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Inequities in waiting times for deceased donor organ transplantation have received considerable atten- 

tion in the last three decades and have motivated allocation policy reforms. This holds particularly true 

for kidney transplantation in the United States, where more than 90,0 0 0 patients are wait listed and 

average waiting times vary considerably among patients from different blood types and ethnic groups. 

This research presents a novel approach to formally model, analyze, and optimize equity of transplant 

waiting times and probabilities using queuing models, network flows, and Rawls’ Theory of Justice. The 

presented formal models address inequities resulting from blood type incompatibilities, which are inter- 

related to ethnic differences in patient and donor rates. Moreover, we present results of an application 

to the deceased donor kidney wait lists in the United States. The findings indicate that the allocation 

policies currently practiced red can virtually resolve blood type related inequities in average waiting time 

and transplant probability. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Chronic kidney disease (CKD) is an increasingly prevalent dis- 

ase, which forms the 11th most common cause of death globally, 

ccounting for 2.53 percent of death worldwide, 2.19 percent in 

urope and 3.63 percent of death in the United States ( Institute 

or Health Metrics & Evaluation, 2019 ). The ultimate phase of CKD, 

nd Stage Renal Disease (ESRD), is most commonly treated by 

ialysis. Compared to dialysis, the alternative of transplantation is 

iewed to be strictly preferable as it offers longer life expectancy, 

etter quality of life, and lower average treatment cost ( Axelrod 

t al., 2018; Haller, Gutjahr, Kramar, Harnoncourt, & Oberbauer, 

011; Sánchez-Escuredo et al., 2015; Wolfe, Roys, & Merion, 2010 ). 

ransplantation is considered to be life-saving ( Steering Committee 

f the Istanbul Summit, 2008 ). A kidney for transplant can be re- 

rieved from a living donor or from a deceased donor. In developed 

ountries, deceased donor transplantation (DTx) is typically more 
∗ Corresponding author at: Erasmus School of Health Policy and Manage- 
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ands. 
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revalent than living donor transplantation (LTx). While slightly 

ess cost-effective ( Hart et al., 2017b; MacNeill, Casula, Shaw, & 

astledine, 2016; Wolfe et al., 2010 ), DTx has the advantage of 

voiding health risks to donors 

Globally, the number of patients treated for ESRD amounted to 

.5 million with a comparable number of patients lacking access 

o treatment in 2017 ( Bibkov et al., 2020 ). The treated ESRD preva-

ence in the United States amounted to 726,331 patients by De- 

ember 31, 2016 where the wait list for transplantation peaked at 

 number of 99,120 subscribed patients in 2014 ( Hart et al., 2017a; 

nited States Renal Data System, 2018 ). Since then, a modest de- 

line has set in and by the end of 2017 92,685 patients were wait 

isted. This decrease occurred despite the average yearly number of 

ewly arriving patient of 30,816 being more than double the aver- 

ge yearly number of 12,862 transplants over the years 2014–2017 

 Hart et al., 2017a; 2019 ). Over the same period, many patients left 

he wait list without DTx. Some patients found alternative treat- 

ents such as LTx (5.5 percent). Sadly however, 9.1 percent of pa- 

ients had become too sick to transplant or died while on the wait 

ist. Less than half of the patients wait listed before 2011 had left 

he wait list after receiving a DTx by 2014 ( Hart et al., 2017a ). 
 under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Organ transplant wait lists can be modeled as single server 

/M/ 1 queues with patient arrival rate λ and organ arrival rate 

( Zenios, 1999 ). Unfortunately organ transplant wait lists often 

ave a utilization rate of ρ = 

λ
μ >> 1 , as is illustrated by the case

f the kidney transplant wait list in the United States. The queue 

ength nevertheless stabilizes because of patients leaving the queue 

ithout receiving a DTx. Such behaviors have been modeled as 

bandonment or reneging in the queuing literature ( Mandelbaum, 

assey, Reiman, Stolyar, & Rider, 2002; Wang, Li, & Jiang, 2010 ) 

nd have been studied in the context of organ allocation ( Drekic, 

tanford, Woolford, & McAlister, 2015; Stanford, Lee, Chandok, & 

cAlister, 2014; Zenios, 1999; Zenios, Chertow, & Wein, 20 0 0 ) as 

ddressed in more detail below. Fathi & Khakifirooz (2019) discuss 

 literature selection on queuing models for kidney transplantation 

nd kidney-related operations research in general. 

The persistent relative scarcity of organ supply has brought 

long challenging allocation problems and inequalities in waiting 

imes and transplant probabilities ( Melanson et al., 2017 ). Eth- 

ic inequalities and inequities have particularly received attention 

nd various policy improvements have been proposed to resolve 

hem ( Lee, Kanellis, & Mulley, 2019 ). Our research aim is to model

xisting policies and minimize the resulting ethnic inequities in 

Tx waiting times and probabilities. We model inequity following 

awls’ Theory of Justice ( Rawls, 2009 ) and first turn to address- 

ng underlying blood type related inequities, which have received 

ttention since the 80s ( Port, Held, Wolfe, Garcia, & Rocher, 1991; 

candling & Norman, 2010; Williams et al., 2015 ). 

With the objective to minimize inequity among sub popula- 

ions, our study presents models and methods which consider the 

llocation of organs per blood type to patient sub populations 

hich are also distinguished per blood type. As will become clear 

n Section 2 , it will not be necessary to specify allocation decisions 

t the individual level. Hence, the models disregard various patient 

haracteristics which are important in practice for organ allocation 

t the patient level. Specifically, HLA compatibility will not be con- 

idered. We now briefly review related literature on allocation at 

blood type) sub population level. 

Sönmez & Unver (2015) consider equity of blood type compat- 

ble DTx together with LTx and Kidney Exchange Programs (KEPs). 

he renege rates in our work form a simplified approach to model- 

ng alternatives to DTx, such as LTx and KEPs. Focusing more exclu- 

ively on DTx, we extend the analysis from inequities among blood 

ypes to racial inequities. We explicitly and formally distinguish in- 

quality and inequity based on the Theory of Justice ( Rawls, 2009 ). 

nstead of using Continuum Fluid models for the wait lists ( Sönmez 

 Unver, 2015 ), our analysis of patient and donor arrivals builds 

n previously developed queuing models for organ transplanta- 

ion ( Drekic et al., 2015; Stanford et al., 2014; Zenios, 1999; Zenios 

t al., 20 0 0 ). Wait list mortality is therefore captured by reneging

nstead of more explicit survival functions. Lastly, our models ap- 

ear the first to include blood type incompatible DTx as increas- 

ngly practiced. 

Section 2 reviews related literature and elaborates a network 

ow model for kidney allocation. Sections 3 develops a network 

ow algorithm minimizing inequity across blood type sub popula- 

ions, which is shown to also minimize equity among ethnic sub 

opulations in Section 4 . All proofs are provided in the Appendix. 

ection 5 presents an application to kidney allocation in the United 

tates. Further reflections are provided in Section 6 . 

