


Innovations in Vascular Ultrasound
Innovaties in Vasculaire Echografie

Reza Pakdaman Zangabad



ISBN/EAN: 978­94­6421­458­1

Printed by: IPSKAMP Printing

Front & Back: Reza Pakdaman Zangabad

Copyright © 2021 by Reza Pakdaman Zangabad except for the following chapters:
chapter 2: © 2016, IEEE
chapter 3: © 2021, IEEE
chapter 4: © 2018, IEEE
chapter 5: © 2020, IEEE
chapter 6: © 2021, Elsevier B.V

All rights reserved. No part of this publication may be reproduced, stored in a re­
trieval system, or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior consent from the author, or
when appropriate, from the publishers of the publications.

For a printed version please contact:

Secretary Biomedical Engineering (room Ee 2302)
Erasmus MC University Medical Center Rotterdam
P.O. Box 2040
3000 CA Rotterdam
the Netherlands

An electronic version of this dissertation is available at
https://thesis.eur.nl/

https://thesis.eur.nl/


Innovations in Vascular Ultrasound
Innovaties in Vasculaire Echografie

Thesis

to obtain the degree of Doctor from the
Erasmus University Rotterdam

by command of the
rector magnificus

prof. dr. F. A. van der Duijn Schouten

and in accordance with the decision of the Doctorate Board.
The public defense shall be held on

Thursday 23rd September 2021 at 15:30

by

Reza Pakdaman Zangabad

born in Tabriz, Iran.



Promotors: Prof. dr. ir. A.F.W. van der Steen
Prof. dr. G. van Soest

Other members: Prof. dr. F. L. Değertekin
Dr. H. J. Vos
Dr. N. Bhattacharya

Financial support by the Lumibird (new name of Quantel­Keopsys) for the publica­
tion of this thesis is gratefully acknowledged.

Financial support by the Dutch Heart Foundation for the publication of this thesis is
gratefully acknowledged.

This work was performed in the framework of the Medical Delta program NIMIT.
Medical Delta is gratefully acknowledged for financial support for the printing costs
of this thesis.

Additional financial support for the printing of this thesis was kindly provided by
Erasmus University Rotterdam.



In memory of my Grandfather Mokhtar Pakdaman Zangabad,
who taught me the power of the mind is beyond everything,

and my Grandmother Shahr­e­Banu Zareian for her endless love and
support throughout my life.



Contents

Summary xi

Samenvatting xiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Novel Transducer Technologies and Design Approaches. . . . . 3
1.3 Intravascular Ultrasound Imaging. . . . . . . . . . . . . . . . . . 5
1.4 Coded Excitation in Ultrasound Imaging . . . . . . . . . . . . . . 6
1.5 Photoacoustic Vascular flow imaging . . . . . . . . . . . . . . . . 7
1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Mutual Radiation Impedance of Circular CMUTs on a Cylinder 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 materials and methods . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 FEMModeling of Acoustic Coupling of CMUTmembranes
22

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Real­Time Coded Excitation Imaging Using a CMUT­based Side
Looking Array for Intravascular Ultrasound 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 CMUT fabrication. . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 CMUT sensor design and assembly . . . . . . . . . . . . . 34
3.2.3 Characterization of the CMUT sample . . . . . . . . . . . 35
3.2.4 Coded Excitation . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.5 Wire phantom imaging . . . . . . . . . . . . . . . . . . . . 37
3.2.6 IVUS Beamforming . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.7 Autopsy tissue experiments . . . . . . . . . . . . . . . . . 39

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Characterization of the CMUT sample . . . . . . . . . . . 39
3.3.2 Coded Excitation . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Imaging the wire phantom . . . . . . . . . . . . . . . . . . 41
3.3.4 Ex­vivo imaging of the human coronary artery . . . . . . 42

3.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . 42
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



viii Contents

4 A kerfless PVDF Array for Photoacoustic Imaging 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Conclusion and Discussion. . . . . . . . . . . . . . . . . . . . . . 56
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Design of a Dual Frequency Probe for Photoacoustic Imaging
of the Carotid Artery 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Matching layer analysis . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Finite Element Analysis . . . . . . . . . . . . . . . . . . . . 63

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Conclusion and Discussion. . . . . . . . . . . . . . . . . . . . . . 65
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Photoacoustic Flow Velocity Imaging Based On Complex Field
Decorrelation 71
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.1 Theory of normalized first order temporal autocorrela­
tion function . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . 76
6.2.3 Photoacoustic flow velocimetry imaging in vivo . . . . . . 76
6.2.4 Spatiotemporal resolution. . . . . . . . . . . . . . . . . . . 77
6.2.5 Image acquisition and processing scheme . . . . . . . . . 78

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.1 Photoacoustic flow velocimetry imaging of the phantom

study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.2 Photoacoustic flow velocimetry imaging in vivo . . . . . . 79

6.4 Discussion and Conclusion. . . . . . . . . . . . . . . . . . . . . . 81
6.5 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Discussion and Conclusion 89
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 CMUT based IVUS imaging . . . . . . . . . . . . . . . . . . . . . . 89

7.2.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3 Probe Designing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4 Photoacoustic Flow Velocimetry Imaging . . . . . . . . . . . . . . 94
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A Appendix­Signal analysis using the ambiguity function 99
A.1 Signal analysis using the ambiguity function . . . . . . . . . . . 100
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



Contents ix

Curriculum Vitæ 105

List of Publications 107

PhD Portfolio 109

Acknowledgements 111





Summary

Pushing the ultrasound technology for better diagnosis, image resolution and cost
reduction is the core of this work. In this thesis, we explored several innovative
solutions for ultrasound imaging. We devised techniques and developed ultrasound
systems to address the challenges that are associated with vascular ultrasound
which can be subsumed into two main categories: a.) novel transducer architecture
and b.) novel imaging techniques.

The first approach consists of ultrasound system engineering for the realization
of the first multi­element Capacitive Micromachined Ultrasound Transducer (CMUT)
phased array for side­looking Intravascular Ultrasound (IVUS) imaging. The second
approach involves a system development for photoacoustic (PA) imaging in which
a specific dual­frequency probe is designed and a novel quantitative ultrasound
approach for photoacoustic flow velocimetry imaging is devised.

An introduction to IVUS, PA imaging, and probe designing is provided in chap­
ter 1. The technology of ultrasound imaging is described and the clinical demands
for improving the current technologies are provided.

In chapter 2 the cross­coupling of transducer elements through the medium and
its effect on the frequency response of the CMUT array was discussed. Finite El­
ement Analysis (FEA) was carried out using the radiation impedance method for
analyzing this effect on the CMUT array which has wrapped around a catheter tip
with a cylindrical configuration. The cross­talk between planar CMUT elements was
linked with dips in the frequency spectrum from experimental data and was shown
that the element cross­talks don’t have detrimental effects on the array bandwidth.

In chapter 3 the first 96 elements CMUT phased array placed at the circumfer­
ence of a catheter tip with 1.2 mm diameter for the side­looking IVUS imaging was
described. A system for utilizing Coded Excitation (CE) to improve the penetration
depth and image signal­to­noise ratio (SNR) was developed. First, the CMUT array
was characterized showing that the ­6dB device bandwidth at 30 V DC biasing is 25
MHz with 20 MHz center frequency and has transmitted sensitivity of 37 kPa/V at
that frequency. A real­time system and software tools in MATLAB were developed
for signal acquisitions and processing, beamforming, image optimization, and data
analysis for B­mode IVUS.

A linear Frequency Modulation (FM) coded waveform was designed based on
the CMUT array characteristics and a wire phantom and a human coronary artery
plaque were imaged. By assessing the image quality of the reconstructed wire
phantom image, 60 𝜇m and 70 𝜇m axial resolution were achieved using the short
pulse and coded signal, respectively. Furthermore, an 8 dB gain in the SNR using
the FM signal was achieved.

xi



xii Summary

PA signals can have a very large bandwidth and large dynamic range. In chap­
ter 4 a broadband PA receiver was introduced which was incorporated in chapter 5
ffor the realization of a dual­frequency probe for PA imaging of the human carotid
arteries.

First, it was demonstrated that with an appropriate electrical impedance match­
ing, off­resonance Polyvinylidene Difluoride (PVDF) transducers offer the band­
width and sensitivity to fully capture the PA signals. Using the FEA in COMSOL
and validating it with the experiment, it was shown that the elements crosstalk in a
28 𝜇m thick, kerfless PVDF arrays, where the electrodes were patterned onto the
piezoelectric material, were negligible. Second, by utilizing this approach in chap­
ter 5, a dual­frequency probe was proposed using a dual­layer piezoelectric material
consisting of lead zirconium titanate (PZT) for ultrasound stack and a kerfless PVDF
array for PA signal reception, which was placed on top of the PZT stack.

It has been discussed that the loading effect of the PVDF array narrows the
ultrasound bandwidth; however, the loading effect was minimized by considering
the PVDF array as the second matching layer of the ultrasound stack. Using 3D
FEA, a design with and without subdicing was modeled, and the results showed
that the ­3dB bandwidth of the ultrasound stacks were 87% and 75% relative to the
center frequencies. A transmit sensitivity of 17 kPa/V and 21 kPa/V were found for
those two realizations, respectively.

In chapter 6 a photoacoustic imaging system using a fast pulsed laser diode
and a novel quantitative ultrasound method based on normalized first­order field
autocorrelation function was developed to estimate flow velocities. It was demon­
strated how the decorrelation time of signals acquired over frames are related to
the flow speed and was shown that the PA flow analysis based on this approach is
an angle independent flow velocity imaging method. We baptized this method vPA:
Photoacoustic flow velocimetry imaging. Directional velocimetry imaging up to 20
mm/s in a phantom study was demonstrated, and vPA was applied to imaging flow
speed in the microvasculature of the chorioallantoic membrane (CAM) of a 6­day
old chicken embryo where pulsatile flow in the arterial layer of the CAM was shown.
This chapter also showed that vPA has the potential to simultaneously image the
blood flow speed and extract the functional information like oxygen saturation of the
blood.

In chapter 7 the achievements were summarized and the limitations of our stud­
ies were discussed with some recommendations for future work.



Samenvatting

Maximaal gebruik van ultrageluid technologie voor beter diagnose, beeld resolutie
en kosten reductie is de kern van dit werk. In dit proefschrift zijn een aantal inno­
vatieve oplossingen onderzocht voor ultrasone beeldvorming. Er zijn technieken
bedacht en ultrageluid systemen ontwikkelt om de uitdagingen van vasculair ultra­
geluid aan te pakken. Deze kunnen worden ondergebracht in twee categorien: a.)
nieuwe transducer architectuur en b.) nieuwe beeldvormende technieken.

De eerste categorie bestaat uit een ultrageluid systeemontwerp voor de eer­
ste zijwaarts kijkende IVUS catheter die is opgebouwd uit een zogenaamde multi
element “Capacitive Micromachined Ultrasound Transducer” (CMUT) in phased ar­
ray configuratie. De tweede categorie bestaat uit de ontwikkeling van een foto­
akoestisch (PA) systeem waarvoor een specifieke “dual frequency probe” is ontwor­
pen en een nieuwe kwantitatieve ultrageluid benadering voor foto­akoestische stro­
mingssnelheid beeldvorming is bedacht. Een introductie in IVUS, foto­akoestische
beeldvorming en ultrageluid probe ontwerp wordt behandeld in hoofdstuk 1. De
technieken achter ultrasone beeldvorming worden beschreven evenals de klinische
eisen die aan deze vernieuwende technologie gesteld worden.

In hoofdstuk 2 wordt de koppeling van transducer elementen door het medium
en het effect daarvan op de frequentie response van het CMUT array behandeld.
Het CMUT array is cylindrisch om de cathetertip gewikkelt. Met behulp van eindige
elementen analyse (FEA) is de koppeling bestudeerd en daarbij is gebruik gemaakt
van de “Radiation Impedance” methode. De overspraak tussen vlakke CMUT ele­
menten is daarbij gekoppelt aan de dips in het frequentie spectrum verkregen uit
experimentele data. Hierbij werd aangetoond dat de overspraak geen nadelige ge­
volgen heeft op de bandbreedte van het array.

In hoofdstuk 3 wordt het eerste 96­elements CMUT phased array gemonteerd
rond de omtrek van een 1,2mm diameter catheter voor een zijwaarts kijkende IVUS
systeem beschreven. Voor deze toepassing werd een systeem ontwikkelt dat ge­
bruik maakt van “Coded Excitation” (CE) om op die manier penetratie diepte en
signaal/ruis verhouding (SNR) te verbeteren. Allereerst werd het CMUT array ge­
karakteriseerd en aangetoond dat de ­6dB bandbreedte bij 30V DC bias spanning
25MHz bedraagt met een centerfrequentie van 20MHz en een zend gevoeligheid
van 37kPa/V bij deze frequentie. Een real­time systeem met bijbehorende software
applicatie in MATLAB is ontwikkelt voor de signaal aquisitie en verwerking, beam­
forming, beeld optimalisatie en data analyse van de B­mode IVUS.

Een liniair frequentie gemoduleerd (FM) coderings signaal werd ontworpen ge­
baseerd op de CMUT array eigenschappen en zowel een draad fantoom als een
humane coronaire arterie plaque zijn hiermee bekeken. Door de beeldkwaliteit te
beoordelen van het gereconstrueerde draad fantoom is een axiale resolutie gehaald
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xiv Samenvatting

van 60 𝜇m en 70 𝜇m voor respectivelijk korte puls en gecodeerd signaal en een 8dB
winst in de signaal/ruisverhuiding voor het FM signaal.

PA signalen kunnen een zeer grote bandbreedte en groot dynamisch bereik
hebben. In hoofdstuk 4 wordt een breedbandige PA ontvanger geintroduceert die
is opgenomen in hoofdstuk 5 voor de realisatie van een “dual frequency probe” voor
PA beeldvorming van humane carotide arterien.

Allereerst is er aangetoont dat met de juiste impedantie aanpassing uit resonan­
tie PolyVinylidene DiFluoride (PVDF) transducenten een bandbreedte en gevoelig­
heid bieden om het volledige PA signaal te kunnen invangen. Gebruik makend van
de FEA in COMSOL en het valideren daarvan door middel van experimenten is aan­
getoond dat de element overspraak in een 28µm dik, kerfloos PVDF array met een
elektroden patroon op het piezo materiaal, verwaarloosbaar is. Ten tweede, door
gebruik te maken van deze benadering in hoofdstuk 5, is er een “dual frequency”
probe voorgesteld bestaande uit piëzoelektrisch materiaal in twee lagen waarbij
een laag bestaat uit lood zirkonium titanaat (PZT) voor de ultrageluid transducent
met daar bovenop een laag met een kerfloze PVDF transducent voor het PA signaal
ontvangst. Er is besproken welke belasting deze PVDF laag vormt voor de band­
breedte van de ultrageluid transducent; echter het effect hiervan kon gereduceerd
worden door deze laag als tweede aanpassingslaag voor de transducent te gebrui­
ken. Door middel van 3D FEA zijn zowel ondergedeelde als niet gedeelde transdu­
centen gemodelleerd en de resultaten laten zien dat de relatieve ­3dB bandbreedte
van de ultrageluid transducer respectivelijk 87% en 75% van de centerfrequentie
bedragen. De zendgevoeligheid van de twee configuraties waren respectievelijk 17
kPa/V en 21 kPa/V.

In hoofdstuk 6 is een fotoacoustisch beeldvormend systeem ontwikkelt dat ge­
bruik maakt van een snelle gepulste laser diode en een nieuwe kwantitatieve ultra­
geluid methode die gebaseerd is op een eerste orde veld autocorrelatie funktie voor
stromingssnelheidsbepaling.

Hierbij werd er gedemonstreerd hoe de decorrelatietijd van de verkregen signa­
len over de frames gerelateerd zijn aan de stromingssnelheid en werd aangetoond
dat de PA stromingssnelheidanalyse gebaseerd op deze benadering hoek onafhan­
kelijk is. We hebben deze methode vPA gedoopt: Fototakoestische stromingssnel­
heid beeldvorming (Photoacoustic flow velocimetry imaging).

Directionele snelheidsmeting­beeldvorming tot 20mm/s werd aangetoond in een
fantoom studie en vPA werd toegepast in stromingssnelheid beeldvorming van de
micro vascularisatie in het chorioallantoïsche membraan (CAM) van een 6­daagse
kippenembryo waar de pulsatiele stroom van de arteriële laag van de CAM werd
aangetoond.

Dit hoofdstuk laat tevens zien dat vPA de potentie heeft om gelijktijdig de bloed­
stromingssnelheid en functionele informatie zoals zuurstof saturatie zichtbaar te
maken.

In hoofdstuk 7 zijn de resultaten samengevat en de beperkingen van onze stu­
dies bediscussiëerd met enige aanbevelingen voor de toekomst.
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2 1. Introduction

1.1. Motivation

D iscovery of the piezoelectric effect by Pierre and Jacques Curie in 1880 paved
the way for current ultrasound imaging [1]. The use of piezoelectric effect in

cardiovascular imaging started from M­mode tracings [2–4] which then led to de­
velopment of the first real­time 2D echocardiography by Bom in the 1971 at Rot­
terdam [5]. Conventional ultrasound probes use piezoelectric material to generate
ultrasound waves. Applying a short electrical pulse to the piezoelectric electrodes
induces vibrations and produces ultrasound waves. These waves propagate and
reflect back from the heterogeneities of the medium which then are converted to
electrical signals by the same probe. The spatial location of the heterogeneities
can be determined by time­of­flight and their acoustic/mechanical properties, using
these echo delays the received electrical signals are converted back to form an
ultrasound image.

The quality of the image and resolution depends on the frequency of the ultra­
sound waves and the bandwidth of the transducer, which dictate the axial resolu­
tion. The beamforming methods and element pitch stipulate the lateral resolution.
Depending on the properties of the medium, the ultrasound waves are attenuated.
The higher the frequency is, the higher the attenuation becomes [6, 7]. Thus, ultra­
sound waves of certain frequency can penetrate to a certain depth. Consequently,
for imaging different part of body designated probes are manufactured to address
the requirement. In TransThoracic Echocardiography (TTE) imaging, ultrasound
waves pass in between the ribs and the lungs to reach the heart. Thus, a probe
with relatively low operating frequencies (1 ­ 5 MHz) is preferred. For carotid artery
imaging, an ultrasound probe with higher frequency (7.5 ­10 MHz) is preferred since
the location of the carotid artery is relatively closer to the transducer and smaller de­
tails must be resolved in comparison with the TTE application. Further development
to very high frequencies andminiaturization of transducer array led to introduction of
catheter based ultrasound imaging [8, 9]. Piezoelectric materials are usually band
limited with 60­80% fractional bandwidth. In order to increase the axial resolution,
new transducer technologies with higher fractional bandwidth are required.

