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Introduction: Kidney function declines with age, but its determinants in the general population remain

incompletely understood. We investigated the rate and determinants of kidney function decline in the

general population.

Methods: Participants with information on kidney function were selected from a population-based cohort

study. Joint models were used to investigate the evolution of the estimated glomerular filtration rate

(eGFR, expressed in ml/min per 1.73 m2 per year) and the urine albumin-to-creatinine ratio (ACR,

expressed in mg/g per year) with age. We stratified for 8 potential determinants of kidney function decline,

including sex, cardiovascular risk factors, and cardiovascular disease.

Results: We included 12,062 participants with 85,922 eGFR assessments (mean age 67.0 years, 58.7%

women) and 3522 participants with 5995 ACR measurements. The annual eGFR decline was 0.82 and the

ACR increase was 0.05. All determinants appeared detrimental for eGFR and ACR, except for prediabetes

and higher body mass index which proved only detrimental for ACR. In participants without the de-

terminants, eGFR decline was 0.75 and ACR increase was 0.002. Higher baseline eGFR but faster eGFR

decline with age was detected in men (0.92 vs. 0.75), smokers (0.90 vs. 0.75), and participants with diabetes

(1.07 vs. 0.78).

Conclusion: We identify prediabetes, smoking, and blood pressure as modifiable risk factors for kidney

function decline. As with diabetes, hyperfiltration seems important in accelerated kidney function decline

in men and smokers. The interpretation of kidney function decline may require adjustment for age and sex

to prevent overdiagnosis of chronic kidney disease in aging populations.
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A
ging is one of the most important risk factors for
chronic diseases,1 caused by its negative impact

on the structure and function of several organs in the
human body2,3 and most notably on the kidney.3

Currently, estimated glomerular filtration rate (eGFR)
is the most widely used measure of kidney function.4

The eGFR will gradually decrease with the aging of
the kidney, although the exact age at which the decline
starts is not clearly defined.2,5–7 The decrease is prob-
ably caused by an increase in nephrosclerosis com-
bined with nephron loss.8,9 More specifically, it has
been shown that healthy adults lose approximately
48% of their nephrons from the age of 18 to 29 years to
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the age of 70 to 75 years.8 Knowledge on this age-
related kidney function decline is important, as
decreased kidney function, whether or not physiolog-
ical, has been associated with increased mortality.10–13

In addition, distinguishing physiological from patho-
physiological kidney function decline is pivotal in
preventing overdiagnosis of chronic kidney
disease (CKD), especially in aging populations.

The decline in eGFR with age can be accelerated by
several factors, such as hypertension,14–16 smoking,14,16

and obesity.16–18 Overall, a decline in GFR at approxi-
mately 8 ml/min per 1.73 m2 per decade probably
starting between the ages of 30 and 40 years2,7,19,20 is
considered as the average kidney function decline.
However, previous literature has reported substantial
variability in average annual eGFR decline ranging
from 0.3 to 2.6 ml/min per 1.73 m2.21–29 This variability
may be explained by differences in study design and
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population, in the method used to evaluate eGFR, the
number of available eGFR assessments, and in the sta-
tistical methodology.

To study and quantify the decline in kidney function
with age, prospective longitudinal studies with multiple
assessments of eGFR carried out within the general
population are required. One of the limitations of pre-
vious longitudinal studies is that they do not account for
the possible occurrence of nonrandom dropout. There-
fore, we aimed to study the decline in kidney function
with age determined by eGFR and the urine albumin-to-
creatinine ratio (ACR) using joint modeling, which
models the longitudinal measurements and dropout
process together to avoid bias introduced by nonrandom
dropout.30,31 Kidney function decline could depend on
several characteristics which can be taken into account
with the goal of personalized medicine. In addition,
determining specific rates of kidney function decline for
certain subgroups has the potential to improve predic-
tion and prevention of accelerated kidney function
decline. Therefore, we also aimed to study the decline in
kidney function with age in subgroups with or without
potential determinants.

