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CHAPTER 1: FORECASTING CRUDE OIL PRICE VOLATILITY1

INTRODUCTION

Large variations in the price of crude oil have been observed during the past decade.

The price for West Texas Intermediate (WTI) reached a maximum of $145.31 on July 3,

2008, possibly a consequence of geopolitical tensions over Iranian missile tests. It then

fell sharply to $91.49 on September 16, 2008 in the midst of the financial crisis, and

fluctuated around $40 by the end of the year. Such large swings in the crude oil price,

in conjunction with a widespread consensus that large fluctuations in the price of oil are

detrimental for economic activity, has bolstered a line of research into how to improve

oil price forecasts.2 This direction of research has provided important insights into the

usefulness of macroeconomic aggregates, asset prices, and futures prices in forecasting the

spot price of oil, as well as into the extent to which the real and the nominal price of oil

are predictable.

Despite this rich and growing literature, the number of studies on forecasting oil price

volatility was rather limited until the 2000’s. Yet, the increase in crude oil price volatility

observed around the period of the global financial crisis (see Figure 1)has created new

interest into how to improve volatility forecasts. Reliable forecasts of oil price volatility

are of interest for various economic agents, first and most obviously, for those firms whose

business greatly depends on oil prices. Examples include oil companies that need to decide

whether or not to drill a new well, airline companies who use oil price forecasts to set

airfares, and the automobile industry. Second, they are useful for those whose daily task

is to produce forecasts of industry-level and aggregate economic activity, such as central

bankers, business economists, and private sector forecasters. Finally, oil price volatility

also plays a role in households’ decisions regarding purchases of durable goods, such as

1Chapter one is co-authored with Ana Maŕıa Herrera of the University of Kentucky, and Liang Hu of
Wayne State University

2See e.g. Alquist, Kilian and Vigfusson (2013) for a comprehensive study and a survey of the literature.
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automobiles or heating systems (Kahn 1986, Davis and Kilian 2011, Plante and Traum

2012).

The aim of this paper is to provide a comprehensive and systematic examination

of the conditional volatility (hereafter volatility) of daily crude oil spot prices. Tra-

ditionally, oil price volatility has been modeled as a time-invariant GARCH process.3

Nonlinear GARCH models such as EGARCH (Nelson 1991) and GJR-GARCH (Glosten,

Jagannathan and Runkle 1993) are well suited for this task as they are capable of cap-

turing features such as volatility clustering, fat tails, and possible asymmetric effects.

Furthermore, these models have been shown to have good out-of-sample performance

when forecasting oil price volatility at short horizons (Mohammadi and Su 2010, and

Hou and Suardi 2012). Nevertheless, oil prices are characterized by sudden jumps due

to, for instance, political disruptions in the Middle East or military interventions in oil

exporting countries. Markov switching models have been found to be better suited to

model situations where changes in regimes are triggered by those sudden shocks to the

economy. To the best of our knowledge, only two studies have addressed the possibility

of changes in regime in oil price volatility: Fong and See (2002), and Nomikos and Pou-

liasis (2011). Both studies estimate Markov Switching GARCH (hereafter MS-GARCH)

models to study the volatility of daily returns on oil futures, whereas the latter also es-

timates Mix-GARCH models.4 Fong and See (2002) follow Gray’s (1996) suggestion and

integrate out the unobserved regime paths. Nomikos and Pouliasis (2011) use the esti-

mation method proposed by Haas et al. (2004), where they simplify the regime shifting

mechanism to make the estimation computationally tractable. The evidence found in

favor of switching models is mixed. Fong and See’s (2002) results suggest that GARCH-t5

and MS-GARCH-t models are very close competitors when forecasting the one-step-ahead

3See Xu and Ouennich (2012) and references therein.
4The regime shifts are driven by i.i.d. mixture distributions, rather than by a Markov chain.
5t stands for Student’s t distribution of the innovation.
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volatility of daily GSCI oil futures. Instead, Nomikos and Pouliasis (2011) find that, for

the one-step-ahead horizon, a Mix-GARCH-X6 produces more accurate forecasts of the

volatility in the returns of the NYMEX WTI oil futures.

In this paper, we model and forecast the volatility of the daily WTI closing spot

price instead. One advantage of using this price to evaluate volatility forecasts is that

it is available with no delay and it is not subject to revisions. This eliminates concerns

regarding differences between real-time forecasts and forecasts produced with information

that only becomes available after the forecast is generated. For instance, a researcher

interested in forecasting the monthly volatility using the refiners acquisition cost (RAC)

would have to deal with the issue that this price is released by the Energy Information

Agency with a delay and that values for the previous months tend to be revised. In

contrast, the forecast we produce using only the information contained in the history of

the daily WTI closing spot price is the real-time forecast. Moreover, whereas financial

investors might be more interested in volatility in crude oil futures, models that investigate

the role of oil price volatility in economic activity and investment decisions focus more on

spot oil prices.

This paper contributes to the literature in four important dimensions. First, we eval-

uate the role of regime switches in the volatility of daily returns on spot oil prices. To the

best of our knowledge, such a research question has only been explored by Vo (2009), who

uses weekly spot prices of WTI crude oil prices to estimate a Markov switching Stochas-

tic Volatility (SV) model and finds that incorporating regime switching into a SV model

enhances forecasting power. Given that spot oil prices exhibit sudden jumps and that

MS-GARCH models are well suited to capture changes in regimes triggered by sudden

shocks, evaluating their relative forecasting ability is of particular interest.

Second, in contrast with previous studies on crude oil price volatility, we formally test

6The GARCH-X model adds the squared lagged basis of futures prices to the GARCH specification
of the conditional variance.
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for regime switches using a testing procedure proposed by Carrasco, Hu, and Ploberger

(2014). Testing for regime switching in GARCH models is especially important since

it has been noted in the literature that the commonly found high persistence in the

unconditional variance in financial series may be the result of neglected structural breaks

or regime changes, see e.g., Lamoureux and Lastrapes (1990). In addition, Caporale,

Pittis, and Spagnolo (2003) show via Monte Carlo studies that fitting (mis-specified)

GARCH models to data generated by a MS-GARCH process tends to produce Integrated

GARCH (IGARCH)7 parameter estimates, leading to erroneous conclusions about the

persistence levels. Indeed, we find overwhelming evidence in favor of a regime switching

model for the daily crude oil price data.

Third, instead of following the estimation method of Gray (1996) or Haas et al. (2004),

we use the technique developed by Klaassen (2002). This methodology makes efficient

use of the conditional information when integrating out regimes to get rid of the path

dependence. Furthermore, it has two advantages over Gray (1996): greater flexibility in

capturing persistence of volatility shocks, and multi-step-ahead volatility forecasts that

can be recursively calculated.8 Meanwhile, a close look at Haas et al. (2004) reveals that

their model has a simplified switching mechanism, where the regime switch occurs only

in the GARCH effects. Our model, however, allows the conditional variance to switch to

a different regime as well. For example, big shocks may be followed by a volatile period

not only because of larger GARCH effects but also because of a possible switch to the

higher variance regime. As a result, our model allows for more flexibility in modeling the

volatility and persistence levels.

Last, but not least, we assess the out-of-sample forecasting performance of the different

models using a battery of tests. We first follow Hansen and Lunde (2005) in considering

7The conditional variance grows with time t and the unconditional variance becomes infinity.
8By making multi-period ahead forecasts a convenient recursive procedure, Klaassen (2002) shows

that MS-GARCH forecasts are better than single regime GARCH forecasts.
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several statistical loss functions (e.g., mean square error, MSE, mean absolute deviation,

MAD, quasi maximum likelihood, QLike) to evaluate out-of-sample forecasting perfor-

mance, as no single criterion exists to select the best model when comparing volatility

forecasts (Bollerslev et al. 1994, Lopez 2001). Then, we compute the Success Ratio (SR)

and implement the Directional Accuracy (DA) tests from Pesaran and Timmermann

(1992), conduct pairwise comparisons between different candidate models with Diebold

and Mariano’s (1995) test of Equal Predictive Ability, and groupwise comparisons using

White’s (2000) Reality Check test and Hansen’s (2005) test of Superior Predictive Ability.

Finally, we inquire into the stability of the forecasting accuracy for the preferred models

over the evaluation period.

Our results suggest that EGARCH models yield more accurate out-of-sample forecasts

at short horizons of 1 day and 5 days, whereas we generally favor MS-GARCH models at

longer horizons. We also find overwhelming evidence that a normal innovation is insuffi-

cient to account for the leptokurtosis in our data, thus Student’s t or GED distributions

are more appropriate.9 All in all, our results suggest that at longer horizons Markov

switching models have superior predictive ability and yield more accurate forecasts than

more restricted GARCH models where the parameters are time-invariant. Moreover, we

uncover clear gains from using the MS-GARCH-t model for forecasting crude oil price

volatility towards the end of the evaluation period at all horizons when comparing the

mean squared prediction error (MSPE) of the preferred models.

ECONOMETRIC METHODOLOGY

This paper focuses on the out-of-sample forecasting performance of a variety of models

for predicting oil price volatility. The models considered here belong to the conventional

GARCH family or are Markov Switching GARCH models. This section describes these

models.

9Our findings differ from Marcucci (2005) where normal innovation is favored in modeling financial
returns.
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Conventional GARCH Models

The ARCH model by Engle (1982) and the GARCH model by Bollerslev (1986) have

been widely employed for modeling volatility in financial assets and oil prices. Thus, the

first model we estimate is a standard GARCH(1, 1) regression model:


yt = µt + εt,

εt =
√
ht · ηt, ηt ∼ iid(0, 1)

ht = α0 + α1ε
2
t−1 + γ1ht−1,

(1)

where µt is the time-varying conditional mean possibly given by β′xt with xt being the

k × 1 vector of stochastic covariates. α0, α1 and γ1 are all positive and α1 + γ1 ≤ 1.10

Denote the parameters of interest as θ = (β,α0, α1, γ1)′. Let f(ηt; ν) denote the density

function for ηt = εt(θ)/
√
ht(θ) with mean 0, variance 1, and nuisance parameters ν ∈ Rj.

The combined parameter vector is further denoted as ψ = (θ′, ν ′)′. The likelihood function

for the t-th observation is then given by

ft(yt) = ft(yt;ψ) =
1√
ht(θ)

f

(
εt(θ)√
ht(θ)

; ν

)
. (2)

The most commonly used distributions for ηt include the standard normal, the Stu-

dent’s t, and the Generalized Error Distribution (GED). Both Student’s t and GED are

able to capture extra leptokurtosis –which is commonly observed in financial returns and

oil price returns–, yet they require one additional nuisance parameter ν to be estimated,

e.g., the degrees of freedom in the Student’s t and the shape parameter in the GED.

Namely, if we assume ηt is standard normal, there are no additional nuisance parameters

10When α1 + γ1 = 1, εt becomes an integrated GARCH (IGARCH) process, where a shock to the
variance will remain in the system. However, it is still possible for it to come from a strictly stationary
process, see Nelson (1990).
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for the probability density function (pdf) and it is simply

f(ηt) =
1√
2π

exp

(
−η

2
t

2

)
. (3)

Alternatively, if we assume ηt is distributed according to the Student’s t distribution with

ν degrees of freedom, the pdf of ηt is then given by

f(ηt; ν) =
Γ
(
ν+1

2

)√
(ν − 2)πΓ

(
ν
2

) (1 +
η2
t

ν − 2

)− (ν+1)
2

, (4)

where Γ(·) is the Gamma function and ν is constrained to be greater than 2 so that the

second moment exists and equals 1. If we assume a GED distribution, the pdf of ηt is

modeled

f(ηt; ν) =
ν exp

[
−1

2

∣∣ηt
λ

∣∣ν]
λ2(1+ 1

ν )Γ
(

1
ν

) , (5)

with

λ ≡


(

2−
2
ν Γ
(

1
ν

))
Γ
(

3
ν

)


1
2

,

where Γ(·) is again the Gamma function; ν is the shape parameter indicating the thickness

of the tails and satisfying 0 < ν < ∞. When ν = 2, the GED distribution becomes a

standard normal distribution. If ν < 2, the tails are thicker than normal. Once the

distribution for ηt is specified, the parameter vector ψ can be estimated jointly using

Maximum Likelihood Estimation (MLE).

A well-documented feature of financial data is the asymmetrical effects different types

of shocks can have on volatility. For instance, political disruptions in the Middle East tend

to increase volatility (see, e.g. Ferderer 1996, Wilson et al. 1996) whereas the effect of new

oil field discoveries seems to have a more muted effect. Meanwhile, negative shocks seem

to have a more pronounced effect on financial returns than positive shocks. The negative
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correlation between current returns and future volatility is known as the leverage effect.

In order to allow negative and positive shocks to have a different effect on the conditional

variance of oil prices we estimate the GJR-GARCH developed by Glosten, Jagannathan,

and Runkle (1993). The conditional variance is modeled as

ht = α0 + α1ε
2
t−1 + ξε2

t−1I{εt−1<0} + γ1ht−1, (6)

where I{ω} is the indicator function equal to one if ω is true, and zero otherwise. Then

the asymmetric effect is characterized by a positive ξ. ML estimation of GJR-GARCH

can be conducted similarly under different distributional specifications.

Finally, a potential drawback of the standard GARCH model is the requirement that

all of the parameters be positive. Nelson (1991) introduced the Exponential GARCH

(EGARCH) model, which eliminated the non-negativity requirement. The logarithm of

the conditional variance is described by

log(ht) = α0 + α1

(∣∣∣∣∣ εt−1√
ht−1

∣∣∣∣∣− E
∣∣∣∣∣ εt−1√

ht−1

∣∣∣∣∣
)

+ ξ
εt−1√
ht−1

+ γ1 log(ht−1). (7)

There are several interesting features of the EGARCH model. First, the equation for

conditional variance is in log-linear form. Thus, the implied value of ht can never be

negative, permitting estimated coefficients to be negative. Second, the level of the stan-

dardized value of εt−1,
∣∣∣εt−1/

√
ht−1

∣∣∣, is used instead of ε2
t−1. As Nelson (1991) argues,

this allows for a more natural interpretation of the size and persistence of shocks since

the standardized value of εt−1 is unit-less. Finally, the EGARCH model also allows for

an asymmetric effect, which is measured by a negative ξ. The effect of a positive stan-

dardized shock on the logarithmic conditional variance is α1 + ξ; the effect of a negative

standardized shock would be α1 − ξ instead.

Notice that in the EGARCH, E
∣∣∣εt−1/

√
ht−1

∣∣∣ takes different values under different
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distribution specifications. When ηt is normal, E
∣∣∣εt−1/

√
ht−1

∣∣∣ is the constant
√

2
π
. Under

the t distribution specified in (4),

E

∣∣∣∣∣ εt−1√
ht−1

∣∣∣∣∣ = E |ηt−1| =
2
√
ν − 2Γ

(
ν+1

2

)
√
π · (ν − 1) · Γ

(
ν
2

) .
Under the GED distribution specified in (5),

E

∣∣∣∣∣ εt−1√
ht−1

∣∣∣∣∣ = E |ηt−1| =
Γ
(

2
ν

)[
Γ
(

1
ν

)
Γ
(

3
ν

)]1/2 .
We simply plug these values in (7) and maximize the likelihood function across all pa-

rameters ψ in estimating EGARCH models.

MS-GARCH Models

As we mentioned in the introduction, a small number of studies have estimated MS-

GARCH models to study the volatility of returns on oil price futures (see, e.g. Fong and

See 2002, Nomikos and Pouliasis 2011). In fact, MS-GARCH models are of particular in-

terest in the study of oil price volatility as the GARCH parameters are permitted to switch

between regimes (e.g., periods that are perceived as of major political unrest versus peri-

ods of calm), thus providing flexibility over the standard GARCH models. For instance, a

MS-GARCH model may better capture volatility persistence by allowing shocks to have a

more persistent effect – through different GARCH parameters – during the high volatility

regime and lower persistence during the low volatility regime. Meanwhile, MS-GARCH

models can also capture the pressure-relieving effects of some large shocks, which may

occur when large shocks that are not persistent are followed by relatively tranquil periods

rather than by a switch to a higher volatility regime. Thus, a regime-switching model

is flexible enough to accommodate volatility clustering and different levels of volatility

persistence (Klaassen 2002).
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We consider the MS-GARCH(1, 1) model given by


yt = µSt + εt,

εt =
√
ht · ηt, ηt ∼ iid(0, 1)

ht = αSt0 + αSt1 ε
2
t−1 + γSt1 ht−1,

(8)

where we allow both the conditional mean µStand the conditional variance ht to be subject

to a hidden Markov chain, St. In this paper, we focus on a two-state first-order Markov

chain. That is, the transition probability of the current state only depends on the most

adjacent past state:

P (St | St−1, It−2) = P (St | St−1) ,

where It−2 denotes the information set up to t − 2. We use pij to denote the transition

probability that state i is followed by state j. We assume the Markov chain is geometric

ergodic. More precisely, if St takes two values 1 and 2, and has transition probabilities

p11 = P (St = 1 | St−1 = 1) and p22 = P (St = 2 | St−1 = 2), St is geometric ergodic if

0 < p11 < 1 and 0 < p22 < 1.

Estimating the model in (8) is computationally intractable, because the conditional

variance ht depends on the state-dependent ht−1, consequently on all past states. Maxi-

mizing the likelihood function would require integrating out all possible unobserved regime

paths, which grow exponentially with sample size T. Gray (1996) suggests integrating out

the unobserved regime path S̃t−1 = (St−1, St−2, ...) to avoid the path dependence, namely,

replacing the path-dependent ht−1 by

ht−1 = Et−2

[
h

(i)
t−1

]
= p1,t−1

[(
µ

(1)
t−1

)2

+ h
(1)
t−1

]
+ p2,t−1

[(
µ

(2)
t−1

)2

+ h
(2)
t−1

]
−
[
p1,t−1µ

(1)
t−1 + p2,t−1µ

(2)
t−1

]2

,
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where h
(i)
t−1 and µ

(i)
t−1 represent the the conditional variance and mean at time t − 1 in

state i, respectively, and p1,t−1 = P (St−1 = 1 | It−2) and p2,t−1 = P (St−1 = 2 | It−2)

are the ex-ante probabilities. This specification avoids the path dependence issue and

makes estimation very straightforward. But the disadvantage is that multi-step-ahead

forecasting is very complicated.

In this paper we follow Klaassen (2002) and Marcucci (2005) and replace ht−1 by its

expectation conditional on the information set at t − 1 plus the current state variable,

namely,

h
(i)
t = α

(i)
0 + α

(i)
1 ε

2
t−1 + γ

(i)
1 Et−1

[
h

(i)
t−1 | St

]
,

where

Et−1

[
h

(i)
t−1 | St

]
=

2∑
j=1

pji,t−1

[(
µ

(j)
t−1

)2

+ h
(j)
t−1

]
−

[
2∑
j=1

pji,t−1µ
(j)
t−1

]2

,

and pji,t−1 = P (St−1 = j | St = i, It−2) , i, j = 1, 2, and calculated as

pji,t−1 =
pji Pr(St−1 = j | It−2)

Pr(St = i | It−2)
=

pjipj,t−1∑2
j=1 pjipj,t−1

.

Similar to Gray (1996), this specification circumvents the path dependence by integrat-

ing out the path-dependent ht−1. However, it uses the information set at time t− 1 plus

the current state St, which embodies Gray’s It−2 information set. Given that regimes

are often observed to be highly persistent, St contains lots of information about St−1.

Klaassen (2002) discovers that an empirical advantage of this specification over Gray’s

is the efficient use of all information available to the researcher. It also has the theoret-

ical advantage of entailing a straightforward computation of the m-step-ahead volatility
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forecasts at time T as follows11:

ĥT,T+m =
m∑
τ=1

ĥT,T+τ =
m∑
τ=1

2∑
i=1

P (ST+τ = i | IT )ĥ
(i)
T,T+τ ,

where the τ -step-ahead volatility forecast in regime i made at time T can be calculated

recursively

ĥ
(i)
T,T+τ = α

(i)
0 +

(
α

(i)
1 + γ

(i)
1

)
ET

[
h

(i)
T,T+τ−1 | ST+τ

]
.

Parameter estimates can be obtained by maximizing the log likelihood function

L =
T∑
t=1

log [p1,tft(yt | St = 1) + p2,tft(yt | St = 2)] ,

where ft(yt | St = i) is the conditional density of yt given regime i occurs at time t, and

the ex-ante probabilities pj,t are calculated as

pj,t = Pr(St = j | It−1) =
2∑
i=1

pij
ft−1(yt−1 | St−1 = i)pi,t−1∑2
k=1 ft−1(yt−1 | St−1 = k)pk,t−1

, j = 1, 2.

