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Chapter 1

Introduction

1.1 Intermittent demand

Intermittent demand refers to demand time series with a large proportion of zero
values. The term sporadic demand is roughly equivalent. In this situation, non-
zero demand is often highly variable in size with low volume values interspersed
with random spikes of demand that are often many times larger than the average.
Intermittent demand is often observed in companies that manage large inventories of
service and spare parts in industries such as aviation, aerospace, automotive, heavy
machinery, process, high tech, and electronics, as well as in MRO (Maintenance,
Repair and Overhaul) (Romeijnders et al., 2012).

To describe and characterize a time series of intermittent demand, parameters
such as the average demand interval, average demand size, coefficient of variation of
demand size are often used. Average demand interval measures the demand regularity
in time by taking the average interval between two demand occurrences. Coefficient
of variation of demand size measures the variation in quantities by taking the stand-
ard deviation of the demand divided by the average demand for non-zero demand
periods. Syntetos and Boylan (2005) propose a formal way to categorize intermit-
tent time series using the average demand interval and coefficient of variation of
demand size. They classify intermittent demand into categories such as slow mover
and lumpy demand. The former refers to very low demand per unit time period
due to infrequent demand arrivals, low average demand sizes, or both. The latter
describes that demand is zero in some time periods with (highly) variable demand

sizes, when demand occurs.
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Various data sets and reports show auto- and cross-correlation are common in
intermittent demand, especially spare parts (Altay et al., 2012; Willemain et al.,
1994). Different from cross-item correlation where one item’s demand is correlated
with the demand of another in the situation of smoothing or continuous demand,
Cross-correlation is specific to intermittent demand. It refers to correlation between
demand size and the inter-demand interval of an item. Positive cross-correlation
indicates a high demand volume follows a long demand interval, or a short interval
is followed by a low demand size. Negative cross-correlation occurs when a short
demand interval is followed by a high demand size or a long interval is followed by a
small demand size.

These characteristics of intermittent demand complicate demand forecasting and
as result also the inventory control. Forecasting methods developed for continuous
demand often perform poorly in this situation. Can we develop specific forecasting
methods for intermittent demand that do better? We will review a few different
methods in this chapter, and propose a new method based on an existed forecasting
method in Chapter 2.

1.2 Maintenance

Many industries depend on the availability of high-value capital goods to provide
their services or to manufacture their products. Failures or downtime of capital
goods can have far-reaching detrimental consequences on production such as the lost
of revenue, customer dissatisfaction and safety hazard. For instance, in the aviation
industry, one hour of machine downtime can cost $ 8,000 (Saranga, 2004).

Maintenance is defined in British Standard Glossary of terms 3811: 1993 as the
combination of all technical and administrative actions, including supervision ac-
tions, intended to retain an item in, or restore it to, a state in which it can perform
a required function. Maintenance is essential to reduce costly equipment downtime,
improving the efficiency of operations and ensuring safety in the workplace. The ori-
ginal equipment manufacturers (OEMs) and Maintenance Organizations (MOs) are
the two types of operators of maintenance. In the former situation, OEMs increas-
ingly compete on the ability to provide after-sales service rather than selling capital
goods and ensuring their availability. In the latter situation, Maintenance Organ-
izations (MOs) within companies or as independent organizations are responsible
for maintaining the capital goods. This is specific in airlines, job shops, refineries,

railways, electronics industries, semiconductor industries and military organizations.
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Maintenance exists in different types. The simplest form is corrective maintenance.
Maintenance tasks are performed only when equipment breaks down. It is a way
of keeping systems in working condition, especially for assets with low risk and low

impact.

Preventive maintenance typically involves regularly scheduled maintenance tasks
based on time or hours used. Preventive maintenance can also be condition-based,
which we describe in next paragraph. Preventive maintenance encompasses a wide
range of maintenance strategies aimed at preventing failures, such as time-based
preventive maintenance and on-condition maintenance. In time-based preventive
maintenance a part or component is replaced periodically, e.g. after a fixed amount
of time (e.g. every 6 months) or usage (e.g. every 20,000 landings of an aircraft).
Time-based preventive maintenance can be planned ahead easily, and no condition
information is needed to apply it, but it has the disadvantage that much of the useful
life of parts may be wasted by early replacements. Another strategy under prevent-
ive maintenance is on-condition maintenance. When it is economically feasible to
do so, companies inspect parts of the asset before deciding upon replacement; the
part is then only replaced if degradation is above some threshold, hence the term
on-condition maintenance task. Arguably, on-condition maintenance tasks are an
example of condition-based maintenance, but most scholars reserve this latter term
for situations where the condition is real-time monitored (Topan et al., 2018; Lin
et al., 2017; Keizer et al., 2017).

Condition-based maintenance is a maintenance strategy that use tools like sensors
to monitor the actual condition of an asset to decide what maintenance needs to be
done. Condition-based maintenance dictates that maintenance should only be per-
formed when certain indicators show signs of decreasing performance or upcoming
failure. Checking a machine for these indicators may include non-invasive measure-
ments, visual inspection, performance data and scheduled tests. Condition data can

then be gathered at certain intervals, or continuously.

Shutdown maintenance, or overhaul, is large scale maintenance under a tempor-
ary stoppage of production for disassembly, comprehensive inspection, repairing and
replacement of parts. Due to the nature of component/machine and the safety con-
sideration of maintenance work, some preventive maintenance activities cannot be
carried out under normal production conditions. Shutdown maintenance is then the
only viable maintenance procedure for these activities. Shutdown maintenance is
often observed in industries such as refinery and petrochemical plants. It may last

for weeks and special precautions need to be taken to serve their customers in the
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mean time. For example, Shell advanced its Pernis shutdown maintenance process to
profit from the demand drop in the Corona time. (Reuters, 2020). Though shutdown
maintenance is the most expensive of all types of maintenance, it is necessary and
cost-effective. The complexity in the design and building of manufacturing system
increases the need for shutdown maintenance. Terms like shutdown, turnarounds
and outages are used interchangeably. Shutdowns are crucial for system safety and
necessary for plants to ensure their reliability. Plants will suffer consequence or a
great loss if the shutdown is poorly managed, e.g. delays of shutdowns can be very
costly. During shutdowns many parts are needed, hence one needs to ensure abund-
ant part availability. If the need is only clear during a shutdown, and the likelihood

of needing it is small, a difficult decision arises. This is tackled in Chapter 4.

1.3 Forecasting models

Over the years, many models have been proposed to forecast spare parts demand.
In the early stage, research on intermittent demand focused on time series based mod-
els. Bootstrapping and temporal aggregation are developed for intermittent demand.
Recently, models using various information for spare parts demand forecasting are
developed, such as installed base information (Dekker et al., 2013; Van der Auweraer
et al., 2019) and expert judgement (Syntetos et al., 2009).

Single exponential smoothing is the first time series based forecasting model ap-
plied to intermittent demand. However, as designed for continuous demand, it per-
forms poorly for intermittent demand. Hence special forecasting methods for inter-
mitted were developed, both parametric and nonparametric. Ad-hoc time series para-
metric forecasting methods starts with Croston’s method. It estimates the non-zero
demand and demand interval respectively. Adjusted versions of Croston’s method
include Syntetos-Boylan Approximation (SBA) and the Teunter, Syntetos and Babai
(TSB) method (Syntetos and Boylan, 2001; Teunter et al., 2011). Syntetos and
Boylan (2001) show that Croston’s method is positively biased and suggest an ad-
justment to overcome this issue in a follow-up paper (Syntetos and Boylan, 2005).
Teunter et al. (2011) propose an alternative to Croston’s method that is able to handle
obsolescence issues. They update the demand size and the probability of non-zero
demand. For detailed overviews of this research stream, we refer to Syntetos et al.
(2016). Though these methods have been widely used, they have the disadvantage of
assuming a particular parametric structure of the demand distributions. Bootstrap-

ping is a non-parametric resampling technique, which builds the lead time demand
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distribution by repeated sampling from observations. The so-called WSS modified
bootstrapping method, see Willemain et al. (2004), resamples from past data using a
Markov chain approach to switch between no demand and demand periods. Teunter
and Duncan (2009) finds that bootstrapping performs equally well as the Croston’s
method and SBA, but is more difficult to implement. The empirical method, pro-
posed in Porras and Dekker (2008), is a far less complex non-parametric method
which uses the empirical cumulative distribution function to estimate the lead time
demand distribution for fixed lead times. The empirical method was slightly ex-
tended in Van Wingerden et al. (2014) so as to cover variable lead times as well. Tt
performs well if demand originates both from periodic preventive maintenance as well
as from corrective maintenance. As the empirical cumulative distribution function
only provides information for demand levels in the scope of the historical demand
data, the empirical method basically breaks down for high service levels. Syntetos
et al. (2015) mentions poor performance of the empirical method in such situation.
The above models depend on historical demand and respond reactively to un-
precedented factors. To overcome the disadvantage, models which consider drivers
of spare parts demand have been developed. Development of these drivers can of-
ten be predicted, and taking these aspects into account will improve the spare parts
demand forecasting. Dekker et al. (2013) stress the importance of knowing the char-
acteristics of installed base, such as age and usage in inventory decision. Kim et al.
(2017) describe the impact of product life-cycle on spare parts demand. They argue
that the demand for spare parts follows the demand for the installed product with
a delay. Van der Auweraer et al. (2019) build a Poisson binomial distribution of
spare parts using installed base information. Topan et al. (2018) estimate the de-
mand distribution based on the demand signal collected from sensors. We refer to
Van der Auweraer et al. (2019) for detailed overviews of the many ways to estimate
demand based on installed base information. In Chapter 3, we consider maintenance

plan as advance demand information in estimating the demand distribution.

1.4 Spare parts inventory problem

To reduce the downtime and facilitate maintenance of capital goods, spare com-
ponents are typically stocked by maintenance organizations. Spares can be used to
replace failed or aged components during maintenance of the capital good in order
to improve or restore its condition. Sometimes, after repair, components are in a

good condition and they can be added to serviceable. The downtime of the capital
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asset is limited to the replacement time as this inventory strategy allows the repair

of components and the production to be simultaneous.

Availability of spares are thus essential to rapid repairs, yet redundant spares tie
up a lot of capital and face the risk of obsolescence. On the other hand, inventory
managers in maintenance organizations are often confronted with shortage of spares
parts and budget restriction. This brings the spare part inventory problem: How
should spare parts inventory management react to demand realization or estimation?
What information can be used to determine the order policy of spares. In this

dissertation, we formulate and analyze several of these inventory problems.

To optimize the order policy, instead of only looking at past spares demand we,
as one of the first authors, consider the maintenance plan as advance demand in-
formation (ADI) in the on-condition maintenance. When maintenance tasks include
parts replacement, this information can directly be used in the inventory control. In
cases where the maintenance includes an inspection of the parts before deciding to
replace them it is more difficult to use this information for inventory control. In our
study, maintenance tasks prescribe to inspect a part of the asset. Depending on the
condition of the part, it is either immediately replaced by a spare part, or it may
remain in the asset. The resources that enable maintenance, e.g. mechanics and a
maintenance hangar, need to be planned ahead of the actual maintenance. To enable
this maintenance planning, companies specify which on-condition maintenance tasks
will be performed some time periods into the future. It is this maintenance plan that
we propose to use as a source of ADI. We overcome two complications when using
this form of ADI to control spare parts inventories. First, on-condition maintenance
tasks are a form of imperfect demand information: Only upon inspection does it
become clear whether an on-condition maintenance task constitutes a spare part de-
mand. So using the maintenance plan involves dealing with this inherent uncertainty.
Second, while the need for logistics planning forces companies to plan on-condition
maintenance tasks ahead of time, this plan is only available and reliable a few months

into the future.

A shutdown project consists of the phases initiation, preparation, execution and
termination: The initiation and preparation phases comprise determining the work
scope and detailing it into tasks and activities while determining key resource require-
ments, for example mechanics, equipment, and spare parts (Al-Turki et al., 2019).
In the shutdown maintenance, we focus on spare parts inventory decisions in the
initiation and preparation phase of the shutdown project, in order to guarantee the

efficient execution of a shutdown project. We focus on parts for which the replace-
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ment probability is small. Because spare parts are expensive, the stocking decision
for such parts is nontrivial: Parts that are stocked but not needed cause high holding
costs and may even become obsolete, while parts that are needed but not stocked
lead to costly emergency orders and longer maintenance activity duration. In turn,
a longer maintenance activity duration may lead to an extremely costly delay in the
shutdown project, depending on precedence relations between maintenance activities
and delays in other activities. We investigate the resulting trade-off between the

ordering cost of spare parts and the overtime cost of the shutdown project.

1.5 Thesis outline

In this dissertation, we study spare parts demand forecasting and inventory man-
agement problem. We start with the intermittent demand forecasting and propose
the empirical-extreme value theory (empirical-EVT) method. Our method inherits
the advantage of non-parametric approaches without losing the ability to achieve
high service levels. In addition to the time series forecast method, we also consider
various information in spare parts demand forecasting and inventory management.
In Chapter 3, we estimate the demand and develop the inventory policy based on the
advance demand information provided by the maintenance plan. We find that such
information reduces the inventory cost significantly. In Chapter 4, we optimize the
ordering policy of spare parts in shutdown maintenance in which the ordering de-
cision for a maintenance activity not only depends on itself, but also on the structure
of the project network. The outline of this dissertation is as follows.

In Chapter 2 we improve the empirical method proposed by Porras and Dekker
(2008) which uses historical demand data to construct the leadtime demand distribu-
tion by applying extreme value theory to model the distribution tail. The limitation
of the empirical method was that it was not able to forecast spare parts needs for
high service levels in case of few data points. To make the most out of a limited num-
ber of demand observations, we establish that extreme value theory can be applied
to lead time demand periods computed over overlapping intervals. We consider two
service levels: the expected waiting time and cycle service level. Our experiments
show that the new method improves the inventory performance under the expected
waiting time and cycle service level for a range of demand generating processes and
service targets, when compared with the empirical method. Moreover, our method is
competitive with methods such as WSS, Croston’s method, and the Syntetos-Boylan

approximation (SBA), in the sense that it sometimes outperforms these methods,
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and sometimes is outperformed by these methods, depending on the demand data
and other parameters. The automotive data set described by Syntetos and Boylan
(2005) and the component repair dataset by Romeijnders et al. (2012) are used in
case studies. Both Croston’s method and WSS perform well in the automotive data
set, followed by empirical-EVT. The limited training data leads to the unsatisfactory
performance of empirical-EVT since it is difficult to estimate the tail of lead time
demand distribution based on 13 periods observations. However, Empirical-EVT
method performs best in the component repair dataset where demand is available in
84 periods.

In Chapter 3 we study the value of maintenance plan, i.e. the planned main-
tenance tasks, as a source of advance demand information in spare parts ordering
decision. We propose a simple forecasting mechanism to estimate the spare part de-
mand distribution based on the maintenance plan, and develop a dynamic inventory
control method based on these forecasts. The value of this approach is benchmarked
against state-of-the art time series forecast methods based on data from two large
maintenance organizations. We find that the proposed method can yield cost savings
of 23 to 51% compared to the traditional methods.

