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Abstract 

Maya civilization developed in Mesoamerica and encompassed all of the Yucatan Peninsula, 

Guatemala, Belize, part of the Mexican states of Tabasco and Chiapas, and the western parts of 

Honduras and El Salvador. This civilization persisted approximately three thousand years and was 

one of the most advanced of its time, possessing the only known full writing system, art, and 

sophisticated architecture, as well as mathematical and astronomical systems. This civilization 

reached the apex of its power and influence during the Preclassic period, from 2000 Before the 

Current Era (BCE)-250 Current Era (CE). Genetic variation in the pre-Hispanic Mayas from 

archaeological sites in the states of Yucatan, Chiapas, Quintana Roo, and Tabasco, Mexico, and 

their relationship with the contemporary communities in these regions have not been previously 

studied. Consequently, the principal aim of this study was to determine the mitochondrial DNA 

(mtDNA) variation in the pre-Hispanic Maya population and to assess the relationship of these 

individuals with contemporary Mesoamerican Maya and populations from Asia, Beringia, and 

North, Central, and South America. Our results revealed 1) interactions and gene flow between 

populations in the different archaeological sites assessed in this study; 2) the mtDNA haplogroup 

frequency in the pre-Hispanic Maya population (60.53%, 34.21%, and 5.26% for haplogroups A, C 

and D, respectively) was similar to most Mexican and Guatemalan Maya populations, with 

haplogroup A exhibiting the highest frequency; 3) haplogroup B most likely arrived independently 

and mixed with populations carrying haplogroups A and C based on its absence in the pre-Hispanic 

Mexican Maya populations and low frequencies in most Mexican and Guatemalan Maya 

populations, although this also may be due to drift; 3) Maya and Ciboneys sharing haplotype H10 

belonged to haplogroup C1 and haplotype H4 of haplogroup D suggesting shared regional 

haplotypes indicating a shared genetic ancestry suggesting regional interaction between populations 

in the Circum-Caribbean region than previously demonstrated; 4) haplotype sharing between the 

pre-Hispanic Maya and the indigenous populations from Asia, the Aleutian islands, and North, 
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Central and South America provide evidence for gene flow from the ancestral Amerindian 

population of the pre-Hispanic Maya to Central and South America.   

 

Introduction 

The Maya civilization was one of the best known classical civilizations of Mesoamerica that 

developed into a society equipped with astronomy, mathematics, a calendar system, hieroglyphic 

writing, astrology and agricultural innovations. The Maya are an indigenous people of Mexico and 

Central America and the descendants of the people who built the great cities are still residing on the 

same lands.   

Historical documentation suggests that the ancestors of the Maya came to the Yucatan Peninsula 

through the Bering land bridge from North Asia. Eventually, these Maya immigrated south to Lake 

Petén, Guatemala, where they established a kingdom with their capital and sacred city of Flores 

Island in the lake [Muñoz et al., 2012b]. The Yucatan peninsula became the principal region of a 

new culture, called Toltec/Maya, which formed when Toltec migrated from the north and integrated 

with the Maya people.    

Cultivation of the Maya Civilization  

Human activity in Mexico during hunter-gatherer culture sustained through corn cultivation, basic 

pottery and stone tools that date back to the Holocene Epoch in 7200 BCE (Before the Current Era) 

[Ranere et al., 2009]. Furthermore, a phytolith analysis of sediments from San Andres, Tabasco, 

confirmed the diffusion of maize cultivation from the tropical Mexican Gulf Coast >7,000 years ago 

(≈5,800 BCE), followed by the rapid spread of the crop to South and North America by the 

ancestors of the Maya [Pohl et al., 2007; da Fonseca et al., 2015; Piperno et al., 2009; Grobman et 

al., 2012]. This diffusion is further supported by evidence suggesting that the introduction of maize 
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into the Southwest United States occurred before 2,050 BCE [Merrill et al. 2009; Kemp et al., 2010; 

Kohler and Reese, 2014]. 

Olmec influence on Maya 

Olmec considered the oldest culture in Mesoamerica settled along the Gulf of Mexico and began 

building cities of stone and brick during the Pre-Classic Period. While the nature of the relationship 

between the Olmec and the Mayas is unknown, some archeologists have suggested that the Mayans 

were their descendants and/or trading partners [Benson, 1967].  Indirect evidence of the relatedness 

of the Olmecs and Mayans supports the notion that the Olmecs may have been the precursors of 

Mayans, as suggested by Arnaiz-Villena et al. [2000] based on HLA allele frequency distributions. 

Inomata et al. [2013] and Pringle [2013] have also documented the growth of the ceremonial space 

into a plaza-pyramid complex at Ceibal, Guatemala that predates the buildings at other lowland 

Maya sites, as well as the major occupations at the Olmec center of La Venta. These authors 

suggested that the development of lowland Maya civilization did not result directly from the 

influence of the Olmecs but from interactions with groups in the southwestern Maya lowlands, 

Chiapas, the Pacific Coast, and the southern Gulf Coast [Pringle, 2013; Inomata et al., 2013]. There 

is evidence for a settlement at La Venta between 1400 and 1150 BCE that expanded between 1150 

and 800 BCE and developed into a major temple-town complex [Rust and Sharer, 1988]. 

Maya Language 

Language and culture could also have played a pivotal role in Mesoamerica during the colonization 

of the American continent. Proto-Mayan is the common ancestor of all modern Mayan languages 

today and the Classic Maya languages documented in the hieroglyphic inscriptions [Law, 2013]. 

According to the classification scheme by Campbell and Kaufman [1985], Proto-Mayan was split in 

6 main branches: K’iche’an, Mamean, Q’anjob’alan, Ch’olan-Tseltalan, Yukatekan, and Wastekan, 

the first division occurred circa 2200 BCE, when Wastekan moved northwest along the Gulf Coast 
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of Mexico.  Subsequently, each subgroups was spawned and at present time the Maya language 

family includes approximately 31 languages spoken by more than 5 million people in Guatemala, 

Mexico, Belize, Honduras, and in diaspora communities in the US and Canada [Law, 2013]. Three 

languages are now extinct: Chikomuseltek [Campbell and Kaufman 1985; Ch’olti’ [Houston et al., 

2000; Law, 2013] and the language of Maya hieroglyphic inscriptions recorded from approximately 

20,000 terse hieroglyphic inscriptions [Law, 2013]. Linguistic and maternal genetic diversity have 

not been correlated in Native Mexicans [Sandoval et al., 2009)]. 

Background on Maya genetics   

Several important factors that could influence the magnitude of genetic admixture in the Maya 

include gene flow between different locations, including genetic exchange with people who adopted 

maize, other domesticates, and ceramic use but without a sedentary lifestyle for many centuries 

[Inomata et al., 2015], as well as gene flow introduced by rival Mayan groups. A recent study has 

suggested that those early migratory people contributed to the monumental constructions and public 

ceremonies in the lowland Maya site of Ceibal [Inomata et al., 2015].  This study supports the idea 

that the development of sedentism was a complex process involving and facilitating social 

interactions among diverse groups [Inomata et al., 2015]. Furthermore, Ragsdale et al. [2015] also 

suggested that trade and political relationships affected the population structure among Postclassic 

Mexican populations. 

Several authors have used biological indicators such as dental morphology to reconstruct patterns of 

affinity among ancient and modern human groups [Scherer, 2007; Cucina et al., 2015, Aubry, 2009; 

Ragsdale et al., 2015]. The study of the population structure of the Classic period (250 BCE to 900 

CE) Maya through analysis of the odontometric variation of 827 skeletons from 12 archaeological 

sites in Mexico, Guatemala, Belize, and Honduras indicated that the isolation by distance model is 

not applicable to the population structure of Classic period Maya [Scherer, 2007]. Further studies 
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examining dental morphology and 
87

Sr/
86

Sr ratios indicated intense population dynamics in the 

peninsula during the Maya Classic period. These authors concluded that the different natures of the 

dental and isotopic indicators were consistent with proposed trade routes in the peninsula [Cucina et 

al., 2015].  

Background Mitochondrial DNA  

From an archaeological perspective, the primary indicator of contact and the sharing of ideas or 

culture between populations is the presence of foreign goods or architectural patterns in 

archaeological sites. From a biological point of view, population interactions can be inferred 

through the genetic makeup of the population, in which a high diversity in both haplogroups and 

haplotypes can show evidence of admixture, whereas homogeneity in mtDNA lineages shows 

evidence of drift [Cann et al., 1987; Wallace et al., 1999; Pakendorf and Stoneking, 2005; Nesheva, 

2014].  

Mitochondrial DNA has been used to elucidate the maternal evolutionary history of anatomically 

modern humans through the reconstruction of prehistoric human dispersals [Forster et al., 1996; 

Goebel et al., 2008; Theyab, et al., 2012; Melton, et al., 2013; Mendisco et al., 2014] and to study 

human genetic predispositions to various diseases [Chen et al.,, 2015; Montiel-Sosa et al., 2013; 

Scheibye-Knudsen et al., 2013; Delgado-Sánchez et al., 2007]. These studies are possible because 

mtDNA (1) is transmitted as a non-recombining unit through maternal lineages, (2) provides an 

exceptional record of mutations over time [Ingman  et al., 2000], (3) is present in numerous copies 

in each cell, and (4) databases of entire human mtDNA sequences are readily available for 

comparison [Falk et al., 2014; Shokolenko et al., 2015]. 

Previous studies investigating mtDNA in contemporary Mayan populations have suggested that 

Native Mexican populations are more closely related genetically to North American populations 

[González - Martín et al., 2015] and that this genetic structure is related to geography rather than to 
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language. Additionally, genetic differences have been identified between the populations from the 

northern and central regions of Mexico and Mesoamerica [Gorostiza et al., 2012]. Furthermore, the 

heterogeneity of the Nahuas suggests that this group is composed of several genetically distinct 

cultural groups that were absorbed by the Aztecs [González - Martín et al., 2015] and later admixed 

with the Maya populations. 

These phylogenetic studies using mtDNA data suggest a demographic scenario that is compatible 

with moderate local endogamy and isolation of the contemporary Maya combined with episodes of 

gene exchange between ethnic groups and that the recent adoption of an ethnic identity in the 

Guatemalan Maya stems from a cultural rather than a biological basis [Söchtig et al., 2015].  

Occupations in South America may have resulted from a different process involving multiple early 

migrations and subsequent population movements. Lewis et al. [2007] suggested that later regional 

isolation and differential evolutionary processes led to the formation of greater diversity estimated 

within western populations, and limited genetic differentiation estimated among western 

populations was likely attributed to larger population sizes and more extensive gene flow within this 

region, as well as a period of reduced population sizes and more restricted gene flow. Concurrently, 

the findings of de Saint Pierre [2012] indicated that the present native populations inhabiting South 

Chile and Argentina comprise a group with a common origin, suggesting a population break 

between the extreme south of South America and the more northern part of the continent. They 

concluded that the early colonization process was not just an expansion from north to south but also 

included movements across the Andes. 