. Modelling and theoretical background 

.1. Allocation, blood types and ethnicity 

As our research considers waiting time differences between pa- 

ient sub populations, we model allocation policies at the level 
978 
f sub populations. The allocation of specific organs to individual 

onors is therefore beyond the scope (see also Drekic et al., 2015; 

tanford et al., 2014; Zenios, 1999; Zenios et al., 20 0 0 ). We first

nvestigate two traditional policies: identical allocation and compat- 

ble allocation . Identical allocation, as depicted in Fig. 1 a, aims to 

void inequity by only allowing transplantations from donors to 

atients of the same type ( Lee et al., 2019 ). 

In comparison to identical allocation, the policy of compati- 

le allocation additionally allows transplantations to patients with 

lood types that are compatible with the blood type of a donor. 

ig. 1 b presents the corresponding (and well known) ABO blood 

ype compatibility graph. It reflects that type AB donors are only 

ompatible with type identical AB patients. The arc emanating 

rom the type A (B) node and incident to the type AB node re- 

ects that type A (B) donors are compatible with and can there- 

ore donate to type AB patients as well as to type identical A (B) 

atients. The type O node has three outgoing arcs which represent 

hat type O donors are compatible with and can donate to patients 

f all types. Blood type (in)compatibility has been a main concern 

s cause of waiting time inequalities and inequities in larger scale 

ransplant programs, ( Port et al., 1991; Scandling & Norman, 2010; 

illiams et al., 2015 ). 

A third policy considered captures the allocation policy as cur- 

ently implemented in the kidney allocation system (KAS) of UNOS 

n the United States, in so far as related to blood types ( Fig. 1 c).

his KAS policy allows for identical allocation and for allocation of 

 organs to AB patients. Moreover, since 2014, it allows for alloca- 

ion of A sub type A 2 organs to B patients and AB sub type A 2 B

rgans to B patients since 2014 ( Bryan, Cherikh, & Sesok-Pizzini, 

016 ). 

Different policies may allocate organs differently and thus im- 

act transplant waiting times and probabilities per blood type dif- 

erently. As blood type distributions differ among ethnic groups, 

uch policies may also cause waiting time and transplant probabil- 

ty differences among ethnic groups. Conversely - and closely re- 

ated - the differences in disease prevalence and donation rates 

mong ethnic groups importantly cause patient and organ ar- 

ival rate differences per blood type and hence per ethnic group. 

ig. 2 a and b illustrates such differences, based on patient level 

NOS/OPTN data over the years 2014–2017. 

DTx programs in which patients subscribe to a deceased donor 

idney transplant wait list have been modeled using queuing the- 

ry. Zenios (1999) develops queuing models with reneging for the 

ase where ρ = 

λ
μ > 1 which consider multiple patient and donor 

lasses, with the objective to equalize waiting times and trans- 

lant probabilities. ABO blood types and ethnicities are not specif- 

cally considered in these generic queuing models. Zenios et al. 

20 0 0) model a problem which is closely related to ours, optimiz- 

ng a multicriteria objective function that includes effectiveness (in 

uality-adjusted life years) as well as equality and equity in terms 

f transplant waiting time and transplant probability. They model 

he problem as an optimal control problem and present heuris- 

ics based on the approximate analysis of the control problem. 

sing simulation they show improvements over practiced policies 

re attainable. Stanford et al. (2014) present queuing models for 

he organ allocation problem and show that a restricted form of 

ompatible allocation can resolve inequalities resulting from iden- 

ical allocation in the case of stable queues, i.e. ρ = 

λ
μ < 1 . Drekic

t al. (2015) present priority queuing models with reneging for 

BO identical and ABO compatible allocation of livers from de- 

eased donors, in which priority may change with patient health 

ver time. 

With the exception of Zenios et al. (20 0 0) the aforementioned 

ork exclusively focuses on equality in waiting times and trans- 

lant probabilities. Sönmez & Unver (2015) study minimization of 

Tx waiting time inequalities in combination with living donor 
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Fig. 1. Overview of different allocation policies. 

Fig. 2. Realized average DTx waiting times for kidney transplantation in the USA, 2014–2017, original data source: UNOS/OPTN. 
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ransplant treatments. With Zenios (1999) they point out that 

quality may not be attainable in practice. For such cases, we for- 

ally define and pursue how instead to minimize inequity , based 

n the Theory of Justice Rawls (2009) . Using a network flow for- 

ulation that is closely related to the parametric network flow 

ormulation of Sönmez & Unver (2015) we present necessary and 

ufficient conditions for equal waiting times and transplant prob- 

bilities for patients from different blood types in case of Poisson 

atient and organ arrivals. We subsequently develop an algorithm 

o minimize inequity when these conditions are violated. These 

odels and methods are extended to address ethnic inequality and 

nequity. The algorithmic approach is closely related to earlier re- 

ursive algorithmic approaches to equitable allocation ( Kominers, 

athak, Sönmez, & Unver, 2020; Luss, 1999; Megiddo, 1974; Sön- 

ez & Unver, 2015 ). 

.2. Equity in transplant waiting times 

A health inequality is an observable health difference between 

ubgroups within a population ( World Health Organization, 2017 ). 

ealth equity refers to the absence of health inequalities in so 

ar as avoidable, unnecessary, unfair and unjust ( Whitehead, 1992 ). 

nstead of focusing on health status directly, our study considers 

aiting time and transplant probability, which are important de- 

erminants of health for ESRD patients. 

Waiting time inequalities between sub populations may arise as 

 result of differences in the relative volumes of organs allocated. 

uch differences can be equalized by lowering the volumes for all 

ub populations that have shorter than maximum waiting time. 

n extreme allocation policy that achieves equality is the policy 

n which none of the organs is allocated. This extreme example il- 

ustrates the inaptness of simply minimizing inequalities. We adopt 

he view that it is unjust to leave any of the available organs un- 

llocated and henceforth require that all available organs are allo- 

ated. Such allocations will be called maximal . If maximality and 

quality of waiting times cannot be simultaneously achieved, then 
979 
nequalities are considered unavoidable and necessary. Within the 

et of maximal allocations, we pursue equity by avoiding other un- 

ecessary, unfair and unjust inequalities. 

We further formalize (in)equity based on Rawls’ Theory of Jus- 

ice ( Rawls, 2009 ). This theory forms an anchor in the ongoing de- 

ate about definitions of equity, fairness and justice of allocation 

n health(care) ( Peter, 2001 ). Applied to health of populations, the 

ifference principle of the Theory of Justice implies to maximize 

he minimum health achieved over all sub populations considered. 

ranslated to DTx waiting time, this principle entails to minimize 

he maximum waiting time and to maximize the minimum trans- 

lant probability over all patient populations considered. These 

easures will be defined more exactly below. The Theory of Justice 

an be interpreted to subsequently allow inequalities as follows. 

rovided that the difference principle is adhered to, inequalities 

hat result from improving waiting time for some sub populations 

re fair and just if they recursively minimize the maximum wait- 

ng times for the remaining patient sub populations. Likewise, dif- 

erences in transplant probabilities are fair and just if they recur- 

ively maximize minimum transplant probabilities. Hence, in or- 

er to minimize inequity, we set out to find maximal allocations 

hat recursively minimize the maximum waiting time and maxi- 

ize minimum transplant probability. 

