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we can create two counterfactual configurations where z is set to z̄ and z respec-
tively. The goal of the algorithms is to estimate from observational data the N ITE
quantities I(xi) = ITE(xi) = yz̄(xi)− yz(xi). The benchmarked algorithms are DIR1
(direct naive approach relying on a supervised learning fitting the dependency be-
tween the treatment variable (only) and the outcome), DIR2 (direct naive approach
relying on a supervised learning fitting the dependency between all the variables
(context and treatment variables) and the outcome), PROP (based on the computa-
tion of a propensity score) and ORACLE (having access to all the variables in the
counterfactual configuration and to the causal graph, relying on supervised learning
to fit the dependency between the parents of the outcome variable and the outcome).
Note that ORACLE corresponds to an idealized configuration where all the causal
information is available for the counterfactual prediction. The same learning algo-
rithm (Random Forest) have been used to fit all the dependencies. The size N of the
training sets is in the range [250,500]. The relative error results for three different
multivariate settings (10 < n < 20 , 20 ≤ n < 40 , 40 ≤ n < 60) are reported in 1,
respectively.

R 10 < n < 20 20 ≤ n < 40 40 ≤ n < 60
DIR 1 0.674 0.686 0.7
DIR 2 0.884 0.932 0.959
PROP 0.675 0.687 0.703
D2CF 0.656 0.669 0.688
ORACLE 0.582 0.599 0.619

Table 1 Relative error results (the lower the better)

The experimental results show the the D2CF is consistently able to outperform
the other data-driven algorithms in terms of better concordance and lower relative
error. The gap between D2CF and ORACLE is a measure of the lost information
due to the unavailability of the true graph. Such results on synthetic data, though
preliminary, are promising. Future work will focus on the assessment of D2CF in
real settings, notably uplift modelling in churn detection.
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A parsimonious parameterization of a
nonnegative correlation matrix

Carlo Cavicchia, Maurizio Vichi and Giorgia Zaccaria

Abstract Hierarchical relationships among manifest variables can be detected by
analyzing their correlation matrix. To pinpoint the hierarchy underlying a multidi-
mensional phenomenon, the Ultrametric Correlation Model (UCM) has been pro-
posed with the aim of reconstructing a nonnegative correlation matrix via an ultra-
metric one. In this paper, we illustrate the mathematical advantages that a simple
structure induced by the ultrametric property entails for the estimation of the UCM
parameters in a maximum likelihood framework.

Key words: Ultrametric correlation matrix, parameterization of a correlation ma-
trix, nonnegative correlation matrix, partitioned matrix

1 Introduction

Correlation matrices can be analyzed to detect hierarchical relationships among p
manifest variables (MVs). A general correlation matrix has p(p−1)/2 parameters,
each one representing the level of correlation between pairs of MVs. The model
proposed by [2], called Ultrametric Correlation Model (UCM), provides a parsimo-
nious representation of a nonnegative correlation matrix via an ultrametric one [3,
pp. 58-59], while maintaining the relevant relations among MVs. The model aims
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at identifying consistent disjoint groups of MVs, each one representing a latent con-
cept, and the hierarchical relationships among them. The non-negativity assumption
turns out to be realistic in real applications (e.g., the g factor [8], the mental abil-
ity tests [1]) since many multidimensional phenomena are described by a set of
variables that are concordant each other. By assuming that the variable space is par-
titioned into Q groups (Q ∈ {1, ..., p}), each one associated with a latent concept, a
(p× p) nonnegative correlation matrix is approximated in the UCM by

Ru = V(RB − IQ)V′+VRWV′ −diag
(
dg(VRWV′)

)
+ Ip, (1)

where V,RW,RB are the (p×Q) binary and row stochastic membership matrix, the
(Q×Q) within-concept consistency matrix and the (Q×Q) ultrametric between-
concept correlation matrix, respectively. Ru turns out to be a (2Q− 1)-ultrametric
matrix which induces a hierarchy [2, Lemma 1 and Theorem 1] and it is associated
with a parsimonious correlation structure. The ultrametric parameterization allows
a decrease of the number of parameters needed to reconstruct a nonnegative corre-
lation matrix. Indeed, Ru can have as few as 1 parameter if Q = 1, or as many as
p− 1 parameters if Q = p ≥ 2. Thus, the lower the number of the variable groups,
the simpler the structure of the ultrametric correlation matrix.