Photoacoustic (PA) imaging (PAI) is an emerging imaging modality that com­
bines the optical illumination and ultrasound sensing[10, 11]. The PA effects is in­
duced by nano­second laser pulses illuminating absorbing targets or tissues. Parti­
cles like red blood cells or hemoglobins absorb the light which causes local heating
and thermoelastic expansion and vibrations. These vibrations generate pressure
waves which can be detected by an ultrasound probe [12, 13]. Photoacoustic image
reconstruction is based on propagation delays between the light pulse and pressure
sensed by each elements of an ultrasound probe. To be able to induce the PA effect,
the stress and thermal confinements need to be held. In stress confinement, the
laser pulse duration needs to be smaller than the acoustic transit time across the
absorbing volume and in thermal confinement, the laser pulse duration needs to be
shorter than the thermal diffusivity of the volume [14, 15]. Light cannot penetrate
into the deep tissues due to the scattering; thus, a pure optical imaging could only
provide high resolution optical contrast images of biological tissues at a shallower
distances while ultrasound pulses can image deeper structures in a tissue. PAI
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combines these two features and provides high contrast high resolution images
of tissues up to centimeters depths which has various clinical imaging application.
Real­time monitoring and assessment of RF ablation lesion formation in left atrium
[16, 17], real­time volumetric intravascular photoacoustic imaging of atherosclerotic
plaques [18, 19], monitoring tumor angiogenesis and PAI of blood vasculature [20],
functional mouse brain imaging and monitoring blood­oxygenation dynamics [21]
and PA blood flow imaging are some of the PAI applications [22, 23]. In order to
increase the sensitivity of PA images, it is crucial to acquire the generated ultra
broadband PA signals by an ultra broadband ultrasound array.

The general goal of this thesis is to develop innovative techniques and low cost
devices for vasculature imaging and help clinicians in diagnosing patients with car­
diovascular diseases.

1.2. Novel Transducer Technologies and Design Ap­
proaches

Ultrasonic transducer technology is dominated by piezoelectric technology. Capac­
itive Micromachined Ultrasonic Transducer (CMUT) is a relatively new in the field
of ultrasonic transducers [24, 25]. CMUTs are fabricated on silicon wafers using
the well established micromachining techniques which has been developed and
used in Integrated Circuit (IC) industries [26–30]. Generally CMUTs can be sim­
plified as parallel plate capacitors. CMUTs have three main components: cavity,
membrane, and electrodes. In a silicon substrate the cavity is formed and a thin
layer suspended over the cavity acts as a membrane. An embedded metal layer
in the membrane serves as top electrode and the silicon substrate acts as bottom
electrode. Figure 1.1 depicts the schematic view of CMUT structure.

Figure 1.1: Schematic view of the CMUT structure

Applying a DC biasing voltage to the electrodes charges the CMUTs and gen­
erates an electrostatic force which pulls the top membrane toward the substrate.
Driving the biased CMUTs with an AC signal introduces an oscillation in the elec­
trostatic force, making the membrane to vibrate and generate ultrasound pressure
waves which transmit to the surrounding medium. In the receive mode, the incident
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ultrasound waves on the CMUTs modulate the gap with the same frequency of the
incoming pressure waves. The induced modulation changes the capacitance which
is converted to a voltage level.

The acoustic impedance of the CMUTs is very low in comparison with the acous­
tic impedance of the water or tissue. This makes CMUTs to be inherently matched
with the medium and results in very high coupling efficiency of nearly 100% over fre­
quencies in transmitting and receiving the ultrasound waves. Consequently, CMUT
offers more bandwidth [31]. Ease of fabrication, capability to directly build CMUTs
on top of ICs, miniaturization for minimally invasive applications and a high yield with
low end product cost are the other advantages of this novel transducer technology
[32–34].

Depending on the amplitude of the DC voltage, CMUTs either work in the col­
lapse mode or in the conventional mode (uncollapsed) with different acoustical be­
haviour. Collapse mode CMUTs provide higher transmit and receive sensitivity with
higher bandwidth in comparison with conventional mode [35]. These features were
exploited to make ultrasound images at low and high frequencies for having dif­
ferent penetration depth and resolution in intracardiac echocardiography imaging
[36, 37].

Recently, a hand­held ultrasound probe based onmonolithic integration of CMUT
on chip has been introduced by the Butterfly Network capable of imaging (M­mode,
B­mode, color doppler, power doppler ) all body with single probe (figure 1.2a) which
is considered as a revolution in ultrasound imaging with less than 2000 $ end prod­
uct cost.

Intravascular ultrasound (IVUS) imaging is another field where CMUTs have po­
tential to be utilized [38, 39]. Advances in micromachining techniques allowed the
fabrication of CMUTs on a flexible substrate where CMUTs array could be wrapped
around a cylinder for intraluminal application [40].

Photoacoustic imaging (PAI) is an emerging imaging modality providing images
with optical contrast at the acoustic penetration depth. PA and ultrasound imaging
are complementary which can share the same hardware (Transducer, data acqui­
sition) for multi­modal imaging. Piezoelectric based ultrasonic transducers are not
transparent, thus, the laser path to the imaging target is different from the pulse­
echo path. Transparent CMUT array is going to find its spot to address the require­
ment [41, 42]. Due to the high broad band nature of PA signals, CMUTs are good
candidate to increase the PA image quality and resolution.

Lead zirconate titanate (PZT) based ultrasound arrays offer high transmit and
receive efficiency; however, the limited bandwidth of these transducers provide low
sensitivity over the broad band PA signals. In order to overcome the low bandwidth
shortcoming of piezoelectrics in simultaneous imaging with different imaging modal­
ities, multiple acoustical stacks using piezoelectric were implemented for contrast
enhanced IVUS [43], transrectal acoustic angiography [44], and doppler imaging
[45].

An off­resonance PolyVinylidene DiFluoride (PVDF) with integrated amplifier of­
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(a) (b)

Figure 1.2: (a) Butterfly Network CMUTs on chip handheld probe for imaging whole body, (b) The CMUT
array wrapped around a catheter tip. Image (a) has been reproduced from www.butterflynetwork.com ,
and image (b) is a courtesy of Philips research Eindhoven.

fers relatively greater receive efficiency than PZT which potentially could increase
the sensitivity of the PA image [46].

1.3. Intravascular Ultrasound Imaging
The technology used in medical ultrasound is continuously evolving and currently
contributing to important improvements in patient diagnosis and treatment. Dis­
eases of the heart and circulatory system (cardiovascular disease or CVD) are the
main causes of death in Europe, accounting for 1.8 million deaths and more than
11 million hospitalisations each year in the EU[47]. More than a third (36%) of all
deaths are fromCVD.With an ageing population, the prevalence of many cardiovas­
cular diseases increases strongly. The resulting economic, as well as human costs
are tremendous. Overall, CVD is estimated to cost the EU economy almost 210
billion euros a year, due to healthcare costs and lost productivity. Decreasing the
associated health care cost and providing an affordable treatment to the patients
with CVD is one of the main challenges and is strongly dependant on advancement
in technology.

One of the main causes of CVD is called atherosclerosis. It occurs when fat,
cholesterol and necrosis cells are built up inside the arteries’ wall leading to the
thickening and stiffening of the blood vessels so called plaques [48]. Atherosclero­
sis could restrict or completely block the blood flow to organs. Sudden interruption
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of the blood flow to the heart muscles caused by intra­coronary thrombosis is called
a heart attack. Percutaneous Coronary Intervention (PCI) is commonly performed
treatment for these patients which involves either stent placement or using balloon
to improve blood flow.

IVUS provides images of the vessel wall and atherosclerotic plaque from inside
of the coronary vessels [49–51] using either a single rotating element or an array of
PZT elements placed at the tip of a catheter with maximum diameter of 1.2 mm, with
operating frequencies between 20 ­ 60 MHz. This technique helps cardiologists to
assess the degree of stenosis and exact location of the plaques for deciding on the
length of the stent and landing zone.

By today, the IVUS market is dominated by three players; Philips­Volcano who
has developed Eagle Eye (phased array) and Revolution (rotating) and Boston Sci­
entific with iCross and OptiCross (rotating). ACIST kodama catheter is relatively
new in the market which operates at 60 MHz frequency range and offers better res­
olution (≤ 40𝜇𝑚). It has a dual frequency option working in 40 MHz or 60 MHz
to balance between tissue penetration and high resolution requirement. Recently,
Infraredx has released a dual­modality intravascular catheter that combines IVUS
with near infrared spectroscopy (NIPRO OKAY and Makoto imaging system). All
products are equipped with piezoelectric transducer elements and are built in a
catheter with a typical size of 1 ­1.2 mm in diameter. Since PZT is the core trans­
ducer component, the IVUS images resolution could be improved by utilizing the
CMUTs.

1.4. Coded Excitation in Ultrasound Imaging
Current ultrasound imaging systems use a short pulse (high bandwidth) in order to
exploit the transducer frequency response to attain the maximum achievable image
resolution. However, due to the frequency dependant sound wave attenuation in
tissues, the returned echos from deep tissues are weak and below the minimum
detectable pressure of the system dictated by the Signal­to Noise Ratio (SNR) of the
whole system. Increasing the pulse amplitude to provide more transmitted acoustic
energy is hampered by the capability of electronics and also maximum biological
exposure to acoustic intensity.

Coded Excitation (CE) is an alternative way to address the issue which was
adopted from radar techniques [52]. CE allows the transmission of longer pulse
which improves the SNR thus, increases the penetration depth of the ultrasound
waves while retaining the imaging resolution [53–58]. Among the different coded
signals, linear Frequency Modulation (FM) captured more attention in ultrasound
imaging since it is more robust in the presence of noise requiring less filtering [59].
The improvement in SNR depends on the duration of coded signal (T) and the sys­
tem bandwidth (BW). Since the ultrasound system bandwidth is qualified by the ul­
trasound transducers, increasing the excitation duration seems the only way to gain
in SNR. However, for application like IVUS, transmitting long code is not favourable
as it increases the deaf time; thus, the closer tissues toward the array will not be
imaged. Utilizing a broad band transducer like CMUTs could potentially increase
the SNR.



1.5. Photoacoustic Vascular flow imaging

1

7

1.5. Photoacoustic Vascular flow imaging
Photoacoustic (or optoacoustic) imaging, is a hybrid imaging modality that com­
bines optical illumination and ultrasound imaging. By illuminating the targets using
a short laser pulse, the photons are absorbed and then are converted into heat,
resulting in a transient local temperature rise which induces a thermo­elastic ex­
pansion. The local expansion generates pressure waves which propagate through
the sample and can be recorded by an ultrasound transducer array. The genera­
tion of the PA pressure waves requires that the laser pulse width should be shorter
than the acoustic transit time across the absorbing volume (stress confinement) and
thermal diffusion time in that region (thermal confinement) [17, 60–63].

Different absorbers such as endogenous chromophores (e.g., oxygenated and
deoxygenated hemoglobin), or exogenous contrast agents (e.g., nanoparticles) [64–
66] have different light absorption efficiencies. Since each of these chromophores
exhibits its own characteristic absorption spectra; consequently, the generated PA
pressure waves provide valuable information on the optical properties of the sam­
ple. Moreover, the ultrasound waves scatter much less than light [67, 68], resulting
in a longer pressure waves propagation with less attenuation.

Depending on the illumination and ultrasound recording methods, photoacoustic
imaging are categorized in two main area of photoacoustic tomography (PAT) and
photoacoustic microscopy (PAM). PAT systems use wide­field illumination and the
generated pressure waves are recorded using either a single element or transducer
array [69–72]. PAM systems provide high resolution imaging. If the illuminated
laser beam width is narrower than the ultrasound/acoustic beam, the photoacoustic
system is called optical resolution (OR­PAM) and if it is wider, the system is called
acoustic resolution (AR­PAM) [73–75]. Utilizing the multi­wavelength spectroscopy
and PAM allow the spectral imaging throughout the sample [76].

Blood flow imaging can be used in studying cancer and tumour since the in­
crease in blood flow is associated with tumour growth. Photoacoustic Imaging can
provide high resolution optical contrast images in tissues which can be utilized in
monitoring the blood flow [13, 77]. In addition, all the developed methods in ultra­
sound flow imaging can be adapted in PA imaging. Doppler imaging [78–80] and
quantitative methods like cross­correlation [77, 81] and differential phase analysis
[82] are among the robust methods that measure the flow. Most of the PA systems
are based on Q­switch lasers with relatively low Pulse Repetition Frequency (PRF).
Imaging the high speed flow dynamics with these system are challenging. High
PRF Pulsed Laser Diodes (PLDs) with relatively low power are evolved to address
this requirement.

1.6. Thesis outline
Ultrasound and photoacoustic based vascular imaging are based on band limited
transducer technologies which can be improved by utilizing a higher bandwidth
transducers like CMUTs and PVDF. In this thesis we worked toward developing
new low cost, broad band, and portable ultrasound and photoacoustic imaging de­
vices and techniques for intravascular and vascular imaging which eventually will
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provide higher image quality.

• Chapter­2 investigates the CMUT array cross­coupling effect on a planar sub­
strate using finite element method and experimentally is validated with the
fabricated 1­D CMUT array. The analysis is extended to study the cross­talk
in the rolled­up CMUT array.

• Chapter­3 Investigates the first ever made, CMUT array for side­looking in­
travascular ultrasound imaging. Increasing the SNR using the coded exci­
tation is demonstrated. A real time and pixel based beamforming is imple­
mented for ex vivo imaging of human coronary artery specimen.

• Chapter­4 studies the utilization of a kerfless, off­resonance PVDF array for
photoacoustic imaging. Finite element analysis is performed to investigate
the cross­talk between the elements and is benchmarked with experimental
data. Discrete components are used to amplify the receiving signals which is
proved that the proposed system is a broadband photoacoustic receiver.

• Chapter­5 presents a design of a dual frequency carotid artery probe based
on the outcomes of previous chapter. It shows using the off­resonance and
kerfless PVDF array as a quarter matching layer could increase the band­
width of the PZT stack used for ultrasound while attains high bandwidth for
PA receive.

• Chapter­6 explores a quantitative technique borrowed from quantum optics
for photoacoustic flow velocity imaging. A fast PLD is used to image a flow
phantom and microvasculature of the chorioallantoic membrane of a chicken
embryo.

• Chapter­7 examines the developed imaging systems and methods followed
by discussion of the future for the proposed systems and techniques.
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In ultrasound imaging, cross coupling of transducer elements through the
medium has significant effect on the frequency response, thus affecting the
quality of the ultrasound image. In Side­Looking Intravascular Ultrasound
(SL­IVUS) imaging a radial image of the vessel wall is formed using a trans­
ducer array in a cylindrical configuration. Recent advances in Capacitive
Micromachined Ultrasound Transducer (CMUT) fabrication and integration
techniques led to realization of CMUT arrays that can be wrapped into a
cylinder shape and mounted on a catheter tip. In this paper, we present the
calculation of radiation impedance of un­collapse CMUT arrays on a planar
rigid baffle and on a cylinder using Finite Element Method (FEM) simulation.
We link the crosstalk between planar CMUT elements with dips in frequency
spectrum from experimental data and conclude that decreasing the cylinder
radius causes downshift of the dips in frequency response. In the case of our
device, these changes are too small to have detrimental effects on the array
bandwidth.
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2.1. Introduction
Intravascular ultrasound (IVUS) imaging is an established technique for imaging
vessel walls and atherosclerotic plaques [2] that has been in use clinically since
the early 90’s. Commercial devices use piezoelectric (PZT) transducers, either
mechanically rotating single elements or PZT phased arrays in a cylindrical con­
figuration. Both techniques create side­looking IVUS (SL­IVUS) images providing
a transversal cross section of the vessel wall. Limitations of single elements are the
mechanical rotation, associated with frame rate limits and irregular rotation artifacts;
the PZT phased arrays suffer from complex, costly construction and interconnec­
tion, and limited element bandwidth and sensitivity.

A promising alternative for the PZT array are the Capacitive Micromachined
Ultrasound Transducers (CMUT). CMUTs [3] are micro­electromechanical devices
that consist of a flexible membrane suspended over a substrate with spacing in sub­
micrometer range. Two electrodes are placed in membrane and substrate acting as
parallel­plate capacitor, and an electrostatic force deforms the membrane when a
DC bias voltage is applied. Superimposing a high­frequency voltage will cause the
membrane to vibrate in the ultrasound frequency range and act as an ultrasound
transmitter. Similarly, mechanical vibration of the membrane will change the capac­
itance of the device, acting as an ultrasound receiver. Advantages of CMUT over
PZT are the relatively large bandwidth with comparable sensitivity, the freedom of
geometric design, ease of large­scale production, miniaturization and seamless in­
tegration with electronics. The acoustic properties can also be dynamically adjusted
by changing the DC bias voltage. Depending on the applied DC voltage, a CMUT
works in either conventional (un­collapse) or collapse mode, with considerably dif­
ferent acoustic behavior. All these properties offer great benefits for catheter­based
SL­IVUS applications. Moreover, new techniques for fabrication of flexible CMUT
arrays [4] enable wrapping of the array into a small­radius cylindrical configuration
that can be placed in a catheter tip for SL­IVUS imaging.
A drawback of CMUT is the complexity of the devices and the great number of de­
sign parameters that influence the acoustic behavior. Also, many unwanted effects
that are relatively well­controlled in PZT array fabrication, can play a large role in
CMUT and need to be assessed, understood and controlled. One of the important
phenomena which affects CMUT device performance is acoustic crosstalk: the vi­
bration of a CMUT membrane creates acoustic waves that are coupled to adjacent
elements and degrade the CMUT array performance. Such coupling can occur via
the silicon substrate or via the fluid­substrate interfaces [5, 6]. For coupling via the
substrate, several solutions have been proposed, such as the use of backing layers,
thinning of the substrate or deep trench isolation of elements [6, 7].

