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The purpose of this study was to evaluate the sensitivity of selected fit index statistics in 
determining model fit in structural equation modeling (SEM). The results indicated a 
large dependency on correlation magnitude of the input correlation matrix, with mixed 
results when the correlation magnitudes were low and a primary indication of good 

model fit. This was due to the default SEM method of Maximum Likelihood that assumes 
unstandardized correlation values. However, this warning is not well-known, and is only 
obscurely mentioned in some textbooks. Many SEM computer software programs do not 
give appropriate error indications that the results are unsubstantiated when standardized 
correlation values are provided. 
 
Keywords: Structural equation model, SEM, fit indices, RMSEA, SRMR, CFI, 

covariance matrices 

 

Introduction 

Wright (1918) presented the foundational theory of Structural Equation Modeling 

(SEM) for social and behavioral science research based on a path analysis used to 

model the bone size of rabbits. The novelty of the methodology was more 

generally accepted a half century later (Matsueda, 2011), coinciding with 

increasing use of computers, allowing for the more practical use of complicated 

matrix models. The development of more complicated analytical procedures was 

inevitable. Hoyle (1995) indicated, “with the increasing complexity and 

specificity of research questions in the social and behavioral sciences…has come 

increasing interest in SEM as a standard approach to testing research hypotheses” 

(p. 1). 
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SEM is a powerful set of tools that can be used to explore data for the 

purpose of improving the understanding of the social, psychological, educational 

constructs and their interactions. It allows for a more complete and 

comprehensive analysis compared to other research methodologies, because it 

allows freedom in the evaluation of several model construct relationships 

simultaneously (Alavifar, Karimimalayer, & Anuar, 2012). The promise of this 

advantage should not be underestimated. The ability to take many variables and 

analyze them together using one test without the necessity for Bonferonni or 

similar corrections allows for considerable flexibility. 

SEM models are developed by determining relationships between observed 

and/or latent variables to specify an initial model. The model is first analyzed to 

determine whether it is an appropriate approximation of the data construct. If the 

model is concluded to be an appropriate approximation, it is further analyzed to 

ascertain the magnitude and direction of relationships between the different 

variables. 

As SEM was developed, it was designed primarily for the use of analysis of 

social and behavioral science data. Hence, the boundary conditions for performing 

SEM and determining model fit are steeped in the conditions typical of social and 

behavioral sciences, which includes multivariate normality (Gullen, 2000; Kline, 

2011; Reinartz, Echambadi, & Chin, 2002; Tomarken & Waller, 2005). However, 

due to the capability of improving quality of life by analyzing data for complex 

research studies, SEM is increasingly being used in physical science research (e.g. 

Kelly, 2011; Ewing, Hamidi, Gallivan, Nelson, & Grace, 2014). 

Problem Statement 

The purpose of this study is to evaluate the sensitivity of selected fit index 

statistics in determining model fit. There are similarities between social and 

behavioral science and physical science data that make this transfer of 

methodologies apparently appropriate. Both data sets are parametric, can be 

assigned descriptive statistic values, can be formulated to provide frequency 

diagrams, and can be used with nonparametric tests. However, physical science 

data differ from the social behavioral science in several ways. In particular, 

physical science data typically have different distributions than that of social and 

behavioral science (e.g., Bradley, 1977, 1982; Ito, 1980; Micceri, 1989; 

Sawilowsky, Blair, & Micceri, 1990; Tan, 1982). Hence, the question arises: how 

well would SEM perform using non-normally distributed data commonly found in 

physical science data? However, an important preliminary step, the purpose of 
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this study, is to compare how various SEM fit indices work under standard normal 

conditions. 

Model Fit 

As the model is created, or specified, a foundational aspect of the SEM is to 

determine how well the model specified represents the data. It is imperative to 

specify the best model for the data to gain meaningful results. Model fit indices 

were developed to quantitatively and objectively assess the model fit. The matter 

of how to develop the fit statistics and which are the best to use has been a topic 

of great discussion. Kline (2011) indicated, “For at least 30 years the literature has 

carried an ongoing discussion about the best ways to test hypotheses and assess 

model fit” (p. 190). 