To date, no studies have investigated the origin and diversity of Maya maternal lineages in the 

Mexican region. This analysis addresses this deficiency through the use of pre-Hispanic samples 

from archeological sites including Xcambo, Bonampak (Group Frey and Group Quemado), 

Palenque (Temple XIII, Temple XV, Group B), Rey Quintana Roo, and Comalcalco (Temple V, 

Temple III, Tenosique, El Comal, Working areas, Dren, Peje Lagarto Pinos, Sueños de Oro, 
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Calicanto (Figure 1). In addition, the genetic variation in these pre-Hispanic Mayas and their 

relationship with contemporary Maya populations (Yucatan, Guatemala, Honduras, and Belize), 

Asia, Bering, North America, Central America and South America were determined to better 

understand their relationship and the effects of gene flow on contemporary Mayas (Suppl. Figure 2).    

 

Materials and Methods 

Archaeological sites from which bone samples for this study were obtained.   

(1) Bonampak was occupied in the earliest Classic period 250 BCE and is located in the Lacandon 

Jungle, 30 km to the south of Yaxchilan near the border of Mexico and Guatemala. Its maximal 

cultural peak at approximately 743 CE is highlighted by one of the major features of this 

archaeological site: the mural paintings on buildings that surround the central plaza [Flores-

Gutierrez, 2007]. In this study we include 1) four samples from the “Quemado group” located 250 

m to the northeast of the Gran Plaza and 2) one sample from the “Frey group” located 350 m to the 

north of the Acropolis (Figure 1, Table 1).    

(2) The Classic Maya site of Palenque (226 BCE to 799 C.E.) is situated on a limestone shelf at the 

base of the Sierra de Palenque. Located near the Usumacinta River in the Mexican state of Chiapas, 

it lies approximately 130 km south of “Ciudad del Carmen” and 150 m above sea level. Remains 

from Palenque Temple XIII and Temple XV are distinguished by the naturalistic sculpture, 

architectural inventiveness, and detailed epigraphic record. At present, this region is inhabited by 

Chol-speaking Mayas [Schele, 2012]. The Mayas used old buildings to construct new temples, and 

an earlier structure lies beneath the Palace that was built before the construction of the galleries, 

suggesting a much earlier occupation of the site, probably by the same group of Mayas that 
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constructed the rest of the ceremonial center [Ruz Lhuillier-cited by Schele, 2012]. This study 

includes 9 samples from this archeological site (Figure 1, Table 1). 

(3) Comalcalco (“House of Frying Pans” in Nahuatl) is one of the most significant ancient cities in 

Tabasco, and the only Mayan city built with bricks of baked clay instead of stone. This 

archaeological site is made up of three complexes: the North Square, the Great Acropolis and the 

Acropolis of the East.  It is similar in design to Palenque, and it flourished as an agricultural center 

specializing in cacao. The clay bricks are decorated with iconography and/or hieroglyphs, sand and 

oyster shells. Comacalco is believed to feature the earliest brick buildings found in Mesoamerica. 

The city was a center of the Chontal Maya people who flourished in 500 CE, and it was abandoned 

in approximately 1000 CE. The chemical composition of the figurines found in Comalcalco are 

equivalent to those found on Jaina Island [Ochoa, 2004]. Dren is also located in Comalcalco, but in 

the working areas. Thus, it is possible that the samples were from the common people living in this 

area. This study includes 6 samples from this archeological site (Figure 1, Table 1). 

 (4) “Sueños de Oro”, Tenosique, Calicanto Jalapa, and Peje Lagarto, Huamanguillo are small 

archaeological sites in Tabasco located proximal to the major archeological sites in Tabasco (Figure 

1, Table 1).  “Sueños de Oro” is also known as “El ceibo” and is approximately 59 km from the 

municipality of Tenosique on the Guatemalan border. This study includes 2 samples from Sueños 

de Oro, 5 from Tenosique, 1 from Calicanto and 1 from Peje Lagarto (Table 1). 

(5) El Rey Quintana Roo, named Nizuctec (250-600 CE), is located in Cancun in the state of 

Quintana Roo—it was known as Nizuc in early Colonial times [Andrews, 2006]. This study 

includes 5 samples from this archaeological site (Figure 1, Table 1).  

(6) Xcambo is a small archaeological site located 2 km from the northern coast of the Yucatan 

Peninsula in the Municipality of Dzemul. The occupation of this city dates back to 150 BCE to 300 

CE. Archaeological evidence suggests that Xcambo provided salt to the Mayan cities of Izamal, 
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Oxkintok and Ah Kim Pech [Aubry, 2009]. This study includes 2 samples from Xcambo (Figure 1, 

Table 1).  

Samples  

DNA analysis was performed for 38 pre-Hispanic individuals from the following archeological 

sites: Xcambo, Bonampak (Group Frey and Group Quemado), Palenque (Temple XIII, Temple XV, 

Group B), El Rey Quintana Roo, and Comalcalco (Temple V, Temple III, El Comal, Working 

areas), Dren, Peje Lagarto Pinos, Sueños de Oro, and Calicanto (Figure 1 and Table 1). 

Archaeological bone samples (0.5 mg) from 2 different areas of each skeleton were collected for 

this study. Pre-Hispanic bone samples were donated by the INAH (Instituto Nacional de 

Antropologia e Historia, Mexico). One sample was eliminated because the DNA was damaged.  

Ancient Sample Preparation for DNA Extraction 

DNA purification was preceded by sample decontamination to eliminate exogenous surface DNA. 

Each sample was washed with full-strength Clorox bleach followed by rinsing with DNA-free 

ddH2O and UV light irradiation of each facet for 30 min [Muñoz et al., 2012a]. Gloves, masks, hats, 

coats and filter pipet tips were used in all experiments to avoid sample contamination in the 

laboratory [Adler et al., 2011, Campos et al., 2012; Muñoz et al., 2012a].  

All sample preparations, DNA extractions and PCR amplifications were completed in the UV 

sterilization room (positive-pressure clean room with filtered air). The clean room contains an 

anteroom. This room is routinely cleaned with bleach, and all containers are wiped before being 

placed in the laboratory. A more complete explanation of the laboratory procedures and methods 

utilized in this analysis is provided in Smith et al. [2009]. Furthermore, a database containing 

mitochondrial control region sequences is maintained for all personnel working in the laboratory 

and any personnel who may have come in contact with human remains prior to the DNA analysis. 
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DNA Extraction 

Bone powder was generated by grinding the skeletal material with a mortar and pestle until a fine 

powder was obtained. The powder (0.100 g) was transferred into a sterile 15-ml tube and suspended 

in 2 ml of extraction buffer (0.01 M Tris-HCl, 0.1 M EDTA and 0.2% SDS pH 8.0). The tubes were 

capped and sealed with Parafilm. After incubation with gentle agitation for 1 h at 37ºC, 1 mg/ml 

proteinase K was added to the sample, followed by incubation at 50ºC for 2 h. Throughout the 

procedure, a blank extraction treated identically to the experimental samples was included to 

monitor potential contamination during the DNA extraction process. Finally, the samples were 

centrifuged at 5,000×g for 5 min, and the supernatants were extracted using phenol-chloroform-

isoamyl alcohol (24:24:1) for organic extraction [Hughes et al., 2006, Maniatis et al., 1989; Muñoz 

et al., 2012a]. Subsequently, the aqueous phase was concentrated by precipitation via the addition of 

0.1 volumes of 3 M sodium acetate pH 5.0 and 2.5 volumes of ethanol. After mixing, the sample 

was incubated at -78ºC overnight and centrifuged at 15,000 rpm for 10 min at 4°C. The supernatant 

was decanted, and the precipitate was rinsed with 70% ethanol. After drying the pellet at ambient 

temperature in a sterile area, the pellet was suspended in 100 µl of DNA-free sterile water. If 

ancient DNA was contaminated with inhibitors of polymerase DNase, the DNA was purified using 

the QIAquick Gel Extraction Kit (Qiagen, Valencia, CA, to Germantown, MD., USA) as 

recommended by the manufacturer. Alternatively, purification of ancient genomic DNA was also 

performed using Magnetic Bead technology in combination with chemagic Prepito-D, following the 

instructions of the supplier. Extracted DNA was maintained in aliquots of 10 µl at -70 ºC.  

Contamination controls lacking sample were also used in every DNA extraction and PCR to detect 

contamination. Additionally, a series of negative controls were routinely assessed using the protocol 

described by Malhi et al., [2010] and Muñoz et al. [2012a]. The samples were extracted at least 

twice from each sample.  
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PCR and DNA sequencing 

The HVS-I of the ancient DNA samples was amplified, sequenced (corresponding to nucleotide 

pairs 15989 to 16236, 16159 to 16236, and 16190 to 16410) and genotyped by real-time PCR 

(TaqMan) for the haplogroup diagnostic markers for mitochondrial haplogroups A, C, D, and X 

(Applied Biosystems®). The primers used to amplify and sequence the HVS-I region of the ancient 

samples in this study were as follows:  

L 15989 (5'-CCCAAAGCTAAGATTCTAAT-3') Gabriel et al. [2001] 

L 16159 (5'-TACTTGACCACCTGTAGTAC-3') Wilson et al. [1995a]  

H16236 ((5'-CTTTGGAGTTGCAGTTGATG-3') Wilson et al. [1995b] 

L 16190 (5'-CCCCATGCTTACAAGCAAGT-3') Gabriel et al. [2001]     

H 16410 (5'-GAGGATGGTGGTCAAGGGAC-3') Gabriel et al. [2001] 

Nucleotide sequencing was carried out by direct-sequencing with an ABI 3130xl Genetic Analyzer 

(PE Applied Biosystems, Foster City, CA, USA). To provide additional confirmation that the 

ancient DNA results were not derived from laboratory-specific contaminants, the samples were also 

verified in the Insectary Laboratory and the Genetics Laboratory at the Institute of Forensic sciences 

(Tribunal Superior of Justice from Distrito Federal).   

If the replicate did not exhibit an identical sequence to the original, a third extraction, amplification, 

and sequence reaction was performed to resolve the ambiguity. Ancient DNA extraction and 

sequencing was replicated in the Insectary and in the INCIFO (Instituto de Ciencias Forenses). 

Recently, ancient DNA extraction and sequencing has been replicated in two samples from la 

Cueva de San Felipe Tabasco, Mexico and in the ancient DNA laboratory of Dr. Dennis O'Rourke 

at the University of Utah in Salt Lake City.  
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Statistical analysis 

Our analyses included a dataset of 1209 HVS-I mitochondrial sequences (38 from this study and 

1173 from published sources) from North, Central, and South America, as well as Beringia and 

Siberia-Asia (Suppl. Table 1). The geographic location of each sample is presented in Suppl. figure 

1. These sequences were aligned and compared using the revised Cambridge Reference Sequence 

(rCRS) [Andrews et al., 1999] with BioEdit v7.2.5 (last update 12/11/2013) [Tom Hall Ibis 

Biosciences, http://www.mbio.ncsu.edu/bioedit/bioedit.html].  The HVI region was examined 

between nucleotide positions 15989 and 16410 according to the rCRS modified version of the 

original CRS published by Anderson et al. [1981].  

