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NUMBER 10 15 MAY 1975

Theory of impurity-induced infrared absorption in cubic crystals

S. S. Jaswal and J. M. Wadehra*
Behlen Laboratory of Physics, University of Nebraska, Lincoln, Nebraska 68508
(Received 5 June 1974)

A method to calculate the infrared absorption due to a very low concentration of defects in a
diatomic cubic crystal is developed directly from the basic absorption equation in quantum mechanics
when the impurity produces changes in mass and short-range force constants. It is shown that the
absorption is due to the modes of T';, symmetry about the defect and is proportional to the square of
the projection of the amplitudes of the ions in the defect space onto the transverse-optic modes at the
zone center as determined by the perturbation. A procedure to calculate the amplitudes of the ion in
the defect space for a given mode is outlined. The present method gives more physical insight into the
problem than most of the Green’s-function formalisms used in the field.

Several authors have studied theoretically the
problem of infrared absorption due to a very low
concentration of impurities in a crystal using vari-
ous Green’s-function formalisms of the many-body
theory.!=% Following our work on the mass-defect
problem® we develop here a method to calculate the
infrared absorption in a crystal due to a very low
concentration of impurities directly from the basic
absorption equation given by Lax and Burstein’
when the impurity involves changes in the mass as
well as short-range force constants.

Martin* has essentially shown that, for the wave-
length of electromagnetic radiation very long com-
pared to the interatomic spacing, the absorption-
coefficient expression of Lax and Burstein’ reduces
to
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for phonons in the harmonic approximation, where
D is the defect concentration, #n(w;) is the index of
refraction, c is the velocity of light in vacuum, #n.
is the long-wavelength limit of the high-frequency
index of refraction, X is the unit vector in the di-
rection of polarization of the incident electromag-
netic radiation, ;(lxl f) is the amplitude of the kth
ion in the /th unit cell corresponding to the impuri-
ty-mode frequency wy, e, is the charge on the «th
ion, and g(wy) is the phonon density of states. This
expression is expected to give reasonable results
for frequencies away from the restsrahlen band.
For a very low defect concentration n(w;), #7. and
the density of states (except for the local modes)
of the imperfect crystal are essentially the same
as those of the perfect crystal. Thus the effect of
the impurity on the infrared absorption is contained
in

a(wf) =

|- Zezandn|

which is the square of the projection of the dipole
moment of the imperfect crystal on the direction
of polarization of the incident radiation. We out-
line below a method to calculate this quantity.

Xo(lk1f) is determined by the equations of motion
of the perturbed crystal,
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where M, is the mass of the kth-type ion in the
perfect crystal, R (AN .) are the force constants of
the unperturbed crystal, and A,4(3%) is the per-
turbation due to the change in mass and force con-
stants, i.e.,

w mw
Adﬂ(l{l{’) Ad)aﬂ( KkK! ) - wgéaBéll’ GKK'AMK .

The Greek subscripts «, B, etc., refer to the three
Cartesian axes x, y, and z. Interms of the
Green’s functions of the perfect crystal and per-
turbation A, the amplitude is given by

x=Gax ®3)

in matrix form, The Green’s-function matrix Gis
given by
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where N is the number of unit cells in the crystal,
&(xl k) and w,(k) are the eigenvectors and eigenfre-
quencies, respectively, of the pure crystal corre-
sponding to wave vector K and the phonon disper-
sion branch j, and ¥(}) is the equilibrium position
of the «th ion in the /th unit cell.

The frequencies of the impurity modes are given
by the secular equation
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|1-Gaf =0. ()

This can be block diagonalized by the symmetry
coordinate matrix, and one gets the secular equa-
tions of lower dimensionalities corresponding to
the various irreducible representations of the point
group of the impurity.

Now from Eq. (3) we have

E Xy(lKIf)_ E Gws(ll’u wf)Aex<l:l’/’,>Xx(l" "1h.
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After some simplifications Eq. (6) becomes
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S(,4)= - Z eEUC ) (8 05
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For a diatomic ionic crystal

2
= |8 2 ezl )| =
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(8)
where ey, the magnitude of the effective charge
on each ion, including the impurity in the crystal,
is assumed to be the same throughout the crystal.
Since the electromagnetic radiation is transverse
in nature, Eq. (8) can be written as
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FIG. 1. (a) Impurity (I) and its six nearest neighbors

(1,2,+ * +,6) in a NaCl-structure crystal; (b) impurity ()
and its eight nearest neighbors (1,2, +,8) in a CsCl-
structure crystal.

