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a b s t r a c t 

Post-feedback frontal midline EEG activity has been found to correlate with error magnitude during motor adaptation. However, the role of this neuronal activity 
remains to be elucidated. It has been hypothesized that post-feedback frontal midline activity may represent a prediction error, which in turn may be directly related 
to the adaptation process or to an unspecific orienting response. To address these hypotheses, we replicated a previous visuomotor adaptation experiment with very 
small perturbations, likely to invoke implicit adaptation, in a new group of 60 participants and combined it with EEG recordings. We found error-related peaks in 
the frontal midline electrodes in the time domain. However, these were best understood as modulations of frontal midline theta activity (FMT, 4–8 Hz). Trial-level 
differences in FMT correlated with error magnitude. This correlation was robust even for very small errors as well as in the absence of imposed perturbations, 
indicating that FMT does not depend on explicit or strategic re-aiming. Within participants, trial-level differences in FMT were not related to between-trial error 
corrections. Between participants, individual differences in FMT-error-sensitivity did not predict differences in adaptation rate. Taken together, these results imply 
that FMT does not drive implicit motor adaptation. Finally, individual differences in FMT-error-sensitivity negatively correlate to motor execution noise. This suggests 
that FMT reflects saliency: larger execution noise means a larger standard deviation of errors so that a fixed error magnitude is less salient. In conclusion, this study 
suggests that frontal midline theta activity represents a saliency signal and does not directly drive motor adaptation. 
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. Introduction 

In motor learning, movement errors are used to update motor com-
ands for subsequent actions. We call this process motor adaptation.
otor adaptation can occur within a trial during continuous move-
ents, or between trials during discrete ballistic movements such as

winging a golf club or throwing darts. In motor adaptation tasks, per-
urbations of visual or proprioceptive feedback drive adjustments of the
otor command to achieve the intended goal of the movement. These

djustments may reflect unconscious implicit adaptation, conscious ex-
licit strategy, or both ( Taylor et al., 2014 ). Typically, smaller gradual
erturbations result in implicit adaptation whereas larger sudden per-
urbations have been found to induce explicit strategy ( Malfait and Os-
ry, 2004 ; Morehead et al., 2015 ; Werner et al., 2019 ). 

Linear dynamical models of error-based learning that include an
daptation rate, a retention rate, planning noise (state noise), and ex-
cution noise (output noise) have been shown to qualitatively resem-
le between-trial implicit adaptation of reaching movements to a grad-
al perturbation signal with incremental perturbation steps ( Cheng and
abes, 2007 ). In this model class, planning noise represents stochas-
ic noise in central movement planning, whereas execution noise rep-
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esents stochastic noise in peripheral movement execution that is not
ncluded in the motor command ( van Beers, 2009 ). Van der Vliet
t al. (2018) showed that such a model can also explain differences
n motor learning between individuals. In that study we presented a
ovel Bayesian fitting procedure to estimate the model parameters for
ach individual participant. In agreement with optimal Kalman filter
heory ( Kalman, 1960 ; Wei and Körding, 2010 ), individuals with rel-
tively more planning noise and less execution noise showed a higher
daptation rate than individuals with relatively less planning noise and
ore execution noise. However, an important question regarding these
athematical models is the extent to which they reflect the reality of

he underlying neurophysiological processes ( Tan et al., 2016 ). 
Independently from the mathematical modeling approach, elec-

roencephalography (EEG) has been used increasingly to explore neuro-
hysiological correlates of learning. Most studies have focused on frontal
idline activity, which has been found to correlate with error magni-

ude in motor adaptation tasks ( Anguera et al., 2009 ; Arrighi et al.,
016 ; Aziz et al., 2020 ; Krigolson et al., 2008 ; Maclean et al., 2015 ;
euter et al., 2018 ; Torrecillos et al., 2014 ; Vocat et al., 2011 ). How-
ver, a recent study with very small gradual perturbations did not
0, 3000 CA, Rotterdam, The Netherlands. 
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Fig. 1. Design of the experiment. A: Trial design. B: Experimental design. 
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nd a relation between error magnitude and frontal midline activity
 Palidis et al., 2019 ). Error-related activity in the frontal midline region
s often expressed as an amplitude in the time domain, or as modulations
f theta activity (4–8 Hz) in the frequency domain ( Arrighi et al., 2016 ;
avanagh et al., 2012 ). Torrecillos et al. (2014) found that frontal mid-

ine activity associated with angular errors closely resembled the topog-
aphy and timing of feedback-related negativity ( Miltner et al., 1997 ).
ue to this resemblance, the authors hypothesized that frontal midline
rror activity may represent a prediction error, which they suggest may
e related to the motor adaptation process or to an unspecific orienting
esponse. However, to our knowledge, no prior studies have tested these
ypotheses. 

To address these hypotheses, we conjoined a mathematical model
pproach and an electroencephalography approach. We replicated our
revious visuomotor adaptation experiment ( van der Vliet et al., 2018 )
n a new group of 60 participants and combined it with EEG record-
ngs. The current study explores (1) whether error-related frontal mid-
ine activity will be evoked in the absence of perturbations; (2) whether
rontal midline activity is related to between-trial error corrections; (3)
hether individual differences in error-related frontal midline activity
re related to individual differences in motor learning. 

Regarding the third objective, our previous experiment ( van der Vliet
t al., 2018 ) showed that adaptation rate was positively correlated to
lanning noise and negatively correlated to execution noise. Further-
ore, the standard deviation of the signed errors (angular distance from

he target) was negatively related to adaptation rate and positively re-
ated to planning noise and execution noise. The current study explores
ow individual differences in error-related frontal midline activity fit
ithin this behavioral framework. 

