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Spontaneous fluctuations of resting state functional MRI (rsfMRI) have been widely used to understand the
macro-connectome of the human brain. However, these fluctuations are not synchronized among subjects,
which leads to limitations and makes utilization of first-level model-based methods challenging. Considering
this limitation of rsfMRI data in the time domain, we propose to transfer the spatiotemporal information of the
rsfMRI data to another domain, the connectivity domain, in which each value represents the same effect across
subjects. Using a set of seed networks and a connectivity index to calculate the functional connectivity for each
seed network, we transform data into the connectivity domain by generating connectivity weights for each sub-
ject. Comparison of the two domains using a data-driven method suggests several advantages in analyzing data
using data-drivenmethods in the connectivity domain over the time domain.We also demonstrate the feasibility
of applying model-based methods in the connectivity domain, which offers a new pathway for the use of first-
level model-based methods on rsfMRI data. The connectivity domain, furthermore, demonstrates a unique op-
portunity to perform first-level feature-based data-driven and model-based analyses. The connectivity domain
can be constructed from any technique that identifies sets of features that are similar across subjects and can
greatly help researchers in the study of macro-connectome brain function by enabling us to perform a wide
range of model-based and data-driven approaches on rsfMRI data, decreasing susceptibility of analysis
techniques to parameters that are not related to brain connectivity information, and evaluating both static and
dynamic functional connectivity of the brain from a new perspective.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

There are two widely-used approaches to analyze functional mag-
netic resonance imaging (fMRI) images in the time domain (i.e. analyz-
ing the spatiotemporal information of fMRI data). The first approach
includes model-based methods, such as general linear model (GLM),
which show how well a certain model fits to the fMRI data (Friston
et al., 1994). The second approach includes data-driven methods, such

asprinciple component analysis (PCA) and independent component anal-
ysis (ICA),which are based on feature extraction from fMRI data (Calhoun
et al., 2003; Calhoun and Adali, 2012; van den Heuvel and Hulshoff Pol,
2010). In a model-based method, data is compared with a predefined
model; therefore, model-based methods are focused on validating a
prior hypothesis (the model) based on the data available and improving
scientific understanding. Data-driven methods, on the other hand,
analyze data in a more flexible manner. These methods are especially
desirable when a good model does not exist or is hard to generate.
Data-driven methods have the power to identify unanticipated compo-
nents which can later be used in model-based approaches. Thus, data-
driven methods can also be considered as model generating methods
(Ford, 1995) since they can be used to obtain a model for data when
there is no satisfactory model already available. However, by themselves,
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data-drivenmethods are primarily used for scientific discovery and iden-
tification of useful features from the data; they are most useful when
combined within a statistical testing framework or for tasks such as pre-
diction or classification (Calhoun and Adali, 2012; Erhardt et al., 2011a).

Considering the advantages and limitations of both model-based
and data-driven methods, they are complementary to each other.
Therefore, in order to analyze data comprehensively and have a better
understanding of brain function, it is useful to investigate data using
both approaches. In the context of the model-based linear GLM and
data-driven linear ICA, both approaches can be conceptualized as X =
AS, in which the ith row of themixingmatrix (A) identifies the contribu-
tion of parameters of S to create the ith value of X. Themain difference is
that, in the data-driven method, the mixing matrix (A) needs to be
estimated, whereas in the model-based method, the mixing matrix is
pre-specified (Calhoun et al., 2001; Ford, 1995). This requirement for a
pre-specified design matrix makes the application of first-level model-
based methods to extract brain networks challenging.

A brain network is defined as a subset of brain regions that interact
with each other in a distinguishable way. Brain networks can be identi-
fied during the resting state by measuring the blood-oxygenation-level
dependent (BOLD) signal from resting state fMRI (rsfMRI) data,which is
related to brain activity (Buckner andVincent, 2007). However, thefluc-
tuations in the BOLD signal in the time domain at a specific time point
are not synchronized among subjects for rsfMRI data. Therefore, the
time courses of brain networks in rsfMRI are different among subjects.
In other words, by considering the general form of X = AS, the mixing
matrix (A) that represents the relationship between brain networks
(S) with rsfMRI data at different time points (X) is different among sub-
jects, which makes modeling the time-domain aspect of resting fMRI
challenging. Consequently, we cannot use the design matrix obtained
from one dataset to apply a model-based method such as first-level
GLM to identify underlying sources (S) in another dataset, even ifmatrix
A is obtained from the same subjects but at a different sampling (in our
work, this means at different scanning sessions). To overcome this lim-
itation, we proposed a new domain, the connectivity domain, in which
the mixing matrix A is similar among subjects, which will enable us to
performmodel-basedmethods such as GLM to analyze the rsfMRI data.

Transforming data to a new domain requires defining a set of bases
for the new domain. In general, each domain is composed of several
bases, and by measuring the contribution of data in each of these
bases, we can transform and represent the data in the new domain. To
accomplish this, we select a set of spatial features that are similar across
subjects. Those similar features are here called seed networks, and their
time courses are used as the bases of the new domain to construct the
connectivity domain. Our proposed connectivity domain is very flexible
because various approaches, such as using data-driven seeds, functional
seeds, or anatomical seeds, can be used to obtain the bases of the con-
nectivity domain. For example, we can use high model order (number
of components = 100) to achieve a “functional parcellation” and
apply their corresponding time courses to construct the connectivity
domain, which would allow us to investigate a multiscale hierarchical
functional organization of the brain.

In general, the time course of any feature which shows similarity
across subjects can be used to calculate the connectivity domain. We
can use anatomical, cytoarchitectonic and/or functional atlases. We
can likewise use the brain networks' time courses to construct the con-
nectivity domain or perform clustering analysis on the rsfMRI data time
courses and use the representative time courses of each cluster to con-
struct the connectivity domain. We can also use the functional atlases
and ROIs to extract the bases of the connectivity domain (Shirer et al.,
2012). However, in this study to show the feasibility, we have chosen
to use the simple solution of selecting similar anatomical regions across
subjects. In other words, in this preliminary study, we use atlas-derived
anatomical locations (seed regions) across subjects to define the corre-
sponding features (seed networks) among subjects and use the time
courses of those regions as the basis of the new domain. Thus in this

study, the connectivity domain is obtained by calculating the functional
connectivity for the anatomical seed networks (seed regions) by mea-
suring a connectivity index (the correlation value) between the corre-
spondent time series of each seed network and the whole brain. The
resulting functional connectivity weights are the input data for our
proposed domain. In the new proposed domain, (a) the connectivity
of the brain can be modeled among subjects and tested for differences
among groups (in this example, the relationship between the connec-
tivity of brain regions and brain networks can be calculated and com-
pared among different groups) and (b) with prior knowledge of the
contribution of connectivity of seed networks to brain networks, we
can directly calculate brain networks using model-based methods
such as GLM. This can provide the opportunity to use model-based
methods, like first-level GLM, without the handicap of having to estimate
themixingmatrix, A, based on the combined group data (making it not a
pure model-based method, but a data-informed model-based method).
Applying first-level GLM in the connectivity domain can be viewed as
similar to first-level GLM in task-based fMRI analysis in which, for each
participant, we identify, through modeling, the effects of regressors and
create individual subject spatial maps corresponding to those regressors.
In other words, we can use a predefinedmodel (a predefined designma-
trix) to obtain the brain networks of different subjects.

