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CHAPTER 1 INTRODUCTION 

1.1 Lithium ion batteries and their significance 

The ubiquitous growth in portability of both handheld electronics as well as electric 

vehicles has largely been fueled by the progress made in electrochemical energy storage. Current 

Li-ion battery has a rich history of innovations. It all started with the discovery of intercalation of 

Li-ions reversibly into graphite structure, known to be anode, wherein van der Walls forces drive 

the Li-ions between graphene sheets at a low potential close to the Li/Li+. As a complementary to 

anode, another important invention happened in the form of lithium intercalation compounds 

primarily based on lithiated transition metal oxides such as LiCoO2, LiNO2 etc. as cathode 

materials. With these fundamental breakthroughs namely graphitic carbon as anode and LiCoO2 

as cathode, Sony corporation was first introduced commercial Li-ion battery in 1991[1]. Later on, 

a lot of advancement have been noticed for lithium ion batteries regarding the specific capacity, 

safety, cycle life, materials and configurations [2]. 

  
Figure 1-1 Working principle of Li-ion battery[3] 
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In principle, Lithium-ion battery uses a cathode (positive electrode), an anode (negative 

electrode) separated by a polymer separator and electrolyte as ionic conductor. During charge 

process, the Li-ions flow from the cathode to anode through the electrolyte and separator; 

discharge reverses the direction of the ions and at the same time, electrons are liberated at anode 

and travel to an outside electric circuit to do the work (Figure 1-1) [2, 4-6]. 

Lithium ion batteries have a wide range of applications due to its unique advantages over other 

rechargeable batteries, such as:  

 High energy and power density compared to other rechargeable batteries (twice as 

much as Ni-Cd battery)[2] 

 Higher cell voltage up to 4V per cell with longer charge retention or shelf life 

 High cycle numbers with extended service hours, light weight and smaller size 

 Wide temperature range of operation (-40 to + 70 oC) 

 Very low rate of self-discharge with no memory effect 

 High current-rate capability 

1.2 Limitations of lithium ion batteries 

The growth of population, economics and advancement in the modern e-society required 

energy storage devices with high energy density and extended cycle life. Despite all the 

aforementioned advantages of lithium ion batteries, the ability to meet the ever-increasing energy 

demands from both portable electronics and modern electric vehicles has posed serious concern.  

Li-ion batteries are unable to meet huge demands of key markets such as transport and grid storage.  

The limitations of Li-ion batteries are as follows:  

(i) The energy storage capacity or usable capacity (energy density) is inadequate and 

unable to utilize full theoretical capacity 
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(ii) The performance at high C-rate (Power density) is unsatisfactory, especially for the 

intended applications such as HEVs 

(iii) The charge-discharge efficiency (coulombic efficiency) is poor due to large 

polarization losses and the same is aggravate at higher current rates 

(iv) Poor performance at lower temperatures (below 30 C) 

(v) The price is high due to expensive transition metals used in cathode composition  

(vi) The safety is a concern due to thermal runaway caused by the exothermic reactions 

between electrolyte and electrode materials.  

1.3 Beyond Li-ion battery  

The biggest challenges today confronting complete electrification of automotive industry 

is simply an energy density of the battery. The need for developing a cost-effective, safe, and long-

lived battery with enough energy storage (both in terms of volume and weight) for electrifying 

transportation sector is ever growing. Based on the electrochemistry and the electrode materials 

used, conventional Li-ion batteries impose limitations on the energy density that can be achieved. 

These shortcomings have stimulated research in alternative chemistries labelled beyond lithium 

ion batteries. New technology in electrochemistry with newer electrode materials that has higher 

energy densities should be used to go beyond Li-ion batteries.  