In Chapter 4 we consider the spare parts ordering policy against this background
of shutdown maintenance project planning. We present a spare parts optimization
model and algorithm that includes the cost-time trade-off and precedence constraints
between maintenance activities in shutdown. The objective is to balance between
spare parts ordering cost and the expected project overtime cost due to waiting for
spare parts. Using two-stage stochastic programming, spare parts ordering policies
are determined in the first stage and a detailed project schedule is developed in the
second stage. We propose a sample average approximation with importance sampling
and pruning of dominated activities to solve the problem, and demonstrate that this
method solves large instances quickly. We also consider heuristics, e.g. the standard
project management approach based on the widely used critical path method and a
heuristic that draws from spare part inventory control literature. We find both these
heuristics give poor solutions.

Finally, in Chapter 5 we conclude the main findings of this dissertation.

1.6 Contribution

Chapters 2-4 are based on papers that are either published in or submitted to

scientific journals. These papers are the result of a cooperation between various au-
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thors. For each chapter, the reference to the publication and the contribution of each

author are given below.

Chapter 2 The research for this chapter was conducted by the first author under
supervision of dr. Willem van Jaarsveld and prof.dr.ir Rommert Dekker. Dr. Alex J.
Koning and Dr. Rex Wang Renjie contributed in the application of Extreme Value
Theory. Fokker Services and NedTrain provided the data sets. It is based on:

Zhu, S., Dekker, R., Van Jaarsveld, W., Renjie, R. W., & Koning, A. J. (2017).
An improved method for forecasting spare parts demand using extreme value theory.
European Journal of Operational Research, 261(1), 169-181.

Chapter 3 The research for this chapter was conducted by the first author un-
der supervision of dr. Willem van Jaarsveld and prof.dr.ir Rommert Dekker. Fokker

Services and NedTrain provided the data sets. It is based on:

Zhu, S., van Jaarsveld, W., & Dekker, R. (2020). Spare parts inventory con-
trol based on maintenance planning. Reliability Engineering & System Safety, 193,
106600.

Chapter 4 The research for this chapter was conducted by the first author under
supervision of dr. Willem van Jaarsveld and prof.dr.ir Rommert Dekker. It is based

on:

Zhu, S., van Jaarsveld, W., & Dekker, R. (2021). Critical project planning and

spare parts inventory management in shutdown maintenance. Working paper.






Chapter 2

An Improved Method for
Forecasting Spare Parts
Demand using Extreme Value

Theory

2.1 Introduction

The supply of aftermarket parts is an important source of profit for companies that
sell durable equipment, see Gallagher et al. (2005). Findings from Deloitte’s Global
Service and Parts Management Benchmark Survey show that in 2006 the service
business accounted for an average of nearly 26% of revenues across the industries,
see Koudal (2006). After-sales networks operate in an unpredictable marketplace
because demands for repairs crop up intermittently, see Kennedy et al. (2002); Cohen
et al. (2006); Syntetos et al. (2012).

An essential element in spare parts inventory control is the forecasting of the
lead time demand, as the lead time is the period in which a stockout may occur
when demand is larger than foreseen. Differences in the monetary values of the
stock-holdings between lead time demand forecasting methods can be substantial;
Eaves and Kingsman (2004) report a case in which the use of an inferior forecasting
method leads to an additional investment of 13.6% of the total value of the inventory.

Unfortunately, estimating the lead time demand distribution is especially difficult for

11



2.1. Introduction 12

slow-moving spare part types as typically only limited positive demand data points

are available in practice.

The demand distribution may be estimated either parametrically or nonparamet-
rically. Parametric methods have the advantage of being relatively simple while still
showing decent empirical performance (Syntetos et al., 2015). However, as para-
metric estimators are derived from assumptions, they may turn out to be severely
biased in case these assumptions do not hold. Therefore, nonparametric estimators
are preferred, as the traditional parametric estimators have problems dealing with
intermittent demand and particular patterns. Popular nonparametric approaches are
the bootstrap method, see Willemain et al. (2004), which we refer to as the WSS
method in this thesis, and the empirical method, see Porras and Dekker (2008) and
Van Wingerden et al. (2014). Nonparametric estimators only provide relevant inform-
ation for demand levels in the scope of the historical demand data of say N positive
data points, and basically break down in case of extrapolation beyond this scope.
In particular, the largest data point would be expected to lie at the N/(N + 1)th
percentile, and thus achieving service levels beyond this percentile may prove difficult
using empirical methods. Thus, we resort to semi-parametric estimators in the tail

for high service levels.

In this thesis, we propose the empirical-EVT method, which applies extreme value
theory (EVT, see Beirlant et al., 2004; Coles, 2001; Reiss and Thomas, 2007) to the
tail part of the distribution and handles the remainder of the distribution (the non-
tail part, say) via the empirical method. The empirical distribution is used as starting
point to ensure that the structure of the non-extreme part of the data is preserved.
Application of EVT allows us to closely approximate the tail of a distribution using
one single parameter, the extreme value index, see de Haan and Ferreira (2006). Only
the largest historical demands are used to estimate the extreme value index, the other
historical demands are input to the empirical method. The new method inherits the
advantage of non-parametric approaches without losing the ability to achieve high
service levels. As EVT allows dependence (more precisely, S-mixing dependence)
between successive lead time demands, we establish that the empirical-EVT method
may be applied to lead time demands computed over overlapping time periods. With

this result, our method makes the most out of a limited demand history.

A simulation study is conducted to assess the performance of the empirical-EVT
where we estimate the lead time demand distributions based on samples from a known
distribution. Instead of one period forecasting error measures such as mean squared

error, we employ service levels to evaluate performance, as advocated in Syntetos
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and Boylan (2006) and Teunter and Duncan (2009).

The experiments show that the new method improves the inventory performance
under the expected waiting time and cycle service level for a range of demand gen-
erating processes and service targets, when compared with the empirical method.
Moreover, the new method is competitive with methods such as WSS, Croston’s
method (1972), and the Syntetos-Boylan approximation (SBA) (2005), in the sense
that it sometimes outperforms these methods, and sometimes is outperformed by
these methods, depending on the demand data and other parameters.

We use in our empirical study the automotive data set described by Syntetos and
Boylan (2005) and the component repair dataset by Romeijnders et al. (2012). Both
Croston’s method and WSS perform well in the automotive data set, followed by
empirical-EVT. The limited training data leads to the unsatisfactory performance of
empirical-EVT since it is difficult to estimate the tail of lead time demand distribution
based on 13 periods observations. However, Empirical-EVT method performs best
in the component repair dataset where demand is available in 84 periods.

The chapter is organized as follows. Section 2 gives an overview of the relevant
literature. Section 3 briefly describes EVT theory and how to use it in our study. In
section 4 a simulation study and an empirical study give insights into the differences
between the empirical-EVT method, the empirical method, WSS, Croston’s method

and SBA. The last section presents the final conclusions.

2.2 Literature

In Subsection 2.1, we review forecasting methods for slow-moving items. In Sub-

section 2.2, we review extreme value theory.

2.2.1 Intermittent demand forecasting

Demand forecasting is a key issue in the field of spare parts management. For an
overview on spare parts demand forecasting research, we refer to Boylan and Syntetos
(2010).

Traditional forecasting methods such as simple moving average (SMA) and simple
exponential smoothing (SES) fail to perform well for intermittent demand, see Syn-
tetos and Boylan (2005). Croston’s method (CR, see Croston, 1972) isolates periods
with positive demands, is “robustly superior” to SES, see Willemain et al. (1994),
and is biased, see Syntetos and Boylan (2001). The Syntetos-Boylan approxima-
tion (SBA, see Syntetos and Boylan, 2005), the Syntetos method (SY, see Syntetos,
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2001) and the Teunter-Syntetos-Babai method (TSB, see Teunter et al., 2011) are
bias-corrected modifications of the CR method. According to Syntetos and Boylan
(2006), the SBA method outperforms the SMA, SES and CR methods. Teunter and
Sani (2009) prefer the SY over the SB method, as the latter actually overcompensates
the bias. Evidence in Babai et al. (2014) suggests that TSB does not outperform
CR, SBA and SY unless the degree of intermittence is low and demand is decreasing.
For other modified CR methods, see Johnston and Boylan (1996), Shale et al. (2006)
and Snyder (2002). The variance of SES, CR, SY and SBA intermittent demand
estimates are discussed in Syntetos and Boylan (2010). Though these methods have
been widely used, they have the disadvantage of assuming a particular parametric

structure of the demand distributions.

Bootstrapping is a non-parametric resampling technique, which builds the lead
time demand distribution by repeated sampling from observations. The WSS mod-
ified bootstrapping method, see Willemain et al. (2004), resamples from past data
using a Markov chain approach to switch between no demand and demand periods.
Teunter and Duncan (2009) find that bootstrapping performs equally well as the CR
and SBA method, but is more difficult to implement. Syntetos et al. (2015) conclude
that the WSS modified bootstrapping method does have advantages over the SES,
CR and SBA methods, but questions whether WSS is worth the added complexity.

The empirical method, proposed in Porras and Dekker (2008), is a far less complex
non-parametric method which uses the empirical cumulative distribution function
to estimate the lead time demand distribution for fixed lead times. The empirical
method was slightly extended in Van Wingerden et al. (2014) so as to cover variable
lead times as well. As the empirical cumulative distribution function only provides
information for demand levels in the scope of the historical demand data, the em-
pirical method basically breaks down for high service levels. Syntetos et al. (2015)

mention poor performance of the empirical method.

Other forecasting methods supplement historical demand data with additional
information. The use of installed base information is discussed in Jalil et al. (2011)
and Dekker et al. (2013). Information on component repairs is first considered in
Romeijnders et al. (2012). Topan et al. (2018) assess the value of the imperfect
demand information and proposes a lost-sales inventory model with a general repres-
entation of demand information to find the ordering policy minimizing total inventory

holding, shortage and ordering cost under imperfect information.
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2.2.2 Extreme Value Theory

Extreme value theory is a branch of statistics modelling the tail behaviour of
a distribution. The most prominent application is the estimation of an unknown
upper quantile value corresponding to a small given exceedance probability. How-
ever, EVT also covers the estimation of an unknown exceedance probability. The
determination of a safe height for the North Sea dikes in the Netherlands acted as an
important driver behind the development of EVT, see de Haan (1990). Nowadays,
EVT is widely used in financial risk management to estimate downward risk measures
such as value at risk and expected shortfall. To our knowledge, the only previous
application of EVT to inventory problems is in Kogan and Rind (2011), where the
design of an inventory for critical equipment is considered. As critical equipment is
characterized by infinitely large underage costs, they require that no stockout occurs
in the coming years with high probability. Based on this requirement, they develop
rules for determining inventory based on EVT, homogeneous Poisson processes, and

Chebyshev’s inequality.

2.3 Theory

2.3.1 Extreme value theory

Loosely speaking, EVT theory is built upon the idea that the tail behavior of
many uncertain quantities that are encountered in practice can be modelled using the
Generalized Pareto Distribution (GPD). We explain EVT in a precise mathematical

statement in section 2.3.1.1.

2.3.1.1 Tail approximation

Let X be a random variable with cumulative distribution function F'(z) = P {X < x},
and let 2* = sup{x : F(z) < 1} denote the endpoint of the support of F'. Note that
x* may be either finite or infinite.

Throughout this chapter, we shall assume the existence of a positive function f
such that

L L=F+af(r) -1/
lim =(1 K 2.1
for all « for which 1 4 vz > 0, see condition 4 of Theorem 1.1.6 at p. 10 in de Haan

and Ferreira (2006). The assumption allows the approximation of the tail of the
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distribution of X for a sufficiently large threshold T,

rT—T
1-F(z)=(1—-F (7 1-H,| — 2.2
@=a-ropfi-m (55} (22)
for all x > 7, see p. 67 in de Haan and Ferreira (2006). Here H. denotes the

cumulative distribution function of the GPD:

{ 1— (1+~y2) 7 fory#0, (2.3)

1—e* for vy =0.

The parameter v of the GPD plays a central role in EVT, and hence is referred to
as the extreme value index; it acts as a shape parameter of the GPD approximating
the tail of the distribution. The support of the GPD is [0, 00) if 7 is non-negative,
and [0, —1/~] if 7y is negative. For any distribution such that (2.1) holds, we say that
the distribution belongs to the domain of attraction of H, (x).

Assumption (2.1) is not restrictive because it only pertains to the tail behavior
of the distribution. In that sense, it is very much weaker than (for example) stating
that demand follows a negative binomial distribution, or a normal distribution, or
any other specific distribution, precisely because such an assumption specifies the

entire distribution.

Assumption (2.1) is satisfied by a very wide range of continuous distributions
(Pickands, 1975; Balkema and de Haan, 1974). This reflects that tail behavior of
many distributions allow approximate modelling by means of the GPD: this explains
why the GDP occurs in the assumption. This generality is in fact one of the strongest
points of EVT, and the main reason why it has been applied to a very wide range
of problems: extreme sea-levels (for dike height determination), insurance losses,
market risk, environmental loads on structures, etc. Moreover, according to Shimura
(2012), many discrete distributions can be regarded as a discretization of a continuous

distribution satisfying (2.1), and hence satisfy (2.1) themselves.

An interesting approach to test the applicability of EVT for a specific real-life
scenario in which the demand distribution is unknown, would be a goodness-of-fit
test. Unfortunately, goodness-of-fit in EVT is not yet fully developed, see Section 2.3
in Beirlant et al. (2012). An Anderson-Darling type test of (2.1) based on the tail
empirical process is proposed in Drees et al. (2006). Several tests of (2.1) for v > 0
are found in Koning and Peng (2008).
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2.3.1.2 The basic model

The basic model on which EVT in its original form rests, assumes that X1,..., X,
is a random sample of size n drawn from the distribution given by F’; in other words,
the observations X1, Xs ..., X, are independent copies of the random variable X.
Let X(l) < X(g) <,... < X(n) be the ordered sample. Choose 0 < k < n, and
use X(,_g) as an empirical threshold. That is, replace 7 by X(,,_). To allow the
derivation of asymptotic results for n tending to infinity, we assume that the choice
k depends on n, and satisfies k — oo and k/n — 0 as n — oco. That is, as n grows
large, k grows large but nevertheless vanishes relative to n.

Since 1 — F (X(n_k)) ~ k/n, we obtain, see Equation (3.1.4) in de Haan and

Ferreira (2006),
k T — X(n—k)
1-F ~—<1-H,[| ——= 2.4
@ {1 (22 (24

for all x > X(j,_p), with a = f (X(n_k)). In particular, this approximation continues
to hold even beyond the sample maximum X,).

In recent EVT literature o = f (X(n_k)) is usually replaced by a = a (k/n). We
also do this in our study. The functions f and a are related through the equation
f(z) =a(1/(1 — F(x))), see Theorem 1.1.6 at p. 11 in de Haan and Ferreira (2006);
note that 1/(1 — F(X(,—x))) =~ n/k. As the parameters v and « appearing in (2.4)
are unknown, we simply replace them by estimators. We use the moment estimators
proposed in Dekkers et al. (1989). Summarize the k largest order statistics via the
first two “moments” M,(Ll) and M,SZ) defined by

k—1
) 1 .
M) = - > (log X (i) — log X (o))’ (2.5)

1=0

for j = 1,2. Then, the moment estimators of the extreme value index y and the scale

« are given by

2

MO 41— % <1 - <M7(11>)2 <M£2)>_1)17 (2.6)

>

= 1 X (g MV (1 - (Mrgm)z (Mff))_l) o (2.7)

Until now, we have only assumed that the number k& = k(n) of used largest order
statistics satisfies k — oo and k/n — 0 as n — oo. In practice, the choice of k is

made by trading off bias and variance. For small k, only a limited amount of the



2.3. Theory 18

information contained in the data is used, and hence the variance of the moment
estimator is relatively large. Although selecting a larger value of k will reduce this
variance, it is typical that the bias of the moment estimator will increase at the same
time as the relevance of (2.1) diminishes. (See de Haan and Ferreira, 2006.)

