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Asymptotic form of the penetration probability of the quantum harmonic
oscillator into the classically forbidden region

D. E. Atems and J. M. Wadehra

Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202

(Received 18 July 1994; accepted 18 October 1994)

The penetration probability of the quantum harmonic oscillator into the classically forbidden region
is examined in the limit of large quantum numbers using analytical methods. An expression is
derived for the asymptotic form of the penetration probability, and is shown to be in good agreement
with an earlier result obtained by numerical methods. The asymptotic form of the probability density
in the region between the classical turning points is also presented and found to have a simple
physical interpretation. © 1995 American Association of Physics Teachers.

The harmonic oscillator is one of the most ubiquitous and
useful idealizations in physics and physical chemistry, and
both its classical and quantum versions have been studied
extensively. Surprisingly, however, little seems to be known
about the quantum mechanical probability P(n) of finding
the oscillator outside the classical turning points when the
quantum number # is large, notwithstanding the obvious ex-
pectation, based on the correspondence principle, that this
probability must somehow tend to zero as the quantum num-
ber tends to infinity. A recent article! presented a conjecture,
supported by a purely numerical investigation, that this prob-
ability has the asymptotic form

P(n)=A(n+1/2)_1/3—B(n+1/2)‘1+... (1)

as n—o, with A=0.133 970 and B~0.011 907. The
main purpose of the present article is to derive an asymptotic
formula for this penetration probability using an analytic ar-
gument based on the behavior of the harmonic oscillator
eigenfunctions in the vicinity of the classical turning points
for large quantum numbers. It will be shown that this result
is identical in form to Eq. (1). Closed-form expressions will
be derived for the coefficients A and B, and their values will
be found to be quite close to those quoted above. The deri-
vation will also yield the order of the first neglected term;
this result will be discussed with the help of a numerical
analysis. As a further demonstration of the usefulness of the
asymptotic forms of the harmonic oscillator eigenfunctions,

443 Am. J. Phys. 63 (5), May 1995

a formula for the quantum probability density inside the clas-
sical turning points in the large-n limit will be briefly derived
and seen to have a simple physical interpretation.

The energy eigenstate of the quantum harmonic oscillator
corresponding to the quantum number n has energy
E,=(n+1/2)hw relative to the potential minimum, and the
corresponding normalized eigenfunction is given by

()= (21 Tmxg) V2~ RH (x/x,),

where the H, are the Hermite polynomials, and
xo= V#i/mw. The classical turning points occur at

x=%+2wxq,

where for convenience, both here and later, we put
v=n+1/2. The probability of finding the oscillator outside
the classical turning points is therefore

w©

P(n)=2f

dx|,(x)|?
s 510

=2(2"n! \/;xo)_lf 45 €I H () P
on

or, changing the variable of integration from x to y=x/x,,
P(n)= m — f " dy e [H, ()P
(n)_znn! \/; v ye [ n(y)] . (2)
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The mtegral on the right-hand side of Eq. (2) can be
expressed as a finite sum involving associated Laguerre
polynomials and the complementary error function. How-
ever, for present purposes (investigating the large-n limit), a
more fruitful approach is to directly substitute into the inte-
grand of Eq. (2) a suitable asymptotic representation of the
Hermite polynomials. It w111 be convenient to make use of
the following relationship? between the Hermite polynomials

H,(y) and the associated Laguerre polynomials L /%(y?):

H,(y)

n cven

(_l)n/22n(2) "/%/Z(yZ)

n—1
(- 1)(n 1)/22n( 3 )!yL(” 1)/2(_)’ ), n odd
(€)

Substituting these relations into the integrand of Eq. (2),
one obtains

L 2 —YZ[H 2
281 Fe n(Y)]
I'(v/2+3/4)

m ) [Ln/;/Z(yz)]z’ n even

T roe+i4)
T ¢ VL), n odd
4)

The convenience of this form lies in the fact that there is
an asgfmptotlc expans1on, involving powers of v, of the

L5 (y*) in the vicinity of the turning pomts at y2=2v. De-
fining a new variable & by the relation y>=2v(1+v~*3¢),
this expansion can be expressed as

e V2L () =(~1)"2"® ‘”3[A1(§—-[ EAi'(§)

+

§+ a) I3 Ai(g)] v-2/3+0(v—4/3)], (5)

where m=n/2 or (n—1)/2 accordmg as n is even or odd,
Ai(g) is the Airy function, defined* in terms of the modified
Bessel function K /3(z) as