There are dozens of fit indices measuring fit in a variety of ways. The 

plethora of indices presents two advantages: (1) They are useful for determining 

the performance of the model. SEM that is an improper fit to the data would 

provide inaccurate or erroneous results. (2) The complexity of variable matrices 

and sheer volume of analysis required point to a necessity for numerous fit index 

models. As the process is rigorous and complicated, so too the fit indices are 

difficult to simplify. It is therefore not surprising that currently no single fit index 

encompasses all the different indices in one comprehensive test (Gullen, 2000). 

The complexity of analyzing the fit indices and the plethora of index tests 

from which to form a model fit assumption make it necessary to determine when 

models are truly a good fit to the data. Hooper, Coughlan, and Mullen (2008) 

indicated: 

 

Given the plethora of fit indices, it becomes a temptation to choose 

those fit indices that indicate the best fit…This should be avoided at all 

costs as it is essentially sweeping important information under the 

carpet. (p. 56) 

 

Model fit indices have a short but rabid history. Initially, Chi-squared tests 

were used; however, the test was proved ineffectual due to the large sample sizes 

that are required for SEM analysis (Gullen, 2000). The Chi-squared test can be 

comparatively grossly underpowered for tiny data sets and fail to reach statistical 

significance. It can also be comparatively super-powered for huge data sets, 

reaching statistical significance in the presence of negligible differences (see, e.g., 

Kline, 2011, p. 201). 
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Various alternatives were therefore developed to supplement the model fit 

analysis (Bollen, 1989). Fit indices are classified into two categories: (1) Model 

Test Statistic, and (2) Approximate Fit Index (Kline, 2011). 

Model Test Statistics and Chi-Squared 

In the model test statistic, data are compared with a baseline model which is a 

covariance matrix of a sample from the data. If the covariance matrix of the 

overall data matches the covariance matrix of the sample, the model is considered 

a good fit. If the matrices differ, the discrepancies using the model need to be 

explained (Kline, 2011). 

Model test statistics are typically developed as a “badness-of-fit” (Kline, 

2011, p. 193) test. This means that failure to reject the null hypothesis indicates a 

good fit. Therefore, it is preferable for the resultant model test statistic to be as 

small as possible. The basic model test statistic is the model Chi-squared test. 

This test was developed by Karl Pearson (1900) and has withstood the test of time. 

It is probably the most well-known and accepted fit statistic. Its value lies in that 

it is nonparametric. The formula is (Neave & Worthington, 1988): 

 

 
 

2

2
Observed Expected

Expected



   (1) 

 

Therefore, the Chi-squared statistic is a percentage of the squared deviation from 

the expected over the expected score. A large Chi-squared statistic indicates a 

large deviation from the expected distribution. Indication of poor model fit occurs 

when the Chi-squared statistic value is greater than the critical value based on the 

nominal alpha. 

Although the Chi-squared statistic in this context is apparently 

nonparametric, there are several factors that can adversely impact it such as large 

correlations among variables, unique variance, and large sample size (Kline, 

2011). When observed variables are highly correlated, the Chi-squared value 

tends to increase. Unique variances among variables, being a product of score 

unreliability, result in a loss of statistical power. As the Chi-squared test is a 

badness-of-fit test, the loss of power reduces the probability of determining a poor 

model fit. As indicated above, the Chi-squared value tends to increase with 

sample size. 
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Approximate Fit Indices 

The second type of fit statistic is the approximate fit index. The difference 

between approximate fit indices and model test statistics is that fit statistics are 

based on continuous measures. There is not a dichotomous conclusion to either 

reject or accept a null hypothesis. The value of the fit statistic, as it compares to 

an ideal value in magnitude, provides a representation of the fit. For example, the 

ideal value for CFI fit index is 1.0. A model resulting in a CFI of 0.90 would be a 

better fit than a model resulting in a CFI value of 0.85. As the null hypothesis is 

not rejected at a decided alpha value, the magnitude of the value has meaning. 