Moreover, the connectivity domain can enhance the usage of data-
driven analysis approaches, particularly feature-based ICA (Allen et al.,
2011; Smith et al., 2009). Multiple data-driven analysis approaches
have been successfully applied to rsfMRI data including clustering
(Cordes et al., 2002; van den Heuvel et al., 2008), ICA (Beckmann
et al., 2005; Calhoun et al., 2001), graph analysis (Fornito et al., 2013;
Rubinov and Sporns, 2010; van Wijk et al., 2010), and sparse coding
(Lv et al., 2015). ICA-based methods are some of the more widely
used approaches, and their results (i.e., extracted networks) show a
high level of consistency in different conditions such as open or closed
eyes; task, rest or sleep; and healthy or various mental disorders
(Calhoun et al., 2008a, 2008b; Damoiseaux et al., 2006; Garrity et al.,
2007; Iraji et al., 2015a; Jafri et al., 2008; Sorg et al., 2007; Stevens
et al., 2009; van den Heuvel and Hulshoff Pol, 2010; Whitfield-Gabrieli
and Ford, 2012). ICAmethods are designed to identify a set of latent spa-
tially independent maps from rsfMRI data. A spatial map can be consid-
ered to be an underlying source (i.e. a brain network (Erhardt et al.,
2011a)), and the value of each voxel represents the degree to which
the voxel belongs to, or is functionally connected to, that source
(Calhoun and Adali, 2012; van den Heuvel and Hulshoff Pol, 2010).

Most previous ICA studies have estimated resting state networks
(RSNs) by applying first-level ICA on the spatiotemporal information.
Some new studies have also suggested the feasibility of calculating pat-
terns of RSNs by applying ICA on features extracted from the spatiotem-
poral data. Using extracted features from the data rather than the time
domain data itself can be useful and important in the study of brain
function at the macro-connectome scale, which constitutes themethod
referred to here as feature-based ICA (Calhoun and Allen, 2013; Kim
et al., 2010). One advantage of feature-based ICA is that it removes the
need to model the time domain from the fMRI data (Calhoun and
Allen, 2013). However, previous feature-based ICA analyses havemost-
ly been limited to second-level analyses, such as applying ICA on the
amplitude of low frequency fluctuations (ALFF) map for rsfMRI, t-
maps of GLM for task-based fMRI (Calhoun and Allen, 2013), the peak
coordinates frommeta-analysis (Smith et al., 2009), or even the outputs
of the first-level ICA (Wisner et al., 2013). The connectivity domain pro-
vides us with the opportunity to use feature-based ICA techniques at
both the first level and second level (Fig. 1). While the second-level
ICA techniques have been shown to be valid tools for extracting intrinsic
networks (Calhoun and Allen, 2013; Smith et al., 2009), they usually
have some disadvantages as compared to first-level ICA analysis
(Calhoun, 2015). Second-level ICA analysis generates one set of brain
networks for all input data by utilizing the covariation among input
data, while first-level ICA generates a set of brain networks for each
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individual by utilizing the information which exists in each individual
input data. This provides us the opportunity to perform statistical anal-
yses on brain networks across individuals, such as comparing brain
networks between two groups. Furthermore, even if a researcher is
only interested in studying the brain networks at the group level,
second-level feature-based ICA leads to noisier results as compared to
first-level feature-based ICA because 1) second-level feature-based ICA
uses highly distilled features and there is a large reduction in data,
leading to loss of some related information in data available to the ICA
algorithm (Calhoun, 2015), and 2) the ICA algorithm only utilizes the
between-subjects variations while first-level feature-based ICA
estimates brain networks using both within- and between-subjects
variations. Finally, second-level feature-based ICA limits the possible
analyses on the input data due to loss of within-subject input data var-
iations. For example, first-level feature-based ICA, unlike second-level
feature-based ICA, allows us to investigate dynamic changes in the
brain networks. Thus, it is preferable to use a first-level analysis if possi-
ble, though there are numerous instances when it is not possible
(Calhoun and Allen, 2013). Furthermore, the connectivity domain has
uses beyond ICA techniques, and wide ranges of data-driven and
model-based approaches can be applied in this domain (Fig. 1).

In this work, we first define one example of a set of seed networks to
create the connectivity domain. Then, we present the superiority of the
connectivity domain over the time domain by comparing data-driven
methods applied in both domains. Lastly, we investigate the feasibility
of applying first-level model-based methods in the connectivity do-
main. One important benefit of the connectivity domain as compared
to existing methods for analyzing rsfMRI data is that the connectivity
domain enables us to directly perform model-based approaches and
empowers us to perform first-level feature-based analyses.

Again, in thismanuscript, our purpose is to demonstrate the connec-
tivity domain, a new framework to analyze rsfMRI data, and its feasibil-
ity. Neither the approaches to construct the connectivity domain nor the
available analytical methods are limited to what we demonstrate here.
For instance, the seed networks used to construct the connectivity do-
main are not limited to canonical seeds or anatomical atlases, and we
can identify them using wide range of approaches.

2. Method

2.1. Theory

To illustrate the connectivity domain, we show examples of the
same approaches that have been applied in both the time and connec-
tivity domains. The relationship between the two domains can assist

us to better explain the connectivity domain and the potential data
analysis techniques that can be used in the connectivity domain.

In the connectivity domain, the functional connectivity weights are
used as input for data analysis and replace the role of the rsfMRI time se-
ries data in the time domain. Fig. 2 shows the analogy between the two
domains in the presentation of the general form of X = AS. In the time
domain, each row of matrix X is one time point of rsfMRI data, while
in the connectivity domain, each row of matrix X represents functional
connectivity weights of one seed network. Furthermore, each row of
matrix S for both domains is one spatial map (or brain network). Thus,
array A(i,j) in the time domain represents the contribution of the
brain network j to the voxels' intensities of rsfMRI data at time point i
while array A(i,j) in the connectivity domain represents the contribu-
tion of the brain network j to the connectivity weights of seed network
i (Fig. 2). Considering this analogy, if we measure the connectivity
weights, we can apply all existing time-domain data analysis methods
in the connectivity domain as well. Of particular note, as we present
later in this paper, since the mixing matrix A is similar among (healthy
control) subjects in the connectivity domain, the quality and robustness
of the result of data-driven approaches are improved as compared with
the time domain. Furthermore, the first-level model-based techniques
can also be directly applied in the connectivity domain.

To show the feasibility and advantages of any new domain, we first
need to 1) show how the new domain behaves when performing
existing analyses as compared to the same analyses in the current do-
main (the time domain), and then 2) try to evaluate whether we can
do a new type of analysis in the new domain that are not feasible in
the time domain.