The estimation method used here differs from other studies of oil price volatility that

estimate MS-GARCH models. In particular, Fong and See (2002) follow Gray’s (1996)

suggestion and integrate out the unobserved regime paths. Nomikos and Pouliasis (2011)

use the estimation method proposed by Haas et al. (2004) instead, where they simplify the

regime shift mechanism to make the estimation computationally tractable. Our estimation

method can be applied to the general MS-GARCH model, meanwhile making efficient use

of the conditional information when integrating out regimes.

Since oil price returns exhibit similar characteristics to common financial returns, and

to maintain comparability between the GARCH and MS-GARCH models, we also consider

11m-step-ahead volatility is the summation of the volatility at each step because of absence of serial
correlation in returns.
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three different types of distributions for ηt: normal, Student’s t, and GED distributions.

DATA DESCRIPTION

We use the daily spot price for the West Texas Intermediate (WTI) crude oil obtained

from the U.S. Energy Information Administration. The sample period ranges from Jan-

uary 2, 1986 to April 5, 2013. Thus we have 6877 observations. Over this period of time,

the average price for a barrel of crude oil was $39.26, the median value equaled $24.48,

and the standard deviation was $28.82. A maximum price of $145.31 was observed on

July 3, 2008; this record high was possibly a consequence of geopolitical tensions over

Iranian missile tests. To model the returns in the oil price and its volatility, we calculate

daily oil returns by taking 100 times the difference in the logarithm of consecutive days’

closing prices. Table 1 shows the descriptive statistics for WTI rates of return. The mean

rate of return is about 0.0187 with a standard deviation of 2.56. Note also that WTI

returns are negatively skewed. Kurtosis is extremely high at the value of 17.70, compared

with 3 for a normal distribution. These findings are consistent with previous studies by,

e.g., Abosedra and Laopodis (1997), Morana (2001), Bina and Vo (2007), among others.

Figure 1 plots the returns of the WTI spot prices and the squared deviations over the

sample period. Large variations are observed during the period of the crude oil price

collapse in 1986, the Iraq-Kuwait war in late 1990 and early 1991, the crude oil price

crisis of 1998, as well as in the midst of the financial crisis in late 2008. Indeed, Figure 1

suggests crude oil returns are characterized by periods of low volatility followed by high

volatility in the face of major political or financial unrest.

In this paper we are interested in forecasting volatility. Two questions are of relevance

here: (i) How do we measure volatility? (ii) How do we evaluate the relative forecasting

performance of alternative models? We focus on the first question in this section and

deal with the second question in Section 5. The main issue is that the true volatility

σ2
t is not observable. Therefore, we need to compute some proxy for the true volatility.
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Figure 1: Daily WTI Crude Oil Returns and Squared Deviations. The sample period extends from January 2, 1986 through
April 5, 2013.

Descriptive Statistics

WTI Returns
Mean Std. Dev Min Max Variance Skewness Kurtosis
0.0187 2.56 -40.64 19.15 6.57 -0.76 17.70

RV 1/2

Mean Std. Dev Min Max Variance Skewness Kurtosis
0.021 0.014 0.0035 0.41 0.00021 6.70 112.35

ln(RV 1/2)
Mean Std. Dev Min Max Variance Skewness Kurtosis
-3.98 0.48 -5.65 -0.90 0.23 0.58 4.50

Table 1: Note: WTI returns are over the sample period of January 2, 1986 to April 5, 2013 for 6876 observations. RV 1/2,
and the natural logarithm of RV 1/2 series are from January 5,1987 to April 5, 2013 for 6580 observations.
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It seems natural to use the squared daily returns as a proxy. However, it has been

noted in the literature (e.g. Andersen and Bollerslev 1998) that this is a noisy estimate

of the true volatility. To see this, we can rewrite model (1) as ε2
t = ht · η2

t = ht +

(η2
t − 1)ht. Leptokurtosis in the data suggests that the idiosyncratic component ηt would

contribute a large amount of noise relative to the underlying volatility. In fact, this noise

can lead to improper conclusions about the ability of the GARCH models to forecast

volatility. Fortunately, the availability of high frequency futures data helps to solve this

issue. We follow Andersen and Bollerslev (1998) and compute realized volatility using

the sum of intraday squared futures returns at 5 minutes as our proxy of true volatility

instead. Anderson et al. (2003) establish the theoretical justification for the realized

volatility as an accurate measure of the underlying volatility. Furthermore, Andersen and

Bollerslev (1998) test a variety of sampling frequencies for foreign exchange data to show

that the realized volatility measure converges to the true volatility as the frequency of

observation increases. However, they also find increasing the sampling frequency to less

than 5 minutes has practical limitations due to market microstructure noise and discrete

price observations. They determine 5-minute intraday returns are the best frequency for

calculating their realized volatility measure. Liu, Patton, and Sheppard (2012) among

others, also find that the 5-minute sampling frequency outperforms most other realized

volatility measures across multiple asset classes including equities and interest rates.

Therefore, to compute our measure of realized volatility for the out-of-sample evalu-

ation we obtained the oil futures12 series from TickData.com. We downloaded 5-minute

prices of 1-month futures contracts during the NYSE trading hours (9:30am to 4:00pm

EST, Monday through Friday), excluding market holidays from January 5, 1987 (when

this futures contract started trading) to April 5, 2013. Following Blair, Poon, and Taylor

(2001), we constructed the daily realized volatility RVt by summing the squared 5-minute

12NYMEX Light Sweet Crude Oil, symbol CL.
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returns during trading hours and then adding the square of the previous “overnight”

return.13

We list the summary statistics for both the RV
1/2
t and the logarithm of RV

1/2
t in

Table 1. The RV
1/2
t series is severely right-skewed and leptokurtic. However, the loga-

rithmic series appears much closer to a normal distribution, which is further confirmed

by comparing its kernel density estimates with the normal distribution in Figure 2.14
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Figure 2: ln(RV 1/2) distributions. The sample period extends from January 5, 1987 through April 5, 2013. The solid line
is the kernel density. The dotted line is a normal density scaled to have the same mean and standard deviation of the data.

We then evaluate the forecasting performance of various GARCH and MS-GARCH

models with the realized volatility as reference. Since the forecasts will be utilized by

13Hansen and Lunde (2005) suggest an alternative way to measure the daily realized volatility. They

first calculate the constant ĉ = [n−1
n∑

t=1
(rt − µ̂)

2
]/[n−1

n∑
t=1

rvt], where rt and µ̂ are the close-to-close

return of the daily prices and the mean respectively, and rvt is the 5-minute realized volatility during
the trading hours only. Then they scale the realized volatility rvt by the constant ĉ. This measure is less
noisy compared with directly adding the overnight returns. However, it is not suitable here since the
value for ĉ varies with sub-samples for our data series. For instance, prior to 7/1/2003, oil futures were
traded from 10:00am until 2:30pm and ĉ = 1.19. After 7/1/2003, trading hours were expanded to the
entire day, with the exception of a 45-minute period from 5:15pm to 6:00pm when trading is halted. For
the sub-sample of 7/1/2003 to 4/5/2013, ĉ = 1.85. If instead we focus on the sample period 1/2/1992
to 1/31/1997 from Fong and See (2002), ĉ = 1.03, whereas if we use the sample period 1/23/1991 to
12/31/1997 from Nomikos and Pouliasis (2011), ĉ = 1.33. Finally, for our out-of-sample period 1/3/2012
to 4/5/2013, ĉ = 2.33.

14Anderson et al. (2003) have similar findings for the realized volatility on exchange rates.
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agents who have differing investment horizons, we evaluate relative forecasting perfor-

mance of the different models at various horizons. For example, central bankers typically

need a monthly forecast. Oil exploration and production firms might be interested in

longer horizons and this horizon might vary across regions. For instance, while the time

to complete oil wells averages 20 days in Texas, it averages 90 days in Alaska. Therefore,

we focus on 4 forecasting horizons at m = 1, 5, 22, and 66 days, corresponding to 1 day,

1 week, 1 month and 3 months respectively. Then, to calculate m-step-ahead realized

volatility at time T , we simply sum the daily realized volatility over m days, denoted by:

R̂V T,T+m =
m∑
j=1

R̂V T+j.

We divide the whole sample into two parts: the first 6560 observations (corresponding

to a period of January 2, 1986 to December 30, 2011) are used for in-sample estimation,

while the remaining observations are used for out-of-sample forecast evaluation in the

year 2012.15

ESTIMATION RESULTS

We regress the daily returns on a constant, and test the residuals for autocorrela-

tions and ARCH effects. The Breusch-Godfrey test cannot reject the null of no serial

autocorrelation.16 However, the LM test for ARCH effects strongly rejects the null of no

ARCH effect in all lag orders from 1 to 20.17 So we start estimating our model with the

conditional mean rt = µ+ εt.

GARCH

The ML estimates for GARCH(1, 1), EGARCH(1, 1), and GJR-GARCH(1, 1) models

are collected in Table 2. For each model, we report the results with Normal, Student’s t,

15Our observations extend to April 5, 2013 to accommdate the m-step-ahead forecast at m = 66.
16p-value is 0.413.
17p−values are all at 0.
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MLE Estimates of Standard GARCH Models

GARCH EGARCH GJR

N t GED N t GED N t GED

µ 0.0325 0.0634** 0.0596** 0.0323 0.0542** 0.0535** 0.0366 0.0582** 0.0575**
(0.0217) (0.0230) (0.0219) (0.0227) (0.0227) (0.0219) (0.0239) (0.0230) (0.0222)

α0 0.0895** 0.0754** 0.0799** 0.0311** 0.0177** 0.0187** 0.0723** 0.0684** 0.0679**
(0.0095) (0.0120) (0.0134) (0.0031) (0.0041) (0.0043) (0.0093) (0.0134) (0.0133)

α1 0.0938** 0.0645** 0.0739** 0.1976** 0.1413** 0.1610** 0.0990** 0.0584** 0.0719**
(0.0039) (0.0060) (0.0063) (0.0072) (0.0117) (0.0118) (0.0045) (0.0083) (0.0078)

γ1 0.8952** 0.9225** 0.9130** 0.9869** 0.9886** 0.9880** 0.8996** 0.9230** 0.9165**
(0.0046) (0.0070) (0.0070) (0.0017) (0.0024) (0.0025) (0.0046) (0.0068) (0.0067)

ξ - - - -0.0036 -0.0129* -0.0138* -0.0082 0.0164 0.0040
(0.0040) (0.0075) (0.0069) (0.0061) (0.0107) (0.0099)

ν - 6.0212** 1.3238** - 5.9813** 1.3213** - 5.9370** 1.3224**
(0.3930) (0.0229) (0.3845) (0.0229) (0.3896) (0.0239)

Log(L) -14617.958 -14394.203 -14430.459 -14607.225 -14373.253 -14415.257 -14615.477 -14391.249 -14427.854

Table 2: Note: * and ** represent significance at 5% and 1% level respectively. A one-sided test is conducted on ξ. Each
model is estimated with Normal, Student’s t, and GED distributions. The in-sample data consist of WTI returns from
1/2/1986 to 12/31/11. The conditional mean is rt = µ + εt. The conditional variances are ht = α0 + α1ε2t−1 + γ1ht−1,

log(ht) = α0 + α1

(∣∣∣∣ εt−1√
ht−1

∣∣∣∣− E ∣∣∣∣ εt−1√
ht−1

∣∣∣∣) + ξ
εt−1√
ht−1

+ γ1 log(ht−1), and ht = α0 + α1ε2t−1 + ξε2t−1I{εt−1<0} + γ1ht−1

for GARCH, EGARCH, and GJR-GARCH respectively. Asymptotic standard errors are in parenthesis.

and GED innovations. Asymptotic standard errors are reported in parentheses.18

In using a normal innovation, the conditional mean in all three models is insignificant

at the 5% level. When a t or GED distribution is used, the conditional mean is significantly

positive at around 0.06. Recall that the kurtosis of this return series is 17.86 from Table

1. Moreover, the degrees of freedom for the t distribution are estimated at around 6 in

all three GARCH models19 and the estimated shape parameter for GED distribution is

18The Maximum Likelihood estimates are obtained using the MATLAB’s numerical optimization rou-
tine FMINCON. We use the nonlinear Sequential Quadratic Programming (SQP) method with FMIN-
CON to jointly estimate the conditional mean and conditional variance by maximizing the log-likelihood
function. SQP closely mimics Newton’s method for constrained optimization. For each iteration the
Hessian of the Lagrangian function is updated using the BFGS quasi-Newton method.

19This suggests that the conditional moments exist up to the 6th order. Morever, since the conditional
kurtosis for the t distribution is calculated by 3(ν − 2)/(ν − 4), ν = 6 implies much fatter tails than
normal distributions.
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around 1.3220, which is consistent with the common finding in the literature that the

normal error might not be able to account for all the mass in the tails in the distributions

of daily returns.

In EGARCH-t and EGARCH-GED, the asymmetric effect (ξ) is significantly negative

at 5%, suggesting that a negative shock would increase the future conditional variance

more than a positive shock of the same magnitude. However, this asymmetric effect is

not significant across all GJR specifications.

The estimates of the variance parameters reveal high persistence levels (indicated by

α1 +γ1 close to 1) throughout the GARCH specifications. In GJR and EGARCH models,

the persistence levels are measured by α1 + γ1 + 0.5ξ and γ1 instead. The estimates are

also very close to 1, suggesting high persistence in all cases.

MS-GARCH

Studies that estimate MS-GARCH models for oil price returns (e.g. Fong and See 2002,

Vo 2009, and Nomikos and Pouliasis 2011) or a stock price index (e.g. Marcucci 2005),

proceed to estimate the MS-GARCH models without testing for the existence of regime

switching. In fact, testing for Markov switching in GARCH models is complicated mainly

for two reasons. First, the GARCH model itself is highly nonlinear. When the parameters

are subject to regime switching, path dependence together with nonlinearity makes the

estimation intractable, consequently (log) likelihood functions are not calculable. Second,

standard tests suffer from the famous Davies problem, where the nuisance parameters

characterizing the regime switching are not identified under the null. Therefore, standard

tests like the Wald or LR test do not have the usual Chi-squared distribution. Markov

switching tests by e.g., Hansen (1992) or Garcia (1998) are not applicable here either

since they both involve examining the distribution of the likelihood ratio statistic, which

is not feasible for MS-GARCH. We adopt the testing procedure developed by Carrasco,

20The kurtosis for the GED distribution is given by (Γ (1/ν) Γ (5/ν)) /Γ2 (3/ν) . When ν = 1.32, the
kurtosis is at 4.27, again confirming fat tails.
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Hu, and Ploberger (2014, CHP test thereafter). The advantage of this test is that it only

requires estimating the model under the null hypothesis of constant parameters, yet the

test is still optimal in the sense that it is asymptotically equivalent to the LR test. In

addition, it has the flexibility to test for regime switching in both the means and the

variances or any subset of these parameters. We describe in detail how to conduct their

test for regime switching in mean and variances. Specifically, the model under the null

hypothesis (H0) is (1) where µt = µ and the alternative (H1) model is (8).

Given our model, the (conditional) log likelihood function under H0 is

lt = −1

2
ln 2π − 1

2
ln
(
α0 + α1ε

2
t−1 + γ1ht−1

)
− (yt − µ)2

2
(
α0 + α1ε2

t−1 + γ1ht−1

) . (9)

We first obtain the MLE for the parameters θ̂ under H0, where θ = (µ, α0, α1, γ1)′.

Then, we calculate the first and second derivatives of the log likelihood (9) with respect

to θ evaluated at θ̂. The nuisance parameters specifying the Markov switching are not

identified under H0. Nevertheless, we denote the parameters as ζ = (h, ρ : ‖h‖ = 1,−1 <

ρ < ρ < ρ̄ < 1), where h is normalized and characterizes the direction of the alternative

and ρ specifies the autocorrelation of the Markov chain. Given ζ, the first key component

of the CHP test is Γ∗T =
∑
µ2,t

(
ζ, θ̂
)
/
√
T , where

µ2,t

(
ζ, θ̂
)

=
1

2
h′

[(
∂2lt
∂θ∂θ′

+

(
∂lt
∂θ

)(
∂lt
∂θ

)′)
+ 2

∑
s<t

ρ(t−s)
(
∂lt
∂θ

)(
∂ls
∂θ

)′]
h.

The second component is ε̂∗, which is the residual of the regression of µ2,t

(
ζ, θ̂
)

on

l
(1)
t

(
θ̂
)
. Then the sup test simply takes the form:

supTS = sup
{h,ρ:‖h‖=1,ρ<ρ<ρ̄}

1

2

(
max

(
0,

Γ∗T√
ε̂∗′ε̂∗

))2

. (10)
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Alternatively, the exp test is:

expTS = avg
{h,ρ:‖h‖=1,ρ<ρ<ρ̄}

Ψ (h, ρ) ,

where

Ψ (h, ρ) =


√

2π exp

[
1
2

(
Γ∗T√
ε̂∗′ε̂∗
− 1
)2
]

Φ
(

Γ∗T√
ε̂∗′ε̂∗
− 1
)

if ε̂∗′ε̂∗ 6= 0,

1 otherwise.

That is, the unidentified nuisance parameters ζ are integrated out with respect to some

priors in the supremum or exponential form to deliver an optimal test in the Bayesian

sense.

We generate the 4×1 vector h uniformly over the unit sphere 60 times, corresponding

to the switching mean and the three GARCH parameters.21 The supTS is maximized

over h and a grid search of ρ on the interval [−0.95, 0.95] with the step length of 0.05.

Meanwhile, expTS is the average of Ψ (h, ρ) above computed over those h and ρ′s. For our

data, the sup and exp test statistics are calculated to be 0.00522 and 0.675, respectively.

Then we simulate the critical values by bootstrapping using 1, 000 iterations. We reject

the null of constant parameters in favor of regime switching in both the mean and variance

equations with p-values of 0 for both supTS and expTS. These results show overwhelming

support for a Markov switching model. Hence we estimate the MS-GARCH models with

a two-state Markov chain. Table 3 presents the parameter estimates for the three MS-

GARCH models: MS-GARCH-N, MS-GARCH-t, and MS-GARCH-GED, respectively.

Again with normal innovations, the results are not robust. For example, α
(2)
1 is in-

significantly different from 0, casting doubt upon the validity of the GARCH specification

in this regime. Thus we focus on MS-GARCH-t and MS-GARCH-GED instead. The

results are quite similar. In both models, regime 1 corresponds to a significantly positive

21To test for switching in the variance equation only, we can simply set the first element of h to be 0
and generate the remaining 3× 1 vector uniformly over the unit sphere.
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Maximum Likelihood Estimates of MS-GARCH Models

MS-GARCH-N MS-GARCH-t MS-GARCH-GED

µ(1) 0.0729** 0.1148** 0.1150**
(0.0247) (0.0353) (0.0330)

µ(2) -0.3103** 0.0158 0.0093
(0.1200) (0.0337) (0.0323)

σ(1) 1.1239** 2.3263** 2.3630**
(0.0351) (0.0234) (0.0254)

σ(2) 42.7112** 2.5890** 2.9275**
(0.3814) (0.0212) (0.0225)

α
(1)
1 0.0420** 0.0214** 0.0265**

(0.0149) (0.0069) (0.0072)

α
(2)
1 4.27 E-09 0.1366** 0.1562**

(0.0116) (0.0212) (0.0207)

γ
(1)
1 0.8053** 0.9616** 0.9550**

(0.0131) (0.0089) (0.0091)

γ
(2)
1 0.9983** 0.8486** 0.8324**

(0.0131) (0.0206) (0.0203)
p11 0.9459** 0.9970** 0.9974**

(0.0058) (0.0016) (0.0013)
p22 0.7158** 0.9951** 0.9959**

(0.0338) (0.0024) (0.0019)
ν - 6.2133** 1.3506**

(0.4160) (0.0256)
Log(L) -14520.17 -14373.95 -14410.13

N.of Par. 10 11 11
π1 0.8401 0.6203 0.6119
π2 0.1599 0.3797 0.3881

α
(1)
1 + γ

(1)
1 0.8473 0.9830 0.9815

α
(2)
1 + γ

(2)
1 0.9983 0.9852 0.9886

Table 3: Note: * and ** represent significance at 5% and 1% level respectively. Each MS-GARCH model is esti-
mated using different distribution as described in the text. The in-sample data consist of WTI returns from 1/2/1986
to 12/31/11. The superscripts indicate the regime. The standard deviation conditional on the regime is reported:

σ(i) =
(
α
(i)
0 /(1− α(i)

1 − γ
(i)
1 )
)1/2

. πi is the ergodic probability of being in regime i; α
(i)
1 + γ

(i)
1 measures the persis-

tence of shocks in the i-th regime. Asymptotic standard errors are in the parentheses.
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mean, while the conditional mean in regime 2 is insignificantly different from 0. The

transition probabilities, p11 and p22, are significant and close to one, implying that both

regimes are highly persistent. However, the ergodic probabilities suggest that regime 1

occurs more often. About 62% of the observations are in regime 1, with the remaining

38% in regime 2. Moreover, regime 1 has a lower standard deviation than regime 2. In

summary, we could call regime 1 –where most of the observations are located– the “good

regime”, with positive expected returns and lower volatility. In contrast, regime 2 is a

“bad regime”, where zero expected return is accompanied by higher volatility.