Therefore, these fit indices can be considered as “rules-of-thumb” as opposed to 

“golden rules” (Kline, 2011, p. 197). 

Approximate fit indices do not “distinguish between what may be sampling 

error and what may be real covariance evidence against the model” (Kline, 2011, 

p. 195). Thus, they do not provide information in regards to specification error. 

These tests are typically goodness-of-fit tests, which mean the ideal index statistic 

occurs at a value of a specified magnitude (e.g., 1.0 as opposed to zero). The most 

common of the approximate fit indices are RMSEA, SRMR and the CFI. 

Root Mean Square Error Approximation (RMSEA) 

The RMSEA is a parsimony-adjusted index. It is not a measure of central 

tendency but follows a non-central Chi-squared distribution. It has a high and a 

low value that are provided by most SEM software. The RMSEA is a badness-of-

fit test. Therefore, a good fit indicator occurs when the RMSEA low value is less 

than 0.05 and the high value is less than 0.10. (Kline, 2011).  

As a parsimony-adjusted index, the RMSEA adjusts for parsimonious 

characteristics. It is obtained by dividing by degrees of freedom of the SEM 

model (Kline, 2011): 

 

 
 

2

M M

M

RMSEA
1

df

df N

 



  (2) 

 

where dfM = degrees of freedom of the SEM, N = sample size, and 
2

M  = Chi-

squared statistic value. 

A small Chi-squared value indicates a good model fit. A model with a large 

degree of freedom, or a parsimonious model, results in a small RMSEA value. In 

other words, parsimonious models that have small deviations would indicate a 
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good model fit per this index. The equation is further divided by the sample size. 

Therefore, the parsimonious effect of the equation increases as sample size 

increases. 

The limitations of RMSEA are obvious. It contains inherent prejudices 

towards models that have large sample sizes and large degrees of freedom. A 

model with a moderate-to-large variation from the expected values, but with a 

large sample size, could pass the RMSEA criteria for model fit. 

Standardized Root Mean Square Residual (SRMR) 

Although the name is similar to the RMSEA, the two indices are quite different 

(Iacobucci, 2009). The SRMR is a measure of the standardized value of the 

square root of the mean absolute covariance squared residual. A good fit value 

would be close to zero. Hu and Bentler (1999) opined a maximum allowable 

value for a good fit is approximately 0.09. 

The formula, as given by Iacobucci (2009) and Schermelleh-Engel, 

Moosbrugger, & Muller (2003), is 

 

 

 
 

 

2

1 1

ˆ

SRMR
1

2

p i
ij ij

i j ii jj

s

s s

k k



 

 
 
  


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  (3) 

 

where k = observed endogenous variables + observed exogenous variables, sij, sii, 

and sjj = values from the covariance matrix, and ˆ
ij  = value from the expected 

matrix covariance. 

Comparative Fit Index (CFI) 

The CFI is an incremental fit index and a parsimony-adjusted index, where the 

data set is compared to the Chi-squared values of a baseline model. It performs 

well even with small sample sizes. It is a goodness-of-fit test where a value of 1 

indicates the best fit. The CFI was developed with the assumption that latent 

variables are not correlated (Hooper, Coughlan, & Mullen, 2008). Therefore, 

models with highly correlated latent variables can result in an inaccurate 

assessment of model fit. 
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The CFI is a function of the Chi-squared value and degrees of freedom of 

the model. The formula is (Kline, 2011): 

 

 
2

M M

2

B B

CFI 1
df

df






 


  (4) 

 

where dfX = degrees of freedom of the SEM/Baseline models, 2

X  = Chi-squared 

statistic value for the SEM/Baseline models, M = SEM model, and B = baseline 

model. This equation results in higher values for models with larger degrees of 

freedom, resulting in a more favorable fit statistic. Hu and Bentler (1999) opined 

a minimum CFI of 0.95 is necessary to indicate an acceptable fit. 

