i"d)II(p(iAx, jay) > 0)],

q(x, y)O [q(iAx, jAy)[[(u "- 1,j u i",)II (q(iAx, jay) < O)
Ox

+ (uQl, ud)II(q(iAx,jAy)> 0)].

Analogous extensions can be worked out for higher-dimensional problems.
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