. Material and methods 

.1. Participants 

We recruited 60 right-handed ( Oldfield, 1971 ) participants (19 men
nd 41 women; mean age = 25.6 years, range = 18–61) without any
edical condition that might interfere with motor performance. Par-

icipants received a small financial token for traveling and time com-
2 
ensation. The study was performed in accordance with the Declaration
f Helsinki and was approved by the medical ethics committee of the
rasmus MC University Medical centre. 

.2. Experimental procedure 

The experimental procedure was adapted from van der Vliet
t al. (2018) . Participants were seated in front of a horizontal projection
creen with a robotic handle underneath. This handle was situated at el-
ow height and could be moved in the horizontal plane. The position of
he handle was projected on top of the screen as a cursor (green circle
 mm diameter). Furthermore, the screen displayed an origin (white cir-
le 10 mm diameter) and a target (red circle 10 mm diameter) at fixed
ositions. The origin was located approximately 40 cm straight in front
f the participant and the target was projected exactly 10 cm behind
he origin, approximately 50 cm in front of the participant. Participants
ere instructed to hold the handle in their dominant right hand and
ove the cursor from the origin through the target in one smooth bal-

istic reaching movement. To prevent direct feedback of hand position
nderneath the screen, participants were wearing an apron that was se-
ured to the top of the screen. 

The experiment consisted of three types of trials: no-vision, unper-
urbed, and perturbed trials ( Fig. 1 A). At the start of each trial, par-
icipants held the cursor in the origin. The target appeared after one
econd, indicating that the participant should start the movement. In
ll trial types, the cursor disappeared when the handle left the origin.
n no-vision trials, the cursor did not reappear during the entire move-
ent. In unperturbed and perturbed trials, the cursor reappeared when

he handle distance from the origin exceeded 5 cm. However, in per-
urbed trials, the cursor was projected at a predefined angle relative to
he actual handle position. 

The movement was damped with a force cushion (3.6Ns/m, ramped
p over 7.5 ms) when the handle position exceeded 10 cm distance from
he origin, and thus exceeded the target distance. We defined this time
oint as movement offset. In perturbed and unperturbed trials, the cur-
or froze at this time point to provide feedback on the endpoint error.
urthermore, the target changed color. If the movement duration was
oo short ( < 400 ms), the target stayed red; if the movement duration
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as correct (400–600 ms), the target turned white; and if the duration
as too long ( > 600 ms), the target turned blue. We instructed partici-
ants that these colors were merely a guideline to ensure ballistic move-
ents without online adjustments and emphasized that the goal of the

ask was to hit the target. One second after onset of the force cushion,
he robot pushed the handle back to the starting position. When the
andle was at the origin, the cursor reappeared at the handle position. 

The experiment consisted of 900 trials, divided into two blocks of
50 trials: a baseline block followed by a perturbation block ( Fig. 1 B).
he exact order of the trial types was randomized for each participant.
he baseline block contained 225 unperturbed trials and 225 no-vision
rials in a completely randomized order. In contrast, the perturbation
lock contained 400 perturbation trials and 50 no-vision trials in a pseu-
orandomized order: in every epoch of 9 trials, there was one randomly
nterspersed no-vision trial. Thus, the experiment contained 625 trials
ith visual feedback. In the perturbation block, the perturbation angle

hanged from 0° to 9° to − 9° and back to 0° with increments of 1.5° ev-
ry 8 to 12 trials. The experiment was paused after every 150 trials for
pproximately 2 min. 

.3. Movement recording and preprocessing 

The experiment was controlled by a custom C ++ program. The po-
ition and velocity signals of the robot handle were sampled at 500 Hz.
he velocity signal was filtered with an exponential moving average fil-
er (smoothing factor = 0.18 s). Movement onset was defined as the time
oint when movement velocity exceeded 0.03 m/s and movement off-
et was defined as the moment that the hand location exceeded 10 cm
istance from the starting position. The hand angle was defined as the
ngle between the vector connecting the origin and the hand at the end
f the movement, relative to the vector connecting the origin and the
arget. The clockwise direction was defined as positive. Trials were re-
oved if movement duration exceeded 1 s or if the absolute hand angle

xceeded 30°. On average, 1% (range [0 18]) of the total 900 movement
rials were excluded per participant. 

.4. Movement analysis 

From the movement recordings, we estimated the execu-
ion noise, planning noise, and adaptation rate of each partici-
ant. The analysis was performed with Bayesian Markov Chain
onte Carlo simulations in JAGS version 4.3.0 (available from:

ttps://sourceforge.net/projects/mcmc-jags/) and is extensively de-
cribed in van der Vliet et al. (2018) . In short, we fitted a state-space
odel of trial-to-trial behavior ( Cheng and Sabes, 2006 ) to the
ovement data of all participants. 

 [ 𝑠, 𝑛 + 1 ] = 𝐴 [ 𝑠 ] ∗ 𝑥 [ 𝑠, 𝑛 ] − 𝐵 [ 𝑠 ] ∗ 𝑒 [ 𝑠, 𝑛 ] + 𝜂[ 𝑠, 𝑛 ] (1)

 [ 𝑠, 𝑛 ] = 𝑥 [ 𝑠, 𝑛 ] + 𝜀 [ 𝑠, 𝑛 ] (2)

 [ 𝑠, 𝑛 ] = 𝑦 [ 𝑠, 𝑛 ] + 𝑝 [ 𝑠, 𝑛 ] (3)

[ 𝑠, 𝑛 ] ∼ 𝑁 

(
0 , 𝜎2 

𝜂
[ 𝑠 ] 

)
(4)

 [ 𝑠, 𝑛 ] ∼ 𝑁 

(
0 , 𝜎2 

𝜀 
[ 𝑠 ] 

)
(5)