Genetic Variability 

To quantify the genetic variability of the HVI mtDNA sequences in the Maya population, standard 

and molecular diversity indices were estimated, namely the nucleotide diversity, mean number of 

pairwise differences (π) [Tajima et al., 1983, Nei et al., 1987], expected diversity based on the 

number of pairwise differences (θπ) [Tajima, 1983], and the sequence diversity (H) [Nei et al., 

1987]. These diversity parameters were computed using the ARLEQUIN program, version 3.5.2.1 

[Excoffier et al., 2010].  

All of the pre-Hispanic Maya samples collected in this study were pooled into 8 groups based on 

the archeological site and the geographic criterion (Figure 1). In addition, 3 groups of sequences 

were included from different ancient populations (Ciboney from Cuba; Guane from Colombia; and 

from the Archaeological Cemeteries of Chile). Following these same criteria, individual 

contemporary sequences were divided into 6 groups and named according to the geographic region: 

Asia, the Beringian Bridge, North, Central, and South America, and contemporary Mayas (Suppl. 

Figure 1, Suppl. Table 1).  
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Molecular Variance (AMOVA) 

The genetic structure of the population among and within groups was estimated by the analysis of 

molecular variance (AMOVA). To explore the demographic history of these pre-Hispanic 

populations, we analyzed the mismatch distribution as implemented in ARLEQUIN 3.5.1.2. 

[Excoffier and Lischer, 2010]. Next, we measured Fu’s Fs and Tajima’s D neutrality tests of the 

total number of segregating sites. All analyses were performed in ARLEQUIN 3.5.1.2 [Excoffier 

and Lischer, 2010]. A multidimensional scaling (MDS) plot based on pairwise distances was also 

constructed using R3.1.2 [https://www.r-project.org/]. 

Median-Joining Network analysis  

The genealogical relationships among the identified mtDNA control region haplotypes of the pre-

Hispanic Maya populations from the archaeological sites were inferred by the median-joining (MJ) 

network [Bandelt et al., 1999] and calculated using Network 4.6.1.3 software [http://www.fluxus-

engineering.com/sharenet_rn.htm], accounting for different rates of transitions and transversions for 

all mutations and setting the parameter to zero to restrict the choices of feasible links in the final 

network. Neighbor-joining tree clustering was constructed according to Kumar et al. [2011] and 

MEGA 5.2 [Tamura et al., 2013]. 

Classification of MtDNA Haplogroups 

Finally, to classify the mtDNA haplotypes into haplogroups, we adopted the nomenclature system 

of Starikovskaya et al. [2005], Achilli et al. [2008], Derenko et al. [2010], Gomez-Carballa et al. 

[2015]; Kumar et al. [2011]; and Rieux et al. [2014]. All detected polymorphic positions were 

confirmed with Mitomaster [http://www.mitomap.org/bin/view.pl/MITOMASTER/WebHome]. All 

new diagnostic positions indicated in these studies were taken into account by assigning the 

haplotypes to haplogroups/subhaplogroups. The haplogroup composition of the analyzed 

populations was then evaluated both on an Asian, Beringian Bridge, Amerindian scale and in the 
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Maya context, to gain insights into the origin of the genetic differentiation of pre-Hispanic Mexican 

and contemporary Maya populations. 

Results and Discussion  

Mitochondrial DNA Diversity 

The mtDNA hypervariable segment I (HVS-1) of 38 Maya pre-Hispanic samples from different 

archeological sites in Mexico (Figure 1, Table 1) was sequenced to determine the haplogroup and 

relationship to maternal lineages of other geographic regions. All mtDNA haplotypes were in 

lineages A (2.6%), A2 (44.73%), A2v (13.16%), C (2.6%), C1 (15.8%), C1b14 (15.8%), and D 

(5.3%) (Table 2). One sequence was classified in haplogroup A based on the presence of a C>T 

transition at position 16223 and a G>A transition at position 16319 (G16319A) [Torroni et al., 

1993]; 17 sequences were classified as haplogroup A2 base on the presence of C>T transitions at 

positions 16111 (C16111T), 16223 (C16223T) and 16290 (C16290T), a G>A transition at position 

16319 (G16319A) and a T>C transition at position 16362 (T16362C) [Torroni et al., 1993; 

Starikovskaya et al., 1998]; 5 sequences were classified as haplogroup A2v based on the presence 

of the transitions observed in haplogroup A2 and a T>C transition at position 16239 (C16223T) 

[Kumar et al., 2011]. No haplogroup B sequences were found in this pre-Hispanic group. One 

additional sequence was classified as haplogroup C based on the presence of a T>C transition at 

position 16325 (T16325C); 6 were classified as haplogroup C1 based on the presence of as 

haplogroup C and a C>T transition at positions 16327 (C16327T); and 6 sequences were classified 

as haplogroup C1b14 based on the presence of transitions detected in haplogroup C1 and a G>A 

transition at position 16181 (G16181A) (Gomez-Carballa et al., 2015; Kumar et al., 2011; Rieux et 

al., 2014). Finally, 2 sequences corresponded to haplogroup D based on the absence of 

polymorphisms diagnostic of other haplogroups and of the transitions C>T (C16223T) and T>C 

(T16362C), as proposed by Torroni et al. [1993] to classify HVS-1 haplogroups.        
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Distribution and Network Analysis of mtDNA haplogroups 

Analysis of the mtDNA haplogroup frequency in the pre-Hispanic populations was determined to 

study Maya history and population dynamics. The haplogroup frequencies are displayed in figure 1 

and show the geographic distribution in each pre-Hispanic population according to the 

archaeological site. We also calculated the frequency distribution of pairwise differences between 

sequences of mtDNA for pre-Hispanic and contemporary populations to evaluate rapid population 

expansion. The distribution of the pairwise differences for the four haplogroups was unimodal, with 

main peaks at 1 for haplogroups A and 2 for haplogroups B, C, and D, indicative of population 

expansion (Figure 2). Supplemental figure 2 panels A and B shows the detailed mtDNA 

phylogenetic tree of pre-Hispanic Maya haplogroups and their immediate Siberian-Asian sister 

clades (panel A-D). 

Network Analysis of Haplogroup A 

Median joining networks of haplogroup A mtDNA HVS-I sequences were analyzed to determine 

the pattern of substitutions in the noncoding control HVS-I region. This analysis included sequences 

from nucleotide 16106 to 16399 (Figure 3) in this study (pre-Hispanic Maya populations) and from 

the GenBank database for Maya, North Central and South America, Beringia, and Asia (Suppl. 

Table 1, Suppl. Figure 1). All samples/citations used for the network analysis are included in Suppl. 

Table 1. The results of this analysis revealed a total of 211 haplotypes in all individuals and 10 out 

of 23 from the archaeological sites Xcambo, Bonampak (Group Frey and Group Quemado), 

Palenque (Temple XIII, Temple XV, and Group B), Rey Quintana Roo, Comalcalco (Temple V, 

Temple III, Tenosique, and Dren), Peje Lagarto Pinos, Sueños de Oro, and Calicanto (Table 2, 

Figure 3). These haplotypes were subdivided into sub-clusters, depending on the presence or 

absence of the characteristics of the HVS-I variants (Figure 3).  
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This analysis revealed one main diversification center, lineage H3, encompassing the pre-Hispanic 

sequences from Xcambo (E9b), El Rey Quintana Roo (E23-1), Bonampak (E1GF, E2GF, E3GF, 

E4GF, E3GQ), and Palenque (T3PGTXV) herein and the contemporary individuals from Northern 

Asia, Siberia, Aleutian Islands, Canada, Native Mexicans, Maya from Mexico and Guatemala, and 

Chibchan from Nicaragua and Costa Rica, and Central and South America (Figure 3, Table 3). In 

addition, the pre-Hispanic sequences from Xcambo (E14b), Palenque (E2GB, XIII_E3), and 

Comalcalco T3E9 and the contemporary individuals from Colombia (Chibchan) and Peru 

(Quechua) were grouped in this haplotype in a second analysis using sequences from nucleotides 

16213 to 16399 (Suppl. Figure 3, Suppl. Table 1). Figure 4 and Table 3 displays the geographic 

distribution of this haplotype and sharing haplotypes respectively. The result is indicative of a 

common ancestor of the populations from North Asia that migrated through the Bering Strait 

Bridge, through Canada and the USA, down through Mexico and the Maya region, and from there 

to Central and South America.     

Haplotype H30 was shared by 2 pre-Hispanic individuals from Comalcalco (T3E9) and Tenosique 

(E7P65) and with contemporary groups of Native Americans, Juarez, and Xochimilco in Mexico 

City in this network analysis of sequences from nucleotides 16106 to 16399 (Figure 3, Table 2 and 

3 and Suppl. Table 1). Haplotype H208 was shared by the samples from Palenque E2GB and 

Palenque TXIII_E3.  

The DNA of samples from Comalcalco (T3E14 and T3E7), Xcambo (E14), Palenque (E2), El Rey 

(E27 and E8), Tenosique (E2P8 and Tenosique E6P6) demonstrated greater damage, and the 

sequences obtained were from nucleotides 16215 to 16399.  Consequently, a second network 

analysis was performed (Suppl. Figure 2, Suppl. Table 1). Furthermore, the sequences from the 

archaeological site ‘‘La Purnia’’, Santander, Colombia were included in this second analysis 

because these sequences encompassed the HVI region from nucleotides 16210 to 16364 [Casas-

Vargas et al., 2011]. The results showed that haplotype H2 included the pre-Hispanic samples and 
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contemporary sequences containing haplotype H3 in the first analysis and  Xcambo E9b, Palenque  

E2GB, and TXIII_E3 individuals, the Pre-Columbian Guane and the contemporary sequences  

displayed in Table 3. Supplemental figure 2, Table 2 and Suppl. Table 1 show these results and 

figure 4 shows the geographic distribution of this haplotype. Haplotype H65 was shared by the pre-

Hispanic sample from Comalcalco T3E14 and two Maya samples from La Tinta, Guatemala. 

Haplotypes for the pre-Hispanic samples from Paleque T5GB, El Rey Quintana Roo E27 and E8, 

Comalcalco T5EB and T3E7, and Calicanto E3VIP are shown in Table 2 and Suppl. figure 2. These 

samples did not cluster with any of the contemporary sequences, likely due to a low frequency of 

these haplotypes or missing haplotypes from the contemporary Native American populations. 

