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CHAPTER 1 

INTRODUCTION 

Poor oocyte quality may be the root cause of infertility or poor reproductive outcomes [1-

4].  Oocyte deterioration results from oxidative stress mediated by enhancement of macrophage 

activity in areas with inflammation, which is known to be involved in the pathogenesis of 

different fertility disorders [2, 5-13].  The deleterious actions of activated macrophages, the 

major source for reactive oxygen species (ROS) such as superoxide (O2
•−), hydrogen peroxide 

(H2O2), hydroxyl radical (•OH), and hypochlorous acid (HOCl), as well as the pro-inflammatory 

enzyme myeloperoxidase (MPO), are secondary to their ability to migrate to any site in the 

female genital tract such as fallopian tubes, uterine cavity, and peritoneal cavity as well as their 

cellular effects at the level of the oocyte [8, 14-28].  Indeed, macrophages have been found in the 

cumulus mass surrounding oocytes retrieved from normal healthy woman [23, 26].  Several 

studies have demonstrated that non-activated macrophages excrete growth factors which benefit 

the embryo growth [29].  However, once activated, macrophages have detrimental effects on 

embryo development as well as embryonic pre-implantation, either through enhancement of 

inflammatory pathways or through ROS overproduction [2, 30-33].  Higher levels of MPO and 

ROS, as well as the deficiency of antioxidants such as glutathione and ascorbate,  have been 

found in the peritoneal fluid and follicular fluid of women suffering from chronic inflammatory 

diseases such as endometriosis, polycystic ovary syndrome (PCOS), chronic pelvic infection and 

unexplained infertility,all of which are associated with poor reproductive outcomes [31, 34-43].   

One of the main factors contributing to poor reproductive outcomes is decreased oocyte 

quality [4, 5, 44-46].  Metaphase II (MII) oocytes are known to be exposed to some ROS during 

ovulation [47-50],  however increased levels may impair their proper fertilization, development, 

maturation and compromise the genetic material [1, 2, 7].  The major functional parameters used 
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to assess oocyte quality are spindle microtubule morphology (MT), chromosomal alignment 

(CH)  [5, 8, 11, 51] and organization of the cumulus oocyte complex (COC) [5, 44, 52] as it has 

been established that they can be affected by changes in the oocyte microenvironment such as 

increased ROS [5, 52].  In addition to impairment of oocyte quality, overproduction of ROS can 

cause damage to the cellular proteins, lipids, and DNA [5, 53, 54].  The toxicity of ROS depends 

in part on their bioavailability, rate of production, stability, and the bioavailability of antioxidants 

[5, 8, 55-58]. 

The generation of reactive oxygen species  

Once macrophages are triggered by pro-inflammatory signals, the oxidase activity of 

NADPH oxidase, a plasma membrane enzyme from triggered macrophage cells, begins to 

generate O2
•- [5, 8, 19, 59-61].  Superoxide generates H2O2 as an end product non-enzymatically, 

or through superoxide dismutase-catalyzed reaction [19, 59, 62].  The physiological intracellular 

lifetime of H2O2 is moderately long and it is the precursor of the more toxic HO• through a well-

known Fenton reaction (Fe2+ + H2O2 +H+ → Fe3+ + HO• + H2O) [5, 8, 14, 15, 63, 64].  

Hydrogen peroxide is freely diffusible through biological membranes [55, 65], and its 

overproduction is extremely destructive to cells and tissue [5, 64, 66-68].  Hydrogen peroxide 

reacts with MPO, which is abundantly expressed in macrophages, in the presence of chloride (Cl-

) to generate the toxic oxidant HOCl [19-21, 56, 69].  Hypochlorous acid can, in turn, destroy the 

MPO heme moiety causing free iron release, which propagates more oxidant formation such as 

HO• [16, 70].  

Effect of reactive oxygen species on oocyte-cumulus cells complex 

Translational research has shown that patients with inflammatory conditions have higher 

rates of adverse reproductive outcomes through poorer oocyte quality compared to those without, 

suggesting that ROS enhancement may be central to the decrease in fertility potential [2, 4, 5, 71, 
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72].  Indeed, ROS have been shown to decrease the density of the cumulus cells surrounding the 

oocyte, as well as induce cumulus cells apoptosis, which disturbs the defensive antioxidant 

machinery of the cumulus oocyte complex [3, 52, 73].  A variety of antioxidant treatments have 

been studied to mitigate the negative effects of the toxic oxidants [51, 74-77].  Further research 

has suggested that melatonin (MLT), a potent MPO inhibitor and HOCl scavenger, may function 

to protect oocyte quality against oxidative stress (OS) [51].  Since the underlying factors in the 

balance between damaging oxidants and innate and exogenous protective mechanisms in the 

oocyte remain poorly understood, the hypothesis of this dissertation is that ROS and specifically 

MPO related oxidants negatively affect oocyte quality, and that MLT may protect against these 

effects.   

Myeloperoxidase (MPO) and its related oxidants 

Myeloperoxidase, a heme-containing enzyme, is one of the major enzymes secreted upon 

activation of neutrophils and macrophages [19, 20, 69].  

Its molecular mass is ~146 KDa [78].  It is composed of 

two identical subunits connected together by a single 

disulphide bridge, operating the structural design of the 

heme pocket (containing the heme prosthetic group), 

which is the catalytic site of the dimeric form of the 

enzyme [70, 78, 79].  Myeloperoxidase is considered as 

one of the major alternative pathways to generate ROS 

[8, 70].  The catalytic cycle of MPO is depicted in Figure 

1.  In this cycle, a ferryl π cation radical, Compound I (MPO–Fe (IV) = O●+π) is considered to be 

the first intermediate of the reaction of the MPO ferric form, MPO–Fe(III), with H2O2 in the 

presence of chloride (Cl−).  Compound I is converted back to MPO–Fe (III) with the concomitant 

 
Figure 1:  A working kinetic model for the 
competition between H2O2 and HOCl at the 
catalytic site of MPO during steady MPO 
state catalysis [70].  
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two-electron oxidation of Cl− to HOCl [19, 21, 56, 80].  Alternatively, in the absence of Cl−, 

Compound I is converted back to MPO–Fe(III) through a two-step one-electron (1e−) oxidation 

pathway involving organic or inorganic one-electron substrates such as MLT [18, 81, 82].  

Compound II is the catalytically inactive form of the enzyme and the long-lived intermediate in 

the cycle [70]. It can execute only 1e− oxidation reactions.  Thus, formation of HOCl is not 

possible with this intermediate [70].  During inflammation, the amount of HOCl produced from 

activated  neutrophils is around 150−425 μM HOCl/hr, whereas at sites of inflammation, the 

HOCl level is estimated to be as high as 5 mM [83].  Under these circumstances, HOCl can 

damage the host tissue by the same mechanism used to destroy invading pathogens [19, 20, 83].  

Myeloperoxidase, a source of free iron 

Recent studies by Maitra et. al. have demonstrated that MPO may be regulated by 

feedback inhibition via HOCl [70].  The accumulation of the released HOCl in the solution 

mixture permits the competition with H2O2 on the catalytic site of MPO, which in this case is the 

heme prosthetic group resulting in heme destruction and free iron release [70].  It has been 

established that higher MPO activity and HOCl levels, combined with the higher free iron that 

exists in peritoneal fluid of chronic inflammatory diseases such as in advanced stages of 

endometriosis can set the stage for generation of a more toxic molecule, •OH through a known 

Fenton reaction mechanism [8, 39, 84].  The toxicity of HO• and HOCl are mainly due to their 

capacity to participate in serious pathological consequences through cellular mitochondria 

poisoning, lipid peroxidation, and uncoupling of oxidative phosphorylation [14, 85-87].  The 

wide range of MPO properties strongly suggests that MPO is one of the main factors that 

contribute to deteriorate oocyte quality under oxidative stress environment.  The above 

information draws our attention to use MLT as a potent MPO inhibitor and antioxidant scavenger 

to overcome the detrimental effect of oxidative stress on oocyte quality. 
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Melatonin  

Melatonin, a known pineal hormone to regulate circadian rhythms, is secreted in most 

mammalian tissues including the female reproductive tissues such as ovary and follicular fluid 

[76, 77, 88-94].  It has been shown to have multiple properties specifically in the antioxidants 

field compared to other antioxidants [76, 91, 95].  Melatonin has not only a unique ability to 

significantly increase the enzymatic antioxidant gene expression and levels of Cu, Zn-superoxide 

dismutase (SOD), glutathione (GSH) and catalase (CAT)  [76, 77, 90, 95, 96], but also scavenges 

and /or prevents the formation of a variety of ROS such as HOCl and •OH, and inhibits pre 

inflammatory enzymes such as MPO [16, 81] and thus preventing  the oxidation of lipids and  

proteins as well as DNA damage [16, 81, 91].  Not only is MLT characterized by the broad 

spectrum ability to scavenge ROS but its metabolites such as cyclic 3-hydroxmelatonin, N(1)-

acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) and N(1)-acetyl-5-methoxykynuramine 

(AMK) also exhibit multi-antioxidant properties and have no biologically harmful consequence 

similar to MLT [76, 96-103].  Melatonin scavenges HOCl like methionine and taurine but in a 

fundamentally different way [104].  Taurine binds with HOCl to form toxic taurine chloramines 

[105]. Taurine chloramine is a less active oxidant that oxidizes thiols and heme proteins, which 

extend the reactivity of HOCl [105-107].  Furthermore, MLT, unlike other HOCl scavengers, 

displays a high affinity towards transition metal binding (e.g. iron (III), copper and zinc), and 

subsequently reduces their cytoplasmic availability, thus preventing more ROS generation 

mediated by Fenton reaction [108-110].  The capacity of MLT to scavenge •OH is greater than 

other antioxidants such as vitamin E and mannitol [76, 96, 103, 111].  

Along with melatonin’s antioxidants properties, melatonin has shown distinguished anti-

inflammatory effects when it is administered either exogenously in-vivo or when added to 

cultured cells via regulation of cellular pathways [51, 91, 94, 112-117].  Melatonin has the ability 
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through its action on 2 G-protein coupled receptors, MT1 and MT2 to suppress many different 

inflammatory cell types including macrophage cells [114, 115, 117].  Thus, different doses of 

synthetic MLT have been used in medical scenarios in which inflammation plays a role such as a 

weak immune system due to stress, oxidative hemolysis, and even cancer progression [116, 117].  

Melatonin a potent inhibitor of myeloproxidase 

Melatonin has the ability to inhibit MPO chlorinating activity at two different points [16, 

81].  First, it binds to MPO to form the inactive melatonin-MPO-Cl complex [16].  Under these 

circumstances the MPO catalytic activity is limited by the dissociation of melatonin from the 

complex [16, 81].  Second, it competes with Cl- by serving as a 1e- substrate for MPO 

Compounds I and II [16, 81].  Under these conditions, MPO maintains its ability to consume 

H2O2 without the generation of HOCl [16, 56, 81].  Thus, understanding this unique function of 

melatonin on MPO activity may represent a new therapeutic a treatment support to control the 

inflammatory pathways where MPO is elevated.  In addition, melatonin prevents HOCl-mediated 

heme destruction and subsequent free iron release for most hemoprotein compounds including 

MPO [16].    

Melatonin’s role in female reproduction 

Melatonin has been found in the follicular environment surrounding the oocyte [76, 77, 

88-94], which could be the result of the pumping activity of channels located in the follicular 

wall; therefore, its antioxidant properties could benefit the oocyte.  Clinical prospective trials 

have found an increase in the pregnancy rate for a group of women suffering from PCOS when 

their treatment regimen was supplemented with MLT compared to a group who did not receive 

melatonin [77, 118, 119].  Clear direct evidence linking MLT supplementation with oocyte 

quality improvement have recently been provided through the demonstration that a significant 

decrease in the ROS level improved oocyte maturation in oocyte media supplemented with MLT 
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Figure 2: Image of cumulus oocyte complex (COC)
obtained using Confocal Zeiss LSM 510 META
NLO microscope. Control COC with normal
microtubule (MT) and chromosomal (CH) alignment
with a good organization of cumulus cells (CC’s)
surrounding the oocyte. Scale bars: 1 pixel, 3 mm.
Results depict observations made after three
experiments. 

compared to those without MLT [91, 120-122].  Furthermore, MLT (1mM) supplemented media 

of murine oocytes collected 8 hours after ovulation showed a significant increase in the 

percentage of fertilization [123].  Recently, it has been shown that MLT has the ability to protect 

the spindle’s morphology when exposed to higher concentrations of HOCl [51].  

Microtubule and chromosomal alignment marker for oocyte quality 

Several markers for oocyte quality have been used to evaluate deterioration in the 

postovulatory MII oocyte quality using in-vitro studies such as zona pellucid a dissociation time 

(ZPDT), oocyte microtubular dynamics (OMD), and cortical granule (CG) degradation, as 

oocyte aging markers [4, 5, 44].  Oocytes at MII phase, the arrested stage of ovulated oocyte 

before fertilization, demonstrated a dense array 

of filaments with bundles forming the meiotic 

spindle [124-126].  Moreover, this is the stage 

where the meiotic spindles are attached with the 

chromosomes at the equator of the spindles 

[124-127]. 

In mammals, the oocyte is typically 

surrounded by numerous layers of cumulus 

cells (CC’s), derived from the granulosa cells 

(GCs), forming the COC (cumulus oocyte 

complex) [23, 73, 128] (Figure 2).  Their 

presence in sufficient numbers and organization 

may serve as a predictive marker for oocyte quality [23, 73, 128].  The cumulus cells provide 

several important functions to the oocyte such as protection, and nutrient delivery through their 

gap junction proteins channels, a network of intercellular membrane channels mediating 



8 

 

communication within the COC [23, 73, 129-131].  The oocyte, under pathological conditions, 

protects itself against the toxicity of ROS through enzymatic (e.g., catalase and glutathione 

peroxidase) and nonenzymatic antioxidants (e.g., ascorbic acid and reduced glutathione) 

provided by the surrounding CC’s [132, 133].  Increases in the rate of fertilization and early 

embryo development have been found when the human oocyte or the embryo had been cultured 

in the presence of cumulus cells [134].  Therefore, derangements in COC organization, cumulus 

cell number, and cumulus-cumulus cell interaction through staining of the gap junction protein, 

connexin 43, were the parameters used to determine the mechanism of oocyte quality 

deterioration secondary to direct ROS insult.  

Despite the structural simplicity of COC, preserving the intact communication between 

the oocyte and its surrounding CCs is important to the oocyte to withstand the unstable 

environment, namely OS, which may negatively impact oocyte quality [52, 135]. 

In this study we focus on the use of meiotic spindle structure, MT and CH, as an 

important oocyte quality marker 

because they are essential for proper 

oocyte division and subsequent embryo 

formation [11, 136, 137].  Moreover, 

spindle disruption will lead to improper 

CH segregation leading to an imbalance 

in the genetic material of the daughter 

nucleus with detrimental effect on fertility as well as in assisted reproduction outcomes [137].  