Model Fit Indices Overview 

Although multivariate normality is a baseline assumption of the model fit indices 

(Kline, 2011; Schermelleh-Engel et al., 2003), the formulas for calculating the 

model fit statistics are apparently nonparametric. It would therefore be reasonable 

to assume that the model fit index equations could be used to assess model fit for 

any distribution. However, the robustness of the formulas have not yet been 

assessed, and the capability of the indices to measure model fit for physical 

science data is of great interest. 

Methodology 

Monte Carlo simulation theory requires that baseline theories be tested prior to 

performance of Monte Carlo simulations on the problem statement. Therefore, it 

is required to verify model fit indices when normality is not violated as a 

prerequisite to any study on models that violate underlying assumptions. 

Monte Carlo simulations using correlation matrices of randomly selected 

values of an incrementally increasing correlation range was conducted. The 

correlation matrices were of randomly selected values, of no model, and no 

relationship. Model fit indices should indicate a poor model fit for all simulations, 

meaning they should not exceed the Type-I error rate dictated by nominal α. 

Therefore, assessment of legitimacy of the model fit index results was based on 

the percentage of times the results indicated a poor model fit. 

At first a Monte Carlo was performed using RStudio based on four variables 

and 10,000 repetitions of varying correlation matrices of randomly selected 

numbers between negative and positive 0.1. The results from this simulation 
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series were mixed in terms of model fit, indicating meaningless results. It was 

therefore a matter of interest to determine the minimum allowable correlation 

values under which the model fit indices would provide legitimate and 

meaningful results. 

Monte Carlo simulations based on four variables and correlation matrices of 

randomly selected values of incrementally-increasing correlation ranges were 

performed. Each Monte Carlo simulation contained 1,000 repetitions and was 

performed for sample size of n = 50, 100, 150, 200, 300, and 500. The correlation 

range was a base value ± 0.015. Base values were incrementally increased at 

every hundredths place, beginning from 0.04, 0.05,…, 0.26, and 0.27. As such, 24 

Monte Carlo Simulations were performed for six different sample sizes. 

Results 

Minimum Correlation Coefficient for SEM 

The first Monte Carlo simulation included a correlation matrix of random values 

from a range of 0.04 ± 0.015. All model fit indices results included in the 

analyses (Chi-squared, RMSEA Lower, RMSEA Upper, SRMR, and CFI) were 

an indication of a poor model fit 0% of the time. Refer to Table 1 below. 

As the correlation matrix values were increased in magnitude, the results of 

the model fit indices became meaningless. The percentages of greater than and 

less than critical values did not result in percentage numbers that added to 100%. 

The fit index results ceased to be meaningless as the correlation magnitudes were 

continuously increased, and instead were an indication of a poor model fit with 

increasing reliability. At a certain correlation magnitude (e.g. when correlation 

was equal to 0.08 ± 0.015 as in Table 2), the results of the model fit indices were 

an indication of a poor model fit for the conditions studied for all Monte Carlo 

repetitions. A summary of these results (select simulations) is provided in Table 3. 

Each model fit index resulted in legitimate results at different correlation 

magnitudes. The best model fit index, which resulted in legitimate model fit 

estimation at the lowest correlation magnitude, was RMSEA Upper at a 

correlation of 0.08 for all sample sizes. The next best model fit index was CFI, 

with valid estimation of model fit at a minimum correlation value of 0.16. The 

next best model fit index was SRMR, with valid model fit estimation at a 

minimum correlation value of 0.17 for large sample sizes and 0.18 for sample size 

of 50. The next best model fit index following SRMR was Chi-squared, with valid 

model fit estimation at a minimum correlation value of 0.24. The model fit index 
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that performed the poorest was RMSEA Lower, with valid model fit estimation at 

a minimum correlation of 0.27. Refer to Table 4 below. 
 