These equity definitions resemble the objectives defined in 

revious research on fair allocation of scarce resources. Megiddo 

1974) considers the problem of seeking a fair maximum network 

ow in a network with multiple sources and sinks. He develops 

n optimal algorithm which relies on ordering the flows of the 

emand nodes (followed by the flows of the supply nodes) by 

ncreasing magnitude. Luss (1999, 2012) also develops such lexi- 

ographic algorithms to address more general resource allocation 

roblems with the objective to maximize equity. Rather than an- 

lyzing the problem at hand on the basis of these general ap- 

roaches, we present tailored models and methods which are more 

traightforward and insightful. 



J. van de Klundert, L. van der Hagen and A. Markus European Journal of Operational Research 297 (2022) 977–985 

2

m

d

Z

t

t

t

t

i

t

t

t

p

t

t  

i

w

i

l

b

b

 

t

e

r

t

L

T

t

λ
λ

l

fi

t

p

v

f

o

T

i

b

m

t

F

u

t

a

t

a

t

t

H

2

t

Fig. 3. Allocation graph G . 
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.3. Queuing theory foundations of waiting times 

M/M/ 1 queuing models have formed the most common for- 

al approach to optimizing allocation of organs to patients for 

eceased donation (see Drekic et al., 2015; Stanford et al., 2014; 

enios, 1999; Zenios et al., 20 0 0 and the references therein). The 

ime between the arrival of consecutive organs forms the service 

ime in these models. Hence, for a patient receiving a transplant, 

he actual time until transplant is the waiting time plus the service 

ime, i.e. the sojourn time. In practice this (expected) service time 

s often much smaller (hours or days) than the preceding time in 

he queue (years), as illustrated in Section 5 . Hence the waiting 

ime until service is commonly considered for minimization. 

For a generic queue, the expected number of newly arriving pa- 

ients per time period is denoted by λ while μ denotes the ex- 

ected number of donor organs per time period available to service 

he patients in the queue. We consider systems where the utiliza- 

ion rate ρ = 

λ

μ
> 1 yet in which the queue length does not grow

ndefinitely because patients renege, i.e patients leave the queue 

ithout DTx ( Zenios, 1999 ). The renege probability per time unit 

s assumed to be constant over time and independent of queue 

ength. Hence the time until reneging follows an exponential distri- 

ution. The invariant renege probability per time period is denoted 

y θ . 

Now, let L (t) be the length of the wait list in time period t (for

 ∈ Z > 0 ). Under the realistic assumptions that the queue is never 

mpty and that patient arrivals continue to exceed donor organ ar- 

ivals ( ρ ≥ 1 ), L (t) then transitions in expectation from time period 

to time period t + 1 by 

 (t + 1) = (1 − θ ) × L (t) + λ − μ. 

hus, in case ρ ≥ 1 , a stable equilibrium can still be obtained for 

he queue length L ∗ = 

λ−μ
θ

due to the reneging. In this equilibrium, 

patients enter the waiting list, μ patients receive a DTx, and 

− μ patients renege per time period. For the equilibrium queue 

ength of λ−μ
θ

, the equilibrium time in the queue is 

λ − μ

θ
× 1 

λ
= 

1 

θ

(
1 − 1 

ρ

)
. 

Zenios (1999) proves that, as the queue length approaches in- 

nity, the asymptotic stationary expected waiting time converges 

o λ−μ
θ

× 1 
λ

and the asymptotic stationary expected transplant 

robabilities converge to μ
λ

. As our problem is motivated by the 

ery long queue lengths encountered in practice (up to 10 0.0 0 0 

or kidney allocation in the USA), we adopt these two measures as 

ur objectives. For compactness, we use the shorter wait time (resp. 

x probability) to refer to asymptotic stationary expected wait- 

ng time (resp. asymptotic stationary expected transplant proba- 

ilities) in the remainder. Thus our objectives are to (recursively) 

inimize the maximum wait time and to (recursively) maximize 

he minimum Tx probability. Zenios (1999) assumes a First Come 

irst Served (FCFS) policy for the allocation of organs to individ- 

al patients within a blood type sub population. We may note 

hat for the assumed constant renege rate θ and the wait time 

nd Tx probability measures, patients of a same blood type are in- 

erchangeable and the results apply regardless of individual level 

llocation decisions among patients of a same blood type. Hence, 

he results remain valid if the order in which type identical pa- 

ients receive allocated organs deviates from FCFS for reasons of 

LA compatibility or otherwise. 

.4. Donor allocation as network flow 

DTx allocation policies determine how many organs of each 

ype to allocate to patients of each compatible type. The total num- 
980 
er of organs allocated to each type then forms the organ arrival 

ates for the corresponding patients (as further explained below). 

ogether with the patient arrival rates, these allocated organ ar- 

ival rates determine the wait times and Tx probabilities. We now 

how how to model the arising allocation problem as a network 

ow problem (see Fig. 3 ). 

The red arcs in the Allocation Graph G in Fig. 3 correspond to 

he arcs in graph ( Fig. 1 b) for compatible allocation. ( Section 5 cov-

rs the Allocation graph for KAS). They connect the organ supply 

odes of each type to the patient demand nodes of the compatible 

ypes. For each blood type x ∈ X , available donor organs flow over 

he green arcs g x emanating from a fictitious source to the type x 

upply nodes. For all x ∈ X , the capacity of arc g x is set at μx , the

umber of donor organs of type x available per time unit. For any 

easible flow f in G , let f 
′ 
x represent the corresponding flow on arc 

 x , x ∈ X . Maximal allocations satisfy f 
′ 
x = μx . 

The red arcs have infinite capacity, modeling that for red arc 

 xy any organ of type x ∈ X that becomes available can be utilized 

or transplantation to patients of a compatible type y ∈ X . Because 

f flow conservation it must hold for any x ∈ X that 
∑ 

y ∈ X f xy = f 
′ 
x ,

ith f xy the flow on r xy . 

For each type y ∈ X , there is a blue arc b y for the flow of all

rgans allocated to patients of type y per time period, denoted by 

f y . Flow conservation now implies that for each y ∈ X , 
∑ 

x ∈ X f xy =
f y . For any flow f and for all y ∈ X , the f y represent Poisson organ

rrivals to patients of type y in case for all x ∈ X the organs of type

 are randomly allocated over the patients type z ∈ X compatible 

ith x with probability f xz 

f 
′ 
x 

. 

