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Abstract 
Molecular groups of supratentorial ependymomas comprise tumors with ZFTA-RELA 

or YAP1-involving fusions and fusion-negative subependymoma. However, 

occasionally supratentorial ependymomas cannot be readily assigned to any of these 

groups due to lack of detection of a typical fusion and/or ambiguous DNA methylation-

based classification. An unbiased approach with a cohort of unprecedented size 

revealed distinct methylation clusters composed of tumors with ependymal but also 

various other histological features containing alternative translocations that shared 

ZFTA as a partner gene. Somatic overexpression of ZFTA-associated fusion genes in 

the developing cerebral cortex is capable of inducing tumor formation in vivo, and 

cross-species comparative analyses identified GLI2 as a key downstream regulator of 

tumorigenesis in all tumors. Targeting GLI2 with arsenic trioxide caused extended 

survival of tumor-bearing animals, indicating a potential therapeutic vulnerability in 

ZFTA fusion-positive tumors. (Word count: 131) 

 
Significance 
ZFTA-RELA fusions are a hallmark feature of supratentorial ependymoma. We find 

that ZFTA acts as a partner for alternative transcriptional activators in oncogenic 

fusions of supratentorial tumors with various histological characteristics. Establishing 

representative mouse models, we identify potential therapeutic targets shared by ZFTA 

fusion-positive tumors, such as GLI2. (Word count: 48) 
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Introduction 
Ependymomas (EPN) are neuroepithelial malignancies of the central nervous system 

(CNS), accounting for 5% of all CNS tumors in children (1). The utility of histological 

grading of EPN for risk stratification has been discussed controversially, with no 

consistent associations of tumor grade and patient outcome (2). However, recent 

genomic studies have allowed for subdivision of supratentorial (ST), posterior fossa 

(PF) and spinal (SP) EPN into molecularly distinct groups with clearly distinct clinical 

features and outcome (3-9). Despite these advances, translation into novel treatment 

approaches is lagging behind. The mainstay of treatment for almost all EPNs remains 

surgery and radiotherapy, whereas chemotherapy has mostly been found to be 

ineffective (10,11). 

Within the ST CNS compartment, underlying molecular signatures including 

DNA methylation and transcriptome analysis define three major subgroups, 

designated ST-SE, ST-EPN-YAP1 and ST-EPN-RELA (6). ST-SE are fusion-negative 

molecularly classified subependymoma that are mostly observed in adults. ST-EPN-

YAP1 tumors are enriched for gene fusions involving the Hippo effector YAP1 and 

primarily affect infants. The vast majority of ST-EPN is classified best as ST-EPN-

RELA and the tumors predominantly contain oncogenic fusions between RELA, the 

principal effector of canonical NF-κB signaling, and C11orf95, a less well characterized 

neighboring gene on chromosome (chr.) 11 (6,7,12). 

Apart from chromothriptic events on chr. 11 surrounding the fusion, the genome 

of human ST-EPN-RELA is generally stable and additional recurrent alterations other 

than focal CDKN2A/B deletions have not yet been identified (6). The hypothesis of a 

single-hit oncogenic event is supported by the fact that the C11orf95-RELA fusion is 

sufficient to drive tumor formation in vivo using the RCAS/tv-a system (13). In ST-EPN-

YAP1, MAMLD1 (the most frequent fusion partner to YAP1) was found to mediate 

fusion-driven oncogenic transformation of cortical neural progenitors through nuclear 

translocation and interaction with nuclear factor I proteins (14). The role of the RELA 

fusion partner C11orf95 in ST-EPN-RELA, however, is not yet fully understood. 

Results from previous studies show that overexpression of wild-type RELA or induction 

of activating RELA mutations are not sufficient for oncogenesis, despite leading to 

elevated levels of NF-κB target genes. This indicates that both the Rel-homology 

domain of RELA and the C11orf95 partner gene are critical for ependymal 

tumorigenesis (7,13).  
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Although ST-EPNs are mostly unambiguously assigned to a molecular group by 

the Heidelberg Brain Tumor Methylation Classifier (www.molecularneuropathology.org) 

(15), one of the following three diagnostically challenging constellations may occur in 

about 20% of all ST-EPN cases (12,16-19): (i) prediction as ST-EPN-RELA by DNA 

methylation-based tumor classification but without evidence for a canonical C11orf95-

RELA fusion, (ii) the vice versa combination with a typical fusion event in the absence 

of a reliable ST-EPN-RELA score or (iii) ST tumors histologically diagnosed as EPN 

that cannot be readily assigned to any of the existing molecular classes. In this study, 

we aimed to molecularly characterize RELA- and YAP1-fusion negative ST-EPN 

tumors, which exist in addition to the known fusion-negative ST-SE group. We 

demonstrate the existence of both ST-EPN harboring C11orf95 fusions to gene 

partners other than RELA, and ST tumors that are histologically distinct from EPN but 

harbor a canonical C11orf95-RELA fusion. In addition, we show that newly identified 

C11orf95-associated fusions possess transforming capacity in vivo. Our current study 

paves the way for a refined molecular classification of ST-EPN in the future, provides 

representative mouse models and presents a rationale for preclinical studies aiming at 

blocking central molecular dependencies and target genes (e.g., GLI2) that are shared 

by tumors driven by C11orf95-containing fusion genes independent of histological 

appearance. Based on our findings together with two co-submitted studies by Kupp et 

al. and Arabzade et al. (20,21), C11orf95 has now been officially designated ZFTA 

(zinc finger translocation associated) by the HUGO Gene Nomenclature Committee. 

 

Results 
 
Diagnostically ambiguous supratentorial ependymomas form discrete clusters 
To identify molecular group assignment of diagnostically challenging ST-EPN we 

included 23 samples fulfilling any of the conditions i-iii in an unbiased clustering 

approach with a comprehensive dataset of DNA methylation profiles covering the 

entire spectrum of existing molecular CNS tumor classes (>70,000 DNA methylation 

profiles) (Supplementary Fig. S1, S2A). Exploratory samples were mainly clustering in 

smaller satellite clusters next to (18/23) or within the ST-EPN-RELA cluster (2/23), 3/23 

were not assigned to any cluster and excluded from further analysis (Supplementary 

Fig. S2A). Next, we restricted the clustering approach to cases from established 
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molecular EPN groups and satellites only, revealing four distinct additional clusters 

(Fig. 1A). Cluster stability was confirmed through a hierarchical density-based 

clustering scan (HDBSCAN) (Fig. 1B, Supplementary Fig. S2B and C, Supplementary 

Table S1). Tumors from the ST-EPN-RELA cluster (445/492; 90.4%) and cluster 1 (9/9; 

100%) predominantly reached a calibrated score for reliable ST-EPN-RELA 

methylation group assignment by the Heidelberg Brain Tumor Methylation Classifier, 

score ≥0.9 (=red dots; classifier version 11b4) (Fig. 1B) (15). In cluster 2, only 22/43 

(51.1%) reached a calibrated score ≥0.9 for ST-EPN-RELA. All samples of the two 

remaining clusters 3 and 4 (n=17, and n=27) were found unclassifiable with calibrated 

scores <0.9 for any methylation class (=black dots) (Fig. 1B, Supplementary Table S1). 

Control for potential confounding effects through tumor purity, array or tissue type and 

probe detection quality did not reveal significant impact by any of these factors 

(Supplementary Fig. S3A-F). Copy number alterations (CNA) previously described for 

ST-EPN-RELA, such as loss of CDKN2A, or chromothriptic events on chr. 11 were 

found to different extents. Loss of chr. 22 was associated with all clusters (Fig. 1C, 

Supplementary Table S2) (6,7). Notably, copy number alterations were calculated from 

Illumina 450k or Illumina 850k/EPIC arrays, and chromothriptic events may have been 

called more frequently applying whole-genome sequencing. Taken together, these 

data demonstrate that diagnostically challenging ST-EPNs (exploratory samples), i.e. 

unclassifiable tumors based on DNA methylation or without evidence for a typical 

fusion, mainly fall into discrete DNA methylation clusters distinct from ST-EPN-RELA 

and only partly share structural variations with these. 