Table 1. Monte Carlo simulation percentage of model fit indices (indication of poor model 

fit); correlation matrix magnitudes range of 0.04 ± 0.015 
 

 

Sample Size 

Model Fit Index 50 100 150 200 300 500 

Chi-squared 0% 0% 0% 0% 0% 0% 

RMSEA Lower 0% 0% 0% 0% 0% 0% 

RMSEA Upper 0% 0% 0% 0% 0% 0% 

SRMR 0% 0% 0% 0% 0% 0% 

CFI 0% 0% 0% 0% 0% 0% 

 
 
Table 2. Monte Carlo simulation percentage of model fit indices (indication of poor model 

fit); correlation matrix magnitudes range of 0.08 ± 0.015 
 

 

Sample Size 

Model Fit Index 50 100 150 200 300 500 

Chi-squared 0% 0% 0% 0% N/A N/A 

RMSEA Lower 0% 0% 0% 0% 0% 0% 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 0% 0% 0% 0% 0% 0% 

CFI 0% 0% N/A N/A N/A N/A 

 
 
Table 3. Monte Carlo simulation percentage of model fit indices (indication of poor model 

fit); correlation matrix magnitudes range ± 0.015 
 

  

Sample Size 

Model Fit Index Correlation 50 100 150 200 300 500 

Chi-squared 0.04 0% 0% 0% 0% 0% 0% 

RMSEA Lower 

 

0% 0% 0% 0% 0% 0% 

RMSEA Upper 

 

0% 0% 0% 0% 0% 0% 

SRMR 

 

0% 0% 0% 0% 0% 0% 

CFI 

 

0% 0% 0% 0% 0% 0% 

        Chi-squared 0.06 0% 0% 0% 0% 0% N/A 

RMSEA Lower 

 

0% 0% 0% 0% 0% 0% 

RMSEA Upper 

 

35% N/A N/A N/A N/A N/A 

SRMR 

 

0% 0% 0% 0% 0% 0% 

CFI 

 

0% 0% 0% N/A N/A N/A 

        Chi-squared 0.08 0% 0% 0% 0% N/A N/A 

RMSEA Lower 

 

0% 0% 0% 0% 0% 0% 

RMSEA Upper 

 

100% 100% 100% 100% 100% 100% 

SRMR 

 

0% 0% 0% 0% 0% 0% 

CFI 

 

0% 0% N/A N/A N/A N/A 
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Table 3, continued. 

 

  

Sample Size 

Model Fit Index Correlation 50 100 150 200 300 500 

Chi-squared 0.16 0% N/A N/A N/A N/A N/A 

RMSEA Lower 

 

0% 0% N/A N/A N/A N/A 

SRMR 

 

54% N/A N/A N/A N/A N/A 

CFI 

 

100% 100% 100% 100% 100% 100% 

        Chi-squared 0.18 0% N/A N/A N/A N/A N/A 

RMSEA Lower 

 

0% N/A N/A N/A N/A N/A 

SRMR 

 

100% 100% 100% 100% 100% 100% 

        Chi-squared 0.24 100% 100% 100% 100% 100% 100% 

RMSEA Lower 

 

0% N/A N/A N/A N/A N/A 

        Chi-squared 0.27 100% 100% 100% 100% 100% 100% 

RMSEA Lower 

 

100% 100% 100% 100% 100% 100% 

RMSEA Upper 

 

100% 100% 100% 100% 100% 100% 

SRMR 

 

100% 100% 100% 100% 100% 100% 

CFI   100% 100% 100% 100% 100% 100% 

 
 
Table 4. Minimum correlation values for valid model fit index measurement 

 

 

Sample Size 

Model Fit Index 50 100 150 200 300 500 

Chi-squared 0.24 0.24 0.24 0.24 0.24 0.24 

RMSEA Lower 0.27 0.27 0.27 0.27 0.27 0.27 

RMSEA Upper 0.08 0.08 0.08 0.08 0.08 0.08 

SRMR 0.18 0.17 0.17 0.17 0.17 0.17 

CFI 0.16 0.16 0.16 0.16 0.16 0.16 

Conclusion 

Originally, a Monte Carlo simulation with randomly selected correlation values 

between - 0.1 and + 0.1 was performed. The results were meaningless, with mixed 

results in terms of fit. The output of the latest repetition of the Monte Carlo 

simulation was extracted and compared with the output from Amos Graphics to 

ensure that a programming error did not occur. The results were the same within 

rounding error. 