For each trial 𝑛 of participant 𝑠 , 𝑥 [ 𝑠, 𝑛 ] is the movement plan, 𝑦 [ 𝑠, 𝑛 ]
he angle of the hand relative to the target at the endpoint, 𝑝 [ 𝑠, 𝑛 ] the
erturbation angle and 𝑒 [ 𝑠, 𝑛 ] the error angle of the cursor on the screen
elative to the target (signed error). Participant-specific motor adapta-
ion parameters estimated with this model are the retention rate 𝐴 [ 𝑠 ] ,
hich is the fractional retention of the movement plan 𝑥 [ 𝑠, 𝑛 ] in the pre-
ious trial, and the adaptation rate 𝐵[ 𝑠 ] , which is the fractional change
aused by the error 𝑒 [ 𝑠, 𝑛 ] in the previous trial. The noise terms include
3 
lanning noise 𝜂[ 𝑠, 𝑛 ] , and execution noise 𝜀 [ 𝑠, 𝑛 ] . Planning noise and ex-
cution noise are modeled as zero-mean Gaussians. The standard devia-
ions of these Gaussians 𝜎𝜂[ 𝑠 ] and 𝜎𝜀 [ 𝑠 ] represent the magnitude of plan-
ing and execution noise for each participant. The participant-specific
otor learning parameters were estimated hierarchically with uninfor-
ative priors. Additionally, we calculated the standard deviation of the

igned errors ( 𝜎𝑦 ) for each participant to explore possible indirect ef-
ects between the participant-specific motor learning parameters and
rror-related frontal midline activity. Since trials 301–450 and 751–900
ere used to estimate error-related frontal midline theta activity in the
aseline block and the perturbation block (see EEG analysis below), we
erformed the movement analysis without these trials. 

.5. EEG recording and preprocessing 

Participants were wearing a 128 channel EEG cap connected to a 136
hannel REFA system (TMSi, Oldenzaal, The Netherlands). The EEG data
ere recorded with a sampling rate of 2048 Hz from 62 EEG channels:
P1, FPz, FP2, AF7, AF3, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8,
T7 FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2,
4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P7, P5, P3,
1, Pz, P2, P4, P6, P8, PO7, PO5, PO3, POz, PO4, PO6, PO8, O1, Oz,
2, and 2 EOG channels. The EOG electrodes were located between the
yebrows and to the right of the right eye. Impedance was kept below 4
 Ω. The recording of each channel was referenced to the average signal
cross all channels. 

After recording, the EEG signals were preprocessed with the EEGLAB
oolbox (version 14.1.2b; Swartz Center for Computational Neuro-
cience, La Jolla, USA) and custom scripts in MATLAB version 2018b
Mathworks, Natick, USA). The raw average referenced EEG signals
ere digitally filtered between 2–40 Hz with a 6th order Butterworth
lter, cut into trial epochs of 2000 ms centered around the onset of
isual feedback, and down-sampled to 128 Hz. Non-stereotypical arti-
acts were automatically removed by excluding trials in which the av-
rage log power was an outlier compared to the other trials within the
ame channel (absolute z-score > 3.5). Data quality of the remaining tri-
ls was verified by visual inspection. Similarly, stereotypical artifacts
ere automatically removed by performing a fast-independent compo-
ent analysis ( Delorme et al., 2007 ) and excluding components in which
he average log power was an outlier (absolute z-score > 3.5). Visual in-
pection confirmed that the removed components corresponded to eye
ovements. The other components were projected back to the channel

pace. On average, 40 (range [14 79]) of the 900 EEG traces were ex-
luded and 1.1 (range [1 2]) of the 64 components were removed. The
emaining traces were used for analysis in the time domain. 

For the analysis in the frequency domain, the remaining EEG traces
ere first filtered with a surface Laplacian to improve the spatial reso-

ution ( Perrin et al., 1989 ). Subsequently, the traces were decomposed
nto their time-frequency representations using Morlet wavelet con-
olution applied to the concatenated trial data ( Cohen, 2014 ; Tallon-
audry et al., 1996 ). The wavelet frequencies ranged from 2 to 30 Hz in
9 steps of 1 Hz (with the number of cycles ranging from 4 to 10 in 29
ogarithmically-spaced steps, respectively, for the 29 frequencies). After
onvolution, the deconcatenated traces were trimmed between –800 ms
nd 800 ms, and centered on the onset of visual feedback to remove edge
rtifacts. Consecutively, the log power at each time-frequency point
ithin each trial was normalized as a percentage change relative to the
verage log power of that frequency in the predefined baseline window
from 800 ms until 600 ms before visual feedback) across all trials for
he subject. 

.6. EEG analysis 

The EEG analysis was performed separately for the baseline block
nd the perturbation block. We used linear mixed-effects models (MAT-
AB’s fitlme function) to estimate trial-level effects across participants.
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Fig. 2. Average movement data across participants throughout the experiment. The error bars on the brown line indicate the standard deviation of the hand angle 
across subjects. 
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ll variables were z-score normalized for the purpose of the regression.
ables show the normalized effects in order to compare their relative
trength. When effect sizes are shown in their original units, they have
een transformed back using the standard deviations of the dependent
nd independent variables. Error magnitude was defined as the abso-
ute angle between the cursor on the screen relative to the target, and
rror correction was defined as the absolute change in the hand angle
n the subsequent trial ( Tan et al., 2016 ). In the EEG analysis, we only
ncluded trials with visual feedback. 

For the trial-level analysis in the frequency domain, a separate re-
ression was used for each time-frequency window. We used a large
indow (4–8 Hz and 100–600 ms) to analyze frontal midline theta ac-

ivity (FMT) in channel FCz ( Arrighi et al., 2016 ; Cavanagh et al., 2012 ;
avoie et al., 2018 ) and fine-grained time-frequency windows to gen-
rate figures. For a given time-frequency window, we regressed aver-
ge EEG power on error magnitude, movement correction, and feedback
olor (which indicated whether movement duration was within the de-
ired range, see above). 