 

ST-EPN-RELA satellite clusters harbor alternative ZFTA fusion genes  
Next, we further investigated molecular characteristics of satellite clusters 1 to 4 as 

compared to ST-EPN-RELA. To this end, we performed either RNA-sequencing or 

DNA panel-sequencing and also incorporated previously generated data (RNA-

sequencing and RT-PCR), resulting in comprehensive fusion gene information from 

clusters 1-4 (n = 48) and ST-EPN-RELA samples (n = 70)  (6,22)(Supplementary Table 

S1). Sequencing data revealed a previously unrecognized ZFTA-RELA fusion type in 

cluster 1 (n = 2/2), designated fusion type 8 (7) (Fig. 2A, B). All samples from cluster 3 

subjected to DNA panel-sequencing (n = 5/13), RNA-sequencing (n = 6/13) or both 

methods (n = 2/13) harbored a ZFTA-RELA (type 1, 2 or 3) fusion (Fig. 2A and 

Supplementary Table S1) (7). Notably, samples from cluster 3 were invariably 
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unclassifiable (ST-EPN-RELA score < 0.9 (cf. Fig. 1B) indicating that canonical ZFTA-

RELA fusions are present in a significant subset of ST-EPN that are molecularly 

distinct from classical ST-EPN-RELA based on DNA methylation profiling. Tumors 

from clusters 2 and 4 contained fusions to ZFTA but without involvement of RELA. 

Alternative ZFTA fusion partners included MAML2 (n = 15), MAML3 (n = 2), NCOA1 

(n = 2), NCOA2 (n = 9), and CTNNA2 (n = 1) (Fig. 2A, B, C and Supplementary Table 

S1). Within remaining samples of the satellite clusters 2 and 4, no fusion (2/33) or 

fusions without involvement of ZFTA (2/33) were detected, respectively (Fig. 2A, 

Supplementary Table S1).  

ZFTA-RELA fusions were identified in the majority of samples from the established 

ST-EPN-RELA group (63/70; 90.0%) (Supplementary Table S1). Within ST-EPN-

RELA we observed a tendency of samples to cluster according to their respective 

fusion type (Supplementary Fig. S4A). Occasionally, analyses of samples from ST-

EPN-RELA revealed more complex rearrangements including alternative fusions, such 

as ZFTA-SS18 (n = 1/70), SYVN1-MAJIN (n = 1/70), and RELA-MACROD1-ZFTA (n 

= 1/70) (Supplementary Fig. S4B). In 18 cases belonging to ST-EPN-RELA (n = 14), 

cluster 1 (n = 3) and 3 (n = 1), more than one genetic fusion harboring either RELA or 

ZFTA was detected. However, all of these showed low confidence scores and may 

represent non-functional byproducts of structural rearrangements on chr. 11(6). For all 

samples from the satellite clusters (6/48) and for ZFTA-RELA-negative cases from the 

ST-EPN-RELA cluster (2/4) with sufficient material, alternative rearrangements were 

validated by RT-PCR followed by Sanger sequencing.  In-frame fusion transcripts were 

confirmed in all cases (Supplementary Fig. S4C and Supplementary Table S1).  

 

ST-EPN with alternative fusions show distinct transcription profiles and atypical 
histologies 
To investigate whether (epi)genetically defined clusters of diagnostically ambiguous 

ST-EPNs also show transcriptional differences, we further analyzed available 

expression profiles (n = 66). Unsupervised hierarchical clustering analysis 

recapitulated clusters 1-4 derived from methylation data (Supplementary Fig. S5A). 

Exploration of differentially expressed genes (DEGs) and gene ontology (GO)-analysis 

comparing ST-EPN-RELA and clusters 2, 3, and 4 (FFPE-derived RNA-seq data were 

only available for n = 1 in cluster 1) revealed differences in expression patterns and 

activated signaling pathways (Supplementary Fig. S5B and C). RELA was significantly 
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upregulated in ST-EPN-RELA only. Previously described gene networks for ST-EPN-

RELA, such as MAPK-signaling and synapse organization, were found predominantly 

active in this group (6). Cluster 2 showed upregulation of metabolic pathways, 

especially with regard to amino acid metabolism, while clusters 3 and 4 revealed 

activation of neuroendocrine signaling (Supplementary Fig. S5C). Integration with 

DEGs from a previously published dataset on signature genes in EPN and with 

(super-)enhancer-regulated genes in ST-EPN-RELA identified only very few shared 

DEGs with the new clusters but strong overlap with the ST-EPN-RELA group from this 

study (6,22) (Supplementary Fig. S5D-G). A substantial number of (super-)enhancers 

specific to ST-EPN-RELA were also associated with clusters 2 and 3, implying a 

shared set of genes regulated by ZFTA-associated fusion proteins in (Supplementary 

Fig. S5D-G, Supplementary Table S3).  

Tumors harboring alternative rearrangements, or in case of cluster 3 also 

canonical ZFTA-RELA fusions, exhibited a broad spectrum of institutionally diagnosed 

high-grade and undifferentiated histologies including characteristics reminiscent of 

sarcoma, diffuse high-grade glioma, CNS embryonal tumors and other primitive tumors 

(Fig. 3A-E, Supplementary Fig. S6, S7A-J, S8A-F and Supplementary Table S4). In 

addition, a ZFTA-RELA fusion was detected in a case primarily diagnosed as centrally 

located malignant peripheral nerve sheath tumor as well as in a tumor that 

histologically appeared as ‘astroblastoma’. L1CAM, a characteristic histopathological 

marker for ST-EPN-RELA (23,24), and nuclear p65, the protein encoded by RELA, 

could be evaluated by immunohistochemistry (IHC) in a limited number of samples 

from cluster 2, 3 and 4 as well as in ZFTA-RELA-negative and ZFTA-RELA type 8 

cases. Apart from one sample in cluster 2, all cases expressed L1CAM to different 

extents, demonstrating that L1CAM-expression is not restricted to tumors harboring 

canonical ZFTA-RELA fusions (Fig. 3F-I, Supplementary Table S4). IHC stainings for 

p65 were negative in cluster 2 (0/3) and in one sample from cluster 3 harboring a ZFTA-

RELA fusion (1/4), and positive in cases across cluster 1 (n = 1), cluster 3 (n = 3), and 

cluster 4 (n = 1) (Fig.  3J-M, Supplementary Table S4). While ZFTA-RELA fusions were 

detected in 5/6 p65-positive cases, the p65-positive case from cluster 4 harbored a 

ZFTA-CTNNA2 fusion, demonstrating that p65-positivity is not confined to ZFTA-RELA 

fusions. Upon central histopathological review of available tumors (n = 25), most cases 

were found to be at least compatible with variants of highly dedifferentiated 

ependymoma (Supplementary Table S4). 
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Collectively, these results suggest that ZFTA is an integrally promiscuous partner 

within potentially oncogenic fusion genes that drive transcriptionally distinct ST-EPN 

including cases with atypical histological characteristics. 