Among various alternative battery technologies, Li-S and Li-O2 battery chemistries are promising 

due to their high theoretical energy density of 2567 and 3505 Wh/Kg respectively (Figure 1-2). Though the 

basic chemical reactions are different for these battery systems, their cathode materials S and O2 belongs to 

same group in the periodic table. Li-O2 is pre-mature technology and poor oxygen reduction/oxidations 

makes more complex in nature, therefore it needs fundamental breakthrough in order to obtain promising 

results. In the other hand, Li–S has been investigated since the 1940s and extensive efforts have been made 

to address issues related to intermediate polysulfide reversibility reactions over the intervening 70 years 
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[7]. Moreover, lithium-sulfur (Li-S) system is a promising electrochemical energy storage technology due 

to following reasons [8-10] 

(i) Sulfur cathode has high theoretical capacity of 1674 mAh/g (10X higher than Li-ion battery)  

(ii) Sulfur is non-toxic, naturally abundant and renewable  

(iii) Cost-effective (byproduct of many industrial processes like oil and gas industry)  

(iv) Li-S battery uses high boiling point liquid electrolytes, which is safer than any other Li-ion 

battery configurations. 

 

 

 

 

 

 

 

 

 

 

With these promising features, the technology has gained immense and increasing attention 

over a period of time to reach meet future the energy demands. 

1.4 Fundamental chemistry and working principle of Li-S cell 

Li-S batteries are the desirable option to go beyond the horizon of Li-ion batteries, because 

sulfur together with lithium, supporting the electrochemical redox reaction of 16Li + 8S  8Li2S 

corresponds to the highest theoretical capacity of 1675 mAh/g vs. lithium (Figure 1-3). Besides 

the popularly known advantages of sulfur such as availability of abundant resources, low cost and 

Figure 1-2 Practical specific energies for some rechargeable 

batteries along with estimated driving distances and pack prices[11]. 
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low toxicity, added advantages of using sulfur as a cathode for batteries includes intrinsic 

protection mechanism from overcharging, which enhances battery safety and a wide operating 

temperature range. 

 

In Li-S battery, the electrochemical reduction of sulfur during discharge and the oxidation 

of the products during battery charge occur in two stages. This scenario is evidenced by the shape 

of discharge and charge curves (Figure 1-4): each shows two plateaus. The first discharge stage of 

a sulfur electrode, which occurs in the potential range of 2.5–2.0 V, involves the reduction of the 

elementary sulfur octet dissolved in the electrolyte to lithium octa-sulfide, which is soluble in 

electrolytes. Lithium octa-sulfides are unstable in electrolyte systems and undergo 

disproportionation with continuous electrochemical reductions. In a simplified form, the reduction 

of the elementary sulfur octet can be described by equations (1) and (2). 

Figure 1-3 Basic working principle of Li-S battery[12] 
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S8 + 2e- + 2Li+  Li2S8………………(1) 

Li2S8  Li2Sn + (8-n)S………………(2) 

     The reduction of elementary sulfur to lithium polysulfides is much more complex, however, 

V. S. Kolosnitsyn and E. V. Karaseva [14] suggests the following possible schemes: 

I. The reduction of polysulfide sulfur with a systematic decrease in the polysulfide chain 

length and the retention of the overall lithium polysulfide concentration in the solution 

Li2Sn + 2e- + 2Li+  Li2S + Li2S(n-1)…………(3) 

Li2Sn-1 + 2e- + 2Li+  Li2S Li2S(n-2).................(4) 

Li2S2 + 2e- + 2Li+  2Li2S...............................(5) 

II. The reduction of polysulfide sulfur as a result of the rapid disproportionation of Li2Sn with 

the polysulfide chain length could be retained but with a systematic decrease in the overall 

lithium polysulfide concentration in the electrolyte solution. 

Li2Sn + 2e- + 2Li+  Li2S + Li2S(n-1)……….(6) 

Figure 1-4 Representative charge/discharge behaviour of Li-S batteries[13] 
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xLi2Sn-1  Li2S + yLi2Sn...................         ...(7) 

The actual mechanism of the electrochemical reduction of lithium polysulfides is more 

complex, likely the first or second mechanism can be implemented depending on the composition 

of the electrolyte system. 

 The charge of lithium-sulfur batteries will also occur in two stages, short – chain lithium 

polysulfides are transformed to long chain ones. The proposed scheme of this process can be 

represented by: 

mLi2Sk – 2e- – 2Li+  gLi2Sn……………(8)   where m k=g n 

At the end of this process is over, long-chain polysulfides are reduced to elementary sulfur in the 

potential range 2.4 ~2.6 V vs. Li/Li+ 

mL2Sn – 2e- - 2Li+  (m-1)Li2Sn-k + S…..(9)           where (mn)=(m-1)((n-k)+1) 

The viscosity of electrolyte solutions also increases with increasing lithium polysulfide 

concentration. So, interplay between the adjusting of viscosity of electrolyte and polysulfide 

concentration requires an attention. 

