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Prognostic significance of genome-wide DNA methylation 
profiles within the randomized, phase 3, EORTC CATNON 
trial on non-1p/19q deleted anaplastic glioma
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Abstract
Background.  Survival in patients with IDH1/2-mutant (mt) anaplastic astrocytomas is highly variable. We have 
used the prospective phase 3 CATNON trial to identify molecular factors related to outcome in IDH1/2mt anaplastic 
astrocytoma patients.
Methods. The CATNON trial randomized 751 adult patients with newly diagnosed 1p/19q non-codeleted anaplastic 
glioma to 59.4 Gy radiotherapy +/− concurrent and/or adjuvant temozolomide. The presence of necrosis and/or 

applyparastyle "fig//caption/p[1]" parastyle "FigCapt"
applyparastyle "fig" parastyle "Figure"

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License 
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any 
medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

1547
D

ow
nloaded from

 https://academ
ic.oup.com

/neuro-oncology/article/23/9/1547/6259004 by Erasm
us U

niversiteit R
otterdam

 user on 13 O
ctober 2021

https://orcid.org/0000-0003-3541-9242
https://orcid.org/0000-0001-5710-5127
https://orcid.org/0000-0002-6171-634X
https://orcid.org/0000-0002-1748-174X
https://orcid.org/0000-0002-4049-694X
https://orcid.org/0000-0003-4051-8114
mailto:p.french@erasmusmc.nl?subject=
http://creativecommons.org/licenses/by-nc/4.0/


 1548 Tesileanu et al. CATNON: prognostic DNA methylation in anaplastic astrocytoma

microvascular proliferation was scored at central pathology review. Infinium MethylationEPIC BeadChip 
arrays were used for genome-wide DNA methylation analysis and the determination of copy number varia-
tions (CNV). Two DNA methylation-based tumor classifiers were used for risk stratification. Next-generation 
sequencing (NGS) was performed using 1 of the 2 glioma-tailored NGS panels. The primary endpoint was 
overall survival measured from the date of randomization.
Results.  Full analysis (genome-wide DNA methylation and NGS) was successfully performed on 654 tu-
mors. Of these, 432 tumors were IDH1/2mt anaplastic astrocytomas. Both epigenetic classifiers identified 
poor prognosis patients that partially overlapped. A predictive prognostic Cox proportional hazard model 
identified that independent prognostic factors for IDH1/2mt anaplastic astrocytoma patients included; age, 
mini-mental state examination score, treatment with concurrent and/or adjuvant temozolomide, the epige-
netic classifiers, PDGFRA amplification, CDKN2A/B homozygous deletion, PI3K mutations, and total CNV 
load. Independent recursive partitioning analysis highlights the importance of these factors for patient 
prognostication.
Conclusion.  Both clinical and molecular factors identify IDH1/2mt anaplastic astrocytoma patients with 
worse outcome. These results will further refine the current WHO criteria for glioma classification.

Key Points

1.	 DNA methylation profiles have prognostic relevance for IDH1/2mt anaplastic 
astrocytoma patients.

2.	 Integration of clinical data, DNA methylation profiles, and genetic data is needed 
for accurate prognostication of IDH1/2mt anaplastic astrocytoma patients.

The diagnosis of gliomas has shifted from histology alone 
toward the incorporation of molecular data in the revised 
World Health Organization (WHO) 2016 classification of 
brain tumors, initially with isocitrate dehydrogenase 1 and 
2 (IDH1/2) mutational status and the presence or absence of 
combined loss of the 1p and 19q chromosomal arms (1p/19q 
codeletion). This classification was found to be more ob-
jective, reproducible, and correlated better with outcome 
compared to classical histology.1–3 Still, even within the well-
defined molecular subsets of glioma, significant and clini-
cally relevant differences in outcome exist. Homozygous 
deletion (HD) of cyclin-dependent kinase inhibitor 2 A and B 
(CDKN2A/B) has recently been identified in IDH1/2-mutant 
(mt) astrocytoma as a first molecular marker of grade 4 clin-
ical behavior.4–6 Numerous other genetic markers have been 
proposed to further prognosticate IDH1/2mt astrocytoma 

patients, in particular retinoblastoma 1 (RB1) pathway al-
terations, tyrosine-protein kinase Met (MET) amplifica-
tion (amp), N-myc proto-oncogene (MYCN) amplification, 
platelet-derived growth factor receptor alpha (PDGFRA) 
amplification, phosphatidylinositol 3-kinase (PI3K) muta-
tions, and total copy number variation (CNV) load.4–10 At 
the epigenetic level, tumor-specific genome-wide cytosine-
phosphate-guanine (CpG) methylation patterns have been 
identified in diffuse glioma. Two classification systems have 
been reported that make use of the epigenetic profile to di-
agnose brain tumor subtypes: (1) a DNA methylation-based 
classification of all central nervous system (CNS) tumors by 
Capper et al. (named here: “the CNS tumor classifier”), and 
(2) a DNA methylation-based classification of gliomas by 
Ceccarelli et al. which can be supplemented with a risk to pro-
gression stratification from glioma-CpG island methylator 