 𝐸 𝐺 [ 𝑠, 𝑛 ] ∼ 𝛼[ 𝑠 ] + 𝛽1 [ 𝑠 ] ∗ |𝑒 |[ 𝑠, 𝑛 ] + 𝛽2 [ 𝑠 ] ∗ |𝑐 |[ 𝑠, 𝑛 ] + 𝛽3 [ 𝑠 ] ∗ 𝑓 [ 𝑠, 𝑛 ] (6)

For each trial 𝑛 of participant 𝑠 , 𝐸 𝐸 𝐺[ 𝑠, 𝑛 ] is the average EEG power
n a time-frequency window, |𝑒 |[ 𝑠, 𝑛 ] is the error magnitude, |𝑐|[ 𝑠, 𝑛 ] is
he movement correction in the subsequent trial, and 𝑓 [ 𝑠, 𝑛 ] is a categor-
cal variable indicating if the movement duration was “too short ”, “too
ong ” or “appropriate ”. All participant-specific estimates were modeled
s random effects around the group average fixed effects. 

We used training sets to select the variables and test sets to esti-
ate their effect size. The training and test sets were trials 1–300 and
01–450 for the baseline block, and trials 451–750 and 751–900 for the
erturbation block. In the training sets, we compared different versions
f the model with the Akaike Information Criterion (AIC) and the Mean
quared Error (MSE) after 10-fold cross-validation stratified over partic-
pants. In the test sets, we used the selected model to estimate the effect
ize of the parameters. FMT-error-sensitivity was defined as the relation
etween frontal midline theta power (FMT) and error magnitude ( 𝛽1 [ 𝑠 ] ).
n other time-frequency windows, we refer to the coefficient of the error
agnitude ( 𝛽1 [ 𝑠 ] ) as the EEG-error-sensitivity. 

.7. Participant-level analysis 

In the participant level analysis, we tested for linear relationships
etween FMT-error-sensitivity ( 𝛽1[ 𝑠 ] ), planning noise 𝜎𝜂[ 𝑠 ] , execution
oise 𝜎𝜀 [ 𝑠 ] , and adaptation rate 𝐵[ 𝑠 ] . We used multivariate linear regres-
ions (MATLAB’s fitlm function) to test two regression models specif-
cally: FMT-error-sensitivity regressed on the noises and adaptation
ate, and adaptation rate regressed on the noises and the FMT-error-
4 
ensitivity. The choice of these two models reflects an underlying as-
umption that the noises characterize the individual. 

 [ 𝑠 ] ∼ 𝛼 + 𝛾1 ∗ 𝜎𝜂[ 𝑠 ] + 𝛾2 ∗ 𝜎𝜀 [ 𝑠 ] + 𝛾3 ∗ 𝛽1 [ 𝑠 ] (7)

1 [ 𝑠 ] ∼ 𝛼 + 𝛾1 ∗ 𝜎𝜂[ 𝑠 ] + 𝛾2 ∗ 𝜎𝜀 [ 𝑠 ] + 𝛾3 ∗ 𝐵 [ 𝑠 ] (8)

In these models, we used the participant-specific point estimates
rom the movement analysis and the trial-level EEG analysis. For the
articipant-level analysis, FMT-error-sensitivity was estimated on the
ooled test sets (trials 301–450 and trials 751–900 combined). To pre-
ent double use of trials, the motor learning parameters were estimated
n the other trials. In order to compare the strength of the correlations,
ll variables were z-score normalized. We compared different versions
f the model with the Akaike Information Criterion (AIC) and the Mean
quared Error (MSE) after leave-one-out cross-validation 

. Results 

.1. Results of movement analysis 

On average, target onset, movement onset, and movement offset oc-
urred at − 441 ms (range across participants [-512 -401]), -193 ms
 − 247 − 151] and 78 ms [50 118] respectively, relative to the onset of
isual feedback. Over the course of the experiment, participants adapted
heir reaching movements to the perturbation signal ( Fig. 2 ). As a result,
he average error magnitude was similar in the baseline block and the
erturbation block ( Fig. 2 ). In 38% [23 49] of the trials, the cursor was
ompletely inside the target (error magnitude < 1.43°) and in an addi-
ional 46% [39 51] of the trials, the cursor was partially inside the target
error magnitude < 4.29°). The Bayesian fitting procedure showed that
he average planning noise, execution noise, and adaptation rate were
.48° [0.22 0.79], 2.47° [1.40 4.36], and 0.14 [0.08 0.23], respectively.

.2. Results of EEG analysis 

In channel FCz, the trials without visual feedback showed a
arge peak between 100 and 600 milliseconds after visual feedback
 Fig. 3 A,B). Trials with visual feedback showed a wave-like pattern su-
erimposed on that peak ( Fig. 3 A,B). The amplitude of this wave scaled
ith error magnitude ( Fig. 3 C,D) and the frequency of this wave corre-

ponded to power in the theta band ( Fig. 3 E,F). The signal in the fre-
uency domain contains less noise and is unipolar, which makes the
nalysis less susceptible for the borders of the timewindow. Throughout
he experiment overall theta power in the 100–600 ms time window
eclined, but the relation between theta power and error magnitude
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Table 1 

Trial-level analysis in the baseline training set (trial 1–300). Linear mixed-effects model with frontal midline theta power (FMT) as the dependent variable ( Eq. (6) ). In 
order to compare the effect sizes, all variables were z-score normalized. The last row shows the full model in which 𝛼 represents the intercept and 𝛽1 , 𝛽2 , 𝛽3 , represent 
the relationship with error magnitude, error correction, and movement duration ( 𝛽3 𝑎 is too short and 𝛽3 𝑏 is too long). In addition to the effect size estimations, different 
versions of the model were compared with the Akaike Information Criterion (AIC) and the Mean Squared Error (MSE) after 10-fold cross-validation stratified over 
participants. Trial-level differences in FMT in the baseline block were best explained by error magnitude (model 2). 

