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Abstract

Bayesian inference has emerged as a general framework that
captures how organisms make decisions under uncertainty.
Recent experimental findings reveal disparate mechanisms for
how the brain generates behaviors predicted by normative
Bayesian theories. Here, we identify two broad classes of
neural implementations for Bayesian inference: a modular
class, where each probabilistic component of Bayesian
computation is independently encoded and a transform class,
where uncertain measurements are converted to Bayesian
estimates through latent processes. Many recent experimental
neuroscience findings studying probabilistic inference broadly
fall into these classes. We identify potential avenues for syn-
thesis across these two classes and the disparities that, at
present, cannot be reconciled. We conclude that to distinguish
among implementation hypotheses for Bayesian inference, we
require greater engagement among theoretical and experi-
mental neuroscientists in an effort that spans different scales of
analysis, circuits, tasks, and species.
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1 Derived from the latin phrase a posteriori, which Immanuel Kant defined as

knowledge that comes after empirical evidence has been considered. In the Bayesian

case, a posterior is subjective knowledge that comes after both the a priori knowledge

(or prior) and observations, in the form of likelihoods, have been considered. We

sometimes refer to these subjective probabilities as belief distributions.
Introduction
Behavioral repertoires tend to be rife with feats of
precision even though our observations of the envi-
ronment can be ambiguous and subject to various
sources of uncertainty. To mitigate such uncertainty, an

organism may exploit several sources of information
available to it. Normative theories enable us to better
understand this process by quantifying the relative
www.sciencedirect.com
influence of sources of information. For instance, we
can formalize previous experience with relevant vari-
ables as a prior distribution and can model uncertainty
in our measurements of these variables as a likelihood
function (For an in-depth review, see ref [1]). Having
defined these sources of information, Bayesian esti-
mation theory [1e5] prescribes how these two sources
of information, priors and likelihoods, could be com-
bined to generate a posterior distribution1 and
thereafter enables the derivation of an estimate that
minimizes some performance metric (e.g. expected
error) over the posterior. Bayesian theoretical frame-

works, therefore, provide a formal avenue for studying
whether an organism’s behavior adheres to rational
inference principles as it makes choices under uncer-
tainty [2,5e8].

The value of the Bayesian perspective lies in its
ability to confer function on seemingly inaccurate or
biased behaviors [9]. For instance, several studies
have demonstrated the consistency of time percep-
tion with Bayesian models, especially in tasks where
humans or monkeys must reproduce a previously

observed time interval [10e12] or aim to continue a
rhythmic beat [13,14]. When stimulus durations in
these tasks are sampled from a prior distribution, re-
sponses become biased toward the mean of the dis-
tribution. Bayesian models provide us with the insight
that such seemingly biased behavior could, in fact,
represent an optimal strategy that mitigates uncer-
tainty in measurements by leveraging prior knowledge
to minimize overall error. Along these lines, Bayesian
theory has helped in the characterization of numerous
behaviors in different species in the sensory [4,15e
21], motor [22e26], cognitive [9,27], and temporal
domains [10e14,28e31]. Notwithstanding skepti-
cism about the suitability of Bayesian models for
certain behaviors [32e34], recent developments in
modeling have expanded the considerations by which
we deem behaviors optimal or suboptimal, for
example, complex likelihoods, priors, and policies
[35e37], bounded computational power to perform
inference [38e41], and limits of learning strategies
[42e45]).
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122 Computational Neuroscience
Concomitant with the development of Bayesian models
that describe behavior, several theories emerged to
explain implementation mechanisms underlying proba-
bilistic computations in neurobiology, which span syn-
apses [46e48], circuits [13,49], and populations [50e
54]. Here, we focus on aspects of these theories that
pertain to similarly structured generative processes
(Figure 1), which model relationships between the

various elements used to carry out Bayesian inference.
On the empirical front, recent years have witnessed a
spate of findings [14,19,21,26,28,55,56] that investi-
gated the neural basis of behaviors consistent with
normative probabilistic theories. Moreover, other
experimental studies have recently uncovered neural
representations of individual components that could
underlie Bayesian computations [56e59]. These find-
ings relate to disparate behaviors in different species,
which are likely to engage various brain regions. In other
words, not only are we confronted with myriad empirical
Figure 1