Furthermore, the network analysis for haplogroup A revealed that among 23 samples, one contained 

haplogroup A (T3E14 from Comalcalco, Tabasco); haplogroup A2 was detected in all individuals 

from Bonampak, Palenque (T3PGTXV, E2GB, T5GB, TXIII, E2), El Rey Quintana Roo (E23-1, 

E27, E8), and Tenosique (E2P8 and E6P6); and haplogroup A2v that has been detected in 

contemporary populations from Central America [Kumar et al., 2011] was identified in 5 samples, 3 

from Comalcalco (T5EBCHILD, T3E9, T3E7), 1 from Tenosique (E7P65), and 1 from Calicanto 

(E3VIP), all from Tabasco (Table 2).  . 

A previous analysis of the biological relationship between Central and South American Chibchan-

speaking populations using mtDNA sequences demonstrated the presence of a shared maternal 

genetic structure between Central American Chibchan [Melton et al., 2013], Mayan populations and 

northern South American Chibchan-speakers [Melton et al., 2007]. The maternal lineage affinity 

between the Chibchan and Maya groups was based on one contemporary Maya group from 

Guatemala [Boles et al., 1995, Melton et al., 2007, Melton et al., 2013]. However, this association 

has now been confirmed in this study analyzing the sequences of pre-Hispanic Mexican Maya and 

sequences from the Caribbean Islands, Colombia, and contemporary Maya groups from Mexico and 

Guatemala; as well as Central and South American Chibchan-speakers from previous reports (Table 
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3). Table 3 shows haplotype sharing between the pre-Hispanic Maya groups, contemporary Maya 

and Chibchan populations from central and South America.  

Network Analysis for Haplogroup C 

Sequence analyses of 13 out of 38 pre-Hispanic Maya individuals containing haplogroup C revealed 

a total of 11 haplotypes (Table 2). One sample belonged to haplogroup C; 6 were found in 

haplogroup C1; and 6 were identified as haplogroup C1b14 (Figures 1, 4, 5, Suppl. Figure 4, and 

Table 2).  

The median network analysis for haplogroup C, which was based on the sequences from 16153 to 

16399, revealed one primary diversification center, lineage H10 (haplogroup C1), which clustered 

the pre-Hispanic sample from Pejelagarto_I1 and Ciboney (CF5), Cuba, and the contemporary 

populations shown in Table 3 from USA, native Mexicans including Mayans, and  individuals from 

Guatemala, Brazil, Peru, and Colombia. A second lineage, H5, encompassed sequences from Asian 

and North American individuals with several haplotype diversifications. The pre-Hispanic samples 

from Palenque T4GB and El Rey Quintana Roo E9 were found in haplotype H113, and the 

Comalcalco (T3AE) and Tenosique E3 samples shared haplotype H117. Haplotypes of individuals 

from El Rey Quintana Roo (E23), Palenque (T1GB), Comalcalco (T5I1), Tenosique (EN4P6), 

Sueños de Oro (E1P), and Sitio Dren (E2) are displayed in Table 2 and figure 5. Haplotypes H116, 

H117, H119, and H120 clustered in the same branch and were classified as belonging to haplogroup 

C1b14 based on the presence of a G>A transition at position 16181 [Gómez-Carballa et al., 2015; 

Kumar et al., 2011; Rieux et al., 2014] (Figure 5 and Table 2).  

Haplogroup C1b14 observed in the prehispanic population from Tabasco (Table 2) is very 

infrequent in contemporary Native American populations.  Specifically, this haplogroup was 

observed in 3 contemporary individuals, 2 Mexican Americans and 1 Zapotec [Gómez-Carballa et 

al., 2015; Kumar et al., 2011; Rieux et al., 2014]. Decrease of this haplogroup in the contemporary 
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population may be due to the reduction of the populations during the Spanish conquest. The sharing 

of haplogroup C1b14 may suggest common ancestry of this pre-Hispanic Maya and the 3 

contemporary Mexicans. 

A second network analysis was constructed because the sequences of the pre-Hispanic samples 

from Palenque T3AGB and Sueños de Oro E2P1 contained data from nucleotide positions 16213 to 

16399 (Suppl. Figure 4). Haplotypes of these two samples and Palenque T4GB and El Rey 

Quintana Roo (E9, E23) are displayed in Table 2. This analysis displayed a main diversification 

center, lineage H9, containing sequences from pre-Hispanic individuals from Pejelargarto, 

Comalcalco (T3AE6), Tenosique (E3), and Sitio Dren (E2) in this study, Ciboney from Cuba, and 

the contemporary individuals as in the first analysis containing haplotype H10 (Suppl. Figure 4, 

Tables 2, 3 and Suppl. Table 1).  Haplotypes 84 to 89 were not observed in the database included in 

this study. However, Sueños de Oro E1P1 demonstrated an identity of 99% with an individual from 

Texas, suggesting that these haplotypes are rare and not represented in current studies, or they are 

not present in contemporary populations. These results support the notion that the Maya population 

spread to Central and South America. No haplogroup C was reported in the Pre-Columbian Guane 

group [Casas-Vargas et al. 2011]. The geographic distribution and shared haplotypes are shown in 

figure 4 and Table 3 respectively.  

Network Analysis for Haplogroup D 

The sequence analysis showed that of the two pre-Hispanic samples, 1 individual from Palenque 

E6ID and 1 from Comalcalco P3AE2, belonged to haplogroup D (Figure 6, Table 2) based on the 

absence of the polymorphisms diagnostic of other haplogroups and the presence of the frequent 

T>C and C>T transitions proposed by Torroni et al. [1993] at positions 16223 and 16362, 

respectively. The D1 haplogroup found throughout the Americas was absent in the samples used in 
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this study (Figure 6, Table 2), potentially due to the low frequency of this haplogroup in our pre-

Hispanic population.  

The median network haplogroup D analysis in the HV1 region, including nucleotide positions 

16153 to 16399 (Figure 6), displayed three main diversification centers: haplotype H4 (haplogroup 

D) encompassing the individuals from the pre-Hispanic samples Palenque E6ID_TXV and 

Comalcalco P3AE2 in this study plus one sequence from Ciboney, and contemporary individuals 

from Northern Brazil, China and Northern Asia as shown in Table 3; Haplogroups D1 of haplotypes 

are displayed in figure 6, and Suppl. Table 1. The geographic distribution of the pre-Hispanic and 

contemporary samples that shared this haplotype H4 is displayed in figure 4. These results suggest 

that the ancestors of the pre-Hispanic individuals containing haplotype H4 originated from China 

and Northern Asia and subsequently spread to Cuba and South America. The main diversification 

centers of the American populations were grouped in haplogroup D (H4), D1 (H34), D4h3 (H26), 

and D2 (H17 and H1), which included sequences from Aleuts (Bering), Eskimo, Evenk, Chukchi, 

and Nahua individuals (Figure 6, Suppl. Table 1). These results also supported the maternal linage 

affinity between the pre-Hispanic Mexican populations in this study and the pre-Hispanic Ciboney 

from Cuba, suggesting shared regional haplotypes indicating a shared genetic ancestry. This may 

point to more regional interaction between populations in the Circum-Caribbean region than 

previously demonstrated.  

A second analysis of haplogroup D sequences from nucleotides 16181 to 16399 was conducted 

including the pre-Hispanic Guane group from Colombia in the analysis to evaluate the presence of a 

maternal linage relationship between the pre-Hispanic Guane from Colombia [Casas-Vargas et al., 

2011] and Mexican pre-Hispanic Maya individuals (results not shown). The two sequences from the 

pre-Hispanic Maya did not contained the same haplotype, indicating that these individuals did not 

share a common ancestor.  
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The results of network analysis of the haplogroup A, C and D lineages in the pre-Hispanic Maya 

were consistent with the hypothesis that the direct ancestors of Native Americans were a hybrid of 

different Siberian groups that had migrated to eastern Beringia at different times and following 

different routes (Figure 4) [Kunz & Reanier, 1994, Starikovskaya et al., 2005]. 

Analysis of molecular variance by timescale 

Results for AMOVA using mtDNA HVS-I data that separated Maya population into four 

groups: 1) Early 250-550 CE (Xcambo), 2) Middle 580-900 CE (Bonampak, Palenque, 

Comalcalco, Tenosique, Suenos de Oro, Calicanto, Peje Lagarto), 3) Late 1200-1500 CE 

(El Rey Quintana Roo), 4) Contemporary Mexican Maya base on time scale are 

summarized in Table 4. The lowest amount of observed variation was 1.23% for mtDNA 

HVS-I among-groups (FCT꞊0.01234), whereas within-group analysis explained 4.98% 

(FSC꞊0.05041) of variation. The majority of variation, 93.79% (FST꞊0.06213), was found 

within-populations.  

Sequence diversity analysis (Demographic analysis) 

The results of the diversity indices and neutrality tests are shown in Table 5 for all contemporary 

and pre-Hispanic populations. Similar diversity values were obtained for all populations analyzed in 

this study. Fu's Fs was negative and significant for all six populations. These results suggest the 

presence of rare alleles at low frequencies or population expansion after a recent bottleneck.  

Analysis by Multidimensional Scaling (MDS)  

MDS of pre-Hispanic and modern populations 

To visualize the relationships between the pre-Hispanic Mayas in this study and the contemporary 

populations from Asia, Beringia, and North and South America based on the HVI mtDNA sequence 
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data, MDS plots were constructed using the pairwise Fst values (Figure 7).  The MDS plot revealed 

that the genetic distances between the pre-Hispanic and contemporary Maya populations were 

smaller in comparison to the Beringian, Asian, North or South American groups (Figure 7). The 

distance between North and South America was also shorter compared with the other groups 

indicating a closer affiliation. The distances between the ancient Maya population and the 

contemporary Mayas, Asians, Beringians, and North and South America can be explained by the 

shared haplotypes from haplogroups A, C, and D with the contemporary populations (Figures 3, 4, 

5, and 6 and Table 3). Furthermore, the pre-Hispanic Maya populations in this study displayed a 

high frequency of haplogroup A (60.53%), followed by haplogroup C (34.21%) and an extremely 

low frequency of haplogroup D (5.26%) (Figure 1).  

MDS of pre-Hispanic populations 

The MDS plot comparing the pre-Hispanic populations revealed that Tenosique, Comalcalco, 

Quintana Roo and Palenque clustered together (Figure 8), Yucatan and Bonampak were located 

together, whereas Tabasco, Ciboney and Chile groups clustered separately. The ancient populations 

from Ciboney, Cuba and Chile are expected to be separate from the other populations because of 

their geographic locations and high frequency of haplogroups C and D in Ciboney and B and D in 

Chile. Pejelagarto and Calicanto were separated from the main group because of the small sample 

size and geographic location (Figure 1). The clustering together of Xcambo and Bonampak can be 

due to Preclassic period origin of both populations. We suggest that the individuals from Xcambo 

(250-550 CE) migrated to Bonampak (580 to 800 CE) at that time.  