The values of λy , for y ∈ X function as capacity limits for the 

rc flows f y , as (in expectation) we cannot transplant more organs 

o type y ∈ X than the number of patients arriving. The allocation 

roblem then becomes to find a maximal feasible flow f in G that 

esults in most equitable wait times and Tx probabilities. 

. Equity and blood types 

The Max-Flow Min-Cut theorem specifies that the value of a 

aximum flow in G is equal to the value of a minimum cut in G

 Ford & Fulkerson, 2009 ). A cut C = (S, T ) is defined as a partition

f the vertices of G into two sets S and T , where S contains the 

ource and T the sink. The cut-set is defined as the set of outgoing 

rcs from S to T . The value of a cut equals the sum of the capacities

f the arcs included in the cut-set. 

As the red arcs have infinite capacity, they will not be included 

n any minimum cut set. Any minimum cut C ∗ therefore necessar- 

ly consists of green and blue arcs. Among all cut sets of blue and 

reen arcs disconnecting the source from the sink, a minimum cut 

s characterized by the blood types in the sets S ∗g and S ∗
b 

that mini-
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izing 
∑ 

x ∈ S g μx + 

∑ 

x ∈ S b λx . Here, x ∈ S ∗g implicates that g x is in the 

ut-set and x ∈ S ∗
b 

means that b x is in the cut-set. 

In pursuit of equity, the remainder of the analysis will not fo- 

us on the flows and cuts in G but in adjusted version of G as fol-

ows. For any feasible flow f in G , let f x represent the correspond- 

ng flow on arc b x , x ∈ X . Then, for each blood type x , f x implies a

ait time for the patients receiving a DTx of 

1 

θ

(
1 − f x 

λx 

)
. 

otice that by definition of the arc capacities, f x ≤ λx . It then fol- 

ows that f yields equal wait times if there exists a rational num- 

er ρ= ≥ 1 such that λx 
f x 

= ρ= for each x ∈ X . 

The requirement to allocate all available organs translates to 

nding maximal flows f satisfying 
∑ 

x ∈ X f x = 

∑ 

x ∈ X μx . We there- 

ore define G 

= to be identical to G except for adjusting the capac- 

ties λx of the blue arcs b x , x ∈ X to c = x = λx ×
∑ 

x ∈ X μx ∑ 

x ∈ X λx 
. This adjust-

ent entails that the total capacity of the blue arcs 
∑ 

x ∈ X c = x equals 
 

x ∈ X μx , the total capacity of the green arcs, while the c = x are pro- 

ortional to λx for x ∈ X . With graph G 

= at hand, we can determine

hether a maximal allocation with equal wait times for all blood 

ypes exists: 

heorem 1. A maximal allocation of donor organs to patients result- 

ng in equal wait times exists if and only if a feasible flow f of value
 

x ∈ X μx exists in G 

= . 

Theorem 1 implies that blood type identical allocation yields 

qual and equitable wait times among blood types in case donor 

rgan arrival rates and patient arrival rates are proportional to the 

lood type distributions in a population. Hence, the complexity of 

nding equitable allocations among sub populations of different 

lood types arises from disproportional arrival rates. 

It is not hard to verify that in case a flow of value 
∑ 

x ∈ X μx 

xists in G 

= , both the set of green arcs g x , x ∈ X and the set of blue

rcs b x , x ∈ X form a cut-set. We now turn to the case where the

aximum flow in G 

= has value less than 

∑ 

x ∈ X μx . 

heorem 2. If and only if for every minimum cut C ∗ in G 

= it holds

hat S ∗g � = X and S ∗
b 

� = X, then 1) O ∈ S ∗g , 2) AB ∈ S ∗
b 
, and 3) the maxi-

um flow has value less than 
∑ 

x ∈ X μx . 

Thus, if the maximum flow f has value strictly less than 

 

x ∈ X μx , the cut partitions G 

= into two components, one of which 

ontains the source and the other containing the sink. The com- 

onent containing the source is connected to all supply nodes of 

ypes x ∈ X \ S ∗g and subsequently via the red arcs to compatible

emand nodes. It contains the supply and demand nodes of AB and 

ill therefore be referred to as C AB . Likewise, the other component 

ymmetrically consists of the sink and the demand nodes of type 

 ∈ X \ S ∗
b 
, together with the supply nodes of blood types compat-

ble with these demand nodes. It necessarily contains the demand 

nd supply nodes for type O and will therefore be referred to as C O .

or ease of notation, we define a cut C = (C O , C AB ) by blood types,

ather than by vertices. This means that AB ∈ C ∗
AB 

and O ∈ C ∗
O 

for

inimum cut C ∗ = (C ∗O , C 
∗
AB 

) . 

Fig. 4 shows an example of a minimum cut in case the max- 

mum flow is strictly smaller than 

∑ 

x ∈ X μx . In this example the 

ut-set equals { g O , g A , b B , b AB } , meaning that S ∗g = { O, A } and S ∗
b 

=
 B, AB } . The cut is then defined by C ∗ = (C ∗

O 
, C ∗

AB 
) with C ∗

O 
= { O, A }

nd C ∗
AB 

= { B, AB } . 
Because C ∗ is a minimum cut, it must hold that 

∑ 

 ∈ C ∗
O 

μx ≤
∑ 

x ∈ C ∗
O 

c = x = 

∑ 

x ∈ C ∗
O 

(
λx ×

∑ 

x ∈ C ∗
O 
μx ∑ 

x ∈ C ∗
O 
λx 

)

981 
nd that conversely, 

∑ 

 ∈ C ∗
AB 

μx ≥
∑ 

x ∈ C ∗
AB 

c = x = 

∑ 

x ∈ C ∗
AB 

(
λx ×

∑ 

x ∈ C ∗
AB 

μx ∑ 

x ∈ C ∗
AB 

λx 

)
. 

s we are now considering the case for which the value of the 

inimum cut is strictly less than 

∑ 

x ∈ X μx , at least one of these 

nequalities is strict and hence at least one of the types in C ∗
O 

must

ave longer wait times than at least one of the types in C ∗
AB 

for any

aximum allocation. 

While we have thus established that maximality and equality 

ay not be jointly attainable, one can still pursue equity for max- 

mal allocations following Rawls’ recursive minimax principles. In 

he remainder of this section we will use the results established 

o far to develop a recursive algorithm to obtain an equitable so- 

ution corresponding to these principles. 

Let G O be the subgraph of G induced by the types in C ∗O . As

bove, let G 

= 
O 

be equal to G O , except for adjusting the capacities λx 

f the blue arcs b x , x ∈ C ∗
O 

to λx ×
∑ 

x ∈ C ∗
O 

μx ∑ 

x ∈ C ∗
O 

λx 
. Similarly to S ∗g and S ∗

b 
,

e let S ∗
Og 

and S ∗
Ob 

define the cut-set corresponding to a minimum 

ut in G 

= 
O . 

heorem 3. If for every minimum cut in G 

= 
O 

it holds that S ∗
Og 

� = X

nd S ∗
Ob 

� = X, then (1) the type O demand and supply nodes are in the

omponent which also contains the sink and (2) the maximum flow 

as value less than 
∑ 

x ∈ C ∗
O 
μx . 