In studying human brain connectivity, it is important to be able to
compare and assess findings across different studies. In order to have
highly reproducible results which enables us to further compare be-
tween studies and make valid conclusions, the results should be less
sensitive to the parameters of data collection and the selected analytical
approach. Therefore, we should compare the two domains' susceptibil-
ity to parameter changes, and a superior domain should be less affected
by different parameter variations. Since we are investigating rsfMRI
data, we evaluate the impact of parameter variation by comparing the
similarity of brain networks obtained for different parameters. In
order to have reasonably applicable conclusions in this comparison,
we should choose a commonly used and broadly acceptable analysis
technique. Thus, we chose ICA for this comparison, as it is one of the
most commonly-used and broadly acceptable methods.

In neuroimaging research, first-level model-based methods such as
first-level GLM are a key part of fMRI analysis. They allow us to evaluate
hypotheses drawn independently from the data being studied. Thus, in

Fig. 1. Schematic of analytical approaches which can be applied on rsfMRI data. The connectivity domain, similar to the time domain, allows us to perform a wide range of data-driven
methods. The connectivity domain also supports implementing model-based methods such as first-level generalized linear model (GLM) on rsfMRI data (blue box). While feature-
based approaches have been performed as second-level analyses, the connectivity domain provides us the opportunity to perform feature-based techniques at both first and second levels.
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studying brain connectivity during rest, it is important to be able to per-
form investigations using first-level model-based methods. Here, we
evaluate whether the connectivity domain can provide us the opportu-
nity to apply first-level model-based methods on rsfMRI data by
assessing the feasibility of applying first-level GLM.

ICA can be applied on the rsfMRI data (spatiotemporal information)
directly, which is commonly known as first-level ICA, or it can be ap-
plied on computed features from the spatiotemporal information,
which is commonly known as second-level ICA. While second-level
ICA techniques have been shown to be valid tools for extracting intrinsic
networks (Calhoun and Allen, 2013; Smith et al., 2009), they usually
have some disadvantages as compared with first-level ICA analysis.
Loss of information in second-level ICA leads to noisier results and limits
the possible analysis on the data, like by preventing us from looking at
dynamic changes in the resting state networks (Calhoun, 2015). How-
ever, using extracted features from the data rather than the time do-
main data itself can be useful and important in the study of brain
function at themacro-connectome scale, which constitutes the method
referred to here as feature-based ICA. One advantage of feature-based
ICA is that it removes the need to model the time domain from the
fMRI data (Calhoun and Allen, 2013). This study can also be considered
as the second attempt to investigate the impact of working with fea-
tures in ICA analysis. While the first study (Calhoun and Allen, 2013)
shows that feature-based ICA methods can provide similar but noisier
results, the current study provides a broader context for feature-based
ICA analysis. Applying ICA techniques in the connectivity domain, in ad-
dition to the superiorities over the timedomainwhichwill be presented
in this paper, incorporates the benefits of feature-based ICA techniques
as well, can be applied using either first or second level estimates.

2.2. Dataset and preprocessing

Fig. 3 demonstrates a schematic of the analysis pipeline. Data collec-
tion was performed at two independent sites with different image
acquisition parameters. The first site was Wayne State University, De-
troit, Michigan, USA. MRI data were collected on a 3-Tesla Siemens
Verio scanner. Data was collected from 17 healthy subjects (average
age: 35.92±8.84; range: 26–56) at two sessionswith a 4–6week inter-
val in between at Detroit Receiving Hospital, an affiliated hospital of the
Detroit Medical Center. For rsfMRI data, a gradient echo EPI sequence

with following imaging parameters was performed: pixel spacing
size = 3.125 × 3.125 mm, slice thickness = 3.5 mm, slice gap =
0.595 mm, matrix size = 64 × 64, TR/TE = 2000/30 ms, flip angle =
90°, 240 volumes for whole-brain coverage, and Number of Excitations
(NEX) = 1. During rsfMRI scans, participants were instructed to relax,
keep their eyes closed, avoid falling asleep, and not to think about any-
thing specific. The structural high-resolution T1-weighted imaging was
collected using theMPRAGE sequencewith TR/TE=1950/2.26ms, slice
thickness = 1mm, flip angle = 9°, field of view= 256 × 256mm, ma-
trix size=256×256, and voxel size=1mmisotropic. The FSL software
package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) was used for rsfMRI data
preprocessing, including discarding the first five volumes for magneti-
zation equilibrium purposes, brain extraction, motion correction, slice-
time correction, spatial smoothing with a 5 mm full width at half-
maximum (FWHM= 5 mm), prewhitening, and grand mean removal.
The data was registered to the Montreal Neurological Institute (MNI)
standard space using non-linear registration with 10 mmwarp resolu-
tion and resampled to 3 mm isotropic voxel size.

The second site was Henry Ford Hospital, Detroit, Michigan, USA.
MRI data were collected on a 3-Tesla GE scanner. Data was collected
from 13 healthy subjects (average age: 27.25 ± 5.97; range: 18–39).
For rsfMRI data, a gradient echo EPI sequence with following imaging
parameters was performed: pixel spacing size = 3.4375 × 3.4375 mm,
slice thickness = 3.5 mm, slice gap = 3.5 mm, matrix size = 64 × 64,
TR/TE = 2000/30 ms, flip angle = 90°, 150 volumes for whole-brain
coverage, andNEX=1. The structural high-resolution T1-weighted im-
aging was collected using the IRSPGR protocol with TR/TE = 10.3/
4.3 ms, slice thickness = 1 mm, flip angle = 15, field of view =
256 × 256mm,matrix size= 256× 256, and voxel size= 1mm isotro-
pic. We received already-preprocessed data and were blinded toward
the preprocessing steps, which reportedly included elimination of the
first five volumes, brain extraction, motion correction, slicing timing,
temporal high-pass filtering 100 s, and spatial smoothing (FWHM =
5 mm). The registration step was reported to be similar to that applied
to the other dataset, being non-linear with 10 mmwarp resolution.