Importance of the Study

Grading of diffuse IDH1/2mt glioma is still done by clas-
sical morphology, apart from homozygous deletion 
(HD) of CDKN2A/B that is correlated with a poor out-
come and which is proposed by the cIMPACT-NOW 
committee as a criterion for IDH1/2mt astrocytoma, 
grade 4. Identifying other molecular factors associated 
with outcome within tumor entities potentially allows for 
more precise prognostication of histologically similar 
tumors. We used the randomized CATNON trial to test 
the prognostic significance of several alterations within 

a homogeneously treated group of patients diagnosed 
with IDH1/2mt anaplastic astrocytoma. Tumor-related 
factors associated with an inferior outcome were iden-
tified by 2 different DNA methylation classifiers, as well 
as HD of CDKN2A/B, PDGFRA amplification, PI3K mu-
tations, and total CNV load. In contrast to histological 
indicators of high grade, these molecular markers were 
significant in multivariable analysis and therefore can 
be used to identify patients with poor prognosis.
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phenotype (G-CIMP)-high to G-CIMP-low as reported by de 
Souza et  al. (combined, named here: “the glioma classi-
fier”).11–14 The accuracy of these molecular characteristics in 
relation to outcome has thus far not been clinically validated 
in homogeneously treated cohorts of patients. We therefore 
aimed to test and evaluate the importance of reported prog-
nostic genetic and epigenetic molecular markers within the 
CATNON trial, the largest prospective study conducted on 
anaplastic astrocytoma patients.15 These validated subtypes 
can be used for prognostication and results can be con-
sidered for the grading of tumors of the CNS.

Methods

Study Design and Participants

The CATNON trial is a 2  × 2 factorial design, non-
blinded, multicenter (n  =  137), randomized clinical 
trial in adult patients (n  =  751) with primary 1p/19q 
non-codeleted anaplastic gliomas conducted by the 
European Organisation for Research and Treatment of 
Cancer (EORTC).15 After local diagnosis of an anaplastic 
glioma, tumor samples were submitted prior to ran-
domization for central pathology review of the tumor 
grade, and for central testing of O6-methylguanine DNA 
methyltransferase (MGMT) promoter methylation status. 
The absence of combined 1p/19q loss was either de-
termined by local testing or at central review. Patients 
were computer-generated randomized (1:1:1:1) to ra-
diotherapy alone (59.4 Gy in 33 fractions of 1.8 Gy), ra-
diotherapy with concurrent temozolomide (75  mg/
m2 daily, max 7 weeks), radiotherapy with adjuvant 
temozolomide (12 4-week cycles: 150-200 mg/m2 on days 
1-5), or radiotherapy with both concurrent and adjuvant 
temozolomide.

Compliance With Ethical Standards

All institutions obtained ethics approval from their institu-
tional review boards or ethics review committees before 
enrollment started. All patients gave written informed 
consent according to local, national, and international 
guidelines.

Procedures

DNA was isolated from formalin-fixed paraffin-embedded 
(FFPE) tumor samples as described previously.16 IDH1/2, 
B-Raf proto-oncogene serine/threonine-protein kinase 
(BRAF), H3.3 histone A (H3F3A), CDKN2A/B, RB1, PI3K sub-
unit alpha (PIK3CA), and PI3K regulatory subunit 1 (PIK3R1) 
mutation status were determined from either 1 of the 2 
glioma-tailored next-generation sequencing (NGS) panels 
as described previously.17,18 DNA methylation profiling was 
performed with the Infinium MethylationEPIC BeadChip 
according to the manufacturer’s instructions after 
using the Infinium FFPE DNA Restoration Kit. CNV data 
(CDKN2A/B HD, RB1 HD, cyclin-dependent kinase 4 (CDK4) 
amp, cyclin-dependent kinase 6 (CDK6) amp, METamp, 

MYCNamp, PDGFRAamp) were derived from the DNA 
methylation data. MGMT promoter status was assessed 
with the MGMT-STP27 algorithm.19 Samples that did not 
pass quality control, ie, the signal detection P value was 
<.01 in more than 5% of the probes were excluded from 
further analysis. HDs and amplifications were defined as 
±0.60 log2 intensity differences. CNV differences between 
±0.60 and ±0.30 log2 intensity were visually inspected for 
CNV calling, blinded to all other molecular or clinical data. 
DNA methylation-based epigenetic subtyping was estab-
lished using random forest modeling using a classifier de-
scribed by Capper et  al., and one classifier described by 
Ceccarelli et al.11,12 The latter classifier was supplemented 
with the risk of progression from G-CIMP-high to G-CIMP-
low based on beta values of 7 specific CpGs as described 
previously (named here: “risk tumors” and “no-risk tu-
mors”).13 Total CNV load was calculated as described pre-
viously with a threshold for loss and gain of ±0.10 log2 
intensity on the CNV plot and a cutoff of 350 Mb.20 Two ded-
icated neuropathologists scored the presence or absence 
of necrosis and microvascular proliferation at the central 
pathology review (J.M.K.: European and Australian sam-
ples, K.A.: North American samples). Clinical data such as 
survival, sex, age at enrollment, use of corticosteroids at 
enrollment (no use vs stable/decreasing dose), type of sur-
gery (biopsy vs resection), mini-mental state examination 
(MMSE) score at enrollment (<27 vs 27-30), and treatment 
regimen were collected from the study entry forms.