FMT baseline block 

𝑎 estimate 
(95% CI) 
p-value 

𝛽1 estimate 
(95% CI) 
p-value 

𝛽2 estimate 
(95% CI) 
p-value 

𝛽3 𝑎 estimate 
(95% CI) 
p-value 

𝛽3 𝑏 estimate 
(95% CI) 
p-value AIC MSE 

1. 𝑎 .00 
( − .08 0.08) 

.997 

– – – – 23,498 .92 

2. 𝑎 + 𝛽1 .01 

( − .07 0.09) 

.729 

.19 

(0.15 0.23) 

< 0.001 

– – – 23,222 .89 

3. 𝑎 + 𝛽2 .00 
( − .07 0.08) 

.925 

– .09 
(0.07 0.12) 
< 0.001 

– – 23,431 .91 

4. 𝑎 + 𝛽3 .00 
( − .08 0.08) 

.999 

– – .04 
( − .08 0.16) 

.514 

-0.01 
( − .09 0.07) 

.801 

23,507 .92 

5. 𝑎 + 𝛽1 + 𝛽2 .01 
( − .07 0.09) 

.729 

.18 
(0.14 0.23) 
< 0.001 

.00 
( − .02 0.03) 

.807 

– – 23,226 .89 

6. 𝑎 + 𝛽1 + 𝛽3 .02 
( − .06 0.10) 

.698 

.19 
(0.15 0.23) 
< 0.001 

– .01 
( − .10 0.13) 

.835 

-0.02 
( − .10 0.07) 

.726 

23,230 .89 

7. 𝑎 + 𝛽2 + 𝛽3 .01 
( − .07 0.08) 

.898 

– .09 
(0.07 0.12) 
< 0.001 

.03 
( − .09 0.14) 

.660 

− 0.02 
( − .10 0.06) 

.671 

23,440 .91 

8. 𝑎 + 𝛽1 + 𝛽2 + 𝛽3 .02 
( − .06 0.10) 

.698 

.19 
(0.14 0.23) 
< 0.001 

.00 
( − .02 0.03) 

.805 

.01 
( − .10 0.13) 

.837 

-0.02 
( − .10 0.07) 

.722 

23,234 .89 

Table 2 

Trial-level analysis in the perturbation training set (trial 451–750). Linear mixed-effects model with frontal midline theta power (FMT) as the dependent variable 
( Eq. (6) ). In order to compare the effect sizes, all variables were z-score normalized. The last row shows the full model in which 𝛼 represents the intercept and 
𝛽1 , 𝛽2 and 𝛽3 , represent the relationship with error magnitude, error correction, and movement duration ( 𝛽3 𝑎 is too short and 𝛽3 𝑏 is too long). In addition to the 
effect size estimations, different versions of the model were compared with the Akaike Information Criterion (AIC) and the Mean Squared Error (MSE) after 10-fold 
cross-validation stratified over participants. Trial-level differences in FMT in the perturbation block were best explained by error magnitude (model 2). 

FMT perturbation block 

𝑎 estimate 
(95% CI) 
p-value 

𝛽1 estimate 
(95% CI) 
p-value 

𝛽2 estimate 
(95% CI) 
p-value 

𝛽3 𝑎 estimate 
(95% CI) 
p-value 

𝛽3 𝑏 estimate 
(95% CI) 
p-value AIC MSE 

1. 𝛼 .00 
( − .07 0.06) 

.940 

– – – – 41,547 .94 

2. 𝑎 + 𝛽1 .01 

( − .06 0.08) 

.798 

.17 

(0.13 0.21) 

< 0.001 

– – – 41,060 .91 

3. 𝑎 + 𝛽2 .00 
( − .06 0.07) 

.953 

– .07 
(0.05 0.10) 
< 0.001 

– – 41,465 .93 

4. 𝑎 + 𝛽3 .00 
( − .06 0.06) 

.883 

– – .04 
( − .05 0.14) 

.335 

.01 
( − .05 0.08) 

. 687 

41,549 .94 

5. 𝑎 + 𝛽1 + 𝛽2 .01 
( − .06 0.08) 

.772 

.17 
(0.13 0.21) 
< 0.001 

.01 
( − .02 0.03) 

.554 

– – 41,058 .91 

6. 𝑎 + 𝛽1 + 𝛽3 .01 
( − .06 0.08) 

.836 

.17 
(0.13 0.21) 
< 0.001 

– .03 
( − .06 0.12) 

.474 

.01 
( − .05 0.07) 

.760 

41,064 .91 

7. 𝑎 + 𝛽2 + 𝛽3 .00 
( − .07 0.07) 

.996 

– .07 
(0.05 0.10) 
< 0.001 

.04 
( − .05 0.14) 

.341 

.01 
( − .06 0.07) 

.822 

41,468 .93 

8. 𝑎 + 𝛽1 + 𝛽2 + 𝛽3 .01 
( − .06 0.08) 

.810 

.17 
(0.13 0.21) 
< 0.001 

.01 
( − .02 0.03) 

.567 

.03 
( − .06 0.12) 

.457 

.01 
( − .05 0.07) 

.760 

41,063 .91 
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Fig. 3. Average EEG data in channel FCz across 
participants. For visualization purposes, trials have 
been binned and averaged based on error magnitude. 
Black dotted lines represent the average target onset 
( − 441 ms), movement onset ( − 193 ms) and movement 
end (78 ms), relative to the onset of visual feedback. 
Black solid lines represent the post-feedback window 

(100–600 ms). A,B: Average EEG amplitude across sub- 
jects in the vision versus the no-vision trials. C,D: Aver- 
age EEG amplitude across subjects. E,F: Average theta 
power (4–8 Hz) across subjects. G: Average theta power 
in the post-feedback window throughout the experi- 
ment. Trials 1–450 are part of the baseline block and 
thus without any perturbations. Error bars represent the 
standard error of the mean. 
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FMT-error-sensitivity) was consistent throughout the baseline and per-
urbation blocks ( Fig. 3 G). 