Three different ways of choosing k have appeared in literature: moment estimator
plot (Hill, 1975), bootstrap method (Danielsson et al., 2001; Draisma et al., 1999) and
unbiased moment estimator plot (De Haan et al., 2016). For the purpose of applying
EVT to inventory control, we use an automated method for threshold selection, see

2.D in the supplementary material.

2.3.1.3 Relaxing the independence assumption

The basic model assumed in the previous paragraph required that X, Xo,...
is a sequence of independent and identically distributed (i.i.d.) random variables.
In practice, the independence assumption may turn out to be too restrictive. As we
intend to apply EVT to the lead time demands directly, the independence assumption
also becomes an issue in our approach to LTD estimation. We may view lead time
demands as “moving sums” of demands in subsequent time intervals (for instance,
days, weeks months or year). Let D, denote the demand in time interval j. If the

window size L is fixed, then we may express the demands over window size as

i+L—1
Xl[L] — Z D]? for 1 = 1’27.... (28)

j=i

Besides constant L, multiple levels of aggregation are also applicable to our fore-
casting method. Various aggregation window sizes may lead to different inventory
performance, see Petropoulos and Kourentzes (2015), Rostami-Tabar et al. (2013)
and Rostami-Tabar et al. (2014). For a discussion of the optimal choice of aggrega-
tion window size, see Nikolopoulos et al. (2011). For the present chapter, we choose
to restrict the window size to the leadtime L. We believe combining the empir-
ical or empirical-evt approach approach with a temporal aggregation approach may
be an interesting topic for further research. Whenever allowed, we shall drop the
superscript [L], and use the short hand notation X; rather than the full one X Z-[L].
Typically, the demands Dy, Ds, ... are assumed to be i.i.d., see Croston (1972)
for instance. The consecutive lead time demands X7, X5, ... become dependent. In
fact, X1/L, X3/L,...is a moving average process of order L, that is, an ARMA(0, L)

process. To avoid this dependence, one has resorted to considering “non-overlapping”
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lead time demands, X1, X141, Xor+1, ... say, see Nikolopoulos et al. (2011). (In the
context of time series analysis, the construction of non-overlapping lead time demands

X1, Xr41,Xor41,. .. is referred to as “temporal aggregation”.)

Fortunately, the independence assumption has been relaxed in EVT, see Drees
(2003), Resnick and Starica (1998) and Rootzén (2009). In essence, we should re-
quire that the sequence X, Xs,... is S-mixing instead. The [-mixing dependence
condition (also known as absolute regularity or weak Bernoulli condition) was pro-
posed in Volkonskii and Rozanov (1959), and is thoroughly discussed in Bradley
(2005). Loosely speaking, S-mixing precludes long range dependence. Many random
sequences in practice — among which Harris chains, ARMA, ARCH and GARCH pro-
cesses — are -mixing, see Athreya and Pantula (1986), Mokkadem (1988), Carrasco
and Chen (2002), Fryzlewicz and Rao (2011). Since consecutive lead time demands
X1, Xa, ... constructed from i.i.d. demands via (2.8) behave as an ARMA(0, L) pro-
cess up rescaled by a fixed factor L, it follows that these lead time demands are

indeed B-mixing (the rescaling does not affect the dependence structure).

In addition, we may relax the independence between the demands, as long as
we end up with g-mixing lead time demands. For example, one may show that
the moving sum of an ARMA process is also an ARMA process, see Granger and
Morris (1976); thus, if the demands are not independent but form an ARMA process
instead, the lead time demands are still S-mixing. Recall that an ARMA process is

stationary.

Autocorrelated demands have been found in intermittent industrial datasets, see
Willemain et al. (1994). The simulation experiment in Altay et al. (2012) shows that
the forecast accuracy and stock control performance of the SES and SBA methods
are vulnerable to autocorrelated demands. The theoretical work on relaxing the
independence assumption in EVT suggests that EVT-based methods are to some
extent robust with respect to stationary autocorrelated demands. As EVT-based
methods implicitly assume that the extreme value index stays constant over time, we

do not expect EVT-based methods to work well for non-stationary demand.

After using ad-hoc arguments to conclude that the assumption of stochastic in-
dependence of lead time demands “looks highly plausible as a first approximation”,
results in Kogan and Rind (2011) are derived under the basic EVT model. The
validity of these ad-hoc arguments is difficult to assess. Our discussion above shows
that it possible to avoid ad-hoc arguments by using a comprehensive and rigorous
theoretical argument. In fact, we believe that relaxing the independence assumption

is essential for any application of EVT to inventory control.
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2.3.2 How to apply EVT based on the empirical LTD fore-

casting method

In this subsection we detail the application of the empirical-EVT method using
three different service levels: expected waiting time EWT, fill rate 8 and cycle service
level CSL. These three service levels have in common that a larger base stock level
yields a better service level (a smaller expected waiting time, a larger fill rate or a
larger cycle service level). Thus, EWT, 5 and CSL are in fact monotonic functions
EWT (5), 5(S) and CSL (S) of the base stock level S.

Our aim is to determine the smallest base stock level S},;;, such that the inventory
performs as least as good as some given critical service level. However, we are unable
to achieve this aim since the exact relation between base stock level and service level
is unknown. The best we can do is to estimate this relation using historical demand
data. As a consequence, we arrive at an estimated smallest base stock level Sy iy,
rather than Spi, itself.

The empirical-EVT method deals with two regions: the non-tail and the tail
regions, separated by an unknown threshold 7 which is estimated by the empirical
threshold X(,,_x). We handle the non-tail region non-parametrically using the em-
pirical method, and the tail region semi-parametrically by EVT. The computation

of gmin involves the following steps.

Step 1: obtain the LTD sample Obtain a sample X7, X, ..., X, of lead time

demands.

Typically, these lead time demands are obtained by summing demands over
given time periods, as in (2.8); let D = n~! >, D; denote the mean demand

during the data collection period.

However, we do leave open the possibility that the sample X7, X5, ..., X,, was
obtained by some other data generating process (DGP), as long as EVT is
still applicable; that is, the DGP should yield lead time demands which are
B-mixing. (See Bradley, 2005 for S-mixing).

Step 2: construct the ordered sample Sort the sample Xi, Xo,..., X, in as-
cending order. This yields the ordered sample X1y € Xy < X3y <... <
X(n)- We shall refer to X(;) as the i*" order statistic. Remark that the inform-
ation contained in the ordered sample is sufficient to construct the empirical

distribution function Fn(m) appearing in paragraph 4.1.2 of Porras and Dekker
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(2008), because we may write

n n
Fn(m) = Z lix, <z} = Z Lix,<ey forallzeR, (2.9)

i=1 i=1
Moreover, as the empirical distribution function is a step function which jumps
at the order statistics, we may reconstruct the ordered sample from the em-
pirical distribution function. Thus, the ordered sample X (1) < X () < X(3y <
... < X(n) carries exactly the same information as the empirical distribution

function £, (x).

Step 3: select the empirical threshold X, _;, Choose k using the moment es-
timator plot, the bootstrap method or the unbiased moment estimator plot, as

described in paragraph 2.3.1.2.

Step 4: estimate the parameters of GPD function Use the moment estimat-
ors 4 and & defined by (2.6) and (2.7) to estimate the extreme value index 7
and the scale o = f(7).

Step 5: estimate the relation between S and service level This step depends

on the service level used.

1. Expected waiting time If 4 < 1, estimate the expected waiting time
EWT (S) by means of the estimator EWT (S) defined by

n—k
EWT (S) = % {n1 S (X -8+ Sﬂtaﬂ (S)} (2.10)

i=1

with

N + e ; a
fitail (8) = (X(n-r) = S) " + ¥ (SV X(p)) =¥ <X(n—k> - ,Ay) Lis<0)

(2.11)
and
& . -T_X(nk))} o .

14 A 4 40,

¥ (2) = 1—W{ ) a 7 (2.12)
R (—$+X(n_k)> .
& exp — if =0,
&

For the derivation of this estimator, see 2.B in the supplementary material.
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Set the estimated expected waiting time to infinite if 4 > 1. In this case,

the waiting time distribution is classified as extremely heavy-tailed.

Although the expected waiting time EWT is a widely used service level,
it has the problematic feature of becoming infinite if v > 1, or becoming
extremely high for « slightly lower than 1. This feature, which is a con-
sequence of the fact that mathematical expectation do not exist for heavy
tailed distribution, is inherited by its estimator: EWT is infinite if 4 >1,
or extremely high for 4 slightly lower than 1, see 2.A.

In short, the expected waiting time does not combine well with heavy

tailed waiting time distributions.

2. Fill rate The fill rate 8 (S) is closely related to the expected waiting time.
Recall that, according to (2.8), we may view X; as just short hand notation
for Xi[L]. Let EWT"! (S) be the expected waiting time for X[ and let
EWTE=1(S) be the expected waiting time for X£=1. Then, 5(S) =
1- D! {IEWT[L] (S) — EWTIL1 (S)}.

Now suppose that in Step 1 we have not only collected Xl[L], X%L], e

Xy[,L] but XI[L_l], XQ[L_”, ...,X,[LL_H as well. Note that if the demands

]

are non-negative random variables, then X Z[L is stochastically larger than

XZ-[L_” for every 4. Let W[L] (S) be the expected waiting time for XF],
and let E/\ﬁ[L_I]
§=is)=1-D {EWT
B(S).

The fill rate suffers from the same problems as the expected waiting time

e the expected waiting time for L en
(S) be the expected waiting time for X*=1. Then,
L _——[L—-1

i (S) — EWT[ ] (S’)} is an estimator of

for large values of 4. Moreover, it also does not combine well with heavy
tailed waiting time distributions. Although Xi[L] is stochastically lar-

ger than Xi[L_l] for every 4, this does not imply that XZ-[L] — X([i]_k)

stochastically larger than X Z[L_l] - X ([ﬁ:li]) for every i since there is no ob-
vious relation between X ([5]7 5 and X ([i:;]) As a consequence, even though
mm (S) and E/VV\T[L_” (S) decrease with increasing base stock level S,
EWT ! (S) — ﬁV\T[L%] (S) and 3 (S) fail to change monotonically with

the increasing S, which contradicts common sense.

is

L

3. Cycle service level The cycle service level CSL(S) := P(X <S5) is a
service level which, in contrast to the expected waiting time and fill rate,

is able to accommodate heavy tailed distributions. It is estimated by
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period n demand

period 1-10 0o 0 0 0 0 0 6 0 0 O
period 10-20 | O 0 0 0 0 O O O O O
period21-30 |0 0O 0 0 O O 1 0O O O
period 31-40 | O 100 0 0 O 4 0 0 O
period 41-50 | 6 0 0 0 0O O O 3 0 O
period 51-60 |0 0 0 0 0 O O O O O

Table 2.1: Historical demands of 60 periods

means of CSL (S) defined by

_ 2 Lxi<sy if <,
TV - B (en)) s <

For the derivation of this estimator, see 2.C in the supplementary material.

(2.13)

Step 6: estimate the smallest base stock level Let IEWTObj, Bobj and CSLobj
denote the target waiting time, the target fill rate and the target cycle service
level, repectively. Now set the estimator Sj,j; equal to the smallest S satis-

fying one of the following service level requirements: EWT (S) < IEWTObJ-; or

A~

B(S) > Bypyi or CSL(S) > CSLeps.

2.3.3 Example - applying EVT to the empirical LTD forecast-
ing method

Two examples under expected waiting time and cycle service level are provided
in this subsection. Example 1 shows that we can decrease the expected waiting
time by applying extreme value theory. However, when the extreme value index -y
is relatively large, the expected waiting time service level breaks down, due to the
fat tail of the lead time demand distribution. The cycle service level does not suffer

from this problem. This is illustrated in Example 2.

Example 1

Table 2.1 shows demand samples during 60 months. We set the expected waiting
time target EWT,;; equal to 0.03.
Next we tally the LTD sample and compute B, according to (2.9), see Table

2.2. According to (2.6), we construct estimators 7y using Table 2.2, see 2.1, for
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LTD frequency proportion F,

0 32 32/56 32/56
1 5 5/56 37/56
4 4 4/56 41/56
6 9 9/56 50/56
10 6 6/56 1

Table 2.2: Computation of EDF P,

2
O, |
?\
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)
>
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k

Figure 2.1: Select threshold from moment estimator plot

k=6,...,24. 4 does not exist for k =1,---,5 since the denominator in (2.6) equals
to zero. We do not consider k£ > 24 in order to keep at least one positive observation
in the non-tail part. The figure shows that the value of 7 is relatively stable when
8 < k < 14, and we select the threshold position k£ equal to 10. Once the threshold
is determined, we can obtain the estimates ¥ = 0.056 and & = 2.299. Now (2.10)
allows us to calculate EWT (S) for any given S, which in turn enables us to determine
SEVT = Sppin, where Sy s the smallest S which satisfies EWT (S) < EWTp,;.
Finally, this yields Stv, = 16.

The procedure above could be followed for other service levels as well. For in-
stance, we obtain Sgvh = 14 under cycle service level CSLobj = 0.99, see (2.13). For

reference, we remark that in this example the empirical method proposed in Porras
and Dekker (2008) yields SEWT = 10, SS8 = 10, see Table 2.3 for the results.

emp emp

service level  Sgvr  Semp
EWT 16 10
CSL 14 10

Table 2.3: Results of example 1
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period n demand

period 1-10 0 0 0O0OO 0 O0 0 5 0
period 10-20 {0 0 0 0O 190 0 0 O O
period21-30 ([0 0 0 0O O O O O O O
period 31-40 0O 0 05 0 0 0 O0O0O
period 41-50 [0 0 0 O O O O O O O
period 51-60 {0 0 0 O O O O 1 0O 5

Table 2.4: Historical demands of 60 periods

service level  Sevt  Semp
EWT 43213 19
CSL 34 19

Table 2.5: Results of example 2

Example 2

This example produces an illustration to the remark in Step 5 in Subsection 2.3.2
that the expected waiting time does not combine well with heavy tailed distributions.
Table 2.4 shows another demand sample during 60 months. We use the same target
and lead time as in Example 1. Following the same procedure we obtain the results
in Table 2.5.

Theoretically, the tail becomes fatter when the extreme value index -y is closer to
1. As the extreme value index estimate 0.67 is already rather large, SEV." becomes
enormous. As long as 7 is moderate, the expected waiting time produces reasonable
results. However, if the estimated extreme value index is rather large (we have
observed 4 > 0.5), then the expected waiting time yields unrealistically high base

stock levels. To avoid such extremely high base stock levels, the cycle service level

EWT tO

should be used instead. Alternatively, we may impose an upper bound on Sti,

avoid the extreme cases. One could also opt to limit the parameter space of 7, but the

upper limit needs to depend on &, which would make such an approach cumbersome.