Statistical Analysis

The primary endpoint for all correlations of the epigenetic 
subtypes, DNA mutations and CNV was overall survival 
(OS), measured from the date of randomization until the 
date of death or censored at the date of last follow-up. 
Survival curves were created using the Kaplan-Meier tech-
nique and compared with the log-rank test. The Cox regres-
sion model was used for univariable and multivariable 
analysis to determine hazard ratios (HR) with 95% confi-
dence intervals (CI), and significance was assessed with 
the likelihood ratio test. Factors with likelihood ratio test P 
values ≤.10 and at least 2 subgroups with n > 5 were taken 
into consideration for multivariable analysis. Principal 
component analysis (PCA) was performed on the 20 000 
most variable probes between samples. The t-distributed 
stochastic neighbor embedding (t-SNE) plot was created 
with all significant probes at detection P value <.01 except 
those with lower overall reliability as previously described 
by Zhou et  al.21 The prognostic prediction models were 
made using stepwise backward elimination. Schoenfeld’s 
test was utilized to assess proportional hazard (PH) as-
sumptions of Cox PH models. Harrell’s concordance index 
(C-index) was calculated and bootstrapped by 1000 iter-
ations for the final models. Recursive partitioning analysis 
was performed on the significant factors from univariable 
analysis with 10 cross-validations in which every leaf had 
n > 20 patients. For all non-specified analyses, P values 
below .05 were considered significant. Statistical analysis 
was performed using R version 3.6.3 and packages minfi, 
stats, rms, survival, Rtsne, and rpart. This trial is regis-
tered with ClinicalTrials.gov, number NCT00626990. Upon 
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completion of all ongoing analyses, all data will be made 
available upon request at EORTC headquarters.

Results

Cohort Description

Comparison of the patient cohorts with and without mo-
lecular data identified that those able to be analyzed were 
younger (median age: 41  years vs 47  years, P  =  .006) 
and more likely to have had debulking surgery (82.6% 
vs 58.8%, P < .0001), but all other factors were similar 
(Supplementary Table 1). Genome-wide DNA methyla-
tion analysis was successfully performed on 654 samples 
of the 751 patients (19 samples were of low quality, and 
for 78 patients, there was insufficient tumor tissue avail-
able, Supplementary Figures 1 and 2). Of these, 440 (67.3%) 
were IDH1/2mt, 204 (31.2%) were IDH1/2 wild type (wt), and 
for 10, the IDH1/2 status could not be determined (Figure 
1A, B and Supplementary Figure 1). Copy number assess-
ment identified 8 (1.2%) IDH1/2mt anaplastic oligodendro-
glioma leaving 432 IDH1/2mt anaplastic astrocytomas. 
Ten IDH1/2wt tumors had an H3F3A K27M mutation and 4 
had an H3F3A G34R mutation. Three IDH1/2wt tumors had 
a BRAF mutation (2 V600E and 1 R509Q) and 1 IDH1/2mt 
tumor had a BRAF mutation (K601E). Central histology re-
view identified necrosis and/or microvascular proliferation, 
consistent with grade 4 tumors, in 95 (14.5%) samples (38 
IDH1/2wt, 57 IDH1/2mt; in 40 necrosis, and in 79 microvas-
cular proliferation; Figure 2F and Supplementary Figure 
3A). PCA of the DNA methylation data primarily showed di-
vision between IDH1/2wt and IDH1/2mt gliomas in the first 
primary component accounting for 51% of variance in all 
samples (Figure 1B). Clinical characteristics of the cohort 
are listed in Table 1.

At the time of database lock (May 7, 2019), 31 IDH1/2wt 
anaplastic astrocytoma patients (15.2%), 288 IDH1/2mt 
anaplastic astrocytoma patients (66.7%), and 8 IDH1/2mt 
anaplastic oligodendroglioma patients (100%) were still 
alive. Median OS was 1.7 years (95% CI 1.4-1.9) for IDH1/2wt 
anaplastic astrocytoma patients and 8.2 years (95% CI 7.1-
not reached) for IDH1/2mt anaplastic astrocytoma patients 
(HR 6.95, 95% CI 5.51-8.78; P < .0001).

DNA Methylation Analysis of All Samples

The majority of samples were assigned by “the CNS 
tumor classifier” to lower-grade (WHO 2 or 3)  IDH1/2mt 
astrocytomas (A_IDH, n  =  317) or high-grade (WHO 3 
or 4)  IDH1/2mt astrocytomas (A_IDH_HG, n = 113). Other 
diagnoses according to “the CNS tumor classifier” were 
methylation class family IDH1/2wt glioblastomas (MTCF_
GBM, n  =  161), H3F3Amt G34R gliomas (GBM_G34, 
n = 5), H3F3Amt K27M gliomas (DMG_K27, n = 11), 1p/19q 
codeleted gliomas (O_IDH, n  =  12), and 35 tumors with 
other, more rare diagnoses. Of note, not all classifications 
were considered equally reliable: in 74 samples the main 
class calibrated score was below 0.836, which has been de-
scribed as the lower bound for an optimal sensitivity and 
specificity.12 When only samples meeting this calibration 

score were taken into account, the classifications correl-
ated even better with molecular features. For example, all 
4 DMG_K27 tumors with a reliability score below 0.836 did 
not show an H3F3A K27M mutation in the NGS analysis, 
whereas the mutation was confirmed in all 7 tumors with a 
calibrated score ≥0.836 (Figure 1D).