The mutual coupling or crosstalk through the surrounding fluid medium is highly
related to cell and element geometry. Usually CMUT membranes and elements are
closely packed for achieving broad operational bandwidths; however, this could ex­
cite additional membrane modes due to the fluid coupling. It has been shown that
such crosstalk is the main reason for ripples in the frequency response of the array
[8–10] and how it degrades the bandwidth and image quality of ultrasound B­mode
imaging [5, 11–13]. Since decreasing the pitch between CMUT cells and elements
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Figure 2.1: An artistic illustration of a catheter built on the INCITE microelectronics platform [17]

could increase bandwidth and introduce ripple at the same time, the cross­coupling
between CMUT cells and elements should be scrutinized and element spacing
should be optimized to reduce the coupling effect on the bandwidth of the trans­
ducer.
An interpretation of the main mechanism of coupling between the CMUT mem­
branes based on the propagation of surface acoustic waves at the fluid­silicon inter­
face is introduced in [9]. In this paper, we are following different interpretation given
by Caronti et al. which is based on effect of acoustic loading of pressure waves
propagating from a membrane to the surface of another membrane[14]. The mu­
tual coupling or crosstalk through the surrounding fluid medium can thus be related
to the radiation impedance of elements of an array. This has been studied before
for CMUTs placed on a planar infinite rigid baffle operating in both collapse [15] and
un­collapse regimes [16]. In this paper, we study the influence of the warping of the
array on the crosstalk, via the radiation impedance. We perform FEM simulations
of several array configurations, flat and warped, and compare to some measured
frequency characteristics.

2.2. materials and methods
Within the context of the INCITE (Intelligent Catheters in Advanced Systems for
Interventions) project, Erasmus MC and Philips are working on the realization of
an Intravascular Ultrasound transducer in CMUT array technology. INCITE is a re­
search project focusing on the development of a technology platform that will enable
advanced imaging, sensing (pressure, force, biomarker) and steering functions to
be integrated into (sub)millimeter size in­body catheters and surgical instruments
for emerging complex minimally invasive cardio, neuro, and peripheral vascular in­
terventions [17]. Figure 2.1 gives an artistic impression of the catheter which will be
developed. The cylindrical array can be seen at the tip of the catheter and will be
realized by wrapping a planar CMUT array on a cylinder with 0.6 mm radius. The
influence of the wrapping on the crosstalk is unknown and will be investigated in
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this paper by means of Finite Element Method (FEM) based simulation. The ge­
ometry that we are simulating is shown in Figure 2.2. The device sizes are similar
to the array fabricated within the INCITE project. Circular CMUTs are arranged in
columns forming 96 elements and a pair of elements forms an island. As specified
in Figure 2.2, the pitch between CMUTs within elements (1), element pitch within
an island (2), and element pitch between islands (3) are 38 μm, 33 μm, and 45
μm, respectively. A 48 elements CMUT planar linear array has been fabricated and
characterized in water. For the characterization, CMUTs are biased with 10V DC
and a pulse of 10ns, 30V is applied to all elements and the generated pressure
waves are measured with calibrated hydrophone at focal point of the linear array.
Then the measured signal is compensated for attenuation and diffractions. Figure
2.3 demonstrates the transmit transfer function of the array operating in conven­
tional mode.

Figure 2.2: 1D CMUT linear array configuration showing 6 elements in 3 islands.

Parameter Description Value
a Membrane diameter 35 μm
ti Insulation Layer Thickness 300 nm
tg Gap Height 35 nm
tm Membrane thickness 2 μm
te Embedded Electrode Thickness 100 nm

Table 2.1: CMUT cell parameters used in simulation and are similar with fabricated device parameter
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Figure 2.3: Hydrophone measurement of linear array CMUTs

2.2.1. FEMModeling of Acoustic Coupling of CMUTmembranes
3­D FEM analysis is carried out using COMSOL Multiphysics 5.0 for analyzing the
velocity and pressure profile on the surface of immersed CMUTs with cell parame­
ters specified in Table 2.1 that are similar to those used in device fabrication. Sim­
ulations are performed both for the planar device and cylinders with 0.6 and 0.5
mm radius. A Perfectly Matched Layer (PML) is used as an absorbing boundary
which is located 2𝜆0 away of surface of the array at the lowest frequency and the
model is simplified by simulating a portion of the array with appropriate symmetry
boundaries and also periodic boundary condition along the y­axis (Figure 2.2). For
simulating the crosstalk in cylindrical case, the same islands are placed on a cylin­
der with 0.6 mm and the model is simplified by simulating 1/24 of the array with
appropriate symmetry boundaries and also periodic boundary condition along the
y­axis (Figure 2.5). Also the domain mesh size is set to the minimum acceptable
size of 𝜆110 at the highest operating frequency.
The radiation impedance of a CMUT cell is defined as the ratio of amount of total
power, P, acting on the surface of the CMUT cell to the square of the absolute value
of an arbitrary reference velocity, V [18]:

𝑍 = 𝑃
|𝑉|2 =

∫
𝑆
𝑝(𝑟)𝑣∗(𝑟)𝑑𝑆

|𝑉|2 (2.1)

where p(r) and 𝑣∗(𝑟) are the pressure and complex conjugate of the particle
velocity on the surface, S, of the cell at radial coordinate r. The equation of the
spatial rms velocity, 𝑉𝑟𝑚𝑠, which is a complex value could be explained as [19]:

𝑉𝑟𝑚𝑠 = √
1
𝑆 ∫
𝑆
𝑅𝑒[𝑣(𝑟)]2𝑑𝑆 + 𝑖√

1
𝑆 ∫
𝑆
𝐼𝑚[𝑣(𝑟)]2𝑑𝑆 (2.2)
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Figure 2.4: Normalized radiation impedance of 1D CMUT linear array and the same configuration
wrapped around a cylinder with 600 μm radius

Figure 2.5: Configuration of CMUT array on 0.6mm cylinder

Note that average velocity has been used as reference velocity in most of the
works regarding the calculation of radiation impedance; 𝑉 = 𝑉𝑎𝑣𝑒; however this
paper uses the spatial RMS velocity in order to avoid the problem of higher mode
CMUT velocity profile which at some pints 𝑉𝑎𝑣𝑒 becomes zero eventuating in infi­
nite radiation impedance. Figure 2.4 is showing the radiation impedance of CMUTs
array on planar rigid baffle and also on cylinder with 600 μm radius. it is demon­
strating that there are strong interactions at specific frequencies. As it has been
reported [8–10], the peaks in the radiation reactance correspond to the dips in the
frequency response curve. From comparison to Figure 2.3, we can conclude that
our simulation correctly identifies the measured dips.
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Figure 2.6: Normalized radiation resistance and reactance of CMUT on a cylinder with 600 μm radius

The main peak at 37.5 MHz of radiation reactance corresponds to a wavelength
of 45μmwhich matches the pitch between islands (number 3 in Figure 2.2) [11]. The
peaks at 44 MHz and 12 MHz correspond to wavelengths of 33 μm and 123 μm,
which matches the distances between CMUT cells within the element and distance
between first and the third island; respectively. Apparently the cross coupling effect
between islands is the dominant effect.

In the cylindrical case, where we are using the same configuration as the planar
case, the coupling effects have been detected for slightly lower frequencies with
lower amplitudes. The lower amplitude is likely because the total power on sur­
face of CMUTs generated from neighboring island/element is reduced by a factor of
cos(𝛼) where 𝛼 is the angle between surface normals of two islands. The lower fre­
quency is supposed to be due to the slightly longer pathway through the fluid. The
effects of the wrapping are too small to be detrimental for the bandwidth of our array.

Furthermore, we investigated themutual coupling for arrays with slightly different
geometry. We used a pitch between CMUTs within element, element pitch in an
island, and pitch between islands as 40 μm, 35 μm, and 45 μm, respectively and
used cylinders of 600 μm and 500 μm radius. Figure 2.6 and Figure 2.7 depict the
coupling effects. We demonstrate that decreasing the radius of the cylinder for the
same array will shift the coupling towards lower frequencies and could introduce
additional crosstalk peaks between elements and islands.

In an equivalent circuit model of the CMUT array[20], the radiation impedance
could be modeled with lump circuit elements and the real part of it could be associ­
ated with the thermal noise. This could be used to optimize the signal­to­noise ratio
of the CMUT based ultrasound imaging system.
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Figure 2.7: Normalized radiation resistance and reactance of CMUT on a cylinder with 500 μm radius

2.3. Conclusion
We have analyzed the coupling effect between CMUT elements, based on finite­
element method and show that the resulting radiation reactance peaks correspond
with dips in the experimentally measured frequency response. Moreover, we com­
pared the radiation impedance between planar and cylindrical arrays and conclude
that the cylindrical wrapping causes a slight downshift in frequency and it can in­
troduce additional peaks. Also we investigated the crosstalk between elements on
cylinders with 0.5 mm and 0.6 mm radius and conclude that decreasing the radius
could shift crosstalk toward lower frequencies. The results show that radiation reac­
tance or mutual coupling can be considerable at some frequencies eventuating in
different acoustic loading on the CMUT cells and degrading the array performance.
The wrapping is not expected to have a detrimental effect on bandwidth perfor­
mance of the INCITE CMUT array.
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Intravascular ultrasound (IVUS) is a well­established diagnostic method that
provides images of the vessel wall and atherosclerotic plaques. We investi­
gate the potential for phased­array IVUS utilizing Coded Excitation (CE) for
improving the penetration depth and image signal­to­noise ratio (SNR). It is
realized on a new experimental broadband Capacitive Micromachined Ultra­
sound Transducer (CMUT) array with 96 elements placed at the circumfer­
ence of a catheter tip with 1.2 mm diameter. We characterized the array
performance for CE imaging and showed that the ­6dB device bandwidth at
30 V DC biasing is 25 MHz with 20 MHz center frequency and has transmit
sensitivity of 37 kPa/V at that frequency.
We designed a linear Frequency Modulation (FM) signal to improve penetra­
tion depth by compensating high­frequency attenuation while preserving res­
olution by a mismatched filter reconstruction. We imaged a wire phantom
and a human coronary artery plaque. By assessing the image quality of the
reconstructed wire phantom image, we achieved 60 μm and 70 μm axial res­
olution using the short pulse and coded signal, respectively and gained 8
dB in SNR. Our developed system shows 20 frame per second, pixel­based
beam­formed, real­time IVUS images.
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3.1. Introduction

D iseases of the heart and circulatory system (cardiovascular disease or CVD)
are the main causes of death in Europe, accounting for 1.8 million deaths and

more than 11 million hospitalizations each year in the EU [2]. More than a third
(36%) of all deaths are from CVD. With an ageing population, the prevalence of
many cardiovascular diseases increases strongly. The resulting economic, as well
as human costs are tremendous. Overall, CVD is estimated to cost the EU economy
almost 210 billion euros a year, due to healthcare costs and lost productivity.

Atherosclerosis, which is a chronic disease and asymptomatic at early stages,
is characterized by the thickening of the arterial vessel wall due to the buildup of
plaque in the inner side of arteries [3]. In the coronary circulation, it is treated com­
monly by percutaneous coronary intervention (PCI): catheter­based balloon dilation
and implantation of a stent. Intravascular Ultrasound (IVUS) is an established tech­
nique that images the vessel wall and atherosclerotic plaque [4] using a catheter­
mounted transducer. It may be used to guide PCI and has significant outcomes
benefits, including a 50% reduction in CV death after PCI [5, 6].

Commercial devices ­ either mechanically rotating single element or electroni­
cally scanned in a phased array configuration ­ use high frequency (20MHz­60MHz)
piezoelectric transducers at the tip of a coronary catheter in order to assess the
morphological properties of plaques and implanted stents. After two decades of
relatively slow progress, innovations in IVUS imaging technology are now being in­
troduced into the clinical arena. Improved resolution, dynamic range and image con­
trast may be valuable for identifying plaque components like calcification, lipid­rich
necrotic core, and measuring the thickness of thin fibrous cap. Such parameters
can inform an IVUS­guided PCI strategy.

In ultrasound imaging, signal­to­noise ratio (SNR) is a crucial factor for image
quality. The high attenuation of the ultrasonic signals in the tissue results in echoes
from large depths buried in noise. This attenuation depends on the ultrasound fre­
quency, and is a significant limiting factor at the high frequencies used for IVUS
imaging. Moreover, the image resolution requirements stipulate the transmission
of short pulses, eventuating in transmitting relatively low signal energy. Increasing
the transmitted power is limited by the maximum biological exposure to acoustic
intensity, and by the capability of electronics (instruments and transducer material)
to handle such a high voltages.

Sophisticated signal transmission schemes have been developed in radar and
mobile telecommunication systems [7], which are currently utilized in ultrasound
imaging. Transmission of modulated signals, and decoding the received signal with
an appropriate filter, can improve the SNR without degrading imaging resolution[8].
There are different kinds of coded signals designed to use in medical ultrasound. To
date, most authors used chirp, linear frequency modulation (FM), or pseudo­chirp
excitation [9–11], and others have considered binary codes [12, 13].

Phase­based binary codes like Golay and Barker codes have limited utility in
ultrasound imaging, as the abrupt change in the phase of the coded signals pro­
duces high harmonics. Since any ultrasound transducer acts as a band­pass filter;
thus, frequencies above the upper limit of the transducer frequency response are
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poorly transmitted, leading to imperfect encoding. On the other hand, it has been
shown that linear FM signals have the best and most robust features for ultrasound
imaging[14]. It is demonstrated that echos from linear FM signals can be processed
without any depth­dependent filter compensation to retain the quality of the decoded
signals. Consequently, it makes the processing less complicated.

The signal modulation and pulse compression can be described by a single
measure of a signal: the time­bandwidth product (TB). The improvement in SNR
due to the using of coded signal is equal to the TB product of the transmitted signal
[15]. In ultrasound imaging, the system bandwidth is determined by the ultrasound
transducer; thus, increasing the duration of the transmitted signal is the only way
to increase the TB product. However, longer codes increase the deaf time: time
duration which transducer and/or driving electronics is not in receiving mode, which
is undesirable.

Coded excitation has previously been used for IVUS imaging. Maresca et al.
[16] used chirp signal to investigate the vasa vasorum. Qiu et al. [17] introduced a
coded excitation based IVUS system whose operation frequency was more than 50
MHz. He showed that utilizing the modulated signal within that frequency range will
improve the SNR and thus penetration depth and makes his IVUS system compa­
rable with the costly optical imaging systems. However, the deaf time in his system
was 2.5 μs or 4 mm. This needs to be improved in order to make the system prag­
matically utilizable in clinical application.

To date, IVUS transducer technology is predominantly based on piezoelectric
materials. The major limitation of piezoelectrics is the inherent trade­off between
bandwidth and sensitivity, which eventually limits image quality, and as argued
above, is of key importance for the implementation of coded excitation schemes.
Capacitive Micromachined Ultrasound Transducer (CMUT) is a promising alterna­
tive to piezoelectric transducers [18]. Advantages of CMUT over piezoelectric tech­
nology are the relatively large bandwidth with comparable sensitivity [19, 20], the
freedom of geometric design [21], being lead free, ease of large­scale production
(in semiconductor planar processing) and miniaturization which will lower the end
product cost [22–24]. CMUTs are made of thin membranes which are essentially
parallel plate capacitors with a gap between the plates. The acoustic properties
can be dynamically adjusted by changing the DC bias voltage [25, 26]. Depend­
ing on the applied DC voltage, a CMUT works in either conventional or collapse
mode, with considerably different acoustic and received noise behavior [27, 28]. All
these properties offer great benefits for catheter­based forward looking and Side
Looking­IVUS (SL­IVUS) applications [29–32].

In this work, we use a custom­designedCMUT IVUS sensor to investigate phased­
array IVUS imaging using modulated signals. According to the work published by
Misaridis et al. [14], we chose the appropriate coded waveforms and compression
filters and designed a FM based coded signal suitable for IVUS imaging. The re­
constructed signal and imaging characteristics are compared to a Gaussian pulse
excitation, evaluated on a wire phantom target and on an ex vivo coronary artery
specimen.
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Figure 3.1: Schematic view of the fabricated CMUT layers

3.2. Materials and Methods
3.2.1. CMUT fabrication
TheCMUT arrays were fabricated in a professional cleanroom facility on a 6­inch sili­
con wafer utilizing the standard sacrificial release process, in which the cavity under­
neath the membrane is created by deposition and subsequent selective etching of
a sacrificial metal layer [33]. Common processing steps were used to fabricate the
transducer stack: metal sputtering, primer deposition, spinning of a photoresistive
layer, patterning by means of light exposure over a photolithographic mask, pho­
toresistive layer development, wet and dry etching, photoresistive layer stripping
with acetone or oxygen plasma and plasma enhanced chemical vapor deposition
of the insulating layer. The final transducer stack consists of a silicon wafer covered
with silicon dioxide for passivation, a bottom electrode insulated with tetraethoxysi­
lane (TEOS), vacuum cavity created using the sacrificial release process, a TEOS
insulated top metal electrode covered with silicon oxide and a nitride plug layer on
the top. Apart from the plates, aluminum bond pads providing contact to the top
or bottom electrodes are created on the side of the array to allow for wire bonding.
More information on the patented fabrication of the CMUT can be found in [25, 34].
The complete layer stack including the layer materials is shown in Figure 3.1. The
problem of charging in CMUTs are associated with charge carriers leaving from one
electrode to the other. Based on this fabrication method, the isolation layers act as
barriers for preventing or reducing the flow of charge carrier between the electrodes
with the objective to fabricate charging­free CMUTs.
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(a) (b) (c)

Figure 3.2: (a) Layout of 48­element flat CMUT array and element geometry, (b) The rolled up 96­element
CMUT array mounted on the PCB, as used for imaging, (c), The rolled­up array integrated in a catheter
tip.

3.2.2. CMUT sensor design and assembly
A custom­designed CMUT array with 40 μm membrane diameter and 39 μm ele­
ment pitch was manufactured by Philips Research. We characterized both a flat
version of the 1­D CMUT array with 48 elements, and a 96­element array rolled
up to catheter tip form factor. Figure 3.2a shows the schematic view of the linear
CMUT array and the element geometry, consisting of 11 membranes. The same
CMUT cells in a 96­element layout were wrapped around a catheter tip with 1.2 mm
diameter, shown in Fig. 3.2c. The so­called Flex­to­Rigid (F2R) process allows the
array to be rolled up into a cylinder shape. This enables the fabrication of arbitrary
shaped silicon islands with co­integrated flexible connections including embedded
flexible metal interconnects [35]. The cylindrical CMUT array was mounted on the
side of a PCB for experiments.