Two perspectives on neural implementation of Bayesian inference. (a) Gener
corrupted by various sources of internal and external uncertainty to yield a nois
the measurement and prior knowledge of the real-world variable to elicit a re
understood in terms of two possible mechanisms. (b) Modular view. Top. The
pendently encoded and combined to generate a posterior distribution (green),
cost function. Bottom: This modularity can be thought of in terms of a feedfor
tributions are encoded independently and sequentially summed toward an out
knowledge and be combined with the rate after a sensory measurement (likeli
(t > 1). (c) Transform view. Top. The Bayesian estimate (e) is obtained by tra
function, which represents a continuous estimate of the posterior (green), car
Bottom: The fundamentals of this computation are captured well by a recurren
of prior and likelihood is distributed in circuit connectivities and dynamics. An es
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insights that require synthesis, we must also attempt to
interpret these under various computational models. To
address this many-to-many mapping conundrum, we
recommend a conceptual categorization that seeks to
simplify the interpretation of empirical findings under
existing proposals of neural instantiations of
Bayesian inference.

We propose two broad classes under which current
implementation theories can be understood. Under the
first class, which we refer to as the modular perspective,
the likelihood and prior are encoded as independent
entities and the mechanism entails a combination of
these components to enable full Bayesian inference [1]
(Figure 1b). The other case, which we call the transform
perspective, specifies how uncertain sensory measure-
ments can be directly mapped into Bayesian estimates
via latent processes within which prior distributions are
embedded. This process does not mandate encoding of
ative model. Real-world stimuli, received by the sensory apparatus, are
y measurement. In this scheme, the brain estimates the stimulus based on
sponse. Neural implementation of this inference process, f(m), can be
likelihood (orange), p(m|s), and prior distributions (blue), p(s), are inde-
p(s|m). An estimate (e) is derived from the posterior using an appropriate
ward network structure where neural firing rates representing belief dis-
put. For example, the rate at an earlier time, r(t = 0), would represent prior
hood) is made, r(t = 1), then subsequent activity could reflect the posterior
nsforming an uncertain measurement through a function ftransform(.). This
ries within it a representation of the likelihood (orange) and prior (blue).
t network/circuit model. Measurements arrive as inputs while the encoding
timate of the posterior (e) can be obtained through an appropriate readout.
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Figure 2

In the modular scheme for Bayesian inference, (a) the prior and likelihood are independently represented and then combined to generate the posterior
distribution. We highlight two recent works that represent this view. (b) Recent work (Figure adapted from ref [26]) studying smooth pursuit behaviors in
monkeys has shown that preparatory neural activity of frontal eye field neurons (example of firing rate in the panel below) before the presentation of the
stimulus reflects the prior distribution and hypothesizes, using a variant of the PPC model, that higher visual cortices provide a signal representing
sensory likelihood. Neural activity modulation during the behavior (orange arrow within the shaded region in the panel below) was consistent with the
Bayesian estimate (not shown here. For details, consult the study reported by Darlington et al. [26]). This scheme reflects independent representations of
various components of the Bayesian computation and appears to be consistent with the modular view. (c) Other recent work (Figure adapted from ref
[56]) tests the assumptions underlying PPC, examining whether a monkey utilizes information of the full likelihood (bottom-left) decoded from the primary
visual cortex in a trial-by-trial manner to make a decision. The full likelihood model better predicted trial-by-trial behaviors of animals than the alternative
model with fixed uncertainty (bottom-right).
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probabilistic distributions on each trial, which may not
be necessary for certain tasks and can be resource-
intensive for circuit implementation [60]. This

implementation-based dichotomy might aid in inter-
preting existing insights while potentially refining
empirical hypotheses of Bayesian theory for different
circuits, species, and tasks.
Bayesian modular perspective
In this class of neural implementation, probabilistic
computations are carried out using independent repre-
sentations of likelihood, prior, and posterior distribu-
tions, followed by the generation of an estimate2