The different epigenetic subtypes are highly correlated 
with patient survival: median OS in patients with A_IDH not 
reached (95% CI 8.0-not reached), with A_IDH_HG 5.6 years 
(95% CI 4.0-not reached), with DMG_K27 3.3 years (95% CI 
2.3-not reached), with GBM_G34 1.4 years (95% CI 1.0-not 
reached), with MTCF_GBM 1.4 years (95% CI 1.3-1.8), with 
O_IDH 9.1 years (too few events to estimate the CI), and 
with the combination of other diagnoses 2.4  years (95% 
CI 1.8-5.5; Figure 2A, B). The difference in OS between pa-
tients with the molecularly highly similar tumors A_IDH 
and A_IDH_HG tumors was highly significant (A_IDH_HG 
vs A_IDH: HR 2.43, 95% CI 1.73-3.40; P < .0001).

We next assigned the 654 tumors into subgroups based 
on “the glioma classifier,” to 409 G-CIMP-high tumors, 19 
G-CIMP-low tumors, 18 codel tumors, 107 mesenchymal-
like tumors, 48 classic-like tumors, and 53 pilocytic 
astrocytoma (PA)-like/glioblastoma-like glioma meth-
ylation group 6 (“LGm6-GBM”) tumors. The latter sub-
diagnosis is combined as it requires additional histology 
review to determine the presence or absence of necrosis 
and/or microvascular proliferation for further separation. 
After this central histology review, the subgroup is fur-
ther separated into 41 PA-like tumors and 12 LGm6-GBM 
tumors. The PA-like tumors were not a single nosolog-
ical entity; in this set, we identified 9 tumors with H3F3A 
mutations (7 K27M, 2 G34R) and 1 BRAF-mutated tumor 
(R509Q). The LGm6-GBM tumors also contained 2 tumors 
with H3F3A mutations (K27M) and 1 tumor with a BRAF 
mutation (V600E).

“The glioma classifier” tumor subtypes were also 
strongly associated with patient survival: OS in patients 
with G-CIMP-high 9.5  years (95% CI 7.5-not reached), 
with G-CIMP-low 2.8 years (95% CI 2.0-not reached), with 
codel 9.1  years (too few events to estimate the CI), with 
mesenchymal-like 1.3 years (95% CI 1.2-1.7), with classic-
like 1.6  years (95% CI 1.4-1.8), and with PA-like/LGm6-
GBM 2.8 years (95% CI 2.1-3.7; Figure 2C, D). Particularly 
notable was the difference in OS between G-CIMP status 
subgroup patients (G-CIMP-low vs G-CIMP-high: HR 4.12, 
95% CI 2.37-7.18; P < .0001). PA-like/LGm6-GBM tumor pa-
tients had better outcome than mesenchymal-like and 
classic-like tumor patients (HR 0.42, 95% CI 0.28-0.62; P 
< .0001, and HR 0.38, 95% CI 0.24-0.59; P < .0001, respec-
tively), suggesting a positive prognostic epigenetic sub-
group within IDH1/2wt astrocytomas. This survival benefit 
remained for both the PA-like and the LGm6-GBM tumors 
after separation by central histology review of this group 
(Supplementary Figure 3B). Using the G-CIMP-low risk to 
progression profile, we classified 116 of the 409 G-CIMP-
high tumors (28.4%) as “risk tumors” (Supplementary 
Figure 4). Patients harboring “risk tumors” had a worse 
outcome compared to “no-risk tumor” patients: median 
OS of 6.9 years (95% CI 5.7-not reached) in risk tumor pa-
tients vs not reached (95% CI 8.0-not reached) in no-risk 
tumor patients (risk vs no-risk: HR 1.64, 95% CI 1.13-2.37; 
P = .01; Figure 2E).
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Fig. 1  Epigenetic subtyping of all CATNON samples that had molecular data available and passed quality control. (A) DNA methylation heatmap 
of discriminative probes for “glioma classifier” subtypes shows a clear overlap between the different classifiers, and a strong correlation with 
IDH1/2 status, MGMT promoter status, and patient age. (B) Principal component analysis of the 20 000 most variable probes illustrates separation 
of the epigenetic data on IDH1/2 status. (C) Circle plot shows a high degree of correlation between “glioma classifier” and “CNS tumor classifier” 
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Although both classifiers were generated independently, 
there is a large overlap between the epigenetic subtypes 
of “the CNS tumor classifier” and “the glioma classifier” 
(Figure 1A, C, D). For example, every G-CIMP-low tumor 
was classified as an A_IDH_HG tumor, and 11/12 (91.7%) 
O_IDH tumors were classified as codel tumors. All classic-
like tumors and 100/107 (93.5%) mesenchymal-like tu-
mors were MTCF_GBM tumors, whereas 404/409 (98.8%) 
G-CIMP-high tumors were A_IDH or A_IDH_HG tumors. 
“Risk tumors” (n = 61) were mainly A_IDH_HG tumors and 
most “no-risk tumors” (n = 258) were A_IDH tumors (odds 
ratio 9.47, 95% CI 5.46-16.73; P < .0001). The major differ-
ence between the 2 classifiers are those tumors that “the 
CNS tumor classifier” does not identify as MTCF_GBM, 
A_IDH, A_IDH_HG or O_IDH (n = 51), or tumors with a main 
diagnosis reliability score < 0.836 (n = 74): most of these tu-
mors (n = 41 and n = 31, respectively) were labeled PA-like/
LGm6-GBM tumors.