Consistent with what is shown in Fig. 3 , trial-level differences in FMT
n the baseline and perturbation training sets were best explained by er-
or magnitude ( Tables 1 , 2 ). Any apparent relation between FMT and
rror correction in the subsequent trial disappeared when error magni-
ude was included in the model. Furthermore, feedback color did not
urther explain trial-level differences in FMT. Thus, we used the linear
ixed model without error correction and feedback color to estimate

MT-error-sensitivity, expressed as the change in average frontal mid-
ine theta power per degree of error magnitude. The average FMT-error
ensitivity was 0.61%/degree (range across participants [0.02 1.61] in
he baseline test set and 0.56%/degree [ − 0.24 1.67] in the perturbation
est set. For the participant-level analysis below, we pooled the trials of
 y  

6 
oth test sets to estimate FMT-error-sensitivity (0.57%/degree [ − 0.13
.77]). 

Fig. 4 illustrates that our definition of FMT appropriately captured
he EEG signal of interest. Figs. 4 A and B illustrate that EEG-error-
ensitivity in channel FCz was most prominent in the theta (4–8 Hz)
requency band, with foothills in the delta (2–3 Hz) and alpha (9–14 Hz)
requency bands. Furthermore, Fig. 4 C and D illustrate that EEG-error-
ensitivity in the theta band was most prominent in channels FCz and
z. 

.3. Results of participant-level analysis 

The point estimates from the movement analysis and the EEG anal-
sis were used to explore the relation between individual differences
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Fig. 4. Error sensitivity in other time- 
frequency windows ( A,B ) and other chan- 
nels ( C,D ). A: EEG power in FCz. Dot- 
ted lines represent the average target onset 
( − 441 ms), movement onset ( − 193 ms) and 
movement end (78 ms), relative to the onset 
of visual feedback. Solid lines represent the 
time-frequency window (100–600 ms and 
4–8 Hz) used in the EEG analysis. B: Rela- 
tion between EEG power and error magni- 
tude. C: Average post-feedback theta power 
(4–8 Hz) in other channels. D: Relation be- 
tween theta power and error magnitude. 
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n the motor learning parameters and individual differences in FMT-
rror sensitivity ( Tables 3 , 4 ). Individual differences in adaptation rate
ere positively correlated to planning noise ( Fig. 5 A) and negatively

elated to execution noise ( Fig. 5 B), and were not further explained
y FMT-error-sensitivity ( Fig. 5 C). Conversely, individual differences in
MT-error-sensitivity were best explained by execution noise ( Fig. 5 E),
nd not further explained by planning noise ( Fig. 5 D), nor adaptation
ate ( Fig. 5 F). These results mirror the relative contribution of the mo-
or learning parameters to individual differences in standard deviation
f signed errors ( 𝜎𝑦 ). In this experimental design, execution noise had
 much larger contribution to the standard deviation of signed errors
 Fig. 5 G) compared to planning noise ( Fig. 5 H) and adaptation rate
 Fig. 5 I). Supplementary Fig. 1 shows that the results of the participant-
evel analysis were comparable when we used all 900 trials for the move-
ent analysis and all 625 trials with visual feedback for the EEG anal-

sis, rather than separate subsets. 
Fig. 6 shows the data of the individuals with the lowest, median

nd highest execution noise. This figure illustrates that higher execution
oise was related to lower adaptation rate ( Fig. 6 A–C) and lower FMT-
rror-sensitivity ( Fig. 6 D–F). 

. Discussion 

This study shows that post-feedback frontal midline theta activity
FMT) is related to error magnitude, even in the absence of evoked per-
urbations. Furthermore, this study shows that FMT is not related to
etween-trial error corrections. Finally, this study shows that the sensi-
ivity of FMT to error magnitude is smaller for participants with greater
xecution noise. With 60 participants and 625 trials with visual feed-
ack per participant, this is the largest study on visuomotor adaptation
nd EEG activity to date, allowing us to investigate individual differ-
nces in motor learning and FMT. In group average EEG activity, FMT
ppeared to reflect error magnitude ( Fig. 3 ). However, this relationship
etween FMT and error magnitude (FMT-error-sensitivity) was much
eaker in individuals with a larger execution noise ( Fig. 5 E) and thus a

arger standard deviation of signed errors ( Fig. 5 H). As further explained
elow, our results suggest that frontal midline theta activity represents
 saliency signal, that does not directly drive implicit motor adaptation.

First, this study shows that frontal midline theta activity (FMT)
s related to error magnitude, even in the absence of imposed
erturbations. This is in apparent contrast with existing literature.
7 
rrighi et al. (2016) only found a relationship between frontal mid-
ine activity and error magnitude for error magnitudes above a certain
hreshold. Palidis et al. (2019) only used very small gradual perturba-
ions and did not see a relationship between frontal midline activity and
rror magnitude. Savoie et al. (2018) found that FMT, corrected for error
agnitude, was higher when participants were made aware of the per-

urbation paradigm and instructed how to counteract it. These previous
tudies imply that the relation between frontal midline activity and error
agnitude depends on awareness of the perturbation paradigm. How-

ver, the current study shows that FMT-error-sensitivity is related to er-
or magnitude during very small perturbations and even in the absence
f imposed perturbations (during the baseline block). Under such con-
itions, it is safe to assume that adaptation was implicit. This indicates
hat FMT does not depend on awareness of the perturbation paradigm. 