(Figure 2a). Two prominent frameworks address path-
ways toward such an implementation. The
first, probabilistic population coding (PPC) [61e63]
formalizes how optimal inference ensues from popula-
tion coding of belief distributions, which when linearly
combined provide a close approximation to the
2 Through the choice of an appropriate cost function. For more details see the study

reported by Ma and Jazayeri, Jaynes, Kording and Wolpert, Knill and Richards, Ma,

Berger, and Kersten Refs [1e7].
3 Under the assumption of Poisson-like neural variability. For more, see ref [38].

www.sciencedirect.com
implementation of the Bayes rule.3 Important features
of PPC that are consistent with the modular view are
independent representations of likelihood functions

[56] and prior knowledge4 in population codes, thus
supporting flexible updates of trial-by-trial uncertainty.

Three recent studies in nonhuman primates reported
findings consistent with the predictions of PPC in
different circuits and behaviors, providing support for a
modular implementation. The first of these studied
smooth pursuit behaviors, where monkeys followed a
moving target, whose speed was drawn from different
prior distributions and whose reliability was modulated
by changing contrasts [26]. The monkeys’ pursuit

behavior was consistent with the predictions of Bayesian
inference, and the authors discovered that preparatory
activity in the frontal eye fields encoded information
about the prior distribution (Figure 2b). Moreover, the
neural activity in the same area, during the pursuit
behavior, encoded an estimate of target speed that was
consistent with a Bayesian estimator. This echoes the
4 The logarithm of the prior, in many cases.
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124 Computational Neuroscience
tenets of the modular view by demonstrating indepen-
dent observability of prior knowledge before its combi-
nation with sensory measurement. Furthermore, authors
showed how a linear PPC model supports their findings
(Figure 2b). Similar findings pertaining to prior knowl-
edge being reflected in preparatory activity have been
reported in different species, areas, and tasks [59,64],
which raises possibilities about the generality of such

modular computations. The second study [55] consistent
with predictions of PPC examined activity of neurons in
the lateral intraparietal (LIP) cortex of monkeys
performing a multisensory decision-making task.5 Here,
monkeys were trained to judge perceived heading based
on direction of vestibular (inertial cues) and visual (optic
flow) stimuli. Lateral intraparietal neurons integrated
visual stimulus velocity and vestibular acceleration over
time in a manner consistent with linear PPC models,
which as shown previously, implements a Bayes optimal
solution [63,65]. These findings echo similar results ob-

tained in earlier work [66] and argue for independent
representations of likelihoods in different areas.

The third recent study [56] provides empirical evidence
about the independent probabilistic encoding of likeli-
hoods (Figure 2c). Monkeys were trained to perform a
visual orientation discrimination task that required trial-
by-trial use of stimulus uncertainty, thereby providing
an incentive to retain a full representation of the like-
lihood function. Using a Bayesian decision model and
machine learning techniques, the authors showed that

the full likelihood function can be decoded from pop-
ulation activities in the primary visual cortex. Further-
more, the full likelihood model better predicted trial-
by-trial behaviors of animals than the alternative
model with fixed uncertainty. This work demonstrates
how representations of entire likelihood functions can
be encoded neural populations, thereby providing sup-
port for the PPC framework and the modular view.

The second neural implementation framework that has
the potential to support modular probabilistic repre-
sentations is sampling codes [51,67,68]. In this scheme,

neural activity at a given point is assumed to be a sample
of a probability distribution and neural variability across
time reflects the uncertainty in the stimulus [69].
These predictions are consistent with the modular view
in certain ways. For instance, neural responses in the
ferret primary visual cortex confirmed model predictions
of how spontaneous activity of neurons represented
samples from a prior distribution, whereas responses
that occured after sensory stimuli (observation) re-
flected samples from a posterior [21]. Another impor-
tant feature of the sampling-based model is that neural
5 This study does not directly test Bayesian aspects of learning and is an example of

multisensory integration. The framework used in this study (PPC) proposes how

different sources of information can be combined in accordance with their reliability

and although not highlighted in this specific study possesses the capacity to explain

implementations of Bayesian integration [63].
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variability is a direct consequence of probabilistic
computation, not a nuisance feature in neural circuits,
and therefore needs to be flexibly controlled depending
on the stimulus uncertainty. Recent work [68] demon-
strated that a computational model based on an
excitatory-inhibitory motif could achieve such flexible
control of neural variability, providing mechanistic ac-
counts for several properties of cortical dynamics

including stimulus-driven reduction of neural variability.
This work provides a pathway to how biologically real-
istic circuits could perform Bayesian inference using
sampling-based codes.