To explore potential prognostic differences between “the 
CNS tumor classifier” and “the glioma classifier,” we strati-
fied “the CNS tumor classifier” classes by “the glioma clas-
sifier” subtypes and vice versa (Supplementary Figure 5). 
Within the A_IDH_HG tumors, those assigned to G-CIMP-
low had a significantly worse OS compared to those as-
signed to G-CIMP-high regardless of progression risk. There 
were, however, no differences in OS when either A_IDH or 
A_IDH_HG tumors were stratified by risk to G-CIMP-low 
progression (log-rank test between G-CIMP-high: No-risk 
and G-CIMP-high: Risk of Supplementary Figure 5A, B: 
P = .33 and P = .42, respectively). Stratifying “risk tumors” 
and “no-risk tumors” into “the CNS tumor classifier” sub-
groups showed a significant OS difference in both A_IDH 
and A_IDH_HG tumors (HR 1.80 95% CI 1.01-3.21, P =  .06; 
and HR 2.00 95% CI 1.06-3.77, P = .03, respectively).

Analysis of the IDH1/2mt Anaplastic 
Astrocytoma Cohort

We set out to build a prognostic model specifically for 
IDH1/2mt anaplastic astrocytoma patients. Although a t-
SNE plot of only the 432 IDH1/2mt anaplastic astrocytomas 
does not separate these epigenetic subtypes, they do have 
a distinct spatial distribution within this plot (Figure 3A 
and Supplementary Figure 6). We further performed NGS 

and CNV analysis and identified 43 IDH1/2mt anaplastic 
astrocytomas with CDKN2A/B HD, 6 with RB1 HD, 25 with 
CDK4amp, 22 with PDGFRAamp, 7 with METamp, 7 with 
MYCNamp, 4 with CDK6amp, and 20 with PI3K mutations 
(14 PIK3R1, 6 PIK3CA). The total CNV load was classified 
as high in 185 (42.8%) IDH1/2mt anaplastic astrocytomas 
based on an algorithm by Shirahata et al.20

Univariable analysis of the IDH1/2mt anaplastic 
astrocytomas showed that most of the clinical, molec-
ular, and histological factors were associated with OS, 
ie, age groups, WHO performance score, MMSE, type of 
surgery, use of corticosteroids, treatment with adjuvant 
temozolomide, treatment with concurrent temozolomide, 
the presence of necrosis and/or microvascular prolifer-
ation, “the CNS tumor classifier,” “the glioma classifier,” 
CDK4amp, METamp, PDGFRAamp, CDKN2A/B HD, PI3K 
mutations, and total CNV load (Supplementary Table 2, 
Figure 2F, Supplementary Figures 7 and 8). Only patient 
sex, MGMT promoter methylation, MYCNamp, and RB1 
HD were not associated with OS at univariable analysis 
(with the latter 2 factors present in only a few cases). The 
presence of the prognostic molecular and histological 
markers correlated with DNA methylation classes A_IDH_
HG tumors, G-CIMP-low tumors, and G-CIMP-low progres-
sion risk (Figure 3B). Moreover, several of the prognostic 
molecular and histological markers showed significant 
co-occurrence.

Cox PH models made by stepwise backward elimination 
of significant factors from univariable analysis resulted 
in 3 multivariable models with independent significant 
factors: (1) the clinical/histological model (using the clin-
ical and histological factors), (2) the tissue-based model 
(using the molecular and histological factors), and (3) 
the combined model (using clinical, molecular, and his-
tological factors). The final clinical/histological model in-
cluded age groups, WHO performance score, treatment 
with adjuvant temozolomide, the presence of necrosis 
and/or microvascular proliferation, and type of primary 
surgery and had a bootstrap corrected C-index of 0.626, 
while the final tissue-based model included “the CNS 
tumor classifier,” “the glioma classifier,” PDGFRAamp, 
CDKN2A/B HD, PI3Kmt, and total CNV load with a boot-
strap corrected C-index of 0.665. However, the predictive 
final combined model performed markedly better than 
both the clinical/histological and the tissue-based model 