METHODS

Study Design, Setting, and Population

The current study was embedded in the Rotterdam
Study, an ongoing prospective population-based cohort
study. The design and rationale of the Rotterdam Study
have been described in detail elsewhere.32 Participants
from the Rotterdam Study were eligible for the study if
they had at least 1 measurement of the eGFR calculated
from serum creatinine in the Rotterdam Study or the
Star-MDC database, a general practitioner database,
available. A more detailed description of the methods
can be found in the Supplementary Material.

Assessment of Kidney Function and Covariates

Kidney function was measured within the Rotterdam
Study as well as obtained through the Star-MDC
database. All serum creatinine measurements were
performed using an enzymatic assay method, and eGFR
was calculated according to the CKD Epidemiology
Collaboration equation.33 Urine albumin and creatinine
were determined by a turbidimetric method and
enzymatic method, respectively. The ACR was esti-
mated by dividing urine albumin by urine creatinine
(mg/g). Information on data collection of other cova-
riates can be found in the Supplementary Material.

Assessment of Kidney Replacement Therapy

and Mortality

Information on kidney replacement therapy was ob-
tained through linkage with the Renine database which
Kidney International Reports (2021) 6, 3054–3063
contains data of patients on chronic kidney replace-
ment therapy. Information on vital status of all par-
ticipants from the Rotterdam Study is continuously
obtained from the central registry of the municipality
in Rotterdam and through linkage with records from
the general practitioners in the study area. Follow-up
for all-cause mortality was completed until May,
2018. Follow-up time for all participants was calculated
from the date of the first eGFR assessment available in
the Rotterdam Study or the Star-MDC database until
the date of receiving their first kidney replacement
therapy, date of death, or the end of the study period
(May, 2018), whichever came first.

Statistical Analysis

We investigated the evolution of kidney function
(eGFR and ACR) with age using joint models. In the
current study, the longitudinal submodel is defined as
a linear mixed model describing the longitudinal pro-
files of kidney function with age. Age is used as the
time variable and defined as the age of the participant
at the time of the kidney function measurement. Po-
tential left truncation was taken into account in the
analyses. To check for potential nonlinearity in the
longitudinal profiles of eGFR, we fitted natural cubic
splines of age with 3 knots and boundary knots set at
the 5th and 95th percentiles. The random-effects part
of the model included the linear effect of age. The
survival submodel is defined as a Cox-proportional
hazards model, accounting for left truncation. The
event variable is defined as a combination of first
kidney replacement therapy and death, as both are
responsible for dropout of the study participants.
Because measures of the ACR were not normally
distributed, they were natural log-transformed in all
analyses. Rates of ACR change were predicted from the
final models including the log-transformed ACR and
back-transformed for interpretability. Rates for both
eGFR and ACR change were reported per year increase
in age.

Predefined stratification analyses by sex and base-
line body mass index (BMI), smoking, history of car-
diovascular disease (CVD), systolic blood pressure
(SBP), hypertension, prediabetes, and diabetes were
conducted to study possible determinants of the
decline in kidney function with age. To investigate the
role of blood pressure (BP)-lowering medication, we
further stratified the 4 groups of SBP by BP-lowering
medication use. For the analysis of prediabetes, prev-
alent cases of diabetes were excluded. In addition,
stratification on BMI, smoking, history of CVD, SBP,
hypertension, prediabetes, and diabetes was also per-
formed in men and women separately for eGFR only.
Furthermore, to study on how much of the variation in
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the urine ACR can be explained by muscle mass, we
calculated the explained variability of the urine ACR
for the skeletal muscle index in a cross-sectional
analysis.
RESULTS

Baseline Characteristics

Of the 14,926 participants of the Rotterdam Study, we
excluded those without informed consent (n ¼ 313),
those without eGFR assessments in the Rotterdam
Study or the Star-MDC database (n ¼ 871), and those
with only eGFR assessments before the start (n ¼ 1657)
or after the end (n ¼ 23) of follow-up, leaving 12,062
participants in the final study population
(Supplementary Figure S1). Mean age of the total study
population at baseline was 67.0, with a standard de-
viation (SD) of 10.7 years, and 58.7% were women
(Table 1). The total number of repeated eGFR assess-
ments was 85,922, including 17,908 assessments from
the Rotterdam Study and 68,014 from the Star-MDC
database (median of 5 assessments per participant).
During a median follow-up of 9.6 years (interquartile
Table 1. Baseline characteristics of the study population