If the maximum flow in G 

= 
O has value less than 

∑ 

x ∈ C ∗
O 
μx , a 

inimum cut partitions it into two components, one of which con- 

ains the demand and supply nodes for blood type O . This compo- 

ent will be referred to as G L and the other component as G R . The

ame will recursively apply to G L if this component contains nodes 

f blood type O and one other blood type A or B . 

Likewise, let us symmetrically consider G AB , the subgraph of G 

nduced by the types x ∈ C ∗
AB 

. As above, let G 

= 
AB 

be equal to G AB , ex-

ept for adjusting the capacities λx of the blue arcs b x , x ∈ C ∗
AB 

to

x ×
∑ 

x ∈ C ∗
AB 

μx ∑ 

x ∈ C ∗
AB 

λx 
and let S ∗

ABg 
and S ∗

ABb 
define the cut-set correspond- 

ng to a minimum cut in G 

= 
AB 

. 

heorem 4. If for every minimum cut in G 

= 
AB 

it holds that S ∗
ABg 

� = X

nd S ∗
ABb 

� = X, then 1) the type AB demand and supply nodes are in

he component which also contains the source and 2) the maximum 

ow has value less than 
∑ 

x ∈ C ∗
AB 

μx . 

If the maximum flow in G 

= 
AB 

has value less than 

∑ 

x ∈ C ∗
AB 

μx , a 

inimum cut partitions it into two components, one of which con- 

ains the demand and supply nodes for blood type AB . This com- 

onent will be referred to as G R and the other component as G L .

he same will recursively apply to G R if this component contains 

odes of blood type AB and one other blood type A or B . 

The results of Theorems 2 –4 are combined in Algorithm 1 in 

ecursive function EquitableFLow() to obtain an equitable flow ac- 

lgorithm 1 Equitable Flow. 

1: input: graph G , blood types Y 

2: output: equitable flow vector ˆ f 

3: function EquitableFlow ( G, Y ) 

4: (G 

= 
L 
, G 

= 
R 
, C ∗

L 
, C ∗

R 
, ˆ f ) ← MaxFlowMinCut (G, Y ) 

5: if 
∑ 

y ∈ Y ˆ f y < 

∑ 

y ∈ Y μy then 

6: f L ← EquitableFlow (G 

= 
L , C 

∗
L ) 

7: f R ← EquitableFlow (G 

= 
R 
, C ∗

R 
) 

8: ˆ f ← flow values corresponding to f L and f R 

9: return 

ˆ f 
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Fig. 4. Illustration of a Cut C = (C O , C AB ) . 

Table 1 

Percentages of arriving patients per blood type and ethnicity. Source: 

UNOS OPTN DTx data 2011–2017. 

Type O Type A Type B Type AB Total 

Caucasians 20.3 18.1 5.0 1.8 45.1 

Blacks 14.6 7.3 5.9 1.2 29.1 

Hispanics 10.9 5.3 1.8 0.4 18.4 

Asians 2.9 1.8 2.2 0.5 7.4 

Total 48.7 32.6 14.9 3.8 
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Table 2 

Percentages of arriving donor organs per blood type and ethnicity: 

Source: UNOS OPTN DTx data 2011–2017. 

Type O Type A Type B Type AB Total 

Caucasians 31.0 28.7 6.9 2.4 69.1 

Blacks 6.9 3.5 2.8 0.6 13.8 

Hispanics 8.8 4.3 1.2 0.2 14.6 

Asians 1.0 0.7 0.6 0.2 2.6 

Total 47.8 37.2 11.5 3.5 
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ording to Rawls’ Theory of Justice. The algorithm is initiated with 

 first call to EquitableFLow( G 

= , X), where G 

= is the graph con-

tructed for Theorem 1 and X contains all blood types. The out- 

ut is an equitable flow vector f = [ f O , f A , f B , f AB ] . Recursively, Eq-

itableFLow() is called on smaller instances when the flow is not 

aximal as described earlier. In this algorithm we do not specify 

he function MaxFlowMinCut(), this can be any maximum flow al- 

orithm. Our algorithm requires a graph and a set of blood types 

s input and returns the maximum flow per blood type, the min- 

mum cut C ∗ = (C ∗L , C 
∗
R ) in the graph and the two graphs G 

= 
L and

 

= 
R 

, with adjusted capacities, corresponding to the cut. Note that 

he first call to MaxFlowMinCut() returns C ∗
L 

containing blood type 

 and C ∗
R 

containing blood type AB , as shown by Theorem 2 . Two

llustrative applications of the algorithm are provided in the Ap- 

endix. 

. Equity and ethnicity 

As blood type prevalences vary over ethnic groups, equity 

mong blood types is no guarantee for equity among ethnic 

roups. The next step is therefore to address ethnic inequities, 

hich persist in practice ( Melanson et al., 2017 ). 

Let V be the set of all ethnic groups. For in- 

tance, for the United States we may define V = 

 Caucasian, Black, Hispanic, Asian, Other } . In the remainder, 

e disregard Other, as the low number of patients in this group 

oes not permit reliable quantitative analysis. Accordingly, let λx v 
e the arrival rate of patients of blood type x ∈ X and ethnicity 

 ∈ V and let μx v be the corresponding organ arrival rate. Then, 

y definition λx = 

∑ 

v ∈ V λx v and μx = 

∑ 

v ∈ V μx v for x ∈ X . Tables 1 
982 
nd 2 present patient and donor organ arrival rates for the United 

tates percentage wise. 

Tables 1 and 2 teach us for instance that blood types O and 

 are approximately equally likely among Caucasians, while blood 

ype A is considerably less prevalent than type O among the other 

thnic groups. As Caucasians are relatively more prevalent among 

onors, identical allocation would result in a higher utilization rate 

or blood type A than for blood type O . This effect is even stronger

or blood type B . These differences in rates are particularly pro- 

ounced for Blacks who experience longer average waiting times 

s already confirmed by Fig. 2 b. 

Hence, the question rises whether these inequalities can be 

educed to become as equitable as possible. In the remainder, 

e disregard the ethnic origin of the organs, and hence, the μx v 
nd only consider μx = 

∑ 

v ∈ V μx v for x ∈ X , as before. The analysis 

herefore focuses on the λx v . 

heorem 5. Let f be an equitable allocation as determined by Algo- 

ithm Equitable Flow, and let f x v = f x × λx v 
λx 

for all x ∈ X, v ∈ V . Then,

f x v is an equitable allocation for the case with blood type and ethnic- 

ty. 