diagnoses. (D) Venn diagrams showing the correlation between “the glioma classifier,” “the CNS tumor classifier,” and genetic changes. CNS, 
central nervous system; IDH1/2, isocitrate dehydrogenase 1 and 2; MGMT, O6-methylguanine DNA methyltransferase; G-CIMP, glioma-CpG 
island methylator phenotype; No-risk, no-risk of progression to G-CIMP-low; Risk, risk of progression to G-CIMP-low; Codel, 1p/19q codeleted; 
PA-like/LGm6-GBM, pilocytic astrocytoma-like/glioblastoma-like glioma methylation group 6; A_IDH, IDH1/2mt-like astrocytomas lower-grade; 
A_IDH_HG, IDH1/2mt-like astrocytomas high-grade; O_IDH, IDH1/2mt-like oligodendrogliomas; IDH1/2mt, IDH1/2 mutant; GBM_G34, H3F3Amt 
G34R-like tumor; MTCF_GBM, methylation class family IDH1/2wt glioblastomas; DMG_K27, H3F3Amt K27M-like tumor; H3F3Amt, H3.3 histone 
A mutant; RT, radiotherapy; RT->TMZ, radiotherapy with adjuvant temozolomide; RT/TMZ, radiotherapy with concurrent temozolomide; TMZ/
RT->TMZ, radiotherapy with concurrent and adjuvant temozolomide; NGS, next-generation sequencing; GBM_RTK_1, glioblastoma, receptor 
tyrosine kinase 1 alterations; GBM_RTK_2, glioblastoma, receptor tyrosine kinase 2 alterations; GBM_MES, glioblastoma, mesenchymal; 
CONTR_HEMI, control tissue, hemispheric cortex; PLEX_PED_B, plexus tumor, pediatric subtype B; SUBEPN_SPINE, subependymoma, spine; 
PXA, pleomorphic xanthoastrocytoma; LGG_GG, low-grade glioma, ganglioglioma; HGNET_BCOR, high-grade neuroepithelial tumor with BCOR 
alteration; BCOR, BCL6 corepressor; CNS_NB_FOXR2, CNS neuroblastoma with FOXR2 activation; FOXR2, forkhead box R2; ANA_PA, anaplastic 
pilocytic astrocytoma; CONTR_WM, control tissue, white matter; CONTR_INFLAM, control tissue, inflammatory tumor microenvironment; GBM_
MYCN, glioblastoma, MYCN alterations; MYCN, N-myc proto-oncogene; GBM_MID, glioblastoma, midline; BRAF, B-Raf proto-oncogene serine/
threonine-protein kinase; CNV, copy number variation.
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Fig. 2  Kaplan-Meier curves of CATNON stratified by DNA methylation class demonstrate prognostic relevance of epigenetic profiling. (A) 
Overall survival of A_IDH, A_IDH_HG, and O_IDH tumor patients. (B) Overall survival of DMG_K27, GBM_G34, MTCF_GBM, and other diagnosis 
tumor patients. (C) Overall survival of codel, G-CIMP-high, and G-CIMP-low tumor patients. (D) Overall survival of classic-like, mesenchymal-like, 
and PA-like/LGm6-GBM tumor patients. (E) Overall survival of G-CIMP-high: No-risk, G-CIMP-high: Risk, and G-CIMP-low tumor patients. (F) 
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with a bootstrapped C-index of 0.709, and included age 
group, MMSE, treatment with concurrent temozolomide, 
treatment with adjuvant temozolomide, “the CNS tumor 
classifier,” “the glioma classifier,” PDGFRAamp, CDKN2A/B 
HD, PI3Kmt, and total CNV load. The final clinical/histolog-
ical and combined models are illustrated as Forest plots in 
Figure 4. Schoenfeld’s tests for individual variables and the 

total model of the combined model were nonsignificant 
(Supplementary Figure 9). The final tissue-based model is 
illustrated in Supplementary Figure 10.

Finally, we performed recursive partitioning analysis 
on the significant factors from univariable analysis to 
create a prognostic decision tree for IDH1/2mt anaplastic 
astrocytoma patients. The first split of the tree is made 

Overall survival of IDH1/2mt anaplastic astrocytoma patients: necrosis and/or microvascular proliferation vs no necrosis or microvascular pro-
liferation. CNS, central nervous system; A_IDH, IDH1/2mt-like astrocytomas lower-grade; A_IDH_HG, IDH1/2mt-like astrocytomas high-grade; 
O_IDH, IDH1/2mt-like oligodendrogliomas; IDH1/2mt, isocitrate dehydrogenase 1 and 2 mutant; DMG_K27, H3F3Amt K27M-like tumor; GBM_G34, 
H3F3Amt G34R-like tumor; H3F3Amt, H3.3 histone A  mutant; MTCF_GBM, glioblastoma; Codel, 1p/19q codeleted; G-CIMP, glioma-CpG island 
methylator phenotype; PA-like/LGm6-GBM, pilocytic astrocytoma-like/glioblastoma-like glioma methylation group 6; No-risk, no-risk of progres-
sion to G-CIMP-low; Risk, risk of progression to G-CIMP-low.
  