The image sequence follows a sequential “transmit all, receive three” scheme,
where the receive triplet is stepped across the array until all elements have been
read out; acquisition of a full image requires 32 transmission/receive sequences.
An application specific integrated circuit (ASIC) with low noise amplifier (LNA) was
designed to address the elements in transmit and receive mode. In transmit mode,
the ASIC allows the external AC signals to be applied to all transducer elements
simultaneously. This design avoids the use of high­voltage ASIC technology and
allows a more compact realization of the chip. In receive mode, the ASIC senses
the echo signals of three selected transducer elements, and subsequently amplifies
and buffers these signals to match the low impedance of the coax cables. The
imaging fashion of excite all/receive three was stipulated by the ASIC. The LNA
specifications are listed in Table 3.1. The selection of the echo signals happens by
means of a shift register that serves as a state machine.

The fabricated CMUT devices and the ASIC were glued and wire­bonded to the
printed circuit board (PCB) and each other. The sample was coated with a thin layer
of a silicone­like material for electrical insulation of the bond pads and passivation
of the CMUT cells.
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A custommade electronic unit, labelled “interface box” in Fig. 3.3 (Philips Innova­
tion Services, Eindhoven, Netherlands), was used to pass the externally generated
control signals to the ASIC. These controlled switching between transmit/receive
mode and selected the next triplet of CMUT elements to receive the echo signal.
The interface box also provided AC and DC amplification, externally controlled Time
Gain Compensation (TGC) functionality, and protective circuitry to prevent high­
voltage transmission to the ASIC while in receive mode. It provides 46 to 30 dB of
RF amplification (8MHz ­ 40MHz) where the frequency response of the RF amplifier
was compensated for in the excitation signals. The TGC has 12 to 81 dB amplifica­
tion depending on its input level (0 V ­ 1.1 V) over the mentioned frequencies. The
interface box provides 45.9 dB DC amplification.

3.2.3. Characterization of the CMUT sample
The transmit impulse response of the CMUT array was measured in a water tank
set­up. The PCB with the flat 48­element CMUT array was mounted on a three­axis
manual translation stage, immersed in water and positioned at a distance of 3 mm
from the tip of the calibrated 0.2 mm needle hydrophone (Precision Acoustics, Ltd,
Dorset, UK). The CMUT array was biased at different voltages using a DC source
(ADCMT; 6241A, ADC Corporation, Saitama, Japan) and was driven by a unipolar
Gaussian pulse with an amplitude of 10 V and duration of 50 ns, generated by a
PCI arbitrary wave generator (DA4300, Chase Scientific Co., Langley, WA, USA),
input to the custom RF amplifier. The voltage signal received on the hydrophone
was digitized with PCI digitizer (Razor CSE1442; GaGe, Lockport, IL, USA). The
block diagram of the system is shown in Figure 3.3.

The CMUT array transmit response was measured as a function of bias voltage.
The bias voltage was increased from 0 V to 30 V with step of 2.5 V. The CMUT
array transitioned into collapse mode when a bias voltage of approximately 17.5 V
was applied. The snap­back voltage was measured in a similar way, except with
the bias voltage being reversed, The array snap­back voltage was 15 V.

The voltage signal received on the hydrophone was converted into output pres­
sure using the hydrophone calibration data (up to 40 MHz), and corrected for the

Table 3.1: LNA Specifications

Specification Value Explanation

Signal bandwidth 30 MHz AC transfer function, ­3dB
roll off of receive chain

Gain 50 dB LNA gain at 20 MHz with
Zload = 75 Ω

Noise Factor 4 dB Noise factor at 20 MHz
Dynamic Range 75 dB Over entire bandwidth

Channel Cross talk ­ 65 dB Cross­talk of an unselected channel
on the signal of a selected channel
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RF amplifier frequency response, as well as the sound attenuation in water. Non­
linear propagation effects are neglected. The spectra of the received signals were
analyzed and plotted as the frequency response of the CMUT array at different bias
voltages. The center frequency, fractional bandwidth and transmit sensitivity were
calculated as a function of the bias voltage.

Figure 3.3: IVUS system level description. Schematic block diagram of IVUS architecture, including
main interactions.

3.2.4. Coded Excitation
The basic principle of coded excitation and pulse compression is to convert a long
frequency­modulated transmitted signal into a correlation signal with shorter time
duration and a greater contrast to noise ratio. This happens by applying a matched
filter, which is equal to the input waveform with reversed time axis. Therefore, if
the input signal to the filter is the same as the excitation signal, the matched filter
response would be mathematically equivalent to the auto­correlation of the trans­
mitted signal. Any change, such as applying an apodization window to the match
filter impulse response, makes the filter “mismatched” with the input waveform.

In the presence of frequency dependent attenuation, linear frequencymodulated
(LFM) or chirp signals have the most robust performance in terms of SNR improve­
ment [14]. The chirp signal may be formulated as:

𝑠(𝑡) = 𝐴 cos(2𝜋 (𝑓𝑐 .𝑡 +
𝐵
2𝑇𝑡

2) + Φ𝑐) , (3.1)

where 0 < 𝑡 < 𝑇, 𝑓𝑐 is the starting frequency, 𝐵 is the chirp bandwidth and Φ𝑐 is the
starting phase. Based on the theory of the code compression, the expected gain in
SNR is equal to the time­bandwidth product.

𝐺𝑆𝑁𝑅 = 𝑇 × 𝐵 (3.2)
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(a) (b)

(c) (d)

Figure 3.4: (a) Schematic top view of the wire positions inside the phantom, (b) angular response from
an individual array elements, (c) Rolled­up imaging core inside custom developed wire phantom. (d)
Rolled­up imaging core inside an autopsy human coronary artery specimen

3.2.5. Wire phantom imaging

A wire phantom was designed to quantitatively evaluate the imaging resolution and
depth of the rolled­up array. Figure 3.4a shows a top view of the wire positions
inside the phantom. The tungsten wire diameter was 15 μm. The wire­phantom
was mounted on the side of the PCB, such that the catheter tip is centered in the
phantom. The complete assembly was immersed in water (Figure 3.4c). We beam­
formed all RF­lines acquired from the 96 elements in theGPU. Imaging performance
was quantified in terms of the SNR and resolution, comparing images formed by a
Gaussian short­pulse excitation and the compressed chirp.
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3.2.6. IVUS Beamforming
In conventional dynamic focusing, the image is created line­by­line using a fixed
transmit focus and a dynamic delay­and­sum receive focus which is then scan­
converted to create virtual lines, to be interpolated in between the actual lines. In
the approach we adopt here, a pixel based beam­forming scheme improves spatial
resolution by lowering the interpolation artifacts. In this method, we assumed a vir­
tual source behind the elements, at the center of the catheter, producing cylindrical
waves. This is plausible since all elements fire simultaneously.

For SL­IVUS imaging, a dense circular array of 96 elements was modeled for
beam­forming. The elements were equally spaced around the circumference of the
catheter at an element pitch of about half wavelength at the fundamental operation
frequency of 20 MHz.

It is important to characterize the overall receiving aperture based on the contri­
bution of the echo signal coming from a single fixed scatterer. Figure 3.4b depicts
the parameters that affect the receive aperture. Knowing the angular response of
the elements, we can attribute all the pixels within the region in which the echo
signals are received (highlighted area) by each element.

𝑅′ = √(𝑅 cos(𝜃) − 𝑟 cos(𝜃′))2 + (𝑅 sin(𝜃) − 𝑟 sin(𝜃′))2 (3.3)

𝜑 = arctan [ 𝑅 sin(𝜃) − 𝑟 sin(𝜃
′)

𝑅 cos(𝜃) − 𝑟 cos(𝜃′) ] − 𝜃
′ (3.4)

In (3.3), 𝑅 is the radial position of the reconstructed pixel (scatterer), 𝑅′ is the
distance between the pixel and the element, 𝑟 is the position of the element, 𝜃 is the
angle of the pixel from the horizontal and 𝜃′ is the angular position of the element.
𝜑 in (3.4) is the angle with respect to the normal at an individual element.

Using these distances, we calculated the propagation delay from the virtual
source in the center of the catheter, to the scattering position (𝑖, 𝑗) and back to the
receiving element. We furthermore defined a mask 𝐴 which rejects pixels outside
the opening angle 𝛼 = 50∘ (relative to the element normal). The resulting image
amplitude 𝑆(𝑖, 𝑗) was then computed by a straightforward delay­and­sum approach:

𝑡𝑛(𝑖, 𝑗) =
𝑅(𝑖, 𝑗) + 𝑅′𝑛(𝑖, 𝑗)

𝑐

𝐴𝑛(𝑖, 𝑗) = {
1; |𝜑𝑛(𝑖, 𝑗)| ⩽ 𝛼
0; |𝜑𝑛(𝑖, 𝑗)| > 𝛼

𝑆(𝑖, 𝑗) =
96

∑
𝑛=1

𝑆𝑛 (𝑡𝑛(𝑖, 𝑗)) × 𝐴𝑛(𝑖, 𝑗)

(3.5)

In (3.5), 𝑡𝑛(𝑖, 𝑗) is the calculated propagation time from each pixel to the element
n; 𝑆𝑛 are the received element waveforms. In coded excitation imaging, 𝑆𝑛 are
the traces after filter compression. Based on these equations, we implemented
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(a) (b)

Figure 3.5: (a) Transmit Transfer Function of 48 elements CMUT array as a function of biasing voltage,
(b) Transmit transfer function and Sensitivity of CMUT array at 30 V DC biasing.

pixel­based beam­forming scheme with a grid spacing of 5μm over a 2D space of
1cm × 1cm.

3.2.7. Autopsy tissue experiments
A coronary artery was harvested during autopsy at the Dept. of Pathology of the
Erasmus MC, under a protocol sanctioned by the local ethics board. A short sec­
tion of artery was mounted in the water tank and imaged using the rolled­up IVUS
device. The coronary artery was immersed in Phosphate­buffered saline PBS(1X)
for imaging (Figure 3.4d). The diameter of the artery was approximately 2 mm.

After IVUS experiments, the tissue was fixed for 24 hours in formalin and subse­
quently processed. A series of 5 sections, each 5 μm thick, were taken at locations
every 250 μm to gain insight into the tissue appearance in the vicinity of the imaging
plane. At each location, one slide underwent routine hematoxylin/eosin (HE) and
Oil Red O (ORO) staining.

3.3. Results
3.3.1. Characterization of the CMUT sample
Figure 3.5a shows the Transmit Transfer Function (TTF) of the 48­element CMUT
array at varying bias voltage. The spectra of the received signals are Fourier trans­
formed to obtain the frequency response and normalized to the maximum value
among all measurements. The maximum transmit sensitivity is observed at an ap­
plied bias voltage of 30 V, at which the CMUT resonates at center frequency of 19.5
MHz. The ­6dB contour plot at Figure 3.5a illustrates that the array is wide­band
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(a) (b)

Figure 3.6: (a) Designed chirp signal and its compensation for the frequency dependant RF amplifier,
(b) received signal and its mismatch filter response.

after collapsing which happens at 17.5 V DC biasing.
The center frequency, fractional bandwidth and transmit sensitivity are calcu­

lated at each bias voltage. Figure 3.5b shows that the array provides approximately
400 kPa output pressure when it is biased at 30 V DC. This translates to a transmit
sensitivity of 36.8 kPa/v with 130% fractional bandwidth at a center frequency of
19.5 MHz. For all subsequent imaging experiments, we adopted a bias voltage of
30 V.

Applying a bias voltage of 30 V, we quantified the transmitted pressure from the
rolled­up array, which emits a cylindrical wave instead of a plane one. We found a
transmit sensitivity of 7.8 kPa/V, recorded at the same delay of 4.2 μs.

3.3.2. Coded Excitation
Based on the characterization result of the CMUT sample, we designed a LFM
signal with center frequency, 𝑓𝑐 = 22.4 MHz, and 100% fractional bandwidth (𝐵 =
22.4 MHz). The LFM signal had a duration of 𝑇 = 300 ns to meet the requirement
of< 0.5mm deaf­time for IVUS application. A Tukey tapered cosine window of 50%
was applied to the LFM. The waveform amplitude was modulated to compensate
for the frequency response of the RF amplifier (the blue line in Fig. 3.6a). The
amplified chirp signal had the desired shape and frequency response, as depicted
in Fig. 3.6a. Once the chirp is applied to the CMUT array, the impulse response of
the CMUT again changes the waveform.

The received echo signal was considered as the input signal to the mismatched
filter. Figure 3.6b illustrates the received signal from the wire and its complex conju­
gate, which was used as the mismatched filter response characteristic. The bottom
part of Fig. 3.6b shows the output of the mismatched filter and its envelope. The
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(a) (b)

(c) (d)

Figure 3.7: Wire phantom image reconstruction using the short pulse (a) and the chirp signal (b) for the
rolled­up CMUT array, (c,d) 60 μm Axial resolution and 270 μm lateral resolution achieved using the
short pulse (solid line) are compared with 70 μm axial and 245 μm lateral resolution achieved using the
chirp signal.

width of the peak of the decoded signal envelope determines the resolution. The
time­bandwidth product of the designed chirp signal was 𝑇×𝐵 = 6.7 and based on
the theory, we expect to gain 8.3 dB in SNR.

3.3.3. Imaging the wire phantom
The designed chirp signal was applied for imaging the wire phantom, compared
to the short pulse for reference. Figure 3.7a and Figure 3.7b correspond to the
beamformed wire phantom image reconstruction of the Gaussian pulse and coded
signal, respectively. The visual appearance of the pulsed and the coded images
is similar. Quantitative evaluation of the image resolution was performed by mak­
ing measurements in two perpendicular cross­sections through the reconstructed



3

42 3. Real­Time coded excitation imaging using a CMUT­based side looking array for IVUS

(a) (b) (c)

Figure 3.8: Ex­vivo human coronary artery image reconstruction using the short pulse (a) and the chirp
signal (b) by the rolled­up CMUT array. (c) is the histology image of the coronary sample. The scale bar
is 100 μm

wire reflections, shown in Figure 3.7c and Figure 3.7d. The ­6 dB axial and lateral
resolutions of the short pulse and the coded excitation were found to be 60 μm, 70
μm and 270 μm, 245 μm respectively, measured at a distance of 1.55 mm from the
center of the catheter.

For the SNR calculation, we computed the ratio between the signal amplitude
of a bright wire reflection (the red boxes in Figure 3.7a and Figure 3.7b) and the
average amplitude in an area with only noise (blue boxes). We found an SNR of 32
dB for the short pulse image and 40 dB for the coded excitation image, confirming
the 8 dB gain in SNR.

Pixel­based beamforming of the data was implemented in Matlab, achieving
real­time acquisition and image formation at a maximum frame rate of 20 frames
per second.

3.3.4. Ex­vivo imaging of the human coronary artery
We used the water tank set­up for real­time ex­vivo imaging the human coronary
artery. We inserted the rolled­up array inside the lumen which was immersed in
PBS. The designed chirp signal and the short pulse were used for imaging. Figure
3.8a shows a frame from the real­time IVUS images obtained using the short pulse
with dynamic range of 40 dB and Figure 3.8b are corresponding to the IVUS images
obtained by the chirp signal with dynamic range of 40 dB. Figure 3.8c shows the
ORO histology image of the coronary sample where a big calcified region has been
found.

3.4. Discussion and conclusion
This work focuses on the utilization of excitation codes for CMUT based IVUS imag­
ing. A state of the art CMUT array with 96 elements was fabricated and deployed
for imaging.

We designed a linear frequency modulation (chirp) signal to improve signal to
noise ratio while preserving resolution by a mismatched filter reconstruction. This
method maximizes the combined use of the available bandwidth and transmission
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power. It can potentially improve the SNR and thus, the penetration depth of high­
resolution IVUS. The device has a ­6dB device bandwidth at 30 V DC biasing of
25 MHz with 20 MHz center frequency and a transmit sensitivity of 27 kPa/V at
that frequency.The chirp signal has 300 ns excitation time to meet the deaf­time
requirement (less than 0.5 mm) for IVUS imaging. We imaged a wire phantom
and a human coronary artery. By assessing the image quality of the reconstructed
wire phantom image, we achieve 60 μm and 70 μm axial resolution using the short
pulse and coded signal, respectively. We showed that coded excitation improves
SNR by 8 dB, at a cost of a slightly degraded axial resolution. This is due to the
windowing/apodization which is used to lower the side­lobes associated with decod­
ing the signal, reducing the effective bandwidth. However, it is sufficient for IVUS
application. The imaging scheme that transmits on all elements and detects on
consecutive triplets is potentially suboptimal. Selective excitation of transmission
elements could potentially improve the lateral resolution in the images, but was not
supported by the electronics.

We developed and demonstrated a system that provides 20 frame per sec­
ond, real­time and pixel­based beamformed phased­array IVUS images and demon­
strated the feasibility of intravascular ultrasound chirp imaging of human coronary
atherosclerosis using the CMUT array. Features like a large calcification could be
identified in both short­pulse and compressed­chirp imaging. Exact colocation of
the imaged sections was challenging, which complicates a direct comparison of the
two methods in imaging this very heterogeneous tissue.