MDS of pre-Hispanic and ancient populations 

When the ancient populations are compared with the contemporary Maya populations by the MDS 

plot (Figure 9), the contemporary populations from Quintana Roo, Yucatan, Guatemala, Campeche, 

and Tzotzil clustered together; however, Bonampak and Xcambo were also closely related; 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final version. 

Tenosique and Comalcalco were equidistant to the Tzotzil population; and Palenque, Pejelagarto, 

Calicanto, and El Rey Quintana Roo were separated from the other populations according to their 

geographic locations (Figures 1 and 9) and haplotype composition (Suppl. Table 1). In addition, 

Tojolabal was separated because it is a very different population compared with the other Maya 

populations, exhibiting a higher proportion of haplogroup B (58%), a lower proportion of 

haplogroup A (25.7%) and haplogroup D (16.2%), and the absence of haplogroup C [González - 

Martín et al., 2015]. The pre-Hispanic Maya groups in this study had a high frequency of 

haplogroup A, similar to that found in contemporary Mayas [González - Martín  et al., 2015; 

Söchtig et al., 2015] and Aleuts from the Commander Islands [Crawford et al., 2010; Derbeneva et 

al., 2002]. 

MDS of pre-Hispanic and modern Mayan populations 

A comparison of all pre-Hispanic Mayan populations as one group with the contemporary Mayan 

populations/group by MDS plot revealed that the ancient populations were separated from the 

contemporary populations (Figure 10), probably due to the differences in haplotype composition 

resulting from recent migrations into Maya populations, consistent with the history of the Mayan 

populations, which suffered different invasions by other populations, such as the Nahua of Uto-

Aztecan affiliation, as well as recent migrations out of Maya areas. The ancient Mayan populations 

in this study contained a high frequency of haplogroup A (A, A2, A2v), followed by haplogroup C 

(C1 and C1b14), a very low frequency of haplogroup D, and the absence of haplogroup B. Most 

contemporary indigenous populations from Mexico contain all four haplogroups in different 

proportions [Peñaloza-Espinosa et al., 2007], although haplogroup A2 exhibits the highest 

frequency [Santos et al., 1994, 1996; Torroni et al., 1994]. The high frequency of haplogroup A2 in 

the pre-Hispanic Maya populations is shared with the Asian, Siberian Eskimo, and Chukchi-Eskimo 

groups [Crawford et al., 2010, 2013] and is probably due to a shared common ancestor.   
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Mitochondrial haplogroup Frequencies 

In general, the mitochondrial haplogroup frequencies differed substantially between the Southwest 

and Mesoamerican populations; haplogroup B was very common in the Southwest populations 

(USA), which rarely exhibited mitochondrial haplogroup A [Kemp and Schurr, 2010]. However, 

there were some exceptions, such as the Tarahumara. Additionally, haplogroup B was much less 

common in Mesoamerican populations, in which haplogroup A predominated [Kemp et al., 2010]. 

However, the Nahua–Atocpan, a Mesoamerican population, exhibited slightly more haplogroup B 

than haplogroup A [Kemp et al., 2010], the Tojolabal Maya population exhibited a higher frequency 

of haplogroup B than haplogroup A [Gonzalez-Martin et al., 2015], and the ancient bones collected 

in a Quiché Indian village, located close to the provincial capital of Santa Cruz de Quiché, revealed 

the presence of 16 different mtDNA haplotypes, among which haplogroup B has the highest 

frequency [Boles et al., 1995]. 

The pre-Hispanic Maya population of this study displayed a high frequency of haplogroup A 

(60.53%), followed by haplogroup C (34.21%), a very low frequency of haplogroup D (5.26%), and 

the complete absence of haplogroup B. Similar haplogroup frequencies have also been observed in 

the Central American Chibchan populations Kori and Arsario [Melton et al., 2013]. Similarly, 

haplogroup B was apparently absent in the Fuego-Patagonians and the aboriginal groups above 

latitude 55 in North America and Asia, suggesting that the initial Paleoindian settlers that migrated 

into South America might represent an independent migration event unrelated to the Clovis people, 

as suggested previously [Lalueza et al., 1997]. However, Kemp et al. [2010] and Kumar et al. 

[2011] suggested an early coastal migration. Similarly, present-day Amerindian populations 

inhabiting the Caribbean region of Colombia either did not carry or had lower frequencies of 

haplogroup B (Kogui 0%, Arhuaco and Chimila 4.8%, Arsario 12.5% and Wayuu 17.6%), while the 

predominant haplogroup A was followed by haplogroup C [Yunis and Yunis, 2013]. Analysis of 

lower Central American Chibchan population mtDNA diversity has shown high frequencies of 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final version. 

haplogroup A2 and B4 [Melton et al., 2007, 2013], while those from northern South America mirror 

the Ancient Maya, with high frequencies of haplogroup A and moderate amounts of haplogroup C. 

The ancient population of Tipu from Belize has also been shown to carry haplogroup B (8%) at a 

low frequency, although haplogroup C (64%) was found in higher proportions compared with 

haplogroups D (28%) and B [Elwess et al., 2015]. Northern Colombia displayed lower frequencies 

of haplogroups B and D and a higher frequency of haplogroup B in western Colombia that declined 

towards eastern Colombia, whereas the Embed/Wounan population from Panama has been reported 

to contain haplogroups A, B, C and D [Kolman and Bermingham, 1997]. Similarly, the Tojolabal 

Maya population displayed a high frequency of haplogroup B2 (58.1%) [Gonzalez-Martin et al., 

2015]. In contrast, haplogroup B was absent in the aboriginal populations of northwestern and 

northern Siberia [Derbeneva et al. 2002b, c], but it has been detected in populations restricted to the 

southwestern and south central periphery of the subcontinent [Sukernik et al. 1996; Derenko et al. 

2000, 2003 Yunis and Yunis, 2013]. Haplogroup B mtDNA has also been detected in the skeletal 

remains exhumed from a 2000-year-old cemetery in northern Mongolia [Keyser-Tracqui et al. 

2003]. Based on the results of this study and previous findings, the absence of haplogroup B in the 

pre-Hispanic Maya, the low frequency in most contemporary Maya, and its absence or low 

frequency in Colombia, may suggest that the entry of haplogroup B into the Americas occurred 

independently of the other mitochondrial haplogroups (A, C, and D) during a later migration 

process, as suggested previously [Torroni et al. 1993b, Starikovskaya et al., 1998; Lalueza et al., 

1997]. Therefore, it is possible that the Maya ancestors did not carry haplogroup B or may have lost 

it through genetic drift, as proposed previously for the populations of Tierra del Fuego [Lalueza et 

al., 1997; García-Bour et al., 2004]. 

Haplotype Analysis and shared haplotypes 

The founding haplogroup A2, which was identified in the individuals in this study, has been 

reported to have a coalescence age of 19.5 ± 1.3 kya/16.1 ± 1.5 kya, according to Kumar et al. 
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[2011]. These coalescence ages were calculated using the mutation rates reported by Mishmar et al. 

[2003] and Soares et al. [2009].  A2v has a more recent coalescent time of 9.1/9.5 kya [Kumar et 

al., 2011], whereas haplogroup C, C1 and C1b14 have coalescent times of 27.37 (19.55; 35.44) 

[Derenko et al., 2010], 21.4 ± 2.7 kya/16.4 ± 1.5 [Kumar et al., 2011], and 12.4 (7.7-17.3) kya 

[Gómez-Carballa et al., 2015], respectively. Haplotype H3 (haplogroup A2) from the pre-Hispanic 

populations in this study, the pre-Columbian Guane was shared with contemporary populations 

from North, Central and South America, supporting the ancestral continuity of the present 

populations (Figures 3, 4, Suppl. Figure 2, Table 3, and Suppl. Table 1).  This finding supports the 

ethnogenesis of these Mexican Maya populations in pre-Hispanic times on a cultural and biological 

basis, in contrast to the contemporary Maya populations [Söchtig et al., 2015].  Haplogroup B was 

not detected in the pre-Hispanic populations of this study, although it has been reported in the pre-

Columbian Guane population [Casas-Vargas et al., 2011]. Therefore, to validate this finding, it will 

be important to pursue further studies of the pre-Hispanic populations from the Maya area because 

the contemporary Tojolabal Maya population displayed a high frequency of haplogroup B2 (58.1%) 

[Gonzalez-Martin et al., 2015]. Increasing the number of sequences from pre-Hispanic samples will 

be necessary to determine whether the absence of haplogroup B in the pre-Hispanic samples from 

the archaeological sites in this study reflects the absence or low frequency of this haplogroup.  

Haplogroup D1 defined by the T>C, C>T C>T transitions at positions 16223, 12325, and 16362, 

respectively [Kumar et al., 2011], in the pre-Columbian Guane differed from our findings, in which 

only the T>C and C>T transition at positions 16223 and 16362, respectively, specific for 

haplogroup D were identified [Torroni et al. 1993; Kumar et al., 2011]. This haplogroup has also 

been found at low frequencies in the contemporary Maya populations from Quintana Roo, Yucatan, 

and Campeche, Mexico [González - Martín et al., 2015] and was absent in the Mexican pre-

Hispanic populations.  
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Bodner et al. [2012] described two new subclades of the pan-American founder haplogroup D1 that 

were limited to the Southern Cone of South America. These findings were based on the limited 

geographic dispersal, high diversity of the D1g and D1j haplogroups, and calculated coalescence 

ages suggestive of a coastal and rapid initial extensive trans/Andean migration that may represent 

the genetic heritage of the pioneer settlers of South America and apparently is preserved in the 

present-day Mapuche people. 