 

A shared ZFTA DNA binding domain is essential for tumor formation in vivo  
The ZFTA-RELA fusion gene has been shown to drive tumor formation, when delivered 

to neonatal mouse forebrain cells positive for either NESTIN, GFAP or BLBP using the 

RCAS/tv-a system (13), suggesting that ST-EPN-RELA formation may result from 

single-hit oncogenesis in cells at an early stage during development. This prompted us 

to test whether the respective fusions detected in clusters 1-4 are sufficient to cause 

tumor formation as well. To investigate this, recurrently identified fusion genes 

encoding ZFTA fused to RELA, MAML2, MAML3, and NCOA2 were inserted into the 

pT2K-Luciferase-based expression vector flanked by Tol2 cis elements. Genomic 

integration of the fusion genes into cells of the cortical ventricular zone was achieved 

by in utero electroporation-based transfection with co-expression of the Tol2 

transposase (T2TP) at embryonic day 13.5 (E13.5) (Fig. 4A). According to our previous 

study (14), electroporation of ZFTA-RELA and YAP1-MAMLD1 alone induced tumor 

formation within the cerebral cortex with a median survival of 44 days and 29.5 days 

(n = 11/11 for ZFTA-RELA and n = 30/30 for YAP1-MAMLD1), whereas no tumors 

were developed by overexpression of wildtype ZFTA (n = 0/13) (Fig. 4B). 

Overexpression of ZFTA-MAML2 (n = 11/11), ZFTA-MAML3 (n = 5/11) and ZFTA-

NCOA2 (n = 5/5) induced tumors with a median survival of 29, 103 and 36 days after 

birth, respectively (Fig. 4B). Histopathological analysis of mouse tumors displayed 

several common histological features among ZFTA fusion-driven tumors. All tumors 

presented with high density of monomorphous round to oval cells, similar to human 

EPN, and were similarly sharply demarcated from the surrounding brain (Fig. 4C-F). 

Thus, newly identified ZFTA-related fusion genes alone are sufficient to drive 

tumorigenesis in vivo. 

Given that i) immunohistochemistry using an antibody against hemagglutinin 

(HA)-tagged fusion proteins revealed nuclear localization of the ZFTA-associated 

fusion proteins in all fusion-engineered tumors (Fig. 4G-J) and ii) the most N-terminal 

zinc finger DNA binding domain (ZF1) of ZFTA is shared by all fusion proteins (Fig. 

2B), we hypothesized that this ZFTA DNA-binding domain is required for the oncogenic 

capacity of the fusions. In fact, in utero electroporation of ZFTA fusion genes lacking 
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the ZF1 coding region (∆ZF1) failed to develop tumors (Fig. 4K, L, Supplementary Fig. 

S9A and B). While ZFTA(∆ZF1)-RELA were not detected in the nucleus, nuclear 

localization capacity of ZFTA(∆ZF1)-MAML2 and ZFTA(∆ZF1)-NCOA2 proteins was 

still retained (Supplementary Fig. S9C-E), strongly suggesting other roles than nuclear 

shuttling of the shared ZF1 domain for tumorigenesis. Indeed, a co-submitted 

manuscript by Kupp et al. demonstrates that chromatin binding and recruitment of 

chromatin remodeling complexes is related to the single ZF1 domain in ZFTA-RELA 

(21). 

Transactivation domains (TADs) represented another shared element among 

oncogenic fusion genes (Fig. 2B). To further investigate the role of TADs for tumor 

formation, ZFTA was fused to potent TADs, VP64 or EP300 (Supplementary Fig. S9F). 

None of the animals electroporated with ZFTA-VP64 or ZFTA-EP300 developed 

tumors during surveillance over 12 months (Supplementary Fig. S9G, n = 0/6). These 

findings suggest that additional oncogenic mechanisms are associated with the 

respective fusion partners. Importantly, this does not preclude an oncogenic role for 

the TAD within ZFTA-RELA and alternative fusion types, as Kupp et al. demonstrated 

that the TAD of RELA contributes to the fusion-associated transcriptional program 

through recruitment of transcriptional co-regulators (21). 

 

Murine tumor models share molecular characteristics with human ST-EPN-RELA 
For direct comparison of tumor models and human tumors, we applied principal 

component analysis to transcriptional profiles across species considering human and 

mouse orthologues. This approach revealed extensive molecular differences between 

ZFTA fusion- and YAP1-MAMLD1-driven tumors (Fig. 5A) (14). In order to control for 

species-specific effects and to provide variance measurements between murine 

models and human tumors, a hierarchical clustering was performed. This approach 

revealed high similarity between molecular groups of human ST-EPN and respective 

murine counterparts at the level of transcription (Fig. 5B). The strong effect on the 

transcriptome could also be demonstrated for another ZFTA-RELA-driven mouse 

model generated by Arabzade et al. (Supplementary Fig. S10A) (20). While others 

found global (Arabzade et al.) or focal (Kupp et al.) changes of histone marks 

(H3K27ac and H3K27me3) in murine tumor cells, we observed abundant global H3K27 

trimethylation and acetylation in our ZFTA fusion-driven mouse models corresponding 

well to respective levels in human tumors (Supplementary Fig. S10B-R) (20,21). 
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Since overexpression of L1CAM and activation of the NF-κB signaling pathway 

are molecular features of ST-EPN-RELA (7), we next examined these characteristics 

in ZFTA fusion-driven murine tumors. Ccnd1 but not L1cam was highly expressed 

across all types of the fusion-driven tumors (Fig. 5C and D). However, a global 

activation of the NF-κB pathway was not observed in any model of the alternative 

fusion types, indicating that aberrant activity of this pathway is not contributing to 

tumorigenesis (Supplementary Fig. S11A and B). In line with these findings, Kupp et 

al. observed that altering the Rel-homology domain in ZFTA-RELA fusions, which 

represents the DNA binding domain shared by the NF-κB family proteins for their signal 

transduction, did not result in loss of oncogenicity (21). 

 

Cross-species analysis identifies putative oncogenes downstream of ZFTA-
fusions 

Since the DNA binding domain of ZFTA is required for oncogenicity, we further 

explored common downstream effectors induced by transactivation of the ZFTA-

associated fusion genes. To this end, we chose a cross-species approach to concisely 

match signaling pathways between human tumors and mouse models. To exclude 

transcriptional information governing ependymoma cell identity and programs across 

molecular groups that we had observed previously (22), we selected differentially 

expressed genes for human primary ST-EPN-RELAs significantly upregulated 

compared to all other molecular groups of EPNs (n = 3,825 genes) (Fig. 6A). A similar 

approach was used to compare gene expression data from ZFTA-driven mouse tumors 

against data from murine YAP1-MAMLD1 tumors representing the only available 

alternative faithful model system (14). We found that 2,637 genes shared by ZFTA 

fusion-driven murine tumors are significantly higher expressed in comparison to YAP1-

MAMLD1 tumors (Fig. 6A). Filtering for orthologues in both mouse and human data 

resulted in 535 genes commonly upregulated in ZFTA fusion-related tumors across 

species (Fig. 6A). We next hypothesized that the list of these 535 genes includes the 

effector genes of characterized and uncharacterized oncogenic signaling commonly 

upregulated by ZFTA fusion genes. A gene ontology analysis revealed enrichment for 

cancer-related signaling pathways and partly convergence into known ST-EPN-RELA 

group-associated pathways, e.g., MAPK signaling (Supplementary Table S5) (6). We 

also found well-known oncogenes, such as the sonic hedgehog (Shh) mediator gene 

GLI2, the Wnt-mediator gene LEF1 and the ependymoma oncogene EPHB2 being 
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shared by ZFTA fusion-driven tumors (Fig. 6B) (3,25,26). All three genes were 

specifically upregulated in human ST-EPN-RELA as compared to other molecular 

groups of EPNs (Supplementary Fig. S12A-C). In addition, a comprehensive cross-

species analysis by Kupp et al. comprising all mouse models deployed by the three 

independent co-submitted studies and the two largest published datasets of human 

ST-EPN-RELA identified a common fusion-associated signature of 93 genes that also 

included GLI2 and EPHB2 (6,7,20,21). To further explore potential direct interactions 

of ZFTA fusions with these genetic loci, we performed ChIP-seq with antibodies 

against HA and H3K27ac as well as ATAC-seq analyses on ZFTA-RELA-driven murine 

tumor cells (Supplementary Methods). Indeed, the ZFTA-RELA fusion was found to 

directly bind to H3K27ac-marked open chromatin regions of Gli2, Lef1 and Ephb2 (Fig. 