1 2
Ai(§)=; \/§K1/3(§ 53/2), (6)

and the prime denotes differentiation with respect to the ar-
gument. Substitution of Eq. (5) into Eq. (4) then leads, with
the help of the asymptotic form of the ratio of two Gamma
functions,

I'(z+a)
T'(z+b)

—a—b

1+ 51; (a—b)(a+b—1)+0(z_2)],

to the following expansion of the integrand in Eq. (2):
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1 2 2
7l Vo eV [H,(»)F

=2(ZV)”2[Ai2(§)v_2’3—['§— & Ai'(HAi(¢)

.y Ai2<§>]v-4/3+0(v-2>], ™

which holds for both even and odd n. It is readily verified
numericaily that for sufficiently large n, the approximation
afforded by the two explicitly given terms of this expansion
is extremely close to the exact integrand. For n=50, the two
quantities differ by less than 1% over the range of x respon-
sible for over 99% of the contribution to the integral itself.

If Eq. (7) is substituted into Eq. (2), then after changing
the integration variable from y to £ the penetration probabil-
ity becomes

P(n)=2J?d§[1—% v_2/3§+0(v‘4/3)}

2
X Aiz(f)v_m—[g £ A (DAI(§)

+ 15 £ AR(D v'1+0<v—5/3)}, ®)

where the first factor in parentheses under the integral sign
results from expressmg dy as a function of £ and expanding

in powers of v %3£° Termwise integration of Eq. (8) then
leads to

4 6
P(m)y=~20,v"P—| o L1+ - L |v 1+ 0(»™7)
s

5

with
© 31/3 2 2
ne [ astor= 3 o5
=fwd§ £ AP(H)= —
0 671';}3’

- f:dg £ A(DAI(E)=— f:dg £AR(E)=—1,,

where the second equality on the last line follows by partial
integration. The integrals I, and I, are easily evaluated using
the standard form’

jdxx" 1K2(x)—2a—3 (am)r(ﬁ— )
T(a) \2 2

a 2
2
and the definition (6) of Ai(¢). The asymptotic form of the
penetration probability is thus found to be approximately
P(n)~A(n+1/2)"1"3*=B(n+1/2)71
+0[(n+1/2)737] 9)

X|T

with
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Fig. 1. The absolute error &n) for n=>50, 60, 70,..., 350, 400, 500, and the
straight line passing through the origin and the point corresponding to
n=500.

31/3 2
A= ) lr(g)] ~(.133 975,

. (10)

= ~0.012 252,
15m7y3

in good agreement with the values quoted in the first para-

graph of this article, which were obtained by numerical

methods.

Note that the O term in Eq. (9) comes directly from the
asymptotic expansion (7) of the integrand in Eq. (2). It is of
interest to examine the absolute error in the first two terms of
Eq. (9). Denote this quantity as (n); i.e., define

8(n)=P(n)—A(n+1/2)""*+B(n+1/2)"". (11)

In Fig. 1 the absolute error is plotted against (n+1/2) >/
for n=50, 60, 70,..., 350, 400, 500 using the coefficients A
and B given by Eq. (10). The values of P(n) were obtained
by numerical mtegratlon of the right-hand side of Eq. (4)
with respect to y%, using Sll]‘lpSOll s rule, on a grid of step
size 0.01, in REAL*8 precision on a SGI Iris Indigo com-
puter. The associated Laguerre polynomlals were generated
using a standard recurrence relation.® The solid line in the
figure is defined by connecting the last point in the set (i.e.,
n=500) to the origin. It is noteworthy that for =100, all
of the values of §(n) lie very nearly on this line, a fact which
is consistent with the O term in Eq. (9).

It is also interesting to consider the probability density in
the state i, inside the classical turning points. In elementary
textbooks on quantum mechanics® one often sees plots like
the one in Fig. 2, showing, for some large value of n (in this
case n=50), the probability density as calculated from quan-
tum mechanics, compared with the corresponding classical
probability density

P y(x)= 71'—1(21/x3--x2)_1/2 (12)

for a harmonic oscillator of the same energy.!® Intuitively
one sees that the “envelope” of the quantum curve follows
the classical curve more and more closely as n increases.
This can be seen analytically as well; yet this fact is not
shown in any textbook of which the authors are aware.
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Fig. 2. The dimensionless probability density x| ,(x)|? of a quantum har-
monic oscillator for n=50, and the corresponding probability density
7~} (2v—x/x3) "2 for a classical oscillator of the same energy.