Haplogroup D, with an overall estimated coalescence time of 35–37 kya, based on the mutation rate 

used by Derenko, et al  [2010], was identified in the pre-Hispanic samples from Palenque 

E6ID_TXV and Comalcalco P3AE2, which have been represented by at least three D1, D4h3a, and 

D4e1c branches in the Americas. The D1 haplogroup is found at a high frequency throughout the 

Americas, while D4h3a and D4e1c are found at low frequencies [Kumar et al., 2011]. These two 

samples lacked the 16325 mutation that is specific for haplogroup D1. It is not clear if this mutation 

has reverted in some Native American haplogroup D mtDNAs, such as the “Cayapa” haplotype 

BR53 [Alves-Silva et al., 2000], or if there is more than one Native American founder of this 

haplogroup, as suggested by Bandelt et al. [2003].  The present-day variation in the haplogroup C 

and D clades suggests that they expanded prior to the Last Glacial Maximum (LGM), with the 

oldest lineages present in eastern Asia [Derenko et al., 2010]. Our network analysis results for 

haplogroup D support this hypothesis because haplotype H4 contained 2 of our sequences and the 

sequences from eastern Asia (Figure 6, Table 3, and Suppl. Table 1). In addition, haplotype H4 also 

encompassed sequences from the pre-Hispanic samples from Ciboney and the contemporary 

individual from Brazil, supporting the dispersion of this haplotype from the Yucatan to Cuba or 

from Cuba to Yucatan during the pre-Hispanic era and to South America. Lalueza-Fox et al. [2003] 

suggested a migration of the Ciboneys from South America to the Caribbean Islands, although a 

migration in the opposite direction is also possible. This is also indicative of greater regional 

interaction among populations in the Circum-Caribbean region than previously demonstrated. 
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The pre-Hispanic Maya individuals from Xcambo (E9b), El Rey Quintana Roo (E23), Bonampak 

(E1GF, E2GF, E3GF, E4GF, E3GQ9), Palenque (T3PGTXV), Comalcalco (T3E9), and Tenosique 

(E7P65) all shared haplotype H3/H2 (Figures 3, Suppl. Figure 3, and Suppl. Table 1) with the pre-

Hispanic individuals from Ciboney, Cuba, pre-Columbian Guane, the archaeological cemeteries 

from Chile, and contemporary people from Northern Asia, Siberia, the Aleutian Islands, Dogrib, 

and Canada, Mexican Native Americans, Maya from Mexico and Guatemala, and native groups 

from Central and South America (Figures 3-6, Suppl. Figures 2 and 3, and Table 3).  This haplotype 

sharing supports the migration of the Maya ancestors from Asia across the Bering Strait Bridge, 

United States, and from Northern Mexico to the Maya region. It is also likely that the genetic 

composition of pre-Hispanic Maya populations displays continuity with contemporary Mayan 

populations because haplotype H3 of haplogroup A was also shared with different contemporary 

Maya populations. This finding also indicates that some of the contemporary Maya populations are 

descendants of both the original Maya population and other populations that migrated to these 

geographic areas because some of the haplotypes found in the pre-Hispanic individuals were also 

detected in different proportions in contemporary Maya populations.  

The Mexican Maya in this study displayed the highest frequency of haplogroup A, similar to the 

ancient Post-Classic Aztecs from Tlatelolco (1450-1275 CE), Mexico [Kemp et al., 2005], the 

Maya from Xcaret, Mexico [González-Oliver et al., 2001], and the most modern Maya. In contrast, 

a 650-1200 CE Maya sample from Copán, Honduras exhibited a high frequency of haplogroup C 

[Merriwether et al., 1997], and the 800-1100 CE from the Tommy site, USA [Snow et al., 2010] 

showed a high frequency of haplogroup B, most closely resembling the ancient Anasazi, Fremont 

[Carlyle et al., 2000; Leblanc et al., 2007], and the modern populations of Cora, Hualapai, Huichol, 

Jemez, Tarahumara, Tohono O'odham and Zuni [Kemp et al., 2010], the Tojolabal Maya 

[Gonzalez-Martin et al., 2015], southwest (USA), and South America [Salas et al., 2009; Raff et al., 

2011]. Therefore, contemporary Maya are descendants of the pre-Hispanic Maya, and the ancestral 
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Native Americans dispersed across North America approximately 13 thousand years ago (ka) 

[Raghavan et al., 2015]. Our results are consistent with other mtDNA data for the Guatemalan 

Maya region, demonstrating the presence of gene flow in the Mesoamerican area and a predominant 

unidirectional flow towards South America that most likely occurred during the Preclassic (1800 

BCE-200 CE) and the Classic (200–1000 CE) eras of the Mesoamerican chronology. This pattern of 

gene flow is in agreement with the development of the Maya civilization [Söchtig et al., 2015]. Our 

results also support the expansion of maize with the human populations from the Mexican Gulf 

Coast to the south, as maize cultivation was dispersed from the lowland tropics of Tabasco more 

than 5,050 BCE to North and South America [Pohl et al., 2007, Merril et al., 2009]. This finding is 

consistent with the introduction of maize into the Southwest prior to 2050 BCE [Merrill et al. 2009; 

Kemp et al., 2010; Kohler and Reese, 2014], according to the population expansion from the Maya 

area to North and South America (Figure 4) through the long-distance migration of farmers from 

the Mexican Gulf Coast [Malhi et al., 2003].  These results support the historically based migration 

theories supported by archaeological data.  

Genetic admixture among pre-Hispanic populations 

Figure 1 and Table 2 show HVS-I haplotype H3 (haplogroup A) being shared among the pre-

Hispanic Maya from Comalcalco, Palenque, Tenosique, Sueños de Oro, Bonampak, Xcambo, and 

Rey Quintana Roo; haplogroup A2v among Comalcalco, Tenosique, and Calicanto; haplotype H4 

(haplogroup D) between Comalcalco and Palenque; and the rare haplogroup C1b14 among 

Comalcalco, Tenosique, and Sueños de Oro suggesting a genetic admixture, which appears to be 

more pronounced in Comalcalco. These results also indicate regional gene flow among the pre-

Hispanic populations and regional interaction. 
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Conclusions 

The results obtained in the present network analysis demonstrate the following. 1) Gene flow 

occurred within the Maya area, with a directional flow to South America in the Preclassic and 

Classic eras of the Mesoamerican chronology. 2) Historical documentation showed that the 

ancestors of Maya civilization entered the Yucatan Peninsula after the first movement of people 

from Northern Asia into the Americas, with later migration of the Maya south to Central America 

and the Caribbean toward the northern region of South America are supported by our analyses of 

contemporary and pre-Hispanic mtDNA. 3) Haplotypes H3 of haplogroup A and H4 of haplogroup 

D were shared among pre-Hispanic Maya, Ciboney, and Han Chinese, suggesting the migration of a 

common ancestor from East Asia to the Maya region of Mexico, Cuba, and Colombia. 4) Haplotype 

H3 of haplogroup A was shared among the pre-Hispanic Maya population and contemporary Maya 

from Mexico and Guatemala, suggesting maternal continuity of the pre-Hispanic Maya in the 

contemporary population. 5) Haplotypes of haplogroups A and C were shared among the pre-

Hispanic Maya populations and native populations from Cuba (pre-Hispanic), Panama, Costa Rica, 

Colombia (pre-Hispanic and contemporary), Chile (archaeological cemeteries) Peru, and Brazil, 

that the Maya and Native American populations still carried the genetic imprint of the pre-Hispanic 

Maya. The results obtained for the diversity indices and neutrality tests (Table 5) for all 

contemporary and pre-Hispanic populations suggested the presence of rare alleles at low 

frequencies or population expansion after a recent bottleneck. 6) The MDS graphs displayed 

haplotype differences among all populations and the relationships between the pre-Hispanic Mayas 

in this study and the contemporary populations from Asia, Beringia, and North and South America 

based on HVSI mtDNA sequence data. 8) Identification of the rare haplogroup C1b14 in the 

Mexican Maya pre-Hispanic population and low frequency of this haplogroup in the contemporary 

populations may be due to genetic drift. 9) The sharing of mitochondrial haplotypes and 
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haplogroups among pre-Hispanic individuals also indicated regional gene flow among the pre-

Hispanic populations and regional interaction. 

 

In conclusion, the haplotype diversity observed in the pre-Hispanic and contemporary populations 

of Maya indicates groups that have undergone drift and lineal extinction, with periodic increases in 

genetic diversity through admixture with adjacent populations.  
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Table 1. Features of samples from the pre-Hispanic Mayas. 

Sample Code and Archeological Site Building Burial (E) 

Tomb (T) 

Age Sex Temporality 

(CE) 

Hap City Latitude/ Longitude 

Xcambo       Yucatan 21.35/-89.266° 

MXYUCXCAMBO_E9b_A2 Work areas E9 Adult M 250-550 A2 Yucatan  

MXYUCXCAMBO_E14_A2 Work areas E14 Adult M 250-550 A2 Yucatan  

Bonampak        16.704/-91.065° 

MXCHBONAMPAK_E1GF_A2 Group Frey E1 Adult M 580-800 A2 Chiapas  

MXCHBONAMPAK_E2GF_A2 Group Frey E2 Adult M 580-800 A2 Chiapas  

MXCHBONAMPAK_E3GF_A2 Group Frey E3 Adult M 580-800 A2 Chiapas  

MXCHBONAMPAK_E4GF_A2 Group Frey E4 Adult M 580-800 A2 Chiapas  

Bonampak          

MXCHBONAMPAK_E3GQ_A2 Group Quemado E3 Adult M 580-800 A2 Chiapas  

Palenque        17.5092°/-91.982° 

MXCHPALENQUE_T3PGTXV_A2 XV T3 Adult M 750-800 A2 Chiapas  

MXCHPALENQUE_E6ID TXV_D XV E6 IND-D Adult M 750-800 D Chiapas  

MXCHPALENQUE_TXIIIE3CHILD_A2 XIII E3 Infant M 750-800 A2 Chiapas  

MXCHPALENQUE_E2_A2 XIII E2 Adult F 750-800 A2 Chiapas  

MXCHPALENQUE_T5GB_A2 GROUP B T5 Infant M 750-800 A2 Chiapas  

MXCHPALENQUE_E2GB_A2 GROUP B T2 Adult F 750-800 A2 Chiapas  

MXCHPALENQUE_T4GB_C1 GROUP B T4 Adult F 750-800 C1 Chiapas  

MXCHPALENQUE_T1GB_C1 GROUP B T1 Adult F 750-800 C1 Chiapas  

MXCHPALENQUE_T3AGB_C1 GROUP B T3, IND-A Adult F 750-800 C1 Chiapas  

El Rey Quintana Roo        21.061°/86.781° 

MXQRELREY_E23-1_A2  E23-1 Adult  1200-1500 A2 Quintana Roo  

MXQRELREY_E23-3_C1  E23-3 Youth  1200-1500 C1 Quintana Roo  

MXQRELREY_E8_A2  E8 Adult  1200-1500 A2 Quintana Roo  

MXRELREY_E9_C1  E9 Adult  1200-1500 C1 Quintana Roo  

MXQRRELREY_E27_A2   E27 Adult  1200-1500 A2 Quintana Roo  

Comalcalco        18.280°/ -93.202° 

MXTABCOMALCALCO_T5EBCHILD_A2v V T5 Infant M 700-900 A2v Tabasco  

MXTABCOMALCALCO_T5I1_C1b14 V IND 1 Adult M 700-900 C1b14 Tabasco  

MXTABCOMALCALCO_T3E9_A2v IIIA, North Plaza E9 Adult M 700-900 A2v Tabasco  

MXTABCOMALCALCO_T3E14_A IIIA, North Plaza E14 Adult M 700-900 A Tabasco  

MXTABCOMALCALCO_T3E7_A2v IIIA, North Plaza  E7 Adult M 700-900 A2v Tabasco  

MXTABCOMALCALCO_T3AE6_C1b14 IIIA, North Plaza E6 Adult M 700-900 C1b14 Tabasco  

MXTABCOMALCALCO_P3AE2_D IIIA, North Plaza E2 Adult M 700-900 D Tabasco  
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CE= Common Era; ND= Not determined. 