To summarize, modular implementations of Bayesian
inference support independent representations of prior
distributions and likelihood functions. Such imple-
mentations can sustain flexible computations with
multiple representations and can support rapid
sequential inference [70,71]. For several tasks, however,

encoding full representations of priors and likelihoods
can prove to be resource-intensive and inefficient
[60,72]. Precluding the need for rapid trial-wise flexi-
bility, one efficient solution would entail the implicit
encoding of priors such that any observation may be
nonlinearly transformed into a Bayesian estimate
[10,60,73]. We explore this class of implementations in
the next section.
Bayesian transform perspective
The transform view makes the assumption that neural
mechanisms underlying Bayesian computations carry
out an inputeoutput transformation that encodes rele-
vant belief distributions from which a Bayesian estimate
can be derived [10,60]. Particularly compelling theories
that support the Bayesian transform view are recent
instantiations of efficient coding theory with heteroge-
neous neural populations that embed representations of
prior knowledge within them [53]. This theory has
found support in empirical evidence from human visual

behavior [17], auditory behaviors in owls [20], primate
temporal perception [28], and associative learning [13].
At a conceptual level, this theory aligns with the trans-
form view because it predicts that latent encoding of
priors in neural substrates facilitates a transformation of
incoming observations into Bayesian estimates, which
distinguishes itself from the independent encoding of
full belief distributions and computations carried out
under the modular view.

The transform view (Figure 3a) can be best understood

from two vantage points, the level of collective dynamics
of neural populations [28] or at the level of prior knowl-
edge embedded in local circuits [13,49,53,74]. Beginning
from the population viewpoint, recent advances in
neuroscience have enabled the recording of hundreds of
neurons as animals perform behavioral tasks [75]. Recent
studies have provided a glimpse into how neural
www.sciencedirect.com
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Figure 3

The Bayesian transform scheme. (a) An uncertain sensory measurement can be transformed into a Bayesian estimate by means of a nonlinear
deterministic mapping f(.). (b) In a recent study [28], monkeys were trained to reproduce observed time intervals, which were sampled from two prior
distributions, short (warm colors) and long (cool colors). Because response variability increases with duration, Bayesian models predict larger biases for
longer priors, which were observed in behavioral responses. (c) One hypothesized mechanism by which such biased responses could be generated is
the warping of neural population dynamics during interval measurements into semicircular geometries. Linear projections of these geometries onto their
own diameters yield states that become compressed toward the mean of the prior. If these readouts are used to generate behavioral responses, these
responses will also be biased toward the mean of the prior. (d) Neural population dynamics of the dorsomedial frontal cortex (DMFC) exhibited different
curved geometries for each prior, which when decoded (circles) matched the biases predicted by Bayesian models (lines) [28]. Because representations
of likelihoods and priors are entangled, this form of implementation is consistent with the transform view. (e) A biophysical model for the Bayesian
transform in cerebellar circuits [13]. A biophysical model (TRACE) that provides a basis for how synaptic plasticity dynamics in the form of long term
depression (LTD) and long term potentiation (LTP) occuring at the confluence of parallel/climbing fiber inputs at the Purkinje cells of the cerebellar cortex
can encode likelihood functions ri(t) and priors p(s(t)). (f) This implementation strategy is consistent with the transform view because measurements
arriving through the parallel fibers are transformed by the prior knowledge embedded in synaptic weights wi(t), giving rise to the Bayesian estimate. (g)
The output of the TRACE model is consistent with Bayesian models and deviates significantly from non-Bayesian models such as maximum likelihood
estimation (MLE) as measured by the overall error of timing responses (root-mean-squared-error; RMSE). Error bars represent standard deviation.
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populations perform task-relevant computations within
the activity state space spanned by a large set of neurons
[76e80]. An important insight gained was that although

the full neural state space occupies a high-dimensional
space, projections of neural activity onto a low-
dimensional, behaviorally relevant subspace can provide
substrates for inputeoutput transformations [81].