2.4 Experiments

In this section, we perform experiments comparing the relative performance of
the empirical-EVT method and several alternative methods. Section 2.4.1 discusses
experiments where demand is generated using Monte Carlo simulation, and Sec-

tion 2.4.2 discusses experiments based on real demand data.
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2.4.1 Simulation
2.4.1.1 Setup

We apply a base stock policy with periodic review and full backordering. In the
simulation, demand for each time period for both the training set and test set is gen-
erated according to a probability distribution that will be specified in Section 2.4.1.2.
The test set is independent of the training set. Lead time demands for the training
set are constructed according to (2.8). Given a target service level, the training set
is used to estimate the base stock level S}y ;;, using various methods: empirical-EVT,
the empirical method, WSS (Willemain et al., 2004), Croston (Croston, 1972) and
SBA (Syntetos and Boylan, 2005). We choose smoothing constant aw = 0.2 for Cro-
ston’s method and SBA. We further use the test set to obtain the estimated service
level EWT and CSL ™ under such base stock level Smin- Here * denotes that the
estimator is obtained from the training set.

Thus, the setting of our experiment conforms to the setting faced by companies
in real life: forecasts and inventory levels must be set based on some past period (our
training period), while the resulting base-stock levels are applied for some future
period (our test period), and the quantity of interest is the performance of the base-
stock level in this future period. We will vary the length of the training set, because
the amount of data present may affect performance in practice. The length of the
test set is fixed to 1000 periods, and the simulation is replicated for 5000 times for
each parameter setting. We report the average performance over the test set for all
replications.

We have three designs in our simulation experiments.

- Design A: In order to explore the influence of training set length n on the
performance of the methods for setting base-stock levels, we set L = 5, fix the
target service level EWTy,; = 0.03 or CSL.p; = 0.97 and increase n from 60 to
500 time periods. This includes periods with both positive demand and zero
demand and corresponds to 12-100 positive demand observations, since we will
have positive demand in roughly 1 in 5 periods, see Section 2.4.1.2. Results are

given in Figures 2.2, 2.5 and 2.7.

- Design B: We consider a training set length n = 60, L = 5 and different target
service levels (CSLyp; varies from 0.85 to 0.99) to explore the impact of target

service level on performance, see Figures 2.3, 2.6 and 2.8.

- Design C: We vary the lead time L from 2 to 6 given target service level
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EWTg; = 0.03 or CSLoy; = 0.97 and training set length n = 60 to explore
the influence of the lead time on the performance of the various methods, see

Figure 2.4.

In Example 2 in Subsection 2.3.3, we have seen that the estimated expected
waiting time may become extremely high for larger estimated extreme value indexes
7. To avoid this issue, we practically set an upper limit where Spyt = 1.5 - Semp.
We also use Semp as a lower limit on Seyt. Note that very large Se.t does not occur

when using the cycle service level (see Step 5 in Subsection 2.3.2).

2.4.1.2 Demand process

In our simulations, i.i.d intermittent demand is generated as follows. First, we
consider demand generated for corrective maintenance (CM). In each time period, a
positive CM demand is generated with probability pponzero = 0.2 and zero demand
with probability p.ero = 1 — Pronzero = 0.8. Next we choose one of the following
distributions to represent the positive integer CM demand: (I). Geometric based
compound Poisson distribution with p = 0.5 and A = 2.5; (II). Truncated normal
distribution with u = 5, 02 = 3, where we set negative values to zero. See Lengu et al.
(2014) for a detailed discussion on compound Poisson distributions and their fit to
spare parts demand. It is well-known that the truncated normal distribution satisfies
(2.1). Note that Shimura (2012) establish applicability of EVT for the geometric
distribution. Moreover, as the tail behaviour of the compound Poisson distribution
is related with the right tail of the compounding distribution (Willmot, 1990), this
also establishes applicability of EVT for compound Poisson demand with a geometric
compounding distribution.

We also consider cases in which this CM is augmented with demand stemming
from preventive maintenance (PM). PM in general may have a relatively large value.
Positive integer PM demand is generated once every 12 time periods and has trun-
cated normal distribution with v = 12, 02 = 2. In simulations, we thus either consider
CM demand only, or we consider CM and PM together by using positive PM demand

to replace the corresponding CM demand in the same period.

2.4.1.3 Results

We compare the accuracy of the various methods by evaluating the differences
between the targets and the achieved service levels. We discuss underperformance

(real performance does not reach target performance) as well as overperformance
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Figure 2.2: Simulation results of achieved CSL under fixed target 0.97 and different number
of observations (including positive and zero demand). Only CM demand is considered. The
underlying positive demand distribution is compound Poisson (left)/folded normal (right).
Each result shows the average of 5000 simulations.
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Figure 2.3: Simulation results of achieved CSL under fixed training set length 60 (including
positive and zero demand) and different targets. Only CM demand is considered. The
underlying positive demand distribution is compound Poisson (left)/folded normal (right).
Each result shows the average of 5000 simulations.

(real performance exceeds the target).

Figures 2.2-2.6 focus on situations with CM demand only. The empirical-EVT
consistently outperforms the empirical method. Both the empirical-EVT and the
WSS method achieve real cycle service level that is quite close to the target. Here,
WSS is closer to the target for relatively short training set length (60-80 periods - 12-
16 positive demand observations), while empirical-EVT is closer to the target for more
periods (> 20 observations). This would give the WSS an edge in practice because

the number of demand observations is typically limited there. Overperformance of
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WSS is observed when the positive demand is normally distributed, see Figure 2.2
and Figure 2.3. The empirical method, Croston’s method and SBA have difficulties
in reaching the target. The achieved cycle service level of each approach increases
as the training set length increases. Figure 2.4 shows that the empirical method and
empirical-EVT are the most sensitive to the lead time, while the WSS method seems

very robust to changes in the leadtime.

0.9 —
-
8 RS target
'g —®— empirical-EVT
§ —e—  empirical
£ 0.85 | — WSS —
< R Croston
- - - SBA
| | | I I
2 3 4 5 6
Lead Time
B T T
0.95 |~ |
0.9 |~ |
=
0 —_— target
O
g —®— empirical-EVT
»; —— empirical
£ 0.85 |- —r WSS -
< —4—  Croston
- - - SBA
| | | I I
2 3 4 5 6
Lead Time

Figure 2.4: Simulation results of achieved CSL under fixed training set length 80 (including
positive and zero demand), fixed target 0.97 and different lead time. Only CM demand is
considered. The underlying positive demand distribution is compound Poisson (left)/folded
normal (right). Each result shows the average of 5000 simulations.

Figure 2.5 and Figure 2.6 show the performance of each approach under the

expected waiting time target. The performance of each approach improves with the
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Figure 2.5: Simulation results of achieved EWT under fixed target 0.03 and different
number of observations (including positive and zero demand). Only CM demand is con-
sidered. The underlying positive demand distribution is compound Poisson (left)/folded
normal (right). Each result shows the average of 5000 simulations.

increase of training set length. Empirical-EVT outperforms the empirical method,
Croston’s method and SBA. WSS however performs better than empirical-EVT. It
has very good performance for compound Poisson demand, but it again overperforms
when demand is normally distributed.

We will see in Section 2.4.2 that Croston’s method and SBA attain a much higher
performance for empirical datasets when compared to their results in figures 2.2-2.6
for CM only demand. A partial explanation may be given by sudden large demands in

the empirical data, which may result from planned/preventive maintenance actions.
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(The limited information on the empirical data can neither confirm nor rule out the
role of PM in the large demands.) To test the effect of sudden large demands in
a more controlled environment, we report on simulation experiments in which CM
demand is augmented with PM demand, as discussed in Section 2.4.1.2.

The results are shown in Figures 2.7 and 2.8. For each demand distribution in
which PM demand is considered alongside CM we find that Croston’s method and
SBA suddenly perform much better than in the CM only case. Additionally, SBA
avoids the overstocking by Croston’s method. Moreover, the cycle service level of
the empirical-EVT is quite close to the target, and the most accurate of all methods
for higher targets. The empirical method achieves a lower cycle service level while
Croston’s method, SBA and WSS result in overperformance. When the target is
relatively low, overperformance happens under all approaches except for the empirical
method.

2.4.2 Empirical study
2.4.2.1 Setup and parameters

To demonstrate empirical results of the proposed approach, we conduct a study
based on real data. We use the automotive data set described by Syntetos and
Boylan (2005) from an automotive industry and data on component repairs from
Romeijnders et al. (2012). The automotive industry data set records intermittent
demand of 3000 Stock Keeping Units (SKUs) over 23 time periods. The training
set includes demand in the first 13 time periods and the last 10 time periods are
classified as the test set.

The aircraft component repair database used in Romeijnders et al. (2012) gives
spare parts usage in component repairs. We ignore the component level data and
focus only on the parts used in all component repairs together. The database tracks
the demand history of 11402 types of spare parts over 122 months. We set the first 84
months as the training period for each item and test the resulting base-stock levels in
the last 38 periods. The data set contains many very slow moving items that might
not be stocked in a real life setting. Therefore, we will consider only the parts which
were used in at least 14 months in the 7 years of our training period, corresponding
to at least 2 usages annually. Parts with less usage may not be stocked at all, and
therefore the performance for these parts is less relevant. This results in 2549 parts
that will be used in further analysis.

Except for using a different demand model, the setup of our experiments is in line
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Figure 2.6: Simulation results of achieved EWT under fixed training set length 60 (including
positive and zero demand) and different targets. Only CM demand is considered. The
underlying positive demand distribution is compound Poisson (left)/folded normal (right).
Each result shows the average of 5000 simulations.

with the approach in Section 2.4.1. That is, we use the data in the training set to
estimate the required base-stock level to achieve a certain service, and then use the
test set for determining the real service level associated with that base-stock level.
This approach is applied to individual each SKU or spare part and we obtain the
average service level over 3000 SKUs or 2549 spare parts. We consider a constant

L = 3 for the automotive industry data and L =5 for the component repair data.
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Figure 2.7: Simulation results of achieved CSL under fixed target 0.97 and different number
of observations (including positive and zero demand). Both CM demand and PM demand
are considered. The underlying distribution of positive CM demand is compound Poisson
(left) /folded normal (right). Each result shows the average of 5000 simulations.

2.4.2.2 Results

Figure 2.9 and Figure 2.10 show the empirical result of each forecasting method
for the automotive dataset and the aircraft component dataset, respectively. In the
automotive case, Croston’s method, SBA and WSS perform well. WSS results in an
overperformance in case of low target CSL or high target EWT. SBA has a lower
achieved CSL (or higher achieved EWT) than Croston’s method since it uses the

smoothing constant to adjust the estimator of mean demand. The empirical-EVT
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Figure 2.8: Simulation results of achieved CSL under fixed training set length 60 (includ-
ing positive and zero demand) and different targets. Both CM demand and PM demand
are considered. The underlying distribution of positive CM demand is compound Poisson
(left) /folded normal (right). Each result shows the average of 5000 simulations.

performs slightly worse than SBA. The empirical method has difficulties in reaching
the target, when compared to the other approaches. In the component repair case,
the empirical-EVT method performs the best for the EWT, while it is the joint
winner for the CSL target. In general, all methods have difficulties in achieving the
target. Croston’s method is competitive when CSL is considered, followed by SBA,
the empirical method and WSS.
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Figure 2.9: Empirical results of achieved CSL (left graph) and EWT (right graph) for the
automotive dataset.

2.4.3 Analysis and Discussion

Comparing Figure 2.7 and 2.8 with Figure 2.2 and 2.3, we found the performance
of empirical-EVT is more stable than WSS, Croston’s method and SBA in different
situations. E.g., with the introduction of PM demand, the underperformance turns
into overperformance for Croston’s method and SBA. WSS as well leads to severe
overperformance in the simulation in which PM demand is considered as well as CM
demand. We provide two partial explanations. In general, PM demand has larger
values than CM demand. WSS may select these large values repeatedly to forecast

for each period and sum them up to estimate the lead time demand. The repeated
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selection gives rise to overestimations and hence overperformance. Besides, as the
jittering process in WSS approach provides more variation around larger numbers
than around smaller ones, PM results in large generated demands. As a result, the
jittering process exacerbates the overperformance.

Overperformance of WSS is also observed in the situation of considering only CM
demand and folded normal distributed positive demand. It results from the fact that
positive demand values in this situation are relatively stable and the jittering process,
in this case, loses its advantage by increasing the estimated base stock level Siip,
unnecessarily. That the overperformance in case of compound Poisson distributed
positive demand is much less the overperformance for folded normal supports this
explanation, the compound Poisson had double the standard deviation of the folded
normal distribution for our parameters.

Lead time does not have much effect on the performance of Croston’s method,
SBA and WSS. The accuracy of the empirical-EVT and the empirical method de-
creases with lead time. These latter methods obtain lead time demand history
through summing up the values within time windows of lead time length. Thus,
larger lead times lead to more samples with the same value as a large proportion of
the demand series is zero. This results in less variation in the sample used as input
for the empirical method and the empirical-EVT method. Thus larger lead time
lead to the decrease in inventory performance of empirical-EVT, when keeping the
demand history fixed.

The performance of WSS is highly related to the data set. It has overperform-
ance in case of automotive industry and underperformance in the component repair
dataset. Performance of the empirical-EVT is influenced by the limitation of lead
time demand. As the training set from the automotive industry gives demand in
13 time periods and provides only 11 lead time demand under the empirical-EVT
approach, too few lead time demand above the threshold is available to estimate the
tail. The less accurate estimation of the lead time demand tail limits the performance
of the empirical-EVT approach. Data from the component repair case allow us to
approximate the tail based on history in 84 periods. With more training data, the

empirical-EVT leads to a better inventory performance than the benchmarks.

2.5 Conclusions

LTD forecasting is essential to spare parts inventory control but difficult as the

demand has the feature of irregularity and lumpiness. Non-parametric approaches,
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Figure 2.10: Empirical results of achieved CSL (left graph) and EWT (right graph) for the
component repair dataset.

like the empirical method, are suitable for spare parts since they can represent the
erratic and lumpy demand behaviour. A limited number of observations prevents the
empirical method from achieving high performance.

We propose a semi-parametric LTD forecasting method for spare parts. It is
applicable for forecasting the lead time demand and determining the inventory control
parameters of spare parts. The empirical-EVT method is a combination of non-
parametric empirical method and EVT extrapolation. It samples LTD from actual
data and uses EVT to model the distribution above a high threshold so that it
can predict possible extreme values. The new method can represent the demand

behaviour as well as achieve high target service levels.
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We build models for different service measures and analyse their applications.
Simulation shows that the empirical-EVT method has a relative good performance
and avoids overperformance which regularly happens under WSS, Croston’s method
and SBA. Still, the empirical-EVT has performance issues with limited demand his-
tories, and may be outperformed by WSS, and even by simpler methods such as
Croston’s and SBA. The empirical study based on data sets from two companies
demonstrates that accuracy of WSS highly depends on the data set. Moreover, the
test shows that the empirical-EVT struggles to perform well when demand history
consists of only very few periods. In contrast, performance of empirical-EVT is better
in cases where only relatively few demand points are available, but over many periods,
as shown for our second empirical test. In those cases, the method is rather compet-
itive. This should be taken into account when considering to apply the method in

practice.

Our theoretical treatise indicates that the empirical-EVT method has a problem
in estimating the fill rate. The fill rate fails to change monotonously with the increase
of base stock level when applying EVT independently for the LTD with lead time
L and the LTD with lead time L — 1. Another issue arises for the expected waiting
time, which can only be estimated when the extreme value index is not bigger than
or close to 1. This problem is solved by considering the cycle service level instead
of expected waiting time. The empirical-EVT method in combination with the cycle
service level works well. However, the issues related to applying EVT with expected

waiting time of fill rate may be a limiting factor when applying it.