Fit index results should be consistent regardless of whether or not a 

meaningful model is produced. Examination of the model fit results should 

indicate a good or a poor model fit when a reasonable model is assessed. However, 

examination of the results should never indicate a good model fit on a poorly-

defined model. In this case, the correlation values between variables were small 

and the paths were not significant. Therefore the model, having no relationships, 
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should result in an indication of poor model fit when assessed using model fit 

index tests. This indication of poor model fit should occur uniformly for all model 

fit index tests and for all sample sizes, or at least within the Type I error rate set 

by nominal alpha. 

These findings were discussed with colleagues. One believed that, with 

caution (presumably ignoring fit results in the absence of a good model), there 

were some insights that could be garnered based on the results. This viewpoint 

was amplified by another colleague, who replicated the results via Mplus, and 

hence urged extreme caution, because of SEMs ability to produce a well-fitted 

model that is nevertheless bereft of significant covariances. 

As a beginning to approaching the model fit assessment with caution, 

additional research was conducted to determine what SEM conditions caused the 

model fit index results to be meaningless. The Monte Carlo simulation models 

were assessed to discover common characteristics. A consistent attribute was the 

low correlation values between the variables. It appeared when the correlation 

values between variables were low, the results of the model fit indices were 

meaningless. Additional research was therefore conducted to determine what 

constituted a low correlation, and whether there was a minimum allowable 

correlation value between variables that is a prerequisite for a SEM to be 

meaningful. 

Additional Monte Carlo simulations were conducted, with 1,000 repetitions 

and varying magnitudes of correlation matrices. The magnitudes of the correlation 

values were randomly selected from a base value ± 0.015. Twenty-four Monte 

Carlo simulations were performed, with the base value increasing from 0.04 to 

0.27 at every hundredths place value (i.e. 0.04, 0.05 ,0.06, etc.). The model fit 

indices would be legitimized by the percentage of times a poor model fit was 

indicated, as the variables had no relationship and correlation values were 

randomly selected. 

As the correlation matrix values were increased in magnitude, the results of 

the model fit indices became first illogical and then finally logical with an 

indication of a poor model fit occurring with increasing reliability. At a certain 

correlation magnitude range (e.g. when correlation was equal to 0.08 ± 0.015 as 

in Table 2), the results of the model fit indices were an indication of a poor model 

fit for all sample sizes studied for all Monte Carlo repetitions. 
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Table 5. Minimum correlation values 

 

Rank Model Fit Index Minimum Correlation Value 

1 RMSEA Upper 0.08 

2 CFI 0.16 

3 SRMR 0.18 

4 Chi-squared 0.24 

5 RMSEA Lower 0.27 

 
 
Table 6. Correlation matrix 
 

Variables z X1 X2 X3 

z 1.000 0.104 0.098 0.115 

X1 0.104 1.000 0.100 0.088 

X2 0.098 0.100 1.000 0.109 

X3 0.115 0.088 0.109 1.000 

 
 

Each model fit index resulted in legitimate results at different correlation 

magnitudes; refer to Table 3 above. Model fit indices can be ranked from best to 

worst based on the minimum correlation values required before legitimate results 

were acquired. The model fit indices, from best to worst, are listed in Table 5 

above with their respective minimum correlation values and ranks. 

The results from the last repetition of the Monte Carlo simulation with 

correlation range of 0.1 ± 0.015 and sample size of 500 were extracted (refer to 

Table 6 above and the Lavaan output below) to better understand the results of the 

Monte Carlo simulations and to verify the conclusions determined above. The 

results of the model fit index tests were mixed. The p-value for the Chi-squared 

test was 0.003, an indication of a poor model fit. The RMSEA Upper value was 

0.133, an indication of a poor model fit. The RMSEA Lower value was 0.044, an 

indication of a good model fit. The CFI value was 0.505, an indication of a poor 

model fit. The SRMR value was 0.055, an indication of a good model fit. 