Characteristics
Total population
(n [ 12,062)

Age, yr (n ¼ 12,062) 67.0 � 10.7

Women, sex, n (%) (n ¼ 12,062) 7077 (58.7)

Educational level (n ¼ 11,923)

Primary education, n (%) 1770 (14.8)

Lower/intermediate general and lower vocational
education, n (%)

4896 (41.1)

Higher general and intermediate vocational
education, n (%)

3310 (27.8)

Higher vocational education and university, n (%) 1947 (16.3)

BMI, kg/m2 (n ¼ 9829) 27.2 � 4.2

Smoking, n (valid %) (n ¼ 10,052)

Never 3293 (32.8)

Past 4802 (47.8)

Current 1957 (19.5)

Alcohol, g/d (n ¼ 8272) 9.3 � 12.5

eGFR creatinine, ml/min per 1.73 m2 (n ¼ 12,062) 77.2 � 16.5

Urine albumin/creatinine ratio, mg/g (n ¼ 3092)a 3.5 (2.2–6.3)

Serum cholesterol, mmol/l (n ¼ 9871) 5.7 � 1.0

Serum triglyceride, mmol/l (n ¼ 9902) 1.5 � 0.8

Systolic blood pressure, mm Hg (n ¼ 9927) 140 � 21

Diastolic blood pressure, mm Hg (n ¼ 9927) 79 � 12

Hypertension, n (valid %) (n ¼ 9730) 6250 (63.1)

Diabetes, n (valid %) (n ¼ 10,337) 1246 (12.1)

Prediabetes, n (valid %) (n ¼ 10,766) 1955 (18.2)

History of CVD, n (valid %) (n ¼ 10,286) 865 (8.4)

BMI, body mass index; CVD, cardiovascular disease; eGFR, estimated glomerular
filtration rate; n, number.
aTotal population with at least 1 measurement of the urine albumin-creatinine ratio;
n ¼ 3522.
Data are presented as number (%), number (valid %), median (interquartile range) or
mean � SD. Values are found for nonimputed data. For variables with missing data,
valid % is given.
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range 7.0–15.2 years), 5250 deaths occurred and 36
participants started kidney replacement therapy.

Age-Related Decline in eGFR and Sex

Differences

The decline of eGFR with age was 0.82 ml/min per
1.73 m2 per year increase in age (P < 0.001;
Figure 1). When we stratified by potential de-
terminants of kidney function decline, differences
in the longitudinal evolution of kidney function
were revealed for all determinants except for BMI
and prediabetes (Figure 2). At younger age, eGFR of
men was higher compared with eGFR of women.
However, lines crossed at the age of 75 years, after
which a faster decline in eGFR was present in men
compared with women. Overall, the decline of eGFR
with age in men was 0.92 ml/min per 1.73 m2

compared with 0.75 ml/min per 1.73 m2 in women
(Supplementary Table S1).

Other Determinants of eGFR Decline

Stratification by smoking status revealed a higher eGFR
for current smokers at younger age, but the eGFR of
this group became similar to the eGFR of never and past
smokers with increasing age. The decline of eGFR with
age was 0.90 ml/min per 1.73 m2 in current smokers
compared with 0.75 and 0.82 ml/min per 1.73 m2 in
never and past smokers, respectively (Supplementary
Table S1). Participants with diabetes had higher base-
line levels of eGFR; however, a faster decline with age
was seen in this group compared with participants
without diabetes and lines crossed at the age of 72
years. Overall, the decline of eGFR with age was 1.07
ml/min per 1.73 m2 in participants with diabetes and
0.78 ml/min per 1.73 m2 in participants without dia-
betes. Participants with a history of CVD and those
with hypertension had a faster decline in eGFR with
age compared with those without CVD or hypertension
(decline 0.90 vs. 0.80 ml/min per 1.73 m2 in partici-
pants with and without CVD, respectively; annual 0.88
vs. 0.65 ml/min per 1.73 m2 in participants with and
without hypertension, respectively). When analyzing
the 4 groups determined by SBP, participants with
SBP$140 mm Hg had a faster decline in eGFR with age
(0.91 ml/min per 1.73 m2), whereas the decline in the 3
other groups was similar. Further stratification on the
use of BP-lowering drugs revealed similar patterns in
participants using and not using BP-lowering drugs,
although the difference in eGFR decline between the
participants with SBP $140 mm Hg and the other 3
groups was smaller in participants using BP-lowering
drugs (Supplementary Figure S2 and Supplementary
Table S2). The decline of eGFR with age was not
different for the determinants studied when looking at
Kidney International Reports (2021) 6, 3054–3063