An important consequence of Theorem 5 is that for the case 

n which ethnic equity is explicitly considered together with blood 

ype equity, equity can be maximized by firstly finding an allo- 

ation that maximizes equity among the blood types and subse- 

uently allocating organs per blood type proportionally to demand 

f the ethnic groups for that blood type. This can be achieved by 

erging all patients into one queue per blood type and subsequent 

mplementation of any policy for which allocation probabilities 

re subsequently independent of ethnicity. These findings stand in 

ontrast to the observational data depicted in Fig. 5 which shows 
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Fig. 5. Waiting time per blood type and ethnicity. 
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Table 3 

Waiting times in days and deceased donor transplantation transplant probabilities 

for three allocation policies. 

Type O Type A Type B Type AB 

Wait Time Identical 1099 975 1262 1146 

Wait Time Compatible 1137 993 1137 993 

Wait Time KAS 1099 1071 1071 1071 

Tx Prob Identical 0.410 0.476 0.322 0.384 

Tx Prob Compatible 0.389 0.467 0.389 0.467 

Tx prob KAS 0.410 0.425 0.425 0.425 

Caucasian Black Hispanic Asian American 

Wait Time Identical 1069 1103 1080 1120 

Wait Time Compatible 1074 1091 1092 1092 

Wait Time KAS 1084 1081 1088 1082 

Tx Prob Identical 0.426 0.408 0.420 0.398 

Tx Prob Compatible 0.423 0.410 0.413 0.413 

Tx Prob KAS 0.418 0.416 0.416 0.419 
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c  
hat considerable inequalities exist among ethnic groups for each 

lood type. In the discussion we consider whether these might be 

xplained by reasons other than blood type compatibility. 

While it may be possible to reduce ethnic inequalities beyond 

he levels attained by Theorem 5 , the theorem implies that this 

ecessarily implies increasing inequalities between some pair of 

airs ({ x, v } , { y, w } ) , x, y ∈ X, v , w ∈ V and is therefore inequitable

ccording to the Theory of Justice. 

. Equity of deceased donor kidney allocation in the United 

tates 

Tables 1 and 2 show that considerable differences exist between 

rgan and patient arrival rates per ethnic group and subsequently 

er blood type, especially for blood types A and B . Combined with 

ig. 2 a, these numbers suggest that type O organs have been used 

or type B patients. 

Let us now recall that over the years 2014–2017, 30,816 new 

atients entered the DTx wait list on average per year, and 12,862 

atients received a DTx on average per year Hart et al. (2017a, 

019) . The queue length started at 96,848 on January 1, 2014, 

eaked at 99,172 on December 31, of the same year, and then de- 

reased to 92,685 by the end of 2017. Calculated over the aver- 

ge of queue lengths, the annual renege rate has been 0.196 (ap- 

roximately one in five patients leaves the queue annually with- 

ut transplant). Disregarding blood type incompatibilities for the 

ime being, these total numbers would yield an equilibrium wait 

ist length of λ−μ
θ

= 

30 , 816 −12 , 862 
0 . 196 = 91 , 565 with a corresponding 

ait time of 1 
θ
(1 − 1 

ρ ) = 2 . 97 years (1085 days). The Tx probability

quals μ
λ

= 

12 , 862 
30 , 816 = 0 . 42 (close to the 0.44 reported in Hart et al.

2017a) for earlier years). 

Table 3 presents the expected outcomes for each of the three 

olicies identical allocation, compatible allocation and KAS. Figures 

,4, and 5 of the Appendix depict the corresponding flows. 

For identical allocation, type B patients can expect to wait 287 

ays longer than type A patients. The differences among ethnic 

roups are much smaller, with a maximum of 51 days between 

aucasians and Asian Americans. Given that compatible allocation 

s feasible and yields comparable patient outcomes, the inequali- 

ies resulting from identical allocation can be viewed to be avoid- 

ble and hence inequitable, in so far as they exceed the inequalities 

esulting from compatible allocation. 

The wait times and Tx probabilities presented in Table 3 for 

lood type compatible allocation are obtained by Algorithm Equi- 

able Flow, with one level of recursion (see Fig. 2 in the Appendix). 

he figure illustrates that Algorithm Equitable Flow separates com- 
983 
onent C ∗
O 

= { O, B } from component C ∗
AB 

= { A, AB } . The correspond-

ng equitable wait times are equal for types O and B (through allo- 

ating some type O organs to type B patients) and for types A and 

B (through allocating some type A organs to type AB patients). 

he resulting wait time differences are much smaller than for the 

ase of identical allocation, yet still considerable. Type O and B pa- 

ients wait 144 days longer than type A and AB patients. Translated 

o ethnic groups however, the equitable wait time inequalities are 

t most 18 days and the Tx probabilities differ by 0.013 at most. 

The inequalities of compatible allocation can still be regarded 

s avoidable (and hence inequitable) as they do not utilize type 

 2 to B and A 2 B to B transplants, as practiced by UNOS since De-

ember 2014 ( Bryan et al., 2016 ). The sub type A 2 ( A 2 B ) makes

p around 20 percent of the type A ( AB ) population ( Bryan et al.,

016 ). The formal analysis of the KAS policy which includes such 

ransplants requires to modify the compatibility graph. We modify 

t by adding donation by type A 2 and A 2 B donors to type B pa-

ients see also Fig. 1 c. As type AB has a high utilization rate and

ow prevalence, we disregard A 2 B to B donation in the remainder 

without loss of optimality as we shall see). The reader may verify 

hat Theorems 1 –5 and Algorithm Equitable Flow still hold when 

llowing A to B allocation. In the presented results we applied Al- 

orithm Equitable Flow allowing for allocations from type A to B , 

ather than the more restricted KAS which only allows for dona- 

ions from type A 2 to B . Afterwards we verified that the results 

omplied with the KAS policy and the percentage of A to B alloca- 

ions was below 20 percent. 

The results obtained when allowing type A 2 organs to be allo- 

ated to type B patients are also depicted in Table 3 . Around 9.8
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ercent of type A donor organs are allocated to type B patients, 

ell below the 20 percent threshold. The only other non-identical 

llocations are from A to AB . The types A , B , and AB have equal wait

imes without requiring A 2 B to B allocations. These findings con- 

rm the currently practiced allocation policy. The equitable solu- 

ion obtained when allowing for this additional allocation possibil- 

ty has near perfect equality among blood types and ethnic groups. 

he total expected wait list length is 91,565. 

. Discussion and conclusions 

We presented formal models to maximize equity of waiting 

imes and transplant probabilities in deceased donor kidney trans- 

lantation based on Rawls’ Theory of Justice, queuing theory and 

etwork flow theory. The models consider asymptotic stationary 

xpected waiting times and transplant probabilities as equity mea- 

ures. Allocations maximizing blood type equity (as derived in 

ection 3 ) can be straightforwardly translated to solutions jointly 

aximizing blood type and ethnic equity (as shown in Section 4 ). 

n so far as the resulting equitable allocations yield waiting time 

nequalities among ethnic groups, they cannot be further reduced 

ithout increasing inequalities among blood type. Our analysis 

lso clarifies how the inequalities arise from differences in organ 

nd patient arrival rates among ethnic groups. This confirms the 

enefit of increasing donation rates in ethnic groups which are un- 

er represented as donors. 