Second, this study shows that trial-level differences in FMT are not
elated to between-trial error corrections. To our knowledge, this is the
rst study to investigate the relation between EEG activity and adap-
ation on the trial level. Our results are a strong argument that frontal
idline activity does not amplify implicit motor adaptation, which is

hought to be dependent on the olivocerebellar system ( De Zeeuw et al.,
011 ; Shadmehr and Krakauer, 2008 ). Since FMT is related to the ab-
olute error rather than the signed error, it cannot be used as the main
rror signal for motor adaptation. Nonetheless, FMT could be used as an
uxiliary error signal that weights the importance of the main error sig-
al and thus drives adaptation ( Kim et al., 2019 ; Torrecillos et al., 2014 ).
owever, the current study shows no relation between trial-level differ-
nces in FMT and between-trial error corrections, indicating that FMT
oes not directly drive implicit motor adaptation. 

Finally, this study shows that individual differences in FMT-error
ensitivity are negatively correlated to individual differences in execu-
ion noise. This supports the hypothesis of Torrecillos et al. (2014) that
MT during motor adaptation reflects saliency. For participants with a
arger execution noise and thus a larger standard deviation of signed
rrors, the same absolute error is less surprising. An alternative sugges-
ion is that frontal midline activity represents reward prediction error
 Palidis et al., 2019 ). Reward prediction error and saliency are difficult
o distinguish ( Cavanagh and Frank, 2014 ; Sambrook and Goslin, 2015 ).
owever, the scalar relation between FMT and error magnitude beyond
inary target ‘hits’ and ‘straddles’ ( Kim et al., 2019 ) is more compatible
ith the saliency hypothesis. 
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Table 3 

Participant-level analysis with adaptation rate (B) as the dependent variable ( Eq. (7) ). In order to compare the effect sizes, all variables were z-score normalized. 
The last row shows the full model in which 𝛼 represents the intercept and 𝛾1 , 𝛾2 and 𝛾3 represent the relationship with planning noise ( 𝜎𝜂), execution noise ( 𝜎𝜀 ), 
FMT-error-sensitivity ( 𝛽1 ). In addition to the effect size estimations, different versions of the model were compared with the Akaike Information Criterion (AIC) and 
the Mean Squared Error (MSE) after leave-one-out cross-validation. Individual differences in adaptation rate were best explained by planning noise and execution 
noise (model 5). 

Adaptation rate 

𝑎 estimate 
(95% CI) 
p-value 

𝛾1 estimate 
(95% CI) 
p-value 

𝛾2 estimate 
(95% CI) 
p-value 

𝛾3 estimate 
(95% CI) 
p-value AIC MSE 

1. 𝛼 0 
( − .26 0.26) 

1.000 

– – – 173 1.02 

2. 𝑎 + 𝛾1 0 
( − .26 0.26) 

1.000 

.08 
( − .18 0.35) 

.523 

– – 173 1.04 

3. 𝑎 + 𝛾2 0 
( − .23 0.23) 

1.000 

– -0.44 
( − .67 − .20) 

< 0.001 

– 161 .85 

4. 𝑎 + 𝛾3 0 
( − .25 0.25) 

1.000 

– – .29 

(0.04 0.54) 

.026 

168 .97 

5. 𝑎 + 𝛾1 + 𝛾2 0 

( − .22 0.22) 

1.000 

.34 

(0.09 0.59) 

.009 

-0.58 

( − .83 − .33) 

< 0.001 

– 155 .78 

6. 𝑎 + 𝛾1 + 𝛾3 0 
( − .25 0.25) 

1.000 

.16 
( − .09 0.42) 

.210 

– .33 
(0.07 0.59) 

.014 

168 .97 

7. 𝑎 + 𝛾2 + 𝛾3 0 
( − .23 0.23) 

1.000 

– -0.38 
( − .64 − .13) 

.004 

.13 
( − .12 0.39) 

.301 

161 .86 

8. 𝑎 + 𝛾1 + 𝛾2 + 𝛾3 0 
( − .22 0.22) 

1.000 

.35 
(0.10 0.60) 

.006 

-0.52 
( − .79 − .26) 

< 0.001 

.16 
( − .08 0.41) 

.186 

155 .78 

Table 4 

Participant-level analysis with FMT-error-sensitivity ( 𝛽1 ) as the dependent variable ( Eq. (8) ). In order to compare the effect sizes, all variables were z-score normalized. 
The last row shows the full model in which 𝛼 represents the intercept and 𝛾1 , 𝛾2 and 𝛾3 represent the relationship with planning noise ( 𝜎𝜂), execution noise ( 𝜎𝜀 ), and 
adaptation rate (B). In addition to the effect size estimations, different versions of the model were compared with the Akaike Information Criterion (AIC) and the 
Mean Squared Error (MSE) after leave-one-out cross-validation. Individual differences in FMT-error-sensitivity were best explained by execution noise (model 3). 

FMT-error-sensitivity 

𝑎 estimate 
(95% CI) 
p-value 

𝛾1 estimate 
(95% CI) 
p-value 

𝛾2 estimate 
(95% CI) 
p-value 

𝛾3 estimate 
(95% CI) 
p-value AIC MSE 

1. 𝛼 0 
( − .26 0.26) 

1.000 

– – – 173 1.02 

2. 𝑎 + 𝛾1 0 
( − .25 0.25) 

1.000 

-0.24 
( − .50 0.01) 

.061 

– – 170 .99 

3. 𝑎 + 𝛾2 0 

( − .24 0.24) 

1.000 

– -0.40 

( − .64 − .16) 

.002 

– 163 .88 

4. 𝑎 + 𝛾3 0 
( − .25 0.25) 

1.000 

– – .29 

(0.04 0.54) 

.026 

168 .97 

5. 𝑎 + 𝛾1 + 𝛾2 0 
( − .24 0.24) 

1.000 

-0.09 
( − .35 0.18) 

.527 

-0.36 
( − .63 − .09) 

.009 

– 164 .91 

6. 𝑎 + 𝛾1 + 𝛾3 0 
( − .24 0.24) 