We and others have developed a 1-4 scoring system depending on the oxidative damage effect 

on the meiotic spindle structure, MT and CH, as an important oocyte quality marker (Figure 3) 

[8, 11, 51, 52].  Briefly, a good spindle configuration was coded for (score 1, 2) where 

Figure 3: Schematic diagram demonstrating scoring 
system of MT and CH alteration based on previous study 
by Choi et al and Banerjee et al [8, 11, 51] 
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microtubules were organized in a barrel-shape, whereas, abnormal or poor (score 3, 4) were for 

spindle length reduction, disorganization and complete absence of spindle.  Chromosomal 

configuration was considered as good (score 1, 2) when chromosomes are normally arranged at 

the equator of the spindle, while poor (score 3, 4) when the chromosomes are dispersed or show 

aberrant or less condensed appearance [8, 11, 51, 52].  Studying oxidative stress-mediated 

spindle structural damage could serve as a feasible approach for further assessments to search for 

the therapeutic options to preserve the good quality for the oocyte under inflammatory states.  

Aims of dissertation: 

1) Determine the direct effect of ROS on metaphase II mouse oocyte quality  

2) Determine the effect of MPO (purified and naturally secreted from activated 

macrophages) related oxidants on metaphase II mouse oocyte quality and whether 

melatonin can protect against this effect. 

3) Define the mechanism of melatonin protection. 
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CHAPTER 2  

THE DEFENSIVE ROLE OF CUMULUS CELLS AGAINST REACTIVE OXYGEN 
SPECIES INSULT IN METAPHASE II MOUSE OOCYTES 

(This chapter contains previously published material. See Appendix A) 

Abstract 

We investigated the ability of reactive oxygen species (ROS), such as hydrogen peroxide 

(H2O2), hydroxyl radical (•OH), and hypochlorous acid (HOCl) to overcome the defensive 

capacity of cumulus cells, and elucidate the mechanism through which ROS differentially 

deteriorate oocyte quality.  Metaphase II mouse oocytes with (n=1634) and without cumulus 

cells (n=1633) were treated with increasing concentration of ROS and the deterioration in oocyte 

quality was assessed by the changes in the microtubule morphology (MT) and chromosomal 

alignment (CH).  Oocyte and cumulus cell viability and cumulus cell number were assessed by 

indirect immunofluorescence, staining of gap junction protein, and trypan blue staining.  The 

treated oocytes showed decreased quality as a function of increasing concentrations of ROS as 

compared to controls.  Cumulus cells show protection against H2O2 and •OH insult at lower 

concentrations, but this protection was lost at higher concentrations (>50 μM).  At higher H2O2 

concentrations treatment dramatically influenced the cumulus cell number and viability with 

resulting reduction of the antioxidant capacity making the oocyte more susceptible to oxidative 

damage.  However, cumulus cells offered no significant protection against HOCl at any 

concentration used.  In all circumstances in which cumulus cells did not offer protection to the 

oocyte, both cumulus cell number and viability were decreased.  Therefore, the deterioration in 

oocyte quality may be caused by one or more of the following: a decrease in the antioxidant 

machinery by the loss of cumulus cells, the lack of scavengers for specific ROS, and/or the 

ability of the ROS to overcome these defenses. 
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Introduction 

Oocytes are surrounded by tightly packed, highly organized layers of cumulus cells 

(CCs) that exist in spatial and temporal heterogeneity, forming the cumulus-oocyte complex 

(COC) [23, 73, 128].  In addition to their role in providing nutrition to the oocyte, the CCs 

provide a communication network between the oocyte and its extracellular microenvironment 

[23, 73, 129, 130].  The manner through which CC’s communicate within the COC are 

specialized connections called gap junctions, which are aggregates of protein-based intercellular 

channels that directly connect adjacent cells, allowing the bi-directional movement of molecules 

[131].  These channels known as connexins (Cx) have been described in many tissues; however 

Cx 37 is the only one identified on the oocyte, and forms connection with CC’s, while Cx 43 is 

the main gap junction protein found on CC’s. Loss of Cx proteins has been attributed to 

disrupted folliculogenesis, CC dysfunction, and altered cell and tissue viability [131, 138-140].  

Therefore, Cx’s are critical as they function as primary means of disseminating information to 

and from the oocyte, and also serve the important function of anchoring the CC’s within the 

COC to protect the oocyte.  It is known that oocytes, under pathological conditions, protect 

themselves against the toxicity of reactive oxygen species (ROS) through a scavenging 

enzymatic (e.g., catalase and glutathione peroxidase) and nonenzymatic antioxidant (e.g., 

ascorbic acid and reduced glutathione) network provided by the surrounding CC’s [132, 133].  

Translational research has shown that patients with these conditions have higher rates of adverse 

reproductive outcomes and poor oocyte quality compared to those without such disorders 

suggesting that inflammation may be central to the decrease in fertility potential [2, 4, 5, 71, 72].  

Reactive oxygen species such as superoxide (O2
•−), hydroxyl radical (•OH), hydrogen 

peroxide (H2O2), and hypochlorous acid (HOCl) are highly disruptive to cellular function [5, 8, 

51].  The major intracellular sources of H2O2 are spontaneous production, superoxide dismutase-
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catalyzed reaction of O2
•− [62, 141], generation through the mitochondrial electron transport 

chain, and the NADPH oxidase system in the cellular plasma membrane [5, 66, 142].  Hydrogen 

peroxide is found in physiologic concentrations ranging from 10-20 μM and up to 100 μM in 

pathologic circumstances [143].  Exposure of mouse oocytes to higher H2O2 concentrations (200 

μM) completely inhibited cleavage, and caused arrest of the zygote at the 1-cell stage [144].  A 

link between the concentration of endogenous H2O2 and the occurrence of apoptosis in human 

embryos has been suggested [144-147].  There are other ways that H2O2 can indirectly affect 

oocyte quality, for example, we have recently shown that •OH generated by the H2O2-induced 

Fenton reaction caused instantaneous oocyte damage, which has been estimated indirectly in 

plasma at levels of 250-500 μM/L [8, 148].  More recently we have demonstrated that the 

diffused intraoocyte H2O2 in the presence of chloride, which are normally found in the oocyte 

and oocyte microenvironment respectively, can trigger the catalytic activity of MPO generating 

the toxic oxidant, HOCl [58, 141], a substance known to deteriorate oocyte quality [51].  

Activated neutrophils, the major cellular releaser of MPO, generate around 150−425 μm 

HOCl/hr, whereas at sites of inflammation, the HOCl level is estimated to reach as high as 5 mM 

[83].  Previously, it has been shown that higher levels of MPO exist in the peritoneal and 

follicular fluid of women with inflammatory conditions such as endometriosis [39, 43]. 

Macrophages, neutrophils and monocytes are the major cellular sources of MPO, which function 

to generate HOCl and other ROS [20].  The current study investigates the ability of the 

antioxidant system of the CC’s to deflect the H2O2-mediated oxidative damage from mouse 

oocytes, and highlights the mechanism through which H2O2 deteriorates oocyte quality.  Our 

results provide a previously undescribed mechanistic link between excess H2O2 accumulation 

and poor oocyte quality, namely, through the disassembly and decreased viability of the 

protective CC cloud, which allows the dismantling of the spindle and chromosomal alignment.  
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These effects may cause poor oocyte quality and thus poor reproductive outcomes, which are 

associated with various inflammatory conditions.  

Materials and Methods 

Materials 

All the materials used were of the highest grade of purity and without further purification. 

Hydrogen peroxide, sodium hypochlorite (NaOCl), ammonium ferrous sulfate (Fe(II)), Human 

tubular fluid (HTF) media, anti-α tubulin antibody, FITC conjugate anti-goat antibody, 

propidium iodide, 1% BSA (Bovine Serum Albumin), 0.1% M Glycine, and 0.1% Triton X- 100 

were obtained from Sigma–Aldrich (St. Louis, MO, USA).  Normal Goat Serum (2%) was from 

Invitrogen (Grand Island, NY) and 0.2% Powder Milk from grocery.  Metaphase II oocytes (with 

and without cumulus cells) from a B6C3F1 mouse crossed with a B6D2F1 mouse were obtained 

commercially (Embryotech Inc.) in cryopreserved straws using ethylene glycol-based slow 

freeze cryopreservation protocol.  We used mature MII oocytes for the purpose of understanding 

the defense rendered by the cumulus cells at the mature cell stage level.  Though it is understood 

that there may be some loss of antioxidant defense during the expansion as a physiologic 

mechanism for preparation for ovulation, we believe that pre-existence of intact gap junctions for 

delivery of antioxidant defense is essential for prevention of spindle damage during maturation 

process in inflammatory states.  It is known that the oocyte spindle repolymerizes to normal 

structure when incubated in media for 60 -120 min at 37°C and 5% CO2 [149, 150] prior to 

induction of oxidative stress.  This mechanism actually has helped support utilization of frozen 

oocytes for studying spindle damage.  The use of frozen-thawed oocytes is well accepted as 

many studies have been published in the past utilizing frozen thawed oocytes and effects of 

oxidative stress on spindle morphology [151, 152]. 
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Methods 

Metaphase II mouse oocytes with and without cumulus cells, in triplicate for each ROS 

experiment, were transferred from straws to phosphate buffer saline (Dulbeco’s PBS) and 

washed to remove excess cryoprotectant for 3 minutes.  Oocytes were then transferred to HTF 

media and incubated at 37º C and 5% CO2 for 60 minutes to allow spindle repolymerization and 

attainment normal oocyte architecture [153, 154].  The oocytes were then screened for the 

presence of the polar body confirming their Metaphase II stage.  Ten – twenty oocytes from each 

group were discarded as they were found to be immature or displayed disrupted zona pellucidas.  

In each ROS experiment metaphase II oocytes with and without cumulus cells were divided into 

three groups: H2O2, 
•OH, and HOCl treatments. 

For H2O2 treatment (experiments performed in triplicate), oocytes were divided into four 

different groups; (group 1, n=620) oocytes without cumulus cells incubated with increasing 

concentrations of H2O2 (10, 17, 25, 50 and 100 µM); (group 2, n=611) Oocytes with cumulus 

cells incubated with increasing concentrations of H2O2 (10, 17, 25, 50 and 100 µM); (group 3, 

n=62) untreated oocytes with and (group 4, n=62) without cumulus cells.  

For •OH treatment (experiments performed in triplicate), oocytes were divided equally 

into eight groups: oocytes with (group 1, n=171) and without (group 2, n=171) cumulus cells 

treated with increasing concentrations of H2O2 (5, 10, 20 µM); oocytes with (group 3, n=60) and 

without (group 4, n= 61) cumulus cells treated with a fixed concentration of Fe(II) (100 µM);  

oocytes with (group 5, n= 173) and without (group 6, n= 191) cumulus cells pre-incubated with a 

fixed concentration of  Fe (II) (100 µM) and treated with increasing concentrations of H2O2 (5, 

10, 20 µM) under these circumstances all H2O2 was converted to •OH; and untreated oocytes 

with (group 7, n= 60) and without (group 8, n= 73) cumulus cells.  Due to the instability of •OH 

and its instant effect on oocyte quality, all sets were exposed for less than 10 minutes.  This short 
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incubation time also eliminates the effect of H2O2 and Fe(II) alone as previously described [8].  

The concentration of Fe (II) (100 µM) used in the current study to establish the •OH generating 

system has been widely used in previous studies [155]. 

For HOCl treatment (experiments performed in triplicate), oocytes were divided into four 

different groups: (group 1, n=324) oocytes with cumulus cells and (group 2, n=391) oocytes 

without cumulus cells treated with increasing concentrations of HOCl (10, 25, 50 and 100 µM); 

and (group 3, n=73) untreated oocytes with cumulus cells and (group 4, n=64) untreated oocytes 

without cumulus cells.  The treated and untreated oocytes were incubated with HOCl for 15 min 

to ensure maximum effect. 

Immunofluorescence staining and fluorescence microscopy 

All treated and untreated oocytes were fixed in a solution prepared from 2% 

formaldehyde and 0.2 % Triton X-100 for 30 minutes at 25° C [3].  The fixed oocytes were 

treated with blocking solution (PBS, 0.2% Powdered Milk, 2% Normal Goat Serum, 1% Bovine 

Serum Albumin (BSA), 0.1 M Glycine and 0.1% Triton X-100) for 30 minutes then washed with 

PBS for 3 minutes [3, 8].  Subsequently, the oocytes were subjected to indirect 

immunofluorescence staining by incubating in mouse primary anti-α tubulin antibody against the 

MT for 60 minutes and secondary fluorescein isothiocyanate (FITC) conjugated anti-goat 

antibody for 30 minutes [3].  The chromosomes were stained using propidium iodide (PI) and 

incubated for 15 minutes [3].  Stained oocytes were loaded into an anti-fade agent on slides with 

two etched rings and cover slips were affixed using nail varnish.  The alterations in the MT and 

CH were compared with controls and scored by three blinded observers based on a previously 

published scoring system (Figure 2) [11, 126].  Scores of 1-4 were assigned for both MT and CH 

alterations, with scores 1 and 2 combined for good outcomes meaning microtubules were 

organized in a barrel-shaped with slightly pointed poles formed by organized microtubules 



16 

 

crosswise from pole to pole, and chromosomes were normally arranged in a compact metaphase 

plate at the equator of the spindle [11, 126].  Scores of 3 and 4 signified poor outcomes and 

consisted of spindle length reduction, disorganization and/or complete spindle absence, and 

chromosome dispersion or aberrant condensation appearance [11, 126].  Images were obtained 

utilizing both immunofluorescence and confocal microscopy. 

Confocal microscopy, assessment of microtubules and chromosomal alignment 

Slides were examined with the Axiovert 25 inverted microscope (Zeiss, Thornwood, NY) 

using Texas Red (red) and FITC (green) fluorescent filters with excitation and emission 

wavelengths of 470 and 525 nm, and 596 and 613 nm, respectively.  Confocal images were 

obtained utilizing a Zeiss LSM 510 META NLO (Zeiss, Germany) microscope.  Oocytes were 

localized using a 10 x magnification lens and spindle alterations assessed using 40 x oil 

immersion lens.  The MT was stained fluorescent green, which was distinct from the fluorescent 

red staining of the chromosomes.  Following completion of the experiments each oocyte was 

closely examined for spindle status by three independent observers blinded to the assigned 

treatment groups.  Observers used comprehensive evaluation of the individual optical sections 

and the 3-D reconstructed images. 

Viability assay (Measurement of COC viability):  

We used oocytes with cumulus cells (n=100) exposed to 10 and 25 µM of each ROS 

before fixing followed by addition of 10 µL of trypan blue dye (Sigma) into the HTF media for 4 

minutes.  The untreated oocytes were also subjected to trypan blue dye to determine the number 

of viable cells (the dye exclusion test) in the media.  This test is based on the fact that living cells 

possess intact cell membranes that will keep out certain dyes (trypan blue and propidium), 

whereas dead cells will not. Both control and exposed groups were examined under the Axiovert 

25 light microscope and cumulus cells were counted for staining with images obtained. 
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Connexin 43 immunostaining and fluorescence confocal microscopy:  

In this experiment, we grouped the metaphase-II mouse cumulus oocytes (n=30) in two 

sets in the HTF culture media, A) control cumulus oocytes, B) cumulus oocytes incubated with 

100 µM H2O2 oocytes for 45 minutes.  Then as mentioned before, oocytes were fixed in a 

solution prepared from 2% formaldehyde and 0.2 % Triton X-100 for 30 minutes.  The fixed 

oocytes were treated with blocking solution as previously described for 1 hour, and then washed 

with PBS for 3-5 minutes.  Subsequently, the oocytes were subjected to indirect immunostaining 

for connexin 43 (Cx 43) by incubating them in Monoclonal Anti-Connexin-43 antibody 

produced in mouse (1:100) ((C8093) from Sigma-Aldrich) over night at 4ºC follow by secondary 

FITC conjugated antigoat antibody (1:50) for 30 minutes (green color).  The chromosomes were 

stained using propidium iodide (1:50) by incubating for 15 minutes to count the granulosa cells 

before and after H2O2 treatment.  Stained oocytes were loaded into an antifade agent on slides 

with two etched rings and cover slips were placed using nail varnish.  