Future research should focus on three related problems. Firstly, we observed
that the empirical-EVT method might overestimate the base stock level in the case
of large training set length, and it could be interesting to further investigate this
convergence issue. A second issue is finding ways to apply EVT to estimate the fill
rate, in order to avoid the lack of monotonicity identified in Section 2.3.2. Lastly,
it could be interesting to apply EVT to other forecasting methods. E.g., in WSS it
could be used to replace the jittering process in order to general lead time demand
which has not been observed in the history. It is not immediately clear how to use
the EVT approach with parametric methods such as Croston’s method or SBA, and

this too is an interesting subject for further research.
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Appendix

2.A Tail approximation using EVT

Let S be a given base stock level. 7 is some threshold. Denote E [(X -S| X > Ti|
by fia41 (7). Let F denote the cumulative distribution function of X, and let

xz* = sup{xz : F(z) < 1} denote the (possibly infinite) endpoint of its support.
Let SV 7 denote max (S, 7), and remark that

L

LL«Svﬂ—SMFww47—$+a—Fv»,

VT

/w* (I(S\/T))dF(x)/m* (1 - F () du.

SvT SvT

Thus, we may write

s

Ntall(T):L (x_S)fm\m>T($|l‘>T)d$

*

:/m (= (Svr)+(Svr) —8) —L& g

Svr (1= F(7))
Ji = F () du+(r—8)" (1= F (1))
(1-F(r))
=(r—-5)" - " — F(u))du
= =8+ T F ) /SVT(l F (u)) du. (2.14)

It directly follows from (2.2) that we may approximate fi4,5 (7) by

(T_S)++/;:T{1_H7 (%)}du forallSVr>7.  (2.15)

Now introduce

(2.16)

1-1/v
\I/,y(x)_{ {1 (5)} ity #0,

f(r )exp( f(+)7> if y=0,

and distinguish between the cases v < 0,y=0,0<~vy < 1land v > 1.
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e For v < 0, the endpoint z* is finite. Rewrite (2.15) as

*

oo [ fr ()

ot | Sf) =\ "
~c-9"+ {210 (5 ) LVT

= (r =8+ [, @),

= (7= 4+, (SVT)-T, (z%). (2.17)

e For v = 0, the endpoint z* can be finite or infinite, see de Haan and Ferreira
(2006). Assume z* is infinite. (2.15) is transformed to

(r—9)*t +/too exp (ﬁ) dz

-5+ [ (20)]

= (T =)+ [, (@)%, = ¥, (SV7) (2.18)

e For 0 <y <1, 2" =00, see de Haan and Ferreira (2006), (2.15) can be written

s L () e

=(r-8)"+ yf(_T)l {1 7 (?@9}” sur

=(T-8)"T+¥,(SVr1). (2.19)

oo

e For v > 1, it is easy to see that (2.15) goes to infinity, meaning the expected

shortage is infinite. So the expected waiting time is no longer valid.

Now, let X1, X5, ..., X, be a random sample of size n from the distribution given
by F’; that is, the observations X1, X5 ..., X,, are independent copies of the random
variable X. Let X (1) < X(9) <,... < X, be the ordered sample. Choose 0 < k < n,
and set 7 equal to X(,,_j). Recall that (1 - F (X(n,k))) ~k/n. Asa= f(7) and v

are unknown, we simply replace them by their estimators & and 4 defined by (2.6)
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and (2.7).
Estimate ., (z) by ¥ (z) defined in (2.12).

In the special case v < 0, we have that z* is finite. We may estimate =* by

3= Xty — = (2.20)
Y
see Equation (4) in Einmahl and Magnus (2008).
We now may estimate p,;) (7) by
i Q= (X(n_k)*S)Jr‘F\i/(S\/X(n_k)) ifo<qd<1
- + ks £ PRI PN
tal (X(nfk) —S) —|-\I/(S\/X(n,k)) —\I’(X(n,k) —a/’y) lf’}/<0
(2.21)

2.B Estimation of expected waiting time

Assume that the lead time demands are constructed via (2.8), where D;’s together
form a stationary process. Let E[D] denote the common expectation of the D;’s.

According to Little’s law, we may write
EWT (S) = EBO (S) /E[D], (2.22)

where EBO (S) denotes the expected backorders for base stock level S.

We compute the expected backorders EBO (S) via conditioning on the random
variable 1¢x~ .}, where 7 is again a deterministic threshold. Note that 1;x,, takes
the value 1 if the event {X > 7} occurs, and the value 0 if the event {X > 7} does
not occur. Denote E [(X —-9T X < Ti| by tnon-tail (7)-

As BO(9) is in fact equal to (X — S)T, the law of total expectation, see Ross
(2009, p. 107), yields

EBO (S) = E [(X - S)+]
—E[E[(X - 8)" | 1x>]]
—E [(X ST X < T} x P(X <7) (2.23)
E[(X S)+|X>7‘} x P(X > 1)
= F(7) ppon-tail (T) + (1 = F (7)) piaq (1) (2.24)
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We use (2.4) to approximately express E [(X -S| X > T} as a function of the
unknown parameters o and «y, see Equations (2.17), (2.18) and (2.19).

As before, let X1, X5, ..., X, be a random sample of size n from the distribution
given by F. As a and v are unknown, we simply replace them by their estimators
& and 4 defined by (2.6) and (2.7). As a consequence, we may estimate fi; .5 (7) by
fit 5] defined in (2.21). Moreover, we may estimate 1 — F' (1) by k/n. It follows that
the term (1 — F' (7)) f1444] (7) is estimated by

k
N 2.25
 Htail ( )

As the n — k observations below the threshold 7 behave as a random sample from
the conditional distribution of X given X < 7, we simply estimate p) 1 tai] (T)

non-parametrically by

R 1 1 n—k N
Hnon-tail = ;7 Z (X — S)+ —" Z (X(i) - S) . (2.26)
Xi<t i=1

As we may estimate 7 by X(,_j) and F (1) by (n — k)/n, it follows that the term

F (1) (1) is estimated by

Hnon-tail
n—k

nt Z (X(i) — S)+ (2.27)
i=1

We conclude that, for 4 < 1, we may estimate EWT (S) according to (2.10) with
(2.11) and (2.12).

2.C Estimation of cycle service level

Let X1, Xo,..., X, be a random sample of size n from the distribution given by
F,and let X(1) < X(5) <,... < X(,) be the ordered sample.

We distinguish between two cases: S < 7, and S > 7, where 7 is some given
threshold.

e For S < 7, we can simply estimate P (X < S) = F (S) non-parametrically by

~ 1 <
P(X<8)=— D lixi<s) (2.28)
=1
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o For S > 7, we first use (2.2) to approximate P (X < 5) =1—(1— F(S5)); this
yields

P(XgS)z1_(1_F(T)){1_H7(%)}. (2.29)

Choose 0 < k < n, and set 7 equal to X(,,_x). Replace a = f(7) and v by their

estimators & and 4. This yields the estimator

]3(X<S):1—fl{1—H@<S_)f("_k))}. (2.30)

(67

Combining (2.29) and (2.25) yields (2.30).

2.D Selection of threshold

We choose threshold through the moment estimator plot. We let k vary from
3 to n — 3, and obtain the corresponding extreme value index 4,_1,. .., Yn—k,-- -
43,%2. The threshold position which stabilizes the extreme value index v is the
which minimizes Z?:_QWHJ' — Hitj—1|. As the empirical method obtains lead time
demand by putting windows with size lead time over the demand history, it results
in the repetition of lead time demand in case of intermittent demand. The repetition
of lead time demand would make the moment estimator plot locate the threshold in
the place where lead time demand is repeated mostly since the parameter ~ there is
misleadingly stable. That is, using moment estimator plot to determine the threshold
directly may lead to the problem that the tail not only includes relatively large lead
time demand but also contains very small values which might not be considered as
tail. Therefore, we make a adjustment in applying the moment estimator plot to
determine the threshold. We only consider the threshold in the last 10 percents of
the LTD ascending series. That is, the threshold is as the 7 in the last 10 percent of

the series which makes the parameter ~ relatively stable.



Chapter 3

Spare Parts Inventory
Control based on

Maintenance Planning

3.1 Introduction

Spare parts demand forecasting is essential to controlling spare parts inventories
and avoiding high spare part shortage and holding costs. Time series methods estim-
ate demand based on history (see e.g. Syntetos and Boylan, 2005), and as such they
may work well when the historical situation is comparable with the future. They
respond reactively to unprecedented factors and cannot predict the timing of sudden
peaks in demand. This is especially problematic for spare parts demand because of
its intermittency and lumpiness (Petropoulos and Kourentzes, 2015).

Advance demand information (ADI) is information on demand, either perfect or
imperfect, that is available ahead of the actual demand occurrence (see also Tan
et al., 2007). This concept has been widely used in various industrial settings out-
side of the spare parts context, e.g. the demand forecasting of e-commerce (Ozer,
2003), customized products (Gallego and Ozer, 2001; Johnson and Whang, 2002),
construction industry (van Donselaar et al., 2001). To overcome the limitations of
time series methods in dealing with spare part demand intermittency and lumpiness,
in this chapter we propose to use planned maintenance tasks as a source of ADI for

spare parts inventory control.

45
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We focus on maintenance tasks that prescribe to inspect a part of the asset, and
depending on the condition of the part, it is then either immediately replaced by
a spare part, or it may remain in the asset. Such on-condition maintenance tasks
are a cost-effective tool for ensuring that parts continue to meet their functional
and safety requirements, and they therefore constitute an important part of modern

maintenance policies for aircraft, trains, and other capital assets.

The resources that enable maintenance, e.g. mechanics and a maintenance hangar,
need to be planned ahead of the actual maintenance. To enable this maintenance
logistics planning, companies specify which on-condition maintenance tasks will be
performed some time periods into the future (see Section 3.3 for a detailed discus-
sion). It is this maintenance logistical plan that we propose to use as a source of
ADI in this paper. We need to overcome two complications when using this form of
ADI to control spare parts inventories. First, on-condition maintenance tasks are a
form of imperfect demand information: Only upon inspection does it become clear
whether an on-condition maintenance task constitutes a spare part demand. So using
the maintenance plan involves dealing with this inherent uncertainty. Second, while
the need for logistics planning forces companies to plan on-condition maintenance
tasks ahead of time, this plan is only available and reliable a few months into the

future.

We contribute to literature by proposing a new approach for joint forecasting
and inventory control based on the maintenance plan. The approach endogenously
links maintenance tasks to parts usage based on maintenance data. Moreover, our
approach integrates the demand forecasting model with an inventory control model.
The natural approach for this would be to somehow extrapolate the demand fore-
cast for the first few months, but this leads to myopically ordering too many parts
when demand is forecasted to be high, which is very costly for slow moving parts.
We contribute a method to overcome this: We extend the demand forecast using a
hybrid forecasting approach, and we propose a forward-looking inventory procedure
that explicitly takes into consideration the risk that parts stay in inventory for a
long time after procurement. The hybrid forecasting approach combines an ADI-
based approach for the first few periods with a regular forecasting approach for the
remainder of the horizon. The forward-looking inventory policy solves in each period

a stochastic dynamic program based on the latest demand forecasts over the horizon.

The forecasting element of our approach is conceptually related to spare parts
forecasting models that use the delay-time model (e.g. Wang and Syntetos, 2011),

but unlike those approaches our approach does not need the delay-time distribution
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of each component as input, but it estimates from data all parameters needed to
arrive at forecasted demand distributions. Other approaches improve forecast accur-
acy at the expense of increasing the difficulty, the effort and the operational cost to
predict demand, e.g. investing in a condition monitoring system (Topan et al., 2018),
see also Driessen et al. (2010). In particular, while our method needs more data than
typical time-series methods, we need considerably less data and information than ap-
proaches based on the delay-time model (e.g. Poppe et al., 2017; Wang and Syntetos,
2011) or on system monitoring systems (Lin et al., 2017; Topan et al., 2018). This
reduction in the data requirements constitutes an important step towards enabling
the application of ADI-based approaches in practice, and in particular towards rolling
out such approaches over entire spare parts assortments.

We illustrate this by assessing the potential value of implementing our approach
for inventory control based on data for thousands of parts of two companies, and
compare it to a state-of-the-art time series forecasting approach (viz. Syntetos and
Boylan, 2001). We find that optimizing inventory using the maintenance plan yields
a very substantial cost reduction of 23-51%, compared to the benchmarks. To our
knowledge, this is the first proof that an ADI-based approach yields value in a prac-
tical setting, where all parameters need to be estimated from data.

The remainder of this chapter is organized as follows. The next section gives
an overview of the relevant literature. In Section 3.3 we discuss the availability of
planned on-condition maintenance tasks in practice. In Section 3.4 we discuss our
approach. Section 3.5 gives the setup and results of our experiments using two sets

of real company data. The final conclusions are presented in Section 3.6.

3.2 Literature Review

Spare parts demand can either be forecasted based on historical data, advance
demand information or a combination of both (Driessen et al., 2010). Since our ADI-
based method represents an alternative to time-series forecasting methods for inter-
mittent spare parts demand, we first briefly review literature those latter methods
(for a more detailed review see Van Wingerden et al., 2014). Time series forecasting
methods for intermittent demand include parametric and nonparametric methods.
Croston’s method (Croston, 1972) is an early example of a parametric method. Re-
cent works analyze and improve this method (Syntetos and Boylan, 2005; Syntetos
and Boylan, 2001; Teunter et al., 2011; Syntetos, 2001; Shale et al., 2006) and pro-

pose alternative parametric methods (Willemain et al., 1994; Ghobbar and Friend,
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2003; Eaves and Kingsman, 2004; Romeijnders et al., 2012). For insightful discus-
sions regarding parametric methods refer to Boylan and Syntetos, 2010 and Prak
and Teunter, 2019. Non-parametric methods construct empirical distributions of de-
mand, see e.g. Van Wingerden et al. (2014), Willemain et al. (2004), Porras and
Dekker (2008), and Zhu et al. (2017).

We next review contributions that apply ADI in demand forecasting and invent-
ory control. ADI may take different forms (e.g. service contract, sensor data from
machines, part age, etc) and topics in literature include how to derive demand from
different forms of ADI and how to respond to ADI. ADI literature can be divided into
two streams: perfect ADI refers to situations where the quantity and timing of de-
mand is known in advance, and imperfect ADI refers to cases where some information

regarding demand is known, but not the exact quantity and timing.

Hariharan and Zipkin (1995) study where customers place their orders in advance
(i.e. a demand leadtime), and show that this form of perfect ADI is mathematically
equivalent to a reduction in the supply leadtime. Gallego and Ozer (2001) also study
perfect ADI and show that state-dependent (s, S) policies are optimal in the periodic
review model for positive set-up cost. The study gives a lower bound to its extension
to a distribution system, which is studied in Ozer (2003). Gallego and Ozer (2003)
consider perfect ADI in a multi-echelon system. They find that the value of ADI on
each echelon is influenced by the lead time of that echelon, and prove the optimality
of state-dependent, echelon base-stock policies. The key finding for perfect ADI is

that the inventory position should include outstanding demand.