8(+1%) (=192
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where the summation is over the transverse-optic
(TO) modes at the I" point (k=0). For a diatomic
cubic crystal and a TO branch

B8+1D) &(-1D|2 M.+M,
JM, JM_j STMLM, (10)
Therefore
A=(fe°““ ZIS(f,J)I2 (11)
where
(K ]J) Ay
S(f, )= Z + DL o (A X)L (12)

We find from Eq. (11) that the problem of getting
absorption coefficients boils down to calculating
S(f,7). For the impurity involving the mass change
and the changes in short-range force constants A
is a relatively small matrix involving the impurity
and some of its neighbors. Thus S(f,j) is deter-
mined by the amplitudes of the impurity and its
neighbors affected by the perturbation. Hence the
infrared absorption due to an impurity in a crystal
depends on the projections of the impurity-mode
amplitudes of the ions in the defect space onto the
corresponding TO mode amplitudes at the I' point,
as determined by the perturbation A.

Group theory can be used to simplify the calcu-
lation of S(f,j). We see from Eq. (3) that the nor-
mal modes of the imperfect crystal can be classi~
fied in terms of the irreducible representations of
the symmetry coordinates of the ions in the defect
space. With the perturbation limited to the nearest
neighbors of the impurity, the defect spaces for
NaCl structure and CsCl structure are shown in
Fig. 1. If we denote the displacements of the im-
purity (Z) and its neighbors (1,2, ...) by &, &,

%, etc., the vector spaces formed by these dis-
placements for the two structures transform ac-
cording to the following irreducible representations

of the 0, group:

T'(NaCl)=Ayo+ Eg+ Ty + 3T y+ Tog+ Tay

T'(CsCl)=A,+ A+ Eg+ Ey+ Tyg+ 3Ty + 2T + Tpy .

The symmetry coordinates X for the two structures,
as given by the reduction of “their vector spaces,
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TABLE I. Symmetry coordinates of an impurity and its nearest neighbors in the NaCl-structure crystals.
4, [x7] Jooo 148 00 0 146 0o 0 0 1INE —1/5 O o 0 -1IANE 0 0 0 ~—INE) [ gl
E, { X, 000 0 00 0 3 0 0 0 1/ 0 0 0 0 -1/2 0 0 0 1/2 u’y
Y, 000 —-1/VF 00 0 1//j3 O 0 0 1z INT 0 0 [ ¥ 0 0 ~1/T3 Ut
X, 000 0 0 -} O 0o 0 0 0 0 -1 0 3} 0 0o 0o 0 0 U
T,,{ Y3 000 0 04 O 0 0 -3 0 0 0 0 -1 0 0 [ 0 0 Ul
z, 000 0 00 0 0 3 0 -} o0 0 0 0o 0 0 -3 0 3 0 ul
X, 100 0 00 0 0 o 0 0 0 0 0 0o 0 0 o 0 0 0 43
X5 000 1/NZT 00 0 0 o 0 0 0 INZ 0 0o 0 0 o 0 0 0 173
X 000 0 00 % 0 o 3 0 0 0 0 (N 0 o 5 0 0 v
Y, 010 o 00 O 0 [ 0 0 0 0o 0 0 0o 0 0 0 v
T, Y5 =f0 00 0 00 o0 INZ 0 0 0 0 0 0 0 0 V2 0 0 0 0 Ul
Y 000 0 50 0 0 0 0 3 0 0 3 0 0 0 0 0 3 0 v
z, 00 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ut
z 000 0 00 0 0 0 0 0 N2 0 0 0 0 0 0 0 0 12 Ul
z, 000 0 0% O 0 50 o0 0 0 o 3 o0 0 3 o o 0 vt
X; 000 0 50 3 0 0 0 0 0 0 -3 0 -} 0 0 0 0 0 Us
ng{ Y, 000 0 0% 0 0 0 50 0 0 o -5 0 0 0 -3 0 0 v
z, 000 o0 00 0 0 5 o 0 0 0 U] 0 -3 0 -3 0 U
Xy 000 0 00 } 0 0 -3 0 0 0 0 (U 0 0o -3 0 0 14
Tz,,{ Yy 000 0 30 0 0 0 [ 0 0 3 0 0 0 0 [ 0 vt
Zz] (o000 0o 0% o0 0 -3 o 0 0 0 o 3 o0 0 -3 0o 0 U I
are listed in Tables I and II in the form three symmetry coordinates ¢, b, and ¢ corre-
sponding to each eigenvalue. If we form X by sub-
X=Su. 13) stituting @, b, and ¢, respectively, for X, X;, and