Application to the 2014–2017 UNOS data on deceased donor 

idney transplantation in the United States largely validate the pre- 

ented models. The 2017 wait list length of 92,685 is close to the 

odel outcome equilibrium of 91,565 and moving towards it. The 

enege rate of 0.42 is close to the rate of 0.44 for preceding years 

eported by Hart et al. (2017a) . However, the models should not be 

xpected to exactly replicate practice for a number of reasons. Let 

s mention already that the models assumes constant arrival and 

enege rates, while these vary in practice. 

The results for blood type identical allocation yield considerable 

nequalities among blood types and rather modest ethnic inequal- 

ties. The results for compatible allocations yield quite limited in- 

qualities for both. Inequalities, and hence inequities, virtually dis- 

ppear when additionally allowing for A 2 to B transplantation as 

urrently practiced in KAS. The resulting solution reallocates 9.8 

ercent of A organs to B patients, higher than the 7.4 reported by 

ryan et al. (2016) . They also report a positive number of A2B al-

ocations compared to zero in our optimal solution. Such modifica- 

ions could be implemented through slight adjustments to current 

ractice or by randomly assigning 9.8 percent of A organs to B pa- 

ients (see Section 3 ). 

The findings that blood type related inequalities can be elimi- 

ated do not contradict the persistent inequalities found in prac- 

ice among ethnic groups ( Melanson et al., 2017 ). There are other 

actors influencing the waiting times that are not included in the 

resented allocation model. Firstly, HLA profiles and HLA antibody 

rofiles vary significantly among ethnic groups, creating subse- 

uent differences in waiting time and transplant probabilities. Sec- 

ndly, health state and time on dialysis at time of enrolment vary 

mong ethnic groups, which may subsequently lead to differences 

n priority and renege rates, whereas we have assumed renege 

ates to be constant over time and independent of sub population 

 Hart, Salkowski, Snyder, Israni, & Kasiske, 2016 ). Thirdly, let us 

ention that there are significant differences in the likelihood of 

eceiving a LTx among blood types and ethnic groups ( Hart et al., 

019 ) that our model fails to capture as it assumes a constant θ . 

hile this calls for further research to advance the models and 

nalysis, it also raises new ethical questions. For example, should 

Tx allocation policies take HLA related and ethnic inequalities in 

eterminants of waiting time and transplant probability more ex- 
984 
licitly into account? Such questions are especially relevant now 

e have shown that blood type related inequities can be and are 

eing addressed. 

The modeling and methods presented have validity beyond DTx 

n the United States. They can assist to address inequality and 

quity allocation problems for other organs in the United States 

 Higgins & Fishman, 2006; Moylan et al., 2008 ) and for organ do- 

ation in other countries ( Morgan, Hooper, Mayblin, & Jones, 2006; 

tanford et al., 2014 ). Moreover, they can be applied when distin- 

uishing sub populations based on other grounds than ethnicity, 

uch as certain HLA types. It should be noted however that our 

nalysis assumes μ < λ, i.e. that the donor organ arrival rate is 

trictly smaller than the patient arrival rate. In the aspired future 

ase for which this assumption is not valid, the objective function 

eeds to be adjusted. If non-compatible allocations other than A 2 

o B are allowed, Algorithm Equitable Flow is not applicable, and 

ore general approaches to fair resource allocation are required 

see Luss, 1999; Luss, 2012; Megiddo, 1974 ). 

cknowledgement 

We are grateful for discussions with Kristiaan Glorie, Jeroen 

remer, Chiel van Oosterom, and David Stanford. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at 10.1016/j.ejor.2021.09.033. 

eferences 

xelrod, D. A. , Schnitzler, M. A. , Xiao, H. , Irish, W. , Tuttle-Newhall, E. , Chang, S.-H. ,
. . . Lentine, K. L. (2018). An economic assessment of contemporary kidney trans- 

plant practice. American Journal of Transplantation, 18 (5), 1168–1176 . 

ibkov, B. , Purcell, C. , Levey, A. , Smith, M. , Abdoli, A. , Abebe, M. , & Ade-
bayo, O. (2020). Global, regional, and national burden of chronic kidney disease, 

1990-2017: A systematic analysis for the global burdenn of disease study 2017. 
The Lancet, 395 (10225), 709–733 . 

ryan, C. F. , Cherikh, W. S. , & Sesok-Pizzini, D. A. (2016). A2/A2B to B renal trans-
plantation: Past, present, and future directions. American Journal of Transplanta- 

tion, 16 (1), 11–20 . 

rekic, S. , Stanford, D. A. , Woolford, D. G. , & McAlister, V. C. (2015). A model for de-
ceased-donor transplant queue waiting times. Queueing Systems, 79 (1), 87–115 . 

athi, M., & Khakifirooz, M. (2019). Kidney-related operations research: A review. 
IISE Transactions on Healthcare Systems Engineering, 9 (3), 226–242. https://doi. 

org/10.1080/24725579.2019.1640318 . 
ord, L. R. , & Fulkerson, D. R. (2009). Maximal flow through a network. In Classic

papers in combinatorics (pp. 243–248). Springer . 

aller, M. , Gutjahr, G. , Kramar, R. , Harnoncourt, F. , & Oberbauer, R. (2011). Cost-ef-
fectiveness analysis of renal replacement therapy in Austria. Nephrology Dialysis 

Transplantation, 26 (9), 2988–2995 . 
art, A. , Gustafson, S. K. , Skeans, M. A. , Stock, P. , Stewart, D. , Kasiske, B. L. , & Is-

rani, A. K. (2017a). OPTN/SRTR 2015 annual data report: Early effects of the new 

kidney allocation system. American Journal of Transplantation, 17 (S1), 543–564 . 

art, A. , Salkowski, N. , Snyder, J. J. , Israni, A. K. , & Kasiske, B. L. (2016). Beyond “me-

dian waiting time”: Development and validation of a competing risk model to 
predict outcomes on the kidney transplant waiting list. Transplantation, 100 (7), 

1564 . 
art, A. , Smith, J. M. , Skeans, M. A. , Gustafson, S. K. , Stewart, D. E. , Cherikh, W. S. ,

. . . Israni, A. K. (2017b). OPTN/SRTR 2015 annual data report: Kidney. American 
Journal of Transplantation, 17 (S1), 21–116 . 

art, A. , Smith, J. M. , Skeans, M. A. , Gustafson, S. K. , Wilk, A. R. , Castro, S. , . . . Is-

rani, A. K. (2019). OPTN/SRTR 2017 annual data report: Kidney. American Journal 
of Transplantation, 19 (S2), 19–123 . 