Solutions preparation 

The H2O2 solution was prepared fresh in phosphate buffer (PH 7.4), while the 

concentrations of the working solutions were determined spectrophotometrically (extinction 

coefficient of 43.6 M-1 cm-1 at 240 nm) [156, 157]. 

The HOCl was prepared as previously described with some modifications [158].  Briefly, 

a stock solution of HOCl was prepared by adding 1 ml of NaOCl solution to 40 ml of 154 mM 

NaCl and the pH was adjusted to around 3 by adding HCl.  The concentration of active total 

chlorine species in solution, expressed as [HOCl]T (where [HOCl]T = [HOCl]+ 

[Cl2]+[Cl3
−]+[OCl−]) in 154 mM NaCl, was determined by converting all the active chlorine 

species to OCl− by adding a bolus of 40 μl of 5 M NaOH and measuring the concentration of 

OCl−.  The concentration of OCl− was determined spectrophotometrically at 292 nm (ε = 362 
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M−1 cm−1).  As HOCl is unstable, the stock solution was freshly prepared on a daily basis, stored 

on ice, and used within 1 hr of preparation.  For further experimentation, dilutions were made 

from the stock solution using 200 mM phosphate buffer, pH 7.0, to give working solutions of 

lower HOCl concentrations [70].  During and after the preparation process, all solutions were 

kept on ice to minimize decomposition. 

Statistical analysis:  

Statistical analyses were performed using SPSS version 22.0 (SPSS Inc., Chicago, IL, 

USA).  One-way ANOVA procedures were performed to compare the percentage of oocytes 

with poor outcomes (scores 3 and 4) for MT and CH between controls and oocytes treated with 

various oxidants concentrations.  No transformation was used because a good portion of the data 

ranged between 0.2 and 0.8.  The Tukey’s post-hoc procedure was used for pairwise 

comparisons among treatment groups. Statistical significance was indicated by P< 0.05.  

Independent t-tests were conducted to compare the cumulus and non-cumulus oocytes for each 

oxidant concentration. 

Results 

Effect of ROS on cumulus enclosed and denuded oocytes 

The majority of both cumulus-enclosed and denuded control oocytes had good-scores 

(98% and 90% respectively) (Figure 4).   

Exposure to H2O2, 
•OH, and HOCl resulted in various detrimental effects on oocyte 

quality, as assessed by the poor scoring of MT and CH. These detrimental effects depended on 

the presence or absence of cumulus cells, relative strength of the oxidizing agent, and its 

concentration. 

As shown in Figure 4 A and Figure 5 (upper panel), in the absence of cumulus cells, 
increasing H2O2 concentrations (10, 17, 25, 50 and 100 µM) were associated with significant 
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increases in poor scores of MT (45%, 74.4%, 93.5%, 100% and 100% respectively) (p< 0.001).  

In contrast as shown in Figure 5 lower panel, in the presence of cumulus cells, the frequency of 

poor MT scores also increased when subjected to similar concentrations of H2O2, but to a lesser  

extent: 19.8% (p>0.05), 33.9% (p<0.05), 46.7% (p<0.001), 96.7% (p<0.001) and 100% 

 
Figure 4: The effect of increasing concentration of H2O2, 

•OH, and HOCl on MT of metaphase-II 
mouseoocytes in the absence (gray bars) and the presence (green bars) of cumulus cells. (A) The percentage 
of oocytes with poor scores in MT treated with 0, 10, 17, 25, 50 and 100 µM H2O2. (B) The percentage of oocytes 
with poor scores in MT treated with 0, 5, 10, and 20 µM •OH.  (C) The percentage of oocytes with poor scores in 
MT treated with 0, 10, 25, 50 and 100 µM HOCl. One-way ANOVA and independent t-test employing SPSS 21.0 
were used for statistical analysis. ap< 0.05 non-cumulus oocytes as compared to control, bp< 0.05 cumulus 
oocytes as compared to control, and cp< 0.05   cumulus compared to non-cumulus oocytes at each concentration. 
The experiments were conducted with three replications; the error bars represent the standard error of the mean. 

 
Figure 5: Images showing the effect of different H2O2 concentrations on oocyte quality obtained using 
Confocal Zeiss LSM 510 META NLO microscope. (A) Control oocyte without cumulus cells with normal 
MT and CH. (B) Oocyte without cumulus cells with altered MT and CH exposed to 25 µM H2O2. (C) 
Oocyte without cumulus cells treated with 50 µM H2O2. (D) Control oocyte with cumulus cells with normal 
MT and CH. (E) Oocyte with cumulus cells with normal MT and CH exposed to 25 µM H2O2. (F) Oocyte 
with cumulus cells treated with 50 µM H2O2 with altered MT and CH.  Scale bars: 1 pixel, 5 mm for images 
A–C and 1 pixel, 3 mm for images D–F. Red arrows show the MT and the CH alterations.  The experiments 
were conducted with tree replications. 
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(p<0.001), respectively (Figure 4A and Figure 5).  Similar results were observed for CH. A 

similar trend was observed for oocytes treated with increasing concentration of H2O2 in the 

presence of fixed amounts of Fe(II) (100 µM).  Under these circumstances, H2O2 was 

immediately converted to •OH in a 1:1 ratio [8].  Poor scores of MT were higher in the non-

cumulus groups at 5, 10, and 20 μM (80.3%, 92.2% and 96.6% respectively (p<0.001)) 

compared to oocytes with cumulus cells (10.5% (p>0.05), 49.8% (p<0.001) and 56.6% (p<0.001) 

respectively) suggesting cumulus cell protection (p<0.001) (Figure 4B).  In contrast to H2O2 and 

•OH, non-significant independent t-tests revealed that cumulus cells do not offer protection 

against HOCl at concentrations of 10-100 μM (Figure 4C).  Poor scores were noted following 

increasing HOCl concentrations (10, 25, 50, 100 μM) for both cumulus (20.7%, 57.9%, 66.1% 

and 100% respectively) and non-cumulus oocytes (30%, 58.3%, 64.6% and 100%, respectively) 

compared to controls (p<0.001).  Thus, antioxidant machinery provided by cumulus cells may 

have selective protection against ROS. 

Effect of ROS on cumulus cell number, dispersion, and connexin 43  

To determine the mechanism by which different concentrations of ROS overwhelm the 

protective antioxidant machinery provided by cumulus cells, we next investigated the effect of 

increasing concentrations of H2O2, 
•OH, and HOCl on COC organization, cumulus cell number, 

and cumulus-cumulus cell interaction through staining of gap junction protein, connexin 43, 

utilizing confocal imaging as well as cumulus oocytes viability using trypan blue dye exclusion 

method.  

As shown in Figure 6A, untreated oocytes were surrounded by tightly packed highly 

organized layers of cumulus cells.  After treatment with lower concentrations of H2O2 (<25 µM) 

the COC remained intact and organized with similar number of cumulus cells observed as 

compared to controls, reflecting the preservation of oocyte quality (Figure 5B and C).  Treatment 



21 

 

with high H2O2 concentrations changed the organized compact cumulus cell mass into a 

dispersed structure of cells (Figure 6D).  In some cases, these clouds of cumulus cells are small, 

scattered, and remain loosely linked to the oocyte (Figure 6).  Collectively, these alterations in 

the oocyte microenvironments upon exposure of the oocytes with cumulus cells to higher ROS 

concentrations could explain the damaging effect of H2O2 and •OH to oocyte quality.  

 
Figure 6: Images of cumulus-oocyte complexes as a function of increasing concentrations of H2O2 obtained 
using amicroscope-mounted Axiocam camera with Axiovision software (Zeiss).  Panel A is a control of COC 
with normal MT, CH, and good organized cluster of cumulus cells surrounding the oocyte. Panels B-D oocytes 
treated with 10, 25, and 50 µM H2O2, respectively.  Scale bar: 1 pixel, 2 mm. The experiments were conducted with 
tree replications. 

 
As shown in Figure 7A, the control COC, stained for Cx 43 (green) and CH (red), 

showed organized clustering of cumulus cells surrounding the oocyte. Oocyte with cumulus cells 

exposed to a higher H2O2 concentration (e.g. 100 µM) showed significant decrease in the 

cumulus cells number or in some cases complete removal of the cumulus cells compared with 

untreated COCs (data not shown).  However, the intensity of Cx 43 staining appears similar to 

control.  

Figure 7: Metaphase-II mouse cumulus 
oocyte complexes (COCs) images 
obtained with Confocal Zeiss LSM 510 
META NLO microscope showed the 
effect of H2O2 on Connexin (Cx) 43 
density (n=20). A) Control COC stained for 
Cx 43 (green) with CH (red) with organized 
clustering of cumulus cells surrounding the 
oocyte. (B) COC exposed to 100 µM of 
H2O2 with significant decrease in the 
cumulus cells number with decrease in Cx 
43 staining compared with untreated COC. 
Results depict observations from three 
experiments.  Scale bar: 1 pixel, 2 mm. 
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Finally, the trypan blue dye exclusion method was used to determine the viability of the 

cells after exposure to HOCl, and to explain the failure of cumulus cells to protect oocyte against 

HOCl.  Oocytes without cumulus cells exposed to higher HOCl concentrations (>25 µM) had a 

higher intensity of staining compared with untreated controls and oocytes exposed to lower 

concentrations of HOCl (Figure 8, upper panels).  

 
Figure 8: Images of oocytes without (upper panel) and with (lower panel) cumulus cells as a function of 
increasing concentrations of HOCl obtained using a microscope- mounted Axiocam camera with Axiovision 
software (Zeiss).  Trypan blue viability staining with increased stain uptake in oocytes exposed to 0, 10, 25, 50, and 
100 µM HOCl).  Scale bars: 1 pixel, 4 mm for images A–C and 1 pixel, 2 mm for images D–F. The experiments 
were conducted with tree replications. 

Cumulus oocytes showed greater intensity of staining and significant decrease in cumulus 

cell number at higher concentrations of HOCl, specifically at 100 µM (Figure 8 lower panels).  

This signifies that exposure to HOCl rendered the cumulus cells nonviable, which could explain 

the failure of the cumulus cells to provide antioxidant defense as trypan blue staining was similar 

between cumulus and noncumulus oocytes (Figure 8).  Collectively, the mechanism through 

which cumulus cells lose their ability to defend against the effects of ROS is largely through the 

partial or complete loss of cumulus cells, which can be explained by the loss of cumulus cell 

viability. 

Discussion 

In this work, we investigated the ability of cumulus cells to protect the oocyte against 
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ROS and elucidate the mechanism and details of this action.  Our results showed that oocytes, 

with and without the surrounding cumulus cells, treated with increasing concentrations of 

various ROS exhibited deterioration in oocyte quality as a function of concentration, when 

compared to untreated controls.  Cumulus cells demonstrated protection against H2O2 and •OH 

insult at low concentrations, but this protection was lost at higher concentrations.  Cumulus cells 

offered no statistically significant protection against HOCl at any concentration.  In all 

circumstances in which cumulus cells did not offer protection to the oocyte, both cumulus cell 

number and viability were decreased as judged by confocal immunofluorescence and viability 

staining.  Collectively, the deterioration in oocyte quality may be caused by a decrease in the 

antioxidant machinery of the COC by loss of cumulus cells or the lack of scavengers for specific 

ROS, and/or the ability of the ROS to overwhelm these defenses.    

Hydrogen peroxide is known to generate cellular toxicity both independently and through 

its involvement in the production of other ROS [63, 85, 141].  Hydroxyl radical, produced by the 

H2O2-driven Fenton reaction, is known to be associated with disorders of iron overload, such as 

endometriosis and hemochromatosis, in which reproductive failure linked to oxidative stress is 

common [8, 63, 159-161].  Our current investigation supports the notion that CC’s, the major 

components of the cellular layers directly surrounding the oocyte, provide protection against 

ROS only to a certain extent.  Indeed, oocyte exposure to low concentrations of H2O2 in the 

absence or in the presence of Fe(II), where H2O2 is instantly converted to  •OH, induced little or 

no effect on the organized arrangement of surrounding cumulus cells.  Under these 

circumstances, the oocyte’s protection against H2O2/
•OH insult is due to the antioxidant 

machinery provided by the cumulus cells rather than that provided locally by the oocyte.  This 

conclusion is based on a significant decrease in the percentage of oocytes with poor scores in the 

presence versus absence of cumulus cells as a function of increasing concentration of H2O2/
•OH 
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(Figure 2 A & B).  In addition to a number of non-enzymatic small molecule antioxidants that 

are known to be present in the intact COC, there are a number of enzymes responsible for H2O2 

detoxification including catalase, glutathione peroxidase and peroxiredoxin [162-166].  These 

enzymes display the capacity to scavenge lower concentrations of both H2O2/
•OH and protect the 

oocytes from their damaging effects [162, 163, 165].   

We have also shown that treatment with high H2O2 and •OH concentrations changed the 

organized compact cumulus cell mass into a dispersed structure of cells.  With high but 

physiological concentrations of these oxidants the compact clouds of cumulus cells are scattered 

and remain loosely linked to the oocyte.  At pathological H2O2 and •OH concentrations, the 

cumulus cells are stretched further and finally disconnected from the oocyte.  Once the cumulus 

cells are dispersed or disconnected from the oocyte, the oocyte has lost its protection and 

therefore becomes as susceptible to ROS insult as non- cumulus oocytes [73, 167].  The loss of 

CC protection is due to the partial or complete loss of cumulus cell number, which could be 

caused by either the loss of cumulus cell viability or by the disruption of cumulus cell-cell 

interactions (Cx 43).  Our results show the major factor is the loss of cumulus cell viability, 

which may explain the mechanism for oxidative stress associated reproductive failure. 

Hydrogen peroxide is also known to be involved in the production of HOCl mediated by 

MPO [58, 70, 141].  At all concentrations tested, HOCl treatment was harmful and directly 

affected the viability and the number of cumulus cells through its ability to react with a range of 

biological molecules, particularly those with thiol, thiolether, heme proteins, and amino groups 

leading to tissue injury [168, 169].  Recently we showed that HOCl, in a feedback mechanism, 

degraded the heme-ring in MPO which released free iron [70] and led to •OH generation [8, 63].  

In contrast to treatment with H2O2 and •OH, CC’s showed no significant sign of protection 

against HOCl at any concentration.  We have recently shown that ONOO-, like HOCl, mediates 
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damage to MT and CH alignment [3].  After exposure to both reagents, cumulus cells were 

stripped from the oocyte and oocyte viability was significantly compromised.  Such compromise 

could occur either due to the deficiency of specific enzymatic and non-enzymatic antioxidants 

that help to scavenge ROS throughout the female reproductive tract [74, 170].  