6C-E). Consistent with our observation, the co-submitted study by Kupp et al. found 

that the ZFTA portion is capable of binding these loci (21). Reanalysis of ChIP-seq 

data on human tumors further supported these findings (Supplementary Fig. S12D-G). 

 

GLI2 represents a candidate downstream gene in ZFTA fusion-driven 
tumorigenesis in vivo 

To examine a potential functional implication of the revealed genes for ZFTA-driven 

tumorigenesis, we subsequently electroporated ZFTA-RELA together with genes 

encoding a dominant-negative form of GLI2, LEF1 and EPHB2, respectively (Fig. 7A). 

While the genes encoding the C-terminal portion of LEF1 (27) and the ectodomain of 

EPHB2 (28) did not attenuate tumor growth (Fig. 7B), the N-terminal portion of GLI2 

(dnGLI2) that inhibits GLI2-mediated transactivation (29) prevented tumor formation 

(Fig. 7B and C), indicating the requirement of GLI2 function for ZFTA fusion-associated 

tumorigenesis. In line with this finding, GLI2 protein expression was elevated in human 

primary tumors harboring different types of ZFTA fusion genes as well as in 

corresponding murine tumor models (Supplementary Fig. S13A-H). Moreover, we 

found that GLI2 transcription factor binding sites were highly enriched in histone 

H3K27ac-marked enhancers and super-enhancers of human ST-EPN-RELAs 

reported in our previous study (22) (Fig. 7D), further highlighting a decisive role of this 

oncogene.  

To investigate the contribution of GLI2 to ST-EPN-RELA tumor progression, we 

next infected EP1NS, a ZFTA-RELA-expressing ST-EPN cell line, with dox-inducible 

shRNAs against GLI2 (shGLI2_1 and shGLI2_2)- and non-targeting control shRNA 
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(shControl)-encoding lentiviruses. Approximately 40% reduction of GLI2 transcripts 

were observed 48h after administration of doxycycline (2 µg/mL) (Fig. 7E). Within 96h 

after shRNA induction, EdU pulse-labeling revealed significant reduction of cell 

proliferation in GLI2 shRNA-expressing cells when compared to shControl (Fig. 7F). 

Annexin V staining also confirmed induction of enhanced apoptotic cell death in GLI2 

shRNA-expressing cells (Fig. 7F). To further evaluate GLI2 inhibition in vivo, tumor 

bearing animals were treated with arsenic trioxide (ATO), a blood brain barrier-

penetrating drug that includes GLI2 in its target spectrum (30-32). ZFTA-RELA-

electroporated mice were treated with either 2.5 mg/kg ATO or vehicle (i.p. injection, 5 

times per week) after the luciferase signal reached ca. 5x106 photons/sec. ATO-treated 

animals showed extended survival when compared to vehicle-treated controls (Fig. 7G 

and Supplementary Fig. S13I). Comparable expression levels of Gli2 were detected 

between control and ATO-exposed tumors (Supplementary Fig. S13J), thus excluding 

that ATO treatment incidentally downregulated Gli2 in vivo. Together, this data 

suggests GLI2 as potential therapeutic vulnerability in ZFTA fusion-positive tumors. 

 

 

Discussion 
 
In this study, we aimed to further investigate the biological heterogeneity of ST-EPN 

as a basis for future improved diagnostic accuracy and target identification. To this end, 

we performed a comprehensive molecular analysis of ST-EPN that confirmed 

previously described stable molecular groups of EPN but also identified additional 

satellite clusters related to ST-EPN-RELA. The RELA fusion partner ZFTA was found 

to be a recurrent partner in alternative translocations within tumors that constitute these 

satellite clusters. The clinical significance of these satellite clusters needs to be 

confirmed in future studies with increased sample size and clinical information. The 

clusters will be included in the upcoming version 12 of the Heidelberg Brain Tumor 

Methylation Classifier as part of a novel molecular family of ZFTA-fusion-related ST 

tumors.  

Diagnostic assessment of cases within satellite clusters appears to be particularly 

challenging as tumors often not only harbor alternative ZFTA fusions but can also 

present histological characteristics untypical for ependymoma. While tumors in 

clusters 1 and 2 were predominantly diagnosed as ependymoma, other institutional 
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histological diagnoses were reported almost exclusively for clusters 3 and 4. Notably, 

immunohistochemical stainings for both L1CAM- and p65- could not reliably distinguish 

between ZFTA-RELA and other ZFTA-related fusions. Two previous case reports also 

described diagnostically ambiguous situations with a ZFTA-RELA fusion shared 

between a primary supratentorial ependymoma and its relapse, which histologically 

was diagnosed as sarcoma, and appearance of the fusion in an atypical 

teratoid/rhabdoid tumor (33,34). These findings further illustrate the diagnostic 

challenges imposed by these exceedingly rare tumors and indicate the potentially 

arbitrary role of histomorphology that does not necessarily reflect underlying molecular 

programs, as described for CNS-PNETs (35). These data further underpin the 

classification as planned for the upcoming 5th edition of the WHO Classification of 

Central Nervous System Tumours that allows for molecularly defined tumor types 

rather than adhering to strictly morphology-defined entities. We suggest that these 

oncogenic alterations may affect cells that had remained in an early stemness state 

permissive for one-hit tumorigenesis and rendering possible the development of 

morphologically non-neuronal, non-glial elements. This is supported by data in a co-

submitted manuscript by Arabzade et al. identifying transcriptional programs within 

fusion-driven ependymoma that are active during embryonic brain development (20). 

In the present study, we revealed the expression of various ZFTA fusion proteins 

in ST tumors. Each of these fusion proteins by itself caused tumor formation in the 

cerebral cortex, implying that they share oncogenic mechanisms. In line with Kupp et 

al. (21), we indeed identified a zinc finger DNA-binding domain of the fusion partner 

ZFTA as an essential element for tumorigenesis, which also resulted in the new official 

designation of the gene formerly known as C11orf95. In addition, structural comparison 

of all ZFTA fusion partners identified the common presence of a transactivation domain, 

raising the possibility that ZFTA fusion oncoproteins activate oncogenes through 

recruitment of an activating domain to the ZFTA bound targets. Notably, each of the 

newly identified ZFTA fusion genes induced tumors with different penetrance and 

latency. This may be attributed to variable effects of the fusion partners on the 

transcriptional machinery in neural progenitors. For instance, MAML2 and MAML3 

have been known to be a cofactor of NOTCH, which is responsible for clonal expansion 

of cortical progenitors in the ventricular zone. However, MAML2 shows much stronger 

transcriptional activation of Hes genes than MAML3 (36). Therefore, ZFTA-MAML2-

mediated enhancement of NOTCH signaling is likely to increase the number of fusion 
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bearing progenitors more efficiently. Consistent with this idea, we indeed found 

reduced survival in mice electroporated with ZFTA-MAML2 compared to ZFTA-

MAML3 (Fig. 4B). Considering that NF-κB signaling is involved in neural stem cell 

(NSC) proliferation in the cerebral cortex (37,38), ZFTA-RELA is also likely to expand 

the progenitor pool of the transfected cells, thus shortening the latency of tumor 

formation. Since ST tumors associated with different fusions are characterized by 

variable methylation profiles, it could also be hypothesized that each fusion 

oncoprotein may exert transformation activity in distinct NSC subtypes already 

committed to specific progenitors, as was reported for medulloblastoma (39,40). 