FORECAST EVALUATION

A Description of the Forecast Evaluation Methods

We compute 251 out-of-sample volatility forecasts (corresponding to the year 2012)

for the 1-, 5-, 22-, and 66-step horizons using a rolling sample period. That is, we use the

first 6560 daily observations spanning the period between January 2, 1986 and December

30, 2011 to estimate the volatility models; these estimates are then used to compute the

forecasts at all horizons for the first out-of-sample period, January 3, 2012. We move

to the next window by adding an observation at the end of the estimation period and

drop an observation at the beginning, re-estimate our parameters, and compute a new

forecast. We first present a description of the tests we employ and then an evaluation of

the forecasts.

Statistical Loss Functions

Given that there is no unique criterion to select the best model when comparing

volatility forecasts (see Bollerslev et al. 1994 and Lopez 2001), we follow Hansen and

Lunde (2005) in computing six different loss functions for forecast evaluation. The use

of various statistical functions has the advantage of allowing for a more systematic and

complete comparison of the alternative forecast models. Given the volatility σ2
t and its

model forecast ĥt, the first two criteria are the usual mean squared error (MSE) functions
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given by

MSE1 = n−1

n∑
t=1

(
σt − ĥ1/2

t

)2

(11)

and

MSE2 = n−1

n∑
t=1

(
σ2
t − ĥt

)2

. (12)

We also compute two Mean Absolute Deviation (MAD) functions, as these criteria

are more robust to outliers than the MSE functions. These are given by

MAD1 = n−1

n∑
t=1

∣∣∣σt − ĥ1/2
t

∣∣∣ , (13)

MAD2 = n−1

n∑
t=1

∣∣∣σ2
t − ĥt

∣∣∣ . (14)

Two disadvantages of the MAD are that they treat positive and negative errors symmet-

rically and they are not invariant to scale transformations.

The last two criteria are the R2LOG and the QLIKE:

R2LOG = n−1

n∑
t=1

[
log(σ2

t ĥ
−1
t )
]2

, (15)

QLIKE = n−1

n∑
t=1

(
log ĥt + σ2

t ĥ
−1
t

)
. (16)

Equation (15) represents the logarithmic loss function of Pagan and Schwert (1990). It is

similar to the R2 from a regression of the squared first difference of the logged oil price

on the conditional variance, and it penalizes volatility forecasts asymmetrically in low

and high volatility regimes. The QLIKE is equivalent to the loss implied by a Gaussian

likelihood.

Success Ratio and Directional Accuracy
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We employ several methods to evaluate the relative forecasting performance of the

different models. First, to evaluate the ability of the models to predict the direction of

the change in the volatility, we calculate the Success Ratio (SR), which is the percent-

age of times the volatility forecasts move in the same direction as the actual volatility.

Evaluating the proportion of times the direction of change in the volatility forecasts are

correctly predicted is key for consumers of oil forecasts22 because increases and decreases

in volatility might have asymmetric effects on economic activity. Furthermore, we apply

the Directional Accuracy (DA) test of Pesaran and Timmermann (1992), which is con-

structed as a standardized statistic for SR and is asymptotically distributed as standard

normal.

Using RVt as a proxy for σ2
t , the percentage of times the volatility forecasts move in

the same direction as realized volatility is given by:

SR = n−1

n∑
t=1

I{RV t·ht>0}, (17)

where RV t is the demeaned realized volatility proxy at t, and ht is the demeaned volatility

forecast at t. If the realized volatility and the forecasted volatility move in the same

direction, then I{ω>0} is equal to 1; 0 otherwise.

Having computed the SR, we calculate SRI = PP̂ + (1 − P )(1 − P̂ ) where P is the

fraction of times that RV t is positive and P̂ is the fraction of times that ht is positive.

The DA test is then calculated as:

DA =
SR− SRI√

V ar(SR)− V ar(SRI)
, (18)

where V ar(SR) = n−1SRI(1−SRI) and V ar(SRI) = n−1(2P̂ −1)2P (1−P )+n−1(2P −

1)2P̂ (1 − P̂ ) + 4n−2PP̂ (1 − P )(1 − P̂ ). A significant DA statistic indicates the model

22See Alquist and Kilian (2010).
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forecast ĥt has predictive content for the underlying volatility RVt.

Test of Equal Predictive Ability

It seems natural to rank the models according to the statistical loss functions, which

would provide information about the relative forecasting ability of the different models.

However, a common finding in the literature is that no unique model dominates the rest

for all of the loss functions. A more rigorous comparison is obtained by evaluating the

relative predictive accuracy with Diebold and Mariano’s (1995) test of equal predictive

ability (EPA). The EPA test is a pairwise comparison of two models, where the null

hypothesis is that there is no difference in the predictive accuracy of the two forecasts.

Building on the Diebold and Mariano framework, West (1996) develops the asymptotic

theory for the EPA test; meanwhile Giacomini and White (2006) investigate the finite

sample properties of the EPA test.

Suppose {r̂i,t}nt=1and {r̂j,t}nt=1 are two sequences of forecasts of the series {r̂t} generated

by two competing models, i and j. Let {êi,t}nt=1and {êj,t}nt=1be the corresponding forecast

errors. Consider the loss function g(.) and define the difference between the two forecasts

as dt ≡ [g(êi,t)− g(êj,t)], where g(êi,t) denotes the loss function for the benchmark model

i and g(êj,t) is the loss function for the alternative model j. Giacomini and White (2006)

show that if the parameter estimates are constructed using a rolling scheme with a fi-

nite observation window, the asymptotic distribution of the sample mean loss differential

d = 1
n

∑n
t=1 dt is asymptotically normal as long as {dt}nt=1 is covariance stationary with a

short memory. So the DM statistic for testing the null hypothesis of equal forecast accu-

racy between models i and j is simply DM = d/

√
V̂ (d), where the asymptotic variance

V̂ (d) can be estimated by Newey-West’s HAC estimator.23 DM has a standard normal

distribution under H0. If the test statistic DM is significantly negative, the benchmark

23V̂ (d) = n−1 (γ̂ + 2
∑q

k=1 ωkγ̂k), where q = h − 1, ωk = 1 − k
q+1 is the lag window and γ̂i is an

estimate of the i-th order autocovariance of the series {dt} , where γ̂k = 1
n

∑n
t=k+1

(
dt − d

) (
dt−k − d

)
for

k = 1, ..., q.
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model is better since it has a smaller loss function; if DM is significantly positive, then

the benchmark model is outperformed.

Test of Superior Predictive Ability

In our case when the objective is to evaluate the relative performance of more than

two models it is useful to consider White’s (2000) Reality Check (RC) test for out-of-

sample forecast evaluation. The RC evaluates whether a benchmark forecasting model is

significantly outperformed by a set of alternative models given a particular loss function.

Consider comparing l+1 forecasting models where model 0 is defined as the benchmark

model and k = 1, ..., l denote the l alternative models. Let Lt,k ≡ L(RVt, ĥt,k) denote the

loss if a forecast ĥt,k is made with the k-th model when the realized volatility equals RVt.

Similarly, the loss function of the forecasts from the benchmark model is denoted by Lt,0.

The performance of the k-th forecast model relative to the benchmark is given by

ft,k = Lt,0 − Lt,k, k = 1, ..., l; t = 1, ..., n.

Under the assumption that ft,k is stationary, the expected relative performance of

model k to the benchmark can be defined as µk = E [ft,k] for k = 1, ..., l. The value of

µk will be positive for any model k that outperforms the benchmark. Thus, the null

hypothesis for testing whether any of the competing models significantly outperform the

benchmark may be defined in terms of µk for k = 1, ..., l or, more specifically:

H0 : µmax ≡ max
k=1,...,l

µk ≤ 0.

The alternative is that the best model has a smaller loss function relative to the bench-

mark. If the null is rejected, then there is evidence that at least one of the competing

models has a significantly smaller loss function than the benchmark. As a result, White’s
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RC test is constructed from the test statistic

TRCn ≡ max
k=1,...,l

n
1
2fn,k,

where fn,k = n−1
∑n

t=1 ft,k. T
RC
n ’s asymptotic null distribution is also normal with mean

0 and some long-run variance Ω.

Note that TRCn ’s asymptotic distribution relies on the assumption that µk = 0 for all k,

however, any negative values of µk would also conform with H0. Hansen (2005) proposes

an alternative Super Predictive Ability (SPA) test statistic:

T SPAn = max
k

 n
1
2fn,k√

v̂ar(n
1
2fn,k)

, 0

 ,

where v̂ar(n
1
2fn,k) is a consistent estimator of the variance of n

1
2fn,k obtained via boot-

strap. The distribution under the null is N(µ̂,Ω), where µ̂ is a chosen estimator for µ that

conforms with H0. Since different choices of µ̂ would result in difference p-values, Hansen

proposes three estimators µ̂l ≤ µ̂c ≤ µ̂u. We name the resulting tests SPAl, SPAc, and

SPAu, respectively. SPAc would lead to a consistent estimate of the asymptotic distribu-

tion of the test statistic. SPAl uses the lower bound of µ̂ and the p-value is asymptotically

smaller than the correct p-value, making it a liberal test. In other words, it is insensitive

to the inclusion of poor models. SPAu uses the upper bound of µ̂ and it is a conservative

test instead. It has the same asymptotic distribution as the RC test and is sensitive to

the inclusion of poor models.

On a final note, the distinction between Hansen’s SPA test and Diebold and Mariano’s

EPA test simply lies in the null hypothesis. H0 is a simple hypothesis in EPA whilst it is

a composite hypothesis in SPA. In other words, EPA is a pairwise comparison, meanwhile

SPA is a groupwise comparison.
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Evaluating Relative Out-of-Sample Performance

The volatility forecasts obtained from the EGARCH-GED, EGARCH-t and MS-GARCH-

t models for the 1-, 5-, 22-, and 66-day horizons are collected in Figure 3. The correspond-

ing realized volatility is also plotted for reference. At 1- and 5-day horizons, the forecasts

the two models yield are very similar. They move closely with the realized volatility and

are able to capture the huge spikes and dips in the realized volatility. Similarly, at a

22-day horizon, both models are also able to forecast the major upward and downward

movements in the realized volatility of oil futures. Only when we increase the forecast

horizon to 66 days, or 3 months, our forecasts contain less information about the aggre-

gated realized volatility during the out-of-sample period, which is as expected.
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Figure 3: Volatility Forecast Comparisons for Select Models. The out-of-sample period extends from January 3, 2012
through Dec 30, 2013.

The estimated loss functions of our out-of-sample forecasts, in addition to the Success

Ratio (SR) and the Directional Accuracy (DA) test, are reported in Tables 4 and 5. Recall

that our volatility proxy is the realized volatility measure calculated from the 5-minute

futures returns.
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Out-of-sample evaluation of the one- and five-step-ahead volatility forecasts

1-step-ahead volatility forecasts
Model MSE1 Rank MSE2 Rank QLIKE Rank R2LOG Rank MAD1 Rank MAD2 Rank SR DA
GARCH-N 0.460 10 7.018 10 1.911 10 0.738 9 1.843 10 0.548 9 0.59 0.739
GARCH-t 0.450 8 6.708 7 1.904 8 0.749 10 1.843 9 0.553 10 0.57 0.446
GARCH-GED 0.449 7 6.762 8 1.905 9 0.737 8 1.831 7 0.548 8 0.57 0.253
EGARCH-N 0.405 3 5.754 5 1.867 2 0.691 2 1.735 2 0.519 1 0.63 2.280*
EGARCH-t 0.401 2 5.694 2 1.871 5 0.707 3 1.741 3 0.527 3 0.61 2.379**
EGARCH-GED 0.396 1 5.645 1 1.867 1 0.691 1 1.721 1 0.519 2 0.59 1.389
GJR-N 0.423 6 5.981 6 1.868 4 0.709 5 1.797 5 0.534 5 0.63 2.569**
GJR-t 0.416 5 5.749 4 1.873 6 0.729 6 1.798 6 0.542 6 0.61 2.142*
GJR-GED 0.410 4 5.720 3 1.868 3 0.708 4 1.775 4 0.533 4 0.61 1.973*
MS-GARCH-N 0.927 12 27.592 12 1.967 12 1.072 12 2.794 12 0.717 12 0.61 1.438
MS-GARCH-t 0.453 9 6.881 9 1.897 7 0.733 7 1.836 8 0.545 7 0.61 1.872*
MS-GARCH-GED 0.516 11 7.840 11 1.918 11 0.817 11 2.009 11 0.587 11 0.60 1.673*

5-step-ahead volatility forecasts
Model MSE1 Rank MSE2 Rank QLIKE Rank R2LOG Rank MAD1 Rank MAD2 Rank SR DA
GARCH-N 1.184 8 85.883 9 3.521 8 0.329 6 6.386 6 0.829 6 0.63 2.588**
GARCH-t 1.103 4 74.115 5 3.517 7 0.323 5 6.162 5 0.814 5 0.61 2.084*
GARCH-GED 1.108 5 76.392 6 3.517 6 0.319 4 6.153 4 0.809 4 0.61 2.084*
EGARCH-N 1.198 9 83.609 8 3.524 10 0.340 9 6.554 9 0.851 9 0.63 2.830**
EGARCH-t 1.020 1 63.927 1 3.512 1 0.314 3 6.014 1 0.805 3 0.65 3.742**
EGARCH-GED 1.040 2 67.459 2 3.513 2 0.312 2 6.034 2 0.802 2 0.62 2.471**
GJR-N 1.302 10 98.960 10 3.523 9 0.349 10 6.928 10 0.881 10 0.65 3.337**
GJR-t 1.121 6 73.059 4 3.516 5 0.333 8 6.453 7 0.851 8 0.64 3.309**
GJR-GED 1.144 7 77.663 7 3.516 4 0.329 7 6.461 8 0.844 7 0.63 2.897**
MS-GARCH-N 4.131 12 610.011 12 3.641 12 0.748 12 13.823 12 1.467 12 0.62 2.231*
MS-GARCH-t 1.066 3 72.419 3 3.514 3 0.309 1 6.065 3 0.801 1 0.63 2.614**
MS-GARCH-GED 1.472 11 109.942 11 3.543 11 0.398 11 7.588 11 0.967 11 0.63 2.856**

Table 4: Note: The volatility proxy is given by the realized volatility calculated with five-minute returns aggregated
with the overnight returns. * and ** denote 5% and 1% significance levels for the DA statistic, respectively.

Out-of-sample evaluation of the 22- and 66-step-ahead volatility forecasts

22-step-ahead volatility forecasts
Model MSE1 Rank MSE2 Rank QLIKE Rank R2LOG Rank MAD1 Rank MAD2 Rank SR DA
GARCH-N 5.541 8 1757.638 8 5.027 8 0.324 8 32.255 8 1.945 8 0.64 2.088*
GARCH-t 4.602 4 1326.653 4 5.014 4 0.285 4 29.551 4 1.822 5 0.62 1.543
GARCH-GED 4.710 5 1397.245 5 5.015 5 0.287 5 29.647 5 1.818 4 0.62 1.508
EGARCH-N 5.905 9 1915.389 9 5.031 9 0.337 9 32.985 9 1.972 9 0.64 2.445**
EGARCH-t 3.699 2 1028.852 2 4.995 2 0.235 2 25.486 2 1.594 2 0.65 3.662**
EGARCH-GED 3.858 3 1115.967 3 4.997 3 0.239 3 25.973 3 1.611 3 0.65 3.000**
GJR-N 6.708 11 2371.000 11 5.041 10 0.365 10 35.648 10 2.089 10 0.67 3.330**
GJR-t 4.948 6 1462.159 6 5.019 6 0.301 6 30.688 6 1.875 6 0.65 2.885**
GJR-GED 5.268 7 1626.635 7 5.022 7 0.311 7 31.504 7 1.905 7 0.65 2.653**
MS-GARCH-N 24.116 12 13214.732 12 5.228 12 0.964 12 79.388 12 3.972 12 0.64 2.088*
MS-GARCH-t 3.152 1 827.289 1 4.988 1 0.207 1 23.620 1 1.501 1 0.64 2.208*
MS-GARCH-GED 6.381 10 1969.727 10 5.047 11 0.378 11 35.722 11 2.152 11 0.64 2.679**

66-step-ahead volatility forecasts
Model MSE1 Rank MSE2 Rank QLIKE Rank R2LOG Rank MAD1 Rank MAD2 Rank SR DA
GARCH-N 32.161 9 29263.018 9 6.203 9 0.625 9 146.342 9 4.986 9 0.54 -0.460
GARCH-t 22.466 4 18344.934 4 6.153 4 0.475 4 114.508 4 4.071 4 0.50 -1.614
GARCH-GED 23.880 5 19971.742 5 6.160 6 0.496 6 118.963 5 4.197 5 0.51 -1.519
EGARCH-N 35.213 10 33789.444 10 6.214 10 0.656 10 156.743 10 5.237 10 0.61 2.229*
EGARCH-t 14.429 2 11311.522 2 6.098 2 0.319 2 86.211 2 3.156 2 0.60 2.294*
EGARCH-GED 14.692 3 11772.157 3 6.098 3 0.320 3 86.672 3 3.160 3 0.59 1.886*
GJR-N 38.503 11 38807.487 11 6.227 11 0.699 11 164.276 11 5.435 11 0.56 0.191
GJR-t 23.963 6 20310.300 6 6.159 5 0.493 5 120.781 6 4.243 6 0.53 -0.411
GJR-GED 26.506 7 23220.206 7 6.172 7 0.532 7 127.120 7 4.416 7 0.52 -0.969
MS-GARCH-N 104.275 12 138339.793 12 6.469 12 1.500 12 327.635 12 9.476 12 0.55 -0.257
MS-GARCH-t 10.422 1 7604.255 1 6.072 1 0.243 1 72.123 1 2.720 1 0.53 -0.493
MS-GARCH-GED 28.3567 8 24032.2875 8 6.1900 8 0.5774 8 139.2564 8 4.8280 8 0.55 0.2461

Table 5: Note: The volatility proxy is given by the realized volatility calculated with five-minute returns aggregated
with the overnight returns. * and ** denote 5% and 1% significance levels for the DA statistic, respectively.
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At a one-day forecast horizon, five out of the six loss functions rank the EGARCH-

GED first. Only the MAD2 ranks the EGARCH-GED second after the EGARCH-N.

Instead, when we consider a 5-day (one-week) horizon the EGARCH-GED is uniformly

ranked second, whereas the EGARCH-t is ranked first according to four of the criteria, and

the MS-GARCH-t is ranked first by the R2LOG and the MAD2. At longer horizons such

as 22 and 66 days (one and three months, respectively), evidence in favor of a switching

model is overwhelming: the MS-GARCH-t is ranked first by all loss functions.

The SR averages over 50% for all models and forecast horizons, indicating that all

models forecast the direction of the change correctly in more that 50% of the sample. For

the 5- and 22-day forecast horizons, the SR exceeds 60% for all models (averages 63% and

64%, respectively), whereas for the 1-day forecast horizon the SR ranges between 57%

and 59% for four of the competing models, and equals or exceeds 60% for the remaining

eight models. In addition, at a longer 66-day horizon the SR averages 55% across all

models, suggesting the direction of the change is more difficult to predict for this longer

3-month horizon. The results of the DA test are consistent with this finding. Recall that

a significant DA statistic indicates that the model forecasts have predictive content for

the underlying volatility. In particular, the DA test is significant at the 1% level for a

majority of the models at 5- and 22-day forecast horizons. At the shorter 1-day horizon

seven of the models exhibit a statistically significant DA at the 5% level. In contrast, for

the 3-month forecast horizon only the three EGARCH models have a DA statistic that is

significant at a 5% level.