The CC’s undergo cyto-differentiation, proliferation, and expansion, and are important 

during early oocyte growth and development, maturation, ovulation, and fertilization [73, 171-

173].  Most infertility disorders are associated with decline in cumulus cell number, spindle 

abnormalities, and an altered cumulus oocyte association, leading to poor oocyte quality, as well 

as, poor reproductive outcomes [66, 129, 134, 145, 146, 174, 175].  Therefore, the presence of 

cumulus cells maintained in correct organization relative to the oocyte appears necessary for the 

protection and function of the oocyte.  Fatehi et al, have demonstrated that intact cumulus cells 

during in vitro fertilization protected bovine oocytes against oxidative stress and improved first 

cleavage [134].  In addition, incomplete denudation of oocytes prior to ICSI enhances embryo 

quality and blastocyst development [134].  Furthermore, the removal of cumulus cells before 

complete oocyte maturation showed a premature migration with partial exocytosis of cortical 

granules [176] as well as adversely affects early embryonic development [177, 178]. 

It has also been shown that apoptosis rates of human CC from morphologically abnormal 

oocytes were significantly higher than morphologically normal oocytes examined under 

transmission electron microscopy [73].  An increase in CC apoptosis has also been associated 

with immaturity of human oocytes, impaired fertilization, and suboptimal embryo development 

[73].  The mutual dependency of the oocyte and the CCs involves a complex and varied set of 

interactions, and the functionality of COC depends on the individual competence and 

cooperation of both the CC’s and the oocyte [73].  

In conclusion, the intact arrangement of viable, functional cumulus cells around the 
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oocyte is paramount to the quality and reproductive capacity of the oocyte.  Enhancement in the 

production or defective elimination of ROS and subsequent oxidative stress may be associated 

with infertility through a mechanism that involves the COC dysfunction and deterioration in 

oocyte quality.  The mechanisms through which the different ROS affect oocyte quality are 

through cumulus cell apoptosis, causing decreased number of cumulus cells, or decrease in 

cumulus cell viability. H2O2 like •OH, decreased the viability of cumulus cells; however at high 

concentrations decreased the number as well. HOCl, like ONOO-, stripped the cumulus cells 

from the oocyte as well as dissolved the zona pellucida.  The severity of the insult of ROS on 

cumulus-cumulus and cumulus-oocyte interaction depends mainly on the bioavailability of the 

antioxidant machinery provided by cumulus cells, and the scavenging ability of these 

antioxidants.  When increasing ROS concentration overwhelm the antioxidant machinery 

provided by the oocyte and /or cumulus cells, the mechanism of damage is most likely to be 

similar in both cumulus cells and oocyte. 
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CHAPTER 3 

THE IMPACT OF MYELOPEROXIDASE AND ACTIVATED MACROPHAGES ON 
METAPHASE II MOUSE OOCYTE QUALITY 

Abstract 

Myeloperoxidase (MPO), an abundant heme-containing enzyme present in neutrophils, 

monocytes, and macrophages, is produced in high levels during inflammation, and associated 

with poor reproductive outcomes.  MPO is known to generate hypochlorous acid (HOCl), a 

damaging reactive oxygen species (ROS) utilizing the hydrogen peroxide (H2O2) and chloride 

(Cl-).  Here we investigate the effect of the MPO system and activated macrophages on oocyte 

quality.  Mouse metaphase II oocytes with and without cumulus cells were divided into the 

following groups: 1) Incubation with a catalytic amount of MPO (40 nM) for different incubation 

periods in the presence of 100 mM Cl- with and without H2O2 and in the absence and presence of 

melatonin (100 µM), at 37°C (n=648/648); 2).  Co-cultured with activated mouse peritoneal 

macrophage cells (1.0 x 106 cells/ml) in the absence and presence of melatonin (200 µM), an 

MPO inhibitor and ROS scavenger, for different incubation periods in HTF media, at 37°C 

(n=200/200); 3).  Oocytes receiving no treatment and incubated for 4 hrs as controls (n=73/64).  

After treatment, oocytes were fixed, stained and scored based on the microtubule morphology 

(MT) and chromosomal alignment (CH).  Treatment with MPO and activated macrophages were 

all found to negatively affect oocyte quality in a time dependent fashion as compared to controls.  

In all cases the presence of cumulus cells offered no protection; however significant protection 

was offered by melatonin.  This work provides a direct link between MPO and decreased oocyte 

quality leading to poor reproductive outcomes.  Therefore, strategies to decrease the 

inflammation caused by MPO or its mediators may influence clinical outcomes in infertility 

patients.  
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Introduction 

There are many challenging questions and issues surrounding poor reproductive 

outcomes.  Many of these problems have come to the forefront of the medical field with greater 

expectations from medical science.  A substantial body of literature has proposed a link between 

oxidative stress and poor reproductive outcomes [2, 66, 120].  Oxidative stress, generated by 

reactive oxygen species (ROS) overproduction [120, 179] or myeloperoxidase (MPO) activity 

[56, 180], plays a central role in inflammation that causes these conditions [13, 181].  The 

deleterious actions of activated macrophages, the major source for ROS and MPO, are secondary 

to their ability to migrate to any site in the female genital tract and their cellular effects at the 

level of the oocyte [24-27, 182].  Under inflammatory conditions, activated macrophages are 

found in the cumulus cell mass within the cumulus oocyte complex (COC) [26, 182].  At sites of 

inflammation, the amount of MPO generated has been reported to reach a concentration of 1–2 

mM [28].  High levels of MPO have been found in the collected peritoneal fluid samples of 

patients with chronic genital diseases [35, 36], polycystic ovarian syndrome (PCOS) [37, 38], 

advanced stages of endometriosis [35, 39, 40], and pelvic inflammatory disease [35, 41, 42].  

Moreover, elevated MPO levels have also been found in the follicular fluid of women with 

chronic anovulation [43], which correlated to a decline in their fertility.  

Myeloperoxidase generates hypochlorous acid (HOCl) through MPO activity in the 

presence of chloride (Cl-) and hydrogen peroxide (H₂O₂) [19, 21].  Activated neutrophils 

generate around 150−425 μM HOCl/hr, while at areas of inflammation, the HOCl level can be 

reach as high as 5 mM [83, 183].  Under these conditions, HOCl not only destroys invading 

pathogens but can also cause damage through its capacity to react with other biomolecules, 

including aromatic chlorination, aldehyde generation, chloramine formation, and oxidation of 

thiols [179, 184].  Accumulation of HOCl can also mediate hemoproteins heme destruction and 
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subsequent free iron release and protein aggregation through a feedback mechanism involving 

MPO deterioration [56].  Both, HOCl and increased iron levels have been involved in several 

inflammatory conditions such as endometriosis [39, 84].  HOCl is a much more powerful oxidant 

in accelerating oocyte aging than other ROS through its ability to deteriorate the oocyte 

microtubule morphology (MT) and chromosomal alignment (CH), which are markers of oocyte 

quality [179].  Although MPO and HOCl are found in large amounts during inflammation 

contributing to poor reproductive outcomes, little is known about the exact mechanisms through 

which MPO affects oocyte quality.   

Recently, utilizing HPLC and amperometric integrated H2O2-selective electrode, our 

group demonstrated real time in vivo measurements of intracellular H2O2 and its ability to 

diffuse outside the oocyte to activate extracellular MPO generating HOCl [55].  The ability of 

this investigation to provide a precise measurement of in situ H2O2 was secondary to limiting 

reactivity with nearby biological processes and minimizing loss caused by diffusion, and 

demonstrated through the use of catalase that the measurements were that of H2O2 and not an 

unknown substance in our system [55].  Our results showed that the diffused H2O2 triggered 

MPO chlorinating activity, which in turn facilitated oocyte quality deterioration, which was 

shown to be preventable if oocytes were pre-treated with melatonin.  Melatonin, a known pineal 

hormone involved in the regulation of circadian rhythms [88, 89] has identified as a potent 

inhibitor of MPO chlorination activity and a potent scavenger of its final product, HOCl [16, 81, 

185].  The beneficial effect of melatonin on oocyte quality and fertilization has been previously 

described [76, 77, 185, 186].    

The current study demonstrates that MPO has a detrimental effect on oocyte quality 

through its chlorination activation, and defines the link between MPO (purified and naturally 

secreted from macrophages) and oocyte quality (MT and CH) deterioration; a mechanism that 
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can be prevented by using melatonin.  These results may help in designing treatment plans for 

assisted reproductive technologies for patients with inflammatory conditions.  

Materials and Methods 

Materials 

Hydrogen peroxide, melatonin, Human tubular fluid (HTF) media were purchased life 

technology, anti-α tubulin antibody, and Alexa Fluor® 488-AffiniPure Goat Anti-Mouse IgG 

(H+L) were purchased Jackson ImmunoResearch.  Propidium iodide (PI), 1% bovine serum 

albumin (BSA), 0.1% M glycine, 0.1% Triton X-100, sodium nitrite, and trypan blue, 

lipopolysaccharide (LPS) were purchased from Sigma Aldrich (St. Louis, MO, USA).  Normal 

goat serum 2% was purchased from Invitrogen and powdered milk, 0.2%, was obtained from 

grocery.  Peritoneal macrophage cells (non-stimulated, adherent, and non-dividing) derived from 

female C57BL/6 mice were obtained from Astarte Biologics, LLC (Bothell, WA) (1 x 106 /1ml), 

macrophage cell media and other supplements were also obtained from ScienCell Research 

Laboratories, Inc. (Carlsbad, CA).  The macrophage media (DMEM) with its supplemented 

materials and 10% Fetal Bovine Serum (FBS) were obtained from Science Cell Research 

Laboratories (Carlsbad, CA).  Other chemicals and reagents were of the highest purity grades 

available and obtained from Sigma Aldrich. 

Methods 

Myeloperoxidase Purification:   

Myeloperoxidase was purified initially from detergent extracts of human leukocytes by 

sequential lectin affinity and gel-filtration chromatography [187-189].  Trace levels of eosinophil 

peroxidase that may be contaminating were then removed by passage over a sulfopropyl 

Sephadex column [188].  Purity of isolated MPO was established by demonstrating a Reinheitzal 

(RZ) value of 0.85 (A430/A280), SDS–PAGE analysis with Coomassie blue staining, and gel 
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tetra- methylbenzidineperoxidase staining to the absence of eosinophil peroxidase activity. 

Enzyme concentration was determined spectrophotometrically utilizing extinction coefficients of 

89,000 M−1 cm−1/heme of MPO [190].  

Hydrogen peroxide solution:  

The H2O2 solutions were prepared fresh in phosphate buffer (PH 7.4), after which the 

concentration of the working solutions was determined spectrophotometrically (extinction 

coefficient of 43.6M -1 cm -1 at 240 nm) [191, 192].  During the preparation process, all the 

solutions were kept on ice to minimize decomposition. 

Melatonin solution:  

A stock solution of melatonin was dissolved in dimethylformamide (DMF) and diluted to 

the required concentration with phosphate buffer (pH = 7.4).  The final concentration of DMF in 

all melatonin solutions was less than 1% and did not interfere with MPO activity or have any 

effect on oocyte quality [2]. 

Oocyte preparation: 

Metaphase II mouse oocytes (with and without cumulus cells ) were obtained from a 

B6C3F1 mouse crossed with a B6D2F1 mouse in cryopreserved straws using ethylene glycol-

based slow freeze cryopreservation protocol (Embryotech Lab).  We chose to use frozen-thawed 

oocytes instead of fresh as both our group and others have performed many experiments on both 

and found that treatment of fresh and frozen oocytes with reactive oxygen species had yielded 

similar and reproducible results [3, 7, 44, 151, 152, 179].  Institutional Review Board approval 

was not required, as the oocytes were obtained from Embryotech.  Oocytes were transferred from 

straws to phosphate-buffered saline (Dulbeco’s PBS) and washed to remove excess 

cryoprotectant for 5 minutes.  Oocytes were then transferred to HTF media and incubated at 

37ºC and 5% CO2 for 60 minutes to allow repolymerization of spindles.  The oocytes were then 
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screened for the presence of polar bodies confirming their metaphase II stage [56].  Ten to 

twenty oocytes from each group were discarded as they were found to be immature or displayed 

disrupted zona pellucida (ZP). 

Purified myeloperoxidase treatment on oocytes (with and without cumulus cells) 

Using the same processes for oocytes handling as mentioned in the previous section, 

metaphase II mouse oocytes with (n = 648) and without cumulus cells (n = 648) were divided 

into the following groups, which were performed in triplicate.  

Group 1: oocyte incubated with fixed concentration of MPO (40 nM) at different 

incubation period ( 3, 6, 12, and 24 hrs);  group 2: oocytes incubated with fixed concentration of 

MPO (40 nM) + 20 µM H2O2 at different incubation period ( 3, 6, 12, and 24 hrs); group 3: 

oocytes incubated with fixed concentration of MPO (40 nM) at different incubation period (3, 6, 

12, and 24 hrs) preincubated with melatonin (100 µM); group 4:  oocytes incubated with fixed 

concentration of MPO (40 nM) + H2O2  (20 µM) at different incubation period (3, 6, 12, and 24 

hrs) on oocytes preincubated with melatonin (100 µM); group 5: Untreated oocytes were used as 

a control; and group 6: oocytes with melatonin (100 µM) alone for 24 hr incubation period.  All 

oocytes were fixed at the time points (3, 6, 12, and 24 hrs) and evaluated for alteration of the 

following: MT structure and CH alignment.  All experiments were carried out in HTF media 

containing 100 mM Cl- which is similar to the physiological oviduct Cl- concentration [193].  All 

cell transfers were performed by using 200-mm micropipette tips (ORIGIO, Cooper Surgical).  

Macrophage cells co-cultured with oocytes (with and without cumulus cells) 

We followed the protocol of macrophage cell co-culture as described by Honda et al 

(1994) [29] with some modifications.  The 1 ml vials containing macrophage cells (1.0 x 106 

cells/vial) were thawed at 37ºC then centrifuged at 1800 rpm at 4ºC for 5 min then the 

cryopreservative solution was removed and replaced with the macrophage media, mixed, and 1 
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µl of the media containing macrophage cells was used to test the cell viability using Trypan blue 

dye exclusion assay.  Cells were recounted before utilization and were placed into 30 mm dishes 

(Falcon).  The macrophage concentration per dish was chosen secondary to previous data which 

showed a significant reduction in fertilization rate in co-culture group as compared to control 

[29].  Macrophage cells were stimulated with lipopolysaccharide (LPS) (10 ng/ml) for maximal 

MPO secretion [194, 195].  Cells were allowed to rest for 16 hr at 5% CO2, 37ºC to allow the 

cells to adhere to the base of culture dishes. The following day, the macrophage media was 

removed, washed with PBS twice, and then with HTF twice to remove the unadherent cells and 

replaced with HTF media.  Cells were then reincubated at 5% CO2, 37ºC to be ready for co-

cultured with the oocytes.  

In the triplicate experiment, the oocytes (with n = 200 and without cumulus cells n = 200, 

total) were divided into the following groups: group 1: oocytes with and without cumulus cells 

incubated with stimulated macrophage cells for 1, 2, 3, and 4 hrs; group 2: oocytes with and 

without cumulus cells incubated with stimulated macrophage cells preincubated with melatonin 

(200 μM) for 1, 2, 3, and 4 hrs; group 3: oocytes with and without cumulus cells incubated with 

100 μM melatonin alone for 4 hrs; group 4: control oocytes receiving no treatment and incubated 

for 4 hrs. All groups were incubated in HTF for 4 hrs, 37ºC, 5% CO2.  We chose 4 hrs of 

incubation as previous studies stated that 4-6 hrs is the time for optimal fertilization [196, 197].  