  

Site Dren, Comalcalco          

MXTABSITIODREN_E2_C1b14 Work areas E2 Adult M 700-900 C1b14 Tabasco  

Tenosique        17.466°/-91.416° 

MXTABTENOSIQUE_E2P8_A2 Work areas E2, Well 8 Adult M 700-900 A2 Tabasco  

MXTABTENOSIQUE_E6P6_A2 Work areas E6, Well 6 South Adult M 700-900 A2v Tabasco  

MXTABTENOSIQUE_E7P65_A2v Work areas E7, Well 6 Adult M 700-900 A2v Tabasco  

MXTABTENOSIQUE_E4P6CHILD_C1b14 Work areas E4, Well 6 Infant ND 700-900 C1b14 Tabasco  

MXTABTENOSIQUE_E3_C1b14 Work areas E3, Well 9 Adult M 700-900 C1b14 Tabasco  

Sueños de Oro (El Cibo), Tenosique         

MXTABSUENOSDEORO_E1P1_C1b14 Work areas E1, Well 1 Adult M 700-900 C1b14 Tabasco  

MXTABSUENOSDEORO_E2P1_C Work areas E2, Well 1 Adult M 700-900 D Tabasco  

Site Calicanto, Jalapa       Tabasco 17.732/-92.754 

MXTABCALICANTO_E3VIP_A2v Work areas E3 Main Ind.  M 700-900 A2v Tabasco  

Peje Lagarto, Huimanguillo Los Pinos      Tabasco 17.85°/-93.383 

MXTABPEJELAGARTO_I1_C1 Pipe 1 Individual 1 Adult M 700-900 C1 Tabasco  
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Table 2.  Polymorphic sites of the mitochondrial DNA hypervariable region for haplogroups A, C, and D in the Maya population in this study. 
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A 

 65 MXTABCOMALCALCO_T3E14_A
1
 - - - - - • T • • • • • • • • • • A • • • • • • • • • • • • • • 

 2 MXYUCXCAMBO_E14_A2
1 

- - - - - • T • • • • • T • • • • A • • • • • • • C • • • • • • 

3 2 MXYUCXCAMBO_E9b_A2
1 

T • • • • • T • • • • • T • • • • A • • • • • • • C • • • • • • 

3 2 MXCHBONAMPAK_E1GF_A2
1
 T • • • • • T • • • • • T • • • • A • • • • • • • C • • • • • • 

3 2 MXCHBONAMPAK_E2GF_A2
1
 T • • • • • T • • • • • T • • • • A • • • • • • • C • • • • • • 

3 2 MXCHBONAMPAK_E3GF_A2
1
 T • • • • • T • • • • • T • • • • A • • • • • • • C • • • • • • 

3 2 MXCHBONAMPAK_E4GF_A2
1
 T • • • • • T • • • • • T • • • • A • • • • • • • C • • • • • • 

3 2 MXCHBONAMPAK_E3GQ_A2
1
 T • • • • • T • • • • • T • • • • A • • • • • • • C • • • • • • 

3 2 MXCHPALENQUE_T3PGTXV_A2
1
 T • • • • • T • • • • • T • • • • A • • • • • • • C • • • • • • 

3 2 MXQRELREY_E23-1_A2
1
 T • • • • • T • • • • • T • • • • A • • • • • • • C • • • • • • 

 9 MXTABTENOSIQUE _E2P8_A2
1
 - - - - - • T • • • • • • • • • • A • • • • • • • C • • • • • • 

 9 MXTABTENOSIQUE_E6P6_A2
1
 - - - - - • T • • • • • • • • • • A • • • • • • • C • • • • • • 

 4 MXCHPALENQUE_E2_A2
1 

- - - - - • T • • • • • T • • C • A • • • • • • • C • • • • • • 

208 2 MXCHPALENQUE_E2GB_A2
1
 T • • • T • T • • • • • T • • • • A • • • • • • • C • • • • • • 

208 2 MXCHPALENQUE_TXIII E3CHILD_A2
1
 T • • • T • T • • • • • T • • • • A • • • • • • • C • • • • • • 

209 131 MXCHPALENQUE_T5GB _A2
1
 T • • • T • T • • • • • T • • • • A • • • • • • T C • • C • G • 

 132 MXQRELREY_E27_A2
1
 - - - - - • T • • T • • T • • • • • • • • • • • • C • • • • • • 

 133 MXQRELREY_E8_A2
1
 - - - - - • T • • T • • T • • • • A • • • • • • • C • • • • • • 

30 19 MXTABCOMALCALCO_T3E9_A2v
1,2

 T • • • • • T • T • • • T • • • • A • • • • • • • C • • • • • • 

30 19 MXTABTENOSIQUE_E7P65_A2v
1,2

 T • • • • • T • T • • • T • • • • A • • • • • • • C • • • • • • 

 135 MXTABCOMALCALCO_T3E7_A2v
1,2

 - - - • • • T • T • • • T • • • • A • • • • • • • C • A • • • • 

210 134 MXTABCOMALCALCO_T5EBCHILD_A2v
1,2

 T • • • • • T • T • • • T • • • T A • • • • • • • C • • • G • • 

211 136 MXTABCALICANTO_E3VIP_A2v
1,2

 T • • • • • T • T • • • T C • • • A • C • • • • • • • • • • • G 
 
 
 
 
 
 
C 

 89 MXTABSUENOSDEORO_E2P1_C
1
 - - - - - • T • • • • • • • • • • • • • • T • • • C • • • • • • 

10 9 MXTABPEJELAGARTO_I1_C1
1,2

 - • • • • • T • • • • • • C • • • • • C • T • • • • • • • • • • 
113 83 MXCHPALENQUE_T4GB_C1

1,2
 - • • • • • T • • • • • • C • • • • • C • T • • • • C • • • • • 

113 83 MXQRELREY_E9_C1
1,2

 - • • • • • T • • • • • • C • • • • • C • T • • • • C • • • • • 

114 84 MXQRELREY_E23-3_C1
1,2

 - • • • • • T • • • • • • C • • • • • C • T • • • • C • • • • G 

 85 MXCHPALENQUE_T3AGB_C1
1,2 

- - - - - • T • • • • T • C • • • • • C • T • • • • C • • • • G 

115 16 MXCHPALENQUE_ T1GB _C1
1,2 

- • • • • • T • • • • • • • • • • • • C • T • • • C • • • • • • 

116 86 MXTABCOMALCALCO_T5I1_C1b14
1,2,3,4

 - • • G • • T C • • • • • C • • • • • C • T • G • • • A • • • • 

117 9 MXTABCOMALCALCO_T3AE6_C1b14
1,2,3,4

 - • G G • • T • • • • • • C • • • • • C • T • • • • • • • • • • 

117 9 MXTABTENOSIQUE_E3_C1b14
1,2,3,4

 - • G G • • T • • • • • • C • • • • • C • T • • • • • • • • • • 

120 9 MXTABSITIODREN_E2_C1b14
1,2,3,4

 - • • G • • T • • • • • • C • • • • • C • T • • • • • • • • • • 

118 87 MXTABTENOSIQUE_E4P6CHILD_C1b14
1,2,3,4

 - • • G • • T • • • • • • • A G • • • C • T • • • • • • • • • • 

119 88 MXTABSUENOSDEORO_E1P1_C1b14
1,2,3,4

 - • • G • • T • • • • • T C • • • • • C • T • • • • • • • • • • 

D 
4  MXCHPALENQUE_E6ID_TXV_D

1
 - • • • • • T • • • • • • • • • • • • • • • • • • C • • • • • • 

4  MXTABCOMALCALCO_P3AE2_D
1
 - • • • • • T • • • • • • • • • • • • • • • • • • C • • • • • • 

1
Kumar et al. [2011]; 

2
MitoMaster; 

3
Gomez-Carballa et al., 2015; 

4
Rieux et al., 2014.  Bold font was used to display the specific haplogroup polymorphic sites. Haplotypes 

numbers for each network are displayed in column 2 and 3.   
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Table 3. Haplotypes encountered shared at various locations through sequencing of mtDNA from pre-
Hispanic and contemporary human populations. 

*BCE 

HAPLOGROUP 

Temporality 

(CE) 

HAPLOTYPE 

NUMBER 

A C D 

POPULATION/GEOGRAPHIC AREA  H3 H30 H10 H4 

Xcambo (E9b_A2, E14_A2) 250-550 •    

Bonampak (E1GF_A2,  E2GF_A2,  E3GF_A2,  E4GF_A2, 

E3GQ_A2) 

580-800 •    

Palenque (T3PGTXV_A2) 750-800 •    

El Rey Quintana Roo (E23-1_A2) 1200-1500 •    

Pre-Columbian Guane 1090 ± 70 •    

Chibchan: Costa Rica (Rama), Panama (Maleku, Guaymi), and 

Colombia 

Contemporary •    

Ecuador (Kayapa), Bolivia (Yuracare), 

Uruguay (Tacuarembó), Peru (Quechua), Brazil (Xavante) 

Contemporary •    

Chile (Archaeological Cementeries) 1900*-1900 •    

Mexico City (Nahualt Zitlala, Ixhuatlancillo) Contemporary •    

Mexico City (Nahualt Xochimilco) Contemporary • •   

Michoacan (Purépecha), Oaxaca (Mixe) Contemporary •    

Maya: Yucatan, Quintana Roo,  Chiapas (Tzotzil, Tojolobal)  Contemporary •  •  

Campeche (Maya) Contemporary •    

Guatemala  (Maya) Contemporary • •   

Guatemala  (Ladino) Contemporary •    

Nayarit (Cora) Contemporary •  •  

USA (Native Americans, Hispanic) Contemporary •  •  

Arizona (Hualapai) Contemporary   •  

California (Native American) Contemporary  • •  

Northern Asia (Mongolia, Siberia, Rusia and China)  Contemporary •   • 

Siberia (Chukchi Eskimo) Contemporary •    

China (Han) Contemporary   • • 

Ojinaga, Juarez Contemporary • • •  

Aleutian archipelago (Aleut) Contemporary •    

Comalcalco (T3E9)  700-900  •   

Tenosique (E7P65) 700-900  •   

Quechua: Peru (Yancash, Yuncay, Tupe, Tayacaja, Arquipa) Contemporary •  •  

Peje Lagarto (I1_C1)  700-900   •  

Cuba (Ciboney), Hualapay 40*   • • 

Sonora (Pimas),  Venezuela (Guahibo, Amazon, Wayuu), 

Colombia (Wayuu), Bolivia (Movima), Peru (Quechua,  Aymara), 

Brazil and Venezuela (Shamatari), Brazil (Zoró, Xikrin, Tibus), 

Chile (Pehuenche, Aonikenk) 

Contemporary   •  

Palenque (E6ID TXV_D) 750-800    • 

Comalcalco (P3AE2_D) 700-900    • 

Brazil (Maranhão, SE, N), Contemporary    • 
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Table 4. Analysis of molecular variance (AMOVA) for mitochondrial DNA control region by 
timescale of the following groups: 1.Early 250-550 CE (Xcambo); 2. Middle 580-900 CE 
(Bonampak, Palenque, Comalcalco, Tenosique, Suenos de Oro, Calicanto, Peje Lagarto; 3. 
Late 1200-1500 CE (El Ray Quintana Roo); and 4. Contemporary Mexican Maya populations.   