We now discuss papers with imperfect ADI. Tan et al. (2007) study an inventory
problem with ADI that might either be realized as demand, wait in the system one
more period or leave the system without demand realization with given probabilities.
They show that the optimal policy is of order-up-to type, with the order-up-to level
depending on the ADI information. Tan et al. (2009) consider imperfect ADI in an
ordering and rationing problem with two demand classes. ADI is used to make a

better rejection decision to lower class demand.

In addition to the above papers utilizing ADI to obtain (optimal) inventory
policies, Abuizam and Thomopoulos (2005) and Tan (2008) apply ADI in demand
forecasting. Abuizam and Thomopoulos (2005) propose a Bayesian method to up-
date the expected amount of orders. However, Bayesian updates might fail in some
problems as they rely on the distribution assumption, give one sided updates and fail
to consider customer patterns (Tan, 2008). Therefore, Tan (2008) combine expert

judgmental prediction and demand estimation from ADI. ADI are subject to change
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in time and orders are partially materialized. Historic record is used to model the
order changing behavior. Van der Auweraer et al., 2018 review the forecasting meth-
ods in which ADI takes the form of installed base information. Forecasting methods
are evaluated either in forecasting accuracy or in the integrated inventory system.
Syntetos et al. (2010) and Boylan and Syntetos (2006) stress on the importance of
considering inventory metrics rather than standard forecasting accuracy measures in
evaluating the forecasting method. Simulation is the most widely used in evaluating
the forecasting method and inventory performance, e.g. Wang and Syntetos (2011),
Zahedi-Hosseini et al. (2017) and Poppe et al. (2017).

Using the imperfect ADI concept for improving spare parts inventory control could
potentially aid practitioners to overcome the difficulties posed by spare part demand
intermittency and lumpiness, and a few researchers have developed approaches in
this general direction. Deshpande et al. (2006) track the age of parts in aircraft and
use this information as ADI to improve spare parts inventory control. Pince et al.
(2015) consider a manufacturer with contractual obligations to provide parts to its
customers, and study the drop in demand rate resulting from contract expiration.
Their proposed policy reduces the base stock level ahead of actual contract expiry.
Basten and Ryan (2015) consider a single stocking point that satisfies demands res-
ulting from corrective and preventive maintenance, and assume that perfect ADI is
available for preventive maintenance. They propose heuristics for order and invent-
ory allocation decisions, and find that the joint inventory requirement will be reduced
due to the effect of risk pooling. Romeijnders et al. (2012) develop a two-step method
that makes use of the component repairs in spare parts demand forecasting. They fo-
cus on comparing various time series forecasting methods without ADI, but mention

that ADI in this setting can considerably increase forecast accuracy.

Wang and Syntetos (2011), Topan et al. (2018), Lin et al. (2017) and Poppe et
al. (2017) pioneer new approaches towards spare parts inventory control driven by
planned/foreseen maintenance, and as such they are arguably most closely related
to our present work. These works are conceptually based on delay-time degradation
models. To our knowledge, this key idea was introduced in Wang and Syntetos (2011),
in the context of a block-based inspection policy. They assume that distributions for
both the initial and the delay-time of the delay-time model are known. They focus
solely on forecasting, and develop a forecasting model by computing the conditional
probabilities of parts needing replacement during inspection and between the inspec-
tion intervals. They find that this model can reduce the forecast error substantially.

Topan et al. (2018) consider an asset monitored by a real-time condition monitoring
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system that generates imperfect warnings that may indicate that a part is failing.
They develop effective spare parts inventory control policies in this situation. Poppe
et al. (2017) consider an asset monitored by a real-time condition monitoring system,
and investigate the impact of adopting a condition based maintenance policy on in-
ventory control, where they use corrective maintenance and periodic maintenance as
benchmarks. In contrast, Lin et al. (2017) investigate the value of condition mon-
itoring systems for spare parts inventory control without changing the maintenance
policy, and find that it may be substantial.

All these approaches rely heavily on component degradation information, in the
form of real-time condition monitoring and/or complete distributional information
on the degradation process. In contrast, our approach needs no such information.
Instead, we propose to directly estimate the probability that a part needs replacement
in an on-condition maintenance task from data. This greatly simplifies applying our
approach in practice. In addition, we are the first to use real data to test the value
of ADI approaches for spare parts inventory control. Note that our tests involve
assessing the value of the model for inventory control, and as such they contribute

to an understanding of the potential value of our approach in practice.

3.3 On-condition maintenance tasks as advance de-

mand information

We first discuss the on-condition maintenance concept versus other maintenance
concepts, and explain how planned on-condition maintenance tasks constitute ADI.
We then discuss in more detail how information regarding planned on-condition main-
tenance tasks arises in practice. The discussion is based on the experience of the
authors working closely with two maintenance organizations (cf. Section 3.5). The
second author has been working with these two companies for over 10 years. The first
author conducted site visits to these and other maintenance organizations to verify
the validity of the idea using maintenance plan for spare parts demand forecasting.
The third author has worked with many industrial partners and accumulated deep
insights to the maintenance industry. Finally, we note that Driessen et al. (2010)
bring up a similar discussion based on in-depth interviews with a wide range of
maintenance organizations. (Unlike us, they do not develop forecasting methods. )

The simplest form of maintenance is perhaps break-down maintenance, i.e. run-
to-failure. In contrast, preventive maintenance encompasses a wide range of main-

tenance strategies aimed at preventing failures, and we discuss such strategies next.
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In time-based maintenance a part or component is replaced periodically, e.g. after a
fixed amount of time (e.g. every 6 months) or usage (e.g. every 20000 landings of
an aircraft). Time-based maintenance can be planned ahead easily, and no condition
information is needed to apply it, but it has the disadvantage that the useful life of
the replaced parts may be poorly used. Therefore, when it is economically feasible
to do so, companies inspect parts of the asset before deciding upon replacement;
the part is then only replaced if degradation is above some threshold, hence the
term on-condition maintenance task. This approach is typically motivated using a
delay model for part degradation (Wang, 2011; Wang, 2012). Arguably, on-condition
maintenance tasks are an example of condition-based maintenance, but most scholars
reserve this latter term for situations where the condition is real-time monitored. In
practice, the prevalence of real-time condition monitoring systems is still low because
of their high associated cost (Topan et al., 2018).

In this chapter, we propose to use planned (but not necessarily periodic) on-
condition maintenance tasks as spare parts ADI. This generic idea is broadly applic-
able across a wide range of maintenance organizations. The key and only require-
ments of the proposed approach are that on-condition maintenance tasks are known
beforehand (e.g. 1 month into the future), and that information on past on-condition
maintenance tasks and resulting spare parts usage is stored. In typical high-tech as-
set maintenance settings, the first requirement is satisfied in the sense that a broad
range of on-condition maintenance tasks can be accurately foreseen beforehand, and
data collection is often compulsory because of traceability requirements. Indeed, as-
set maintenance must be planned ahead of time to organize availability of the asset,
qualified mechanics, tools, maintenance hangar, etc. The scope of asset maintenance
is typically also known beforehand. Therefore, for those assets which have a big
ratio of planned maintenance, using information on the on-condition maintenance
task is very beneficial from cost perspective. Moreover, increasing adoption of main-
tenance management software has made data on the maintenance plan available in
formats useful for automatic decision making, which has increased the potential of
and need for the approach we propose. In the following, we explain in more detail
the applicability of the approach for modularly designed assets. Modularly designed
assets contain many line-replaceable units (LRUs) that can be removed during asset
maintenance. Examples include aircraft, trains, trams, and many other high-tech
machines. LRUs are typically removed periodically in order to inspect them. In par-
ticular, each LRU has an associated inspection interval and inspection scope. This

scope consists in the on-condition maintenance tasks on parts of the LRU that to-
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gether constitute the inspection. Both inspection intervals and degradation limits for
on-condition tasks are typically prescribed by the manufacturer of the LRU, which
bases its prescriptions on quantitative analysis in so-called reliability-centered /risk-
based maintenance studies, see e.g. Khan and Haddara (2003) and Moubray (1997).
The inspection of LRUs after removal from the asset is typically carried out in spe-
cialized repair shops. Therefore, parts of the LRU that are replaced depending on
their condition are typically referred to as shop-replaceable units (SRUs). Example:
the manufacturer may specify that the rear servomotor (=LRU) of a certain type of
aireraft must be removed for inspection every 8000 flight hours. Moreover, the man-
ufacturer specifies that if, during inspection, it is found that the coil (=SRU) of the

servomotor shows any signs of corrosion, it must be replaced.

Asset maintenance is clustered in order to efficiently satisfy the component safety
requirements prescribed by manufacturers. E.g. in aviation it is common practice to
define maintenance with several depth levels, e.g. A, B, C and D level maintenance.
In A-level maintenance the scope is small, while D-level maintenance encompasses
the removal and inspection of a wide range of LRUs. The various levels of asset
maintenance and their frequency are designed such that inspection intervals of indi-
vidual LRUs are guaranteed. As a consequence of this careful design of the various
checks, the work scope of such checks is typically specified beforehand, i.e. it is known
which LRUs will be removed for inspection in which check. Moreover, maintenance
organizations make detailed plannings of the maintenance of their fleet, in order to
align availability of bottleneck resources such as maintenance hangars, mechanics and
tooling, and moreover to ensure that the operational capabilities of the fleet remain
at a sufficiently high level. Example (continued): The fleet maintenance plan of
an operator specifies that in the upcoming four weeks, each week two aircrafts of a
specific type will undergo C-level maintenance, which includes removal and inspection

of the rear servomotor installed in those aircraft.

The main idea of this chapter is then to use the maintenance plan, and in particu-
lar the on-condition maintenance tasks that can be derived from the plan, as input to
forecast spare parts demand. Maintenance plans may be made years in advance, but
the plan is not reliable far into the future. This may for example be a consequence of
cumulative forecasted usage (e.g. flight hours/kms) deviating from actual cumulative
usage, or changes in the plan, etc. However, on the short term (e.g. a few months
into the future instead of years) cumulative usage can be more accurately forecasted,
making such deviations rare. Another reason for the plan to be more reliable on the

short term is that deviations on the short term cause operational disruptions as well
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as unavailability and/or idle time of bottleneck resources. We propose to base ADI
on this reliable time horizon, and we develop a method that reverts to time-series
forecasting for periods beyond this horizon. Example (continued): The coil in
the rear servomotor has historically been replaced in one out of three repairs. Based
on two planned removals of the rear servomotor per week, an expected demand of
2/3 = 0.67 coils per week is forecasted for the next four weeks.

To some extent, the approach can help to predict peaks in demand. Example
(continued): Suppose that an operator decides to inspect all servomotors in the
fleet in April, to avoid any problems in the busy summer months. As a consequence,
there will be 18 inspections per week for the month April. Based on this, expected
demand of coils suddenly grows to 6 per week, or about 24 per month, and using the
maintenance plan would enable to predict the sudden demand hike. However, note
that there would still be considerable remaining variability in coil demand because of
variations in actual coil replacement rates.

We emphasize that while maintenance plans and tasks are nowadays increasingly
available in maintenance management systems, such systems are not ubiquitous, and
even if an investment in such systems is made, it is not necessarily trivial to extract
information from such systems in a format usable for spare parts decision making.
Apart from developing methods to use on-condition maintenance plans for spare parts
inventory control, one of the goals of this chapter is testing their potential value in
practice using data from companies in aerospace and train maintenance that were
able to extract the necessary data from their system. We believe this assessment may

help in driving business cases for the proposed approach.

3.4 Methods

Our approach is applicable in general for maintenance organizations that perform
on-condition maintenance tasks. For concreteness, in what follows we adopt termin-
ology of a repair shop. We focus on one specific LRU/component that is regularly
inspected by the repair shop, which is an establishment specialized in repairs of line-
replaceable units (cf. Section 3.3). Inspection consists of determining the condition
of parts of the component: if a part is degraded beyond some acceptable level, then
it must be removed and discarded, and replaced by a spare part. So for the repair
shop, each component repair corresponds to a number of on-condition maintenance
tasks: one for each part in the component.

To complete repairs quickly, the repair shop keeps a local inventory of spare
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parts, and our focus is on inventory control of one specific spare part that may be
used in the component. In case the part is needed but out of stock, an emergency
order is placed, and after the emergency leadtime the repair continues. Emergency
orders are a common way to avoid very long and costly delays of maintenance, and
the emergency order leadtime is understood to be much shorter than the regular
leadtime. Note that placing an emergency order is (mathematically) equivalent to
a lost sale, and we take this latter perspective. We consider the penalty costs for
the lost sale to be ¢, where ¢, includes emergency order cost and costs of delaying
the repair. Note that delaying a component repair may be costly as it requires the
mechanic to store the inspected component, and to later retrieve it, which is time-
consuming. As is customary in industry (cf. Romeijnders et al., 2012), inventory is
reviewed periodically, resulting in a periodic-review, single-item, lost-sales inventory
system. We denote periods by ¢ € {1,...,T}. Here, T is the last period before the

end of the horizon.

We consider a constant lead time L for a regular order. Parts ordered at the start
of period t arrive at the start of period ¢t + L. We let L = 1, which corresponds to
a situation where parts ordered one period are available in the next period. This
is reasonable because repair shop inventory is replenished from a central warehouse
every period. Moreover, since many SRUs are relatively inexpensive, it is affordable
to avoid stock-outs in this central warehouse. More importantly, focusing on this
assumption avoids very technical inventory models and allows us to focus on the
exposition of the key ideas regarding the integration of ADI and inventory control.
For the same reasons, we assume no economies of scale in ordering. Inventory has
holding cost h per part per time unit, and since we work with a finite horizon, leftover
inventory at the end of period T is penalized with cost s per part. This penalty may
either reflect the cost of scrapping the inventory (in case this is really the end of the
horizon in which the part is used), or it may reflect the cash tied up in inventory at

the end of the horizon, which causes a potential loss of opportunity, cf. Section 3.4.2.

As described in Section 3.3, we focus on cases where the repair shop knows the
number of on-condition maintenance tasks (component repairs) that will be carried
out some periods in advance. In particular, at the start of period ¢, the repair shop
knows the number of on-condition maintenance tasks for periods ¢t,t +1,...,t+ T,
where T;,, corresponds to the number of periods that tasks are known in advance.
Note that the spare part demand for period ¢ is only revealed during period ¢: only
upon inspection does it become clear whether a part needs replacement. Also, we

assume that the repair shop keeps track of past on-condition maintenance tasks and
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the resulting spare parts demand. (This is often required for quality assurance reasons

anyhow.)

3.4.1 Forecasting

The goal of this section is to arrive at a demand forecast for upcoming periods that
can serve as a basis for inventory control. Note that for this latter purpose, a demand
distribution forecast rather than a point estimate is needed. Let d; denote the actual
spare part demand in period ¢, and let A; denote the number of maintenance tasks
in period t. At the start of period ¢, we know the values d;y; and A;y; for i < 0,
because those periods are in the past. We also know A;4; for 0 <4 < T,,: this is the
ADI.

Conceptually, an on-condition maintenance task results in a spare part demand
with some (failure) probability p. In practice, such a probability needs not not be
stationary; it may be subject to change as the components age, and as their usage
pattern changes, etc. Moreover, the precise value of this probability is unknown. We
therefore suggest to estimate the value of this unknown probability from data, by

updating the forecasted failure probability p; in every period t as follows:

di—1

N 1—a)pi—1 +a
bt = ( )pt ! Aiq

D1 if A1 =0 (3.2)

if A_q >0 (3.1)

Here, « is a smoothing factor. p could be initiated as 0, or using the first few months

of the demand history.