Figure 1. Longitudinal evolution of creatinine-based eGFR (ml/min per 1.73 m2, n ¼ 12,062) and urine albumin-creatinine ratio (mg/g, n ¼ 3522)
with age. ACR, albumin-to-creatinine ratio; eGFR, estimated glomerular filtration rate.
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men and women separately (Supplementary Figure S3).
The decline of eGFR with age in never smokers without
hypertension, diabetes, and a history of CVD was 0.75
ml/min per 1.73 m2 (P < 0.001, data not shown).

Age-Related Increase in Albuminuria

In total, 3522 participants had at least 1 measurement
of the ACR, resulting in a total number of repeated
measurements of 5995. A gradual increase in ACR was
reported with age, with an annual increase of 0.05 mg/
g (P < 0.001, Figure 1). The explained variability of
ACR for the skeletal muscle index was 0.1% (data not
shown). Stratification analyses revealed differences in
the evolution of the ACR for all studied determinants
(Figure 3). Men had a lower ACR at the age of 45 years
compared with women. However, a faster increase
with age was seen in men compared with women
(increase in ACR of 0.11 vs. 0.01 mg/g per year in-
crease in age, Supplementary Table S3), and the lines
crossed around the age of 65 years. The rate of the
ACR increase with age was similar in the 3 BMI
groups. However, a higher ACR was reported at all
ages in participants with a BMI $30 kg/m2. Stratifi-
cation on smoking status revealed the fastest increase
in ACR with age in current smokers (increase of 0.10
mg/g per year increase in age). In addition, the in-
crease in ACR with age in past smokers (annual in-
crease of 0.06 mg/g) was higher compared with never
smokers (annual increase of 0.03 mg/g). There was a
Kidney International Reports (2021) 6, 3054–3063
difference in ACR increase when stratifying by SBP,
with the fastest increase reported in participants with
a SBP between 130 and 140 mm Hg (annual increase of
0.06 mg/g). Further stratification on the use of BP-
lowering drugs revealed the fastest increase in ACR
in participants with a SBP between 130 to 140
and $140 mm Hg when not using BP-lowering drugs,
whereas no differences in the rates of increase were
reported between the 4 groups determined by SBP
when using BP-lowering drugs until the age of 80
years (Supplementary Figure S4 and Supplementary
Table S2). After the age of 80 years, a faster increase
in ACR was reported in participants with a SBP <120
mm Hg compared with those with a SBP $140
mm Hg. Participants with a history of CVD, hyper-
tension, or prediabetes had a faster increase in ACR
with age compared with the participants without
these comorbidities. The ACR increase with age was
similar in participants with and without diabetes, but
ACR was higher at all ages in participants with dia-
betes. Results of the log-transformed ACR are found
in Supplementary Figures S5 to S7.
DISCUSSION

In this study, we identified an average decline in eGFR of
0.82 ml/min per 1.73 m2 and an increase in albuminuria
of 0.05 mg/g with age.With regard to the evolution with
age of both eGFR and ACR, male sex, hypertension,
3057



Figure 2. Longitudinal evolution of creatinine-based eGFR with age, stratified on sex, body mass index, smoking, history of cardiovascular
disease, systolic blood pressure, hypertension, prediabetes, and diabetes (n ¼ 12,062). *For the analysis of prediabetes, prevalent cases of
diabetes were excluded (n ¼ 10,818). eGFR, estimated glomerular filtration rate.