The fact that G and A are invariant under the
operations of the pomt group of the defect space
implies that (a) the forms of G and A can be found
by group theory and (b) matrix S block diagonalizes
G and A with each block along the diagonal belong-
ing to a particular irreducible representation. For
a given irreducible representation the dimension-
ality of a block in a block-diagonalized matrix is
equal to the number of times that representation
appears in the reduction of the vector space, and
the number of times that block is repeated along
the diagonal is equal to the dimensionality of the
representation, Block diagonalization of G and A
implies that the secular equation breaks up into
smaller determinants corresponding to the blocks
along the diagonal. Further diagonalization of a
block determines the frequencies and the symmetry
coordinates, and the latter determine the ampli-
tudes of the various ions in the defect space vibrat-
ing in a particular mode by u=§X. For example,
.the Ty, irreducible representation appears thrice
in the reduction of either of the two vector spaces.
Therefore the block diagonalization in either case
gives three identical secular equations correspond-
ing to the threefold degeneracy of the T3, modes.
The dimensionality of the determinant in these sec- .
ular equations is three. The diagonalization of the
matrix corresponding to this determinant gives

X, and zeros for the other elements in Table I, u
-S X gives the amplitudes X, (Ix|f) of the ions in  the
defect space for that partlcul,,o Ty, mode in a crys-
tal of NaCl structure. The aniplitudes x,(Ix|f) for
this example are listed in Table III, Thus Tables
I and II can be used to find the amplitudes of the
ions in the defect space for the various modes in
terms of the appropriate symmetry coordinates.

With this knowledge of X(Ix|f) and A from group
theory it can be shown that S(f, j) is zero for all
modes except the ones with T;, symmetry. The
symmetry coordinates a, b, and c for the Ty,
modes can be calculated from the equations of mo-
tion and the normalization condition as shown be-
low.

The equation of motion can be rewritten as fol-
lows:

Sx=SGSsaSsx. (14)

S block diagonalizes G and A and, if x corresponds
to the amplitudes X(Ik|f) for a Ty mode, Eq. (14)
is of the form

b )=af b |, (15)
C c

where @ is a (3x3) matrix and is the product of the
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TABLE II. Symmetry coordinates of an impurity and its nearest neighbors in the CsCl-structure crystals.
R 1 -1 -1 1 -t 1 1 1 1 1 1
Ale'{ X1 000 5% 26 2H 26 2/6 26 206 2/6 26 26 206
1 =1 -1 -1 1 -1 1 1 1 -1 -1
(|%| [poosyk 2% =% =% 3% =6 oF e w6 o o
£ { X, 000 % i 0 a i 0 @ -% 0 i -t
Y, 0 0 0 1/4V3 —1/4/3 /23 1/4/3 =—1/4/3 -1/2V3 1/4/3 /43 -1/2J3 1/43 1/4/3
5, { X, 000 % 0 i -3 0 i i 0 -z -1 0
Y, 0 0 0 /43 1/2v3 =1/4V3 —1/4V3 —1/2V3 —1/4VF 1/4/3 —1/2/3 1/4/3 -1/4/3 1/2V3
X5 000 % i 0 i i 0 -% & 0 -1 i
Ty, { Y; 000 % 0 i -1 0 i -% 0 i E: 0
Zs 000 0 =} 3 0 % 3 0 i ~i 0 -1
X 100 0 0 0 0 0 0 0 0 0 0 0
Xy 000 1/2/2 0 0 1/2v2 0 0 1/2v2 0 0 1/2V2 0
| | % 000 0 i i 0 i -1 0 -1 -1 0 -3
Yo | =|010 0 0 0 0 0 0 0 0 0 0
Y, 000 0 1/2/7 0 0 1/2v2 0 0 1/2v2 0 0 1/2v2
Y, 000 % 0 -% i 0 i —-% 0 -3 -1 0
Z, 001 0 0 0 0 0 0 0 0 0 0 0
Z; 000 O 0 1/2v2 0 0 1/2V2 0 0 1/2V2 0 0
Z, 000 % -% 0 -1 i 0 - % 0 i 1
X, 000 1/22 0 0 -1/2v2 0 0 /22 0 0 -1/2vZ o0
X1 000 0 i + 0 -i +1 0 -1 -1 0 :
% | | Yo 000 0 1/2/% 0 0 -1/2v2 0 0 1/2v2 0 0 —-1/2y2
Y1 000 -% 0 i i 0 i i 0 i -1 0
Z, 000 O 0 1/2V2 0 0 -1/292 0 0 1/2v% 0 0
Zy 000 i —% 0 i -1 0 -3 -z 0 -% -1
X1y 000 % i 0 -% - 0 - i 0 i -3
Yy 000 % z i 0 -1 -1 0 i -1 0
zu] looo o -i% % o - % o+ -1 0 %
Lmputiy 15 ot the negative 1o site, fhe normaliza. N AT R DL L1 (L
KK N [wf-oi@®F  (MdMe)

tion condition is

ZMK|xa(lK|f)la—<-M.|i(llf)|2=1, (16)

where €_= (M. - M!)/M. and X(I|f) is the amplitude
of the impurity ion of mass M/, In matrix form
Eq. (16) becomes