We presented a novel concept for IVUS based on broadband CMUT. We char­
acterized the array performance for coded excitation imaging which may be useful
for achieving greater penetration depth in IVUS while maintaining image resolution.
CMUTs aremanufactured usingmicromachining techniques which are evolved from
the well­established integrated circuit fabrication process and possess unique po­
tential in high yield mass production of CMUT­based IVUS catheters. Consequently,
this technique offers an opportunity to lower the production costs. Future realiza­
tions may feature a higher frequency, compact and versatile transmit/receive elec­
tronics and dedicated image processing software for further improvements to image
quality.
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Photoacoustic signals can have very large bandwidth and large dynamic
range. With appropriate electrical impedance matching, off­resonance PVDF
transducers offer the bandwidth and sensitivity to fully capture these sig­
nals. Minimizing pitch and kerf in ultrasound transducer to improve lateral
resolution is of great importance. Kerfless arrays, where the electrodes are
patterned onto the piezoelectric material, fulfill such a demand and are sim­
pler to manufacture. We have manufactured and characterized a kerfless off
resonance PVDF array of 10 elements with dimensions of 1 mm × 1.5 mm
× 28 μm (w×h×t) both numerically and experimentally for PA imaging. We
matched the high impedance of the PVDF elements with low impedance of
acquisition system through an appropriate LNA (26 dB amplification over 10
MHz BW). PA signals from a tungsten wire with a diameter of 35 μm were
received with our device, and compared to those recorded with a 0.2 mm nee­
dle hydrophone. Based on simulation and measurement results, the phase
change in the off­resonance PVDF is negligible. The crosstalk between ad­
jacent elements is ­30dB. We measured a sensitivity for our array of about
1.38 μV/Pa at 3 MHz. The RMS output noise level is 240 μV over the entire
bandwidth (10Hz ­ 10 MHz).
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4.1. Introduction

P hotoacoustic imaging (PAI) is an emerging, nonionizing imaging modality for
preclinical and clinical applications. Photoacoustic signal can be generated us­

ing a short pulse laser that illuminates a tissue which absorbs the light energy and
converts the light to heat. The energy absorption induces rapid adiabatic thermoe­
lastic expansion which generates pressure waves. These pressure waves prop­
agate through the surrounding medium and can be received by ultrasound trans­
ducers [2]. The PAI technique has been widely developed and has application in
photoacoustic tomography where an ultrasound array enclosing the tissue and a
relatively large laser beam irradiates the object [3], photoacoustic microscopy [4, 5]
where a focused light source and focused ultrasound receiver array scans the ob­
ject, and photoacoustic endoscopy [6].

Because of the broadband nature of the PA signal, transducers with high band­
width can significantly improve the sensitivity of the PAI [7]. The Lead Zirconate Ti­
tanate (PZT) based ultrasound transducers offering high transmit/receive efficiency
and provide capability for dual modal PA/US imaging. However, the 70−80% trans­
ducer fractional bandwidth is a limiting factor in getting high resolution PA images
with high sensitivity. Ultrasound transducers based on polyvinylidene diflouride
(PVDF), and Capacitive Micromachined Ultrasound Transducer (CMUT) technolo­
gies have also been explored for PA imaging [8, 9]. CMUT devices provide more
bandwidth than PZT, at similar receive efficiency, but the dielectric charging effect
and thus, the reliability and life time are challenging issues [10]. PVDF based ul­
trasound transducer has the highest bandwidth and also provides more receive
efficiency than PZT which makes it an ideal candidate to be used in this application,
but its transmit efficiency is low in comparison with other transducer [11].

The elements in transducer arrays are created using dicing method in the bulk
piezoelectric ceramics slab. Kerfs, which are the spaces between elements, pro­
vide isolation between adjacent elements that can prevent electrical and mechan­
ical coupling, or crosstalk. It has been shown that the mutual coupling between
elements is the main reason for degradation of the array bandwidth and conse­
quently, the image quality of ultrasound B­mode imaging [12–14]. In order to obtain
a good lateral resolution, the element pitch size should be smaller than the wave­
length and the kerf between two adjacent elements has to be as small as possible.
Unfortunately, the dicing procedure can be difficult and challenging in terms of cost,
yield and limitations on fine­scale dimensions, especially for high frequency arrays
[15]. This issue becomes more challenging for 3D imaging where 2D arrays with
very high number of elements are required [16].

An alternative and simpler manufacturing approach is to make kerfless trans­
ducer where electrodes are patterned to define the transducer elements. This tech­
nique permits the development of high frequency transducers [17, 18] and helped
researchers to develop dual layer transducer for high frame rate [19] and 3D imag­
ing [20]. The major drawback in this technique is the increased crosstalk. Efforts
to minimize the coupling have included the use of screen­printed PZT thick films,
where the kerfless design does not necessarily lead to compromised array perfor­
mance. The anisotropic nature of screen­printed PZT films introduces a large dif­
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Figure 4.1: The read out circuit with 4 LNAs (left side) where the 28 μm­thick PVDF array (right side) is
directly connected to it using a PCB board.

ference in the electromechanical coupling between thickness and lateral modes,
which suppresses crosstalk [21].

In order to gain maximum transmit/receive efficiency in ultrasound transducers,
the thickness of the PZT material is tuned such that the transducer element is at
resonance for the frequency of interest. This choice maximizes the sensitivity of the
transducer. A downside of this approach is the resulting complexity of the read­out
circuits, since the transducer phase change at the resonance has to be taken in to
account and accordingly compensated.

Since most of the PA signal energy of human plaque is below 10MHZ [7]; in
this paper, we realized an off­resonance PVDF based transducer for PAI of human
carotid plaque. Because the array will be used in receive­only mode, we chose the
resonance frequency of the PVDF to be very high (45 MHz) and consequently, the
phase change at lower frequency ranges (≤ 10 MHz) would be negligible.

4.2. Materials and Methods
A 28 μm­thick uniaxial poled PVDF film with gold electrodes(Precision Acoustics,
Ltd, Dorset, UK) was cut in a rectangular shape of 10mm × 1.5mm using a laser
micromachining workstation (FemtoLAB, Workshop of Photonics, Vilnius, Lithua­
nia). This slab is glued on a 1mm thickness quartz substrate which is also acting
as a backing layer and then the top electrode of the PVDF slab is laser cut to define
a kerfless array of 10 elements with 1 mm element width.

A laser source (Innolas Spitlight EVOOPO, Krailling, Germany) of 800 nmwave­
length, 4 mJ pulse energy, and 200Hz PRF illuminated a tungsten wire with a di­
ameter of 35 μm for generating the PA signal. The sensitivity and receive transfer
function of the prototype PVDF element, integrated with the LNA, have been evalu­
ated in Galden liquid (HT135) in order to prevent electrical short circuit. The signals
from our array were compared with a 0.2 mm needle hydrophone (Precision Acous­
tics, Ltd, Dorset, UK) which was immersed in water. Electrical impedance mea­
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surements were performed using vector impedance meter (HP 4193A, USA) for all
of the connected elements and good reproducibility was observed on capacitance
distribution with a relative variation less than 4%.

In order to match the high impedance of the PVDF elements (≤ 5𝑝𝐹/𝑚𝑚2) with
low impedance of acquisition system, we used an appropriate Low noise amplifier
(LNA) (ADA4807­4, Analog Device Inc., Norwood, MA, USA) with 200MHz gain
bandwidth product and 3.1𝑛𝑉/√𝐻𝑧 noise density. Since most of the PA signal en­
ergy is in the range of less than 10 MHz; we tuned the LNAs to have 10MHz band­
width and consequently, 26dB amplification ratio. A short wire (∼ 3 mm) was glued
to each element and connected to a PCB where the LNAs were placed (Figure 4.1).

We also analyzed the crosstalk in the kerfless array both experimentally and
numerically. In finite element analysis (Comsol Multiphysics 5.3a), one element of
the PVDF array is excited with one cycle sinusoidal waveform with frequency of
6 MHz providing 100% fractional bandwidth and recorded the generated voltage
level at the adjacent elements. The same method was implemented experimen­
tally where a pulse with frequency of 6 MHz and 400 V (5077PR, Panametric Ltd.,
square­wave Pulser/Receiver) is applied to one of the PVDF element and crosstalk
at the neighboring elements are recorded.

4.3. Results
3­D Finite Element Analysis (FEA) was carried out using COMSOL Multiphysics
3.5a for characterizing the immersed kerfless PVDF array. A Perfectly Matched
Layer (PML) is used as an absorbing boundary which is located 2𝜆0 away of surface
of the array at the lowest frequency and the model is simplified by simulating a por­
tion of the array with appropriate symmetry boundaries. Furthermore, the domain
mesh size is set to the minimum acceptable size of 𝜆1/10 at the highest operating
frequency.

The input impedance of the PVDF element was measured and compared with
the FEM result. Figure 4.2 shows the high input impedance of the PVDF element
and also indicates that the phase change in the element over the entire frequency is
negligible confirming that the PVDF is in the off­resonance regime for the frequen­
cies up to 10 MHz. The high impedance of the transducer elements are matched
to the high input impedance of the Operational Amplifiers (OpAmps). Furthermore,
for cable matching, the output impedance of the OpAmps are matched to 50Ω.

Figure 4.3 depicts the received PA signal in time and frequency domains using
our array. Notice that the dip at 1.45 MHz is due to the suboptimal backing of the
array. Considering the speed of sound in quartz (∼ 5800 m/s) and the 1.45 MHz dip
in the frequency response of the PVDF element, its related wavelength is 4mm. The
quartz layer’s thickness (1 mm) would be corresponding to quarter wavelength in
that frequency, leading to destructive interference from a round­trip reflected wave
and narrowing the bandwidth.

The same PA source was used to detect the signal with the 0.2 mm hydrophone
and the result is provided in the Figure 4.4. We calibrated the PVDF element re­
sponse with the hydrophone and demonstrated that our device provides an output
voltage with a sensitivity of about 1.38 μV/Pa at 3 MHz. The RMS output noise level
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Figure 4.2: Input electrical impedance of the PVDF element in air as function of frequency.

Figure 4.3: Photoacoustic signal received by the PVDF element and its frequency response.

is 240 μV over the entire bandwidth (10Hz ­ 10 MHz). This indicates that the mini­
mum detectable pressure for our system is 170 Pa. This will be further improved if
we use an LNA with more gain.

We also analyzed the crosstalk in the kerfless array both experimentally and
numerically. Figure 4.5 shows that the crosstalk level at the adjacent element is at
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Figure 4.4: Photoacoustic signal received by the 0.2 mm needle hydrophone and its frequency response.

Figure 4.5: Simulated (solid line) and measured (dashed line) crosstalk in the PVDF array.

­30dB level. This implies that the lateral mechanical coupling in the PVDF kerfless
array is low; thus, it wouldn’t produce detrimental effect on array response.
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4.4. Conclusion and Discussion
Based on FEA and measurement results, the phase change in the off­resonance
PVDF is negligible. The analyzed crosstalk between the elements (Figure 4.5) is
­30dB for the adjacent element indicating that it will not have detrimental effect on
the beam profile of the array. We detect the received photoacoustic signal using
our array and 0.2 mm hydrophone. We have designed and manufactured a broad­
band, kerfless, off resonance PVDF array for PA imaging of human plaque with low
mechanical crosstalk (­30 dB) between the elements and high sensitivity in receive
which can significantly improve the detection of PA signals.
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A dual frequency probe using a multi­layer piezoelectric material is proposed
for simultaneous ultrasound and photoacoustic imaging of the carotid artery
with a high resolution ultrasound and a high sensitivity photoacoustic image.
The probe consists of lead zirconium titanate (PZT) for ultrasound stack and
and polyvinylidene difluoride (PVDF) array for photoacoustic signal reception,
which is placed on top of the PZT stack. We used 3D finite element analysis
to evaluated a quarter of the full aperture of the dual frequency array, hav­
ing 48 elements diced PZT­5H for ultrasound pulse­echo and 16 elements
of 28 μm­thick, kerfless PVDF for photoacoustic receiving. We showed that
considering the PVDF array as the second matching layer of the ultrasound
stack minimized its loading effect at the cost of operating in a higher opera­
tion frequency of 9.9 MHz. Wemodeled a design with andwithout sub­dicing,
where sub­dicing and subsequent suppression of lateral modes allows larger
elements and thus larger aperture. The ­3dB bandwidth of the ultrasound
stack with and without sub­dicing are 87% and 75% relative to the center
wavelengths. We found a transmit sensitivity of 17 kPa/V and 21 kPa/V for
those two realizations respectively.
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5.1. Introduction

T he carotid arteries (CA) supply the brain with oxygenated blood. Atheroscle­
rotic plaques can cause a stenosis in CA, where lipid­rich, vulnerable plaques

rupture lead to cerebral ischemic events such as stroke. Stroke is the largest sin­
gle cause of death and disabilities worldwide. Examining the degree of stenosis in
CA is done with ultrasound imaging and this is the main criterion for planning in­
terventions such as surgical endarterectomy. However, this approach is unable to
distinguish between the stable and unstable plaques, since stenosis grade does not
discriminate well between those two categories [2, 3]. Plaque composition plays a
very important role in this distinction.

Photoacoustic (PA) imaging is a relatively novel, non­invasive imaging modality
that uses short optical pulses (usually delivered by a laser) to induce thermoelastic
expansion at sites of optical absorption. This generates acoustic pressure waves
in the absorbing regions of the tissue, allowing the creation of acoustic images of
the optical absorption. PA imaging provides optical contrast of biological tissue
which is promising for visualization of plaque composition [4, 5]. The advantage
of PA is the use of multiple wavelengths to do spectroscopy study[6, 7]. Despite
these advantages, the drawback of PA imaging is the limited penetration depth of
the laser light. Some studies were focused on increasing the penetration depth by
either introducing optical contrast agents [8] or by delivering the light locally [9].

The broadband nature of the PA signal of atherosclerotic plaques is dominated
by low frequencies [10]. Lead zirconate titanate (PZT) based ultrasound imaging ar­
rays with typical 60−80% transducer fractional bandwidth provide high transmit and
receive efficiency which is optimal for pulse­echo imaging. The limited bandwidth
means that the sensitivity at PA frequencies may be low. PolyVinylidene difluoride
(PVDF) offers relatively greater receive efficiency than PZT which potentially could
increase the sensitivity of the PA image, especially when it is employed at frequen­
cies off­resonance in combination with integrated amplification [11]. In our previous
work, we demonstrated that an off­resonance, kerfless PVDF array is a suitable PA
receiver with 10 MHz bandwidth for carotid artery imaging [12].

Recent studies on ultrasound probe development were focused on designing
dual frequency acoustical stacks for different applications like contrast enhanced
intravascular ultrasound [13], and transrectal acoustic angiography [14]. Merks et al.
investigated a multilayer single element transducer transmitting at 2 MHz using PZT
and receiving the non­linear acoustic waves with a PVDF film for acoustic bladder
volume assessment[15]. Saitoh developed a dual frequency array for increasing
the sensitivity in doppler imaging [16].

This paper presents the design of a dual frequency probe for PA imaging of the
carotid artery using PZT and PVDF layers. Since PZT has a much larger acoustic
impedance than soft tissue, the ultrasound coupling efficiency is impaired, which
can be mitigated by the application of one or multiple matching layers. The design
of this matching structure interacts with the bandwidth of the transducer response
and offers the opportunity to tailor the matching layers to jointly optimize bandwidth
and sensitivity [17]. We focus on the pulse­echo performance of the dual layer
array with the ultrasound operation frequency of approximately 10 MHz. We use
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(a) (b)

Figure 5.1: Cross­section of the modeled transducer (a) without and (b) with subdicing of the elements.

two matching layers where the second matching layer is the PVDF receive layer,
such as characterized in our previous work [12], and analyze the design using finite
element simulations.

5.2. Materials and Methods
In the design of a 1D transducer array, the length of the element should be at least
30 times the wavelength at the central frequency, and the width­to­thickness ratio
should be smaller than 0.7 to prevent the excitation of lateral modes [18]. The
3D simulation study is performed using the Finite Element Analysis (FEA) software
package COMSOLMultiphysics. The proposed dual layer array for CA imaging has
192 elements for ultrasound pulse­echo and 64 elements of kerfless PVDF array
for PA. In this study we analyzed a quarter of the full aperture. Figure 5.1 shows a
schematic view of the dual layer transducer array used for the first study. We adopt
the (previously characterized) PVDF layer, with a fixed thickness of 28 μm, as the
PA receive layer. We did not study the acoustic response of this layer in the FEM
simulations.

5.2.1. Matching layer analysis
Following the theory of acoustic matching presented in [17], the front half of the
transducer were treated as a quarter­wave matching layer, in addition to the other
quarter wavematching layers bonded to the transducer. The optimum input impedance
of the acoustic load line at the resonance frequency can be formulated as:

𝑍𝐼𝑁 =
𝑍2𝑝𝑖𝑒𝑧𝑜
𝑍𝑚 + 𝑍𝑏

, (5.1)

where 𝑍𝑝𝑖𝑒𝑧𝑜 is the acoustic impedance of the piezoelectric and 𝑍𝑚 is the acoustic
impedance of the medium.

The matching layer formulation for one quarter wave is:
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layer material material properties

PZT Ceramic
(PZT­5H)

𝜌 = 7700 𝑘𝑔/𝑚3
𝑐11 = 127; 𝑐12 = 80; 𝑐13 = 84;
𝑐33 = 117; 𝑐44 = 23; 𝑐66 = 24
𝑒15 = 17; 𝑒31 = −6.6; 𝑒33 = 23
Z = 30.76 MRayl

First
Matching

Conductive
epoxy

𝜌 = 4880 𝑘𝑔/𝑚3
Y = 10.77 GPa; 𝜈 = 0.3;
Z = 8.3 MRayl

Second
Matching PVDF 𝜌 = 1780 𝑘𝑔/𝑚3 Y = 2.2 GPa;

𝜈 = 0.29; Z = 2.27 MRayl

Backing
Tungestan
loaded
epoxy

𝜌 = 4880 𝑘𝑔/𝑚3
Y = 10.77 GPa; 𝜈 = 0.3;
Z = 8.3 MRayl

Table 5.1: Material properties used in the simulation.

𝑍𝑙𝑎𝑦𝑒𝑟 = 𝑍1/3𝑝𝑖𝑒𝑧𝑜 × 𝑍
2/3
𝑚

𝑍𝑖𝑛 = 𝑍4/3𝑝𝑖𝑒𝑧𝑜 × 𝑍
1/3
𝑚

(5.2)

and the formulation for two quarter wave layers is:

𝑍𝑙𝑎𝑦𝑒𝑟1 = 𝑍4/7𝑝𝑖𝑒𝑧𝑜 × 𝑍
3/7
𝑚

𝑍𝑙𝑎𝑦𝑒𝑟2 = 𝑍1/7𝑝𝑖𝑒𝑧𝑜 × 𝑍
6/7
𝑚

𝑍𝑖𝑛 = 𝑍8/7𝑝𝑖𝑒𝑧𝑜 × 𝑍
1/7
𝑚

(5.3)

Table 5.1 lists the material parameters used in the simulation: the impedance
𝑍𝑝𝑖𝑒𝑧𝑜 of the PZT­5H layer is 30.7 MRayl, while 𝑍𝑚 of the water coupling medium is
1.5 MRayl.