The asymptotlc series [Eq. (5)] is one of a collection of
expansnons each of which describes the behavior of the

L2(y?) for large order in a different subdomain of the argu-
ment. For the subdomain oorrespondlng to the region inside
the classical turning points, i.., 0<y?<2v, one has

™" PLE(y?)=2(—1)™(2 cos 6) (2w sin 26) "
. T 0 -1
X1 sin| el I
(13)

where y = \/5 cos @ and, as before, v=n+1/2 and m is
n/2 or (n—1)/2 according as n is even or odd, respectively.
It is then readily shown with the help of Eq. (4), using an
argument completely analogous to the one leading to Eq. (7),
that

1
V( 0—§sin 20)+

1
|¢n(x)|2=m e~ = H, (x/x0)]?
Imxg

1
= mxo(2v) 7% sin @

1
Xi2 sinzlv( 60— — sin 20) +

. -1
2 Z +0(v™Y)

2

1 o
=Pc1(x)|2 sin? v( 6— = sin 20) +7 +0(v‘1)}

(14)

as n—, Thus to leading order, the quantum probability
density inside the classical turning points is indeed, for large
quantum numbers, a rapidly oscillating function modulated
by a more slowly varying envelope consisting of its classical
counterpart.

In conclusion, we have analytically derived an asymptotic
formula for the penetration probability of the quantum har-
monic oscillator into the classically forbidden region for
large quantum numbers, and seen that it is in reasonably
good agreement with an asymptotic formula obtained
previously’ by numerical methods. We have also used a nu-
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merical calculation to support the derived order of the error
in the first two terms of this formula. We cannot, at present,
supply a meaningful physical interpretation for this asymp-
totic form.'" Finally, we have shown that the leading-order
term in the asymptotic expansion, for large quantum num-
bers, of the quantum probability density inside the classical
turning points has a form which is readily understood physi-
cally in light of the correspondence principle.
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This paper elucidates how many-particle quantum hydrodynamic equations underlie the virial
formula, including its surface pressure term. It shows the relation of the field variables to the particle
Wigner function, proposes a many-particle “liquid” model to approximate these variables, and
discusses its application to electrons in semiconductor nanostructures. © 1995 American

Association of Physics Teachers.

Virial theorems, a recurring topic in this journal, are in-
structive and useful. The recent paper by Muga' discusses
time versus ensemble averages in a many-particle version. It
additionally draws attention to the seemingly anomalous sur-
face term that appears when ({[A,B]|¢), the Schrodinger
evaluation of a commutator, is integrated over a finite enclos-
ing space with the usual “confinement” boundary conditions
for the wave function . In particular, when A and B are,
respectively, the particle Hamiltonian and the symmetrized
product of position and momentum vectors, as in the com-
mon derivation of the virial theorem by means of quantum
operator algebra, this anomalous contribution from the
bounding surface is then the “missing” pressure term of the
classical formula. Its mathematical origin is a divergence be-
tween formal representation theory, according to which the
expectation of any such operator commutator is zero, and the
explicit evaluation in terms of a Schrodinger wave
function.”* The present communication outlines a correct
derivation of the virial formula in terms of “hydrodynamic”
field equations (including a time-dependence term), and con-
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siders the adaptation of these underlying equations to the
analysis of electron flow in semiconductor structures such as
nanostructures.

The Hamiltonian assumed is the many-particle

H=(R*2M)3,p>+ U(r; - -1y), 1)

where the sum is over the N particles. (The masses are taken
to be all equal, as will be the case for identical particles.) It
may (but need not) be assumed that the potential is given by
U=U;+Uy, the sum of a single-partticle term
U;=3,W,(r,) and a pair term Uy=3,,,, W,(r,,). For the
state with wave function yAr;---ry), the single-particle den-
sity may be written

w(r)=2,1,y*¢ @)
and the momentum density of the particle flow similarly
()= 3hZ L (V™ = * V), 3

where I, means integration fd°r;--- [d’ry over the finite do-
main (N — 1) times, for all of the r,, except r, , then dropping
the subscript of r, . From the Schrodinger equation ifi dys/ 9t

© 1995 American Association of Physics Teachers 446



	Wayne State University
	1-1-1995
	Asymptotic form of the penetration probability of the quantum harmonic oscillator into the classically forbidden region
	D. E. Atems
	Recommended Citation


	tmp.1474998350.pdf.GAhTT