The doses of melatonin, and HOCl were selected on the basis of our preliminary results and our 

previous studies [16, 185].  All oocytes were fixed at the time points (1, 2, 3, and 4 hrs) and 

evaluated for alteration of the following: MT structure and CH alignment.  

Immunofluorescence staining and fluorescence microscopy 

Oocytes were fixed in a solution prepared from 2% formaldehyde and 0.2 % Triton X-

100 for 30 minutes and then treated with blocking solution (PBS, 0.2% Powdered Milk, 2% 
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Normal Goat Serum, 1% BSA, 0.1 M Glycine and 0.1% Triton X-100) for 1 hr followed by PBS 

washing for 3 minutes.  The oocytes were then subjected to indirect immunostaining using 

mouse primary anti-α tubulin antibody against the MT (1:100, overnight) and secondary Alexa 

Fluor® 488-AffiniPure Goat Anti-Mouse IgG (H+L) (1:50, 1 h).  The chromosomes were 

stained using PI for 10 min. Stained oocytes were loaded into anti-fade agent on slides with two 

etched rings. Images were obtained utilizing both immunofluorescence and confocal microscopy.  

Confocal microscopy, assessment of microtubules and chromosomal alignment 

Confocal microscopy, assessment of microtubules morphology and chromosomal 

alignment slides were examined with the Zeiss LSM 510 META NLO (Zeiss LSM 510 META) 

microscope using PI (red) and Alexa Fluor® 488 (green) fluorescent filters with excitation and 

emission wavelengths of 470 and 525 nm, 496 and 519 nm, respectively.  Oocytes were localized 

using a 10x magnification lens and spindle alterations assessed using 100 x oil immersion lens. 

The MT was stained fluorescent green, which was distinct from the fluorescent red staining of 

chromosomes.  The alterations in the MT and CH were compared with controls and scored by 

three different observers blinded to treatment groups based on a previously published scoring 

system using comprehensive evaluation of the individual optical sections and the 3-D 

reconstructed images (Figure 2) [185, 198].  Scores of 1-4 were assigned for both MT and CH 

alterations, with scores 1 and 2 combined for good outcomes meaning microtubules were 

organized in a barrel-shaped with slightly pointed poles formed by organized microtubules 

crosswise from one pole to and chromosomes were normally arranged in a compact metaphase 

plate at the equator of the spindle.  Scores of 3 and 4 signified poor outcomes and consisted of 

spindle length reduction, disorganization and/or complete spindle absence, and chromosome 

dispersion or aberrant condensation appearance.  
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Statistical analysis:  

Statistical analyses were performed using SPSS version 21.0 (SPSS Inc., Chicago, IL, 

USA).  One-way ANOVA analyses were performed to compare the percentage of oocytes with 

poor outcomes (scores 3 and 4) for MT and CH between controls with various time intervals and 

each treatment group applied to cumulus and non-cumulus oocytes.  The same ANOVA 

procedures were also performed to investigate the effects of different treatments on cumulus and 

non-cumulus oocytes at different time intervals.  Pair wise comparisons made using Tukey’s post 

hoc test following significant ANOVA tests, which defined as P<0.05.  Independent t tests were 

conducted to compare the cumulus and non-cumulus oocytes for each treatment and time interval 

combination. 

Results 

Effect of purified MPO/melatonin on MT and CH of metaphase II oocytes without and with 

cumulus cells 

To test whether MPO activation through the extra-oocyte diffusion of H2O2 could 

deteriorate the mouse metaphase II oocyte quality, we investigated the time dependent effect of 

MPO, in the absence and presence of melatonin, a potent MPO inhibitor, on oocyte MT and CH 

in the absence and presence of cumulus cells.  Incubation of the oocytes with MPO alone (40 

nM) showed significant deterioration in oocytes quality in a time depended manner as judged by 

alterations in the MT and CH in the treatment groups and cumulus cells show no protection   

(Figure 9A & B-upper Panels).   

Whereas the presence of 100 µM melatonin showed significant protective effect on MT 

and CH when incubated with MPO for shorter time (3 hrs) and this protection was lost by longer 

time of incubation (Figure 9A & B-lower Panels).  Pre-supplementing the oocyte medium with 

more melatonin concentrations (400 µM), showed more protection in the oocyte quality up to 6 
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hrs of incubation with MPO (data not shown).  These results concluded that preservation of 

normal MT and CH under MPO activity can be achieved by using the antioxidant and MPO 

inhibitor, melatonin.  

 
Figure 9: Images of oocytes microtubule morphology (MT) and chromosomal alignment (CH) obtained using 
Confocal Zeiss LSM 510 META NLO microscope.  A) Oocytes without cumulus cells showed:  -Upper Panel: 
Detrimental time dependent effect of myeloperoxidase (MPO) (40 nM) on MT and CH.  -Lower Panel: Melatonin 
(MLT) supplementation (100 µM) showed normal MT and CH in the presence MPO at 3 hrs of incubation similar to 
controls and alterations in MT and CH by increasing the incubation time.  B) Oocytes with cumulus cells showed 
similar observations that have been seen in A for MPO effect in the absence and presence of MLT. Collectively, 
cumulus cells failed to offer significant protection against MPO catalytic activity. Scale bars: 1 pixel, 5 mm for 
images A and 1 pixel, 3 mm for images B. Results depict observations made after three experiments. 

 

For comparison, the effect of MPO, in the absence and presence of melatonin, on MT and 

CH were quantitated based on our well established 1-4 scoring system (see method section for 
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more details) and the percentages of poor scores were blotted as a function of time (Figures 10 

and 11). 

 
Figure 10: The effect of MPO/HOCl system on oocytes quality in the presence and absence of cumulus cells.   
Both panels show triplicate experiments of the percentage of oocytes with cumulus (n=648) (green bars) versus 
those without (n=648) (gray bars) with poor microtubule morphology (MT) scores observed in the untreated oocytes 
compared to oocytes treated with a fixed catalytic MPO concentration (40 nM) without addition of H2O2 (20 µM) 
(upper panel) and after addition of H2O2 (20 µM) (lower panel).  All oocytes were incubated to different times of 
incubation (3, 6, 12 and 24 hrs) followed by indirect immunofluorescence staining method to observe MT and CH. 
Human tubulin fluid (HTF) media contains similar chloride (Cl-) concentration (~100 mM) to the oviduct fluid. 
There is a time dependent effect of MPO activity on oocytes quality in the presence and absence of cumulus cells (p 
< 0.05).  Cumulus cells fail to protect MT against damage from MPO activity (p > 0.05).  Similar results were 
observed for the chromosomes alignment (CH). One-way ANOVA and independent t-test using SPSS 22.0 used to 
analyzed the results as following: (a) P < 0.05   non-cumulus oocytes as compared to control. (b) P < 0.05 cumulus 
oocytes as compared to control. (c) P < 0.05   between cumulus and non-cumulus oocytes. H2O2 addition on the 
oocytes in the lower panel showed no significant difference compared to oocytes in the upper panel. The standard 
error for each point was estimated to be less than 10%. 
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Figure 11: The protective effect of melatonin against MPO/HOCl system on oocytes quality in the presence 
and absence of cumulus cells. Both panels show triplicate experiments of the percentage of oocytes with cumulus 
(n=648) (green bars) versus those without (n=648) (gray bars) with poor microtubule morphology (MT) scores 
observed in the untreated oocytes compared to oocytes treated with a fixed catalytic MPO concentration (40 nM) 
without addition of H2O2 (20 µM) (upper panel) and after addition of H2O2 (20 µM) (lower panel) after pre-
supplement the oocytes media with melatonin (100 µM).  All oocytes were incubated to different times of 
incubation (3, 6, 12 and 24 hrs) followed by indirect immunofluorescence staining method to observe MT and CH. 
Human tubulin fluid (HTF) media contains similar chloride (Cl-) concentration (~100 mM) to the oviduct fluid. 
Melatonin showed a significant protection against MPO activity at 3 hrs incubation (p < 0.05) as it works as direct 
HOCl scavenger and MPO inhibitor. The poor scores in MT showed by increasing the time of incubation caused as 
melatonin have been consumed. Cumulus cells fail to protect MT against damage from MPO activity (p > 0.05).  
H2O2 addition on the oocytes in the lower panel showed no significant difference compared to oocytes in the upper 
panel. Similar results were observed for the chromosomes alignment (CH). One-way ANOVA and independent t-
test using SPSS 22.0 used to analyzed the results as following: (a) P < 0.05   non-cumulus oocytes as compared to 
control. (b) P < 0.05 cumulus oocytes as compared to control. (c) P < 0.05   between cumulus and non-cumulus 
oocytes. The standard error for each point was estimated to be less than 10%.  

Figure 10 upper Panel showed the time dependent increase in the percentage of poor 

scores for MT and CH for oocyte with and without cumulus cells incubated with MPO.  In the 

absence of cumulus cells, 3 hrs incubation with MPO showed 48% poor scoring and stayed 

almost the same at 6 hrs incubation and increased to 70%, and 100% at 12 and 24 hrs 

respectively, compared to control group 18.6%.  Almost similar results were observed for 

oocytes MT and CH with cumulus cells incubated with the same amount of MPO for the same 
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incubation periods (36.6%, 38.7%, 70%, and 82% poor scores,  respectively, compared to control 

groups 9.0%).  

Figure 11 showed the protective effect of melatonin on oocyte quality against MPO 

treatment.  Oocytes without cumulus cells incubated with MPO/melatonin showed a significant 

decrease in the percentages of poor scores MT and CH at 3 hr (7%) of incubation compared to 

longer incubation periods 6, 12 and 24 hrs (57%, 70%, and 100%, respectively) (p<0.001) 

(Figure 11 upper panel/gray bars).  Whereas, the poor scores for cumulus oocytes incubated for 

the 3, 6, 12, and 24 hrs with melatonin/MPO were approximately 1.3%, 23.3%, 50%, and 70%, 

respectively as compared with the control group score average of 1.0% (Figure 11 upper 

Panel/green bars).  In control experiments, oocytes incubated with melatonin alone for 24 hr 

showed poor scores of ~10.0% similar to untreated oocytes. Cumulus cells showed a sign of 

protection against MPO in the presence of melatonin at 6 hrs of incubation (p<0.05).   

To determine whether MPO activation is the major cause for oocyte quality deterioration, 

we repeated the same experiments in the presence of exogenously added H2O2 (20 µM) to the 

oocytes media immediately after MPO addition and incubated the oocytes for the same 

incubation times (3, 6, 12 and 24 hrs) in the absence and presence of 100 µM melatonin (Figures 

10 and 11-lower Panels).  Our results showed that in the absence of cumulus cells, the poor 

scores for MT and CH for 3, 6, 12 and 24 hrs of incubation periods with MPO/H2O2 alone were 

60%, 63.3%, 100% and 100% respectively (Figure 10-lower Panel/gray bars).  In the presence of 

cumulus cells, the percentage of poor scores for 3, 6, 12, and 24 hrs of incubation periods with 

MPO/H2O2 alone were 50%, 53%, 60%, and 100% respectively (Figure 10-lower Panel/green 

bars).  Results in this section mirrored those of the above experiment (Figure 10, upper Panel) in 

which H2O2 supplementation had no additional effect on oocyte quality (p>0.05), and again 

cumulus cells did not appear to provide protection to the oocyte (p>0.05).  The poor scores of 
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non-cumulus oocytes (for MT and CH) incubated with melatonin/MPO/H2O2 for 3, 6, 12, and 24 

h incubation were 20%, 63.3%, 73.3%, and 100% respectively (Figure 11 lower Panel/gray 

bars).  Under these circumstances, melatonin also showed a protection at 3 hrs of incubation; but 

not in the other incubation periods.  In the presence of cumulus cells, the poor scores for oocytes 

MT and CH incubated with the same treatments for the same incubation periods were 25%, 60%, 

60%, and 100% respectively (Figure 11 lower Panel/green bars).  Results in this section mirrored 

results without addition of H2O2, in that the presence of melatonin protected against MPO with 

H2O2 in the 3 hrs group (p<0.001); but not in the 6, 12, or 24 hrs groups (p>0.05).  Cumulus cells 

did not showed a protective effect after 6 hrs of incubation in the presence of melatonin and 

MPO with H2O2 (p>0.05).  Collectively, inhibiting MPO activity by using melatonin preserve 

the quality of the oocytes, thus MPO activity is the major cause of poor oocyte quality. 

Effect of stimulated macrophages on MT and CH of metaphase II oocytes without and with 

cumulus cells 

Since purified MPO activity was responsible for oocyte quality deterioration, then we test 

whether the exposure to stimulated macrophages could mediate deterioration of the oocytes 

quality through a mechanism that involves the MPO catalysis.  To test this hypothesis, we co-

cultured the oocytes with stimulated macrophages as function of time, in the presence and 

absence of melatonin (200 µM).  



41 

 

 
Figure 12:  The direct effect of stimulated macrophages on oocyte quality, microtubule morphology (MT) and 
chromosomal alignment (CH), in the absence (gray bars) and presence (green bars) of cumulus cells. There 
was a significant time dependent effect of stimulated macrophages on MT and CH (p<0.05). Cumulus cells did not 
offer significant protection against macrophages activity (p>0.05). The experiments were conducted with three 
replications and the error bars represent the standard error of the mean.  

As showed in Figure. 12, in the absence of cumulus cells, the poor scores for the oocytes 

incubated with stimulated macrophage for 1, 2, 3 and 4 hrs were approximately 35.5%, 54.4%, 

78.5% and 100% for MT and CH (Figure 12).  In the presence of cumulus cells, the average poor 

scores for the oocytes incubated with stimulated macrophage cells for 1, 2, 3 and 4 hrs was 

approximately 43.3%, 36.1%, 65.7% and 93.3% for MT and CH (Figure 12).  Overall, as showed 

in Figure. 10, increasing the incubation time increased significantly the poor scores for MT and 

CH (p<0.05).  

Figure 13 demonstrated the power of melatonin to inhibit the activity of naturally MPO 

secreted form stimulated macrophages.  The poor scores for noncumulus oocytes MT and CH 

incubated with melatonin/stimulated macrophage cells for 1, 2, 3 and 4 hrs were approximately 

20.5%, 63.8%, 93.3% and 100%  (Figure 13).  While, in the  presence of  cumulus cells, the poor  
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Figure 13:  The protective effect of melatonin (MLT) against stimulated macrophages activity on oocytes 
quality (MT and CH) in the absence (gray bars) and presence (green bars) of cumulus cells.  The presence of 
melatonin (200 µM) showed significant protection for MT and CH at 1 hr incubation (p<0.05). In general, cumulus 
cells did not offer significant protection against macrophages activity (p>0.05). The experiments were conducted 
with three replications and the error bars represent the standard error of the mean. 

scores for MT and CH for 1, 2, 3 and 4 hrs were approximately 8.9%, 58.3%, 86.6% and 93% 

(Figure 13).  Overall, melatonin showed a significant protection of MT and CH quality at 1 hr of 

incubation with macrophage cells (p<0.05) compared to longer time periods.  The control group 

had poor scores for approximately 20% of noncumulus and 16.6% for cumulus oocytes (p>0.05).  