Tables 6-9 report the selected DM test statistics with GARCH-t, EGARCH-GED,

EGARCH-t, and MS-GARCH-t as benchmark models.24 These test results are in line

with the rankings reported in Table 1.4. Consider first the one-day-ahead forecast where

the EGARCH-GED was ranked higher by most of the loss functions. As Table 1.5b shows,

24The complete list of all DM test statistics can be requested from the authors.
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we reject the null of equal predictive ability at a 5% level for three of the eleven competing

models under all six loss functions and three extra models under five loss functions,

favoring the benchmark model. In addition, relative to the EGARCH-t and GJR-t models,

the EGARCH-GED yields a more accurate forecast according to some of the loss functions.

Note also that when an alternative model is used as the benchmark (see Tables 1.5a, 1.5c

and 5d), we also find statistical evidence that the EGARCH-GED generates the smaller

forecast errors in the majority of the cases.

Diebold and Mariano test - GARCH-t Benchmark

Panel A: One day Horizon Panel B: Five day Horizon
Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2 Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2
GARCH-N -0.74 -1.32 -0.95 0.70 0.65 -0.01 GARCH-N -1.16 -1.31 -0.94 -0.49 -0.71 -1.01
GARCH-GED 0.29 -0.77 -0.31 1.89 1.72 1.10 GARCH-GED -0.25 -0.89 0.08 0.78 0.68 0.12
EGARCH-N 2.44+ 1.78 3.18++ 2.38+ 3.32++ 2.94++ EGARCH-N -1.16 -1.19 -0.62 -0.81 -1.12 -1.41
EGARCH-t 2.74++ 2.51+ 3.28++ 2.10+ 2.84++ 2.84++ EGARCH-t 1.12 1.34 0.54 0.55 0.34 0.60
EGARCH-GED 3.23++ 2.43+ 3.65++ 2.97++ 3.97++ 3.90++ EGARCH-GED 1.00 1.18 0.38 0.63 0.49 0.61
GJR-N 1.29 1.07 2.93++ 1.97+ 1.99+ 1.05 GJR-N -1.72 -1.55 -0.96 -1.49 -2.19* -2.16*
GJR-t 2.07+ 1.82 2.61++ 1.51 1.85 1.81 GJR-t -0.40 0.21 0.11 -1.10 -2.06* -1.86
GJR-GED 2.51+ 1.74 3.16++ 3.19++ 3.50++ 2.81++ GJR-GED -0.91 -0.77 0.19 -0.68 -1.7 -1.87
MS-GARCH-N -2.69** -1.81 -2.89** -3.93** -4.02** -3.19** MS-GARCH-N -3.32** -2.25* -4.64** -4.54** -4.80** -3.90**
MS-GARCH-t -0.18 -0.73 0.83 0.60 0.60 0.15 MS-GARCH-t 0.54 0.38 0.30 0.73 0.35 0.32
MS-GARCH-GED -2.65** -2.09* -1.33 -2.35* -2.49* -2.82** MS-GARCH-GED -3.19** -2.16* -3.24** -3.61** -4.01** -3.70**

Panel C: Twenty-two day Horizon Panel D: Sixty-six day Horizon
Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2 Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2
GARCH-N -2.45* -1.86 -3.43** -3.39** -2.76** -2.44* GARCH-N -5.20** -3.60** -8.42** -7.20** -11.50** -8.47**
GARCH-GED -1.04 -1.24 -0.35 -0.49 0.26 -0.29 GARCH-GED -3.43** -2.64** -4.80** -4.43** -5.51** -4.56**
EGARCH-N -2.39* -2.11* -2.10* -2.31* -1.70 -1.91 EGARCH-N -4.36** -3.45** -5.67** -5.29** -6.07** -5.59**
EGARCH-t 3.62++ 2.85++ 3.69++ 3.59++ 4.25++ 4.32++ EGARCH-t 5.93++ 5.60++ 5.81++ 5.53++ 5.93++ 6.28++
EGARCH-GED 3.48++ 3.44++ 3.03++ 3.07++ 3.61++ 3.90++ EGARCH-GED 5.72++ 5.95++ 5.42++ 5.22++ 5.42++ 5.76++
GJR-N -2.46* -1.90 -3.15** -3.20** -2.83** -2.53* GJR-N -3.93** -2.81** -6.38** -5.59** -7.29** -5.65**
GJR-t -2.13* -2.19* -1.47 -1.89 -1.47 -1.70 GJR-t -1.95 -2.09* -1.75 -1.54 -2.62** -2.66**
GJR-GED -2.45* -2.16* -2.16* -2.47* -1.89 -2.06* GJR-GED -3.28** -2.72** -3.97** -3.81** -4.32** -3.88**
MS-GARCH-N -4.18** -2.94** -6.59** -5.87** -6.73** -5.25** MS-GARCH-N -7.28** -4.92** -13.02** -10.03** -18.95** -12.17**
MS-GARCH-t 2.20+ 1.93 2.03+ 2.36+ 2.20+ 2.21+ MS-GARCH-t 3.68++ 3.21++ 3.88++ 3.86++ 3.94++ 3.89++
MS-GARCH-GED -4.19** -2.83** -4.11** -4.66** -3.51** -3.64** MS-GARCH-GED -6.74** -6.23** -6.64** -6.61** -7.56** -7.77**

Table 6: Note: * and ** represent the DM test statistic for which the null hypothesis of equal predictive accuracy
can be rejected at 5% and 1%, respectively and the DM statistic is negative. + and ++ represent the 5% and 1%
significance level when the DM test statistic is positive.

Regarding the 5-day horizon (1 week), there is little statistical difference in the forecast

accuracy comparison between the benchmark models and any of the non-switching models.

The MS-GARCH-t is found to have equal accuracy as the benchmark models as well. In

contrast, as the forecast horizon increases to 22 and 66 days (1 and 3 months), statistical

evidence that the forecast accuracy differences are negative, in favor of switching models,

especially for the MS-GARCH-t, is prevalent.

RC and SPA tests are reported in Tables 10 and 11, where each model is compared

against all the others. Recall that the null hypothesis is that there are no other models
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Diebold and Mariano test - EGARCH-GED Benchmark

Panel A: One day Horizon Panel B: Five day Horizon
Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2 Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2
GARCH-N -2.60** -2.35* -3.17** -1.95 -2.62** -2.61** GARCH-N -1.38 -1.41 -0.91 -0.92 -0.81 -1.02
GARCH-t -3.23** -2.43* -3.65** -2.97** -3.97** -3.90** GARCH-t -1.00 -1.18 -0.38 -0.63 -0.49 -0.61
GARCH-GED -2.83** -2.38* -3.36** -2.30* -3.30** -3.23** GARCH-GED -0.97 -1.21 -0.38 -0.42 -0.27 -0.49
EGARCH-N -0.85 -0.47 -0.06 -0.06 0.09 -0.50 EGARCH-N -2.28* -1.82 -2.94** -2.68** -2.72** -2.44*
EGARCH-t -0.83 -0.41 -1.54 -2.20* -2.13* -1.36 EGARCH-t 0.67 1.10 0.36 -0.25 -0.34 0.20
GJR-N -1.19 -0.70 -0.13 -0.74 -1.28 -1.45 GJR-N -1.85 -1.64 -1.16 -1.65 -2.14* -2.08*
GJR-t -1.73 -0.65 -0.83 -2.00* -2.66** -2.65** GJR-t -1.55 -1.96 -0.34 -1.19 -2.05* -2.29*
GJR-GED -1.10 -0.34 -0.13 -0.94 -1.71 -1.80 GJR-GED -1.68 -1.92 -0.33 -1.02 -1.69 -1.98*
MS-GARCH-N -2.84** -1.85 -4.44** -4.22** -4.39** -3.40** MS-GARCH-N -3.28** -2.24* -4.21** -4.32** -4.59** -3.80**
MS-GARCH-t -2.36* -2.09* -2.88** -1.69 -2.08* -2.28* MS-GARCH-t -0.31 -0.67 -0.14 0.20 0.00 -0.10
MS-GARCH-GED -3.56** -2.49* -4.57** -4.42** -4.51** -4.06** MS-GARCH-GED -3.08** -2.06* -3.85** -4.34** -4.25** -3.45**

Panel C: Twenty-two day Horizon Panel D: Sixty-six day Horizon
Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2 Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2
GARCH-N -3.49** -2.36* -4.37** -4.37** -4.73** -4.33** GARCH-N -6.48** -4.74** -7.61** -6.95** -9.99** -9.86**
GARCH-t -3.48** -3.44** -3.03** -3.07** -3.61** -3.90** GARCH-t -5.72** -5.95** -5.42** -5.22** -5.42** -5.76**
GARCH-GED -3.35** -2.69** -3.10** -3.16** -3.56** -3.80** GARCH-GED -6.00** -5.52** -5.86** -5.59** -6.24** -6.65**
EGARCH-N -3.74** -2.63** -5.22** -5.21** -5.13** -4.37** EGARCH-N -6.31** -4.49** -8.90** -7.87** -12.35** -10.26**
EGARCH-t 1.30 1.44 0.97 0.83 0.69 0.98 EGARCH-t 0.84 1.15 0.19 0.28 0.14 0.46
GJR-N -3.12** -2.15* -4.63** -4.60** -4.61** -3.80** GJR-N -5.35** -3.51** -8.39** -7.41** -10.71** -8.48**
GJR-t -4.50** -3.73** -3.97** -4.41** -4.23** -4.53** GJR-t -7.09** -5.87** -7.24** -6.97** -7.74** -8.24**
GJR-GED -3.90** -2.91** -4.00** -4.25** -4.26** -4.27** GJR-GED -6.11** -4.79** -6.77** -6.36** -7.77** -7.81**
MS-GARCH-N -4.28** -2.97** -6.77** -6.06** -7.15** -5.54** MS-GARCH-N -7.61** -5.09** -12.28** -9.85** -20.74** -13.66**
MS-GARCH-t 1.18 1.25 0.80 1.12 0.81 0.94 MS-GARCH-t 1.64 1.53 1.67 1.76 1.58 1.58
MS-GARCH-GED -5.17** -3.24** -5.55** -6.04** -5.21** -5.30** MS-GARCH-GED -8.00** -8.03** -7.46** -7.13** -9.09** -10.08**

Table 7: Note: * and ** represent the DM test statistic for which the null hypothesis of equal predictive accuracy
can be rejected at 5% and 1%, respectively and the DM statistic is negative. + and ++ represent the 5% and 1%
significance level when the DM test statistic is positive.

Diebold and Mariano test - EGARCH-t Benchmark

Panel A: One day Horizon Panel B: Five day Horizon
Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2 Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2
GARCH-N -2.13* -2.26* -2.70** -1.11 -1.59 -1.81 GARCH-N -1.28 -1.38 -0.98 -0.71 -0.60 -0.89
GARCH-t -2.74** -2.51* -3.28** -2.10* -2.84** -2.84** GARCH-t -1.12 -1.34 -0.54 -0.55 -0.34 -0.60
GARCH-GED -2.31* -2.38* -2.90** -1.36 -2.07* -2.18* GARCH-GED -1.00 -1.27 -0.52 -0.30 -0.13 -0.47
EGARCH-N -0.27 -0.17 0.62 0.82 0.86 0.15 EGARCH-N -1.81 -1.63 -1.89 -1.63 -1.68 -1.75
EGARCH-GED 0.83 0.41 1.54 2.20+ 2.13+ 1.36 EGARCH-GED -0.67 -1.10 -0.36 0.25 0.34 -0.2
GJR-N -0.81 -0.48 0.35 -0.07 -0.50 -0.88 GJR-N -1.69 -1.57 -1.26 -1.38 -1.73 -1.79
GJR-t -1.20 -0.22 -0.35 -1.22 -1.81 -1.88 GJR-t -1.75 -1.91 -0.57 -1.21 -1.96 -2.18*
GJR-GED -0.56 -0.08 0.46 -0.07 -0.68 -0.92 GJR-GED -1.55 -1.69 -0.52 -0.88 -1.38 -1.65
MS-GARCH-N -2.79** -1.85 -4.26** -3.93** -4.10** -3.27** MS-GARCH-N -3.24** -2.24* -4.28** -4.26** -4.46** -3.70**
MS-GARCH-t -2.01* -2.11* -2.35* -0.91 -1.33 -1.72 MS-GARCH-t -0.52 -0.99 -0.26 0.26 0.09 -0.15
MS-GARCH-GED -3.15** -2.46* -3.81** -3.27** -3.51** -3.38** MS-GARCH-GED -2.76** -1.97* -3.76** -3.65** -3.70** -3.06**

Panel C: Twenty-two day Horizon Panel D: Sixty-six day Horizon
Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2 Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2
GARCH-N -3.19** -2.22* -4.54** -4.34** -4.73** -3.96** GARCH-N -6.19** -4.45** -7.71** -6.97** -10.26** -9.60**
GARCH-t -3.62** -2.85** -3.69** -3.59** -4.25** -4.32** GARCH-t -5.93** -5.60** -5.81** -5.53** -5.93** -6.28**
GARCH-GED -3.12** -2.34* -3.52** -3.44** -3.86** -3.72** GARCH-GED -5.91** -4.97** -6.16** -5.80** -6.70** -6.97**
EGARCH-N -3.41** -2.46* -5.10** -4.85** -4.92** -3.98** EGARCH-N -5.99** -4.27** -8.71** -7.66** -11.96** -9.62**
EGARCH-GED -1.30 -1.44 -0.97 -0.83 -0.69 -0.98 EGARCH-GED -0.84 -1.15 -0.19 -0.28 -0.14 -0.46
GJR-N -2.96** -2.10* -4.58** -4.39** -4.47** -3.56** GJR-N -5.13** -3.40** -8.22** -7.21** -10.45** -8.06**
GJR-t -4.23** -3.07** -4.83** -4.93** -5.06** -4.83** GJR-t -6.69** -5.13** -7.59** -7.17** -8.39** -8.51**
GJR-GED -3.55** -2.60** -4.35** -4.34** -4.49** -4.05** GJR-GED -5.79** -4.39** -6.89** -6.39** -8.09** -7.73**
MS-GARCH-N -4.25** -2.96** -6.83** -6.05** -7.15** -5.47** MS-GARCH-N -7.52** -5.05** -12.28** -9.82** -20.35** -13.30**
MS-GARCH-t 1.02 1.07 0.66 1.03 0.70 0.78 MS-GARCH-t 1.67 1.54 1.72 1.81 1.62 1.62
MS-GARCH-GED -4.88** -3.00** -6.17** -6.37** -5.88** -5.56** MS-GARCH-GED -8.17** -7.48** -7.89** -7.48** -9.82** -10.85**

Table 8: Note: * and ** represent the DM test statistic for which the null hypothesis of equal predictive accuracy
can be rejected at 5% and 1%, respectively and the DM statistic is negative. + and ++ represent the 5% and 1%
significance level when the DM test statistic is positive.
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Diebold and Mariano test - MS-GARCH-t Benchmark

Panel A: One day Horizon Panel B: Five day Horizon
Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2 Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2
GARCH-N -0.38 -0.60 -1.39 -0.20 -0.21 -0.15 GARCH-N -1.13 -1.26 -0.85 -0.92 -0.65 -0.84
GARCH-t 0.18 0.73 -0.83 -0.60 -0.6 -0.15 GARCH-t -0.54 -0.38 -0.30 -0.73 -0.35 -0.32
GARCH-GED 0.26 0.55 -0.94 -0.17 -0.22 0.12 GARCH-GED -0.56 -0.72 -0.29 -0.53 -0.20 -0.28
EGARCH-N 2.07+ 1.71 2.77++ 1.78 2.09+ 2.00+ EGARCH-N -1.24 -1.09 -0.92 -1.36 -1.16 -1.24
EGARCH-t 2.01+ 2.11+ 2.35+ 0.91 1.33 1.72 EGARCH-t 0.52 0.99 0.26 -0.26 -0.09 0.15
EGARCH-GED 2.36+ 2.09+ 2.88++ 1.69 2.08+ 2.28+ EGARCH-GED 0.31 0.67 0.14 -0.20 0.00 0.10
GJR-N 1.20 1.18 2.21+ 0.89 0.75 0.64 GJR-N -1.63 -1.51 -0.90 -1.57 -1.61 -1.75
GJR-t 1.39 1.65 1.67 0.12 0.20 0.65 GJR-t -0.63 -0.09 -0.17 -1.07 -1.14 -1.06
GJR-GED 1.70 1.62 2.17+ 0.88 0.82 1.08 GJR-GED -0.86 -0.70 -0.15 -0.93 -0.98 -1.06
MS-GARCH-N -2.83** -1.82 -3.26** -4.20** -4.28** -3.40** MS-GARCH-N -3.38** -2.27* -4.37** -4.58** -4.60** -3.91**
MS-GARCH-GED -3.28** -2.46* -3.12** -3.92** -3.59** -3.39** MS-GARCH-GED -3.17** -2.18* -3.77** -4.18** -4.40** -3.82**

Panel C: Twenty-two day Horizon Panel D: Sixty-six day Horizon
Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2 Model MSE1 MSE2 QLIKE R2LOG MAD1 MAD2
GARCH-N -2.44* -1.97* -2.53* -2.84** -2.53* -2.46* GARCH-N -4.45** -3.52** -5.14** -4.94** -5.80** -5.47**
GARCH-t -2.20* -1.93 -2.03* -2.36* -2.20* -2.21* GARCH-t -3.68** -3.21** -3.88** -3.86** -3.94** -3.89**
GARCH-GED -2.12* -1.85 -1.99* -2.29* -2.07* -2.09* GARCH-GED -3.73** -3.18** -4.01** -3.97** -4.15** -4.06**
EGARCH-N -2.54* -2.10* -2.61** -2.98** -2.51* -2.45* EGARCH-N -4.52** -3.56** -5.52** -5.26** -6.29** -5.72**
EGARCH-t -1.02 -1.07 -0.66 -1.03 -0.70 -0.78 EGARCH-t -1.67 -1.54 -1.72 -1.81 -1.62 -1.62
EGARCH-GED -1.18 -1.25 -0.80 -1.12 -0.81 -0.94 EGARCH-GED -1.64 -1.53 -1.67 -1.76 -1.58 -1.58
GJR-N -2.55* -1.99* -2.86** -3.17** -2.82** -2.65** GJR-N -4.22** -3.09** -5.55** -5.25** -6.16** -5.42**
GJR-t -2.41* -2.10* -2.19* -2.65** -2.31* -2.34* GJR-t -3.87** -3.24** -4.28** -4.23** -4.46** -4.30**
GJR-GED -2.42* -2.09* -2.26* -2.65** -2.32* -2.34* GJR-GED -3.85** -3.20** -4.26** -4.20** -4.46** -4.28**
MS-GARCH-N -4.13** -2.95** -5.83** -5.60** -6.02** -5.02** MS-GARCH-N -7.00** -4.91** -9.96** -8.58** -13.77** -10.78**
MS-GARCH-GED -3.65** -2.61** -3.84** -4.49** -3.77** -3.65** MS-GARCH-GED -5.46** -4.67** -5.75** -5.56** -6.70** -6.69**

Table 9: Note: * and ** represent the DM test statistic for which the null hypothesis of equal predictive accuracy
can be rejected at 5% and 1%, respectively and the DM statistic is negative. + and ++ represent the 5% and 1%
significance level when the DM test statistic is positive.

that outperform the benchmark. The model in each row is the benchmark model under

consideration. To economize space, the tables report the p-values only. The RC, SPAc,

and SPAl correspond to the Reality Check p-value, Hansen’s (2005) consistent, and lower

p-values, respectively.25 For the 1- and 5-day horizons, all three EGARCH models fail to

reject the null regardless of the loss function, implying the EGARCH models outperform

the other models. Meanwhile, the MS-GARCH-t also outperforms other models at the

5-day horizon, but not at the 1-day horizon (see Table 10). Yet, consistent with the

out-of-sample evaluation and the Diebold and Mariano’s EPA test results, as the forecast

horizon increases we fail to reject the null, not only for some of the EGARCH models,

but also for the MS-GARCH-t.