CLINICAL RESEARCH AC van der Burgh et al.: Determinants of the Evolution of Kidney Function
diabetes, smoking, and a history of CVD were identified
as determinants. In addition, prediabetes was identified
as determinant of ACR increase only. In people who
3058
never smoked and did not have diabetes, hypertension,
or a history of CVD, the average annual eGFR declinewas
0.75 ml/min per 1.73 m2. Although the identified
Kidney International Reports (2021) 6, 3054–3063



Figure 3. Longitudinal evolution of the urine albumin-creatinine ratio (mg/g) with age, stratified on sex, body mass index, smoking, history of
cardiovascular disease, systolic blood pressure, hypertension, prediabetes, and diabetes (n ¼ 3522). *For the analysis of prediabetes, prevalent
cases of diabetes were excluded (n ¼ 3174). ACR, albumin-to-creatinine ratio.
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determinants are largely in line with previous literature,
our study also identified several novel associations with
potential implications for personalized medicine and
public health.
Kidney International Reports (2021) 6, 3054–3063
First, our data add to the ongoing debate whether
subjects with healthy aging may be labeled as having
CKD. CKD has been defined using a fixed threshold of
eGFR lower than 60 ml/min per 1.73 m2 for at least 3
3059
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months.34 Recently, however, the need for an age-
adapted definition has been proposed.35,36 One of the
arguments to include such an age-adapted definition is
that the current definition does not distinguish be-
tween eGFR decline due to kidney disease and eGFR
decline due to healthy aging.36 Our findings reveal the
presence of healthy kidney function decline with age
and therefore reiterate the consideration to include
healthy aging of the kidney when defining CKD.
Although at the individual level the differences in
annual decline rates are modest, from a public health
point of view, these differences would reclassify a
substantial proportion of the general population and
could prevent overdiagnosis.

Second, our data provide insight in whether the
change in eGFR with age also occurs with ACR.
Although a higher ACR with older age and a correla-
tion between albuminuria and age have been reported
in previous cross-sectional population-based
studies,37,38 the rate of increase over time has not been
investigated previously. In fact, it has been suggested
that urinary albumin excretion is stable and does not
increase with healthy aging and that a potential in-
crease in ACR is due to a decrease in muscle mass and
not to a decrease in kidney function.9,39 A recent lon-
gitudinal study indeed found that subjects with low
skeletal muscle mass had an increased risk of albu-
minuria.40 The explanation for this association is not
fully clear. Lower urinary creatinine excretion with age
may increase ACR, but insulin resistance and endo-
thelial dysfunction were also suggested as possible
explanations.40 In the current study, we reveal that the
skeletal muscle index explained only 0.1% of the
variability in ACR. This implies that other factors must
explain the increase of albuminuria with age in our
population, such as hypertension, as we observed
virtually no increase in albuminuria in participants
without hypertension.

Third, our data add to the evolving concept of sex
differences in CKD. This is often termed the “CKD
paradox” to describe the observation of a higher
prevalence of CKD in women, whereas men with CKD
progress more rapidly to kidney failure.41,42 However,
in a previous cross-sectional study, a lower mean GFR
with older age was reported for women compared with
men.43 In our study, we observed a higher annual eGFR
decline in men compared with women, whereas men
had higher eGFR levels at younger age, which is in line
with the “CKD paradox.” Similarly, we report a higher
annual increase in albuminuria in men compared with
women, whereas men had lower starting levels. These
sex differences could be explained by the direct effects
of sex hormones on the kidney or sex differences in
lifestyle factors not captured by variables such as BMI
3060
or smoking.42,44 Of note, we found no differences in
eGFR for all studied determinants when looking at men
and women separately.

Fourth, participants with prediabetes had a higher
annual increase in albuminuria than participants
without prediabetes. Because no differences in the
eGFR decline with age were found when stratifying by
prediabetes, our data suggest that prediabetes causes
selective damage to the glomerular filtration barrier
which is not yet affecting kidney function. This may
provide a window of opportunity to prevent deterio-
ration of kidney function when prediabetes evolves to
diabetes. However, prediabetes is currently not
considered in the cardiovascular risk management or
prevention strategies. Our results for participants with
diabetes agree with previous findings,26 including a
higher annual eGFR decline and higher ACR compared
with participants without diabetes. The higher baseline
eGFR in participants with diabetes is compatible with
initial hyperfiltration.45