Cumulus cells showed a non-significant protective effect against MPO secreted from stimulated 

macrophages in the presence and absence of melatonin at 2, 3, and 4 hrs of incubation (p>0.05).  

Collectively, the major cause for oocytes quality deterioration is the activation of macrophages 

as well as MPO that can be successfully inhibited by using melatonin. 

Discussion 

Recent studies have shown that intra-oocyte H2O2 concentration is relatively high and 
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diffuses to the extracellular environment of the oocyte [55, 199].  Our current study confirms and 

extends these results and indicates that the diffused H2O2 deteriorates oocyte quality through 

MPO activation independent of cumulus cells and exogenously added H2O2, and could be 

prevented by treatment with melatonin, a potent inhibitor of MPO chlorinating activity [16, 81, 

185].  Similarly, stimulated macrophages were also found to deteriorate oocyte quality 

independent of cumulus cells presence in a time dependent fashion, and could be prevented by 

melatonin.  Macrophages are one of the principal defense mechanisms of innate immunity [200, 

201]  as a source of MPO and other toxic molecules used in controlled environments to degrade 

invading pathogens [19, 20].  Although, the association between macrophages and infertility has 

been repeatedly reported [6, 12, 202], the current work is the first to mechanistically link the 

MPO activity with the deterioration in the oocyte quality which adversely influences infertility.  

All the indications point to diffused intra-oocyte H2O2 being sufficient to trigger the 

MPO chlorinating activity (generation of HOCl), which was responsible for the loss of oocyte 

quality.  Hydrogen peroxide is a naturally occurring molecule within the oocyte and high a 

portion appears to diffuse outside the oocyte [55].  Hydrogen peroxide is an uncharged stable 

molecule, and permits through biological membranes in a fashion similar to water [203, 204] via 

limited diffusion and transport through specialized proteins known as aquaporins [205].  MPO 

activated through intraoocyte diffused H2O2, was found to negatively affect oocyte quality in 

time dependent manner in a similar trend to that recently observed when oocytes treated with 

increasing concentration of exogenous HOCl (Figure 2C) (Shaeib et al., in press. 2015).  

Treatment with HOCl disturbs the antioxidant capacity of cumulus cells by decreasing the 

number and/or viability of these protective cells (Figure 2C) (Shaeib et al., in press. 2015). 

Indeed, MPO treatment was found to mediate cumulus oocyte damage to almost the same extent 

as that in the absence of cumulus cells.  HOCl may mediate oxidative damage and/or oocyte 
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fragmentation through its ability to undergo numerous reactions with biomolecules, including 

aromatic chlorination, chloramine formation, aldehyde generation, and oxidation of thiols [179, 

184].  Preservation of oocyte quality by melatonin provides further evidence for the involvement 

of MPO activation in causing oocyte quality deterioration [16, 185].  The ability of MPO to 

utilize melatonin as a one electron substrate to produce less antioxidant substances, such as N1-

acetyl-N2-formyl-5-methoxynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), 

limits the duration of the oocyte protection by the amount of the melatonin provided [97, 98].  

Previously, we have shown that pre-incubation of oocytes with increasing concentrations of 

melatonin prior to HOCl treatment significantly prevented HOCl-mediated deterioration of 

oocyte quality [185].  It has been further demonstrated that, under specific condition, melatonin 

treatment could significantly improve fertilization and pregnancy rates [90, 123].  This work 

provides a direct link between MPO and deterioration of oocyte quality leading to poor 

reproductive outcomes.   

Several inflammatory diseases such as endometriosis, polycystic ovarian syndrome, 

diabetes, are not only associated with increased ROS production but also increased MPO levels 

[35, 37-40, 206, 207].  In these disorders, elevated MPO levels have also been linked directly 

or indirectly with decline in fertility [2, 208].  We have previously showed that oocytes 

obtained from women with endometriosis display granulosa cells apoptosis, positive for 

nitrotyrosine, premature cortical granule exocytosis in oocytes, disrupted microtubular 

morphology, and disrupted chromosomal alignment [209].  The deterioration of these oocyte 

quality parameters is not only caused by ROS but may also occur through MPO catalysis 

consistent with our current results [55, 56, 185].  Elevated MPO activity shifts the environment 

from one of host defense to one capable of host damage directly through the generation of ROS 

or indirectly through hemoprotein heme destruction and subsequent free iron release [56].  Free 
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iron (most commonly Fe2+) through H2O2 driven Fenton reaction yields •OH, which propagates 

deterioration in oocyte quality contributing to the development of infertility [14, 15, 210].  

MPO can also consume NO as a physiological one electron (1e-) substrate [211].  Direct 

quantitative NO measurements utilizing NO-selective electrodes revealed that there is a 

significant amount of NO inside the oocyte [212].  NO deficiency has been shown to 

deteriorate oocyte quality and accelerate oocyte aging [7, 44].  Thus, MPO may damage the 

oocytes through multiple pathways: generation of oxidants such as HOCl and •OH, serving as a 

source of free iron, and depleting NO.    

MPO is produced in high levels during inflammation throughout of the female 

reproductive tract from stimulated inflammatory cells such as neutrophils, monocytes, and 

macrophages [40, 120, 213, 214].  The distribution of macrophages in the ovary during different 

stages of oocyte development, as well as their presence in peri‐ovulatory human follicular fluid, 

suggest that macrophages play important roles in folliculogenesis and tissue restructuring at 

ovulation [25, 26].  Indeed, during oocyte development in mice, rats, and humans, macrophages 

are recruited into the cellular layers of the follicle causing their numbers to be greatest just prior 

to ovulation [25, 182].  Activation of these macrophages or recruitment of other immune cells in 

the presence of inflammation for any reason can therefore contribute to deterioration in oocyte 

quality.  Activated macrophages may mediate oocyte quality damage not only through triggering 

of MPO chlorinating activity, but also through reactive oxygen species and cytokine cascades.  

Previously, we have shown that ROS such as O2
•-, H2O2, 

•OH, and ONOO-, as well as,  IL-6, 

generated in the process of oxidative stress, not only regulates the inflammatory setting and 

contributions in keeping of chronic inflammatory state but also directly or indirectly affects the 

metaphase-II oocyte spindle and significantly contributes to infertility [2, 3, 56, 179].  Similarly, 

treatment with melatonin (MPO inhibitor and ROS scavenger) highlights the culpability of 
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macrophages in affecting oocyte quality.  

Parallel to increased expression of MPO in inflammation, research has demonstrated 

elevations in macrophage concentration and activity in conditions such as polycystic ovarian 

syndrome and endometriosis related infertility [26, 215-218].  Non-activated peritoneal 

macrophages when co-cultured with the oocyte post fertilization leads to higher rates of 

development in in-vitro embryos when compared to the control group [29].  In support of the 

variable role of macrophages based on activation status, an association has been demonstrated 

between endometriosis and increased numbers of macrophages; however concluded based on 

colorimetric assay of MPO activity that impaired function or abnormal activation, and not 

macrophages population size is important for endometriotic tissue proliferation [208].  Similarly, 

high concentrations of inflammatory cytokines (TNF and IL-1) secreted from activated 

macrophages have been shown to cause deleterious effects on pre-implantation embryos [219].  

Therefore, increased macrophage activation in the follicular fluid may cause a disruption in 

folliculogenesis and the deterioration in oocyte quality observed in pathologic conditions causing 

infertility [6, 24, 220, 221].  As shown in in vitro studies, oxidative states generated upon 

activating macrophages may also compromise oocyte quality by affecting the meiotic spindle [2, 

3, 55, 56, 179, 185, 198].  Thus, irrespective of whether purified MPO or activated macrophages 

are utilized, this works provides an initial mechanistic link between MPO activity and 

deterioration in oocyte quality.   

In conclusion, our current work showed for the first time the link between stimulated- 

macrophages, a major source of MPO, and oocyte quality deterioration, highlighting the 

implications of these cells in infertility caused by inflammatory conditions.  Melatonin has 

potential therapeutic effects in preserving oocyte quality, thus improving reproductive outcomes 

in patients with chronic inflammation.   
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CHAPTER 5 

MELATONIN PREVENTS MYELOPEROXIDASE HEME DESTRUCTION AND THE 
GENERATION OF FREE IRON MEDIATED BY SELF-GENERATED 

HYPOCHLOROUS ACID 

(This chapter contains previously published material. See Appendix B). 

Abstract 

Myeloperoxidase (MPO) generated hypochlorous acid (HOCl) formed during catalysis is 

able to destroy the MPO heme moiety through a feedback mechanism, resulting in accumulation 

of free iron.  Here we show that the presence of melatonin (MLT) can prevent HOCl-mediated 

MPO heme destruction using a combination of UV-visible photometry, hydrogen peroxide 

(H2O2)-specific electrode, and ferrozine assay techniques.  High performance liquid 

chromatography (HPLC) analysis showed that MPO heme protection was at the expense of MLT 

oxidation.  The full protection of the MPO heme requires the presence of a 1:2 MLT to H2O2 

ratio.  Melatonin prevents HOCl–mediated MPO heme destruction through multiple pathways.  

These include by competing with chloride, the natural co-substrate; switching the MPO activity 

from a two electron oxidation to a one electron pathway causing the buildup of the inactive 

Compound II, and its subsequent decay to MPO-Fe(III) instead of generating HOCl; binding to 

MPO above the heme iron, thereby preventing the access of H2O2 to the catalytic site of the 

enzyme; and direct scavenging of HOCl.  Collectively, in addition to acting as an antioxidant and 

MPO inhibitor, MLT can exert its protective effect by preventing the release of free iron 

mediated by self-generated HOCl.  Our work may establish a direct mechanistic link by which 

MLT exerts its antioxidant protective effect in chronic inflammatory diseases with MPO 

elevation. 

Introduction 

Melatonin (MLT) is naturally synthesized from the amino acid tryptophan in the pineal 



48 

 

gland, but also by other non-endocrine organs (e.g., cerebellum, cerebral cortex, retina, skin, 

ovary, liver, pancreas, kidneys, and immune competent cells), and acts through 2 G-protein 

coupled receptors, MT1 and MT2 [91, 222-224].  In humans, like most vertebrates, MLT 

operates as a modulator of circadian rhythms, and displays an oscillatory pattern through its 

unique ability to function as a signal, which organisms use to synchronize their circadian 

system [91, 225].  Through its ability to scavenge a wide range of reactive oxygen species 

(ROS), multiple studies have shown distinct antioxidant and anti-inflammatory effects when 

MLT is administered either exogenously in vivo or when added to cultured cells via regulation 

of cellular pathways [51, 91, 112-114, 226].  The effects and action mechanisms of MLT 

belong to or take part in many different cell types including inflammatory cells such as 

monocytes–macrophages, neutrophils, eosinophils, basophils, mast cells, and natural killer 

cells [114, 115].  Therefore, various doses of synthetic MLT supplements have been used to 

treat a variety of medical scenarios such in which inflammation plays a role such as weakened 

immune system due to stress, oxidative hemolysis of red blood cells, and cancer progression 

[116, 117].  Recently, we have shown that MLT is a potent inhibitor of the inflammatory 

enzymes myeloperoxidase (MPO) and other related peroxidases (e.g. eosinophil peroxidase) 

[81, 104, 227].  

Myeloperoxidase is a heme protein, present in the neutrophils, which utilizes chloride 

(Cl-) in the presence of H2O2 to generate HOCl [141, 228].  This process occurs through H2O2 

reduction that leads to the formation of MPO Compound I (ferryl porphyrin  cation radical, 

Fe(IV)=O(+•)), which oxidizes Cl- to HOCl [229].  Myeloperoxidase compound I is also 

capable of oxidizing various organic and inorganic substrates by two successive 1e− transfers 

generating compound II (MPO-Fe(IV)=O) and MPO-Fe(III), respectively.  The rate limiting 

step in a typical peroxidase cycle is the reduction of compound II to MPO-Fe(III).  
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Furthermore, physiological reductants such as superoxide, nitric oxide, MLT, and ascorbic 

acid are known to accelerate this process [81, 230-234].  Hypochlorous acid is a potent oxidant 

that is capable, under normal circumstances, of functioning as a powerful antimicrobial agent 

[141, 228].  However, under a number of pathological conditions such as inflammatory 

diseases, in which ROS production can become excessive, HOCl is capable of mediating 

tissue damage [141, 235].  Interestingly, many inflammatory disorders such as ovarian cancer 

and atherosclerosis, in which MPO/HOCl has been known to be elevated, are also associated 

with significant free iron accumulation [15, 84, 236, 237].  Recently, we have highlighted the 

potential link between elevated HOCl and hemoprotein heme destruction, and subsequent 

generation of free iron [57, 229, 238].  Detailed mechanistic insight into how exogenously 

added or self-generated HOCl mediates the MPO heme moiety has recently been elucidated 

[57, 70].  Therefore, factors that influence rates of HOCl removal are of growing interest [156, 

185, 228, 239-242].  Here, we examine the ability of MLT to prevent HOCl-mediated heme 

destruction and subsequent iron release.  These findings may have therapeutic repercussions as 

they elucidate the mechanism behind the rationale for addition studies on MLT 

supplementation for patients with chronic inflammatory conditions in which MPO is elevated.  

Additionally, this work may open the door for the development of other treatment 

interventions in this patient population.  

Materials and Methods 

Materials 

All the materials used were of highest-grade purity and used without further purification. 

Sodium hypochlorite (NaOCl), H2O2, ammonium acetate (CH3COONH3), ferrozine, MLT, 

ascorbic acid, and dimethylformamide, were obtained from Sigma Aldrich (St. Louis, MO, 

USA).  
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General Procedures  

MPO purification 

MPO was initially purified from detergent extracts of human leukocytes by sequential 

lectin affinity and gel filtration chromatography [58, 187, 188].  Trace levels of contaminating 

eosinophil peroxidase (EPO) were then removed by passage over a sulfopropyl Sephadex 

column [188].  Purity of isolated MPO was established by demonstrating a Reinheitszahl (RZ) 

value of >0.85 (A430/A280), SDS−PAGE analysis with Coomassie Blue staining, and gel 

tetramethylbenzidine peroxidase staining to confirm no contaminating EPO activity.  Enzyme 

concentration was determined spectrophotometrically utilizing extinction coefficients of 89,000 

M-1 cm-1/heme of MPO [190].  

H2O2-selective electrode measurements 

Hydrogen peroxide measurements were carried out using an H2O2-selective electrode 

(Apollo 4000 free radical analyzer; World Precision Instruments, Sarasota, FL, USA). 

Experiments were performed at 25°C by immersing the electrode in 3 ml of 0.2 M sodium 

phosphate buffer, pH 7.0.  Experiments were carried out under two different conditions: 

sequential additions of 10 M H2O2 to a continuously stirred buffer solution supplemented with 

40 nM MPO and 100 mM Cl- in the absence and presence of 200 µM MLT during which the 

change of H2O2 concentration was continuously monitored. 

Absorbance measurements 

The absorbance spectra were recorded using a Cary 100 Bio UV–visible photometer, at 

25 C, pH 7.0.  Experiments were performed in 1 ml phosphate buffer solution supplemented with 

MPO (1.0-1.5 μM), 100 mM Cl-, and incremental addition of 180 μM of H2O2 (20 μM; 2 μl) in 

the absence and presence of increasing MLT concentrations (0-200 μM).  After each H2O2 

addition, the reaction mixture was left 10 min for reaction completion and absorbance spectra 
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were then recorded from 300 to 700 nm.     