  
Table 1  Baseline Clinical Characteristics Included Patients Divided by Treatment Regimen

Radiotherapy 
Alone

Radiotherapy With Con-
current Temozolomide

Radiotherapy 
With Adjuvant 
Temozolomide

Radiotherapy With 
Adjuvant and Concur-
rent Temozolomide

P 
Value

All Patients

Patients, n 168 162 159 165  654

Sex, n (%)     0.657a  

  Female 69 (41.1) 61 (37.7) 68 (42.8) 73 (44.2)  271 (41.4)

  Male 99 (58.9) 101 (62.3) 91 (57.2) 92 (55.8)  383 (58.6)

Age, y     0.196b  

Median (range) 42 (19-81) 43 (20-77) 39 (20-82) 40 (18-72)  41 (18-82)

IDH1/2 status, n (%)     0.795a  

  Mutant 107 (63.7) 110 (67.9) 108 (67.9) 115 (69.7)  440 (67.3)

  Wild type 57 (33.9) 49 (30.2) 49 (30.8) 49 (29.7)  204 (31.2)

  Missing 4 (2.4) 3 (1.9) 2 (1.3) 1 (0.6)  10 (1.5)

MGMT promoter, n (%)     0.94a  

  Methylated 116 (69) 107 (66) 109 (68.6) 113 (68.5)  445 (68)

  Unmethylated 52 (31) 55 (34) 50 (31.4) 52 (31.5)  209 (32)

WHO performance score, 
n (%)

    0.851a  

  0 96 (57.1) 94 (58) 92 (57.9) 102 (61.8)  384 (58.7)

  >0 71 (42.3) 68 (42) 66 (41.5) 63 (38.2)  268 (41)

  Missing 1 (0.6) 0 (0) 1 (0.6) 0 (0)  2 (0.3)

Type of surgery, n (%)     0.448a  

  Biopsy 26 (15.5) 35 (21.6) 27 (17) 26 (15.8)  114 (17.4)

  Resection 142 (84.5) 127 (78.4) 132 (83) 139 (84.2)  540 (82.6)

Use of corticosteroids, n (%)     0.814a  

  Yes 44 (26.2) 48 (29.6) 40 (25.2) 46 (27.9)  178 (27.2)

  No 124 (73.8) 114 (70.4) 118 (74.2) 119 (72.1)  475 (72.6)

  Missing 0 (0) 0 (0) 1 (0.6) 0 (0)  1 (0.2)

Necrosis and/or microvas-
cular proliferation, n (%)

    0.178a  

  Present 30 (17.9) 26 (16) 23 (14.5) 16 (9.7)  95 (14.5)

  Absent 136 (81) 133 (82.1) 135 (84.9) 145 (87.9)  549 (83.9)

  Missing 2 (1.2) 3 (1.9) 1 (0.6) 4 (2.4)  10 (1.5)

Abbreviations: IDH1/2, isocitrate dehydrogenase 1 and 2; MGMT, O6-methylguanine DNA methyltransferase; WHO, World Health Organization.
aFisher exact test. bWilcoxon rank sum test.
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on the presence/absence of CDKN2A/B HD highlighting 
the importance of this molecular marker for prognostica-
tion. Additional branches are made by treatment with ad-
juvant temozolomide, WHO performance score, and “the 
CNS tumor classifier,” resulting in 3 clinically relevant sub-
groups with either a fair outcome, intermediate outcome, 
or poor outcome (Figure 5). Recursive partitioning analysis 
of solely the IDH1/2mt anaplastic astrocytoma cohort that 
was treated with adjuvant temozolomide did not result in a 
stable model and is therefore not shown here.

Discussion

Our study used tissue samples from the prospective ran-
domized CATNON trial to validate the prognostic relevance 
of DNA methylation-based epigenetic subtyping by both 
“the CNS tumor classifier” and “the glioma classifier” 
in a cohort of homogenously treated anaplastic glioma 
patients. We demonstrate that, in IDH1/2mt anaplastic 
astrocytoma patients, both DNA methylation classifiers, 
alone or in combination with clinical data as well as other 

molecular markers (PI3K mutation status, and CNV anal-
ysis of PDGFRA, CDKN2A/B, and CNV load) exhibit prog-
nostic significance. Our study validates the OS difference 
of A_IDH and A_IDH_HG tumor patients, the negative prog-
nostic impact of the G-CIMP-low methylation profile, and 
the negative prognostic impact of the risk to G-CIMP-low 
progression score.