Notably, applying single cell RNA-sequencing to a cohort of ST-EPN-RELA and 

posterior fossa group A ependymoma (PF-EPN-A) we and others previously 

recognized a larger inter-tumoral heterogeneity for ZFTA-RELA-driven tumors 

compared with PF-EPN-A (41). Future single cell studies coupled with technologies for 

profiling the chromatin landscape may enable the inference of developmental lineages.  

A previous animal study revealed the NF-κB- and non-NF-κB-related impact of 

ZFTA-RELA fusions on tumor formation by mutagenesis (13). A mutation of the Rel-

homology domain failed to drive tumorigenesis, whereas alterations of the 

transactivation domain still resulted in tumor formation. In our study, we did not observe 

NF-κB pathway activation in tumors without RELA as fusion partner. In keeping with 

this notion, Arabzade et al. demonstrated that a major component of the fusion binding 

is tumor-specific and not observed in canonical NF-κB-related gene expression (20). 

In addition, Kupp et al. found that the Rel-homology domain is not required for fusion-

driven gene expression (21). It remains to be further elucidated if at least 

transactivation domains that represent a shared pattern between fusions that cluster 

together and lack the Rel-homology domain, such as ZFTA-NCOA1, ZFTA-NCOA2 

and ZFTA-MAML2, may contribute to tumorigenesis through binding of transcriptional 

cofactors. Indeed, integrated cross-species analyses identified downstream targets 

shared by ST tumors with ZFTA fusions suggesting similar transcriptional activation 

processes. Our results stress that GLI2 functions as a relevant downstream oncogene 

in ZFTA fusion-driven ST tumors and pharmacological inhibition could significantly 

reduce tumor growth.  

In summary, we demonstrate the transforming capacity of ZFTA-containing 

fusions, provide representative mouse models, and present a rationale for further 

preclinical studies blocking central molecular dependencies of these fusions. Tumors 
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containing a canonical or alternative ZFTA fusion will be classified as supratentorial 

ependymoma, ZFTA fusion-positive in the upcoming 5th edition of the WHO 

Classification of Central Nervous System Tumours. 

 

 
Methods 

 
Animals 
CD-1 mice used for in utero electroporation were obtained from Charles River and 

housed in a vivarium with a 12h light/dark cycle with access to food and water ad 

libitum. The day of the plug and the birthdate are designated as embryonic day (E) 0.5 

and postnatal day (P) 0, respectively. All animal experiments for this study were 

conducted according to the animal welfare regulations approved by the Animal Care 

and Use Committee of the National Institute of Neuroscience, NCNP in Japan 

(Approval number: 2019028R1) and the responsible authorities in Germany 

(Regierungspräsidium Karlsruhe, approval number: G-255/19 and G-260/19). 

 

Human Subjects 
All experiments in this study involving human tissue or data were conducted in 

accordance with the Declaration of Helsinki. Tumor material (Fresh Frozen Paraffin-

embedded (FFPE) tissue, pre-isolated RNA and/or DNA) or information on molecular 

tumor characteristics was collected and analyzed after receiving written informed 

consent from the respective patients or their legal representatives and according to the 

guidelines of the ethical institutional review boards of the participating institutions, such 

as Heidelberg University Hospital and the NN Burdenko Neurosurgical Institute. For 

cases from diagnostic or clinical studies, material was obtained in accordance with the 

respective study protocol and informed consents. For all cases, a genotype check was 

performed to exclude the possibility that material from the same patient was received 

from more than one center. To this end, the Pearson correlation across beta 

methylation values of 59 rs-loci present on both the Illumina Infinium 

HumanMethylation450 and the Illumina Infinium HumanMethylation EPIC array were 

calculated. Samples with a correlation ≥ 0.95 were considered as genotype matches. 
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Cell Line 
HEK-293T (CRL-3216) cells were purchased from ATCC. HEK-293T cells were 

cultivated with Dulbecco’s Modified Eagle Media (DMEM, Thermo Fisher) 

supplemented with heat-inactivated 10% fetal bovine serum (FBS, Thermo Fisher), 2 

mM L-glutamine, 100 U/mL penicillin and 100 μg/mL streptomycin. The cells were 

maintained in a humidified 5% CO2 atmosphere at 37 °C and subcultured when cell 

confluency reached approximately 80%. Mycoplasma contamination was assessed 

periodically by GATC/Eurofins. 

Plasmids cloning 
The full or partial coding regions of human ZFTA, MAML2, MAML3 and NCOA2 cDNAs 

with a C-terminal HA tag were amplified by PCR and cloned into pT2K-IRES-Luc 

plasmid vectors using In-Fusion HD Cloning kit (Takara Bio). Dominant negative Gli2 

was amplified by RT-PCR on total RNA of mouse granular neural progenitor cells. 

pT2K plasmids were co-transfected with Tol2 transposase encoded in the pCAGGS 

plasmid. For the generation of ZFTAΔZF1-RELA/MAML2/NCOA2 cDNA, a sequence 

of zinc finger domain was chosen based on UniProt prediction. All primers used for 

PCR are listed in Supplementary Table S6. 

 

Generation of Dox-inducible shRNA-expressing cells.  
Human EPN cell line EP1NS was transduced with lentiviral pLKO-tet-on vector system 

(plasmid #21915, Addgene) containing a puromycin-resistance gene, and a tet-

responsive element for dox-inducible expression of shRNA against GLI2 (shGLI2_1 

and shGLI2_2) or a non-targeting control shRNA (shControl). All primers used for 

cloning are listed in Supplementary Table S6. The dox-inducible vectors were 

generated according to a publicly available protocol (42,43). Lentiviral particles were 

generated in HEK293T cells. Virus-containing supernatant was collected to infect 

EP1NS cell line. Infected cells were selected with 1 μg/mL puromycin. The shRNA 

expression for GLI2 knockdown in EP1NS was achieved by adding 1 μg/mL 

doxycycline every 48h to the medium. For proliferation assay, 96h after dox 

administration, the cells were treated with EdU (final concentration: 10 μM) for 12h and 

subsequently harvested with Accutase solution. EdU-incorporated cells were labeled 

using a Click-iT EdU Alexa Fluor 647 Flow Cytometry Assay Kit (Life Technologies) 

according to the manufacturer’s protocol. The cells were passed through a 35 μm cell 
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strainer yielding a single cell suspension and analyzed by flow cytometry using a FACS 

Fortessa flow cytometer (BD Biosciences). For apoptosis assay, the infected cells were 

harvested 96h after dox treatment, and were subsequently washed twice with Cell 

Staining Buffer (BioLegend). Cells were then stained with Annexin V-APC and DAPI 

diluted in Annexin V Binding Buffer using Apoptosis Detection Kits (BioLegend) 

according to the manufacturer’s protocol. Samples were analyzed by flow cytometry 

using a FACS Fortessa flow cytometer (BD Biosciences).  

 

In utero electroporation 
In utero electroporation was performed as reported previously (44). Specifically, 

endotoxin-free DNA plasmid mixture (1 µg/µL for each plasmid) were injected into the 

lateral ventricle of E13.5 embryos, and square electric pulses (32 V, 50 ms-on, 450 

ms-off, five pulses) were delivered using 5 mm-diameter platinum forceps-like 

electrodes (BTX). For in vivo tumor formation analysis, electroporated animals were 

selected at neonatal stages by intraperitoneal (i.p.) injection of D-Luciferin (150 mg/kg) 

and subsequent bioluminescence imaging. Growth of transfected cells was monitored 

every week by measurement of intensity of bioluminescence with IVIS Lumina LT 

Series III Caliper (Perkin Elmer). The animals were sacrificed, once they exhibited 

neurological signs, such as head tilting, abnormal gait, and a hunched posture, or at 1 

year of age if showing no symptoms.  