Free iron analysis 

Free iron release was measured colorimetrically using ferrozine, following a slight 

modification of a published method [243].  To 100 μl of the sample (MPO–HOCl reaction 

mixture) 100 μl of ascorbic acid (100 mM) was added.  After 5 min of incubation at room 

temperature, 50 μl of ammonium acetate (16%) and the same volume of ferrozine (16 mM) were 

added to the mixture and mixed well.  Subsequently, the reaction mixture was incubated for 

5 min at room temperature and the absorbance was measured at 562 nm.  A standard curve 

prepared using ammonium Fe(III) sulfate was used for the calculation of free iron concentration.  

Final concentrations of the additives were as follows: ascorbic acid, 33.33 μM; ammonium 

acetate, 5.3%; and ferrozine, 5.3 μM. 

High Performance Liquid Chromatography (HPLC) 

HPLC analyses were performed using a Shimadzu HPLC system equipped with an SCL-

10A controller, LC-10 AD binary solvent delivery pumps, SIL-10 AD autosampler, SPD-M10 A 

diode array detector, and an RF-10 A XL fluorescence detector.  An Alltech 5 um particle size 

column was used with a 4.6 x 150 mm reverse phase octadecylsilica (C18).  To monitor the 

chromatogram, the RF fluorescence detector was set at 321 nm for excitation and 465 nm for 

emission and the SPD diode array detector was set at 400 nm. HPLC grade solvents were 

prepared as follows: solvent A, 0.1% TFA in water and solvent B, 0.1% TFA in 80% 

acetonitrile.  Solvent gradients were set as follows: 0-10 min 55-65% B, 10-14 min 65-90% B, 

followed by reducing solvent B composition to 55% within 14-24 min.  The column elution was 

carried out at flow rate of 0.8 ml/min with a linear gradient of solvents.  After treatment of MLT 

with MPO in presence of H2O2 for 24 hr, the reaction mixture was filtered through an Amicon 

Ultra-15 centrifugal filter unit with Ultracel-10 membrane (from Millipore) 3-kDa cut-off by 
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centrifuging at 14,000 rcf rate for 30 min at 4°C; then 50 μl of filtered sample was injected for 

analysis.  At the end of the run the system was equilibrated with 45% solvent A; each sample 

was analyzed in triplicate.  

N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) synthesis 

The AFMK was synthesized following the method of Tan et al. [244] with slight 

modification.  Briefly, 5 mg MLT were dissolved in 100 µL methanol and the reaction mixture 

was mixed with 500 µL H2O2 (30%).  The formation of AFMK was followed by the increase in 

absorbance at 340 nm. AFMK was isolated and confirmed by HPLC analyses.   

Solution preparation 

HOCl preparation 

HOCl was prepared as previously described with some modifications [158].  Briefly, a 

stock solution of HOCl was prepared by adding 1 ml of NaOCl solution to 40 ml of 154 mM 

NaCl and the pH was adjusted to around 3 by adding HCl.  The concentration of active total 

chlorine species in solution, expressed as [HOCl]T (where [HOCl]T = [HOCl] + [Cl2] + [Cl3
−] + 

[OCl−]) in 154 mM NaCl, was determined by converting all the active chlorine species to OCl− 

by adding a bolus of 40 μl of 5 M NaOH and measuring the concentration of OCl−.  The 

concentration of OCl− was determined spectrophotometrically at 292 nm (ε = 362 M−1 cm 1).  As 

HOCl is unstable, the stock solution was prepared on a daily basis, stored on ice, and used within 

1 hr of preparation.  For further experimentation, dilutions were made from the stock solution 

using 200 mM phosphate buffer, pH 7, to give working solutions of lower HOCl concentrations. 

Melatonin solution 

A stock solution of MLT was dissolved in dimethylformamide (DMF) and then diluted to 

the required concentrations with phosphate buffer (pH = 7.00).  The concentration of DMF in all 

MLT solutions was less than 1% and did not interfere with MPO activity. 
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Results 

Melatonin prevents MPO inactivation by HOCl generated during MPO steady-state catalysis  

The ability of MLT to prevent HOCl damage to MPO catalytic activity was determined 

by two methods.  The first involved the use of an H2O2-selective electrode, which measured the 

first step in the MPO catalytic cycle in which H2O2 is consumed by MPO.  The second method 

measured HOCl –mediated MPO heme destruction utilizing UV-Visible and free iron release 

using ferrozine assay.  

The H2O2-selective electrode measurements revealed that addition of an aliquot of H2O2 

(10 µM; 3.5 µL) to the continuously stirred reaction solution supplemented with 40 nM MPO 

and 100 mM Cl- demonstrated an instant consumption of H2O2, as previously reported [156, 234, 

239].  Subsequent multiple additions of the same amount of H2O2 to the MPO/Cl- solution 

mixture caused MPO inhibition, as judged by the accumulation of H2O2 (amplitude of H2O2 

signal) and a slower rate of its consumption (longer duration) (Figure 14A).   

Figure 14. Melatonin 
inhibits MPO 
chlorination activity 
and prevents MPO 
heme destruction 
and iron release 
mediated by MPO 
self-generated HOCl. 
(A) A typical 
recording by an H2O2-
selective electrode 
demonstrating the 
dramatic MPO 
feedback inhibition 
mediated by self-
generated HOCl after 
addition of equal 
amounts of H2O2 (10 
μM, 1–2 μl in 3 ml 
reaction mixture) five 
consecutive times (denoted by the arrows) to a continuously stirred phosphate buffer (200 mM, pH 7.4) containing 
40 nM MPO and 100 mM Cl−, at 25°C. (B) Similar experiment was repeated in the presence of MLT (100 μM), 
showing a significant protection of peroxidation activity of MPO. Under these circumstances, MLT inhibits the 
chlorinating activity of MPO and no heme destructions have been observed [81]. The data shown are representative 
of three independent experiments. 
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Under these circumstances, self-generated HOCl inhibited MPO through a mechanism 

that involves heme destruction, precluding the enzyme from functioning at maximum activity 

(80-90% inhibition) [70] (Figure 14A).  We used 40 nM MPO as the catalytic concentration.  

The pathophysiological effect of MPO was shown at concentrations of 5 nM [245].  To examine 

whether MLT could prevent the feedback heme destruction mediated by HOCl, an identical 

experiment was repeated in the presence of a saturating amount of MLT.  Addition of H2O2 (10 

μM) to a continuously stirred buffer solution supplemented with 40 nM MPO, 100 mM Cl-, and 

200 μM MLT caused a much slower rate of H2O2 consumption compared to control (Figure 

13B), which indicated that MLT inhibited the MPO catalytic activity [246].  The repeated 

addition of the same amounts of H2O2 to the MPO/Cl-/MLT reaction mixture showed that the 

degree of MPO inhibition remained the same for all of the five trials.  Thus under these 

conditions, MLT protected the peroxidation activity of MPO, but inhibited the chlorinating 

activity of the enzyme by serving as 1 e- substrate for both MPO compounds I and II [81].  

We next performed UV-visible photometry to correlate the degree of catalytic inhibition 

with HOCl-mediated heme destruction.   

Figure 15. Melatonin prevents MPO 
heme destruction mediated by self-
generated HOCl during steady state 
catalysis. Fixed amount of MPO (1 μM) 
was incubated with fixed amount of Cl-  
(100 mM) and increasing concentration 
of MLT (12 -200 μM), and the reaction 
mixtures were incrementally received 
fixed amount of H2O2 (20 μM,  total 
concentration of 180 μM).  After reaction 
completion, the spectra of the reaction 
mixtures were scanned from 300 - 700 
nm. The percent recovery in MPO Soret 
peak (430 nm) plotted as a function of 
melatonin concentration.  The full 
protection of the MPO heme contents 
required the presence of a ratio 1: 2 
MLT: H2O2.  The inset shows the absorbance spectra of MPO ferric form before (blue trace) and after the last 
incremental addition of H2O2 (red trace).  The flattening in the MPO spectrum indicates MPO heme destruction.  
The data points are the average of three independent experiments. 
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As shown in the Figure. 15 inset; blue trace, MPO-Fe(III) as isolated displays a Soret 

absorbance peak centered at 430 nm, with three additional beaks at 573, 630, and 694 nm.  Since 

the addition of a high molar ratio of H2O2 to MPO causes the conversion of MPO to Compound 

(III) (MPO-FeII-O2 complex) [247], the oxidation of the MPO heme moiety mediated by self-

generated HOCl was monitored by sequential addition of H2O2 (20 μM; 3 μl) (180 μM H2O2 

total) to the MPO-Fe(III)/Cl− mixture.  With each incremental addition of H2O2, there was a 

proportional decrease in the MPO Soret peak, indicating that HOCl-mediated MPO feedback 

inhibition is associated with MPO heme destruction.  After the last addition of H2O2 (180 μM 

total) solution to enzyme mixture, the spectrum recording showed a flattening in the Soret peak 

at 430 nm indicating MPO heme destruction (Figure 15 inset; red trace).  This flattening in the 

Soret peak region occurred solely in the presence of Cl−, signifying HOCl to be the major cause 

of MPO heme destruction.  To confirm that MLT prevents HOCl-mediated MPO heme 

destruction, a fixed amount of MPO/Cl− mixture was preincubated with increasing 

concentrations of MLT prior to incremental additions of H2O2 to the reaction mixture.  Figure 15 

shows the percentage recovery of MPO heme content, measured at 430 nm after the last addition 

of the incremental H2O2 to the enzyme solution, as a function of MLT concentration.  In the 

presence of a saturating amount of MLT (>100 μM), spectral analysis indicated no losses in the 

heme content.  Under these conditions, the MPO- H2O2 system utilized MLT as a 1e- substrate 

for the formation and subsequent decay of Compound II.  The accumulation and stability of 

MPO Compound II (characterized by a Soret absorbance peak at 450 nm) during catalysis 

depended on the MLT concentration.  In the presence of lower MLT levels, addition of limiting 

amounts of H2O2 (10 µM) to the solution mixture caused immediate appearance of MPO 

Compound II, which then decayed to the ferric form in the next few seconds.  In the presence of 

higher MLT concentrations (e.g. 100-400 µM), no significant change in absorbance was 
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observed upon the addition of an H2O2 solution to the MPO mixture, indicating that the rate of 

MPO compound II decay exceeded the rate of formation, which was consistent with previous 

results [248].  In the presence of 50 µM MLT, only 50% recovery was noted in the MPO Soret 

absorbance peak of the total enzyme.  As shown in Figure. 15, the full protection of the MPO 

heme contents required the presence of a ratio 1:2 MLT: H2O2 ratio.  Collectively, our results 

showed that heme destruction did not occur in the presence of MLT, where MPO began reducing 

H2O2 without generating HOCl, indicating that self-generated HOCl is the major cause of MPO 

inactivation. 

To investigate how the flattening in the Soret absorbance peak at 430 nm in H2O2-treated 

samples, is linked to MPO heme depletion, and if MLT can prevent this finding, we studied the 

free iron release after H2O2 treatment in the absence and presence of saturating amounts of MLT.  

By comparing to the free iron content of the untreated control, treatment with H2O2 led to a 

significant increase in free iron content as compared to control (Figure 16).  

Figure 16. Melatonin prevents 
HOCl mediated MPO heme 
destruction and subsequent 
free iron release during MPO 
catalysis.  MPO (1.2 µM) was 
incubated with 100 mM Cl− in 
the absence and presence of 400 
µM MLT followed by the 
addition of aliquots of H2O2 (in 
increments of 20 µM) to the 
reaction mixture. The free iron 
released was measured using 
ferrozine assay as detailed under 
Materials and methods. No free 
iron was detected before the 
addition of H2O2. The data are 
the averages of three independent 
experiments with the error bars 
representing the standard error of 
measurement.  
 

Additionally, in the same figure, we noted around 25% free iron detection.  This finding 

is likely secondary to the fact that not all iron was detached from the heme fragments, and 
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therefore not able to be detected by the assay.  The accumulation of free iron significantly 

decreased in the presence of saturating amounts of MLT, confirming the above 

spectrophotometric studies.  Thus, MLT not only inhibits MPO catalytic activity, but also 

prevents heme destruction and subsequent free iron release mediated by self-generated HOCl. 

The protection of MPO heme destruction mediated by self-generated HOCl occurred at the 

expense of melatonin oxidation 

Finally, HPLC analysis (anion exchange) was utilized to investigate in depth the 

mechanism by which MLT presence prevents MPO heme 

destruction mediated by self-generated HOCl.  Using this 

method, we observe an accumulation of two major MLT 

metabolites when concentrations of MLT used were 

sufficient to produce dramatic effects on the rates of 

Compound II formation, duration, and decay.  The 

population of these metabolites is varied and depending 

on the H2O2 concentration used (Figure 17).   

 

 

 

Figure 17: HPLC analysis shows MLT oxidation thereby 
preventing MPO heme destruction and generation of free iron. 
A) HPLC trace for MLT (elution time 3.98 min) dissolved in DMF 
(elution time 3.31 min) and phosphate buffer (elution time 2.48 min). 
B) Addition of MPO and Cl- causes no significant change in MLT 
peak intensity and/or retention time. C) Addition of H2O2 (sequential 
addition of 20 µM, total 200 µM) results in a significant shift in 
MLT retention time elution time (3.71 min) as well as the 
appearance of a small peak around 3.57 min. D) Increasing levels of 
H2O2 (400 µM) resulted in the domination of the MLT metabolite 
eluted at 3.57 min showing the retention and absorbance properties 
of AFMK (elution time 3.57 min) as shown in panel (E).  
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HPLC analyses were conducted under five different conditions: MLT alone; MPO (40 

nM) pre-incubated with MLT (100 µM) alone; the solution mixture of MPO pre-incubated with 

MLT (100 µM) which received sequential additions of 20 µM H2O2 (to total either 200 or 400 

µM H2O2); and finally AFMK alone.  After reaction completion, the reaction mixtures were 

filtered to eliminate MPO and the supernatants were then injected into the HPLC system.  Under 

our experimental conditions phosphate buffer and DMF were eluted at 2.48 and 3.31 min, 

respectively (Figure 17).  MLT alone was eluted at 3.95 min (Figure 17A) while AFMK alone 

was eluted at 3.57 min (Figure 17E), and both were identified by their characteristic spectra 

observed from the photodiode array detector at 222 and 236 nm, respectively.  Pre-incubation of 

MLT (100 µM) with a catalytic amount of MPO (40 nM) and Cl- (100 mM), in the absence of 

H2O2, fails to generate any detectable MLT metabolite (Figure 17B).  HPLC analysis also 

indicated that relatively short time incubation of H2O2 at the different concentrations employed 

(200-400 µM) in the experiment for 2h has no effect on the MLT (100 µM) moiety (data not 

shown).  However, long incubation of high concentration of H2O2 (30%) with MLT in the 

presence of methanol generates AFMK (Figure 17E) [244].  