To forecast demand more than 7}, periods in advance (that is, d;; where i > T,,)
in our proposed method, we revert to standard time-series methods to forecast the
average demand per period, which will be denoted by A\;. We opt for the well-studied
Syntetos-Boylan approximation (SBA) (Syntetos and Boylan, 2001), which is an

improvement to Croston’s method (Croston, 1972):
M=1-—=)= (3.3)
Here, o is a smoothing parameter. The estimated demand size §t is updated by

t =
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St—l for dt_1 =0 (35)
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and the estimated demand interval %t is updated by

~

7 (1- o/)%t,l +a'ki_q fordiq1 >0 (3.6)
t =
kt—l for dt—l =0 (37)

At the start of period ¢, to arrive at a forecasted demand distribution ﬁtﬂ_i for
some upcoming period t + i, we distinguish between the cases i > T, and i < T),.
For ¢ < T,,, the spare parts demand has a binomial distribution with A;,; trials
and success probability p. Since p is unknown, we substitute the estimated value p;
to obtain for 0 < i < T, : ﬁt,tﬂ- ~ B(A¢+i,pt), where B(n,p) denotes a binomial
distribution with parameters n and p. For ¢ > T,,, Ay, is not available. Because
the Poisson distribution is a good fit on spare part demand in general, for ¢ > T,,, we
forecast the demand distribution as ﬁt7t+i ~ poisson(Xt).

We note that there are substantial difference between using B(As4,p:) for fore-
casting, versus using poisson(xt). Most importantly, B(A;1;, p¢) reacts immediately
to a large number of planned maintenance tasks, while poisson(xt) only changes after
the maintenance tasks have been executed. Secondly, using the binomial distribu-
tion B(A¢4i,pt) has the advantage that we explicitly know an upper bound on the

number of replacements, which may help reduce the stock in certain situations.

3.4.2 Inventory optimization

We develop an approach for determining the amount x; of spare parts to order in
some arbitrary period t. Since demand is non-stationary, z; should not myopically
depend on the forecasted demand during leadtime alone, but it should be forward
looking. This is easily seen based on an example: Let T, = 1 and consider two
situations at time t: 1) py = 0.2, Ay = 0.01, A; =10, As41 =10; 2) pr = 0.2, A\ = 2,
Ay = 10, Ayp1 = 10. In both cases, demand on the short term is likely around 2
since prAir1 = 2, but in the first case, demand is expected to go down to 0.01 in
subsequent periods, while in the second case, demand is expected to remain around
2. That means that any items remaining at the end of period t + 1 will likely stay in
stock longer in the first case than in the second case, which should be reflected in the
order decision.

To arrive at a forward-looking policy, in each period ¢ we solve a stochastic dy-
namic program (SDP) over periods t+i € {¢,...,T}. This SDP uses the demand dis-
tributions over said periods, but the exact demand distribution is unknown. Instead,

it is natural to use the forecasts constructed in period ¢: ﬁt7t+i. In the following, we
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briefly summarize the steps that occur in each period, and we subsequently give the
SDP used to determine the order quantity z; in each period ¢. For summarizing the
steps, we introduce y; and y; to denote the on hand inventory at the beginning and
the end of period ¢, respectively. Here, y; is understood to include the items that
arrive in period t.

In each period, first the order placed in the previous period arrives. Thus y; =
Y;_1 + x¢—1. Then the order amount z; is decided. Next, spare part demand D;
happens. Demand is satisfied by on hand inventory ;. Thus at the end of period ¢
we have on hand inventory y; = (y: — D¢)" = (y;_; +xt—1 — D). The holding cost
h - y; and emergency ordering costs c. - (D; — y;)" are incurred. Subsequently, the
next period starts.

To arrive at an SDP equation for deciding x, let f; +;(yi+;) denote the optimal
total discounted cost from period ¢ 4+ ¢ until the end of the time horizon T, when
the starting inventory in that period is y;4;, and based on the forecasts obtained in

period t. Then f; 1, satisfies the recursive equation:
oo

forvi@er) = min Ay P(Dyygs = d) (g —d)t (3.8)
wf,JriE{O,l,...} =0

+ ¢y P(Digis = d)(d —yeya)

d=0
o0
+ Z P(Diyi = d) friiv1(Yevitr) (3.9)
d=0
= i . ; 3.10
R 1
where Y4541 = (Yii —d) T+, and with the boundary condition f; 741 = —s-yri1.

This boundary condition reflects that, in our approach, we assume that at the end
of the horizon, inventory must be scrapped. This is in line with assumptions in our
numerical experiment. However, even in situations where the end of the horizon does
not necessarily correspond to part obsolescence, it may be wise to add a penalty to
ending the last period with inventory, since this may avoid large procurements near
the end of the horizon because of the end-of-horizon effect. So we believe that having
this penalty is wise, even if not all inventory would be scrapped at the end of the
horizon. Note that (3.10) implicitly defines g 44i(x¢+;). We then obtain the amount
to order in period t as z; € argmin g, (z). Note that f;;+;(yi+:) corresponds to
estimated costs based on the forecast constructed at the start of period ¢. Hence,

after updating the forecast, at the start of each period a new SDP is constructed to
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arrive at ;.

We next discuss the computational effort required to solve the SDP defined in (3.9)
using backward induction. A practical upper bound for the maximal planned optimal
on-hand inventory (i.e. y; + x¢) can be obtained by using a very high percentile of
the demand distribution, because it cannot be optimal to order an amount that will
only be used with negligible probability. In particular, a Poisson random variable
with mean A\ exceeds U(\) = X + 10 + 10X with almost vanishing probability
for the Poisson case; for the Binomial case we could use the natural bound A;.
y¢ can then be bounded by 2U (5\) Then backward induction for each inventory

decision involves computations over T' — ¢ + 1 periods, with 2U()\) states for each
period. Computing the value for each state involves at most a constant times U (\)
computations, so computation time for each decision (i.e. solving the SDP) can be

bounded by some constant times U(A\)?T. For the experiments that we report in

Section 3.5.2, computation time was (much) less than a second for each decision.

3.5 Assessment of potential value of the method

In this section we use data from two maintenance companies in order to quantify
the potential value of the ideas and methods developed in this paper. In Section 3.5.1

we discuss the data and the setup of the experiments. Section 3.5.2 gives the results.

3.5.1 Data and experimental setup

We first briefly describe the two companies and their data, and then discuss the
experimental setup. The first company is Fokker Services (FS). FS provides com-
prehensive in-house component maintenance, repair and overhaul support to aircraft
operators in dedicated repair shops. Components are typically delivered to FS ac-
cording to the aircraft operator maintenance plan. FS subsequently determines the
condition of parts during initial inspection. Failed parts generate demand for spare
parts, which are delivered from a warehouse next to the repair shop. (The warehouse
is replenished from a central warehouse in the Netherlands, but this replenishment
is left out of the scope of this study. )

Repair data over a period of 134 months are available. Data are cleaned by
removing some parts which are not applicable in our model, e.g. if the bill of material
coefficients are larger than one for the part/if the part is used in a quantity larger
than one in a single repair. Each type of component and each type of spare part

has a unique serial number. In our analysis, we use the following information that
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is gathered about component repairs: Period in which the component arrived at the
repair shop, component serial number, which spare parts (serial numbers) were used
in the repair operation. As a component might generate demand of different spare
parts types, we call the component and each corresponding type of spare part as
one spare part-component pair. The data set includes 24,455 different spare part-

component pairs.

We designate the first 84 months as the training set. Within this training set,
we use the average of the first 48 months to arrive at an initial estimate for the
model parameters. We then use the approach discussed in Section 3.4.1 to update
the parameters (e.g. parts failure probability) for the remaining 36 months in the
training set. The test set contains the last 50 months of data, i.e. months 85-134. In
the test set, we keep updating the parameters, and we record performance statistics

such as holding costs and emergency ordering costs.

Real SRU prices are not available. In the experiment, we consider the following
4 parameters as the experimental factors: (i) holding cost per item per time unit
h, (ii) emergency shipping cost ¢, (iii) scrapping cost at the end of horizon s, (iv)
maintenance plan lead time T,.

For the base case, we use the following parameters. At 24% holding costs per
year, a typical low part price of 5 euros amounts to h = 0.1 euros/month. Costs for
scrapping parts at the end of the horizon are set at s = 5 euros, because the costs
of scrapping are dominated by the lost investment. Regarding the emergency costs,
we found in discussions at various repair shops that delaying repairs is inconvenient
because it typically requires the mechanic to temporarily store the component, and to
later retrieve it. Additionally, even relatively short repair delays may harm customer
satisfaction. As a consequence, we set the penalty costs for an emergency shipment
as ¢, = 20 euro. Finally, we set T}, = 3. We design our experiments around these
base case parameters, and a sensitivity analysis is conducted to explore the effect of

changes to the base case.

Since each component constitutes an on-condition maintenance task that may
result in usage of the part, we can directly apply our methods for each spare part-
component combination. Our method is used to determine the replenishment quant-
ity in each period. Subsequently, we simulate the dynamics of the system using the
real demand and maintenance data (cf. Section 3.4.2), and obtain holding, emer-
gency shipping, and scrapping costs for all parts. To assess the value of ADI, we will
use as a benchmark a method that does not use ADI. Like the method proposed in

this chapter, the benchmark uses the recursive approach (3.9-3.10) to set spare parts
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orders. However, the benchmark uses the time series forecast ﬁt’tﬂ- ~ pois(xt) for
all future periods, including those with 0 < i < T,,. Note that the value of A; is
not needed for the benchmark, and note that the Syntetos-Boylan approximation is
used to determine A\;. So the benchmark represents the state-of-the-art time-series
method.

Note that our experiments compare holding, emergency shipping, and scrapping
costs for both the proposed approach and the benchmark. Thus costs for performing
the actual on-condition maintenance tasks (i.e. labor costs & downtime of equipment)
are not considered in either approach. This is reasonable, since the latter costs are

exogenous to the model, and should be considered as sunk costs.

We also test our approach at another company: the Netherlands Railways (NS).
NS is by far the largest operator of passenger railway transport in the Netherlands.
The maintenance department of NS tracks the repair actions of main components of
trains over 35 months, and we obtained that data. The history covers information
over 138,347 repair actions on main components. At NS components may either be
replaced as part of the maintenance plan, or upon unplanned failure. The former
covers 2,727 types of components and 749 types of parts, and the latter covers 3,935
types of components and 1,485 types of spare parts. Ideas in this chapter are applic-
able to the former case, and we only use that data. We designate the first 25 months
of demand as training data, and the last 10 months as test data. Out of the training
set the first 20 periods are used for initialization of forecast parameters, and the last

5 for updating those parameters. The other settings are the same as in the FS case.

We mainly evaluate the proposed approach and benchmarks using inventory con-
trol metrics, but to provide a broader perspective, we also assess the performance of
the proposed forecast approach in isolation using the root-mean-square-error (RMSE)
and mean-absolute-deviation (MAD). In evaluating the forecasting accuracy we use
the point forecast of demand rather than the demand distribution. Therefore, we con-
sider the mean of the binomial distribution estimated in 3.4.1 and the benchmarks
include moving average (MA), exponential smoothing forecast (ES), Croston’s fore-
cast method (CR), Syntetos-Boylan approximation (SBA) and forecasting method of
Teunter et al. (Teunter et al., 2011) (TSB). The length of moving periods in the MA
method is set to be 12. The smoothing constant in ES is 0.2. We give 0.2 to both the
smoothing constant of the demand size and that of the demand interval in CR and
its modification SBA. The smoothing factors of the demand size and the probability
in TSB is set to be 0.2 and 0.1 respectively. The initial forecast in the benchmarks

is made over the first 48 months in the Fokker case and 20 months in the NS case.
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3.5.2 Results

We compare the total cost of all spare parts of our proposed approach to the costs
of the benchmark that only uses time-series forecasts. Figure 3.1 shows the relative
cost reduction of all the spare parts at Fokker Services, in the Total Costs (TC),
Holding Costs (HC), Emergency Costs (EC), and Scrapping Costs (SC). Figure 3.2
does the same for NS. Each column in Figure 3.1 and 3.2 represents a single setting of
parameters: For each case the base values of parameters are h = 0.1, p = 0, ¢, = 20,
s =5, T,, = 3. Figure 3.4 and 3.5 show the forecasting performance measures for
the Fokker Service and the NS respectively. Average over all types of spare parts are
given.

As the FS case has a relatively long demand history, we can make a relatively
accurate categorization of spare parts based on the number of months with positive
demand during the training period (84 months) to explore the value of the mainten-
ance plan on each category. The three categories are very-slow moving (1-5 months
with positive demand), slow-moving (6-20 months), and fast moving (21-84 months).
We have 24,455 types of part - component combinations in total. Very-slow moving
includes 21,011 combinations, slow moving covers 2,846 combinations and relatively
fast moving has 598 combinations. Figure 3.3 shows the cost reduction in each cat-

egory. We have the following observations.

o We observe that our approach reduces the total cost compared to the bench-
mark by 48% and 23% in average for Fokker Services and NS, respectively.
This illustrates that the value of the maintenance plan is very high in invent-
ory control. In eight out of ten instances in the F'S case and in nine out of ten
instances in the NS case, our approach outperforms the benchmark with regard
to all three cost components. Cost reductions are mainly driven by reductions
in emergency shipping cost, followed by the holding cost and scrapping cost.
The emergency shipping cost contributes 89% to the total saving in the Fok-
ker case and 68% in the NS case. Note that since many spare parts are very
reliable, and since components have a life cycle of 5-20 years, scrapping costs
may be a substantial part of total costs because even with low stocks there is
always a risk of leftovers (cf. van Jaarsveld and Dekker, 2011). This explains
the substantial costs of scrapping for the cases. However, note that the scrap-
ping costs difference between the ADI method and the benchmark is minimal,
which implies that the assumption of scrap costs is not essential for our results.

Finally, we note that the cost reduction for Fokker Services is higher than the
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Figure 3.1: The effect of parameters on the value of maintenance planning (Fokker Service).
Numbers 1-10 on the horizontal axis represent experiments with h = 0.1, h = 0.5, h = 1,
Ce =15, ce =20, ce =30, Ty =1, Trn = 3, Try = 5, Ty = 38 respectively

cost reduction for NS. This is mainly due to the fact that the maintenance plan
is more stable for NS, which reduces the value of ADI, cf. Section 3.4.1.

e The holding cost rate h has more effect on our method than the benchmark
while the emergency shipping cost c. has larger impact on the benchmark.
When & is increased from 0.1 to 0.5, the cost of our approach is increased
by 59% while 34% for the benchmark in the Fokker case. For h from 0.5 to
1, it’s 28% for our approach and 14% for the benchmark. The effect of A is
monotonic in general. For ¢, from 15 to 20 and to 30, the cost of our approach
is increased by 13% and 17% respectively, while for the benchmark it’s 16% and
24%. Therefore, we can conclude that our approach on average orders more
than the benchmark as to have less penalty and holding cost. The method
apparently orders at the right moment. When h/c,, is large enough, the value

of the maintenance plan vanishes since the optimal policy under both methods
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Figure 3.2: The effect of parameters on the value of maintenance planning (NS). Numbers
1-10 on the horizontal axis represent experiments with h = 0.1, h = 0.5, h = 1, ce = 15,
Ce =20,ce =30, T, =1, Ty, =3, Ty = 5, Ty = 38 respectively

does not place any order. When ¢, /h is large, both of the methods have larger
stocks. However, using the maintenance plan yields an upper bound for the
spare parts demand while the benchmark does not have access to such an upper
bound. In addition, the benchmark might place an order in the period when
there is no component arrivals as it only uses the history demand in forecasting.
Again, the ADI method places timely orders. This is verified by the observation
of the increase in the holding cost reduction with the increase of ¢,, in both
Figure 3.1 and 3.2.