RAG'Ax-eM|X(L)|*=1, 17

X exp{Zm'E . [?(i)-—

Equation (17) can be rewritten as

or

->

r

(

K

Ol

(18)

XSSASsG'Ssa§sx-e M |X(I|N|2=1 (19)

(a bc)

®

a
b

c

-e.Ma?=1,

(20)
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-1 - -1 -1 =1 ~1 L =L 1 L =L 1 =17 "
COE R R R CHR I I
0 -% i 0 -3 i 0 -3 -3 0 -3 -3 0 vt
1/2V3  =1/4V3 —1/4V3 1/2V8 =1/4/3 ~1/4/3 _j1/2y5 —1/4V3 /43 —1/2VF —1/4/3 1/4/F 1/2/3 UL
-% i 0 -} -} 0 -3 1 0 Y -% 0 3 v,
/48 1/4/3  -1/2/3 1/4V3 -1/4/3 1/2V% 1/4/3  1/4V3 1/28  —1/4/3 ~1/4V3 —1/2V8 —1/4/3| | UL
0 i -% 0 : -i 0 -3 -3 0 ~% -3 0 vt
i 1 0 -3 -3 0 -1 -3 0 -3 3 0 -1 vy
-% 0 -3 3 0 i 1 0 3 -3 0 -1 -1 v:
0 0 0 0 0 0 0 0 0 0 0 0 U
0 1/2V% 0 0 1/2V2 0 0 1/2V3 0 0 1/2V% 0 0 744
i 0 -3 -3 0 -1 3 0 i i 0 3 -3 v
0 0 0 0 0 0 0 0 0 0 0 0 0 UL
0 0 /22 0 0 1/2v% 0 0 /2% 0 0 1/2/2 0 Uy
+4 - 0 -z -3 0 i ) 0 -1 1 0 i U;
0 0 0 0 0 0 0 0 0 0 0 0 0 g
1/2V2 0 0 1/2v2 0 0 1/2V% 0 0 1/2v2 0 0 1/2V2 U,
0 - -% 0 : i 0 3 -1 0 -3 i 0 i
0 -1/2v2 0 0 1/2vZ 0 0 -1/2v3 0 0 1/2VZ 0 0 Ut
-3 0 : +i 0 -% +3 0 -% -3 0 i -: v
0 0 -1/2v2 0 0 /22 0 0 -1/2vZ 0 0 -1/2/2 0 us
i -3 0 -3 i 0 -3 1 0 -3 -3 0 -3 Ut
-1/2v2 0 0 -1/2v2 0 0 1/2V% 0 0 -1/2v2 0 0 -1/2vZ| | U,
0 i i 0 3 3 0 -% 1 0 -3 E: 0 i
0 -3 i 0 i -1 0 % i 0 -3 - 0 v
-3 -3 0 i -3 0 -1 1 0 i i 0 -3 v
i 0 i » -1 0 i i o0 -% i -i -3 Lot

where ® is a (3 x3) matrix.

Equations (15) and (20) can be solved for a, b,
and c in terms of the eigenvectors and eigenfre-
quencies of the unperturbed crystal and the per-
turbation A. Thus we can solve for A from Eq.
(11) and hence the absorption coefficient a(wy)
from Eq. (1).

In conclusion, we have developed a method to
calculate the infrared absorption in a diatomic cu-
bic crystal due to a very low concentration of im~
purities when the impurity involves changes in the
mass and short-range force constants. In this
method one sees clearly the various physical pro-
cesses involved in this problem, which is usually
not possible in most of the Green’s-function for-
malisms used in this field.

TABLE III. Amplitudes of the inipurity ion () and its

six nearest neighbors (1,2,...,6) in a crystal of NaCl

structure for a Ty, mode.

Xe(Zk | Ty,)
a
113 x y z
I a 0 0
1 b/IVZ 0 0
2 3c 0 0
3 ic 0 0
4 b/VZ 0 0
5 3c- 0 0
6 3c 0 0
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