The regression coefficients for the exogenous variables were 0.088 for X1, 

0.079 for X2, and 0.098 for X3. Although these values were low, the coefficients 

for X1 and X3 were statistically significant. This is illogical, as the correlation 

magnitudes in the correlation matrix were all low. Statistically significant paths 

between variables are therefore a contradictory conclusion. These results 

solidified the conclusion above that a SEM with a correlation matrix of low 

values would result in illogical outcomes. 
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Lavaan Output for Sample Size of 500 and Four Variables, 

Repetitions = 1,000 

Number of observations  500 

Estimator    ML 

Minimum Function Test Statistic 14.059 

Degrees of freedom   3 

P-value (Chi-square)  0.003 
 

User model versus baseline model: 

 Comparative Fit Index (CFI) 0.505 

 Tucker-Lewis Index (TLI)  0.010 

 Number of free parameters  7 

 RMSEA     0.086 

rmsea.ci.lower   0.044 

rmsea.ci.upper   0.133 

 90 Percent Confidence Interval 0.044 0.133 

 P-value RMSEA <= 0.05  0.075 

 SRMR     0.055 
 

Parameter estimates: 

 Information  Expected 

 Standard Errors Standard 
 

Regressions: 

z ~ Estimate Std.err Z-value P(>|z|) 

x1 0.088  0.044  1.990  0.047 

x2 0.079  0.044  1.786  0.074 

x3 0.098  0.044  2.232  0.026 
 

Covariances: 

 x1 ~~x2 0.000 

 x3  0.000 

 x2 ~~x3  0.000 
 

Variances: 

 z 0.970 0.061 

 x1 0.998 0.063 

 x2 0.998 0.063 

 x3 0.998 0.063 
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SEM is a collection of procedures that are assessed based on a plethora of fit 

or lack of fit statistics that could be subjectively chosen or ignored to support or 

eliminate a model. Dozens of caveats (such as those listed in Kline, 2011, e.g., at 

its core it relates to non-experimental data and hence there can never be causation 

(p. 8), a poor model can be preserved by modifying the hypotheses on which it is 

based (p. 8), alternative models may not be ruled out (p. 8), it is a large sample 

technique (p. 11), it eschews hypothesis testing and hence is veiled behind 

subjectivity (p. 13), the statistical significance of estimated parameters are 

dependent on the algorithm adopted (p. 13), a maximum likelihood estimate 

cannot tolerate even a single missing datum (p. 48), a nonpositive definite matrix 

cannot be analyzed (p. 49), ill-scaled covariance matrices cannot be handled (p. 

67)) severely limit SEM outside of textbook examples. 

Moreover, Kline (2011) noted, 

 

It may be problematic to submit for analysis just a correlation matrix 

without standard deviations or specify that all standard deviations are 

1.0, which standardizes everything. This is because the default method 

of ML estimation (and most other methods, too) assumes that the 

variables are unstandardized. This means that if a correlation matrix 

without standard deviations is analyzed, the results may not be 

correct…Some SEM computer programs give warning message or 

terminate the run if the researcher requests the analysis of a correlation 

matrix only with standard ML estimation. By the same token, it would 

also be problematic to convert raw scores to z scores and then submit 

for analysis the data file of standardized scores. (p. 49) 

 

These cautions from Kline (2011) appear to explain why a systematic Monte 

Carlo study conducted by inputting an incrementally increasing correlation 

matrices, such as was attempted in this study, cannot be successful. The standard 

procedure of starting the study with a null zero order correlation matrix to show 

the relevant fit indices reject, or fail to reject as appropriate to the index, is not 

possible, precluding a presentation of the power spectrum of the competitors 

based on systematically increasing (or decreasing based on the type of fit index) 

the matrix. The restrictions indicated by Kline (2011) were mentioned in an 

obscure section of the textbook, and were omitted by most other textbook authors. 

Thus, this limitation and the egregious results from the non-compliance are not 

well-publicized. 
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It appears it is necessary to start with a good model in order for the model fit 

indices to provide a proper assessment. This is circuitous, for how can a good 

model be assessed if the baseline condition for meaningful results is a good 

model? Analysts must consider this paradox, and decide if SEM outside of 

textbook examples is truly meaningful. 
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