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ABSTRACT: Complex multidimensional concepts are often explained by a tree-shape
structure by considering nested partitions of variables, where each variable group is
associated with a specific concept. Recalling that relations among variables can be
detected by their covariance matrix, this paper introduces a covariance structure that
reconstructs hierarchical relationships among variables highlighting three features of
the variable groups. We finally present an application of the latter covariance structure
to the model-based clustering.
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1 Introduction

The main goal of Factor Analysis (FA, Spearman, 1904) is to reconstruct the
covariance matrix of variables by computing a reduced number of factors
while preserving as much information as possible. However, since FA is
unable to reconstruct hierarchical relations, a model with a hierarchical form is
therefore required. Among several models based on the sequential application
of FA addressing the same problem, Cavicchia et al. (2020) proposed a model
to reconstruct a nonnegative correlation matrix via an ultrametric one. The
model results in a simultaneous procedure which is able both to detect the best
variable partition in a reduced number of groups and build the hierarchy upon
them. The latter model ensues particularly suitable for complex hierarchical
multidimensional concepts due to the one-to-one relation between a hierarchy
of concepts and an ultrametric correlation matrix (Dellacherie et al., 2014).
Our paper overcomes the limitations of the model presented by Cavicchia et al.
(2020) extending the same idea to a general covariance matrix and applies
this special covariance structure in the Gaussian Mixture Models (GMMs)
framework.

Since GMMs can easily fall into the so-called “curse of dimensionality”
because of the large number of parameters dedicated to covariance structures,
in the specialized literature several different parametrizations are present. One
of the most used is the eigen-decomposition (Banfield & Raftery, 1993) of the
form ΣΣΣ = λDAD′, where λ is a scalar determining the cluster volume, A is a
diagonal matrix controlling the cluster shape, and D is an orthogonal matrix
which specifies the cluster orientation. Another parameterization is proper of
the mixture of factor analyzers (Ghahramani & Hilton, 1997) and assumes a
cluster covariance structure of the form ΣΣΣ = ΛΛΛΛΛΛ′+ΨΨΨ, where p is the number of
variables, Q is the number of factors, ΛΛΛ is the p×Q factor loading matrix and ΨΨΨ
is the p-dimensional diagonal covariance matrix of the error. Our proposal aims
to implement a new parameterization of a covariance matrix via a hierarchical
covariance one for each cluster that can be extremely parsimonious.

2 Features of the covariance structure

Multidimensional phenomena are often composed of nested dimensions charac-
terized by distinct levels of abstraction. Each dimension is uniquely connected
to a group of variables and represents a specific concept. Merging two dimen-
sions together gives rise to a broader dimension up to the general one such
that the hierarchical structure underlying a multidimensional phenomenon is
detected. In order to model the hierarchical relationships among the dimen-
sions, we introduce three main features of a variable group: the variance of
the variable group, the covariance within the variable group, which measures
the internal concordance among variables belonging to the same group, and
the covariance between concepts associated with the variable groups. These
features are constrained to be “ordered” such that the variance of the groups is
greater (in the absolute sense) than the covariance within or between groups,
whereas the covariance within groups must be in turn larger than the covariance
between groups. These constraints allow to define a hierarchical structure of
concepts, from the most concordant to the most discordant. The last aggrega-
tions in the hierarchy may occur between: (i) concordant concepts defining a
general one; (ii) discordant concepts with negative between-group covariance;
(iii) uncorrelated concepts.

Given the number of specific dimensions Q which underlie the multidimen-
sional phenomenon, each level q = Q, . . . ,1 of the hierarchy is characterized
by: (i) the p×q membership matrix Vq, which pinpoints the membership of
each variable to a group; (ii) the diagonal matrix SV

q of order q, whose main
diagonal represents the variance of each group; (iii) the diagonal matrix SW

q



297 

MODEL-BASED CLUSTERING WITH PARSIMONIOUS
COVARIANCE STRUCTURE

Carlo Cavicchia1 , Maurizio Vichi2 and Giorgia Zaccaria2

1 Econometric Institute, Erasmus University Rotterdam, Rotterdam, The Netherlands,
(e-mail: cavicchia@ese.eur.nl)

2 Department of Statistical Sciences, Sapienza University of Rome, Rome, Italy, (e-mail:
maurizio.vichi@uniroma1.it, giorgia.zaccaria@uniroma1.it)

ABSTRACT: Complex multidimensional concepts are often explained by a tree-shape
structure by considering nested partitions of variables, where each variable group is
associated with a specific concept. Recalling that relations among variables can be
detected by their covariance matrix, this paper introduces a covariance structure that
reconstructs hierarchical relationships among variables highlighting three features of
the variable groups. We finally present an application of the latter covariance structure
to the model-based clustering.

KEYWORDS: Gaussian mixture model, hierarchical latent concepts, partition of vari-
ables

1 Introduction

The main goal of Factor Analysis (FA, Spearman, 1904) is to reconstruct the
covariance matrix of variables by computing a reduced number of factors
while preserving as much information as possible. However, since FA is
unable to reconstruct hierarchical relations, a model with a hierarchical form is
therefore required. Among several models based on the sequential application
of FA addressing the same problem, Cavicchia et al. (2020) proposed a model
to reconstruct a nonnegative correlation matrix via an ultrametric one. The
model results in a simultaneous procedure which is able both to detect the best
variable partition in a reduced number of groups and build the hierarchy upon
them. The latter model ensues particularly suitable for complex hierarchical
multidimensional concepts due to the one-to-one relation between a hierarchy
of concepts and an ultrametric correlation matrix (Dellacherie et al., 2014).
Our paper overcomes the limitations of the model presented by Cavicchia et al.
(2020) extending the same idea to a general covariance matrix and applies
this special covariance structure in the Gaussian Mixture Models (GMMs)
framework.