To illustrate this in light of the Bayesian transform view
(Figure 3a), we examine a recent study where monkeys
observed time intervals and then waited for a matching
duration before responding [28]. When stimulus in-
tervals across trials were sampled from different prior
distributions, monkeys’ waiting times were found to be

biased toward the mean of the prior distribution
(Figure 3b). Because timing responses become more
variable with longer durations [82], Bayesian models
predict greater uncertainty in likelihoods associated
with long durations, and consequently, greater bias
toward the mean [10]. This prediction was tested by
using two prior distributions with short and long dura-
tions. During the task, neurons in the dorsomedial
www.sciencedirect.com
frontal cortex modulated differently during the range of
each prior, which when viewed collectively in neural
state space, manifested as semicircular population tra-

jectories with different curvatures for each prior
(Figure 3c and d). The study reports that when neural
states were projected linearly onto the diameters of
these semicircular trajectories, the resulting states
became compressed toward the mean of the prior
(Figure 3c). They predicted, the greater the compres-
sion in projected neural states, the larger the expected
bias toward the mean in the behavior. These predictions
were borne out in comparisons with Bayesian models
and the monkeys’ behavior (Figure 3d). Recurrent
neural network models, which recapitulated the ani-

mals’ behavior and dorsomedial frontal cortex popula-
tion dynamics, helped further test this hypothesis by
enabling direct perturbation of the subspace occupied
by the semicircular population trajectories, which when
compressed elicited larger behavioral bias [28].

The modus operandi uncovered in these neural dy-
namics represents a deterministic transformation of an
Current Opinion in Neurobiology 2021, 70:121–129
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uncertain time measurement into a Bayesian estimate,
which represents the mean of the posterior. It, there-
fore, supports a mechanism that best reflects the
transform class. Although this study did not directly test
the assumption, the mechanism elucidated in this work
shares many similarities with the theoretical framework
called distributed distributional code (DDC), which
does not require full probabilistic representations but

uses statistical moments of the prior distribution
[52,83]. Furthermore, DDC proposes a linear readout to
estimate the mean of the posterior, which is consistent
both with the population mechanism and type of
Bayesian estimator described in the aforementioned
study [28]. For these reasons, we propose that DDC is
well-aligned with the transform perspective. Further
work is needed, however, to develop a quantifiable
approach to interpret different model frameworks and
experimental findings under the modular or trans-
form classes.

On the issue of flexibility underlying Bayesian trans-
forms, recent experimental evidence elucidates how
transform class mappings can be sensitive to changes in
the relative reliability of likelihoods and priors [14]. In
this study, monkeys were trained to make two time
measurements before reproducing an interval, whereas
time intervals across trials were sampled from a prior
distribution. The task employed, therefore, jointly tests
within-trial decrease of measurement uncertainty and
across-trial influence of prior knowledge. In accordance

with predictions of Bayesian estimation theory, neural
states decoded from responses in the DMFC were
biased during the first time measurement and decreased
their bias during the second measurement, consistent
with normative expectations of a corresponding
decrease in uncertainty. This work demonstrates that
parameters underlying such Bayesian transforms can
flexibly adapt to changes in uncertainty. Other recent
work has also explored neural correlates of flexible
sequential Bayesian computations in rodents performing
a spatial navigation task under sensory uncertainty [19].

The second vantage point through which the transform
view can be considered is that of synaptic connectivity.
Recent attempts have aimed to uncover mechanistic
origins of Bayesian inference by studying how prior
knowledge can be encoded in synaptic connectivity
[13,49]. One of these studies provides the basis for
learning and encoding of prior distributions over time
intervals across the synaptic weights of the principal
cerebellar neurons, Purkinje cells. The authors propose
a computational mechanism by which cerebellar mi-
crocircuits transform incoming temporal measurements

into states consistent with Bayesian estimates
(Figure 3c). Conceptually, this work is consistent with a
recent efficient coding hypothesis [53] that describes
how neurons tune their activity to reflect prior
Current Opinion in Neurobiology 2021, 70:121–129
knowledge in order to maximize information content. It
is worth noting that this circuit model [13] and theo-
retical framework [53] were developed to explain
Bayesian inference for entirely different systems (cere-
bellum vs visual cortex) and tasks (timing vs visual be-
haviors) and yet share many common mechanistic
features. Within the transform perspective, these un-
expected similarities highlight the potential for gener-

alizability of mechanisms for Bayesian inference across
different tasks and regions.