However, incremental addition of H2O2 to the enzyme- MLT mixture resulted in MLT 

oxidation to a lower elution time indicating formation of MLT metabolites with lower 

hydrophobicity.  The enzyme sample that was pre-incubated with 100 µM MLT and treated with 

200 µM H2O2 (total) led to the production of two main MLT metabolites with elution times of 

3.71 and 3.57 min with the first being the most abundant and attributed to the formation of 

hydroxyl melatonin metabolite (Figure 17C).  Although we provide no direct evidence for the 

hydroxyl melatonin formation, we do note corresponding 1e- heme reduction steps for MPO 

Compounds I and II in the presence of MLT.  The MPO sample that was incubated with 100 µM 

MLT and treated with 400 µM H2O2 (total) led to the production of a MLT metabolite with 
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elution time of 3.57 min, which was similar to elution time of AFMK alone (Figure. 17D).  

Consistent with these studies, Ximenes et al. similarly have observed two MLT metabolites 

(hydroxyl melatonin and AFMK) when MLT was incubated with MPO-H2O2 system or with 

stimulated neutrophils [249].  Thus, MLT prevents MPO heme destruction either by directly 

scavenging HOCl and/or inhibiting MPO chlorinating activity.   

Discussion  

In this work, we show that MLT largely prevents MPO catalytic inhibition, attributed to 

MPO heme destruction and the generation of free iron associated with HOCl synthesis, through 

its function as a potent MPO inhibitor and/or a HOCl scavenger.  Thus, MLT may contribute to 

the reduction of the inflammatory process not only by inhibiting MPO and consuming HOCl, but 

also by diminishing the release and accumulation of free iron.   

Recently, we have characterized an irreversible inhibition that is related to MPO heme 

destruction and the generation of free iron, when appropriate concentrations of self-generated 

HOCl are reached in the enzyme milieu [70].  These findings were recently confirmed by 

Paumann-Page et al [250].  The accumulation of the released HOCl in the solution mixture 

permits the competition with H2O2 on the catalytic site of MPO, which is in this case is the heme 

prosthetic group [70].  Hypochlorous acid interacts with both MPO-Fe(III) and Compound I and 

accelerates their conversion to Compound II [70, 251], or forms a relatively stable MPO-Fe(III)-

OCl complex, which also converts to Compound II prior to heme destruction [70].  Compound II 

is a long-lived intermediate so would be predominantly susceptible to HOCl assault leading to 

heme destruction [57].  In the absence of an MPO inhibitor, HOCl scavenger, or both, the degree 

of MPO heme destruction is significantly high in that only a small portion of the total enzyme (5-

10%) is estimated to remain active after multiple cycles of HOCl synthesis [229].  Our current 

results demonstrate that the degree of MPO heme pocket alterations (e.g., by changes in the 
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hydrogen bonds) mediated by MLT is not only sufficient to affect the interaction of Compound I 

with Cl- preventing the generation of HOCl, but also prevents HOCl access to the heme moiety; 

thereby avoiding HOCl-dependent heme destruction.  These notions are consistent with our 

previous detailed kinetic studies, which showed the ability of MLT to inhibit MPO chlorinating 

activity despite the presence of high concentrations of Cl- [81].  Melatonin competes with Cl- and 

switches the MPO catalytic activity from a 2e- oxidation to a 1e- oxidation pathway.  Under these 

conditions, MPO did not generate HOCl but still consumed H2O2 at slower rates. H2O2-selective 

measurements showed that MLT presence inhibits MPO peroxidase activity.  This observation 

appears relevant even in the presence of alternative substrates because peroxidases like MPO are 

not saturated under physiological conditions [252].  These notions are also supported by 

theoretical modeling, which showed that indole compounds could be accommodated in the 

narrow regions of the active site pockets of MPO when the indole ring is situated parallel to the 

heme plane and close enough to the D pyrrole ring.  Under the circumstances the side chain of 

the indole compound is directed toward the outside of the distal cavity [253].  

It is clear from the MLT presence that the MPO chlorinating activity, but not H2O2, is 

implicated in MPO heme destruction and free iron release.  This conclusion is consistent with 

previous studies by Paumann-Page et al. who showed that the MPO inactivation mediated by 

H2O2 is unlikely to take place in the presence of reducing substrates (100 mM Cl-), and where the 

concentration of H2O2 does not accumulate [254].  The amount of MLT used (100 µM) in the 

current work is sufficient to inhibit MPO.  Studies on the effect of MLT on HOCl production by 

neutrophils and purified MPO have showed that the concentration of MLT that inhibited HOCl 

production by 50% (IC50) was estimated to be 18 μM and reduced to 4 μM when superoxide was 

removed by addition of superoxide dismutase [249].  In contrast, the IC50 value, calculated from 

the initial rate of H2O2 consumption, as a function of the MLT concentration was 3 μM [81]. Our 
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HPLC analysis showed that the protection of MPO heme destruction mediated by self-generated 

HOCl occurred at the expense of MLT oxidation, which depends on the concentration of H2O2 

used.  Ximenes et al. showed the elution of two MLT metabolites when MLT was exposed to 

neutrophils [249]. In their system, the major and minor peaks were AFMK and a hydroxlyated 

melatonin metabolite, respectively.  We similarly observed 2 peaks in our system; however, we 

believe the major peak was the hydroxylated intermediate when a lower concentration of H2O2 

(1:2, MLT: H2O2) was used.  In contrast, AFMK predominated when MPO was exposed to 

higher concentrations of H2O2 (1:4, MLT: H2O2).  This alteration in the peroxidation turnover 

resulted in the reversal of the populations of the two MLT metabolites.  Thus, prevention of 

MPO heme destruction depends on multiple factors including the bioavailability of HOCl, the 

presence of a capable 1e- substrate that can compete with Cl- switching the reaction from a 2e- to 

a 1e- oxidation pathway (e.g. ascorbic acid, superoxide, and nitric oxide), and the presence of 

HOCl scavengers. 

Melatonin prevention of HOCl-mediated heme destruction is not limited to MPO, but 

also applies to other hemoprotein model compounds, such as hemoglobin, lactoperoxidase, 

catalase, as well as isolated human red blood cells [57, 70, 238, 249, 255, 256].  Earlier kinetic 

measurements have indicated that HOCl initially mediates the sequential formation of ferryl 

peroxidase-like intermediates, compounds I and II, followed by heme degradation [70, 238, 251, 

257].  Hypochlorous acid can also mediate tetrapyrrole ring destruction independent of the iron 

molecule that resides in the porphyrin center [57].  A general chemical mechanism that describes 

the tetrapyrrole ring destruction resulting from the direct attack of HOCl and generation of 

multiple heme degradation products is well documented [57, 185, 228, 229, 238].  Because of 

MLT's ability to inhibit MPO, destabilize the Compound II intermediate and/or directly scavenge 

HOCl, MLT could be considered an ideal component for prevention against HOCl mediated 
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oxidative damage. 

Although experiments that utilized methionine or taurine as scavenger of HOCl showed 

that they could prevent HOCl-mediated MPO heme destruction [104] similar to MLT, there are 

important differences in the fundamental aspects.  Melatonin and its precursors, unlike other 

HOCl scavengers, display a high affinity towards transition metal (e.g. iron (III), copper and 

zinc) binding, and subsequently reduce their cytoplasmic availability [108-110].  In addition, 

several in vivo studies have shown that administration of MLT directly or indirectly neutralizes a 

variety of ROS, resulting in the reduction of lipid peroxidation, protein oxidation, and DNA 

damage, thus helping the immune system [51, 108, 109, 258, 259].  One other factor that 

distinguishes MLT from other HOCl scavengers (e.g. taurine, cystine, cysteine and uric acid) is 

that its oxidation products have no biologically harmful sequelae [104, 105].  Melatonin reacts 

with HOCl to produce 2-hydroxymelatonin [47] at a rate sufficient to protect catalase against 

inactivation by this molecule [260].  Melatonin’s presence during MPO catalysis is associated 

with a significant diminution of free iron release, decrease in the intensity of the fluorescent 

heme degradation products, and reduction in different profiles of protein aggregation [47].  In 

contrast, taurine reacts with HOCl to form a less active oxidant taurine chloramine.  It is 

important, however, to note that while chloramines are less reactive than HOCl, they can still 

oxidize thiols, thioethers and heme proteins, and thus extend the reactivity of HOCl [105-107].  

The association between enhanced MPO expression and increased levels of free iron is 

characteristic of many inflammatory disorders including cardiovascular diseases such 

atherosclerosis, pulmonary diseases such as cystic fibrosis, neurodegenerative diseases such as 

Alzheimer’s disease as well as arthritis, diabetes, and has been found to be risk factor for various 

cancers [15, 21, 236, 237, 261-265].  As free iron accumulates, it disturbs body processes by 

replacing certain vital minerals such as zinc, copper, and manganese in many enzymes, depleting 
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vitamins such as vitamin E and D, and may lead to chronic infection, and inflammation [266].  

Due to its properties as an excellent oxygen transporter, iron tends to stimulate the growth of 

tumor cells and bacteria [267, 268].  Therefore, blocking the MPO chlorination machinery 

(MLT, tryptophan, and   tryptophan analogs) [81, 156, 239] or scavenging HOCl (MLT, 

methionine, lycopine, taurine, and glutathione) might be a useful therapeutic approach in 

reducing free iron release in a wide variety of inflammatory conditions.  
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CHAPTER 5 

CONCLUSIONS 

This work is the first to link the effect of activated macrophages, simulating 

inflammation, through a mechanism involving MPO catalytic activity and ROS generation with 

the deterioration in the oocyte quality, which may contribute to poor reproductive outcome. 

Our results from the Chapter 2 definitively confirm the deleterious effect of increasing 

ROS concentration on oocyte quality.  Importantly, the supportive surrounding cumulus cells 

armed with antioxidant machinery showed variable ability to protect oocyte quality against ROS 

assault.  Cumulus cells showed limited protection against H2O2 and •OH insult at low 

concentrations, however they lost their ability to protect at higher concentrations.  Moreover, 

cumulus cells offered no significant protection to the oocyte against HOCl at any concentration.  

Further investigation of these findings indicate that ROS compromise cumulus cell function by 

decreasing both cell number and viability, which is ultimately associated with the loss of oocyte 

viability.  

Reactive oxygen species are known to be alternatively generated through the catalytic 

activity of MPO, which is synthesized and secreted from activated macrophages.  In Chapter 3 

we successfully showed the impact of activated macrophages on oocyte quality, which mirrored 

and then exceeded the impact of purified MPO, in a time dependent fashion.  Similarly, HOCl, 

the MPO related oxidant also deteriorated oocyte quality irrespective of cumulus cells presence 

(please see Chapter 2 results).  Melatonin showed a powerful protective ability against MPO, 

either purified or naturally secreted from activated macrophages, and against ROS by 

functioning as a potent inhibitor of MPO chlorinating activity and ROS scavenger.  

Recent studies demonstrated that MPO is the major source of HOCl as well as free iron 

release under a HOCl feedback mechanism, which degraded the heme-ring in MPO.  Under these 
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conditions, free iron reacts with H2O2, through a known Fenton reaction, generates •OH, thus 

worsening the oocyte microenvironment.  Further research has found that the intra-oocyte H2O2 

diffuses to the extracellular environment of the oocyte activating MPO and deteriorating oocyte 

quality.  It is highly likely that HOCl is generated in the oocyte–macrophages culture media (see 

Chapter 3) and mediates oocyte quality deterioration.     

Chapter 4 elucidated the mechanism of HOCl generation through the MPO catalytic 

system and confirmed that generated HOCl has the ability to oxidize and thus consume MLT, as 

judged by the appearance of the melatonin intermediates utilizing HPLC analysis.  Briefly, we 

have described, in the absence of any inhibitor or scavenger, that sufficient amounts of self-

generated HOCl have the ability to irreversibly inhibit MPO activity by destroying the heme 

moiety of the MPO molecule and subsequently generate free iron.  While repeating the 

experiment in the presence of MLT, we found that melatonin can with Cl- and interact with 

Complex I to obstruct MPO chlorinating ability and prevent HOCl generation.  Melatonin also 

acts as a direct HOCl scavenger and therefore prevents HOCl accumulation thereby avoiding 

HOCl-mediated MPO heme destruction.  Furthermore, using ferrozine assays we revealed that 

the accumulation of free iron significantly decreased in the presence of MLT (see Chapter 3).  

Therefore, MLT preserves MPO peroxidation activity (by consuming H2O2 at slower rates) and 

prevents further oxidant generation and free iron release.  This study is important because we are 

the first to link activated macrophages, a major source of MPO, with oocyte quality 

deterioration, highlighting the effects of activated macrophages in infertility caused by 

inflammation.  As MLT can disable and scavenge MPO, and displays beneficial therapeutic 

effects in preserving oocyte quality, it may improve reproductive outcomes in patients with 

chronic inflammation. 
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Inflammatory reactions mediated by oxidative stress (OS) have been implicated in the 

deterioration of oocyte quality, which may lead to subfertility.  Oxidative stress generated from 

enhancement of activated macrophages secondary to an inflammatory response are the major 

source of reactive oxygen species (ROS) such as superoxide (O2
•−), hydrogen peroxide (H2O2), 

hydroxyl radical (•OH), and hypochlorous acid (HOCl), as well as, the pro-inflammatory enzyme 

myeloperoxidase (MPO).  Previously, it has been shown that these ROS have deleterious effect 

on oocytes; however the link between inflammation through macrophage activity and oocyte 

quality remains unclear.  In this work, we investigated: 1) the mechanism through which direct 

exposure of ROS and MPO, or through their generation by activated macrophages, deteriorate 

oocyte quality and whether melatonin (MLT), a potent MPO inhibitor and ROS scavenger, can 

protect oocyte quality; and 2) the mechanism through which MLT inhibits MPO catalytic 

activity. 

Our results indicated that ROS differentially deteriorate oocyte quality in a dose 

dependent manner possibly secondary to the overwhelming of the defense antioxidant capacity 

of the cumulus oocyte complex (COC).  Cumulus cells demonstrated protection against H2O2 

and •OH insult at low concentrations, but this protection was lost at higher concentrations and all 
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concentrations of HOCl as judged by changes in the organized compact cumulus cell mass into a 

dispersed mass of cells with decreased cumulus cell number and viability.  Therefore, increasing 

ROS concentration overpowered the antioxidant machinery provided by the oocyte and /or 

cumulus cells, through loss of cumulus cells, or the lack of scavengers for specific ROS.  This 

mechanism of damage may be associated with infertility related to COC dysfunction and thus 

deterioration in oocyte quality. 

Myeloperoxidase as well as activated macrophages negatively affected oocyte quality in 

a time dependent fashion. In all circumstances cumulus cells did not offer protection to the 

oocyte; however significant protection was offered by MLT.  Kinetic studies have shown that 

MLT inhibits the MPO chlorinating (generation of HOCl) activity through its ability to compete 

with Cl-, the natural substrate of MPO, and serve as a one electron substrate of MPO Compounds 

I and II.  Thus, MLT preserves the MPO peroxidation activity (by consuming H2O2 at slower 

rates) without the generation of HOCl through a two-step one-electron (1e−) oxidation pathway.   

This study is the first to link activated macrophages, a major source of MPO and ROS, 

and oocyte quality deterioration, highlighting the effects of activated macrophages in infertility 

caused by inflammation.  MLT has beneficial therapeutic effects in preserving oocyte quality, 

thus improving reproductive outcomes in patients with chronic inflammation.   
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