In this short paper, we start to inspect the mathematical advantages that a simpli-
fied structure induced by the ultrametric property entails in the maximum likelihood
estimation of the UCM under the assumption of Gaussian distributed data. We de-
rive the main elements of the likelihood function, i.e., the simplified determinant and
inverse of Ru, for some specific structures of the ultrametric correlation matrix. The
results presented herein will be used, generalized and integrated in the extended
paper along with the estimates of the UCM parameters in a maximum likelihood
framework.

2 Multivariate normal distributions with the ultrametric
correlation matrix

Let X = [X1, ...,Xp]′ be a p-dimensional random vector with X ∼ Np(µµµX ,ΣΣΣ X ) and
Y = diag(dg(ΣΣΣ X ))−

1
2 (X− µµµX ) ∼ Np(0,ΣΣΣY ), where dg(A) is the vector including

the elements of the diagonal of a square matrix A and ΣΣΣY = Ru is the (p× p) ul-
trametric correlation matrix in Eq. (1). The number of parameters of Ru to be esti-
mated depends on Q ≤ p. Under the i.i.d. assumption, the log-likelihood function
for the data y = [y1, ...,yn]′, obtained from the aforementioned transformation of
x = [x1, ...,xn]′, is

!(Ru;y) =−np
2

log(2π)− n
2

log |Ru|−
n
2

tr(RR−1
u ), (2)

where R is the observed nonnegative correlation matrix.

A parsimonious parameterization of a nonnegative correlation matrix 3

Table 1 Ultrametric correlation structures.

Ultrametric Correlation Matrix # parameters Description

1-ultrametric correlation matrix 1 Constant correlation matrix1

3-ultrametric correlation matrix 3+ p 2-block oblique correlation matrix
3-ultrametric correlation matrix 2+ p 2-block orthogonal correlation matrix
with RB = I2

(2Q−1)-ultrametric correlation matrix 2Q−1+ p Q-block oblique correlation matrix2

(2Q−1)-ultrametric correlation matrix Q+ p Q-block orthogonal correlation matrix2

with RB = IQ
(2Q−1)-ultrametric correlation matrix Q+ p Q-block oblique correlation matrix with
with RW = λ IQ constant correlation within blocks2

(2p−1)-ultrametric correlation matrix p−1 p-block correlation matrix3

1 V = 1p.
2 It is assumed Q < p.
3 V = Ip.

Possible structures of the ultrametric correlation matrix Ru are described in Table
1. They can be grouped in three main classes: 1-ultrametric correlation matrices, 3-
ultrametric correlation matrices and (2Q− 1)-ultrametric correlation matrices. The
first one corresponds to an equicorrelation matrix in which a constant correlation
occurs among MVs, i.e., Ru = λ (1p1′p − Ip)+ Ip, where 1p is the p-dimensional
vector of unitary elements and Ip is the identity matrix of order p. The second class
contains two possible cases: (i) two-block oblique correlation matrix, where two
groups of MVs have correlations within blocks equal to λ1 and λ2, respectively,
and correlation between blocks equal to λ3, i.e., Eq. (1) with RW = diag([λ1,λ2]′)
and RB = λ3(121′2 − I2)+ I2; (ii) two-block orthogonal correlation matrix, where
two groups of MVs have correlations within blocks equal to λ1 and λ2, respec-
tively, and correlation among blocks equal to zero (λ3 = 0), i.e., Eq. (1) with
RW = diag([λ1,λ2]′) and RB = I2. The third class contains four possible cases: (i)
Q-block oblique correlation matrix, in which Q groups of MVs have correlations
within blocks equal to the diagonal elements of RW and correlations between pairs
of blocks equal to the off-diagonal elements of RB, i.e. Eq. (1); (ii) Q-block orthog-
onal correlation matrix, in which Q groups of MVs have correlations within blocks
equal to the diagonal elements of RW and zero correlation among them, i.e., Eq.
(1) with RB = IQ; (iii) Q-block oblique correlation matrix, with constant correlation
λ within blocks and correlations between pairs of blocks equal to the off-diagonal
elements of RB, i.e., Eq. (1) with RW = λ IQ; (iv) p-block correlation matrix, where
Q = p, i.e., each group is composed of one MV, with correlations between pairs of
MVs equal to the off-diagonal elements of RB, i.e., Eq. (1) with RW = Ip.