2.3. Seed network selection

To perform data analysis in the connectivity domain,we first require
an appropriate set of seed networks to use their time courses to

Fig. 2. Analogy for the time and connectivity domains using X = AS equation.
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calculate corresponding connectivity weights among subjects. As men-
tioned earlier, seed networks can be constructed from any technique
that identifies sets of features that are similar across subjects, so that
the time courses of those features can be used to construct the connec-
tivity weights that constitute the connectivity domain. For instance, we
could use anatomical or functional atlases to identify seed networks and
use the time courses of the seed networks to calculate the connectivity
weights. We can also use a more individualized set of common cortical
landmarks (Iraji et al., 2015b). However, in this study to demonstrate
the feasibility of the connectivity domain, we wanted to use common,
readily-available atlases to define our seed networks. Accordingly, we
chose the Harvard-Oxford cortical and subcortical atlases (Desikan
et al., 2006; Frazier et al., 2005) and used anatomical information to
identify the seed networks in this demonstration. Time courses from
145 seed networks (seed regions), distributed across the entire brain,
were selected to calculate the connectivity weights. Each seed network
includes the 100 voxels (2700 mm3) with the highest probability of be-
longing to the corresponding region. Fig. 4.a, b, and c show some of
these regions on the sagittal, coronal and axial views, respectively, on
the MNI atlas. The color code of the regions is shown in Fig. 4.d. The
functional connectivity (connectivityweights) of five regions of interest
(ROIs) shown in Fig. 4.a and Fig. 4.c in three sagittal, coronal and axial
views are shown in Fig. 4.e. To demonstrate the importance of selecting
an appropriate set of seed regions to construct the connectivity do-
mains, two more sets of seed regions were developed to test the

sensitivity of analysis in the connectivity domain to the initial connec-
tivity maps. The second set consisted of the same 145 seed regions
from the Harvard-Oxford cortical and subcortical atlases but reduced
in volume. The smaller volume was obtained by applying the Gaussian
kernel with FWHM = 5 mm on the previous Harvard-Oxford cortical
and subcortical masks and thresholding the output at 0.55. For the
third set of ROIs, 116 seed regions with a volume equal to 100 voxels
were selected from the Automated Anatomical Labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002).

2.4. Spatial similarity

Spatial correlationwas used as themain parameter to identify corre-
sponding spatial maps and calculate the spatial similarity between two
spatialmaps. Eq. (1)was used tomeasure the spatial similarity between
the corresponding outputmaps of a pair of analyses (Calhoun and Allen,
2013; Iraji et al., 2015a). First, to determine which maps best corre-
spond between the two analyses, the spatial similarity was calculated
between each output map of the one analysis and every output map
of the other analysis. For each output map of the first analysis, the out-
put map of the second analysis with the highest spatial similarity was
selected as the corresponding output map. Thus, the pair of output
maps with the maximum spatial similarity were identified as corre-
sponding output maps between two analyses. Next, visual inspection

Fig. 3. Schematic of the analysis pipeline. Datawas preprocessed, and either kept in the time domain or transformed into the connectivity domain,which involved calculating connectivity
weights using seed networks. Similar data-driven approaches were applied in both domains and compared between the two domains. Feasibility of applying model-based methods was
evaluated in the connectivity domain.
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was also used to evaluate the accuracy of the previous steps. Upon ap-
proval, the correlation value from Eq. (1) was assigned as the spatial
similarity between the corresponding output maps of two analyses.

r ¼
X

i
Xi−μxð Þ Yi−μy

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
Xi−μxð Þ2 �

X
i
Yi−μy

� �2
r ; ð1Þ

where X and Y are spatial maps, and i is an index for corresponding
voxels in the spatial maps.

In this manuscript, we will express the spatial similarity as a per-
centage between 0 to 100%, in which 100% means perfect spatial simi-
larity (r = 1).

2.5. Comparison of the time and connectivity domains for a data-driven
analysis

To compare data-driven approaches in the two domains, we used
the temporal concatenation group spatial ICA followed by back-
reconstruction (TC-BR), themost commonly used data-driven approach
(Erhardt et al., 2011b). First, the outputs of TC-BR for the connectiv-
ity domain were visually inspected and compared with the output of
TC-BR in the time domain. Next, we investigated the impacts of
parameter variations of the TC-BR approach on the outcome in
both domains while other parameters of the TC-BR algorithm were
kept the same. An attractive property of an analysis approach is a higher

level of reproducibility, less affected by different parameter variations.
The investigated parameters include the number of selected compo-
nents for prior PCAanalysis, the group dataset, and the applied ICA tech-
niques. ICA analysis was performed using the GIFT software package
from MIALAB (http://mialab.mrn.org/software/gift/). For TC-BR analy-
sis, the default-selected parameters include: number of IC = 20; ICA
algorithm = Infomax; number of iterations for ICASSO = 10, back-
reconstruction method = GICA; number of PCA = 2; and number of
PC for steps 1 and 2 = 30/20.

The TC-BR approach has been applied on the data of each session
separately for each domain with default parameters, and the spatial
IC maps of the two domains at two time points were visually
inspected to see the feasibility of the connectivity domain to produce
the spatial IC maps identifiable as commonly extracted brain
networks.

To assess the impact of parameter variation on output results, we
began by varying the PCA parameters in our data reduction processing
step, a necessary part of ICA analysis (Calhoun et al., 2001; Correa
et al., 2007; Erhardt et al., 2011b). PCA is commonly applied at both
the subject and group levels to reduce data dimensionality (Calhoun
et al., 2001; Correa et al., 2007; Erhardt et al., 2011b). First, the
subject-level PCA is applied to the data of each individual separately,
which should ideally have a minimum impact on the accuracy of the
IC maps and retain 100% of the variance in the data. This data reduction
step was evaluated in the two domains by using 30 principle compo-
nents (the default value) and 45 principle components for two different
analyses. Next, the reduced data from individual subjects are temporally

Fig. 4. Functional connectivity weights calculation. Overlay of 145 ROIs on (a) coronal, (b) sagittal, and (c) axial views of MNI atlas. (d) Color code map of 145 ROIs. (e) Functional
connectivity weights of ROIs 50 (right insular cortex), 75 (right subcallosal cortex), 83 (posterior division of parahippocampal gyrus), 101 (left caudate), and 102 (left putamen),
respectively; the ROIs are annotated on Fig. 4.a and c. For this study Harvard-Oxford cortical and subcortical structural atlases were used.
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concatenated, and the group-level PCA is applied on the aggregated
data. The number of principle components for the group-level PCA is
usually lower than for the subject-level PCA and usually chosen to be
equal to the number of independent components used for the ICA anal-
ysis (Calhoun et al., 2001; Erhardt et al., 2011b), sowe did not assess the
impact of varying this value and set it at 20. The spatial similarities be-
tween independent components obtained from the TC-BR analysis
using 30 and 45 principle components were measured in each domain.

To assess the sensitivity of the individual subject outcomes to the
group data in each domain, we performed the same analysis of individ-
ual subject datawith twodifferent sets of group data. Because the brains
of different individuals are independent from each other and the brain
networks of one subject do not influence the brain networks of another
subject, the spatial maps of RSNs of one individual should ideally not be
dependent on the data of other individuals.

However, because the BOLD signal has low signal-to-noise (SNR)
and difficulty in identifying corresponding RSNs among individuals,
the TC-BR method uses the aggregated group information to extract
the RSNs of each individual. Consequently, RSNs of an individual could
be influenced by the group to which the individual belongs, and a pre-
ferred method or domain would minimize the influence of the group
data on the individual RSNs. To evaluate the influence of the group
data on the individual RSNs, the individual RSNs at the first session
were compared using two different sets of group data: 1) the group
data of only the first session, and 2) the group data from both the first
and second sessions. We measured the spatial similarity between each
subject's RSNs from the two analyses in each domain.