Since GMMs can easily fall into the so-called “curse of dimensionality”
because of the large number of parameters dedicated to covariance structures,
in the specialized literature several different parametrizations are present. One
of the most used is the eigen-decomposition (Banfield & Raftery, 1993) of the
form ΣΣΣ = λDAD′, where λ is a scalar determining the cluster volume, A is a
diagonal matrix controlling the cluster shape, and D is an orthogonal matrix
which specifies the cluster orientation. Another parameterization is proper of
the mixture of factor analyzers (Ghahramani & Hilton, 1997) and assumes a
cluster covariance structure of the form ΣΣΣ = ΛΛΛΛΛΛ′+ΨΨΨ, where p is the number of
variables, Q is the number of factors, ΛΛΛ is the p×Q factor loading matrix and ΨΨΨ
is the p-dimensional diagonal covariance matrix of the error. Our proposal aims
to implement a new parameterization of a covariance matrix via a hierarchical
covariance one for each cluster that can be extremely parsimonious.

2 Features of the covariance structure

Multidimensional phenomena are often composed of nested dimensions charac-
terized by distinct levels of abstraction. Each dimension is uniquely connected
to a group of variables and represents a specific concept. Merging two dimen-
sions together gives rise to a broader dimension up to the general one such
that the hierarchical structure underlying a multidimensional phenomenon is
detected. In order to model the hierarchical relationships among the dimen-
sions, we introduce three main features of a variable group: the variance of
the variable group, the covariance within the variable group, which measures
the internal concordance among variables belonging to the same group, and
the covariance between concepts associated with the variable groups. These
features are constrained to be “ordered” such that the variance of the groups is
greater (in the absolute sense) than the covariance within or between groups,
whereas the covariance within groups must be in turn larger than the covariance
between groups. These constraints allow to define a hierarchical structure of
concepts, from the most concordant to the most discordant. The last aggrega-
tions in the hierarchy may occur between: (i) concordant concepts defining a
general one; (ii) discordant concepts with negative between-group covariance;
(iii) uncorrelated concepts.

Given the number of specific dimensions Q which underlie the multidimen-
sional phenomenon, each level q = Q, . . . ,1 of the hierarchy is characterized
by: (i) the p×q membership matrix Vq, which pinpoints the membership of
each variable to a group; (ii) the diagonal matrix SV

q of order q, whose main
diagonal represents the variance of each group; (iii) the diagonal matrix SW

q



298 

of order q, whose main diagonal represents the covariance within each group;
(iv) the ultrametric matrix SB

q of order q, whose diagonal entries are set to zero
and off-diagonal ones represent the hierarchical relationships between pairs of
concepts. Given Vq, the estimates of the matrices SV

q , SW
q and SB

q are

Ŝ
V
q = (V̂

′
qV̂q)

−1V̂
′
qdiag(S)V̂q, (1)

Ŝ
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qV̂q)

2− V̂
′
qV̂q]
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[
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S−diag(V̂qŜ
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q V̂
′
q)
)

V̂q

]
, (2)

Ŝ
B
q = V̂

+
q S(V̂

′
q)

+, (3)

respectively, where S represents the p× p observed covariance matrix, Ip is
the identity matrix of order p and diag(·) denotes the diagonal matrix whose
diagonal elements are those of a parenthesized one.

We implement the parameterization of the covariance matrix based on the
aforementioned quantities into the GMMs in order to simultaneously detect ho-
mogeneous clusters of units and a hierarchical definition of a multidimensional
phenomenon.

3 Application

Our proposal is applied on the “Human Development Index” dataset* which
consists of 167 countries and 9 variables. The optimal model in terms of
Bayesian Information Criterion (BIC, Schwarz, 1978) considers 3 clusters of
countries (Fig. 1) and 3 groups of variables. It is worth highlighting that
the model requires 71 parameters to be estimated, of which only 14 for each
covariance structure. The first cluster is characterized by the countries with
high income, gdp per capita and very low child mortality. The second cluster
is constituted by the poorest countries with low life expectancy and income,
whereas the third one is composed by countries with median performances.
Each cluster is characterized by a different hierarchy of the latent concepts
associated with the three groups of variables. The group made by the economic
variables (income, gdp, exports and imports) in Cluster 1 is the one with the
highest value of internal variance, whereas the same group in Cluster 3 is
merged with the group considering child mortality and fertility and has the
highest covariance within the group. Notwithstanding the latent concepts and
their hierarchical relationships are specific per cluster, all the hierarchies end

*https://www.kaggle.com/rohan0301/unsupervised-learning-on-country-data



299 

of order q, whose main diagonal represents the covariance within each group;
(iv) the ultrametric matrix SB

q of order q, whose diagonal entries are set to zero
and off-diagonal ones represent the hierarchical relationships between pairs of
concepts. Given Vq, the estimates of the matrices SV

q , SW
q and SB

q are

Ŝ
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Figure 1: Clusters of countries: Cluster 1 (red), Cluster 2 (yellow) and Cluster
3 (blue)

with a negative between-group covariance highlighting the absence of a unique
concordant general concept.

4 Conclusions

This paper proposes a parsimonious GMM which aims at modeling multidi-
mensional phenomena, usually defined by hierarchically nested latent concepts.
The application of the method on real data shows its potentialities.
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