Using Equation 5.1, the input impedance will be 47.1 MRayl. Calculating the
input impedance using Equation 5.2 and Equation 5.3 will yield input impedances
of 108.6 MRayl and 52.4 MRayl for designs based on one and two matching layers,
respectively. The value of 𝑍𝑖𝑛 for two matching layers is slightly bigger than the
optimum value of the 𝑍𝐼𝑁 accorindg to Equation 5.1. Thus, the choice of using two
matching layers will broaden the transducer bandwidth.

5.2.2. Finite Element Analysis
3­D FEM transient analysis is carried out using COMSOL Multiphysics 5.3. We
analyzed the pressure profile on the surface of the probe. A Perfectly Matched
Layer (PML) was used as an absorbing boundary which is located 1𝜆 away from
the surface of the array at the lowest frequency. The model was simplified by simu­
lating a quarter of the array, with appropriate symmetry boundary conditions in the
lateral direction, along the y­axis (Figure 5.2). The domain mesh size was set to
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the minimum acceptable size of
𝜆1
15 at the highest operating frequency. The lowest

and highest operating frequencies are set to be 1 MHz and 20 MHz respectively. A
single­cycle sine wave of 10 MHz with an amplitude of 20 𝑉𝑝𝑝 was applied to the
PZT­5H. This will provide 100% fractional bandwidth to analyze the transmission
response. In order to fully resolve the frequency response, the time step was set to
1
20 of the of the sine wave period.

We analyzed three array designs in this study, which differ in their operating
frequency

1. Current carotid artery imaging probes work at a center frequency near 7.5
MHz. We investigated the effect of adding a PVDF layer on the frequency
response of such an array.

2. To minimize the loading effect of the PVDF layer, the US pulse­echo stack
was redesigned by considering the PVDF as the second matching layer of
the PZT elements, eventuating in a higher operation frequency of 9.5 MHz.
We modeled the response of such an array.

3. Subdicing suppresses lateral modes, and thus allows larger elements and
larger aperture. Design 2 was modified to examine the impact of this modifi­
cation.

Based on the Equation 5.3, the first and secondmatching layers acoustic impedance
for PZT­5H should be 8.42 MRayl and 2.31 MRayl respectively where the value of
the second matching layer is very close to the PVDF acoustic impedance (Z=2.27
MRayl). Table 5.2 summarize the geometrical dimensions used in these three de­
signs.

In the first design, the element width of the PZT­5H and PVDF are 200 μm and
600 μm, respectively. The kerf between the PZT elements in all designs is 20 μm
dictated by the dicing saw thickness. This leads to a full aperture size of 2.3 cm
where there are 192 PZT elements and 64 PVDF elements. In order to improve the
frequency response of the transmitting part, we increased the operation frequency
to 10 MHz, where the quarter wavelength second matching layer thickness at 10
MHz was approximately equal to the prescribed 28 μm thickness of the PVDF. In
the lower frequency design, the element width was bigger in comparison with the
higher frequency design (half lambda for both). Consequently, the higher frequency
design had a smaller aperture for carotid imaging. There are two approaches for
increasing the aperture length: increasing the number of elements, or to utilize sub­
dicing. We aim to limit the total number of elements to 256 for practical reasons
(connectivity and compatibility with commercial reseacrh ultrasound systems), 192
for pulse­echo and 64 for PA. Thus, we designed the probewith sub­dicing approach
in the third geometry [19]. Janjic et al. showed that cutting to a depth of 70% of the
total element thickness can significantly improve the transducer performances [20].
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Figure 5.2: 3D representation of the simulated array for design 2.

5.3. Results
We analyzed three different results for photoacoustic and ultrasound imaging of
the carotid artery. Figure 5.3a depicts the time and frequency response of the array
based on the parameters for design 1. The time signal has a long tail which narrows
the bandwidth, attributed to the loading of the PVDF layer on the PZT. The 28 μm­
thick PVDF layer was not an optimal matching for the first design. The bandwidth
of the ultrasound array measured at ­3dB is 4.8 MHz with center frequency of 7.7
MHz; thus, making 62% fractional bandwidth. This relatively narrow band array is
due to the suboptimal thickness of the PVDF as a second matching layer.

Figure 5.3b and Figure 5.3c show the array performance where the optimum
response was achieved. The ­3dB bandwidth of the non­subdiced and subdiced
designs are 7.4 MHz and 8.7 MHz, respectively, centered at 9.9 MHz. The transmit
sensitivity of the three designs are 19 kPa/V, 21 kPa/V, and 17 kPa/V.

5.4. Conclusion and Discussion
We used the theory of two matching layers for designing the arrays for carotid artery
imaging. Based on this theory, the acoustic impedance of the secondmatching layer
needs to be 2.31 MRayl for the PZT­5H ultrasound stack. The acoustic impedance
of the PVDF is very similar to this value, making the PVDF a good candidate to
be used in the array. In our previous work, we experimentally characterized the
received PA signal using the off­resonance kerfless PVDF array. It demonstrated



5

66 5. Design of a dual frequency probe for photoacoustic imaging of the carotid artery

(a) (b)

(c) (d)

Figure 5.3: (a) Time and frequency response of the non optimum array design operating at 7.5 MHz
(design 1), the response of the array based on design 2 (b) and design 3 (c) are shown. (d), The
photoacoustic signal received by the PVDF element and its frequency [12]. response.

Layer Design 1
(7.5 MHz)

Design 2
(10 MHz)

Design 3
(10 MHz, sub­dice)

PZT­5H
(th × w) [μm] 120 × 200 90 × 100 90 × 200

First matching
(th × w) [μm] 53 × 200 40 × 100 40 × 200

PVDF
(th × w) [μm] 28 × 600 28 × 300 28 × 600

Table 5.2: Geometrical dimensions used in the simulation

good performance as a PA receiver with high sensitivity. Figure 5.3d depicts the
received PA signal in time and frequency domains using our array. The dip at 1.45
MHz is due to coupling to the quartz mounting structure in that experiment. The
response is expected to change favorably when mounted on a lower impedance
substrate like the first matching layer. The first matching layer may be made of
conventional materials, such as conductive epoxy.

Based on FEA results, the time signal of the generated acoustic pressure is
Gaussian shaped and the frequency response of the signals is broadband. The
­3dB BW of the arrays with and without sub­dicing are 87% and 75% fractional
respectively and both designs have a center frequency of 9.9 MHz. The transmit
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sensitivity of the non­subdiced and subdiced arrays are 21 kPa/V and 17 kPa/V
respectively. We designed a broadband, dual frequency array having two acoustical
stacks for US and PA imaging of the carotid arteries. The PVDF layer was previously
demonstrated to be a suitable receiver, while the overall stack was designed for
optimal pulse­echo performance.
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Photoacoustic (PA) imaging can be used to monitor flowing blood inside the
microvascular and capillary bed. Ultrasound speckle decorrelation based ve­
locimetry imaging was previously shown to accurately estimate blood flow
velocity in mouse brain (micro­)vasculature. Translating this method to pho­
toacoustic imaging will allow simultaneous imaging of flow velocity and ex­
tracting functional parameters like blood oxygenation. In this study, we use a
pulsed laser diode and a quantitative method based on normalized first order
field autocorrelation function of PA field fluctuations to estimate flow veloci­
ties in an ink tube phantom and in the microvasculature of the chorioallantoic
membrane of a chicken embryo. We demonstrate how the decorrelation time
of signals acquired over frames are related to the flow speed and show that
the PA flow analysis based on this approach is an angle independent flow
velocity imaging method.
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6.1. Introduction
Flow imaging is an important method for extracting functional information about
physiological response to stimuli or pathological changes in tissue. Established
technologies like ultrasound and optical coherence tomography (OCT) offer flow
imaging capabilities, often based on Doppler or variance analysis [2, 3]. Such flow
imaging techniques have yielded valuable information in selected applications, for
instance in diagnoses of retinal disorders using OCT angiography (OCTA) [4–6]
and of cardiac valve insufficiency using Color Doppler echocardiography [7, 8]. Re­
cent years have seen an intensive research effort directed at microvascular brain
imaging using Power Doppler ultrasound, which allows non­ or mildly invasive as­
sessment of functional neurological response from rodents to humans [9–12].

Scattering­based imaging modalities such as ultrasound and OCT are widely
deployed and can be powerful in selected applications but also have limitations,
such as low contrast to (mammal) red blood cells (RBCs) in ultrasound, and imaging
depth in OCT. Doppler methods are intrinsically angle­dependent, while variance­
based flow techniques cannot quantify velocity. Photoacoustic flow imaging has
intrinsic contrast to hemoglobin, and can assess oxygen saturation by multispectral
imaging. It offers a useful trade­off between spatial resolution and imaging depth,
making it a suitable platform for quantitative imaging of microvascular flow.

Recent studies on PA flow imaging are based on Doppler shift [13, 14], density
tracking based on cross­correlation in the time [15, 16] or spatial domain [17, 18],
transit time of single [19] or particle ensembles [20, 21], and amplitude encoding [22].
As laser technology evolves, more high pulse repetition frequency (PRF) lasers
are utilized in PA flow imaging. Liu et al. [23] imaged the blood flow of a mouse
ear utilizing a functional optical resolution photoacoustic microscopy system and
analyzing based on changes in the Grüneisen relaxation effect [24, 25] caused by
blood flow. All these methods share the requirement for many PA acquisitions to
characterize flow. Among all these flow imaging approaches, quantitative imaging
of vector flow (direction and magnitude) has remained elusive.

Ultrasound speckle decorrelation based velocimetry and imaging was recently
shown to accurately estimate blood flow velocity in controlled flow phantoms, and in
the mouse brain [26]. Similar analyses have been used in OCTA [27]. In this study,
we translate this method to photoacoustic velocity imaging. It allows simultaneous
imaging of flow velocities and blood oxygenation.

Randomly distributed absorbing particles within the irradiated region generate
an initial positive pressure rise. The propagating acoustic wavelets interfere with
each other, creating a random signal that fluctuates subject to the flow in the channel.
By retaining the phase of the field and examining the decorrelation time due to
motion in the two directions of the image plane, an ascending or descending velocity
vector can be extracted.

To determine the blood flow speed using PA signals, we characterize the fluctu­
ation of the beam­formed PA RF signal of the moving particles. We quantitatively
analyzed the normalized first­order complex field auto­correlation function of flow­
induced fluctuations in the beam­formed images for velocity imaging [26, 27]. In
this study, we used a fast pulsed laser diode illuminator (PLDI) enabling kHz frame



6

74 6. Photoacoustic flow velocity imaging based on complex field decorrelation

(a)
(b)

Figure 6.1: (a)Top view of the acquisition setup, (b) Chicken Embryo setup

rates to sample the rapid decorrelation. We validated the analysis in a phantom
with known flow speeds. We also imaged microvascular flow in vivo and showed
that the obtained results are in agreement with ultrasound velocimetry.

6.2. Materials and Methods
6.2.1. Theory of normalized first order temporal autocorrela­

tion function
The complex two­dimensional point spread function (PSF) of a photoacoustic imag­
ing system may be approximated by a Gaussian envelope modulating the complex
exponential that describes the spatially varying phase of the PSF, denoted as ℎ:

ℎ (𝑥 − 𝑥0, 𝑧 − 𝑧0) = 𝑒
− (𝑥−𝑥0)

2
2𝜎2𝑥

− (𝑧−𝑧0)
2

2𝜎2𝑧 𝑒𝑖𝑘0(𝑧−𝑧0) (6.1)

where (𝑥0, 𝑧0) is the (lateral, axial) position of a pixel in the image, 𝜎𝑥 , 𝜎𝑧 parametrize
the width of the Gaussian profile in the two directions, 𝑘0 is the wave number at
the center frequency of the transducer, assuming a broadband signal from the PA
source. This function describes the response of the beamformed radiofrequency
(RF) data, by a one­dimensional array along the 𝑥 direction at 𝑧 = 0. The phase
term 𝑒𝑖𝑘0(𝑧−𝑧0) accounts for one­way acoustic propagation. The Gaussian approx­
imation in (6.1) in 𝑥 assumes that the ultrasound detection array is large in the
𝑥 direction and its response is apodized according to a Gaussian function, for in­
stance by the finite width angular response of the elements. The 𝑧 response is
usually governed by the frequency response of the transducer, which can often be
approximated by a Gaussian function. We further assume that that 𝑧0 >> 𝜎𝑥 , 𝜎𝑧.

The induced photoacoustic source pressure by a moving particle can be formu­
lated as [24, 28]

𝑃0 (𝑥, 𝑧, 𝑡) = Γ𝐹𝜇𝑎 (𝑥, 𝑧, 𝑡)
= Γ𝐹𝜇𝑎𝛿 (𝑥 − 𝑥𝑠(𝑡), 𝑧 − 𝑧𝑠(𝑡))

(6.2)
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where Γ is the Grüneisen parameter describing the conversion from absorbed opti­
cal energy to thermoelastic expansion, 𝐹 is the optical fluence, and μ𝑎 is the optical
absorption coefficient at the illumination wavelength, assumed to be identical for all
particles. The particle is modeled as a point source, located at an instantaneous po­
sition (𝑥𝑠(𝑡), 𝑧𝑠(𝑡)). 𝑡 is the slow time, between different PA frames in an acquisition.
Note that we disregard spatial variations in Γ and 𝐹.

The time varying PA signal detected from a measurement pixel (𝑥0, 𝑧0) at time
𝑡 is computed as the convolution of the source pressure, produced by 𝑛 randomly
positioned point sources in the field of view, with the PSF:

𝑆(𝑥0, 𝑧0, 𝑡) =
𝑛

∑
𝑗=1
∫𝑃0 (𝑥, 𝑧, 𝑡) × ℎ (𝑥 − 𝑥0, 𝑧 − 𝑧0) 𝑑𝑥𝑑𝑧

= Γ𝐹𝜇𝑎
𝑛

∑
𝑗=1
ℎ (𝑥𝑠,𝑗(𝑡) − 𝑥0, 𝑧𝑠,𝑗(𝑡) − 𝑧0)

(6.3)

Adopting the shorthand 𝑃𝑠 = Γ𝐹𝜇𝑎, and assuming the particles are moving with
a vector velocity (𝑣𝑥 , 𝑣𝑧), the PA signal at time lag 𝜏 would become:

𝑆(𝑥0, 𝑧0, 𝑡 + 𝜏) = 𝑃𝑠
𝑛

∑
𝑗=1
𝑒−

(𝑥𝑠,𝑗(𝑡)+𝑣𝑥𝜏−𝑥0)2

2𝜎2𝑥
−
(𝑧𝑠,𝑗(𝑡)+𝑣𝑧𝜏−𝑧0)2

2𝜎2𝑧

×𝑒𝑖𝑘0(𝑧𝑠,𝑗(𝑡)+𝑣𝑧𝜏−𝑧0)
(6.4)

In images containing many unresolved PA sources, such as RBCs in a blood
vessel, limited sampling of the extensive (k, 𝜔) spectrum of the PA signal introduces
the familiar edge, or boundary build­up, artefacts [29–31]. This dominant stationary
component in the image drowns out the fluctuating signal due to flow or particle
motion. Applying a spatiotemporal singular value decomposition (SVD) filter [32] to
the acquired data will remove the boundary signals. The movement of particles will
cause the SVD filtered PA signal 𝑆 to fluctuate at a rate that is proportional to the flow
speed. Thus, particle motion can be quantified based on by analyzing the decay
of the normalized first­order field autocorrelation function 𝑔1(𝜏), computed from the
beamformed RF PA image. We consider only relatively large vessels, such that the
spatial variation in (𝑣𝑥 , 𝑣𝑧) occurs on length scales smaller than (𝜎𝑥 , 𝜎𝑧), so the PSF
of each measurement pixel samples a uniform velocity. We follow ref. [27] and the
derivations therein:

𝑔1 (𝑥0, 𝑧0, 𝜏) = 𝐸 [
⟨𝑆∗(𝑥0, 𝑧0, 𝑡)𝑆(𝑥0, 𝑧0, 𝑡 + 𝜏)⟩𝑡
⟨𝑆∗(𝑥0, 𝑧0, 𝑡)𝑆(𝑥0, 𝑧0, 𝑡)⟩𝑡

] (6.5)

E[...] indicates the average over random initial positions; ⟨...⟩𝑡 represents an
ensemble temporal average; and * denotes the complex conjugate.
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Using equations (6.3) to (6.5),the normalized first order field autocorrelation func­
tion of moving particles can be written as:

𝑔1 (𝜏) = 𝑒
−( 𝑣𝑥𝜏2𝜎𝑥

)
2
−( 𝑣𝑧𝜏2𝜎𝑧

)
2

𝑒𝑖𝑘0𝑣𝑧𝜏 (6.6)

The decorrelation of the signal at each location in the image is thus governed
by the particle velocities in 𝑥 and 𝑧, with higher 𝑣𝑥 and 𝑣𝑧 leading to faster decorre­
lation. Fitting the complex autocorrelation function 𝑔1(𝜏) of the PA signal from an
object with flow thus allows us to extract the vector velocity v = (𝑣𝑥 , 𝑣𝑧) on a per
pixel basis from a series of images. The retention of the phase factor exp(𝑖𝑘0𝑣𝑧𝜏)
in (equation (6.6)) introduces directionality, as the sign of 𝑣𝑧 determines the rota­
tion direction in the complex plane. Analogous to ultrasound velocimetry imaging,
which has been called vUS, we propose to name this approach vPA, for photoa­
coustic velocimetry imaging. Consequently, for PA flow velocity imaging, we will
calculate the 𝑔1(𝜏) based on equation (6.5) and will estimate the values of 𝑣𝑥 , 𝑣𝑧
from equation (6.6) and allocate to each pixel its velocity value. By moving the
reference frame, we will be able to do time­resolved velocimetry imaging.

6.2.2. Experimental setup
In a water tank, a tube made of low­density polyethylene (LDPE) with a inner diam­
eter of 750 μm was filled with an Indian ink solution, diluted 1:50 v/v in water. Flow
ranging from 1.9 mm/s ­ 19 mm/s was induced using a controllable syringe pump
(PERFUSOR secura FT).