It is interesting to consider here how our results differ from Fong and See (2002)

and Nomikos and Pouliasis (2011), who find some evidence that MS-GARCH models are

preferred over GARCH models for forecasting the volatility of oil futures. Recall that

25The p-values are calculated using the stationary bootstrap from Politis and Romano (1994). The
number of bootstrap re-samples B is 3000 and the block length q is 2.
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Reality Check and Superior Predictive Ability Tests

Horizon: One day Horizon: Five days
Loss Function Loss Function

Benchmark MSE1 MSE2 QLIKE R2LOG MAD1 MAD2 Benchmark MSE1 MSE2 QLIKE R2LOG MAD1 MAD2
SPAl 0.005 0.047 0.011 0.018 0.005 0.006 SPAl 0.021 0.016 0.056 0.115 0.218 0.145

GARCH-N SPAc 0.378 0.511 0.011 0.018 0.005 0.006 GARCH-N SPAc 0.423 0.498 0.056 0.115 0.247 0.163
RC 0.378 0.511 0.019 0.237 0.164 0.325 RC 0.423 0.498 0.138 0.397 0.511 0.520

SPAl 0.018 0.093 0.007 0.001 0.000 0.006 SPAl 0.045 0.073 0.072 0.054 0.127 0.147
GARCH-t SPAc 0.399 0.574 0.007 0.001 0 .000 0.006 GARCH-t SPAc 0.472 0.555 0.072 0.054 0.127 0.154

RC 0.399 0.574 0.021 0.162 0.121 0.339 RC 0.482 0.586 0.197 0.352 0.389 0.535
SPAl 0.015 0.094 0.011 0.010 0.002 0.007 SPAl 0.047 0.050 0.087 0.150 0.228 0.189

GARCH-GED SPAc 0.412 0.56 0.011 0.010 0.002 0.007 GARCH-GED SPAc 0.471 0.536 0.087 0.154 0.281 0.224
RC 0.412 0.560 0.024 0.232 0.169 0.356 RC 0.478 0.558 0.199 0.456 0.552 0.611

SPAl 0.238 0.522 0.68 0.503 0.501 0.249 SPAl 0.104 0.077 0.325 0.316 0.342 0.296
EGARCH-N SPAc 0.650 0.730 0.719 0.613 0.826 0.568 EGARCH-N SPAc 0.586 0.576 0.325 0.466 0.640 0.55

RC 0.785 0.898 0.933 0.927 0.949 0.860 RC 0.621 0.609 0.660 0.701 0.828 0.798
SPAl 0.244 0.411 0.381 0.185 0.103 0.234 SPAl 0.44 0.493 0.577 0.317 0.340 0.306

EGARCH-t SPAc 0.807 0.814 0.417 0.283 0.303 0.491 EGARCH-t SPAc 0.872 0.957 0.800 0.544 0.53 0.639
RC 0.836 0.913 0.832 0.606 0.612 0.745 RC 0.892 0.961 0.885 0.733 0.756 0.838

SPAl 0.806 0.933 0.756 0.544 0.450 0.764 SPAl 0.517 0.321 0.691 0.916 0.882 0.822
EGARCH-GED SPAc 1.000 1.000 0.980 0.991 0.911 1.000 EGARCH-GED SPAc 0.995 0.944 1.000 1.000 1.000 1.000

RC 1.000 1.000 0.999 0.999 0.977 1.000 RC 0.997 0.958 1.000 1.000 1.000 1.000
SPAl 0.085 0.279 0.656 0.172 0.041 0.038 SPAl 0.040 0.047 0.378 0.162 0.213 0.152

GJR-N SPAc 0.547 0.670 0.697 0.270 0.083 0.058 GJR-N SPAc 0.458 0.522 0.385 0.185 0.232 0.152
RC 0.576 0.690 0.918 0.652 0.413 0.465 RC 0.458 0.522 0.795 0.531 0.506 0.501

SPAl 0.044 0.618 0.236 0.027 0.007 0.008 SPAl 0.064 0.087 0.396 0.102 0.106 0.111
GJR-t SPAc 0.517 0.861 0.236 0.046 0.017 0.008 GJR-t SPAc 0.561 0.569 0.430 0.108 0.106 0.162

RC 0.612 0.903 0.676 0.313 0.238 0.433 RC 0.619 0.787 0.808 0.422 0.385 0.546
SPAl 0.123 0.652 0.637 0.130 0.016 0.014 SPAl 0.081 0.094 0.527 0.274 0.231 0.187

GJR-GED SPAc 0.609 0.911 0.645 0.130 0.046 0.020 GJR-GED SPAc 0.585 0.619 0.830 0.307 0.356 0.391
RC 0.723 0.939 0.964 0.624 0.409 0.510 RC 0.653 0.705 0.975 0.696 0.636 0.689

SPAl 0.002 0.040 0.000 0.000 0.000 0.000 SPAl 0.001 0.019 0.000 0.000 0.000 0.000
MS-GARCH-N SPAc 0.002 0.040 0.000 0.000 0.000 0.000 MS-GARCH-N SPAc 0.001 0.019 0.000 0.000 0.000 0.000

RC 0.002 0.040 0.000 0.000 0.000 0.000 RC 0.001 0.019 0.000 0.000 0.000 0.000
SPAl 0.019 0.074 0.020 0.039 0.015 0.014 SPAl 0.060 0.046 0.144 0.264 0.201 0.161

MS-GARCH-t SPAc 0.019 0.074 0.020 0.041 0.016 0.014 MS-GARCH-t SPAc 0.088 0.077 0.159 0.345 0.22 0.186
RC 0.394 0.558 0.053 0.275 0.196 0.341 RC 0.511 0.559 0.309 0.606 0.453 0.514

SPAl 0.000 0.014 0.000 0.000 0.000 0.000 SPAl 0.000 0.000 0.000 0.000 0.000 0.000
MS-GARCH-GED SPAc 0.000 0.014 0.000 0.000 0.000 0.000 MS-GARCH-GED SPAc 0.000 0.000 0.000 0.000 0.000 0.000

RC 0.216 0.493 0.001 0.007 0.003 0.085 RC 0.247 0.433 0.007 0.030 0.013 0.13

Table 10: Note: This table presents the p-values of White’s (2000) Reality Check test, and Hansen’s (2005) Superior
Predictive Ability test. The SPAl and SPAc are the lower and consistent p-values from Hansen (2005), respectively. RC
is the p-value from White’s (2000) Reality Check test. Each row contains the benchmark model. The null hypothesis
is that none of the alternative models outperform the benchmark. The p-values are calculated using 3000 bootstrap
replications with a block length of 2.
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Reality Check and Superior Predictive Ability Tests

Horizon: Twenty-two days Horizon: Sixty-six days
Loss Function Loss Function

Benchmark MSE1 MSE2 QLIKE R2LOG MAD1 MAD2 Benchmark MSE1 MSE2 QLIKE R2LOG MAD1 MAD2
SPAl 0.016 0.014 0.127 0.167 0.118 0.064 SPAl 0.018 0.010 0.183 0.118 0.230 0.096

GARCH-N SPAc 0.016 0.512 0.127 0.184 0.125 0.064 GARCH-N SPAc 0.018 0.507 0.210 0.146 0.283 0.117
RC 0.437 0.513 0.301 0.507 0.412 0.435 RC 0.448 0.507 0.421 0.480 0.568 0.493

SPAl 0.075 0.055 0.296 0.213 0.192 0.224 SPAl 0.081 0.044 0.404 0.206 0.450 0.336
GARCH-t SPAc 0.115 0.569 0.328 0.267 0.258 0.34 GARCH-t SPAc 0.150 0.580 0.461 0.292 0.596 0.500

RC 0.564 0.607 0.529 0.59 0.554 0.637 RC 0.562 0.609 0.667 0.604 0.776 0.737
SPAl 0.07 0.027 0.286 0.355 0.289 0.239 SPAl 0.085 0.024 0.418 0.334 0.553 0.363

GARCH-GED SPAc 0.100 0.535 0.319 0.451 0.382 0.336 GARCH-GED SPAc 0.142 0.557 0.463 0.442 0.725 0.504
RC 0.552 0.555 0.514 0.700 0.639 0.662 RC 0.580 0.576 0.661 0.715 0.848 0.770

SPAl 0.025 0.025 0.206 0.132 0.126 0.068 SPAl 0.010 0.010 0.128 0.037 0.059 0.027
EGARCH-N SPAc 0.026 0.524 0.216 0.135 0.131 0.072 EGARCH-N SPAc 0.010 0.500 0.128 0.037 0.059 0.027

RC 0.475 0.525 0.385 0.445 0.426 0.452 RC 0.439 0.500 0.323 0.345 0.327 0.373
SPAl 0.585 0.541 0.804 0.559 0.337 0.415 SPAl 0.663 0.589 0.827 0.428 0.678 0.702

EGARCH-t SPAc 0.935 0.989 0.948 0.781 0.663 0.730 EGARCH-t SPAc 0.950 0.985 0.974 0.675 0.819 0.892
RC 0.961 0.991 0.970 0.853 0.785 0.874 RC 0.968 0.990 0.982 0.788 0.876 0.917

SPAl 0.281 0.071 0.570 0.693 0.741 0.637 SPAl 0.311 0.085 0.564 0.468 0.709 0.655
EGARCH-GED SPAc 0.805 0.728 0.918 0.997 1.000 0.999 EGARCH-GED SPAc 0.668 0.673 0.875 0.800 0.979 0.863

RC 0.902 0.821 0.951 0.997 1.000 0.999 RC 0.870 0.775 0.908 0.872 0.982 0.954
SPAl 0.006 0.009 0.218 0.032 0.014 0.010 SPAl 0.005 0.007 0.092 0.008 0.003 0.003

GJR-N SPAc 0.006 0.471 0.238 0.032 0.014 0.010 GJR-N SPAc 0.005 0.471 0.092 0.008 0.003 0.003
RC 0.391 0.471 0.500 0.337 0.212 0.278 RC 0.370 0.471 0.332 0.268 0.141 0.233

SPAl 0.068 0.019 0.499 0.142 0.057 0.057 SPAl 0.035 0.028 0.462 0.056 0.033 0.031
GJR-t SPAc 0.154 0.615 0.650 0.161 0.059 0.096 GJR-t SPAc 0.091 0.572 0.515 0.073 0.033 0.036

RC 0.564 0.654 0.835 0.503 0.340 0.453 RC 0.530 0.591 0.766 0.396 0.304 0.412
SPAl 0.046 0.024 0.551 0.217 0.104 0.078 SPAl 0.023 0.011 0.506 0.085 0.058 0.030

GJR-GED SPAc 0.053 0.541 0.765 0.276 0.106 0.093 GJR-GED SPAc 0.027 0.528 0.581 0.085 0.060 0.031
RC 0.523 0.552 0.904 0.612 0.435 0.482 RC 0.472 0.535 0.835 0.462 0.365 0.414

SPAl 0.000 0.014 0.000 0.000 0.000 0.000 SPAl 0.000 0.005 0.000 0.000 0.000 0.000
MS-GARCH-N SPAc 0.000 0.014 0.000 0.000 0.000 0.000 MS-GARCH-N SPAc 0.000 0.005 0.000 0.000 0.000 0.000

RC 0.000 0.014 0.000 0.000 0.000 0.000 RC 0.000 0.005 0.000 0.000 0.000 0.000
SPAl 0.143 0.079 0.398 0.543 0.342 0.263 SPAl 0.231 0.102 0.521 0.577 0.595 0.496

MS-GARCH-t SPAc 0.331 0.110 0.540 0.797 0.539 0.469 MS-GARCH-t SPAc 0.395 0.194 0.691 0.839 0.810 0.643
RC 0.671 0.625 0.667 0.880 0.694 0.695 RC 0.748 0.663 0.779 0.918 0.862 0.842

SPAl 0.000 0.002 0.000 0.000 0.000 0.000 SPAl 0.000 0.002 0.000 0.000 0.000 0.000
MS-GARCH-GED SPAc 0.000 0.002 0.000 0.000 0.000 0.000 MS-GARCH-GED SPAc 0.000 0.002 0.000 0.000 0.000 0.000

RC 0.252 0.442 0.020 0.059 0.006 0.079 RC 0.250 0.453 0.020 0.048 0.011 0.076

Table 11: Note: This table presents the p-values of White’s (2000) Reality Check test, and Hansen’s (2005) Superior
Predictive Ability test. The SPAl and SPAc are the lower and consistent p-values from Hansen (2005), respectively. RC
is the p-value from White’s (2000) Reality Check test. Each row contains the benchmark model. The null hypothesis
is that none of the alternative models outperform the benchmark. The p-values are calculated using 3000 bootstrap
replications with a block length of 2.



37

both studies use an estimation methodology that does not allow for a straightforward

calculation of multi-step forecasts. Hence, they only compute one-step-ahead forecasts.

Fong and See (2002) use three loss functions (MSE, MAE, which correspond to MSE2

and MAD2 in our paper, together with R2) to evaluate the out-of-sample performance

of a MS-GARCH-t and a GARCH-t model in forecasting one-day-ahead volatility. They

find that the MS-GARCH-t yields a lower loss when the MSE2 or MAD2 are used,

however, the ranking is reversed when the R2 is used. Thus, it is not clear that the

switching model performs unanimously better than the non-switching model for a short

forecast horizon. In contrast, we evaluate volatility in spot oil prices at the 1-day horizon,

where the EGARCH-GED is ranked above the switching models for five out of six loss

functions. Yet, the GARCH-t and the MS-GARCH-t are closely tied: the MSE2 ranks

the GARCH-t higher but the MS-GARCH-t is preferred if we use the MAD2. In other

words, had we restricted ourselves to the models and loss functions used by Fong and See

(2002), we would have reached similar conclusions. However, our consideration of a larger

set of models and loss functions leads us to conclude that an EGARCH-GED performs

substantially better than the alternative models.

Nomikos and Pouliasis (2011), on the other hand, consider a wider range of models

and forecast evaluation methods than Fong and See (2002) but do not estimate EGARCH

models. They instead focus on GARCH, MS-GARCH, and Mix-GARCH and also com-

pute the one-step-ahead forecasts. Overall, they find evidence that the Mix-GARCH-X

model yields smaller forecast errors and more accurate forecasts for NYMEX WTI futures.

This result is also consistent with our finding that at the 1-day horizon MS-GARCH mod-

els are less favorable.

How Stable is the Forecasting Accuracy of the Preferred Models?

One concern with using a single model to forecast over a long time period is that the

predictive accuracy might depend on the out-of-sample period used for forecast evaluation.
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In particular, a model might be chosen for its highest predictive accuracy when evaluating

the loss functions over the whole out-of-sample period, yet one of the competing models

might exhibit a lower Mean Squared Predictive Error (MSPE) at a particular point (or

points) in time during the evaluation period. As we have already mentioned, Tables 4 and

5 indicate that for the evaluation period of the year 2012, the EGARCH-GED and the

EGARCH-t exhibit lower MSPE –as measured by the MSE1 in (11)– for the 1- and 5-day

forecast horizons respectively, whereas the MS-GARCH-t results in smaller MSPE for

the longer 22- and 66-day horizons. To investigate the stability of the forecast accuracy, we

compute the MSPE over 185 rolling sub-samples in the evaluation period, where the first

sub-sample consists of the first 66 forecasts (three months) in the evaluation period, the

second sub-sample is created by dropping the first forecast and adding the 67th forecast

at the end, and so on. In brief, these MSPEs are now computed as the average MSE1

over a rolling window of size n = 66. Figure 4 plots the ratio of the MSPE for three out

of the four models relative to the “best model” at each of the four horizons, where the

best model is selected based on the results reported in Tables 4 and 5, i.e., for the whole

evaluation period. Note that, because the last window used to compute the MSPE spans

the period between September 26, 2012 and December 30, 2012, the last MSPE ratio is

reported at September 25, 2012.
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Panel A in Figure 4 illustrates that at the 1-day horizon the EGARCH-GED almost

always has higher predictive accuracy than the GARCH-t as evidenced by the MSPE

ratio exceeding 1 over almost all of the evaluation period. In contrast, the predictive

accuracy of the EGARCH-t and the EGARCH-GED is very similar. Consistent with

being ranked lower in Tables 4 and 5, the MS-GARCH-t has lower predictive accuracy

than EGARCH-GED for most of the evaluation sample; the only exception being the days

in September 2012. Regarding the 5-day horizon (Panel B of Figure 4), the conclusions

we draw from the MSPE ratios are very similar to those for the 1-day horizon. Relative

to the EGARCH-t, the forecast accuracy of the GARCH-t is considerably worse with the

exception of the first quarter of 2012 where the ratio fluctuates around 0.8. That of the

EGARCH-GED is comparable, and the accuracy of the MS-GARCH-t is worse during the

first month but it is more accurate from July 2012 onwards. As for the longer 1-month

and 3-month horizons, the MS-GARCH-t –which exhibits the lowest MSE1 in Tables 4

and 5 for the out-of-sample period under consideration– has been more accurate than any

of the three closest competitors (Panels C and D of Figure 4) during the last two quarters

of the evaluation period, especially during the last two quarters of the evaluation period.

We conclude that there are clear gains from using the MS-GARCH-t model for fore-

casting crude oil return volatility at longer horizons. Whereas these gains are not evident

for the 1- and 5-day horizons over the one-year evaluation period (see Table 4), some

gains become clear when we plot the ratio of the rolling window MSPEs of a sub-period

of three months, especially towards the end of the evaluation period.

CONCLUSION

This paper offered an extensive empirical investigation of the relative forecasting per-

formance of different models for the volatility of daily spot oil price returns. Our results

suggest four key insights for practitioners interested in crude oil price volatility. First,

given the extremely high kurtosis present in the data, models where the innovations are
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assumed to follow a Student’s t or a GED distribution are favored over those where

a normal distribution is presumed. Second, for the one day horizon, nonlinear GARCH

models, e.g., the EGARCH-GED and EGARCH-t, are often ranked higher in terms of loss

functions and tend to yield more accurate forecasts than other GARCH or MS-GARCH

models. Third, as the length of the forecast horizon increases, the MS-GARCH-t model

outperforms non-switching GARCH models and other regime switching specifications.

Lastly, when we analyzed the stability of the forecasting accuracy over different evalu-

ation periods, we found clear gains from using the MS-GARCH-t model at the longer

1- and 3-months horizons as well as higher predictive accuracy for the 1-day and 5-day

horizons towards the end of the evaluation period. All in all, our analysis suggested that

the MS-GARCH-t model yields more accurate long-term forecasts of spot WTI return

volatility.

Two caveats are needed here. First, as it is well known in the literature, EGARCH

models deliver an unbiased forecast for the logarithm of the conditional variance, but the

forecast of the conditional variance itself would be biased following Jensen’s Inequality

(e.g., Anderson et al. 2006, among others). For practitioners who prefer unbiased fore-

casts, caution must be taken when using EGARCH models. Second, long horizon volatility

forecasts that might be of interest to oil companies, such as the 1- and 3-month horizons,

may be computed in three different ways. For instance, if a researcher was interested in

obtaining a one-month-ahead forecast, she could compute a “direct” forecast by first esti-

mating the horizon-specific (e.g., monthly) GARCH model of volatility and then using the

estimates to directly predict the volatility over the next month. Alternatively, as we do

here, she could compute an “iterated” forecast where a daily volatility forecasting model

is first estimated and the monthly forecast is then computed by iterating over the daily

forecasts for the 22 working days in the month. In this paper we use the “iterated” fore-

cast to evaluate the relative out-of-sample performance of different models in the context
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of multi-period volatility forecast. Ghysels, Rubia, and Valkanov (2009) find that iterated

forecasts of stock market return volatility typically outperform the direct forecasts. Thus

we opt for this forecasting scheme. Nevertheless, evaluating the relative performance of

these two alternative methods and comparing it to the more recent mixed-data sampling

(MIDAS) approach proposed by Ghysels, Santa-Clara, and Valkanov (2005, 2006) is the

aim of our future research.
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CHAPTER 2: A DURATION ANALYSIS OF NORTH SLOPE OIL WELL
DRILLING

INTRODUCTION

Firms face many different types of investment decisions. When the investment is

irreversible and the firms are facing uncertain economic conditions, firms must decide

the optimal timing to maximize the profits from the investment. In the presence of

changing uncertainty, the timing of the irreversible investment is even more important.

For example, an electric company must decide when to build a dam for hydroelectric

power without knowing what the future demand for electricity will be. Oil firms purchase

offshore oil leases without knowing the full extent of the petroleum reserves. In either

case, the investment costs cannot be fully recovered should the firm change its plans, thus

the costs become sunk.