In summary, the transform view emphasizes that belief
distributions need not be independently encoded in
neural circuits to give rise to Bayesian estimates. When
trial-wise flexibility is not a prerequisite, neural circuits
can efficiently render measurements into Bayesian es-
timates through latent processes that encode
prior knowledge.

Synthesis and divergence
Having examined various recent works on neural
implementations of behaviors consistent with Bayesian
inference, we ask whether the modular or transform
views are entirely distinct or whether they can be
synthesized under a broader overarching idea. A point
of divergence arrives when we turn our attention to the
site of encoding of prior knowledge in the neural cir-
cuit. For instance, regarding the study by Darlington

et al. [26], we hope future work can elucidate whether
prior knowledge is embedded in the synaptic weights
of the frontal cortex (transform view) or encoded in a
different area from where the preparatory signal is
inherited (modular view). In other words, is the pre-
paratory activity reflecting prior knowledge also the key
driver behind Bayesian computations [21,59,64], or is it
an epiphenomenon while the latent transform within
the synapses provides the key mechanism
[13,49,74,84]? Resolving this distinction [85,86] may
require technological advances in our ability to directly

observe the influence of synaptic weights on a large
scale and measure interareal inputs. At the population
level, we may also hope for the means to dissociate
latent population dynamics into their individual bio-
physical and cell-type interactions to bridge the two
vantage points within the Bayesian transform
perspective by leveraging recent advances in theory
[87,88]. On the empirical side, it is interesting to note
that while the toolkit for circuit interrogation to test
these distinctions is currently available in rodent
animal models, almost all the studies mentioned here

were performed in nonhuman primates, where our
ability to study circuits, cell types, and anatomy is
significantly curtailed. Achieving these kinds of
reductionist unifications will not only require us to look
across species, it will also require theory and experi-
ments to bridge insights across cellular, circuit, and
population scales.
www.sciencedirect.com
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One point of synthesis arises naturally when considering
the possibility that the brain may adopt both modular and
transform strategies depending on task demand and
computational power of the local task-relevant network.
If optimal behavior in a task requires constant monitoring
of uncertainty in variables [70,71], it makes sense to
independently encode such variables in circuits [56], as
the modular view purports. On the other hand, if stable

learning of environmental statistics is sufficient to opti-
mally perform the task, latent encoding of environmental
statistics into the circuit may provide the most efficient
solution, as captured by the transform view [53]. An
important metric that allows us to gauge task demands
and computational power is the expected dimensionality
incurred by a task of given complexity in the neural state
space [76]. For instance, a neural network that performs a
Bayesian transformation for one task with low demands
for flexibility will potentially occupy a lower-dimensional
space than a network that performs modular Bayesian

computations with independent representations of like-
lihood functions, prior, and posterior distributions. In silico
investigations in recurrent neural networks may allow us
to determine whether the same network can be trained
to implement higher or lower dimensionality solutions
that enable the switch between modular and transform
instantiations along a spectrum. One important question
that arises is how the brain might arbitrate between these
two approaches across different brain regions given the
discovery of high dimensional encoding of stimuli in
sensory cortices [89,90] versus low dimensional encoding

of tasks associated with frontal and motor cortices
[77,78,91e99].

In conclusion, neuroscientists are increasingly
embracing the need to rigorously quantify behaviors in
pursuit of their underlying neural mechanisms [100].
Modeling behaviors with normative theories can further
aid this effort by providing simultaneous constraints
over both behavior and neural mechanisms, potentially
increasing our ability to discover general principles of
neural function. Future work in this domain will benefit
from continuation of the recent tradition of interaction

among theorists and experimentalists working together
at the population [26,28,55,56], circuit, and cellular
levels [13,48,49] across different animal models [20,21].
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