A PLDI of wavelength 𝜆1 = 808 nm with a pulse duration of 𝑇𝑝 = 34 ns (QD­
Q1R10­ILO, Quantel Laser, France) and 1.18 mJ pulse energy, capable of a maxi­
mum PRF of 6 kHz, was coupled to a 2 mm core diameter step­index optical fiber.
The fiber delivered the pulsed excitation light to the imaging setup.

PA signal acquisition, as well as US pulse echo imaging (1 plane wave per frame,
0∘), was performed with a commercial research ultrasound imaging system (Van­
tage 256, Verasonics Inc. Kirkland, WA, USA) and a linear array ultrasonic probe
(L22­14vX, Verasonics Inc. Kirkland, WA, USA). The transducer had 128 elements
with a pitch of 0.1 mm and a center frequency of 19 MHz with a bandwidth of 11.5
MHz (60%, ­6 dB). It has an elevation focus at z=6 mm, and an US imaging res­
olution of 𝜎𝑥 = 180 μm (lateral) and 𝜎𝑧 = 135 μm (axial). See Figure 6.1a for a
schematic.

The probewas positioned in front of the tube such that the black Indian ink flowed
along the lateral direction of the ultrasound imaging plane. The distance between
the probe and the tube was between 10 and 17 mm. We examined two geometries,
one in which the tube is oriented along the 𝑥 direction, and one with a 15∘ angle
with the 𝑥­axis. The optical fiber was positioned over the tube, perpendicular with
respect to the imaging plane.

6.2.3. Photoacoustic flow velocimetry imaging in vivo
We used the chicken embryo model to test our quantitative method in vivo. All ani­
mal experiments were conducted in accordance with the Netherlands Experiments
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on Animals Act and in accordance with the European Council (2010/63/EU) on the
protection of animal use for scientific purposes. Fertilized chicken eggs were incu­
bated in a 37∘C incubator at 60–65% humidity for 6 days. Immediately prior to imag­
ing, the egg content was removed form the shell by creating an opening over the air
sack using tweezers as described in detail by Meijlink et al [33]. The content was
placed in a plastic holder (85×85×24mm VWR, the Netherlands) customized with
an acoustical window on one side (Figure 6.1b). A heater was used to maintain the
temperature at 37∘C throughout the experiment. The optical fiber was positioned
to irradiate the vasculature of the chorioallantoic membrane (CAM). The ultrasound
transducer was positioned such that the vascular plexus in the CAM was in the im­
age plane. Ultrasound and photoacoustic signals were recorded for one second at
a PRF of 2.5 kHz.

6.2.4. Spatiotemporal resolution

In equation (6.2), we have assumed that the PA sources can be modeled as point
particles. In the experiments presented in this study, we have used India ink, in
which small suspended carbon particles of a size 0.1–1 μm [34] are the absorbers.
Avian RBCs, which generated the signal in our chicken embryo experiments, are
ellipses with a long diameter of approximately 12 μm [35], which, although large
compared to mammal erythrocytes, is still about an order of magnitude smaller than
the ultrasound wavelengths we detect.

The usual assumption of stress confinement in PA generation, which justifies
equation (6.2) through the separation of the deposited heat 𝑄(𝑥, 𝑇) = 𝑞(𝑥)𝛿(𝑇) and
𝑃0(𝑥) = Γ𝑞(𝑥), merits closer inspection. With 𝑇𝑝 = 34 ns, the stress confinement
criterion is satisfied for sources larger than 50 μm, such as the phantom channel
and some of the allantois vessels investigated in this study. The fluctuating PA
signal is generated from collections of randomly positioned small particles inside the
vessel. In this case, with thermal but not stress confinement, we need to convolve
the instantaneous 𝑃0 with the temporal characteristic of the laser pulse [36]. The
laser pulse is nearly Gaussian, so the generated PA spectrum also has a Gaussian
envelope with an upper band limit at approximately 1/(2𝑇𝑝). Thus; the frequency
components that are present in the PA signal are limited to approximately 17 MHz,
reducing the effective signal bandwidth.

Ordinarily the resolution of raw PA images should be better than that of US
images acquired with the same bandwidth, as the band limitation applies only in
receive and the frequency spectrum of the source is assumed to be broad. That
latter assumption is not true in our experiments, which impacts the spatial resolution
in the image, and, equivalently, increases the correlation length in 𝑧. Instead of the
𝜎𝑈𝑆𝑧 = 135 μm for the transducer, we measured the PSF width in the PA images
and found 𝜎𝑃𝐴𝑧 = 145 μm and 𝜎𝑃𝐴𝑥 = 300 μm which we used in the analysis of the
signal decorrelation.



6

78 6. Photoacoustic flow velocity imaging based on complex field decorrelation

Figure 6.2: the beam­formed ultrasound (gray scale) and photoacoustic (red) image of the blank ink
flowing through the tube, the scale bar is 1 mm.

6.2.5. Image acquisition and processing scheme
To accurately sample the fluctuation of the PA speckle dynamics of fast flows, a high­
PRF light sources are a critical component. To optimize the data acquisition for the
purpose of photoacoustic velocimetry imaging (vPA), we chose to limit US imaging
to a single plane wave transmission. After the transmit and receive events of the US
image, the ultrasound system was switched to a second receive profile defined for
PA acquisition and generated an output trigger signal for the PLDI. There is a fixed
170 ns delay between the laser input trigger and laser firing. With this approach, we
were able to acquire the US/PA signals at 2.5 kHz PRF for imaging depth of 20 mm.
In addition, the total data acquisition time for each US/PA frames was selected to
be 1 second (corresponding to 2500 frames).

We applied SVD filtering to the acquired PA and US data, and removed compo­
nents with the five highest singular values from the signal in the phantom data to
remove stationary components (including the boundary buildup). When imaging the
chick embryo, cardiac motion can affect the temporal characteristics of the US/PA
signals in an acquisition, and thus the decay of 𝑔1(𝜏). Therefore, a proper back­
ground and bulk motion rejection of the acquired signals is required. To remove
stationary signals and bulk motion from the in vivo data, we used a combination
of SVD and high pass filtering [37]. The components with the 30 highest singular
values were removed form the signal, followed by a tenth order Butterworth high
pass filtering with a cutoff frequency of 5 Hz.

vPA images were computed using the algorithm described in section 6.2.1. In
the in vivo experiments, we also computed flow velocities based on the acquired
US images. The analysis of ref. [27] was applied, which describes the two­way
acoustic delay in 𝑔1(𝜏):
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𝑔𝑈𝑆1 (𝜏) = 𝑒
−( 𝑣𝑥𝜏2𝜎𝑥

)
2
−( 𝑣𝑧𝜏

2𝜎𝑈𝑆𝑧
)
2

𝑒2𝑖𝑘0𝑣𝑧𝜏 . (6.7)

6.3. Results
6.3.1. Photoacoustic flow velocimetry imaging of the phantom

study
Figure 6.2 shows the beam­formed ultrasound (gray scale) and photoacoustic (red)
image of the diluted India blank ink flowing through the tube. Individual ink parti­
cles could not be resolved due to the high particle density; the expected “boundary
buildup” is clearly visible, which is removed by SVD filtering before processing for
velocimetry.

We acquired US/PA data sets for the pre­set velocities induced by the syringe
pump and calculated the normalized first order autocorrelation function of 𝑔1(𝜏)
based on Equation (6.6). Figure 6.3a depicts the calculated speckle dynamics up
to 250 ms time lag for different preset velocities. It also shows that the correlation
drops quicker for the faster flows. By using Equations (6.5),(6.6) we can estimate
the flow velocity of each pixel. Figure 6.3c and 6.3d show the photoacoustic ve­
locimetry image of the preset flow speed with 12.7 mm/s and 19.0 mm/s where the
tube has no angle with respect to the probe and is compared with the same preset
flow speed for the tube (Figure 6.3f and 6.3e). Figure 6.3b is the colormap used
to visualize the results where zero velocities are fully transparent represented at
the middle and of the color wheel and it becomes more opaque as the flow speed
increases. Based on equation (6.6), the 𝑉𝑧 component for the ascending flow is
negative making the angle between the 𝑉𝑥 and 𝑉𝑧 to be negative.

Figure 6.3g shows the calculated 𝑔1(𝜏) based on the flow phantom experiment
with preset velocity of 12.7 mm/s and the fitted curve in the complex plane based
on Equation 6.6. Figure 6.3h and 6.3i show the high correlation between the pre­
set velocities and the vPA calculated velocities for transverse flows (𝜃 = 0∘) and
angled flows (𝜃 = 15∘). The red lines are linear fits to the mean velocities, showing
good agreement with errors < 10%. The error bars in the figures are the standard
deviations of the calculated vPA over different pixels.

6.3.2. Photoacoustic flow velocimetry imaging in vivo
We used a six day­old chicken embryo for the in vivo experiment to image the vas­
culature of the CAM. Figure 6.4a shows the beam­formed ultrasound image of the
CAM without filtering. The microvasculature network of the CAM is not clear in this
image. After applying SVD filtering, the microvasculature network can be easily dis­
tinguished and the stationary clutter was rejected without losing the small vessels.
Similarly, bulk motion associated with the cardiac cycle was successfully removed
in this manner. We applied this method to all acquired frames and then used the
proposed method to estimate the velocity.

Figure 6.4c and Figure 6.4d show the ultrasound velocimetry and photoacoustic
velocimetry images of the CAM with the same colormap of the Figure 6.3b overlaid
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(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)

Figure 6.3: (a) calculated 𝑔1(𝜏) of the phantom study with pre­set velocities of V = 1.9, 3.1, 6.3, 9.5, 12.7,
and 19.0 mm/s, (b) is the colormap used for presenting the data vPA and vUS, (c,d) the photoacoustic
velocimetry (vPA) image of the pre­set flow speed with 12.7 and 19.0 mm/s, (e,f) depict the vPA of the
same pre­set flow speed while the tube has an angle of 15 degree with respect to the probe. The scale
bar is 1 mm. (g) the calculated 𝑔1(𝜏) from the experiment and the corresponding fitting curve. The
accuracy of the fitting algorithm for 𝜃 = 0∘ (h), and 𝜃 = 15∘ (i).
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on the ultrasound image of the corresponding frame, respectively. The vUS shows
that blood flow in the allantois vessels has a maximum flow speed of 16 mm/s. At
side branches, the velocity decreases as the vessels get narrower. Furthermore,
vPA was compared with vUS in the region where the PA signals were recorded,
and resulted in the same maximum flow velocity. Figure 6.4e shows the averaged
estimated velocity over the pixels in that region. We identified a periodic variation
in the flow speed, visible in both the vPA and vUS data. These short bursts of
increased blood flow velocity at 150 ms and 700 ms are consistent with arterial flow
peaks following cardiac systole.

6.4. Discussion and Conclusion
This study demonstrates that the velocity of a random distribution of micron­scale
absorbers can be accurately estimated from the PA speckle dynamics in a series of
high frame rate images, quantified using the normalized first order field autocorrela­
tion function. In the phantom study, it has been shown that directional velocimetry
imaging up to 20 mm/s can be measured with the proposed system and method.
The upper limit of velocimetry imaging flow estimation is a function of the PRF of
the PLDI and acquisition system.

The particles in the flow phantomwere small and had no ultrasound contrast, yet
vPA accurately measured the flow speed. Pixel variation in the measured velocities
in the phantom may reflect the (parabolic) flow profile with high central velocity and
lower values at the borders. Verification of this hypothesis requires the analysis
to be robust in the presence of velocity gradients within the pixel, a situation our
algorithm does not handle.

We successfully applied vPA to imaging of flow speed in the CAM of a 6­day old
chicken embryo. As avian RBCs have good ultrasound contrast due to their size
and nucleation [38, 39], vUSmeasurements validated themeasurements. We could
visualize the flow in the network. Time resolved vPA and vUS revealed pulsatile flow
in the arterial layer of the CAM. Future experiments will be designed to extract blood
oxygenation simultaneously using multi­wavelength illumination.

The analysis in its current form still has some details that may be optimized:
the approximation of the PSF in the 𝑥 direction may not be valid in the present ge­
ometry, and a sinc function may in fact produce more accurate fits of the complex
𝑔1(𝜏). Furthermore, as in many PA experiments, sensitivity is a limitation. The
short­time decorrelation (𝜏 = 1/2500 = 0.4 ms) shows an abrupt drop to |𝑔1| ≈ 0.9,
which can be attributed to uncorrelated noise in the data. Inclusion of such a noise
term may improve the quantitative performance of the algorithm. Improved sensi­
tivity would also enable a larger field of view in the PA images, as the fiber­coupled
PLDI pulse energy was too low to generate a signal from a large area, precluding
the investigation of more complex anatomic flow models. Similarly, small vessels
were not visible in PA imaging. Moreover, it is possible to extract vector information
and bring the vector flow imaging to the vPA. This method can distinguish the flow
directionality in 𝑧 but not in 𝑥 due to the square term of 𝑣𝑥 in the equation (6.5).

In conclusion, we introduced vPA: quantitative imaging of directional flow using
high frame rate PA imaging combined with an analysis of the complex field autocor­
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(a) (b) (c)

(d)

(e)

Figure 6.4: (a) shows the acquired ultrasound image from the chorioallantoic membrane of the chicken
embryo, (b) depicts the spatiotemporally SVD filtered ultrasound image, showing the microvasculature;
(c) Velocimetry imaging of the CAM using ultrasound, and d photoacoustic imaging (The vPA and vUS
colormap is based on figure 6.3b). (e) Comparison of the vPA and vUS in the region where PA signals
were recorded, showing pulsatile flow.
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relation function. Speed estimation was shown to be numerically accurate on flow
speeds up to 20 mm/s. In vivo imaging of flow in the CAM of a chicken embryo
revealed pulsatile flow in an artery, in agreement with vUS.
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7
Discussion and Conclusion

7.1. Overview
This thesis investigates the development of novel transducers and techniques for
ultrasound and photoacoustic vascular imaging. The goal in developing new trans­
ducer technologies is to increase the fractional bandwidth and transducer sensitivity
to provide a better image quality. A novel 96­element Capacitive Micromachined Ul­
trasonic Transducer (CMUT) based array is designed for Intravascular Ultrasound
(IVUS) imaging and is studied for the minimally invasive interventions. Coded ex­
citation imaging is developed for IVUS application and the effect of utilizing the
sophisticated signals in combination with broadband CMUT array on the SNR en­
hancement is investigated. A new probe design based on dual frequency approach
is proposed for photoacoustic imaging of the carotid artery where a kerfless PVDF
array is used to provide high receive sensitivity over the entire photoacoustic signal
band. This thesis proposes a novel quantitative approach for photoacoustic blood
flow velocity imaging by estimating the transverse and lateral velocities from the
normalized first order field autocorrelation function of moving absorbers.

7.2. CMUT based IVUS imaging
In ultrasound array designing, cross­talk of transducer elements can be significant
which could narrow the bandwidth and thus affecting the quality of the ultrasound
image.

In side­looking intravascular ultrasound imaging, an array of transducers which
is wrapped around a catheter tip in a cylindrical configuration is used. In chapter 2
the radiation impedance of un­collapse CMUT arrays operating at 20 MHz center
frequency was analyzed. The array was positioned on either a planar rigid baffle
or on a cylinder and the element cross­talk was computed using the finite element
analysis software package COMSOL Multiphysics.
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It is demonstrated that the radiation reactance peaks correspond with dips in the
experimentally measured frequency response. The magnitude of these collective
resonances in the sensor can be considerable at some frequencies, resulting in dif­
ferent acoustic loading on the CMUT cells which degrade the array performance,
since the dips in the frequency spectrum can narrow the transducer bandwidth. The
radiation impedance analysis is a powerful tool in studying the array cross­talk.

Chapter 3 presents the world first fabricated CMUT array with 96 elements for
side­looking IVUS imaging. It investigates three different topics that are combined
to realise the real­time imaging system:

1. Characterization of CMUT array for determining the optimal operating setting

2. Designing coded signal based on the characterization results and IVUS imag­
ing requirements

3. Real­time RF signal acquisition, mismatched filtering, and GPU based beam­
forming

Based on the characterization results, the flat CMUT array has 130% fractional
bandwidth at a center frequency of 19.5 MHz when it is biased at 30 V, where
the collapse voltage is 17.5 V and provides 36.8 kPa/V transmit sensitivity. For the
rolled­up array; however, only the transmit sensitivity drops to 7.8 kPa/V. The results
also indicate that the CMUT array exhibits considerable change in its acoustical
behaviour if it is tuned to work in the collapse regime. The broadband frequency
response of the CMUT array paves the way for obtaining high quality IVUS images.

Knowing the CMUT sample characteristics, a linear frequency modulation (LFM)
or chirp signal with transmit duration time of 300 ns is designed to meet the require­
ment of <0.5 mm deaf­time for IVUS imaging which also covers the frequency re­
sponse of the CMUT array. An appropriate mismatch filter based on the received
echo signal was designed to compress the received modulated signal and resolve
the resolution. Using this technique, 70 μm axial resolution with 8dB gain in SNR
is achieved. The axial resolution is slightly degraded in comparison with the single
pulse (60 μm ) which is due to the windowing/apodization for lowering the side­lobes
associated with decoding the signal.

The pulse compression block may be inserted either after, or before, the beam­
forming block in the receive chain, as shown in Figure 7.1. The high­complexity
receive block diagram was implemented in the imaging chain described in this chap­
ter.

It is obvious that the solution in Figure 7.1a has a lower computational complex­
ity than the configuration in Figure 7.1b. However, the low­complexity configura­
tion which employs a single decoding block instead of n parallel pulse compres­
sors, involves some distorting effects resulting from the dynamic focusing beam­
forming. The associated error is depth dependent and decreases with increasing
depth. These effects are investigated in [1–3], where possible solutions to limit such
distortions are also suggested at the cost of more calculation to compensate. The
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(a) (b)

Figure 7.1: (a) low complexity receive block diagram (post­compression), (b) High­complexity receive
block diagram (pre­compression).

suggested low complexity configuration may work for a linear­frequency modulation
(LFM) excitation as such a code can be processed without any depth­dependent fil­
ter compensation; however, for the binary codes, the post­compression approach
might fail to achieve the maximum attainable resolution. Coded excitation offers
the possibility to not only control the gain in SNR and compensate for imaging sys­
tem bandwidth, but also compensation for ultrasound attenuation by utilizing the
matched filter in the receive chain of the ultrasound systems.