The value of maintenance plan is not sensitive to 7;,. In the Fokker case,
obtaining the maintenance plan one lead time ahead achieves 46% in cost re-
duction, while obtaining it 5 lead times ahead achieves a 52% cost reduction.
In the NS case, the cost reduction increases from 20% to 24% by increasing T},

from 1 to 10. The marginal benefit decreases dramatically with the increase of
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Figure 3.3: The effect of parameters on the value of maintenance planning, for the part
categories very slow moving (VSM), slow moving (SM), and fast moving (FM) (Fokker
Service). Numbers 1-10 on the horizontal axis represent experiments with h = 0.1, h = 0.5,
h=1,ce=15,¢ce =20,ce =30, Tru =1, T, =3, Tru =5, Ty, = 38 respectively
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T,,. Therefore, we conclude that it is necessary to obtain the maintenance plan
in advance as it brings substantial cost saving. However, obtaining the main-
tenance plan one lead time ahead contributes the most to the inventory cost.
It is not very cost effective to invest more in order to obtain the maintenance

plan much earlier.

Figure 3.3 shows that costs reductions are substantial over all categories, and
relative cost reductions increase only slightly for faster moving categories. The
biggest absolute contribution to the total cost savings is made by the very
slow moving parts: 53% (averaged over the various cost parameter settings).
This is because the very-slow moving category accounts for a large proportion
of the parts. It is interesting that our approach performs well for the very-
slow moving category, because that category is very hard to forecast using
traditional techniques. Note furthermore that the very-slow moving category
is less sensitive to the holding cost rate h than the other two categories in both
the ADI method and the benchmark. This is because holding cost accounts for

a smaller proportion of the total cost for very-slow moving items.

In addition to the inventory metrics, our ADI-based forecasting approach also
performs better comparing to the time series methods in the evaluation of
forecasting accuracy. The method ADI has an advantage over all other time
series approaches in both RMSE and MAD in each case, shown in Figure 3.4
and 3.5. Note that as we update A\; for Poisson distribution by SBA in Section
3.4.1, the point forecast by SBA method in evaluating forecasting accuracy
is exactly the mean value of the Poisson distribution used in the inventory
control system. Therefore, our approach which considers ADI leads to less cost
in the inventory system and a better forecasting accuracy than the benchmark
in which demand is estimated to be Poisson distributed and its corresponding

point forecast.

The results are consistent with an intuitive interpretation. The proposed
method can better take into account the time interval between positive de-
mands. Therefore, it prevents the system from keeping redundant stocks. This
leads to less inventory holding cost, as we observe in both cases. The proposed
approach differentiates spare part demand forecasts in different time periods by
building the dependence between spare part demand and its origin, compon-
ent arrivals. By responding to the maintenance plan, our approach makes the

spare part demand forecasting more accurate and the inventory decisions more
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appropriate. As a result, we have less penalty cost for emergency shipment and
less scrapping for leftover stocks at the end of time horizon. In this way, our
approach can better achieve the goal of having the right amount of stocks at the
right moment. We expect the value of our approach in practice to be highest
for the very slow moving items, because especially such items are notoriously

difficult to control for human decision makers.

3.6 Conclusions and future research

Spare parts demand forecasting is essential to spare parts inventory control but
difficult as the demand has the feature of irregularity and lumpiness. We proposed
and tested ideas to apply ADI, in the form of planned on-condition maintenance tasks,
to improve spare parts inventory control under these circumstances. Incorporating
this form of ADI into forecasting makes the demand forecast nonhomogeneous over
the forecast horizon. Accordingly, as argued in this chapter, the inventory control
must become forward looking, and we propose an inventory optimization approach
to reflect this. We determined the potential value of the combined forecasting and
inventory optimization approach using industry data, and found that potential sav-
ings are very substantial: 51% for the aerospace maintenance case, and 23% for the
train maintenance case.

Some comments are needed to put these figures into perspective. First of all,
while aircraft component maintenance typically results from checks planned by the
operator, this information is currently only shared on an ad hoc basis, e.g. mainten-
ance organizations inform the repair shop in advance when they expect a substantial
number of removals of a specific component in a short time interval. This is mainly
in their own interest: If the repair shop is prepared, then spare part shortages are
rare. The present research solidifies these findings and underlines the economical
value of such information sharing in the supply chain. Moreover, the study provides
compelling evidence that investing in a more structured sharing of information, e.g.
in the form of a data platform, can simultaneously reduce inventory and increase
part availability. Train maintenance organizations likewise inform the repair shop
typically on an ad hoc basis. The present study shows that it would be better to
more structurally organize this, as structural sharing of information would allow for
a substantial reduction in the mismatch between spare parts demand and supply.
Finally, it is interesting to note the rather marked difference in cost reduction for

Fokker Services and NS, though in both cases cost reductions are substantial. We



3.6. Conclusions and future research 68

believe that this is caused by a more uneven maintenance pattern in the aircraft
industry compared to train maintenance.

Our approach focuses on the most common case: If parts are used in an on-
condition maintenance task, they are used in quantity 1. While this holds for the
vast majority of parts, one could generalize it to situations where multiple parts
of the same type may be replaced in a single maintenance task (van Jaarsveld et
al., 2015). Another direction for future research is related to our forecast method:
Suppose many on-condition maintenance tasks are upcoming, i.e. A;; is high. This
will likely increase future demand, so future demand is likely to be higher than At
It would perhaps be interesting to adapt the forecasting method for A\t such that it
already responds to expected changes in demand. Finally, any experience on a broad
implementation of the ideas pursued in this chapter would likely teach us valuable

lessons that cannot be learned from this preliminary study alone.
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Chapter 5

Summary

Capital goods are expensive machines or products that are used by manufacturers
to produce their end-products. Examples include computers, production equipment,
aircrafts and lithography machines that are used by semi-conductor manufacturers.
Availability of spare parts is essential to facilitate their maintenance both to correct
failures as well as to prevent these. Large spare parts inventories however, tie up
significant capital and face the risk of obsolescence. Hence smart decisions are needed
on inventories: when to stock and in which quantity. These decisions should be based

on good forecasts.

In this dissertation, we present three contributions to this problem. First, a new
method based on extreme-value theory is developed to aid companies in forecasting
the spare parts demand distribution. Next, we analyze the inventory control prob-
lem for on-condition maintenance and shutdown maintenance. We propose a new
approach for joint forecasting and inventory control based on probabilistic informa-
tion on the maintenance plan. We found the value of this plan to be significant in
preparing the repair shop by catching the irregularity and lumpiness of spare parts
demand. Finally, we model the spare parts ordering problem against the background
of shutdown maintenance project planning. Decision makers need strategies which
consider the interdependence of maintenance activities. Our new stochastic program-
ming approach is able to give much better advice than traditional methods and hence

meets the requirement of real-life shutdown projects.

In chapter 2, we study the leadtime demand forecasting problem of spare parts.
We improve the empirical method by applying extreme value theory to model the tail

of the leadtime demand distribution. We propose a semi-parametric leadtime demand
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distribution forecasting method (empirical-EVT). It is applicable for forecasting the
lead time demand and determining the inventory control parameters of spare parts.
The empirical-EVT method is a combination of non-parametric empirical method and
EVT extrapolation. It samples LTD from actual data and uses EVT to model the
distribution above a high threshold so that it can predict possible extreme values. The
new method can represent the demand behaviour as well as achieve high target service
levels. We build models for different service measures and analyse their applications.
We find that the empirical-EVT method has a relative good performance and avoids
overperformance which regularly happens under WSS, Croston’s method and SBA.
Still, the empirical-EVT has performance issues with limited demand histories, and
may be outperformed by WSS, and even by simpler methods such as Croston’s and
SBA. The empirical study based on data sets from two companies demonstrates that
accuracy of WSS highly depends on the data set. Moreover, the test shows that
the empirical-EVT struggles to perform well when demand history consists of only
very few periods. In contrast, performance of empirical-EVT is better in cases where
only relatively few demand points are available, but over many periods. In those
cases, the method is rather competitive. This should be taken into account when
considering to apply the method in practice. Our theoretical treatise indicates that
the empirical-EVT method has a problem in estimating the fill rate. The fill rate
fails to change monotonously with the increase of base stock level when applying
EVT independently for the LTD with lead time L and the LTD with lead time L —1.
Another issue arises for the expected waiting time, which can only be estimated when
the extreme value index is not bigger than or close to 1. This problem is solved by
considering the cycle service level instead of expected waiting time. The empirical-
EVT method in combination with the cycle service level works well. However, the
issues related to applying EVT with expected waiting time of fill rate may be a
limiting factor when applying it.

In chapter 3, we proposed and tested ideas to apply advance demand information
(ADI), in the form of planned on-condition maintenance tasks, to improve spare parts
inventory control. For many maintenance organizations, on-condition maintenance
tasks are the most important source of spare part demand. An uneven distribution
of maintenance tasks over time is an important cause for intermittency in spare parts
demand. and this intermittency complicates spare parts inventory control severely.
We propose a simple forecasting mechanism to estimate the spare part demand dis-
tribution based on the maintenance plan, and develop a dynamic inventory control

method based on these forecasts. We determined the potential value of the combined
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forecasting and inventory optimization approach using industry data, and found that
potential savings are very substantial: 51% for the aerospace maintenance case, and
23% for the train maintenance case. We contribute to literature by proposing a
new approach for joint forecasting and inventory control based on the maintenance
plan. The approach endogenously links maintenance tasks to parts usage based on
maintenance data. Moreover, our approach integrates the demand forecasting model
with an inventory control model. Currently, while aircraft component maintenance
typically results from checks planned by the operator, this information is only shared
on an ad hoc basis, e.g. maintenance organizations inform the repair shop in advance
when they expect a substantial number of removals of a specific component in a short
time interval. This is mainly in their own interest: If the repair shop is prepared, then
spare part shortages are rare. Our research solidifies these findings and underlines
the economical value of such information sharing in the supply chain. Moreover, the
study provides compelling evidence that investing in a more structured sharing of
information, e.g. in the form of a data platform, can simultaneously reduce inventory
and increase part availability. Train maintenance organizations likewise inform the
repair shop typically on an ad hoc basis. The present study shows that it would be
better to more structurally organize this, as structural sharing of information would

allow for a substantial reduction in the mismatch between spare parts demand and
supply.

In chapter 4, we consider the spare parts ordering policy against this background
of shutdown maintenance project planning. We investigated the order policy of spare
parts in the initial /preparation phase of the shutdown maintenance. In the shutdown
project, the delay due to the shortage of spare part in each activity propagates along
with the path in the project network, which may lead to a large overtime cost.
We investigate the case where the demand probability of each part is small, which
complicates the order decision. We developed a two-stage integer linear stochastic
program to obtain the optimal order size. We find that for activities that are never
on the critical path, the optimal solution can be expressed in closed form. In solving
the problem, we proposed sample average approximation with importance sampling
for the activities that can be on the critical path. We also proposed removal and
stock heuristics for the problem, yet they are not faster nor more accurate. We find
that scenario based heuristics give an acceptable approximation. The solution of
the heuristic based on standard critical path with normal distributed project time

assumption is far away from the optimum.

In summary, we use statistics with empirical method to build an improved fore-
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casting method for intermittent demand. We also use optimization methods to find
solutions to spare part ordering problem under on-condition maintenance and shut-
down maintenance respectively. In chapter 3, we show the value of maintenance plan
which can be obtained without large investment in on-condition maintenance. In
chapter 4, we study the spare parts management in project planning and propose an

optimization model which considers the structure of shutdown project.
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Nederlandse Samenvatting

(Summary in Dutch)

In dit proefschrift bestuderen we vraagvoorspellingen van reserveonderdelen en
methodes van voorraadbeheer. We beginnen met onderzoek naar de voorspelling
methode voor intermittende vraag. In hoofdstuk 2 stellen we een nieuwe voorspelling
methode voor op basis van extreme-waardetheorie (EVT). Deze methode blijkt min-
stens op gelijke voet te zijn met de state-of-the-art methoden voor een reeks van
vraagverdelingen. Hoofdstuk 3 richt zich op de geavanceerde vraaginformatie uit
het on-condition onderhoud. We bestuderen de waarde van dergelijke geavanceerde
vraaginformatie in het voorraadbeheer van reserveonderdelen. Onze resultaten laten
zien dat, op basis van de datasets van Fokker Services en NedTrain, de waarde van
vooraf beschikbare gevraagde informatie van 23 tot 51% kan oplopen. In hoofdstuk 4
onderzoeken we het probleem van het bestellen van reserveonderdelen in de planning
van shutdown-onderhoud projecten. Onderscheidend van de standaard voorraad-
beheersingstheorie van reserveonderdelen, waar aangenomen wordt om beslissingen
voor elk onderdeel afzonderlijk te nemen (een opvullingspercentage vast te stellen of
een stock-out boete te introduceren), zijn er in onze setting geen duidelijke stock-out
verbonden kosten of opvullingsdoelstelling voor het reserveonderdeel en de gevolgen
van een stock-out van één onderdeel kunnen ook afhangen van de beschikbaarheid van
andere onderdelen. In tegenstelling tot unimodale activiteitsduur die voornanamelijk
in de literatuur wordt toegepast, beschouwen we bimodale (met twee pieken) activ-
iteitsduren die de totale projecttijd een multimodaal maken in plaats van unimod-
aal. We vinden dat heuristieken op basis van scenario’s een acceptabele benadering
geven, terwijl de standaard aanpak van project management op basis van de veel
gebruikte Critical Path-methode in onze setting veel slechtere resultaten oplevert.

We gebruiken technieken en methoden uit zowel het operationele research als de
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statistiek om deze problemen aan te pakken.
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Capital goods are expensive machines or products that are used by manufacturers to produce their
end-products. Examples include computers, production equipment, aircrafts and lithography machines
that are used by semi-conductor manufacturers. Availability of spare parts is essential to facilitate their
maintenance both to correct failures as well as to prevent these. Large spare parts inventories however,
tie up significant capital and face the risk of obsolescence. Hence smart decisions are needed on
inventories: when to stock and in which quantity. These decisions should be based on good forecasts.

In this dissertation we present three contributions to this problem. First, a new method based on extreme-
value theory is developed to aid companies in forecasting the spare parts demand distribution. Next, we
analyze the inventory control problem for on-condition maintenance and shutdown maintenance. We
propose a new approach for joint forecasting and inventory control based on probabilistic information

on the maintenance plan. We found the value of this plan to be significant in preparing the repair shop

by catching the irregularity and lumpiness of spare parts demand. Finally, we model the spare parts
ordering problem against the background of shutdown maintenance project planning. Decision makers
need strategies which consider the interdependence of maintenance activities. Our new stochastic
programming approach is able to give much better advice than traditional methods and hence meets the
requirement of real-life shutdown projects.
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