To assess the impact of varying the ICA methods, we compared two
different GIFT ICA options. A more robust domain will result in more
similar spatial maps for RSNs when different ICA methods are used in
the TC-BR analysis. For this purpose, we compared the spatial maps of
RSNs from the TC-BR analysis using Infomax (the default setting in
GIFT) and FastICA (Rachakonda et al., 2007). Previous studies on com-
parison between different ICA algorithms reveals that Infomax and
FastICA give the best performance and yield reliable results (Correa
et al., 2007, 2005). Both algorithms are iterative and use higher-order
statistical information (Correa et al., 2007; Rachakonda et al., 2007);
Infomax ICA estimates sources bymaximizing the information andmin-
imizing the mutual information among the estimated sources (Correa
et al., 2007; Rachakonda et al., 2007), while FastICA uses negentropy
as a measure of non-Gaussianity to minimize mutual information
(Correa et al., 2007; Rachakonda et al., 2007).

2.6. Assessment of model-based analysis methods in the connectivity
domain

To evaluate the feasibility of using first-level model-based data anal-
ysis techniques in the connectivity domain, we applied a common
model-based method, the GLM. Since we applied the GLM on a feature
obtained from the spatiotemporal data, similar to feature-based ICA,
we can consider the GLM in the connectivity domain as a feature-
based GLM. Asmentioned in the introduction,when there is no satisfac-
tory model already available, data-driven methods (also known as
model generating methods) can be used to generate the model, which
is the design matrix, or A, for X = AS. Thus, we can use data-driven
methods such as ICA to identify the design matrix (i.e. model). In this
study, the average of the individual subject mixing matrices obtained
from TC-BR was used as a design matrix for model-based analysis. It is
important to mention that a design matrix obtained from small sample
of individual subjects is not a good model for model-based analysis.
Obtaining a more appropriate model would require a series of data-
driven analyses across several data samples. However, since the goal
of this part of study is to show the feasibility of applying model-based
approaches, producing brain networks using a non-optimal model
(the mixing matrix of the ICA analysis) will satisfy our claim. In this
study, we first evaluated the possibility of applying model-based

techniques in the connectivity domain. Considering the assumption
that the relationship between brain networks and the connectivity of
the brain regions (i.e. the design matrix in the connectivity domain) is
similar among subjects, we should be able to use the average of the in-
dividual subject mixing matrices obtained from TC-BR as a design ma-
trix to perform first-level feature-based GLM in the connectivity
domain to obtain the brain networks for each subject. This cannot be
done in the time domain due to the lack of synchronization of the fluc-
tuations of the contributions of different brain networks across subjects,
which leads to dissimilarity of the designmatrices. Spatial similarity be-
tween the GLM and TC-BR analyses in the connectivity domain was
measured to evaluate the application of model-based methods in the
connectivity domain.

Next, average design matrices were obtained from each session
using TC-BR and used in the first-level feature-based GLM analysis for
the first session data in order to investigate the reproducibility of
model-based techniques in the connectivity domain. If the model-
based techniques are applicable, a design matrix should be similar at
both sessions and be insensitive to the time of data acquisition, so
using the design matrix from the other session should give a similar
result.

Lastly, the reproducibility of model-based analysis methods in the
connectivity domain was investigated across different studies and
datasets. For this purpose, we investigated the possibility of obtaining
the RSN maps from an independent dataset, the Henry Ford Hospital
dataset, using a design matrix obtained from the WSU first session
group's data using feature-based GLM.

3. Results

3.1. Similar brain networks identified in time and connectivity domains

In the initial analyses, 17 healthy subjects at rest, scanned at two
separate sessions, were analyzed separately in both the time domain
and the connectivity domain. The identified RSNs for both domains at
both sessions are shown in Fig. 5. Fig. 5 shows the thresholded t-
statistics map obtained for each session and each domain separately.
The t-maps, which are one of the outputs of ICA analysis performed
using the GIFT software, identify voxels with strong activation across
the subjects of each session and of each domain, separately (Allen
et al., 2011). Nine well-known brain networks were found in both do-
mains. We labeled these networks as consistently-identified brain net-
works since they have been identified in both domains and in each
session. It is worth mentioning that the term consistent does not refer
to high spatial similarity on those brain networks across different anal-
ysis but instead refers to those networks that wewere able to identify at
the group level in both domains and in each session, regardless of their
spatial similarity values. The consistently-identified brain networks in-
clude the default mode network (DMN) (Allen et al., 2011; Beckmann
et al., 2005; Damoiseaux et al., 2008, 2006; De Luca et al., 2006; Smith
et al., 2009; van den Heuvel and Hulshoff Pol, 2010; Zuo et al., 2010),
left parietal–frontal (working memory) network (Allen et al., 2011;
Beckmann et al., 2005; Damoiseaux et al., 2006, 2008; De Luca et al.,
2006; van den Heuvel andHulshoff Pol, 2010; Zuo et al., 2010), right pa-
rietal–frontal (workingmemory) network (Allen et al., 2011; Beckmann
et al., 2005; Damoiseaux et al., 2006, 2008; De Luca et al., 2006; van den
Heuvel and Hulshoff Pol, 2010; Zuo et al., 2010), auditory network
(Allen et al., 2011; Beckmann et al., 2005; Damoiseaux et al., 2008;
Smith et al., 2009), frontal default mode network (Allen et al., 2011;
Damoiseaux et al., 2006, 2008; de Bie et al., 2012; Kiviniemi et al.,
2009; van den Heuvel and Hulshoff Pol, 2010), motor network
(Beckmann et al., 2005; Biswal et al., 1995; Damoiseaux et al., 2008;
Smith et al., 2009; van den Heuvel and Hulshoff Pol, 2010; Zuo et al.,
2010), primary visual network (Allen et al., 2011; Beckmann et al.,
2005; Damoiseaux et al., 2006, 2008; De Luca et al., 2006; Smith et al.,
2009; van den Heuvel and Hulshoff Pol, 2010; Zuo et al., 2010),
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secondary visual network (Allen et al., 2011; Beckmann et al., 2005; De
Luca et al., 2006; Kiviniemi et al., 2009; Smith et al., 2009; van den
Heuvel and Hulshoff Pol, 2010), and subcallosal network (Biswal et al.,

2010; Laird et al., 2011; Leaver et al., 2015; Zuo et al., 2010). Fig. 5 j
shows an attention network (Allen et al., 2011; Damoiseaux et al.,
2006, 2008; de Bie et al., 2012). This network was not appropriately

Fig. 5. Spatial maps identified for both domains at both time points presented as thresholded t-statistic map. The upper portion of the figure reveals nine consistently-identified brain
networks found in both domains including the default mode network (DMN) (a), left parietal–frontal (working memory) network (b), right parietal–frontal (working memory)
network (c), auditory network (d), frontal default mode network (e), motor network (f), primary visual network (g), secondary visual network (h), and subcallosal network (i). An
attention network (j) seems consistent between two domains; however, it was not appropriately extracted in the second session for the time domain (j2). The lower portion shows
the spatial maps which were identified in one domain but not the other one, or one time point but not the other.