In this section, we focus on three structures of Ru shown in Table 1 - the 1-, 3-
and (2Q− 1)-ultrametric correlation matrix - illustrating the simplification of the
main elements of Eq. (2) under the aforementioned parameterization of a nonneg-
ative correlation matrix. For further details on the partitioned matrices which the
following results are based on, see [4, 5].
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2.1 Case 1: 1-ultrametric correlation matrix

If we assume that Q = 1, the 1-ultrametric correlation matrix can be written as
Ru = (1−λ )Ip +λ1p1′p, with 0 ≤ λ < 1. Thus, the determinant of Ru is

det(Ru) = [1+λ (p−1)](1−λ )p−1 (3)

and its inverse - [3, p. 61] and [7] - is

R−1
u =

1
1−λ

(
Ip −

λ
1+λ (p−1)

1p1′p
)
. (4)

2.2 Case 2: 3-ultrametric correlation matrix

If we assume that Q = 2, the 3-ultrametric correlation matrix can be written as Ru =
λ3V(121′2−I2)V′+VRWV′−diag

(
dg(VRWV′)

)
+Ip, where RW = diag([λ1,λ2]′),

λ1,λ2,λ3 are the correlations within the first, the second group and between groups,
respectively, with 0 ≤ λ3 ≤ λs < 1, s = 1,2. V is assumed to have contiguous rows
representing MVs which belong to the same group after an appropriate row permu-
tation. The 3-ultrametric correlation matrix can be rewritten as

Ru =

[
A B
B′ D

]
,

where A= (1−λ1)Ip1
+λ11p1

1′p1
, D= (1−λ2)Ip2 +λ21p2

1′p2
, B= λ3(1p1

1′p2
) and

p1, p2 represent the number of MVs in the first and the second group, respectively,
s.t. p1+ p2 = p. It is worth noticing that the matrices A and D are 1-ultrametric (see
Section 2.1). It follows that the determinant of Ru is

det(Ru) = det(D)det(A−BD−1B′) = [1+λ2(p2 −1)] (1−λ2)p2−1

·
{[

λ1 −
p2λ 2

3
1−λ2

(
1− p2λ2

1+λ2(p2−1)

)]
p1 +(1−λ1)

}
(1−λ1)p1−1 (5)

and the inverse of Ru is

R−1
u =

[
A B
B′ D

]−1
=

[
K N
N′ M

]
, (6)

where K=(A−BD−1B′)−1 =
[
(1−λ1)Ip1

+
[
λ1 −

p2λ 2
3

1−λ2

(
1− p2λ2

1+λ2(p2−1)

)]
1p1

1′p1

]−1
,

N =−KBD−1 and M = D−1 +D−1B′KBD−1, D and (A−BD−1B′) nonsingular.
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2.3 Case 3: (2Q-1)-ultrametric correlation matrix with zero
correlation among blocks of variables

If we assume that Q = 2 and λ3 = 0, i.e., the correlation between the variable
groups is equal to zero, Ru = VRWV′ − diag

(
dg(VRWV′)

)
+ Ip, where RW =

diag([λ1,λ2]′). Then, the determinant of Ru is

det(Ru) = [1+λ1(p1 −1)] [1+λ2(p2 −1)] (1−λ1)
p1−1(1−λ2)

p2−1 (7)

and its inverse is

R−1
u =

[
A−1 0p1,p2

0p2,p1 D−1

]

=




1

1−λ1

(
Ip1

− λ1
1+λ1(p1−1)1p1

1′p1

)
0p1,p2

0p2,p1
1

1−λ2

(
Ip2

− λ2
1+λ2(p2−1)1p2

1′p2

)



 . (8)

In order to generalize the latter case to Q groups with no correlation among them,
Ru can be rewritten as a block diagonal matrix

Ru =





(1−λ1)Ip1
+λ11p1

1′p1
0p1,p2 ... 0p1,pQ

0p2,p1 (1−λ2)Ip2
+λ21p2

1′p2
... ...