Real options theory began with Marschak (1949) and Arrow (1968) and has since been

advanced by Bernanke (1983), Pindyck (1991) and Dixit and Pindyck (1994). Real options

theory describes how firms should time irreversible investments. Irreversible investment

is considered an option so that a firm can choose to invest now, or delay investment to

observe the evolution of the investment payoff over time. Real options models solve for a

trigger price for new investment, P ∗. When the price that results from the new investment

is larger than the trigger price, a firm will choose to make an irreversible investment. For

instance, oil firms determine the price of oil which, given the future expected production

of a well, will provide a level of profits that justify undertaking the expense of drilling

that well. If the price of oil is lower than the trigger price, the firm delays exercising the

option to drill. Real options theory predicts that uncertainty surrounding the price causes

firms to delay irreversible investment. In simple real options models when investment is

completely irreversible, future asset price is the only source of uncertainty. An important

feature of real options theory is that delaying the option has value since both positive and
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negative returns are possible.

Because I lack detailed drilling cost data and the ability to estimate profits and a

specific trigger price, P ∗, my empirical approach is to identify the implication of a higher

P ∗ by estimating the hazard rate of drilling. A decrease in the hazard rate would signify

a delay in drilling, or an increase in the time between investments and imply a higher P ∗.

I collect data from the Alaska Oil and Gas Conservation Commission (AOGCC) which

contains the dates and other characteristics of oil wells drilled on the North Slope of Alaska

from July 2003 to December 2014. Using a discrete proportional hazards model with a

Weibull distribution, I estimate the hazard rate of drilling and the effect of uncertainty

on the timing of the investment.

Consider an oil firm that must decide when to drill an oil well in the presence of

uncertainty in oil prices. There are three main reasons why an oil well is an excellent

example of an irreversible investment. First, on the North Slope of Alaska, there is a

significant cost involved in drilling an oil well. Once a well is drilled, the materials and

labor used in drilling an oil well cannot be recovered and reused for an alternative project.

The cost incurred drilling an oil well is a sunk cost and thus irreversible. Second, drilling

of oil wells occurs in discrete bursts, followed by periods of inactivity. The discrete nature

of investments on the North Slope allows for examination of the timing of the drilling and

to observe how the timing changes in the presence of uncertainty. Third, oil companies

on the North Slope are price takers in a highly competitive industry. Oil is priced on the

world market, and thus no single company has the ability to impact the world price of

oil.

Recent papers that investigate the impact of uncertainty on investment include Bu-

lan, Mayer, and Somerville (2009) who use a GARCH (1,1) specification to model the

volatility of monthly neighborhood returns and the impact on condominium investment

in Vancouver from 1979 to 1998. The authors find that an increase in the volatility of
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one standard deviation resulted in a decrease in investment of 13 percent. Dunne and Mu

(2010) study refinery investments using a hazard model and find that when uncertainty

increases, the probability that a refinery adjusts its capacity decreases. Moel and Tufano

(2002) investigate gold mine closings using real options theory and find both the price and

volatility of gold influence the closing of mines. Hurn and Wright (1994) find that while

oil prices and level of reserves shorten the appraisal duration of North Sea oil fields, oil

price variability does not. Kellogg (2014) investigates infill oil drilling in Texas from 1993

to 2003 using monthly data on oil wells drilled in sole-operated oil fields. He uses implied

volatility constructed from NYMEX 18-month oil price futures to estimate a dynamic

model of firms’ response to oil price volatility. Kellogg (2014) finds that firms reduce

drilling when oil price uncertainty rises and the magnitude of the reduction is consistent

with predictions from real options theory.

I analyze the effect of oil price volatility on the hazard rate of drilling development oil

wells in Alaska. Boyce and Nøstbakken (2011) develop a model of exploration and devel-

opment for crude oil and natural gas fields for the entire United States, including Alaska.

They find that exploration and development wells have been declining and increasing

respectively, over time. Whereas they use annual aggregate data for total wells drilled

and did not include any measure of price uncertainty, I use individual well drilling data

and include several different oil price volatility measures. Leighty and Lin (2012) study

changes in Alaska’s North Slope oil production in response to variations in tax policy,

investigating several different combinations of tax rates and tax credits. Estimating field

specific cost functions and field specific production functions, they find that the tax rate

alone does not alter the optimum oil production path, but the tax structure, i.e., high

tax rates on gross well-head value coupled with a low amount of tax credits, can impact

the optimum path. Leighty and Lin (2012) include past production of each field as well

as known oil reserves, but do not consider the effect of uncertainty in oil prices on oil
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production or well drilling.

Using a duration analysis, I investigate the effect of oil price uncertainty on onshore

oil well drilling on the North Slope of Alaska. Data on individual oil wells on the North

Slope was obtained from the Alaska Oil and Gas Conservation Commission (AOGCC)

from July 2003 to December 2014. As with Kellogg (2014), and Leighty and Lin (2012),

I take advantage of the competitive nature of the oil industry, with oil prices set by the

world market, and firms having little ability to impact oil prices. I avoid the complication

of using aggregate data since I have data on the individual investment of drilling oil wells.

I find that the hazard rate of drilling an oil well on the North Slope is negatively

related to uncertainty, both in aggregate and at the field level. The effects vary with

the choice of the volatility measure. If using a GARCH (1,1), and EGARCH (1,1) of

a GJR-GARCH (1,1) forecast, the overall effect of uncertainty on the hazard rate of

drilling on the North Slope is negative and about 0.8%. When using realized volatility,

the probability of drilling a new well declines by about 0.16% for a one percent increase

in volatility.

OIL DRILLING IN ALASKA

The North Slope of Alaska is composed of seven different oil fields: Badami, Colville

River, Kuparuk River, Milne Point, Nikaitchuq, Oooguruk, and Prudhoe Bay. Table 12

presents the fields and the number of wells drilled during the sample period. Between July

2003 and December 2014, 562 wells were drilled in Prudhoe Bay, the most of all fields.

Kuparuk River is next with 381 wells drilled. This study focuses on the most active fields

on the North Slope. Thus, Badami and Oooguruk are excluded from the duration analysis

since each field had a single well drilled during the sample period.

Oil is a natural resource found in underground reservoirs created by geologic forma-

tions. Accessing a reservoir in order to deliver the oil to the market requires a firm to

drill a hole into the pocket of oil beneath the surface. As the firm drills into the ground,
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North Slope Field Information

Field Start Date Wells Drilled Side Tracks
Colville River Nov-00 66 17
Badami Aug-98 1 0
Kuparuk River Dec-81 344 283
Milne Point Nov-85 61 38
Nikaitchuq Jan-11 22 8
Oooguruk Mar-03 1 0
Prudhoe Bay Apr-69 562 498

Table 12: Wells drilled is the number of wells drilled in each field during the sample period: July
1, 2003 to December 31, 2014. Side Tracks is the number of side tracks drilled in the sample
period.

steel pipe is used to line the well bore, and cemented in place for stability. Once accessed,

the oil is pumped to the surface and transported to the market. Productive oil wells can

continue to produce oil for many years.

Since the labor, steel pipe used for the casing, and the costs for the drilling rig rental

are not recoverable, the investment into the drilling of a well can be modeled as an

irreversible investment. Once a well is drilled it is permanent. Thus, before a firm decides

to make the investment to drill a well, it must also consider the benefits that result from

a productive well (Kellogg, 2014). The firm does not know with certainty the price of

oil once production begins, therefore it must form an expectation on the price of oil in

advance of the decision to drill.

METHODS

Duration Model

The main goal of this chapter is to examine the implication of uncertainty on the

hazard rate of drilling an oil well. Irreversible investment theory implies that the timing

of investments is affected by uncertainty; higher uncertainty leads firms to delay an irre-

versible investment. Bigsten et al. (2005) find positive correlation in investment and the

prediction of negative duration dependence in the hazard function in models with irre-
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versibility. A key difference between models with irreversibility and convex adjustment

cost models, is that convex adjustment cost models assume that firms smooth investments

across time whereas models with irreversibility have periods of investment inactivity in-

termixed with discrete bursts of investment (Dunne and Mu, 2010). Because the North

Slope features periods of investment inactivity and drilling an oil well is an exit from the

inactivity, a discrete proportional hazards model can be used to estimate the effects of

uncertainty on the timing of the exit.

Oil wells on the North Slope are drilled from structures known as drilling pads, which

are described in the next section. Most of the pads in the sample are used multiple times:

there are 103 pads and 1055 development wells drilled during the sample period. The

duration in months between investment episodes is the time in months between two wells

being drilled from the same drilling pad. The mean duration for the sample period is

9.47 months and the median duration is 1.96 months. After each investment episode the

duration clock is reset to zero.

I begin by defining T to be the length of inactivity of a drilling pad on the North

Slope. The cumulative probability distribution of T is specified by:

F (t) = Pr(T ≤ t)

Then, the probability that a drilling pad stays inactive longer than T is given by the

survivor function:

S(t) = 1− F (t) = Pr(T > t)

The hazard function gives the conditional probability that a drilling pad exits from a

period of inactivity in the interval ∆t after it is inactive until time t (Kiefer 1988). The
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hazard function can be written as:

h(t) = lim
∆t→0

Pr(t ≤ T < t+ ∆t|T ≥ t)

∆t

The general functional form of the parametric proportional hazards model is given by:

h(t|xj) = h0(t)exp(xjβx) (19)

where h0(t) is the baseline hazard function, xj is a vector of explanatory variables, and

βx are the corresponding coefficients to be estimated from the data. Although there are

different ways to specify h0(t), I assume a Weibull distribution following Dunne and Mu

(2010) and Hurn and Wright (1994). The baseline hazard with a Weibull distribution

becomes:

h0(t) = ptp−1exp(β0) (20)

where p is an estimated ancillary shape parameter and exp(β0) is the scale parameter. The

Weibull distribution accommodates both monotonically increasing and decreasing shapes

of the hazard function, which is determined by the estimated shape parameter, p. If

p > 1, the hazard increases with t; if p = 1, the hazard is constant and the model reduces

to an exponential distribution; if p < 1, the hazard decreases with t. The hazard function

gives a definition of duration dependence. If the probability that investment inactivity

ends increases as the length of inactivity increases, then positive duration dependence is

present. Negative duration dependence is then defined as: the probability of investment

inactivity ending decreases as the length of inactivity increases. Positive and negative

dependence is also referred to as increasing and decreasing hazard, respectively (Kiefer,

1998).
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Given a set of covariates, xj, and combining (19) and (20), the model becomes:

h(t|xj) = h0(t)exp(xjβx) = ptp−1exp(β0 + xjβx) (21)

Equation (21) is estimated for all the North Slope fields pooled together using the

explanatory variables described in the next section. In addition, (21) is estimated for

each of the five most active fields during the sample period.

DATA

Monthly West Texas Intermediate (WTI) crude oil spot prices were obtained from

the U.S. Energy Information Administration. Monthly real oil prices in 1982 dollars are

obtained by deflating the nominal oil price with the producer price index obtained from

the St. Louis FRED. The sample period ranges from July 2003 until December 2014. The

5 fields included have been the most active since 2003. Over this time period, the monthly

average real price of a barrel of crude oil was $41.26 and the standard deviation was $9.40.

A maximum price $66.77 was observed in June 2008, possibly due to geopolitical tensions

in the Middle East. Descriptive statistics are listed in Table 13.

Descriptive Statistics

Mean St. dev Min Max
WTI 41.26 9.40 20.44 66.77
TV D 7142.54 1918.2 351 13662
RigCount 7.94 2.22 3 17
TundraDays 138.58 13.71 112 161
SideTrack 0.80 0.40 0 1

Table 13: WTI denotes the monthly price of the West Texas Intermediate spot price deflated to 1982 dollars using producers
price index; TV D is the total vertical depth of the wells drilled from July 1, 2003 to December 31, 2014; RigCount is obtained
from Baker Hughes Weekly Rig Count for North America; TundraDays represents the number of days the tundra is open
to travel, obtained from Alaska DNR. SideTrack is a dummy variable equal to 1 if the well drilled is a new well or a side
track well, zero otherwise.

GARCH Models

Real options models assume that firms will use a forward-looking measure of volatility

in deciding when to drill a well. I compare the results when considering GARCH (1,1),
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EGARCH (1,1), and GJR-GARCH (1,1) volatility forecasts as the volatility measure. In

chapter 1, daily oil price returns exhibited ARCH effects, however, in this section monthly

oil prices are used. Therefore, testing for ARCH effects is repeated. Monthly returns are

regressed on a constant and residuals are tested for autocorrelation and ARCH effects.

The Breusch-Godfrey test rejects the null of no serial autocorrelation and the LM test

for ARCH effects strongly rejects the null of no ARCH effects in all lag orders from

1 to 20. The p−values for both tests are all 0. Therefore, the mean equation is re-

specified to include one AR term to eliminate serial correlation. It is found that an AR(1)

specification is sufficient to eliminate serial correlation, and also minimizes AIC for all

lags 1 to 20. Thus, the conditional mean equation from (1) in chapter 1 is now estimated:

rt = µ+ rt−1 + εt.

Figure 5 plots the returns of the monthly WTI spot prices and the squared deviations

from January 1986 to December 2014. Similar to Figure 1, which plots daily returns,

large variations are observed during the crude oil price crises in 1986 and 1988, Middle

East conflicts in late 1990 and early 1991, the financial crisis in 2008, and the oil price

collapse of late 2014. Figure 5 suggests monthly crude oil returns are characterized by

periods of low volatility followed by high volatility throughout the sample period.

I forecast oil price volatility using the traditional GARCH model in (1), and also

include EGARCH, (7), and GJR-GARCH models, (6), discussed in Chapter 1. One

possible shortcoming of the standard GARCH model is the assumption that shocks have

symmetrical effects on the conditional variance. The benefits of including the nonlinear

EGARCH and GJR-GARCH models are the ability to capture leverage effects, volatility

clustering, and fat tails. In addition, generating forecasts using these models is relatively

straightforward and have been shown to perform well with short out-of-sample oil price

volatility forecasts (Mohammadi and Su 2010, and Hou and Suardi 2012). For each model,

I estimate three different error distributions: Normal, Student’s t, and Generalized Error
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Figure 5: Monthly WTI Crude Oil Returns and Squared Deviations. The sample period extends from January 1986 through
December 2014.

Distribution.

To construct the GARCH volatility forecasts for the sample period, July 2003 to

December 2014, I start by estimating the GARCH models for a sample of January 1986

to June 2003 using 209 observations. I then forecast the one-step ahead volatility for July

2003. To forecast the volatility for August 2003, I drop one observation at the beginning

of the sample and add one observation at the end. The process continues for each of the

remaining months in the sample period, forecasting one month ahead volatilities using a

rolling window of 209 observations of real oil prices.

Realized Volatility

As a comparison to the various GARCH model forecasts, I also include realized volatil-

ity calculated from 5-minute prices of 1-month West Texas Intermediate (WTI) futures

contracts for NYMEX Light Sweet Crude Oil, symbol CL, from Tickdata.com. Following

the same procedure described in chapter 1, I construct daily realized volatility by tak-

ing the sum of the intraday 5-minute returns during trading hours, (9:30am to 4:00pm

EST) and then adding the square of the previous overnight return. The sample period
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Realized Volatility Descriptive Statistics

Mean St. dev Skewness Kurtosis
RV 1/2 0.019 0.011 3.04 22.96
Log(RV 1/2) -4.08 0.47 0.24 3.84

Table 14: RV denotes realized volatility computed from the 5-minute returns of oil futures. RV 1/2 and the natural logarithm
of RV 1/2 series are from July 1, 2003 to December 31, 2014 for 2895 observations.
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Figure 6: ln(RV 1/2) distributions. The sample period extends from July 1, 2003 through December 31, 2014. The solid
line is the kernel density. The dotted line is a normal density scaled to have the same mean and standard deviation of the
data.

ranges from July 1, 2003 to December 31, 2014 for a total of 2895 observations. Summary

statistics for daily RV
1/2
t and the logarithm of daily RV

1/2
t are listed in Table 14. The

RV
1/2
t series is right-skewed and leptokurtic. Similar to the summary statistics presented

in Table 1, the logarithm of RV
1/2
t is closer to a normal distribution and comparing its

kernel density estimates with the normal distribution in Figure 6 is similar to what is seen

in Figure 2. Monthly RVt is then constructed by summing the daily realized volatility

over the month with m = 21:

R̂V T,T+m =
m∑
j=1

R̂V T+j.

Remaining Explanatory Variables

Unlike other states such as Texas, where landowners own the rights to minerals beneath

their land, the state of Alaska owns the rights to the oil and gas contained in subterranean
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reservoirs. Thus, firms interested in development of an oil reservoir on the North Slope

purchase leases from the state during periodic lease sales. Each lease represents an option

to drill for oil, and firms may or may not exercise the option. In the sample period, many

firms drill multiple producing wells on a single lease. When multiple firms own leases

above the same oil field, the common pool problem can arise. To prevent this, Alaska

statute allows the firms to form a unit (Alaska Stat.§31.05.110). The unit agreement

prevents the common pool problem by requiring all the firms holding leases above the oil

field to agree to a development plan and choose a single firm to operate the field before

developing the field. All the fields in this study are part of a unit (AOGCC website).

Number of leases are included as an indication of a firm’s level of interest in the oil field.

Alaska imposes seasonal limits on North Slope during the summer months, which in-

troduces two unique aspects for firms operating on the North Slope. The first is restricted

winter travel. During the winter months, over the tundra travel starts when the DNR

determines that conditions are suitable to open the tundra to general off-road travel.

Opening and closing dates for over the tundra travel from 2003 through 2014 were ob-

tained from the Alaska DNR. The longest travel season was 161 days in 2004-2005, and

the shortest season of 120 days occurred in 2008-2009. Table 13 presents the summary

statistics. Secondly, firms are limited in the places where an oil well can be drilled. To

access the subterranean oil, most often a company must drill from an existing drilling

pad. A drilling pad is a gravel platform built on the tundra and allows for the operation

of drilling rigs while protecting the tundra from damage. The sample contains 103 drilling

pads and most pads are used to drill multiple wells during the sample period. Drilling

from existing drilling pads means that in order to access the reservoir, well bores often

have to be several thousand feet long to reach the oil in parts of the reservoir not directly

underneath the drilling pad. The total vertical depth of the wells drilled in the sample is

included as an indication of the total cost of drilling a well, and summary statistics are
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presented in Table 13.

The well bore paths have become more complex as drilling technology has improved

over the past 30 years, and relatively sharp changes in hole angle and direction are now

possible (See Figure 7). Coiled-tubing drilling is used to drill side tracks, which are smaller

diameter, relatively flexible pipe that coils on a very large spool rather than standard,

thick-walled, straight drill pipe. This enables operating companies to reach smaller oil

accumulations within major oil fields. Coiled tubing has become settled technology on

the North Slope (Gantt et al.,1998). The number of side tracks drilled in each field during

the sample period are included in Table 12.

Figure 7: Illustration of complex well bore paths possible using coiled tubing drilling. Source: AOGCC

Data on the number of drilling rigs available in Alaska were obtained from the Baker

Hughes North American rig count. Baker Hughes releases the weekly rig count for North

America on the last working day of the week. The count contains onshore rigs that are

actively drilling. Table 13 presents the summary statistics. The average number of rigs

actively drilling during the sample period is 7.95, and the maximum number of rigs is 17,
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occurring in February 2014. There are a limited number of drilling rigs, and there were

recent instances where demand exceeded supply (personal communication, manager with

Nabor’s Drilling Company, April 2012)

RESULTS

I estimate the hazard model in (21) by maximum likelihood.26 The baseline hazard,

h0(t) reflects the probability of a well being drilled only as a function of time. The

explanatory variables multiplicatively affect the probability of drilling a well by the factor

eβ. In the hazard model, the null hypothesis of β = 0 corresponds to a coefficient equal

to 1. In the results that follow, the coefficient on a variable x that is estimated is the

proportional effect on the hazard rate of a unit change in x. Then a one unit change

in x leads to a 100 ∗ eβx−1 percent change in the hazard rate. If the impact on the

baseline hazard is positive, the estimated coefficient is greater than one, that is, a higher

probability of drilling an oil well. The reverse is also true - a hazard ratio less than

one reduces the probability of drilling. Robust standard errors are estimated using the

Huber/White estimator clustered on each individual drilling pad in the sample to allow

for correlation across time in the hazard rate of individual fields.

One complication is that I do not observe the date the decision to drill is made.

According to a petroleum geologist with the AOGCC, an application for a permit to drill

is usually approved in less than ten days. The average time for drilling a well in the

sample period is 22 days, and most wells in the sample period are completed within 90

days. Thus, to accommodate the length of time it takes to decide when to drill, RV and

RealOilPrice are lagged three months.