 

In vivo ATO treatment 
A stock solution of 20 mg/mL ATO in 1 M NaOH was prepared. It was further diluted 

to 0.5 mg/mL ATO with PBS, and the solution was sterile-filtrated. The vehicle solution 

was prepared the same way but without ATO. When the bioluminescence signal of the 

electroporated animals reached ca. 5 x 106 photo/second, the animals were allocated 

randomly to vehicle- and ATO-treatment group and treated five days per week either 

with 2.5 mg ATO/kg/day (i.p). or the equivalent volume of vehicle solution. Prior to the 

treatment, 20% mannitol in 0.9% saline was i.p injected into mice (5 mL/kg) to disrupt 

the blood–brain barrier. The mice were monitored daily for tumor-specific symptoms 

and euthanized when it exhibited neurological symptoms.  

      

Immunohistochemistry staining 
Brains with tumor from electroporated mice were dissected and fixed with formalin at 
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4 °C for 48h. 5 μm-thick paraffin-embedded murine tumor sections were 

immunostained according to the procedures in our previous study (45). After 

deparaffinization, the sections were pre-treated with citrate buffer at 100 ˚C for 30 

minutes. Then the sections were incubated with the primary antibodies 

(Supplementary Table S7) diluted with Dako REAL Antibody Diluent (Agilent #S2022) 

at room temperature (RT) overnight. DAB staining was performed the next day using 

SuperVision 2 HRP-polymer kit (DCS PD000POL) following the protocol provided by 

the manufacturer. Slides were mounted in ProLong Gold Antifade Mountant (Invitrogen 

#P36930). Nuclei were stained with DAPI (300 nM). Images were acquired with 

confocal microscopes (ZEISS Cell Observer). 

Immunohistochemistry for human samples was performed on a Ventana 

BenchMark ULTRA Immunostainer (Ventana Medical Systems, Tucson, AZ, USA). 

Antibodies used in this study are listed in Supplementary Table S7. 

 

Immunofluorescence staining 
HEK293T cells were cultured on glass coverslips one day before transfection. Plasmid 

constructs were transfected using Fugene (Promega) following the instructions 

provided by manufacturer. 48h after transfection, cells were fixed with 4% 

paraformaldehyde for 20 minutes followed by 10 minutes permeabilization with Triton 

buffer (0.1% Triton in PBS). After washing with PBS two times, the primary antibody 

(Supplementary Table S7) was applied directly on the cells for 1 hour at RT. The 

antibody solution was removed by absorption with Whatman filter paper before 

washing the coverslips two times 5 minutes with PBS. The corresponding secondary 

antibody was applied subsequently, incubated for 30 minutes and three times washed 

for 5 minutes in PBS. Finally, cells were washed briefly in ddH2O in order to remove 

salts and pure ethanol before they were mounted on microscopy glass slides with 

Fluoromount-GTM containing 1 μg/mL DAPI (Southern biotech). 

 

Western blotting 
The protein expression of the plasmids used in this study was validated by western 

blotting according to the following procedures: HEK293T cells were transfected with 

the plasmids and harvested 48h after transfection. The cell pellets were lysed with 

RIPA buffer and 20 μg of the protein lysates were used for protein detection. Briefly, 

proteins were denatured for 5 minutes at 95 °C, loaded on NuPAGE Bis-Tris 
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(#NP0301BOX, Invitrogen) and separated at 120 V for 2h. Proteins were transferred 

to methanol-activated PVDF membrane by tank electrotransfer in Towbin buffer for 1h 

at 110 V. Membrane was blocked with 5% skimmed milk in 0.5% Tween/TBS (TBST) 

for 1h at RT prior to overnight incubation with primary antibodies (Supplementary Table 

S7). After washing with TBST, membrane was incubated with secondary antibody for 

1h at RT. The membrane was developed with either ECL (RPN2106, GE Lifesciences) 

or ECL Prime (RPN2232, GE Lifesciences) as recommended by the manufacturer 

followed by exposure to autoradiography films in a dark room.  

As for H3K27me3 and H3K27ac analysis, mouse brains were lysed in Lysis buffer 

(150 mM NaCl, 20 mM Tris-HCl (pH 7.4), 2 mM EDTA, 1% NP-40) and sonicated with 

a Bioruptor. The lysates were collected after centrifugation (13,000 × g for 10 minutes) 

and then denatured in SDS sample buffer at 95 °C for 3 minutes. 0.1 µg and 10 µg of 

the lysates were used for Histone H3 and for H3K27ac and H3K27me3, respectively. 

Blotted membranes were blocked with 5% non-fat milk in TBST for 30 minutes and 

immunoblotted with anti-Histone H3 (Abcam, ab1791, 1:1000), anti-Tri-methyl-Histone 

H3 (K27) (Abcam, ab6002, 1:300) and anti-Acetyl-Histone H3 (K27) (CST, D5E4, 

1:300) antibodies. After washing, the membranes were incubated with HRP-

conjugated secondary antibodies (GE Healthcare, 1:1000) for 1h at room temperature. 

Then they were washed at least four times and detected via enzyme-linked 

chemiluminescence (Immobilon Forte; Millipore) in a cooled CCD camera (LAS-4000 

mini, Fujifilm). For quantitative analysis, the signal intensities from murine tumor 

lysates were measured with the image J software and normalized by a global level of 

histone H3. 

 

RNA Isolation      

Total RNA was extracted from cryo-preserved mouse tissues using an RNeasy Plus 

Mini Kit together with QIAshredder (QIAGEN) according to manufacturer’s instructions 

and stored in -80 ºC until use. cDNAs for downstream application were prepared using 

the SuperScript VILO cDNA Synthesis Kit (Invitrogen). 

 

Quantitative RT-PCR 
qPCR mix was prepared following manufacturing protocol of Power SYBR Green PCR 

Master Mix (Applied Biosystems). qPCR was performed using the QuantStudio 5 RT-

PCR system (Applied Biosystems). The cycling conditions used were 95 °C for 10 
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minutes and 40 cycles of 95 °C for 15s and 60 °C for 1 minutes following dissociation 

analysis. All qPCR reactions were done in triplicate and normalized to TBP mRNA 

levels. 

 

DNA-methylation profiling and Copy Number Variation Plots (CNVs)  
Genome-wide DNA methylation profiling was performed using the Illumina Infinium 

HumanMethylation450 and the Illumina Infinium HumanMethylation EPIC Kits as 

previously described and according to the manufacturer’s instructions (6).  

All computational analyses were performed in R version 3.4.4 (R Development 

Core Team, 2019). Raw signal intensities were obtained from IDAT-files using the minfi 

Bioconductor package version 1.24.0 (46,47). Illumina EPIC and 450k samples were 

merged to a combined data set by selecting the intersection of probes present on both 

arrays (combineArrays function, minfi). Each sample was individually normalized as 

described in (14). Subsequently, a correction for the type of material tissue 

(FFPE/frozen) and array (450k/EPIC) was performed by fitting univariate, linear 

models to the log2-transformed intensity values (removeBatchEffect function, limma 

package version 3.34.5). The methylated and unmethylated signals were corrected 

individually before beta-values were calculated. CpG probes selection was performed 

as described in (14). In total, 428,230 probes were kept for downstream analysis. 

To perform unsupervised non-linear dimension reduction, the remaining probes 

were used to calculate the 1-variance weighted Pearson correlation between samples 

by applying the function wtd.cors function of the R-package weights version 1.0.1. The 

resulting distance matrix was used as input for t-Distributed Stochastic Neighbor 

Embedding analysis (t-SNE; Rtsne package version 0.13). The following non-default 

parameters were applied: theta = 0, pca = F, max_iter = 2500 perplexity = 20. 