... ... ... ...
0pQ,p1 ... ... (1−λQ)IpQ

+λQ1pQ
1′pQ



 ,

with p1 + p2 + ...+ pQ = p. Thus,

det(Ru) = [1+λ1(p1 −1)] · [1+λ2(p2 −1)] · ... · [1+λQ(pQ −1)] · (1−λ1)
p1−1

· (1−λ2)
p2−1 · ... · (1−λQ)

pQ−1 (9)

and

R−1
u =





1
1−λ1

(
Ip1

− λ1
1+λ1(p1−1)1p1

1′p1

)
... 0p1,pQ

... ... ...

0pQ,p1 ... 1
1−λQ

(
IpQ

− λQ
1+λQ(pQ−1)1pQ

1′pQ

)



 (10)

which is a block diagonal matrix, where each block is the inverse of a 1-ultrametric
correlation matrix (see Section 2.1).

3 Conclusions and Further Developments

In this paper, a parsimonious parameterization of a nonnegative correlation matrix
via an ultrametric correlation one is proposed. Moreover, we inspect the advantages
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that a simple structure, induced by an ultrametric correlation matrix, entails in the
maximum likelihood estimation of the Ultrametric Correlation Model parameters,
assuming the normality of the data. The parameterization is studied to derive, in
closed form, the equation of the determinant and inverse of an ultrametric correla-
tion matrix in three cases, i.e., 1-ultrametric correlation matrix, 3-ultrametric corre-
lation matrix and (2Q−1)-ultrametric correlation matrix with no correlation among
groups of MVs. These elements are crucial in the maximum likelihood estimation
of the Ultrametric Correlation Model parameters. The ultrametric correlation matrix
allows a decrease of the number of parameters to be estimated compared to a general
correlation matrix with p(p−1)/2 parameters. The generalization of the results herein
to a (2Q−1)-ultrametric correlation matrix for estimating the Ultrametric Correla-
tion Model in a maximum likelihood framework will be illustrated in an extended
paper.

Our goal for future studies is also to introduce a test for correlation in order
to pinpoint non-significant correlations in the ultrametric matrix; this can further
reduce the number of parameters in the model. Furthermore, the ultrametric corre-
lation matrix in Eq. (1) can be used to parameterize a nonnegative correlation matrix
in Gaussian mixture models [6] when a multidimensional phenomenon is studied on
observations coming from G <+∞ sub-populations with a Gaussian distribution.
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In-sample and cross-validated likelihood-type
criteria for clustering selection

Luca Coraggio and Pietro Coretto

Abstract The selection of an optimal clustering solution is a long-standing prob-
lem. In this study, we focus on model-based clustering, where this problem amounts
to choose the architecture of the mixture distribution. Decisions to be made per-
tain to: cluster prototype distribution; number of mixture components; (optionally)
restrictions on the clusters’ geometry. Typical solutions to aid these decisions use
penalized model selection criteria, based on the observed likelihood function. We
compare these techniques, which we refer to as in-sample methods, with cross-
validation alternatives. The latter is rather popular in many data-driven applications,
but is less explored for clustering problems. We analyse both classical methods such
as BIC, AIC, AIC3 and ICL, and cross-validation schemes, defining the risk in terms
of minus the log-likelihood function. The analysis makes use of the popular Iris
dataset. We find that less explored alternatives like AIC3 and cross-validation meth-
ods yields better performances and deserve further study.

Key words: model based clustering, model selection, penalized likelihood, cross-
validation.

1 Introduction

In this study we compare different criteria to select an optimal clustering solution
among different candidate ones, in model-based clustering. Other studies investi-
gated indexes used for model selection in this setting: [6, 13, 9] compare information
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