Finally, another novel association was a higher
baseline eGFR and higher rate of eGFR decline in cur-
rent smokers compared with past and never smokers.
Previously, only cross-sectional studies have been
conducted, reporting higher eGFR levels in current
smokers compared with past and never smokers and an
increased risk of proteinuria with smoking.46–49 In
addition, similar to our study, the associations between
smoking and eGFR were most pronounced in current
smokers compared with past smokers, suggesting the
effect of smoking is, at least partly, reversible after
discontinuation of smoking.48 The mechanism under-
lying our and previous findings is incompletely un-
derstood, but glomerular hyperfiltration is suggested to
play a role.46 Smoking could induce repeated transient
decreases in renal plasma flow and GFR,50,51 resulting
in glomerular damage.46 This could result in compen-
satory hypertrophy and hyperfiltration of the remain-
ing glomeruli,48,52 eventually contributing to CKD.52

Strengths of our study include the large number of
participants with longitudinal assessments of kidney
function in a population-based cohort study with a
long follow-up period. Furthermore, by using a novel
modeling technique, we were able to limit the chance
of selection bias introduced by the possible presence of
nonrandom dropout. A limitation of our study is the
small number of repeated measurements of albuminuria
and the unavailability of repeated measurements of
serum cystatin C as an alternative marker of kidney
function. This is especially important because of the
potential underestimation of eGFR (decline) estimated
by serum creatinine in participants with hyper-
filtration, such as in patients with diabetes.53 In addi-
tion, our study only includes Caucasian participants
Kidney International Reports (2021) 6, 3054–3063
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aged 45 years or older, limiting the generalizability of
our results to other populations. Furthermore, selection
bias cannot be fully eliminated as we included general
practitioner data, although we found the Rotterdam
Study and general practitioner data to be comparable.
Finally, previous literature has suggested that the age-
related decline in eGFR starts between the ages of 30
and 40 years,2,7,54,55 which we could not investigate in
our study, as our study population is aged 45 years and
older.

In conclusion, we report a decline in eGFR and an
increase in albuminuria with age in the middle-aged
and elderly of the general population, dependent on
several individual characteristics. These characteristics
are currently not taken into account when defining
healthy kidney aging. Our findings highlight the
importance of considering the implementation of the
rate of kidney function decline with healthy aging in
the definition of CKD to prevent potential over-
diagnosis of CKD in elderly. Several potential de-
terminants of kidney function decline were identified
in the current study and this knowledge can be used to
improve prediction, personalized medicine, and public
health, for example in people with prediabetes or
smokers.
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Table S1. Overall and sex-specific eGFR decline per year

increase in age, separately for sex, body mass index,

smoking, history of cardiovascular disease, systolic blood

pressure, hypertension, prediabetes, and diabetes.
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Table S2. Decline in eGFR and increase in urine ACR per

year increase in age, stratified on systolic blood pressure

and the use of blood pressure-lowering drugs.

Table S3. Overall and sex-specific increase in urine ACR

per year increase in age, separately for sex, body mass

index, smoking, history of cardiovascular disease, systolic

blood pressure, hypertension, prediabetes, and diabetes.

Figure S1. Flowchart of the study population.

Figure S2. Longitudinal evolution of creatinine-based eGFR

with age, stratified on systolic blood pressure and the use

of blood pressure-lowering drugs.

Figure S3. Longitudinal evolution of creatinine-based eGFR

with age stratified on sex, body mass index, smoking,

history of cardiovascular disease, systolic blood pressure,

hypertension, prediabetes, and diabetes.

Figure S4. Longitudinal evolution of the urine albumin-

creatinine ratio with age (mg/g), stratified on systolic blood

pressure and the use of blood pressure-lowering drugs.

Figure S5. Longitudinal evolution of the log urine albumin-

creatinine ratio (logACR, mg/g) with age (n ¼ 3522).

Figure S6. Longitudinal evolution of the log urine albumin-

creatinine ratio (logACR, mg/g) with age, stratified on sex,

body mass index, smoking, history of cardiovascular dis-

ease, systolic blood pressure, hypertension, prediabetes,

and diabetes.

Figure S7. Longitudinal evolution of the log urine albumin-

creatinine ratio with age (logACR, mg/g), stratified on

systolic blood pressure and the use of blood pressure-

lowering drugs.
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