This validation is important, as both “the CNS tumor 
classifier” and “the glioma classifier” are available and 
can be easily used to diagnose and prognosticate new 
tumor samples with locally assessed DNA methylation 
data.12,22 The clear prognostic importance of the DNA 
methylation-based subgroups in IDH1/2mt anaplastic 
astrocytoma suggests consideration for implementation 
in standard glioma diagnostics. Importantly, the added 
predictive effect of PDGFRAamp, CDKN2A/B HD, total 
CNV load, and PI3K mutation status can be considered as 
an integral part of prognosticating (“grading”) IDH1/2mt 
anaplastic astrocytomas. For example, both the G-CIMP-
low methylation profile and HD of CDKN2A/B were 
shown to be negative prognostic markers, yet only in pa-
tients harboring tumors with the combination of these 
markers does the OS resemble the outcome in grade 
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Fig. 3  Detailed molecular analysis of IDH1/2mt anaplastic astrocytomas of CATNON. (A) t-distributed stochastic neighbor embedding plot of 
all IDH1/2mt anaplastic astrocytomas. Samples are colored by “CNS tumor classifier” subgroup with shapes representing “glioma classifier” 
subgroups. Although no subgroups are clearly distinguishable in this plot, specific classifier subgroups show spatial segregation. (B) Correlation 
plot of DNA methylation data, genetic data, and histology. A_IDH_HG and G-CIMP-low tumors correlate with both molecular and histological 
markers of malignancy. Nonsignificant correlations (ie, Fisher exact test ≥ 0.10) were removed from this plot. CNS, central nervous system; A_IDH, 
IDH1/2mt-like astrocytomas lower-grade; A_IDH_HG, IDH1/2mt-like astrocytomas high-grade; IDH1/2mt, isocitrate dehydrogenase 1 and 2 mu-
tant; CONTR_HEMI, control tissue, hemispheric cortex; CONTR_INFLAM, control tissue, inflammatory tumor microenvironment; GBM_RTK_1, 
glioblastoma, receptor tyrosine kinase 1 alterations; O_IDH, IDH1/2mt-like oligodendrogliomas; PLEX_PED_B, plexus tumor, pediatric subtype B; 
Codel, 1p/19q codeleted; G-CIMP, glioma-CpG island methylator phenotype; No-risk, no-risk of progression to G-CIMP-low; Risk, risk of progres-
sion to G-CIMP-low; PA-like, pilocytic astrocytoma-like; amp, amplification; CDK4, cyclin-dependent kinase 4; CDK6, cyclin-dependent kinase 
6; MET, tyrosine-protein kinase Met; MYCN, N-myc proto-oncogene; PDGFRA, platelet-derived growth factor receptor alpha; HD, homozygous 
deletion; CDKN2A/B, cyclin-dependent kinase inhibitor 2 A and B; RB1, retinoblastoma 1; mt, mutant; PIK3CA, phosphatidylinositol 3-kinase sub-
unit alpha; PIK3R1, phosphatidylinositol 3-kinase regulatory subunit 1; CNV, copy number variation; MVP, microvascular proliferation. * = 0.10 > P 
≥ 0.05, ** = 0.05 > P ≥ 0.01, *** = P < 0.01.
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4 IDH1/2wt glioma patients as described in previous 
research.23

Within IDH1/2wt anaplastic astrocytoma, the prognostic 
PA-like/LGm6-GBM subgroup of “the glioma classifier” 
was assessed as well. Both BRAF mutations and H3F3A 
mutations were identified in these tumors showing heter-
ogeneity in this subgroup, since these mutations are indic-
ative of both better and worse outcome patients.3,24,25 This 
heterogeneity is further emphasized by the overlap with 
sporadic diagnoses from “the CNS tumor classifier” with 
low reliability scores. These findings show that some tu-
mors of this group cannot be classified by epigenetics and 

they require classification based on NGS and/or CNV data. 
Further analysis of IDH1/2wt anaplastic gliomas of the 
CATNON trial and outcome to treatment will be reported 
separately elsewhere.

The limitations of this study are predominantly the 
limited number of survival events within the IDH1/2mt 
anaplastic astrocytoma patients, a lack of longitudinal 
tissue analysis, the absence of external validation of our 
predictive prognostic model, and the limited number of 
several investigated molecular markers. Although the OS 
of the epigenetic subtypes in the present dataset so far 
confirms previous observations, a longer-term follow-up of 
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nase inhibitor 2 A and B; PI3K, phosphatidylinositol 3-kinase; CNV, copy number variation.
  

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/article/23/9/1547/6259004 by Erasm

us U
niversiteit R

otterdam
 user on 13 O

ctober 2021



1557Tesileanu et al. CATNON: prognostic DNA methylation in anaplastic astrocytoma
N

eu
ro-

O
n

colog
y

this study will aim to validate our findings.11,13 Longitudinal 
analysis is required to determine how many tumors at risk 
to progression to G-CIMP-low indeed have progressed to 
this subtype. Though there is no external validation of our 
combined predictive model, the model has been generated 
in the largest cohort of IDH1/2mt anaplastic astrocytoma 
patients to date and all evaluated prognostic markers were 
previously identified in IDH1/2mt astrocytomas. Another 
limitation is the focus of the CATNON trial on grade 3 tu-
mors, as one might argue that the conclusions of this 
study cannot be extrapolated to grade 2 and 4 IDH1/2mt 
astrocytomas. However, the histological criteria used 

for grading are prone to interobserver and intraobserver 
variability, and most samples were reviewed by 2 cen-
tral pathologists who at times disagreed about the grade. 
Additionally, some centers were allowed to enter patients 
on a local diagnosis from which the central reviewers de-
viated. As a consequence, the study enrolled cases that ei-
ther bordered on grade 2 or on grade 4 tumors, and even 
cases with some necrosis and/or microvascular prolifera-
tion were enrolled. Although necrosis and microvascular 
proliferation are criteria for grade 4 tumors, the dedicated 
central neuropathologists diagnosed some tumors as 
grade 3 in the presence of these histological abnormalities. 
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This apparent discrepancy reflects the difficulty in tumor 
grading and therefore this dataset represents a broader 
range of tumors than strict grade 3.

In short, DNA methylation-based epigenetic subtyping 
by “the glioma classifier” and “the CNS tumor classifier” in 
combination with clinical and genetic data has added value 
in prognosticating and diagnosing IDH1/2mt anaplastic 
astrocytomas. These epigenetic subtypes and molecular 
markers should therefore be considered for incorporation 
within the next WHO classification of CNS tumors.
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Supplementary material is available at Neuro-Oncology 
online.
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