501A. Iraji et al. / NeuroImage 134 (2016) 494–507



identified in the second session for the time domain (Fig. 5 j2). There-
fore, it was not included as one of consistently-identified networks in
comparison analyses between two domains. Each domain also yielded
several the spatial components that were not present in the other do-
main (the lower portion of Fig. 5), but which were reproducible at
both sessions for each domain. These networks were labeled as
inconsistently-identified networks because we could not consistently
identify them in both domains. Thus, it is possible that inconsistently-
identified networks could showhigher spatial similarity between analy-
sis methods in each domain.

3.2. Connectivity domain analysis is less susceptible to PCA parameters

TC-BR analysis was performed with two different data reduction
values (30 and 45) for the subject-level PCA. In both domains and
every subject, the spatial similarity between the corresponding output
maps generated using the two different numbers of principle compo-
nents was calculated. For the 9 consistently-identified independent
components, the spatial similarity was compared between two
domains, and the connectivity domain reveals higher spatial similarity
(see Fig. 6). A two sample t-test revealed that the connectivity domain
has statistically higher spatial similarity for 7 out of 9 consistently-iden-
tified ICs including: default mode network (P = 0.06 × 10−2), right
parietal–frontal network (P = 0.03), auditory network (P =
7.43 × 10−16), frontal default mode network (P = 3.58 × 10−6),
motor network (P = 1.35 × 10−5), secondary visual network (P =
0.01 × 10−1), and subcallosal network (P = 5.48 × 10−5).

3.3. Connectivity domain analysis is less influenced by the group data

TC-BR was performed with default parameters on the first session
data of 17 subjects using either first session group data only (top row
of Fig. 7.a) or both sessions combined (bottom row of Fig. 7.a) group
data, in both the time and connectivity domains. The similarity between
the individual subject IC maps generated using each set of group data
was computed and is shown in Fig. 7.b. The spatial similarity between

the two analyses is greater in the connectivity domain (average spatial
similarity for all spatial components is 94.84 ± 2.56 and for
consistently-identified networks is 94.84 ± 2.85) than in the time do-
main (average spatial similarity for all spatial components is 82.82 ±
13.33 and for consistently-identified networks is 80.79 ± 16.26), indi-
cating that the RSNs of a particular individual are more influenced by
the group data in the time domain than in the connectivity domain.
Furthermore, the time domain failed to identify one corresponding
independent component between the two analyses using different
group data. Note that the consistently-identified networks from before
(Fig. 5 a-i) match up with IC maps #1–9 and #1′-9′, but that numbers
#10 and #10′ and higher represent other components, which may be
inconsistently-identified networks or other components.

3.4. Connectivity domain analysis is less affected by the ICA technique
performed

TC-BR analysis was performed with two different ICA techniques,
Infomax and FastICA, on the first-session data in both the time and con-
nectivity domains. In each domain, the spatial similarity between the IC
maps generated with Infomax and those generated with FastICA was
computed. Statistical analysis on all of the nine consistently-identified
networks at the subject level shows that spatial similarity across two
methods in the connectivity domain is significantly higher than in the
time domain (P b 0.005; Fig. S2). To demonstrate this at the group
level for all consistently- and inconsistently-identified components,
Fig. 8.a. shows the spatial similarity between the average of individual
subjects' spatial maps (IC maps) generated from Infomax and FastICA
in both domains, with higher average spatial similarity in the connectiv-
ity domain than in the time domain (85.62± 14.55% in the connectivity
domain vs. 71.28 ± 14.53% in the time domain). This greater similarity
despite different ICA techniques indicates that the connectivity domain
analysis is less affected by the choice of the ICA technique than the time
domain analysis.

3.5. In the connectivity domain, a model-based approach identifies similar
brain networks

To assess the compatibility of using model-based methods in the
connectivity domain, we assessed the spatial similarity between the av-
erages of the individual subjectmaps generated using a TC-BR approach
and a first-level feature-based GLM approach performed on the 1st ses-
sion WSU data. Both methods identified the same components in the
data. Furthermore, high spatial similarity (91.85 ± 2.10; Fig. 8.b) here
indicates that the feature-based GLMmethod is giving us similar results
as the accepted TC-BRmethods. Fig. 9 demonstrates this at an individual
level; the red column shows examples of 5 randomly-selected individ-
ual subject DMN maps obtained using the first-level feature-based
GLM approach using the design matrix obtained from same data,
while the green and orange columns show the DMN maps obtained
using the ICA methods in the time and connectivity domains, respec-
tively. Further examples of individual subject maps of other RSNs can
be found in Figs. S3 to S5. Fig. 8.a and Fig. 8.b show that the spatial sim-
ilarity between the connectivity domain TC-BR and GLMmaps is higher
than the spatial similarity between the two accepted TC-BR approaches
used in the time domain, at only 71.28 ± 14.53. The spatial similarity
values demonstrated here represent the spatial similarity between the
averaged individual subjects' spatial maps.

3.6. In the connectivity domain, RSNmaps are reproducible using the design
matrix derived from the same group data but from a different session

To evaluate the consistency of a design matrix over time, we com-
puted the effect of applying different design matrices which were
obtained from both the first and second sessions using TC-BR with
Infomax. In Fig. 9, the purple column shows some examples of

Fig. 6. Spatial similarity between consistently-identified independent components (Fig. 5
a to i) in the time (red) and connectivity (blue) domains using 30 and 45 as the number of
principle components at the individual level. For each individual, the spatial similarity
between spatial maps of each component obtained using 30 and 45 principles was
measured. The spatial similarities between independent components obtained from the
TC-BR analysis using 30 and 45 principle components is significantly higher in the
connectivity domain as compared to the time domain in several spatial maps, identified
by *. The low spatial similarity in network d is due to high variability in network d
across individuals when change the number of principle components. Fig. S1 shows the
network d obtained using different numbers of principle components (30 and 45).
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individual subject DMN maps obtained using the first-level feature-
based GLM approach using the design matrix obtained from a different
session. Example of individual subject maps of other RSNs can be found
at Figs. S2 to S4. We assessed the spatial similarity between the output
maps of first-level feature-based GLM applied on the first session data
using the designmatrix from the first session as compared to the output
maps of feature-based GLM applied on the first session data using the
other design matrix, the design matrix generated from the second ses-
sion. Both analyses produce the same maps, showing that the design
matrices from each session are similar. Moreover, the high spatial simi-
larity of the across-subjects averaged output maps of the two feature-
based GLMs which use the information of different sessions (78.65 ±
10.27) is comparable with the result comparing the output maps of
the first session data using the two ICA techniques (the second part of
Fig. 8.a), showing that the design matrix in GLM is as similar over time.