1.000 

-0.27 
( − .51 − .02) 

.032 

– .31 
(0.07 0.55) 

.014 

165 .92 

7. 𝑎 + 𝛾2 + 𝛾3 0 
( − .24 0.24) 

1.000 

– -0.34 
( − .61 − .07) 

.014 

.14 

( − .13 0.41) 

.301 

164 .90 

8. 𝑎 + 𝛾1 + 𝛾2 + 𝛾3 0 
( − .24 0.24) 

1.000 

-0.15 
( − .43 0.13) 

.295 

-0.25 
( − .57 0.06) 

.116 

.19 
( − .09 0.47) 

.186 

165 .91 

8 
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Fig. 5. Participant-level analysis (60 participants). The vertical lines represent the dependent variable. The dots at the end of the lines represent the residuals of the 
dependent variable after subtracting the estimated effect of the (other) independent variables included in the best model. Black lines represent the absolute slope 
(‘aslope’) and the confidence interval. The z-score normalized slope is also shown (‘nslope’). A–C: Linear model with adaptation rate (B) as the dependent variable 
( Eq. (7) ). The best model included planning noise ( 𝜎𝜂) and execution noise ( 𝜎𝜀 ), but not FMT-error-sensitivity ( 𝛽1 ) ( Table 3 , Model 5). Note that the confidence 
intervals of z-score normalized slope (‘nslope’) of planning noise ( 𝜎𝜂) and execution noise ( 𝜎𝜀 ) are slightly smaller than in Table 3 , because, in this figure, the effect of 
the other parameter is ‘fixed’ in order to create the residuals. D,F: Linear model with FMT-error-sensitivity ( 𝛽1 ) as the dependent variable ( Eq. (8) ). The best model 
included execution noise ( 𝜎𝜀 ), but not planning noise ( 𝜎𝜂) nor adaptation rate (B) ( Table 4 , Model 3). G–I: Linear model with the standard deviation of signed errors 
( 𝜎𝑦 ), as the dependent variable. In the full model with planning noise ( 𝜎𝜂), execution noise ( 𝜎𝜀 ) and adaptation rate (B), execution noise was the dominant factor. 
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Individual differences in FMT-error sensitivity were not related to
daptation rate when properly controlled for execution noise. Con-
ersely, individual differences in adaptation rate were positively related
o planning noise, negatively related to execution noise and were not
urther explained by FMT-error-sensitivity. These results on the partic-
pant level support our interpretation that FMT does not drive implicit
daptation. Furthermore, the current study replicates our earlier find-
ngs ( van der Vliet et al., 2018 ), which strengthens the evidence that the
daptation rate is tuned to the noise terms according to Kalman filter
heory ( Kalman, 1960 ; Wei and Körding, 2010 ). Fig. 7 illustrates the re-
ation between individual differences in planning noise, execution noise,
nd adaptation rate. Supplementary Fig. 2 illustrates how individual dif-
erences in FMT-error-sensitivity fit within this behavioral framework. 

This study is limited by the focus on implicit motor adaptation on
he trial level and the participant level. We did not expose our partici-
ants to different experimental conditions. The perturbation steps were
9 
o small that the average absolute error was similar in the baseline and
he perturbation block. This is also reflected in our movement analy-
is, which assumes that planning noise and adaptation rate are constant
hroughout the experiment. Moreover, we did not purposely introduce
oise and reward in the experiment. Therefore, we cannot generalize
ur results to experiments with larger perturbation steps or otherwise
ore salient errors that may induce explicit strategy. Furthermore, we

hould be cautious when generalizing our results to experiments with
hanging conditions. However, within our focus we can conclude that
MT reflects saliency and does not drive implicit motor adaptation. 

In conclusion, this visuomotor adaptation experiment indicates that
he modulation of post-movement frontal midline theta activity (FMT)
eflects a prediction error that does not drive implicit adaptation. In
ecision-making tasks, it has been suggested that FMT drives cognitive
ontrol ( Cavanagh and Frank, 2014 ). We hypothesize that the same is
rue in motor adaptation. While our study does show that FMT is not de-
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Fig. 6. Data of three individuals with increasing execution noise ( 𝜎𝜀 ). A–C: Movement data. Colored circles represent the hand angle in individual trials. The colored 
lines represent the estimated movement plan from the Bayesian fitting procedure. D–F: EEG data. Colored circles represent the post-feedback theta power in individual 
trials. Black lines represent the slope (FMT-error-sensitivity) and its confidence interval. 

Fig. 7. Schematic representation of the relationship 
between individual differences in planning noise, ex- 
ecution noise, and adaptation rate. Individuals with 
relatively more planning noise and less execution 
noise showed a higher adaptation rate than individu- 
als with relatively less planning noise and more execu- 
tion noise. Furthermore, individuals with more motor 
noise (planning noise and execution noise) showed a 
larger standard deviation of signed errors (SD of er- 
rors), whereas individuals with a higher adaptation 
rate showed a lower standard deviation of errors. These 
results indicate that planning noise directly increases 
the standard deviation of errors but indirectly de- 
creases the standard deviation of errors through its ef- 
fect on adaptation rate, whereas execution noise both 
directly and indirectly increases the standard deviation 
of errors. 

10 
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endent on awareness, FMT may nevertheless influence awareness and
ognitive control. This, in turn, might evoke cognitive strategies such as
autious movement, memorization, and re-aiming. In individuals with
arger execution noise, errors must be proportionally greater to indicate
 change in the external environment that warrants activation of cog-
itive control. Another plausible alternative is that FMT tunes planning
oise to different environmental conditions. This would induce search
ehavior in conditions with high estimation uncertainty ( Dhawale et al.,
019 ; Tan et al., 2016 ). Thus, an experiment where estimation uncer-
ainty and explicit strategies are manipulated independently may clarify
ow FMT response ultimately affects behavior. 
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