In order to identify fitting samples for this study, an exploratory set of 20 cases 

was chosen on the basis of the following three conditions: i) prediction for ST-EPN-

RELA according to DNA methylation-based classification but without evidence for a 

canonical ZFTA-RELA fusion, ii) the vice versa combination with a typical fusion event 

in the absence of a reliable ST-EPN-RELA score or iii) supratentorial tumors 

histologically diagnosed as EPN that cannot readily be assigned to any of the existing 

molecular classes. DNA-methylation profiles of these cases were clustered with a 

cohort of 61,821 samples from different tumor entities and experimental data and 

compared with a reference set (15). This analysis was subsequently repeated with an 
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increased set of 71,270 samples and with a reference cohort of 507 EPN cases 

covering all 10 major subgroups (5,6). 

The 613 samples in the cohort were assigned to either ST-EPN-RELA, satellite 

cluster 1 - 4 or outlier cases based on a hierarchical density-based scan (HDBSCAN, 

R-package dbscan version 1.1-5 (48)) using the 2-dimensional projection resulting 

from the tSNE as input and applying a minPts parameter of 5. Cluster stability was 

assessed by a resampling approach. For each of 500 resampling iterations, tSNE 

dimension reduction followed by HDBSCAN cluster assignment was applied to 80% of 

the samples sampled without replacement. In accordance to Consensus Clustering 

(49), a consensus matrix was calculated storing pairwise relative frequencies how 

often two samples were assigned to the same cluster. A heatmap of the consensus 

matrix was generated applying the pheatmap R-package using the default settings for 

clustering rows and columns (Supplementary Fig. S2C). The heatmap was annotated 

with the HDBSCAN results for the complete data set as well with the frequency how 

often a sample was assigned to the outlier cluster over the resampling iterations. The 

distribution of the number of clusters detected over the 500 iterations is shown in 

Supplementary Fig. S2B indicating 6 as the most frequently identified number of 

clusters (ST-EPN-RELA, cluster 1 – 4, and outliers). 

CNV analysis from 450k and EPIC methylation array data was performed using 

the conumee Bioconductor package version 1.12.0 (Hovestadt V, Zapatka M, 2017). 

Summary copy number profiles were created by summarizing these data in the 

respective sets of cases. 

 

DNA-panel sequencing 
DNA-panel sequencing was performed on 29 samples obtained from either FF- or 

FFPE-material using a customized enrichment/hybrid-capture-based next-generation 

sequencing (NGS) gene panel 130 genes recurrently altered in brain tumors according 

to the manufacturer’s instructions and as previously described (50). 

 
RNA-sequencing analysis and fusion discovery 

High-throughput sequencing of 66 samples obtained from FFPE-material and 28 

samples obtained from FF-material with sufficient quality and quantity of RNA was 

performed according to the manufacturer’s instruction and as previously described 
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(5,51). General FFPE RNA-seq data processing (reads alignment, quality control and 

gene expression counts computation) was performed as previously described (51).   

Unsupervised analysis of tumor samples was performed with principal component 

analysis, tSNE and hierarchical clustering based on the selection of the top 1000 most 

variable genes with log2 RPKM normalized gene expression counts. Selection of the 

NF- κB target genes was derived from the corresponding source 

(https://bioinfo.lifl.fr/NF-KB/). 

Fusion genes discovery from RNA-sequencing data was performed using two 

independent tools: InFusion (52) and Arriba (https://github.com/suhrig/arriba/). 

Transcription of fusion identified by RNA-sequencing was confirmed by RT-PCR. RNA 

was extracted from frozen tumor samples, then reverse-transcription and PCR were 

carried out by using OneStep RT-PCR Kit (QIAGEN), using specific primers 

(Supplementary Table S6). Fusions were confirmed by Sanger sequencing (Eurofins 

Genomics).  

 

Tumor cross-species verification 

The Affymetrix data cohorts were used for cross-species analysis. Human Affymterix 

data from corresponding study (6) was integrated from R2 system. The list of common 

mice-human gene orthologs from AGDEX Affymetrix reference (14635 genes in total) 

was integrated for gene probes selection in further comparison between human tumor 

and mouse model datasets. Initially differentially expressed orthologous genes 

between the ST-EPN-YAP1 and ST-EPN-RELA tumors starting from top 5000 most 

evident (min adjusted p-val < 0.0006) were applied as the target reference to confirm 

the model’s correspondence based on unsupervised hierarchical clustering and 

principal component analysis as it was described previously (14). Further, in order to 

increase the specificity for ZFTA-driven effects, evident differentially expressed genes 

of ST-EPN-RELA tumors vs all other EPN subgroups were integrated for target 

candidate selection (n=3825, min. adjusted p-val < 0.05).  Differentially expressed 

genes between models were detected using limma R package (53) with adjusted p-val 

< 0.05.  

For the gene ontology and pathway analysis the common orthologs between 

mouse models and human tumors were selected from differentially expressed genes 

specific for ST-EPN-RELA against all other EPN subgroups and for each ZFTA-driven 
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model against MAMLD1-YAP1 control. Gene ontology analysis was performed using 

ClueGO tool (54) by focusing the top 300 top evident genes. 

 

Statistical Analysis 

The Kaplan-Meier-method was applied for survival analysis comparing the different 

fusion constructs and visualized using R version 3.6.1 (R Core Team, 2020) and the 

survival- and survminer-R packages (https://github.com/therneau/survival, 

https://github.com/kassambara/survminer). The Paired t test was used for EdU and 

Annexin V analysis in the shGLI2 experiment and visualized using GraphPad Prism. 

 

Data and Code Availability 
Data from methylation profiling, RNA-sequencing and DNA panel-sequencing will be 

deposited at the European Genome-phenome archive 

(https://www.ebi.ac.uk/ega/home). 
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Figure Legends 
 
Figure 1. Diagnostically ambiguous supratentorial ependymoma form discrete 
clusters. 
A, Unsupervised clustering of reference cohort samples (n = 501 from two previous 

studies (5,6), additional non-reference samples (n = 507) and exploratory samples (n 

= 20) using t-SNE dimensionality reduction (5,6). B, t-SNE plot based on a hierarchical 

density-based clustering scan (HDBSCAN) comprising samples from cluster 1-4 and 

ST-EPN-RELA in A (n = 613). Respective calibrated classification scores based on the 

Heidelberg Brain Tumor Methylation Classifier, v11B4 are encoded red if ≥ 0.9 (= 

predicted as ST-EPN-RELA) or black if < 0.9 (= no assignment to any of the defined 

brain tumor methylation classes) (15). Samples classified as outlier by the HDBSCAN 

(n = 25) are marked with a black line. C, Copy number variations observed in the ST-

EPN-RELA cluster and clusters 1-4 plotted as frequencies at which these aberrations 

occurred within respective clusters. Detailed aberrations per sample are given in 

Supplementary Table S1 and S2. 
 
Figure 2. ST-EPN-RELA satellite clusters harbor alternative ZFTA fusion genes.  
A, t-SNE for samples from clusters 1–4. Colors indicate respective fusion types. B, 
Visualization of the different fusion constructs containing ZFTA that were detected in 

the four satellite clusters. Detailed information on the different domains within the 

fusion construct of ZFTA-CTNNA2 was not available due to the detection method 

(DNA-panel seq.). ZF = zinc finger domain, TAD= transactivation domain. C, Fusion 

plot summarizing fusion partners of ZFTA in the ST-EPN-RELA cluster and clusters 1-

4 that were identified in samples with high confidence. Line width represents the 

frequency of detected fusion. 