3.7. In the connectivity domain, RSN maps are reproducible when the
design matrix from a different group's data is used

To assess the feasibility of using a common rather than dataset-
specific design matrix to extract the RSNs from a dataset using model-
based methods in the connectivity domain, we performed an initial
analysis in which we evaluated the possibility of obtaining the RSNs
maps from a dataset using an independent design matrix obtained
from a different group's data. In the initial analysis, the RSNs of a

different group's data (n = 13) extracted by applying a GLM model
using the design matrix from the first session of the WSU data. The
RSNs which were already identified in the WSU data have been identi-
fied in the independent dataset and are shown in Fig. 10.

3.8. The importance of seed selection in the connectivity domain

To recognize the importance of selecting an appropriate set of seed
regions for future work, the effect of using different connectivity
weights generated from different sets of seed regions was evaluated.
We first evaluated the spatial similarity between the RSNsmaps gener-
ated using the 145 seed regions from the Harvard-Oxford cortical and
subcortical atlases with different sizes (ROI set 1 vs ROI set 2). Next,
we investigated the effect of selecting different locations for seed re-
gions bymeasuring the spatial similarity between the RSNmaps obtain-
ed using the 145 seed regions from the Harvard-Oxford cortical and
subcortical atlases and 116 seed regions from AAL atlases (ROI set 1 vs
ROI set 3). Table 1 shows the spatial similarity between the average of
the individual subjects' spatial maps (IC maps) generated using differ-
ent ROI sets. Although all of the same RSN maps have been identified
with high spatial similarity despite changing the size or location of
seed regions, the results show that there is an influence of the ROI set
on the final RSN maps, highlighting the necessity of identifying the
optimized location for seeds regions.

Fig. 7. Comparison between time domain and connectivity domain analysis in extracting ICmaps of individuals' brain when different group data were used. (a) Flowchart of computation
of subject-level spatial similarity between the same data analyzed with different group data and the same analytical approach (i.e. concatenated ICA followed by the back-projection),
which was performed in both time and connectivity domains.i (= 1, 2, …, 17) is the 1st session data of one individual from WSU. (b) Results of the spatial similarity at the
subject level in both the time and connectivity domains. “*” indicates the average of similarity between 17 pairs of a certain IC map obtained using two different sets of group data.
“**” indicates the standard deviation of similarity between 17 pairs of a certain IC map obtained using two different sets of group data. † indicates that the corresponding independent
component has not been identified in the time domain when different group data was used.
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Fig. 8. Demonstration of advantages of connectivity domain over time domain. For all results presented for both the time and connectivity domain in this figure, the two methods
compared are different first-level analytical techniques that produce spatial maps for each individual subject. The spatial map for each component was averaged across subjects for
each method and the spatial similarity between these average maps is reported here as a percentage. (a) Demonstrates the superiority of the connectivity domain for performing TC-
BR analyses by comparing the spatial similarity of spatial maps (IC maps) generated with Infomax and FastICA in the time and connectivity domains. (b) Demonstrates the
compatibility of model-based methods, such as GLM, with the connectivity domain by assessing the spatial similarity of output maps generated in the connectivity domain using TC-
BR and GLM (design matrix 1: design matrix computed from session 1 data), which show good agreement. (c) Demonstrates the consistency of a design matrix over time by assessing
the spatial similarity between GLM output maps generated using the 1st session data and the design matrix from the same session as compared to the design matrix generated from
the other session (design matrix 2: design matrix computed from session 2 data).

Fig. 9. Individual defaultmode network (DMN)maps forfive randomly-selected subjects obtained using different analyses. The color code is the same as Fig. 8. Example of individualmaps
of other RSNs can be found at Figs. S3 to S5. This demonstrating the reproducibility of GLM analysis at the individual level using design matrices from different sessions.
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4. Discussion

In this work, we developed a novel framework, which we called the
connectivity domain. Consistent with our hypothesis, the connectivity
domain enables us to investigate brain function using data-driven or
model-based approaches or both and open a newwindow to investigate
brain function. The connectivity domain demonstrates superior results
when it is combined with currently popular methods for analyzing
data in the time domain (the brain spatiotemporal rsfMRI data) and of-
fers a newpathway for the use ofmodel-basedmethods. Furthermore, it
provides a unique opportunity to perform feature-based data-driven
approaches such as feature-based ICA at the subject level instead of
only at the group level (second level).

Using real data from 17 healthy subjects collected at two sessions
each, we demonstrated the superiority of the connectivity domain
over time domain using both data-driven and model-based analysis
methods.

4.1. Data-driven approaches in the connectivity domain vs. time domain

Results demonstrated that the brain networks obtained from the
time and connectivity domains using TC-BR are very similar (Fig. 5). In

the time domain, we identified 11 brain networks; however, one of
these networks (Fig. 5.j2) was not identified correctly in the second ses-
sion. Therefore, the time domain includes 10 brain networks that were
found in both sessions. At the same time, the connectivity domain was
able to identify 91% (10 out of 11) brain networks that the TC-BRmeth-
od detected in the time domain. The connectivity domain also identified
three extra brain networks as reported in previous studies (Allen et al.,
2011; Biswal et al., 2010; Bolo et al., 2015; Laird et al., 2011; Leaver et al.,
2015; Smith et al., 2009); however, these were not detected in our data
whenwe performed the analysis in the time domain. These results indi-
cate the ability of the connectivity domain to extract similar spatial
maps as reported in previous studies analyzing data in the time domain.
Furthermore, performing TC-BR analysis in both domains using two dif-
ferent sets of group data shows that the brain networks of individuals
are more influenced by the group data in the time domain in compari-
son with the connectivity domain.

We investigated the impacts of variations of parameters in the TC-BR
approach on the consistency of results and observed the superiority of
the connectivity domain over the time domain for all investigated pa-
rameters. In brain connectivity research, one crucial step is the ability
to compare and access findings across different studies. In order to
have a more valid rationale to compare the results of different studies
and make a valid conclusion, the findings of studies should be less sus-
ceptible to parameters which are not related to the brain connectivity
information. Therefore, a superior domain is less affected by parameter
variations of the applied analytical method. For this purpose, we inves-
tigated the impact of parameter variations in the TC-BRmethod on spa-
tial maps of brain networks, as it is one of the most commonly used
methods for investigating brain connectivity. Both the number of prin-
cipal components (a preprocessing step) and the applied ICA techniques
(a processing step) show that the connectivity domain is less vulnerable
and therefore it is more suitable to produce robust findings. We do note
that in order tomake this powerful claimwe should also investigate and
compare the impact of theMRI scanner and other site parameters on in-
dividuals' outcomes between two domains.

4.2. Model-based approaches in the connectivity domain

In addition to its strength with data-driven methods, the connectiv-
ity domain also provides the ability to use first-level model-based
methods. We found the same networks in both data-driven and
model-based approaches in the connectivity domain. The ability to ob-
tain similar brain networks using TC-BR and GLM with a high spatial

Fig. 10. The resting state networks (RSNs) identified using a general linearmodel (GLM)method from the independent dataset. The designmatrix thatwas used for this analysis is from the
first session of theWSUdataset (a different group of subjects). Spatialmapswere calculated for each individual separately and then averaged. This demonstrates the reproducibility of GLM
analysis at the individual level using design matrices from a different group's data.