Each model is estimated using GARCH (1,1), EGARCH (1,1), and GJR-GARCH

(1,1) forecasts, with three error distributions: Normal, Student’s t, and GED; the results

are presented in Tables 15, 16, and 17. The estimates for the three duration models

26The streg command with STATA was used to perform the duration analysis.
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Duration Models: GARCH Forecasts All Fields

Model I Model II Model III Model I Model II Model III Model I Model II Model III
GARCH 0.9908*** 0.9911*** 0.9908*** GARCH − t 0.9904*** 0.9906*** 0.9904*** GARCH −GED 0.9904*** 0.9907*** 0.9904***

(0.0017) (0.0016) (0.0016) (0.0017) (0.0016) (0.0016) (0.0016) (0.0016) (0.0016)
RealOilPrice 0.9232*** 0.9172*** 0.9148*** RealOilPrice 0.9223*** 0.9159*** 0.9134*** RealOilPrice 0.9215*** 0.9154*** 0.9129***

(0.0089) (0.0093) (0.0095) (0.0090) (0.0094) (0.0097) (0.0088) (0.0092) (0.0095)
Tundra 0.6949*** 0.7092*** Tundra 0.6967*** 0.7109*** Tundra 0.7010*** 0.7151***

(0.0866) (0.0882) (0.0867) (0.0883) (0.0871) (0.0888)
NumLeases 0.9986 0.9975 NumLeases 0.9986 0.9975 NumLeases 0.9986 0.9975

(0.0018) (0.0019) (0.0018) (0.0019) (0.0018) (0.0019)
TV D 0.8886** 0.8445*** TV D 0.8880** 0.8436*** TV D 0.8880** 0.8434***

(0.0541) (0.0584) (0.0540) (0.0586) (0.0538) (0.0582)
RigCount 0.9549 0.9632 RigCount 0.9527 0.9609 RigCount 0.9532 0.9616

(0.0295) (0.0299) (0.0296) (0.0301) (0.0294) (0.0299)
SideTracks 1.6303** SideTracks 1.6313** SideTracks 1.6382**

(0.3132) (0.3147) (0.3155)
Constant 0.4779*** 2.6042 3.0850 Constant 0.5161*** 2.9314 3.4872 Constant 0.5040** 2.8060 3.3420

(0.1897) (2.2053) (2.7692) (0.0214) (2.5245) (3.2000) (0.1972) (2.3716) (2.9994)

p 1.52*** 1.56*** 1.56*** p 1.51*** 1.56*** 1.56*** p 1.53*** 1.57*** 1.57***
(0.0678) (0.0654) (0.0647) (0.0667) (0.0643) (0.0637) (0.0679) (0.0656) (0.0649)

LL 848.62 891.84 907.55 LL 849.88 893.72 909.44 LL 853.06 896.13 912.17

Table 15: Results for the duration models when pooling all fields and GARCH(1,1) forecasts with Normal, Student’s t, and
GED errors are the volatility measures. Hazard ratios are reported; ***, **, and * denote hazard ratios that are different
from one at the 1%, 5%, and 10%, respectively. Robust standard errors are in parenthesis. TVD: total vertical depth of
the well in ’000’s of feet.

Duration Models: EGARCH Forecasts All Fields

Model I Model II Model III Model I Model II Model III Model I Model II Model III
EGARCH 0.9911*** 0.9910*** 0.9913*** EGARCH − t 0.9923*** 0.9915*** 0.9916*** EGARCH −GED 0.9926*** 0.9917*** 0.9918***

(0.0022) (0.0022) (0.0022) (0.0014) (0.0014) (0.0014) (0.0014) (0.0014) (0.0014)
RealOilPrice 0.9495*** 0.9412*** 0.9411*** RealOilPrice 0.9428*** 0.9311*** 0.9305*** RealOilPrice 0.9428*** 0.9308*** 0.9304***

(0.0079) (0.0081) (0.0082) (0.0084) (0.0084) (0.0086) (0.0084) (0.0083) (0.0085)
Tundra 0.6479*** 0.6629*** Tundra 0.6185*** 0.6314*** Tundra 0.6155*** 0.6282***

(0.0825) (0.0855) (0.0746) (0.0768) (0.0739) (0.0762)
NumLeases 0.9986 0.9977 NumLeases 0.9992 0.9982 NumLeases 0.9900*** 0.9981

(0.0018) (0.0019) (0.0018) (0.0019) (0.0018) (0.0019)
TV D 0.8807** 0.8440*** TV D 0.8816** 0.8424*** TV D 0.8803** 0.8425***

(0.0555) (0.0601) (0.0547) (0.0596) (0.0547) (0.0594)
RigCount 0.9800 0.9864 RigCount 0.9728 0.9793 RigCount 0.9683 0.9748

(0.0304) (0.0312) (0.0310) (0.0319) (0.0306) (0.0314)
SideTracks 1.4832* SideTracks 1.5185* SideTracks 1.4987*

(0.2847) (0.2943) (0.2886)
Constant 0.1819*** 0.9378 1.0089 Constant 0.2141*** 1.2731 1.4213 Constant 0.2169*** 1.4268 1.5695

(0.0864) (0.8470) (0.9439) (0.0977) (1.1551) (1.3425) (0.0990) (1.2849) (1.4677)

p 1.46*** 1.51*** 1.51*** p 1.49*** 1.55*** 1.55*** p 1.48*** 1.55*** 1.54***
(0.0694) (0.0632) (0.0641) (0.0690) (0.0627) (0.0641) (0.0684) (0.0617) (0.0408)

LL 822.32 871.11 881.02 LL 835.41 890.43 901.59 LL 835.10 892.03 902.53

Table 16: Results for the duration models when pooling all fields and EGARCH(1,1) forecasts with Normal, Student’s
t, and GED errors are the volatility measures. Hazard ratios are reported; ***, **, and * denote hazard ratios that are
different from one at the 1%, 5%, and 10%, respectively. Robust standard errors are in parenthesis. TVD: total vertical
depth of the well in ’000’s of feet.

using RV as the volatility measure are presented in Table 18. The first column contains

the estimates for the Model I, only including the volatility measure and real oil prices,

RealOilPrice, as explanatory variables. To capture other specific characteristics that

may impact the decision to drill a well, the second column presents the results of the

Model II adding the explanatory variables discussed in the Data section, while the third

column, Model III, also includes the dummy variable for side track wells.

The first result to note is that for all the various volatility measures, p is significantly

greater than one at the 1% level, indicating that the hazard is increasing with time. In

other words, the probability of drilling increases as the time since the last drilling episode
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Duration Models: GJR-GARCH Forecasts All Fields

Model I Model II Model III Model I Model II Model III Model I Model II Model III
GJR 0.9907*** 0.9909*** 0.9907*** GJR− t 0.9907*** 0.9908*** 0.9905*** GJR−GED 0.9905*** 0.9906*** 0.9904***

(0.0015) (0.0015) (0.0015) (0.0015) (0.0015) (0.0015) (0.0014) (0.0014) (0.0014)
RealOilPrice 0.9159*** 0.9102*** 0.9076*** RealOilPrice 0.9177*** 0.9114*** 0.9088*** RealOilPrice 0.9134*** 0.9072*** 0.9048***

(0.0098) (0.0103) (0.0106) (0.0099) (0.0104) (0.0107) (0.0101) (0.0104) (0.0107)
Tundra 0.7144*** 0.7280*** Tundra 0.7158*** 0.7294*** Tundra 0.7182*** 0.7308***

(0.0886) (0.0902) (0.0885) (0.0901) (0.0886) (0.0900)
NumLeases 0.9985 0.9975 NumLeases 0.9985 0.9974 NumLeases 0.9985 0.9975

(0.0018) (0.0019) (0.0018) (0.0019) (0.0018) (0.0019)
TV D 0.8870** 0.8430*** TV D 0.8870** 0.8427*** TV D 0.8852** 0.8415***

(0.0533) (0.0577) (0.0533) (0.0579) (0.0531) (0.0574)
RigCount 0.9533 0.9617 RigCount 0.9504* 0.9586 RigCount 0.9522 0.9605

(0.0292) (0.0296) (0.0291) (0.0296) (0.0291) (0.0294)
SideTracks 1.6286** SideTracks 1.6321** SideTracks 1.6255**

(0.3092) (0.3111) (0.3064)
Constant 0.5656** 3.1334 3.7042 Constant 0.5221** 3.0565 3.6286 Constant 0.5987* 3.4683 4.0724

(0.2172) (2.5875) (3.2448) (0.2019) (2.5380) (3.2114) (0.2273) (2.8477) (3.5434)

p 1.56*** 1.60*** 1.60*** p 1.56*** 1.60*** 1.60*** p 1.57*** 1.61*** 1.62***
(0.0737) (0.0719) (0.0714) (0.0741) (0.0726) (0.0721) (0.0752) (0.0736) (0.0729)

LL 863.28 905.06 920.73 LL 863.19 905.69 921.49 LL 869.72 912.10 927.71

Table 17: Results for the duration models when pooling all fields and GJR-GARCH(1,1) forecasts with Normal, Student’s
t, and GED errors are the volatility measures. Hazard ratios are reported; ***, **, and * denote hazard ratios that are
different from one at the 1%, 5%, and 10%, respectively. Robust standard errors are in parenthesis. TVD: total vertical
depth of the well in ’000’s of feet.

Duration Model: RV All Fields

Model I Model II Model III
RV 0.9982*** 0.9984*** 0.9984***

(0.0005) (0.0005) (0.0005)
RealOilPrice 0.9475*** 0.9422*** 0.9404***

(0.0083) (0.0088) (0.0090)
Tundra 0.6784*** 0.6947***

(0.0857) (0.0877)
NumLeases 0.9986 0.9975

(0.0018) (0.0019)
TV D 0.8949* 0.8514**

(0.0580) (0.0621)
RigCount 0.9751 0.9839

(0.0310) (0.0314)
SideTracks 1.6315*

(0.3331)
Constant 0.1105*** 0.4396*** 0.5379

(0.0523) (0.0394) (0.5380)

p 1.51*** 1.55*** 1.55***
(0.0688) (0.0612) (0.0617)

LL 860.88 898.68 913.12

Table 18: Results for the duration model. Hazard ratios are reported; ***, **, and * de-
note hazard ratios that are different from one at the 1%, 5%, and 10%, respectively. RV and
RealOilPrice are lagged 3 months. Robust standard errors are in parenthesis. TVD: total
vertical depth of the well in ’000’s of feet.
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increases. For all the models and volatility measures, the coefficients on the volatility

measure are all significantly less than one at the 1% level.

The second notable result is the magnitudes of the coefficients for all the GARCH

forecasts are close to the coefficients when RV is used. Specifically, when considering

GARCH volatility forecasts, coefficients are all around 0.99 for all the different forecast

specifications. The coefficients are all significantly less than one at the 1% level and are

robust both to the choice of GARCH model and to the choice of error distribution. When

using RV as the volatility measure, the coefficients range from 0.9982 in the simplest

duration model to 0.9984 when including all of the explanatory variables. In response to

a one unit increase in volatility, the hazard rate of drilling is reduced by about 0.8% when

using GARCH, and 0.16% when using RV .

The third notable result is that RealOilPrice has a negative relationship with the

hazard rate of drilling and is significantly different from one at 1% for all estimated

models. There is more variability in the effects of real oil prices when comparing models

using various GARCH forecasts and models using RV . For instance, when using GARCH

(1,1) with normally distributed errors, (See Table 15), the magnitude of the coefficients

on RealOilPrice varies from 0.9232 in Model I to 0.9148 in Model III. If instead, forecasts

created with Student’s t errors are used as the volatility measure, the magnitudes of the

coefficients vary from 0.9223 to 0.9134. Finally, when using GED errors, the coefficients

on the volatility measure vary from 0.9215 to 0.9129. Each choice of error distribution

displays the same pattern: a smaller impact on the hazard rate of drilling in Model I than

Models II and III, with Model III having the largest negative impact.

For EGARCH (1,1) or GJR-GARCH (1,1), the pattern is the same, albeit with slightly

different magnitudes for the coefficients. GJR-GARCH (1,1) with GED errors is the

forecast model which yields the largest negative effects from real oil prices: about a

9.99% decline in the hazard rate of drilling with a $1 increase in the real oil price. When
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considering RV as the volatility measure, the coefficient on RealOilPrice varies from

0.9475 to 0.9404, corresponding to a decrease in the hazard rate of 5.39% to 6.14% for

every dollar increase in real oil prices.

Considering the other variables in Models II and III, the coefficients on the length of

time the tundra is open has a significant effect on the hazard rate of drilling, in both cases

reducing the probability of drilling. This is expected as the restrictions on over the tundra

travel imposed by the state reduce the drilling season each year. On average, the tundra

is open for travel for just over one third of the year. The coefficients on total vertical

depth indicate that the deeper the well, the lower the hazard rate of drilling a well. The

impact of the number of leases is statistically insignificant when pooling all of the fields,

although the effect of the number of leases is significant when examining several of the

fields individually. Since firms have a choice between drilling a new vertical well or a side

track well (See Figure 7), the models are estimated with a dummy variable equal to one if

the well drilled is a sidetrack, and zero otherwise. Side tracks are cheaper to drill, and they

represent a large percentage of the wells drilled on the North Slope (U.S. Department of

Energy, National Energy Technology Laboratory [DOE/NETL], 2005). Table 12 presents

the number of side tracks drilled in each field, and Figure 8 shows the yearly count of new

vertical wells and side track wells drilled from July 2003 to December 2014. Side tracks

are more likely to be drilled because, in most cases, the fields are mature and economic

conditions allow for the access of smaller pools of oil that were neglected when the fields

were initially developed. Also, according to some estimates, the cost of drilling a side

track can be up to 50% of the cost of drilling a new vertical well (DOE/NETL, 2005).

The coefficients on the side track dummy variable across the GARCH forecasts all have

a positive impact on the hazard rate of drilling, and are significant. For the three GARCH

(1,1) error distributions, the coefficients range from 1.6303 for the Normal distribution to

1.6382 for the GED distribution. When using EGARCH (1,1) forecasts for the volatility
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Figure 8: Yearly count of new wells and sidetracks drilled on the North Slope of Alaska. * 2003 starts from July. Source:
AOGCC

measure, the t distribution has the largest effect at 1.5185, whereas the Normal has the

smallest, 1.4832. For the GJR (1,1) forecasts in Table 17, the Normal distribution has

the largest magnitude, 1.6286; the t distribution the smallest, 1.6321. Recall that the

coefficients are exponentiated, thus a coefficient equal to one is equivalent to β = 0.

Compared with a coefficient of 1.6315 for RV , the effects of the various GARCH forecasts

similar for GARCH and GJR-GARCH, but smaller for EGARCH.

The log-likelihoods of the models estimated using GARCH forecasts have a smaller

log-likelihood than those using RV . However, when GJR-GARCH forecasts are used,

the log-likelihoods are larger than the models estimated using RV . In addition, the

magnitudes of the log-likelihoods for the models estimated using GARCH, GJR-GARCH,

and RV volatility measures are similar in magnitude, while EGARCH models are lower

for each error distribution; although a direct comparison between GARCH and EGARCH
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forecasts are difficult due to potential differences in the magnitude of the forecasts.

To further investigate the effects of volatility on the drilling activity on the North

Slope, Model III is estimated for the five most active fields, along with the different

volatility measures, and the results are presented in Tables 19-23. All fields are estimated

to have an increasing hazard with p significantly greater than 1. In Prudhoe Bay, the

log-likelihoods for models estimated using RV are generally higher than those estimated

using any of the GARCH forecasts, whereas in the remaining fields the log-likelihoods for

RV are generally smaller.

Duration Model III: Colville River

RV GARCH GARCH-t GARCH-GED EGARCH EGARCH-t EGARCH-GED GJR GJR-t GJR-GED
V ol 0.9994 0.9943* 0.9933 0.9940 0.9923 0.9940*** 0.9915*** 0.9947 0.9950 0.9937

(0.0007) (0.0034) (0.0041) (0.0037) (0.0064) (0.0015) (0.0023) (0.0039) (0.0043) (0.0050)
RealOilPrice 0.9317*** 0.9182*** 0.9155*** 0.9169*** 0.9315*** 0.9261*** 0.9206*** 0.9169*** 0.9196*** 0.9121***

(0.0185) (0.0224) (0.0247) (0.0233) (0.0121) (0.0117) (0.0143) (0.0250) (0.0252) (0.0291)
Tundra 0.4844*** 0.4757*** 0.4798*** 0.4797*** 0.4742*** 0.4398*** 0.3947*** 0.4857*** 0.4930*** 0.4959***

(0.1137) (0.1217) (0.1181) (0.1212) (0.1076) (0.1014) (0.1346) (0.1216) (0.1174) (0.1292)
NumLeases 0.9662*** 0.9623*** 0.9616*** 0.9622*** 0.9650*** 0.9656*** 0.9623*** 0.9624*** 0.9624*** 0.9613***

(0.0104) (0.0101) (0.0099) (0.0102) (0.0106) (0.0111) (0.0108) (0.0111) (0.0112) (0.0113)
TV D 0.5992*** 0.5846*** 0.5811*** 0.5820*** 0.5036*** 0.5575*** 0.4645*** 0.5833*** 0.5816*** 0.5784***

(0.0392) (0.0264) (0.0229) (0.0253) (0.1032) (0.0241) (0.0500) (0.0289) (0.0272) (0.0270)
RigCount 1.1354 1.1388 1.1385 1.1370 1.1605 1.1366 1.1565* 1.1379 1.1359 1.1392

(0.1249) (0.1086) (0.1103) (0.1866) (0.1038) (0.1097) (0.0888) (0.1101) (0.1143) (0.1098)
SideTracks 2.1170 2.1534 2.1423 2.1490 2.3961 2.2605 2.4949 2.1635 2.1361 2.1663

(1.4759) (1.4557) (1.4499) (1.4484) (1.7543) (1.5361) (1.6972) (1.4517) (1.4630) (1.4564)
Constant 3.1007 2.7574** 2.7636** 2.7837** 2.6085* 2.7474* 2.8680** 2.7942** 2.7664* 2.8447**

(1.3530) (0.8746) (0.8786) (0.8720) (0.9146) (0.9129) (0.8511) (0.8895) (0.9193) (0.8915)

p 1.63 1.76* 1.78* 1.77* 1.62** 1.66** 1.73*** 1.77* 1.76* 1.83**
(0.3951) (0.4380) (0.4422) (0.4475) (0.3165) (0.3171) (0.2403) (0.4110) (0.4023) (0.4135)

LL 79.45 80.15 80.34 80.25 79.88 80.23 81.36 80.21 80.10 80.63

Table 19: Results for the duration model III for Colville River Field. Hazard ratios are reported; ***, **, and * denote
hazard ratios that are different from one at the 1%, 5%, and 10%, respectively. Robust standard errors are in parenthesis.
TVD: total vertical depth of the well in ’000’s of feet.