The ambiguity function of a waveform represents exactly the output of thematched
filter when the applied coded signal is used as the filter input. This exact repre­
sentation makes the ambiguity function a popular tool for designing and analyzing
coded waveforms. This approach provides the insight of the resolution capability
in both delay and Doppler domains for a given waveform. Based on this analysis,
one can then determine whether a waveform is suitable for a particular application.
In Appendix A, a brief summary of signal analysis using the ambiguity function is
provided.

Analyzing the coded excitation using the ambiguity function provides
In conventional dynamic focusing, the image is created line­by­line using a fixed

transmit focus and a dynamic delay­and­sum receive focus which is then scan­
converted to create virtual lines, to be interpolated in between the actual lines.
This interpolation does not increase the information content of the image and just
smooths out the image for human perception. A pixel based beam­forming al­
gorithm to achieve an optimal lateral resolution was adopted to improves spatial
resolution by lowering the interpolation artifacts. A system with 20 frame per sec­
ond real­time and pixel­based beam­formed phased­array IVUS images was devel­
oped and the feasibility of intravascular ultrasound chirp imaging of human coronary
atherosclerosis using the CMUT array is demonstrated.

7.2.1. Limitations
The imaging scheme that transmits on all elements and detects on consecutive
triplets can potentially be improved. Selective excitation of transmission elements
could improve the lateral resolution in the images, but this is currently not supported
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by the electronics. Furthermore, due to the limitation in the electronics, the maxi­
mum output pressure generated with the rolled­up CMUT array at 30 V DC biasing
is around 80 kPa while normally the other commercialized catheters, both single
element and phased array, can generate 500 kPa at least. Further development in
the ASIC and the associated electronics is required to pave the way for introducing
the first CMUT IVUS catheter.

For waveforms with quadratic­phase modulation where the carrier frequency is
stepped linearly, like LFM or chirp, it is demonstrated that echos from chirp signals
can be processed without any depth­dependent filter compensation to retain the
quality of the decoded signals [4–6]. Consequently, it makes the processing less
complicated. Phase­based binary codes like Golay and Barker codes have limited
utility in ultrasound imaging, as the abrupt change in the phase of the coded signals
produces higher harmonics which are beyond the transducer bandwidth. Since any
ultrasound transducer acts as a band­pass filter, frequencies above the upper limit
of the transducer frequency response are poorly transmitted, leading to imperfect
encoding which rise up the side lope levels. On the other hand, it is known that the
Barker codes produce the minimum side lobe level in comparison with other coded
signals. Considering the CMUT array bandwidth, the usability of these binary codes
in CMUT based ultrasound imaging can be investigated.

We presented a novel concept for IVUS that exploits broad bandwidth offered by
the CMUTs. We characterized the array performance for coded excitation imaging
which may be useful for achieving greater penetration depth in IVUS while maintain­
ing image resolution. CMUTs are manufactured using micromachining techniques
which are evolved from the well­established integrated circuit fabrication process
and possess unique potential in high yield mass production of CMUT­based IVUS
catheters. Consequently, this technique offers an opportunity to lower the produc­
tion costs.

7.3. Probe Designing
Photoacoustic signals can have very large bandwidth and large dynamic range.
Transducers with high bandwidth can significantly improve the sensitivity of the pho­
toacoustic imaging [7]. A simple approach in array designing is presented in chap­
ter 4. The off­resonance transducer doesn’t require to have complex ASIC to com­
pensate for the phase change around their resonance frequency; consequently, a
simple impedance matching circuit with an amplifier satisfies the SNR requirement.
Moreover, a less complex, kerfless array is shown to have acceptable crosstalk
level (­30 dB) between the elements making the off­resonance kerfless PVDF array
a broadband, high sensitivity receiver which can significantly improve the detection
of PA signals.

The proposed array is used in designing a dual frequency photoacoustic probe
presented in chapter 5. It is shown that by considering the kerfless PVDF array as
a second matching layer of the PZT­5H ultrasound stack, the fractional bandwidth
of the array increases by ≅ 40%.
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In order to increase the transmit sensitivity of the dual frequency probe, some
optimizations need to be performed. In transmit mode, the conductive glue, the
aluminium foil which acts as a ground for the kerfless PVDF array above, and the
PVDF array with appropriate window material for making it water­tight load the PZT­
5H. Consequently, the 𝜆/2 design approach for choosing the PZT­5H thickness
(thickness mode vibration) is not valid. Due to the mechanical loading of the all
layers, the designed resonance frequency is lower than the intended one. Thus, an
optimization is required to find the right PZT­5H thickness which happens between
the 𝜆/3 and 𝜆/2.

Considering the receive part, all the layers beneath the PVDF act as backing
layers. The purpose of the backing layer is to provide mechanical stability and also
to absorb the pressure waves generated by the acoustic stacks and plays an impor­
tant role in the resonance frequency and bandwidth of the transducer. In order to
obtain a Gaussian shaped pressure pulse with a broader bandwidth, the acoustic
impedance of the backing layer can be designed to be the same as the matching
layer [8]. The acoustic impedance of the backing layer is inversely proportional
with the resonance frequency. Thus, an increase in the acoustic impedance yields
frequency down shift of the acoustic stack. In the presented design, the equiva­
lent acoustic impedance of the all layers is much higher than the PVDF and water
which eventuates in frequency down shift of the received photoacoustic signal. This
might be in favour of the targeted application since most of the photoacoustic signal
energy is at lower frequencies. However, in order to extend the design for intravas­
cular photoacoustic imaging [9, 10], the backing effect might degrade the PA receive
part. Therefore, a co­optimization of the transmit and receive part is necessary to
be able to use the benefits of the broadband PVDF layer and the proposed design
offer.

One of the approaches in realizing the probe is to build it on a PCB. Based on the
design parameters summarized in Table 5.2 and by considering the pitch size and
the elevation width, a 5 cm ×5 cm PCB has been designed to build the acoustical
stacks upon. The PCB track width and kerf are 100 μm making 200 μm pitch size.
A PZT slab with 1 cm ×1 cm would fit on the alignment marks. Figure 7.2a shows
the schematic of the PCB and Figure 7.2b is the manufactured PCB and its traces.
Since the PCB surface is not smooth and flat, for the probe realization, a conductive
epoxy was applied on the PZT area, and the PZT slab was placed and then was
cut through using a dicing saw. Manufacturing the proposed dual frequency array
was difficult. Using the dicing saw, the epoxy probably didn’t cut through properly
resulting in the traces to be connected to each other and making short cuts. In­
creasing the depth of cutting seemed to be helpful; however, it resulted in cutting
the traces that are not in parallel to the saw. A precise controlling of the dicing saw
was required to realize the probe.
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(a) (b)

Figure 7.2: (a) Schematic view of the designed PCB for the dual frequency probe, (b) a view on the
manufactured PCB traces.

7.4. Photoacoustic Flow Velocimetry Imaging
Chapter 6 introduces a novel photoacoustic flowmetry method based on complex
field decorrelation. Using an ink tube as a phantom and the chorioallantoic mem­
brane (CAM) of a chicken embryo as imaging targets, we validated the proposed
method in vitro and in vivo.

Extracting the blood oxygenation level is one of the advantages of PA imag­
ing. The choice of the laser wavelength was made to address this need. We are
planning to incorporate a second pulsed diode laser with 940 nm wavelength and
perform the multispectral excitation for demonstrating the concept in the near future.
The PA signal is relatively weak in comparison with the US signal. The coupling ef­
ficiency of the laser to the fiber is 50 % at the moment. By redesigning the optical
components used to confine the beam and better alignment, the coupling efficiency
can be increased and more power can be delivered to samples.

If the laser pulse is too long for satisfying the stress confinement but is short
enough for thermal confinement, the generated pressure due to the longer pulse can
be approximated by the temporal convolution of the deposited heat which is mod­
eled as a delta function and the laser pulse shape [11]. The Fourier transform of the
convolution is the Fourier transform of the Gaussian shape laser pulse which has
the bandwidth equal to twice of the laser pulse width. For a Gaussian pulse, the rela­
tion between the 𝜏 and FWHM width (34 ns) is: 𝑇𝐹𝑊𝐻𝑀 = √2𝑙𝑛(2)×𝜏 Thus, 𝜏 =28.8
ns and the upper frequency limit can be approximated by 1/(2×𝜏) ≅ 17 MHz. In or­
der to increase the PA signal sensitivity, using a probe with center frequency around
12 MHz might help to cover the PA frequency contents; however, lowering the cen­
ter frequency decreases the ultrasound image resolution. Consequently, imaging
the CAM of a 6­day old chicken embryo and the blood velocities inside the vessels
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might not feasible with this laser as an excitation source. Utilizing the dual frequency
probe which is proposed in chapter 5 with tuning the PA receive stack to cover the
required bandwidth or using a broadband CMUT probe will enhance the sensitivity
of the PA signal. Moreover, utilizing laser sources with narrower pulse width such
that the laser pulse width would be longer than half the inverse of the top of the
transducer band help to satisfy the stress confinement and consequently increase
the PA signals frequency components.

We compared the flow measured by PA and US, showing the pulsatile flow. In
systolic event where heart pumps out the blood, the number of RBCs (US scatter­
ers/PA sources) passing through arteries increases. Consequently, it gives a rise
in the intensity of the SVD filtered data. After removing the clutter using the SVD
filtering from the ultrasound data of the chicken embryo which was acquired for one
second, we saw two velocity peaks in the flow during the 1 s acquisition time, which
we identified as heart beats. We didn’t separately measure the heartbeat.

The vPA can distinguish the ascending and descending flow directionality but not

in lateral direction due to the square term of 𝑣𝑥 in 𝑔1 (𝜏) = 𝑒−(
𝑣𝑥𝜏
2𝜎𝑥

)
2
−( 𝑣𝑧𝜏2𝜎𝑧

)
2

𝑒𝑖𝑘0𝑣𝑧𝜏
(equation (6.6)). Utilizing other methods such as differential phase [12, 13] which
is based on the acquired RF raw data successfully extracts the flow vector param­
eters.

One of the big challenges associated with quantitative methods for flow estima­
tion, is the motion artefacts which necessitate motion compensation. The presence
of motion induced by tissue, or moving probe, and out of plane motion impairs or
decreases the accuracy of vPA. Utilizing 2D probes for 3D ultrasound and photoa­
coustic imaging can be helpful for motion correction [14]. However, the acquisitions
are computationally more demanding and have a lower spatiotemporal resolution.

The maximum detectable flow speed is dictated by the PRF of the imaging sys­
tem, and the minimum flow speed depends on the system SNR. In conclusion, the
vPA flow speed estimation is accurate on flow speeds up to 20 mm/s.
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A.1. Signal analysis using the ambiguity function
A modulated waveform can be expressed with complex notation as:

𝑠 (𝑡) = 𝑎 (𝑡) 𝑒𝑗Φ(𝑡)
Φ(𝑡) = 2𝜋𝑓0𝑡 + 𝜓(𝑡)

(A.1)

where 𝑎(𝑡) and the Φ(𝑡) are the modulated amplitude and phase function, re­
spectively. 𝑓0 is the baseband transmit frequency with initial phase 𝜓(𝑡).

This signal will be applied to ultrasound transducer to generate the pressure
field. Thus, the output pressure at the transducer surface (𝑝(𝑡)) is the convolution
of the waveform (𝑠(𝑡)) with the transducer temporal impulse response (ℎ𝑡(𝑡)).

𝑝(𝑡) = 𝑠(𝑡) ∗ ℎ𝑡(𝑡) (A.2)

The ultrasound pressure will travel and echoes back from reflectors and scatter­
ers. For simplicity, let’s assume a single scatterer whose round­trip distance from
the transducer is 𝑟. The received signal 𝑟(𝑡) is the attenuated and time­shifted ver­
sion of the convolution between the transmitted pressure signal p(t) and the spatial
impulse responses of the transducer, ℎ𝑠(𝑡, 𝑟)).

𝑟(𝑡) = 𝑝(𝑡 − 𝜏0) ∗ ℎ𝑠(𝑡, 𝑟) + 𝜇(𝑡)
= 𝑠(𝑡 − 𝜏0) ∗ ℎ𝑡(𝑡) ∗ ℎ𝑠(𝑡, 𝑟) ∗ ℎ𝑎𝑡𝑡(𝑡, 𝑟) + 𝜇(𝑡)

(A.3)

where 𝜏0 = |𝑟| /𝑐 is the round­trip delay when 𝑐 is the ultrasound velocity in the
tissue, ∗ is the convolution operator, ℎ𝑎𝑡𝑡(𝑡, 𝑟) is the frequency dependant attenua­
tion and 𝜇(𝑡) represents the system noise.

ℎ𝑎𝑡𝑡(𝑡, 𝑟) is the inverse Fourier transform of 𝐻𝑎𝑡𝑡(𝑓, 𝑟), whose dependence on
the frequency 𝑓 is typically expressed by [1, 2]:

𝐻𝑎𝑡𝑡(𝑓, (⃗𝑟)) = 𝑒−𝛼|𝑟|𝑒−𝛽(𝑓−𝑓0)|𝑟|𝑒−𝑗2𝜋𝑓(𝜏𝑏+𝜏𝑚(𝛽/𝜋
2)|𝑟|)𝑒𝑗2(𝑓/𝑚)𝛽|𝑟|𝑙𝑛(2𝜋𝑓) (A.4)

where 𝜏𝑏 = 1/𝑐 is the bulk propagation delay per unit length, 𝜏𝑚 is the minimum
phase delay factor, and 𝛼 and 𝛽 are the coefficients associated with the frequency­
independent and frequency­dependent attenuation, respectively. it is suggested
that the effect of a frequency­dependent attenuation can be approximated by a fre­
quency down­shift of the transmitted signal [2–7], as expressed by:

𝑟(𝑡) ≈ 𝑒−𝛼|𝑟|𝑠(𝑡 − 𝜏0)𝑒𝑗2𝜋[−𝑓𝑑(𝑡−𝜏0)] + 𝜇(𝑡) (A.5)

where, for a transmitted pulse with relative bandwidth 𝐵𝑟, the frequency shift 𝑓𝑑
induced by the frequency­dependent attenuation is usually approximated by [3]:

𝑓𝑑 = 𝛽𝐵2𝑟 𝑓20 |𝑟| (A.6)

The received pressure signals will be converted to electric signals by the trans­
ducer. Consequently, the convolution of the r(t) with the transducer impulse re­
sponse will be the received electric signals. If the transducer is broadband like
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CMUT, its time impulse response can be approximated by a Gaussian shape and
its autocorrelation function is also a Gaussian and can be modeled as an apodiza­
tion k:

𝑣(𝑡) ≈ 𝑟(𝑡) ∗ ℎ𝑡(𝑡)
≈ 𝑘(𝑡)𝑒−𝛼|𝑟|𝑠(𝑡 − 𝜏0)𝑒𝑗2𝜋[−𝑓𝑑(𝑡−𝜏0)] + 𝜇(𝑡)

(A.7)

Match filtering is a tool for decoding the signal and has an impulse response
equal to the input waveform with reversed time axis.

𝑑(𝑡) = 𝑣(𝑡) ∗ 𝑠(𝜏𝑑 − 𝑡)∗ (A.8)

Substituting the returned signal given in Equation A.7 and the filter impulse re­
sponse into Equation A.8, we get the receiver output:

𝑑(𝑡) ≈ ∫
∞

−∞
(𝑒−𝛼|𝑟|𝑠(𝑡 − 𝜏0)𝑠(𝜏 + 𝑡)𝑒𝑗2𝜋[−𝑓𝑑(𝑡−𝜏0)] + 𝜇(𝑡)𝑠(𝜏 + 𝑡))𝑑𝑡

≈ 𝑒−𝛼|𝑟|𝜒(𝜏, 𝑓𝑑) + 𝑅𝜇𝑠(𝑡)
(A.9)

where 𝜒(𝜏, 𝑓𝑑) is defined as ambiguity function:

𝜒(𝜏, 𝑓𝑑) = ∫
∞

−∞
𝑠(𝑡).𝑠(𝑡 − 𝜏)∗𝑒−𝑗2𝜋𝑓𝑑𝑡𝑑𝑡 (A.10)

and 𝑅𝜇𝑠 is the colored noise.
Moreover, for moving targets, there is an additional Doppler shift. For instance,

in imaging the blood flow velocities, the moving particles inside the blood with the
velocity 𝑣𝑏 of induces an additional frequency shift which depends on the ultrasound
velocity 𝑣𝑢 , and on the angle 𝜃 between the direction of the flow and the ultrasound
beam:

𝑓𝑑 = 2𝑓0
𝑣𝑏
𝑣𝑢

cos(𝜃) (A.11)

If the delay (𝜏) is translated so that the maximum occurs at 𝜏 = 0 and the fre­
quency is translated such that the matching occurs at 𝑓𝑑 = 0, meaning that there
would be no Doppler and frequency down shift, the ambiguity function becomes the
matched filter response. The value of the ambiguity function at point (𝜏; 𝑓𝑑) away
from the origin shows the response of mismatched filter. Moreover, any weighting
of the match filter which results in widening of the ultrasound beam is also called
mismatched.

Figure A.1 shows the 2D contour plot of the 300 ns LFM signal’s ambiguity func­
tion which is calculated based on LFM (Equation 3.1) and Equation A.10. It has a
time­bandwidth product of 𝐵 ⋅𝑇 = 7. The zero­Doppler cut in the ambiguity function
will provide the auto­correlation of the input signal. Figure A.2 shows the zero­
Doppler cut from the ambiguity function which is compared with the envelope of the
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Figure A.1: 2D contour plot of the ambiguity function of a linear FM signal

Figure A.2: 2D contour plot of the ambiguity function of a linear FM signal

mismatched filter output (Figure 3.6b bottom graph). It shows that he first null hap­
pens at approximately 50 ns meaning that the resolution of the ultrasound system
with the designed LFM will be around 75 μm. In the presence of frequency depen­
dent attenuation, LFM signals have the most robust performance in terms of SNR
improvement [3] and the effect of frequency downshift is translated to time delay.

Figure A.3 shows that the frequency attenuation leading to a 2 MHz frequency
downshift still provides the first null at 50 ns of the peak, meaning that the resolution
is preserved.
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Figure A.3: Doppler cut at 2 MHz of the LFM ambiguity function
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