 
 
 
 
 
 
 
 
 
 
 

Genetic structure test (4 groups). Distance method: Pairwise difference  
Significance tests (1023 permutations) 
Vc and FST : P(rand. value < obs. value)  =  0.00000 
                    P(rand. value = obs. value)  =  0.00000 
                                       P-value =  0.00000+-0.00000 
 
Vb and FSC : P(rand. value > obs. value)  =  0.00000 
                    P(rand. value = obs. value)  =  0.00000 
                                       P-value =  0.00000+-0.00000 
 
Va and FCT : P(rand. value > obs. value)  =  0.13685 
                    P(rand. value = obs. value)  =  0.00000 
                                       P-value =  0.13685+-0.01012 

 
 

 

Source of  
Variation 

d.f. 
Sum of  
Squares 

Variance  
Components 

Percentage  
of variation 

Among groups 3 12.552 0.03295 Va  1,23 

Among populations 8 52.837 0.13289 Vb 4.98 

Within populations 313 783.512 2.50323 Vc 93.79 

Total 324 848.902 2.66907  

Fixation Indices       FSC :      0.05041 

                                FST :      0.06213 

                                FCT :      0.01234 
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Table 5. Diversity indices and neutrality tests for 6 populations (pre-Hispanic Mayas, Contemporary Mayas, North 
America, South America, Bering, and Asian). 

Population/Ci
tya 

Ancient 
Maya 

Contempor
ary Maya 

North 
America 

South 
America 

Bering Asian Mean SD 

n 
40 331 310 405 63 47 

199.333
33 

166.770
10 

Nucleotide 
Diversity (Pi) 

4.64103 3.97836 4.59668 5.17376 
3.1838

2 
3.80481 4.22974 0.71171 

θk  
(95% CI) 

21.6913
1 

(11.7798
3-

40.1332
7 

26.25052 
(19.68381-
34.6986) 

64.6443
0 

(50.5262
3-

82.4104
4 

155.9634
4 

(127.0854
0-

191.2823
6) 

13.683
36 

(8.0942
4-

22.819
39 

28.2728
5 

(16.0187
1-

50.2383
7) 

51.7509
6 

(38.8647
0-

70.2637
4) 

54.0012
9 

(45.8020
5-

62.6382
6 

θs (SD) 
6.34765 
(2.16339

) 

8.31005 
(1.98286) 

10.9312
6 

(2.52823
) 

13.37413 
(2.91478) 

4.4563
3 

(1.4960
6) 

6.33959 
(2.10068

) 

8.29317 
(2.19767

) 

3.31960 
(0.48425

) 

θ (SD) 
4.64103 
(2.58215

) 

3.97836 
(2.20743) 

4.59668 
(2.50362

) 

5.17376 
(2.77688) 

3.1838
2 

(1.8500
0) 

3.80481 
(2.16443

) 

4.22974 
(2.34742

) 

0.71171 
(0.33599

) 

Tajima's  D 
-0.91697 -1.49457 -1.70157 -1.79209 

-
0.8850

3 
-1.33424 -1.35408 0.38570 

P-valuec 
0.19500 0.03300 0.01300 0.00500 

0.1890
0 

0.06800 0.08383 0.08659 

Fu's Fs -
11.5105

8 
-25.36427 

-
25.1319

4 
-24.77965 

-
13.051

11 

-
20.9600

7 

-
20.1329

4 
6.31079 

P-valuec 

0.00100 0.00000 0.00000 0.00000 
0.0010

0 
0.00000 0.00033 0.00052 

    
aSamples belonging to haplogroups A, B, C, and D. 

n: Sample size 
c Significant P-values < 0.05 (for Tajima’s D) and < 0.02 (for Fu’s Fs). 

SD: Standard deviatio 

 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final version. 

Figures 

 

Figure 1. Overview of the locations of archaeological Maya sites in the Yucatan, Chiapas, and 

Tabasco.  

The figure shows the locations and origins of the collected pre-Hispanic samples. The numbers in 

each pie chart section indicate the number and percentage of individuals possessing each 

haplogroup (pie graph). The percentage of each haplogroup in the 38 samples is also displayed on 

the right side of the pie chart.  
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Figure 2. Mismatch distributions for haplogroups A, B, C, and D with HVS datasets for all 

populations are shown.  

Demographic history inferred by mismatch distributions of the numbers of pairs of nucleotide 

differences among individuals within each of mtDNA haplogroups A (blue), B (red), C (green), and 

D (purple) for the populations from the pre-Hispanic Maya (Yucatan, Chiapas, and Tabasco) and 

the contemporary Maya (Yucatan, Guatemala, Honduras, and Belize); Asia, Bering Strait Bridge, 

North America, and South America. The observed distributions were compared using the sudden 

population expansion model (ARLEQUIN version 3.5.1.2) [Excoffier and Lischer, 2010]. 

Harpending's Raggedness Index values are also displayed in the figure. 
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Figure 3. Haplotype network of mtDNA haplogroup A in the pre-Hispanic Maya, 

contemporary Maya (Yucatan, Guatemala, Honduras, and Belize), Asia, Bering, North 

America, and South America.  

A phylogenetic network was constructed with the mtDNA sequences from nucleotides 16106 to 

16399 using the Network 4.6.1.1 program. The size of the circle is proportional to the number of 

individuals in each haplotype present in the dataset (Suppl. Table 1). The distances between the 

circles correspond to one mutation between haplotypes; otherwise, it is indicated. Black dots on the 

branches represent inferred missing haplotypes (single nucleotide changes).  
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Figure 4. Geographic distribution of shared mitochondrial DNA haplotypes between 

the Maya pre-Hispanic populations in this study and those reported previously for 

contemporary and pre-Hispanic groups (Suppl. Table 1) from Asia, Beringia, and 

America. 

The figure shows the geographic locations of the shared haplotypes between the pre-Hispanic Maya 

individuals and the pre-Hispanic and contemporary people from Asia, Beringia and America.   
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Figure 5. Haplotype network of mtDNA haplogroup C in the pre-Hispanic Maya, 

contemporary Maya (Yucatan, Guatemala, Honduras, and Belize), Asia, Bering, North 

America, and South America.  

A phylogenetic network was constructed using the mtDNA sequences from nucleotides 16153 to 

16399 with the Network 4.6.1.1 program. The size of the circle is proportional to the number of 

individuals in each haplotype present in the dataset (Suppl. Table 1). The distances between the 

circles correspond to one mutation between the haplotypes; otherwise, it is indicated. Black dots on 

the branches represent inferred missing haplotypes (single nucleotide changes).  
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Figure 6. Haplotype network of mtDNA haplogroup D in the pre-Hispanic Maya, 

contemporary Maya (Yucatan, Guatemala, Honduras, and Belize), Asia, Bering, North 

America, and South America.  

A phylogenetic network was constructed with the mtDNA sequences from nucleotides 16153 to 

16399 using the Network 4.6.1.1 program. The size of the circle is proportional to the number of 

individuals in each haplotype present in the dataset (Suppl. Table 1). Distances between the circles 

correspond to one mutation between the haplotypes; otherwise, it is indicated. Black dots on the 

branches represent inferred missing haplotypes (single nucleotide changes).  
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Figure 7. Multi-dimensional scaling between pre-Hispanic Maya, contemporary Maya 

(Yucatan, Guatemala, Honduras, and Belize), Asia, Bering, North America, and South 

America.  

The genetic affinities among the pre-Hispanic Maya, contemporary Maya (Yucatan, Guatemala, 

Honduras, and Belize) and populations from Asia, Bering, North America, and South America (See 

Suppl. Table 1) were analyzed by MDS to demonstrate their genetic affinities.  
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Figure 8. Multi-dimensional scaling among ancient Maya populations. The genetic affinities 

among the pre-Hispanic Maya and ancient populations from Chile and Cuba (See Suppl. Table 1) 

were analyzed by MDS to demonstrate their genetic affinities.  
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Figure 9. Multi-dimensional scaling between the pre-Hispanic Maya and contemporary Maya 

(Mexico, Guatemala, Honduras, and Belize). 

The genetic affinities between the pre-Hispanic Maya and contemporary Maya (Yucatan, 

Guatemala, Honduras, and Belize) (See Suppl. Table 1) were analyzed by MDS to demonstrate 

their genetic affinities.  
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Figure 10. Multi-dimensional scaling between all ancient Maya populations as a group and the 

contemporary Maya populations by city. The genetic affinities between the pre-Hispanic Maya 

and Maya from each city (see Suppl. Table 1) were analyzed by MDS to demonstrate their genetic 

affinities. 
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Supplemental data  

Supplemental Figure Legends 

 

Figure S1. Geographic locations of the sequences analyzed in this study.  

The figure shows the locations of all samples from ancient and contemporary individuals described 

in Table 1 and Suppl. Table 1. 

Table S1. Please visit the following web address to view Supplementary Table S1: 

http://digitalcommons.wayne.edu/cgi/viewcontent.cgi?filename=21&article=2574&context=humbi

ol&type=additional. 
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Figure S2A and S2B. Haplotype network of mtDNA haplogroup A in the pre-Hispanic Maya, 

contemporary Maya (Yucatan, Guatemala, Honduras, and Belize), Asia, Bering, North 

America, and South America.  

A phylogenetic network was constructed using the mtDNA sequences from nucleotides 16215 to 

16399 using the Network 4.6.1.1 program as described in figure 3. 
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Figure S3. Mitochondrial DNA phylogenetic tree of the pre-Hispanic haplogroups A and D 

(panel A) and C (panel B). The file contains figures showing the phylogenetic reconstruction of 38 

HVS-I mitochondrial DNA sequences belonging to the pre-Hispanic Maya haplogroup clades 

presented in panel A) haplogroups A and D and panel B) haplogroup C. 
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Figure S4. Haplotype network of mtDNA haplogroup C in the pre-Hispanic Maya, 

contemporary Maya (Yucatan, Guatemala, Honduras, and Belize), Asia, Bering, North 

America, and South America.  

A phylogenetic network was constructed using the mtDNA sequences from nucleotides 16215 to 

16399 with the Network 4.6.1.1 program as described in figure 5. 
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