iggins, R. S. D. , & Fishman, J. A. (2006). Disparities in solid organ transplantation
for ethnic minorities: Facts and solutions. American Journal of Transplantation, 

6 (11), 2556–2562 . 
nstitute for Health Metrics and Evaluation (2019). Gbd compare: Global burden of 

disease study. http://www.healthdata.org/ ). 
ominers, S. D., Pathak, P. A., Sönmez, T., & Unver, U. (2020). Paying it backward

and forward: Expanding access to convalescent plasma therapy through market 

design. https://papers.ssrn.com/sol3/papers.cfm?abstract _ id=3594465 . 
ee, D. , Kanellis, J. , & Mulley, W. R. (2019). Allocation of deceased donor kidneys: A

review of international practices. Nephrology, 24 (6), 591–598 . 
uss, H. (1999). On equitable resource allocation problems: A lexicographic minimax 

approach. Operations Research, 47 (3), 361–378 . 

https://doi.org/10.1016/j.ejor.2021.09.033
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0004
https://doi.org/10.1080/24725579.2019.1640318
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0012
http://www.healthdata.org/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3594465
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0016


J. van de Klundert, L. van der Hagen and A. Markus European Journal of Operational Research 297 (2022) 977–985 

L

M  

M  

M

M  

M  

M  

P

P  

R
S  

 

S  

S  

S

S

U

W  

W

W  

W  

W

Z

Z  
uss, H. (2012). Equitable resource allocation: Models, algorithms and applications : vol. 
101. John Wiley & Sons . 

acNeill, S. J. , Casula, A. , Shaw, C. , & Castledine, C. (2016). UK renal registry 18th
annual report: Chapter 2 UK renal replacement therapy prevalence in 2014: Na- 

tional and centre-specific analyses. Nephron, 132 (suppl1), 41–68 . 
andelbaum, A. , Massey, W. A. , Reiman, M. I. , Stolyar, A. , & Rider, B. (2002). Queue

lengths and waiting times for multi server queues with abandonment and re- 
trials. Telecommunication Systems, 21 (2-4), 149–171 . 

egiddo, N. (1974). Optimal flows in networks with multiple sources and sinks. 

Mathematical Programming, 7 (1), 97–107 . 
elanson, T. A. , Hockenberry, J. M. , Plantinga, L. , Basu, M. , Pastan, S. , Mohan, S. ,

. . . Patzer, R. E. (2017). New kidney allocation system associated with increased 
rates of transplants among black and hispanic patients. Health Affairs, 36 (6), 

1078–1085 . 
organ, M. , Hooper, R. , Mayblin, M. , & Jones, R. (2006). Attitudes to kidney donation

and registering as a donor among ethnic groups in the UK. Journal of Public 

Health, 28 (3), 226–234 . 
oylan, C. A. , Brady, C. W. , Johnson, J. L. , Smith, A. D. , Tuttle-Newhall, J. E. , &

Muir, A. J. (2008). Disparities in liver transplantation before and after introduc- 
tion of the MELD score. JAMA, 300 (20), 2371–2378 . 

eter, F. (2001). Health equity and social justice. Journal of Applied philosophy , 
159–170 . 

ort, F. K. , Held, P. J. , Wolfe, R. A. , Garcia, J. R. , & Rocher, L. L. (1991). The impact

of nonidentical ABO cadaveric renal transplantation on waiting times and graft 
survival. American Journal of Kidney Diseases, 17 (5), 519–523 . 

awls, J. (2009). A theory of justice . Harvard University Press . 
ánchez-Escuredo, A . , Alsina, A . , Diekmann, F. , Revuelta, I. , Esforzado, N. , Ri-

cart, M. J. , . . . Oppenheimer, F. , et al. (2015). Economic analysis of the treatment
of end-stage renal disease treatment: living-donor kidney transplantation ver- 

sus hemodialysis. In Transplantation proceedings: vol. 47 (pp. 30–33). Elsevier . 

candling, J. D. , & Norman, D. J. (2010). United network for organ sharing (UNOS)
organ allocation policy and kidney utilization. American Journal of Kidney Dis- 

eases, 56 (1), 7–9 . 
985 
tanford, D. A. , Lee, J. M. , Chandok, N. , & McAlister, V. (2014). A queuing model
to address waiting time inconsistency in solid-organ transplantation. Operations 

Research for Health Care, 3 (1), 40–45 . 
önmez, T., & Unver, U. (2015). Enhancing the efficiency of and equity in transplant 

organ allocation via incentivized exchange. https://EconPapers.repec.org/RePEc: 
boc:bocoec:868 . 

teering Committee of the Istanbul Summit (2008). Organ trafficking and transplant 
tourism and commercialism: the declaration of istanbul. The Lancet, 372 (9632), 

5–6 . 

nited States Renal Data System (2018). 2018 USRDS annual data report: Epidemiol- 
ogy of kidney disease in the United States . National Institutes of Health, National 

Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD . 
ang, K. , Li, N. , & Jiang, Z. (2010). Queueing system with impatient customers: A

review. In Proceedings of 2010 IEEE international conference on service operations 
and logistics, and informatics (pp. 82–87). IEEE . 

hitehead, M. (1992). The concepts and principles of equity and health. Interna- 

tional Journal of Health Services, 22 (3), 429–445 . 
illiams, W. W. , Cherikh, W. S. , Young, C. J. , Fan, P. Y. , Cheng, Y. , Distant, D. A. , &

Bryan, C. F. (2015). First report on the OPTN national variance: Allocation of 
A2/A2B deceased donor kidneys to blood group B increases minority transplan- 

tation. American Journal of Transplantation, 15 (12), 3134–3142 . 
olfe, R. A. , Roys, E. C. , & Merion, R. M. (2010). Trends in organ donation and trans-

plantation in the United States, 1999–2008. American Journal of Transplantation, 

10 (4p2), 961–972 . 
orld Health Organization (2017). National health inequality monitoring: A 

step-by-step manual . World Health Organization . 
enios, S. A. (1999). Modeling the transplant waiting list: A queueing model with 

reneging. Queueing Systems, 31 (3,4), 239–251 . 
enios, S. A. , Chertow, G. M. , & Wein, L. M. (20 0 0). Dynamic allocation of kidneys to

candidates on the transplant waiting list. Operations research, 48 (4), 549–569 . 

http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0029
https://EconPapers.repec.org/RePEc:boc:bocoec:868
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00808-0/sbref0039

	Eliminating transplant waiting time inequities - With an application to kidney allocation in the USA
	1 Introduction
	2 Modelling and theoretical background
	2.1 Allocation, blood types and ethnicity
	2.2 Equity in transplant waiting times
	2.3 Queuing theory foundations of waiting times
	2.4 Donor allocation as network flow

	3 Equity and blood types
	4 Equity and ethnicity
	5 Equity of deceased donor kidney allocation in the United States
	6 Discussion and conclusions
	Acknowledgement
	Supplementary material
	References