Table 1
The spatial similarity of resting state networks (RSNs) map identified in the connectivity
domain using different ROI sets.

Network name Spatial similarity

ROIs from the
Harvard-Oxford
atlases with
different sizes

ROIs from the
Harvard-Oxford
atlases vs. ROIs
from the AAL atlas

Default mode network (a) 98.42% 95.41%
Left parietal–frontal network (b) 96.55% 86.35%
Right parietal–frontal network (c) 98.87% 95.35%
Auditory network (d) 98.39% 92.02%
Frontal default mode network (e) 99.06% 90.30%
Motor network (f) 98.20% 89.59%
Primary visual network (g) 98.13% 94.17%
Secondary visual network (h) 96.07% 94.12%
Subcallosal network (i) 97.55% 93.31%
Attention Network (j) 98.48% 84.04%
Basal ganglia network (l) 98.76% 93.01%
Cerebellum (n) 97.31% 95.20%
Amygdala and Hippocampus (o) 87.66% 84.40%
Mean ± SD 97.19 ± 3.00% 91.33 ± 4.09%
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similarity (91.85 ± 2.10%) supports our assumption of the similarity of
the relationship between connectivity weights and brain networks
among subjects. This opens a new pathway for analyzing brain function
using model-based approaches. To further validate our assertion, we
demonstrated the result of reconstructing the brain networks using
the information, i.e. design matrix, of different studies and datasets.

Using GLMwith design matrices obtained from the first and second
sessions, the same brain networks were attained. Obtaining the same
brain networks shows the reproducibility of model-based techniques
when the design matrix from one session is utilized to analyze the
data from the other session in the connectivity domain. Furthermore,
high spatial similarity (78.65 ± 10.27%) between brain networks ob-
tained using the design matrices of the two sessions shows the consis-
tency of a design matrix over time in the connectivity domain. This
could be beneficial in longitudinal studies in which one is interested in
minimizing variations in healthy subjects across different time points.
This could make the connectivity domain analysis more useful in inves-
tigating brain functional alterations and plasticity.

With improving design and obtaining an acceptable model through
utilizing several data samples and incorporating statistical analysis, we
should be able to obtain RSNmaps of a dataset using a designmatrix ob-
tained from a different group's data. Although this is a preliminary study
without optimum design parameters such as seed choice, we observed
that we could obtain similar RSNs for an independent dataset with un-
known parameter information using the design matrix extracted from
the first session of the WSU dataset (Fig. 10).

We do note that the connectivity domain is affected by the choice of
the set of seed regions used to build the domain. Both the number of
seed regions and how they are selected are important parts of the con-
nectivity domain to be investigated. For instance, while we are interest-
ed in using a larger number of seed networks to retain maximum
information, we are also interested in using a smaller number of seed
networks so we can transfer the data to the connectivity domain across
studies despite a smaller number of time points. At the same time, both
size and location of seed regions will change the results and should be
selected carefully based on the particular goals of the study. Our primary
evaluations using different sizes of the same set of ROIs and different
sets of ROIs reveals that the size of ROIs andmore importantly the prop-
er location of corresponding seed regions among subjects influences the
results. The spatial similarity between brain networks obtained from
the same set of seed networks with different sizes was 97.19 ± 3.00%,
and the spatial similarity between brain networks obtained from the
two different sets of seed networkswas 91.33±4.09%. This is especially
important in connectomic studywhere identifying the fine-grained and
optimized locations of seed regions is necessary. Note that, although the
connectivity domain is biased toward selection of seed networks, this
bias is independent to the dataset, and it would have a similar impact
on all datasets. Since our aim for this study was to show the feasibility
of using the connectivity domain,we reduced the sensitivity to ROI loca-
tions by choosing large ROIs and using the average time series of all
voxels in each ROI to measure the functional connectivity map.

5. Future work

In order to optimize and improve the connectivity domain and its
application, the first step is to identify the optimized corresponding
seed networks across individuals. In choosing anatomical locations
across the brain as seed networks, the goal is to identify precise, small
seed regions, because each location of the brain could be involved in dif-
ferent functions than its neighbors. However, seed networks do not
need to be anatomical locations in the brain. Various types of seed selec-
tions approaches can be used to identify the seed networks. For exam-
ple, seed networks can be made from data-driven seeds or functional
seeds. Likewise, the bases of the connectivity domain can be obtained
from applying PCA or clustering techniques on the temporal informa-
tion of the data, as long as a measured connectivity index between

seed network time courses and spatiotemporal information is able to
represent similar characteristics across subjects. Therefore, the connec-
tivity domain can also be useful if we are interested in investigating the
interactions between brain networks at different levels of functional hi-
erarchy. Further studies are required to investigate the ability of the
connectivity domain in this aspect.

We do note that while, in this preliminary study, we have used the
correlation value as the connectivity index, the cross correlation is
merely one index among a wide range of mathematical indices which
can be used to reconstruct the connectivity domain, including canonical
correlation, mutual information, coherence, partial correlation, and in-
dices which have been used for effective connectivity studies. This pro-
vides us a unique opportunity to investigate the different types of
connectivity and their interaction with brain networks.

After we have identified the corresponding time courses related to
seed networks across subjects properly, the next crucial step would be
correctly estimating the true value for each array of the design matrix.
In other words, the contributions of seed networks to each brain net-
work. This can be achieved through measuring the design matrices ob-
tained from several datasets and performing statistical analysis to
identify seednetworks that significantly contribute to specific brain net-
works. This process is not only useful to extractmore accurate brain net-
works using model-based methods but also can be an essential
biomarker to discriminate between healthy subjects and patients with
different disorders.

We do note that the brain activity at rest has non-stationary behav-
ior and that understanding network dynamics is important to provide
rich characteristics of the brain (Calhoun et al., 2013, 2014). Although
we implicitly considered that brain functional behavior is constant dur-
ing the resting state in this study, the connectivity domain also offers a
new option to investigate the dynamic characteristics of the brain. For
example, one simple way is to use a sliding window approach and cal-
culate the connectivity weights for each interval. As a result, we can
evaluate alterations in RSNs and changes in contributions of regions to
RSNs over time.

6. Conclusion

In this work, we introduced a new domain, the connectivity domain,
to analyze rsfMRI data. We demonstrated several of the advantages of
analyzing rsfMRI data in the connectivity domain over the same analy-
ses in the time domain. The connectivity domain also offers a new path-
way to apply first-level model-based methods to rsfMRI data and
provides a unique opportunity to expand usage of feature-based data-
driven approaches, such as feature-based ICA, to the subject-level anal-
yses. Future applications of this domain for both data-driven and
model-based analyses will benefit from greater reproducibility and im-
proved ability to compare findings across datasets.Moving forward, this
new addition to the rsfMRI analysis toolkit will allow us to perform sup-
plementary assessments of both static and dynamic brain connectivity.
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