Duration Model III: Kuparuk River

RV GARCH GARCH-t GARCH-GED EGARCH EGARCH-t EGARCH-GED GJR GJR-t GJR-GED
V ol 0.9954*** 0.9835*** 0.9819*** 0.9826*** 0.9938 0.9878*** 0.9878*** 0.9843*** 0.9835*** 0.9839***

(0.0016) (0.0035) (0.0038) (0.0033) (0.0050) (0.0030) (0.0030) (0.0030) (0.0033) (0.0031)
RealOilPrice 0.9277*** 0.9030*** 0.8983*** 0.9003*** 0.9509*** 0.9280*** 0.9278*** 0.9000*** 0.9004*** 0.8965***

(0.0221) (0.0177) (0.0188) (0.0171) (0.0180) (0.0193) (0.0194) (0.0200) (0.0201) (0.0202)
Tundra 0.8607 0.9107 0.9385 0.9261 0.8230 0.7690 0.7587 0.9387 0.9724 0.9455

(0.1964) (0.2023) (0.2084) (0.2047) (0.1995) (0.1690) (0.1652) (0.2055) (0.2138) (0.2062)
NumLeases 0.9517*** 0.9493*** 0.9485*** 0.9490*** 0.9617*** 0.9625*** 0.9624*** 0.9419*** 0.9482*** 0.9492***

(0.0071) (0.0076) (0.0079) (0.0077) (0.0077) (0.0076) (0.0076) (0.0077) (0.0081) (0.0078)
TV D 0.5189*** 0.5885*** 0.5871*** 0.5897*** 0.5663*** 0.5885*** 0.5863*** 0.5867*** 0.5827*** 0.5870***

(0.1051) (0.1102) (0.1110) (0.1109) (0.1280) (0.1292) (0.1281) (0.1073) (0.1088) (0.1065)
RigCount 1.1130* 1.0699 1.0620 1.0666 1.0839 1.0538 1.0542 1.0645 1.0573 1.0607

(0.0614) (0.0601) (0.0612) (0.0605) (0.0626) (0.0605) (0.0605) (0.0601) (0.0614) (0.0605)
SideTracks 1.7179 1.5408 1.5511 1.5509 1.4157 1.3303 1.3402 1.5791 1.6202 1.5694

(0.5196) (0.4604) (0.4704) (0.4724) (0.4667) (0.4599) (0.4590) (0.4693) (0.5056) (0.4603)
Constant 5.2725*** 3.2544*** 3.2618*** 3.2627*** 3.3762*** 3.4954*** 3.4933*** 3.3036*** 3.2780*** 3.3507***

(0.9699) (0.5223) (0.5422) (0.5272) (0.6072) (0.5702) (0.5720) (0.5473) (0.5661) (0.5451)

p 2.46*** 2.41*** 2.42*** 2.42*** 2.22*** 2.24*** 2.24*** 2.43*** 2.45*** 2.45***
(0.2179) (0.2280) (0.2223) (0.2251) (0.2538) (0.2394) (0.2397) (0.2328) (0.2337) (0.2350)

LL 399.65 403.62 406.97 406.69 369.16 387.99 388.65 407.90 410.33 411.17

Table 20: Results for the duration model III for Kuparuk River Field. Hazard ratios are reported; ***, **, and * denote
hazard ratios that are different from one at the 1%, 5%, and 10%, respectively. Robust standard errors are in parenthesis.
TVD: total vertical depth of the well in ’000’s of feet.
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Duration Model III: Milne Point

RV GARCH GARCH-t GARCH-GED EGARCH EGARCH-t EGARCH-GED GJR GJR-t GJR-GED
V ol 0.9818 0.9651* 0.9581** 0.9641* 0.9750*** 0.9826*** 0.9825*** 0.9710** 0.9665** 0.9697**

(0.0115) (0.0180) (0.0198) (0.0185) (0.0028) (0.0020) (0.0020) (0.0145) (0.0167) (0.0149)
RealOilPrice 0.8515* 0.8073** 0.7779*** 0.7971** 0.8573*** 0.8502*** 0.8499*** 0.7891** 0.7640** 0.7714***

(0.0824) (0.0755) (0.0774) (0.0824) (0.0278) (0.0295) (0.0305) (0.0850) (0.0939) (0.088)
Tundra 0.3302*** 0.4574*** 0.5785** 0.4555*** 0.2915*** 0.3440*** 0.3435*** 0.4546*** 0.4868*** 0.4807***

(0.1057) (0.1305) (0.2150) (0.1556) (0.0961) (0.1090) (0.1106) (0.1376) (0.1815) (0.1569)
NumLeases 0.9718 0.9353 0.9228 0.9354 1.0363* 1.0242 1.0238 0.9494 0.9424 0.9476

(0.0288) (0.0637) (0.0676) (0.0636) (0.0203) (0.0191) (0.0187) (0.0534) (0.0586) (0.0553)
TV D 0.5348*** 0.7554 0.7959 0.7536 0.4738*** 0.4762*** 0.4780*** 0.7443 0.7775 0.7718

(0.1093) (0.2091) (0.2104) (0.2005) (0.0784) (0.0736) (0.0763) (0.2050) (0.2082) (0.1999)
RigCount 1.3504** 1.3454** 1.3199** 1.4303*** 1.2876** 1.3203** 1.3111** 1.3268** 1.3020** 1.3191**

(0.1372) (0.1423) (0.1373) (0.1423) (0.1216) (0.1400) (0.1404) (0.1388) (0.1315) (0.1415)
SideTracks 5.1458 5.4317* 5.7663*** 5.8451** 8.4656*** 8.0918*** 8.0062*** 5.1009* 5.7411*** 4.7711**

(3.2097) (2.5032) (1.7220) (2.2979) (2.5669) (2.2663) (2.2775) (2.3558) (1.6849) (1.9028)
Constant 2.0738 3.7500*** 3.7608*** 3.8680*** 5.5357*** 5.5276*** 5.5223*** 4.2768*** 4.3592*** 4.3951***

(1.0881) (0.6529) (0.6834) (0.6393) (0.7429) (0.7333) (0.7232) (0.6012) (0.6232) (0.5902)

p 2.37* 2.89*** 3.10*** 2.98*** 2.07*** 2.12*** 2.13*** 2.95*** 3.17*** 3.09***
(0.7189) (0.3054) (0.3596) (0.3775) (0.3377) (0.3486) (0.3367) (0.2888) (0.4560) (0.3818)

LL 46.97 55.38 59.51 56.89 53.38 54.05 53.98 56.14 59.99 57.84

Table 21: Results for the duration model III for Milne Point Field. Hazard ratios are reported; ***, **, and * denote hazard
ratios that are different from one at the 1%, 5%, and 10%, respectively. Robust standard errors are in parenthesis. TVD:
total vertical depth of the well in ’000’s of feet.

Duration Model III: Nikaitchuq

RV GARCH GARCH-t GARCH-GED EGARCH EGARCH-t EGARCH-GED GJR GJR-t GJR-GED
V ol 1.0338*** 1.1115*** 1.1117*** 1.1143*** 1.0133 1.0622** 1.0678** 1.1162*** 1.1159*** 1.1207***

(0.0088) (0.0352) (0.0350) (0.0362) (0.0137) (0.0255) (0.0310) (0.0347) (0.0345) (0.0368)
RealOilPrice 0.9218*** 1.0582* 1.0570* 1.0633* 0.8718* 0.8752** 0.9291** 1.1629** 1.1509** 1.1816**

(0.0135) (0.0344) (0.0341) (0.0365) (0.0685) (0.0636) (0.0322) (0.0665) (0.0629) (0.0742)
Tundra 2.0784** 1.5230* 1.5967** 1.4889* 3.3360 2.7530*** 2.1776*** 1.4976* 1.5827** 1.3925

(0.4842) (0.2711) (0.2593) (0.2751) (1.4553) (0.5011) (0.0953) (0.2955) (0.2831) (0.3098)
NumLeases - - - - - - - - -

- - - - - - - - - -
TV D 0.1530*** 0.1010*** 0.1035*** 0.1004*** 0.2047*** 0.0778*** 0.0773*** 0.1045*** 0.1072*** 0.1026***

(0.0774) (0.0815) (0.0825) (0.0807) (0.2461) (0.1024) (0.0999) (0.0864) (0.0869) (0.0860)
RigCount 0.8967 0.9095*** 0.9114*** 0.9095*** 0.8236 0.7960 0.7925 0.9085*** 0.9123*** 0.9046***

(0.0873) (0.0340) (0.0341) (0.0331) (0.1387) (0.1397) (0.1356) (0.0276) (0.0278) (0.0263)
SideTracks 1.0947 1.4094 1.4160 1.4046 0.7632 0.7854 0.7536 1.4483 1.4643 1.4333

(0.8658) (1.0924) (1.0933) (1.0862) (0.5778) (0.5384) (0.5287) (1.0501) (1.0581) (1.0317)
Constant 2.6882*** 5.8173*** 5.8116*** 5.8041*** 6.2969*** 7.2476*** 7.0779*** 5.6583*** 5.6615*** 5.6333***

(0.2783) (0.2436) (0.2422) (0.2353) (1.1347) (1.1325) (1.0385) (0.2293) (0.2255) (0.2189)

p 9.79 *** 14.03*** 14.00*** 14.26*** 7.50*** 8.01*** 8.33*** 14.57*** 14.55*** 15.03***
(0.8395) (1.9480) (1.9367) (2.0126) (1.0686) (0.9401) (0.9543) (1.9703) (1.9711) (2.1302)

LL 54.35 57.55 57.62 57.63 47.84 50.45 50.19 58.18 58.30 58.19

Table 22: Results for the duration model III for Nikaitchuq Field. Hazard ratios are reported; ***, **, and * denote hazard
ratios that are different from one at the 1%, 5%, and 10%, respectively. Robust standard errors are in parenthesis. TVD:
total vertical depth of the well in ’000’s of feet.

Duration Model III: Prudhoe Bay

RV GARCH GARCH-t GARCH-GED EGARCH EGARCH-t EGARCH-GED GJR GJR-t GJR-GED
V ol 0.9974*** 0.9933*** 0.9932*** 0.9931*** 0.9977 0.9964** 0.9964** 0.9931*** 0.9931*** 0.9930***

(0.0004) (0.0018) (0.0018) (0.0018) (0.0023) (0.0014) (0.0014) (0.0018) (0.0017) (0.0017)
RealOilPrice 0.9435*** 0.9401*** 0.9401*** 0.9391*** 0.9610*** 0.9562*** 0.9559*** 0.9360*** 0.9380*** 0.9345***

(0.0082) (0.0095) (0.0093) (0.0096) (0.0078) (0.0084) (0.0084) (0.0100) (0.0095) (0.0101)
Tundra 0.5900*** 0.5622*** 0.5578*** 0.5656*** 0.5235*** 0.5104*** 0.5040*** 0.5752*** 0.5729*** 0.5733***

(0.0813) (0.0781) (0.0777) (0.0777) (0.0760) (0.0743) (0.0737) (0.0799) (0.0796) (0.0794)
NumLeases 0.3440*** 0.5062*** 0.5109*** 0.5020*** 0.6638*** 0.6509*** 0.6341*** 0.4917*** 0.4886*** 0.4862***

(0.0580) (0.1049) (0.1054) (0.1051) (0.1110) (0.1097) (0.1079) (0.1032) (0.1041) (0.1028)
TV D 0.6315*** 0.6502*** 0.6491*** 0.6503*** 0.6379*** 0.6383*** 0.6409*** 0.6532*** 0.6532*** 0.6540***

(0.0570) (0.0640) (0.0640) (0.0636) (0.0609) (0.0601) (0.0609) (0.0655) (0.0658) (0.0657)
RigCount 1.0363 1.0208 1.0192 1.0193 1.0294 1.0252 1.0217* 1.0206 1.0174 1.0196

(0.0342) (0.0360) (0.0361) (0.0358) (0.0375) (0.0376) (0.0372) (0.0359) (0.0359) (0.0356)
SideTracks 2.8467** 2.4711** 2.4756** 2.4786** 2.3806** 2.3439** 2.3140** 2.4480** 2.4344** 2.4397**

(0.7255) (0.6239) (0.6263) (0.6273) (0.6235) (0.6040) (0.6039) (0.6230) (0.6177) (0.6182)
Constant 5.6394*** 4.3215*** 4.3248*** 4.3356*** 4.0644*** 4.1183*** 4.1419*** 4.3684*** 4.3537*** 4.3931***

(0.3208) (0.2367) (0.2370) (0.2356) (0.2600) (0.2478) (0.2458) (0.2317) (0.2287) (0.2292)

p 2.06*** 1.81*** 1.81*** 1.82*** 1.63*** 1.67*** 1.68*** 1.85*** 1.85*** 1.87***
(0.1081) (0.1472) (0.1458) (0.1502) (0.1160) (0.1179) (0.1178) (0.1536) (0.1538) (0.1568)

LL 613.15 569.91 569.73 570.78 556.75 559.58 560.47 572.58 572.81 574.14

Table 23: Results for the duration model III for Prudhoe Bay Field. Hazard ratios are reported; ***, **, and * denote
hazard ratios that are different from one at the 1%, 5%, and 10%, respectively. Robust standard errors are in parenthesis.
TVD: total vertical depth of the well in ’000’s of feet.
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Whether using RV or one of the GARCH models as the volatility measure, the co-

efficients remain close in magnitude within each individual field. Results for the largest

and oldest field, Prudhoe Bay, are presented in Table 23. The effect of the volatility

measure on the hazard rate of drilling varies the least among all of the fields: from 0.9930

to 0.9977. Results for the Kuparuk River field are presented in Table 20. Kuparuk River

is another large, mature field, and the coefficients on the volatility measure vary from

0.9819 to 0.9954. In contrast, for the youngest field, Nikaitchuq (See Table 22), the co-

efficients on the volatility measure vary the most: from 1.0133 to 1.1162. In Colville

River (See Table 19), RV has the smallest effect on the hazard rate of drilling, relative

to the other volatility measures, although RV coefficients for Colville River are almost

all insignificant. The magnitudes on the coefficients for the various GARCH forecasts

are all very close to 0.99 for most of the fields; Milne Point and Nikaitchuq have lower

and higher magnitudes, respectively. Nikaitchuq is the only field where, regardless of the

choice of volatility measure, the impact on the hazard rate is positive. Caution must be

used when interpreting the results from Nikaitchuq since there are only 22 wells drilled

during the sample period. Whether considering all of the fields pooled together, or each

field individually, volatility is negatively related to the probability of drilling an oil well.

These findings are consistent with Hurn and Wright (1994), and Dunne and Mu (2010),

who also find a negative relationship between volatility and the hazard rate.

Interestingly, whereas the coefficients on the number of leases were insignificant when

examining all of the fields pooled, when examining individual fields, they are significantly

different from one at the 1% level in all of the fields except Milne Point - see Table 21. The

Nikaitchuq field has 10 leases fixed for the sample period, thus the number of leases was

not included in the regression. This suggests that overall, the effects from the number of

leases a firm owns is not a significant factor in the hazard rate, but when disaggregating

to the field level, the number of leases is important. The total vertical depth of a well has
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varying effects on the hazard rate of drilling, mostly significant and negative, with Milne

Point again the exception. That is, for most fields, the deeper the well, and thus the more

expensive to drill, the lower the probability of drilling. While the effects vary from field

to field, the coefficients are relatively insensitive to the choice of volatility measure. This

is evident when pooling all of the fields or examining each field individually.

The hazard rate of drilling in Nikaitchuq also increases with a longer tundra season.

A possible explanation for these effects is that Nikaitchuq is a relatively young field -

production started in January 2011. For comparison, Prudhoe Bay has been in production

since April, 1969. The number of drilling pads can also play a roll in the Nikaitchuq field

since there are limited areas open to drilling and there are only 2 drilling pads. Only

22 wells were drilled in Nikaitchuq during the sample period, of which 8 are sidetracks.

However, with the small sample size and a young field, caution must be used when drawing

conclusions about the effects on the hazard rate of drilling in this field.

Insignificant when aggregating the fields in the simple model, the number of drilling

rigs are also insignificant for the individual fields, with the exception of Milne Point. Kel-

logg (2011) notes that oil firms enter into long-term contracts with drilling firms, which

could explain this finding. Another possible explanation is the limited number of drilling

rigs and recent instances where demand exceeded supply (personal communication, man-

ager with Nabor’s Drilling Company, April 2012).

Prudhoe Bay and Milne Point, two of the oldest fields on the North Slope, are the only

fields that show that side tracks are more likely to be drilled. Among the other fields,

Kuparuk River is an interesting case. Of the 344 wells drilled during the sample period,

82% were sidetracks, whereas 88% of Prudhoe Bay’s wells were side tracks. Kuparuk

River and Prudhoe Bay have a similar number of drilling pad: 40 for the former and 44

for the latter; yet Prudhoe Bay drilled about 60% more wells. It is possible this difference

could help explain why side tracks were not a significant factor in Kuparuk River, but it
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is more likely due to unobserved factors specific to the individual fields.

As Prudhoe Bay ages, the producing gas to oil ratio increases, which occurs for two

reasons. First, as the reservoir pressure drops, the ability of the oil to hold gas decreases

and more free gas is released into the reservoir. Because gas flows through rock much more

freely than liquids, the wells tend to start producing more gas and less liquids. Second,

Prudhoe Bay has been using gas injection for enhanced oil recovery purposes for many

years and the gas migrates from the injection wells to the producing wells, ”pushing” oil

as it goes. The sweep of gas through the reservoir is not 100% efficient, so there is still

plenty of oil left to be produced. Over time the rate of oil production will decrease as the

reservoir becomes more thoroughly swept. Eventually, the well will no longer be viable

and it will be permanently shut, in pending abandonment or sidetracking to a new bottom

hole location in the reservoir that hadn’t previously been accessed. If the gas handling

capacity at Prudhoe Bay was expanded, the point at which a well is permanently shut in

would be delayed and there would not be as many side tracks needed. A large percentage

of wells in Prudhoe Bay have been sidetracked, with some being sidetracked 5 or more

times in the field’s 35 years of production. Thus, facility constraints are not a constraint

to new drilling activity and actually encourage new drilling. Therefore, decisions to drill

new oil wells are mainly governed by the capacity of the gas handling plants, not pricing

variables.

Given that the largest field on the North Slope is gas limited, the results presented

here show that oil drilling is not very responsive to oil price volatility. Perhaps the gas

limited nature of the Prudhoe Bay field leads to more drilling in response to higher oil

prices because side track wells are relatively cheaper to drill and permit the firms to

access smaller pools of oil that are otherwise unprofitable. This also helps to explain the

results seen in Nikaitchuq - specifically the response to volatility and the generally lower

probability of drilling a side track - since the field is younger and not yet constrained by



66

the same physical characteristics of the larger, more mature Prudhoe Bay field. To put

this into context of this study, the gas limited nature of Prudhoe Bay encourages side

track drilling to reach pockets of oil left after the enhanced oil recovery effort. Side tracks

are more likely to be drilled in the mature fields - specifically Prudhoe Bay.

Conclusion

The objective of this chapter is to perform an empirical study of how firms on the

North Slope of Alaska behave in response to oil price volatility, using real options theory

and a parametric proportional hazard model. I find the hazard of drilling is increasing

with time both in aggregate and at the field level. Furthermore, in aggregate, an increase

in uncertainty, measured by monthly GARCH forecasts or realized volatility, decreases

the hazard rate of undertaking the irreversible investment of drilling an oil well. These

results are robust to the choice of volatility measure. When choosing a GARCH (1,1),

EGARCH (1,1), or GJR-GARCH (1,1) forecast as the volatility measure, the response

to an increase in uncertainty is a decrease in the hazard rate of magnitude similar to

that when RV is chosen: about a 0.16% to 0.8% decrease for every one unit increase

in volatility. Field specific effects of volatility vary in magnitude, however, most fields

show a negative relationship between oil price volatility and oil well drilling, with only

the relatively young Nikaitchuq field exhibiting a positive relationship between the hazard

rate and oil price volatility.

The expected impact of an increase in real oil prices is that firms would increase their

investment, or drill more wells. In this study, the opposite is seen. One explanation for

these results is that the gas limited nature of Prudhoe Bay presents a non-economic con-

straint to firms’ operations and thus, firms are not as responsive to oil price or oil price

volatility as they are to operating capacity. It is also possible that relatively short-term

measures such as monthly oil price volatility or monthly oil price, are not completely rele-

vant to firms’ long-term investment decisions (Favero, Pesaran, and Sharma, 1994). This
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highlights the need for a better understanding of how firms respond to long-term volatil-

ity and price trends. Future work will investigate both firms’ response to longer-term

economic variable measures and also analyze production responses to changing volatility.

One challenging aspect to this line of research is the incidental truncation issue inherent

with the decision to drill. If higher volatility leads to a delay in oil drilling, then it is

also possible that some wells are not drilled. Not including a correction for this incidental

truncation when modeling the response of production to volatility could lead to sample

selection bias.
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In chapter 1, we provide an extensive and systematic evaluation of the relative fore-

casting performance of several models for the volatility of daily spot crude oil prices.

Empirical research over the past decades has uncovered significant gains in forecasting

performance of Markov Switching GARCH models over GARCH models for the volatility

of financial assets and crude oil futures. We find that, for spot oil price returns, non-

switching models perform better in the short run, whereas switching models tend to do

better at longer horizons.

In chapter 2, I investigate the impact of volatility on firms’ irreversible investment

decisions using real options theory. Cost incurred in oil drilling is considered sunk cost,

thus irreversible. I collect detailed data on onshore, development oil well drilling on the

North Slope of Alaska from 2003 to 2014. Volatility is modeled by constructing GARCH,

EGARCH, and GJR-GARCH forecasts based on monthly real oil prices, and realized

volatility from 5-minute intraday returns of oil futures prices. Using a duration model, I

show that oil price volatility generally has a negative relationship with the hazard rate of

drilling an oil well both when aggregating all the fields, and in individual fields.
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