 

Figure 3. Tumors harboring alternative fusions exhibited a broad spectrum of 
institutionally determined histological diagnoses. 
A, Oncoplot depicting DNA-methylation profiling results, reported histopathological 

diagnoses, detected gene fusions, structural variations typical for ST-EPN-RELA and 

methods/material used for the respective analyses for all samples of the four satellite 

clusters (n = 96). B-E, Examples for the highly variable histology of cases from the 
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satellite clusters: HE stainings (Scale bar = 200 µm) of tumors from cluster 2 (B, C; 

green frame) and cluster 3 (D, E; yellow frame). The upper cases (B, D) show typical 

perivascular pseudo-rosettes (highlighted in inset). The lower cases (C, E) lack these 

pseudo-rosettes and show extensive mesenchymal/fibrotic areas (C) or small cells, 

partially with peri-nuclear halos (E). F-I, IHC-staining illustrating the variable degree of 

L1CAM-positivity in cases from cluster 2 (F, G; green frame), cluster 3 (H; yellow 

frame), and cluster 4 (I; blue frame). L1CAM-expression ranges from negative (F) over 

weakly positive (G, H) to strongly positive (I). The detected fusion in each sample is 

given at the lower right. J-M, IHC-staining illustrating the variable degree of p65-

positivity in cases from cluster 1 (J; orange frame), cluster 2 (K; green frame), and 

cluster 3 (L, M; yellow frame). p65-expression ranges from negative (K) over weakly 

positive (L, M) to strongly positive (J). The detected fusion in each sample is given at 

the bottom of micrographs. 
 
Figure 4.  ZFTA fusion genes exert their oncogenicity in the developing cerebral 
cortex via a distinct zinc finger domain. 
A, Graphical illustration of the plasmid constructs used for modelling ST tumors in mice. 

All constructs are tagged with the human influenza hemagglutinin surface glycoprotein 

(HA). ZFTA or ZFTA-fusion constructs were cloned into the pT2K transposable vector 

and injected with the Tol2 transposase into the lateral ventricle of E13.5 wild-type mice 

followed by transfection using an electroporation-based in vivo gene transfer approach. 

CAG, CMV early enhancer/chicken beta actin promotor. IRES, internal ribosomal entry 

site. Tol2, Tol2 transposase cis element. B, Kaplan-Meier survival curves along with 

the numbers of surviving animals electroporated with ZFTA or indicated ZFTA fusion 

genes. Note that YAP1-MAMLD1 was used as a positive control. Log-rank test 

compares each ZFTA fusion to ZFTA wild-type.  C-F, Micrographs (H&E) of ZFTA 

fusion-driven tumors in mice. (Scale bar = 300 µm and 50 µm for insets). G-J, 
Immunostaining using an anti-HA antibody on respective ZFTA fusion-driven tumors 

shown in C-F (Scale bar = 50 µm). K, In vivo bioluminescence images at weeks 1, 2 

and 4 after birth of the electroporated animals. L, Kaplan-Meier survival curves of mice 

electroporated with ZFTA-RELA (that corresponds to 3B) and ZFTA(ΔZF1)-

RELA/MAML2/NCOA2 constructs. ***P < 0.001; ****P < 0.0001 
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Figure 5. ZFTA fusion-associated murine tumor models share molecular 
characteristics with human ST-EPN-RELA. 
A and B, Principle component analysis in A and hierarchical clustering in B based on 

orthologous genes expressed in human ST-EPN-RELA (solid red) and ST-EPN-YAP1 

(solid cyan) tumors and murine ZFTA-RELA (hollow red), ZFTA-MAML2 (hollow green), 

ZFTA-NCOA2 (hollow purple) and YAP1-MAMLD1-driven (hollow cyan) tumors. Each 

dot represents one tumor. C, Expression level of Ccnd1/CCND1 in mouse (left) and in 

human (right); ****P < 0.0001. D, Expression level of L1cam/L1CAM in mouse (left) 

and in human (right); ns, nonsignificant; *P < 0.0332; ****P < 0.0001. 

 

Figure 6. Cross-species analysis identifies putative downstream oncogenes. 
A, Schematic representation of cross-species analysis using Affymetrix gene 

expression data from human ST-EPN-RELA vs. all other EPNs (left column) and 

Affymetrix gene expression data (430V2 chip) from ZFTA fusion-driven murine models 

vs. YAP1-MAMLD1-driven murine model (right column); extraction of 535 orthologous 

genes commonly activated in human and mouse ZFTA-driven tumors (bottom). B, 
Heatmap of the 32 genes implicated in cancer-related signaling pathways as extracted 

from gene ontology (GO) analysis. C-E, ChIP-seq and CUT&RUN using HA-directed 

or H3K27ac antibodies and ATAC-seq in murine ZFTA-RELA-HA fusion-induced 

tumors reveals binding at Gli2 (C),2 Lef1 (D) and Ephb2 (E). Integration with previously 

published data on regulatory elements indicates active enhancers in human ST-EPN-

RELA (22). IgG was used to control for non-specific signaling. 

 

Figure 7. Gli2 is a downstream gene of ZFTA fusion-driven oncogenic signaling. 
A, Illustration of the plasmid vector carrying ZFTA-RELA fused to the genes encoding 

a dominant-negative form of indicated oncoproteins with T2A self-cleaving peptides. 

B, Kaplan-Meier survival curves of mice electroporated with ZFTA-RELA (median 

survival = 44 days) or ZFTA-RELA-T2A-dnGli2 (solid line), -dnEphb2 (dashed line, 

median survival = 36 days), -dnLef1 (dotted line, median survival = 20 days) constructs. 

****P < 0.0001, *P = 0.0201, ns = non-significant C, In vivo bioluminescence images 

at week 1-4 after birth of animals electroporated with indicated constructs. D, 
Transcription factor enrichment analysis of GLI2 within histone H3K27Ac-marked 

enhancers across human primary ST-EPNs and PF-EPNs. E, Relative expression of 

GLI2 at mRNA level in the EP1NS cell line 48h after dox-treatment inducing shGLI2 
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expression. P value determined by paired t test. shGLI2_1: n = 4, mean = 0.6529, SD 

= 0.07702, P = 0.0041; shGLI2_2: n = 4, mean = 0.6137, SD = 0.1887, P = 0.0465. 

shControl: n = 4, mean = 1.076, SD = 0.134. F, Relative level of EdU (red dots) and 

Annexin V (blue dots) in EP1NS cell line 96h after dox-treatment compared to the ones 

without dox-treatment. P value determined by paired t test. For EdU: shGLI2_1: n = 6, 

mean = 72.17%, SD = 7.627, P < 0.0001; shGLI2_2: n = 6, mean = 76.33%, SD = 

3.983, P = 0.0009; shControl: n = 6, mean = 98.5%, SD = 7.530. For Annexin V: 

shGLI2_1: n = 6, mean = 113.5%, SD = 10.86, P = 0.0251; shGLI2_2: n = 6, mean = 

127.5%, SD = 16.06, P = 0.0223; shControl: n = 6, mean = 94.67%, SD = 12.36. G, 

The Kaplan-Meier curves of the electroporated mice treated with ATO (blue curve, 

median survival = 36 days) or vehicle (black curve, median survival = 13 days). P value 

determined by Log-rank test (P = 0.0104). All error bars represent standard deviation 

(SD). ****P < 0.0001, *** P < 0.001, **P < 0.01, *P < 0.05.  
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Figure 2 
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Figure 3 

 
  

Cancer Research. 
on September 30, 2021. © 2021 American Association forcancerdiscovery.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on April 20, 2021; DOI: 10.1158/2159-8290.CD-20-0963 

http://cancerdiscovery.aacrjournals.org/


39 
 

Figure 4
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Figure 5
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Figure 6
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Figure 7 
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