1.5 Current issues, recent developments and deployment challenges in Li-S batteries 

However, practical applications of the Li-S battery is hindered by a multitude of issues like 

short cycle life, poor columbic efficiency, poisoning of Li-anode, self-discharge etc. [15]. The 

underlying primary reason behind these performance barriers is the well-known polysulfide-

shuttle mechanism, a process initiated in the preliminary stages of battery discharging. This 

mechanism results in dissolution of polysulfides (PS) into the electrolyte solution causing 

undesirable mass transport of electroactive species resulting in the formation a passivation layer 

on Li-anode[16]. Herein, all three materials such as cathode, anode and electrolyte are contributing 

partially to poor performance of Li-S battery. Therefore, it is important to understand the 
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fundamental problems corresponding to individual components and their possible remedies to 

realize most celebrated high energy density of Li-S battery. 

1.5.1 Cathode: Designing various porous materials to limit polysulfide shuttle process 

     The sulfur electrode is strongly believed where most of the issues originates and is the key 

to improve Li-S battery performance. The issues of sulfur cathode as follows 

• The poor electrical conductivity of sulfur (5  10-30 Scm-1) and its discharge products 

•  Dissolution of intermediate lithium polysulfides (LiPS) in the electrolyte and deposition 

on Li anode during ‘polysulfide-shuttle process’ 

• The formation of insoluble low chain irreversible polysulfide products (Li2S2 and Li2S) 

leads to the increase of cell resistance which increase the polarization difference between 

charged and discharge potentials. This will further results in the reduction of the columbic 

efficiency 

•  Relatively low density (2.07 g cm-3 for a sulfur and 1.66 g cm-3 for Li2S) 

• The volume expansion of the S cathode during charging and discharging causes 

pulverization which leads to collapsing of  the interconnections and further reduction in the 

electrical conductivity with the current collector, which causes an increase rate of the 

capacity fade upon cycling. 

To tackle the above mentioned challenges, majority of recent research efforts have been 

directed towards confining sulfur into pores of carbon materials for improving conductivity of 

sulfur and trapping intermediate polysulfides with the cathode of the cell [17, 18]. The following 

are few important contributions in this regard with promising results are discussed.  

The research in Li-S battery re-ignited with pioneering work from L.F. Nazar groups on developing 

highly ordered nanostructured carbon-sulfur cathode [19].  The specific capacity has found to be 
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enhanced because of the overall improvement in the electrical conductivity of the electrodes. 

Figure 1-5 shows the mesoporous carbon for sulfur encapsulation with tunable pore sizes and pore 

volumes. Mesoporous carbon with a relatively larger pore diameter can accommodate higher sulfur 

loading under optimized filling conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The partial sulfur-filling in these structures have results in limited dissolution/diffusion of 

polysulfides and ensure a steady electrochemical performances. By using a pore size of 22 nm and 

with 50% sulfur loading, mesoporous carbon delivered the specific capacity as high as 1390 mAh/g 

with continuous capacity fade for 100 cycles. The observed high specific capacity was attributed 

to the highly ordered nano-sized mesoporous structures and the impregnation of sulfur in them. 

Figure 1-5 Schematic models of a representative a) mesoporous carbon and b) microporous 

carbon with S as composite electrode [20, 21] 
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However, the limitations in achieving high sulfur loading and complexity in designing desirable 

pores leads to difficult for practical applications. 

The two-dimensional (2D) graphene nanosheets were proved to be a promising due to its 

high specific surface area (2610 m2/g), unique electronic properties, tunable pore volume and their 

distribution, and their readily available sites for functionalization with sulfur.  

 

 

 

 

 

 

 

The possibility of limiting polysulfide shuttle process by tuning surface area of graphene 

or its composites has also been attempted. Sulfur was impregnated in between graphene layers in 

the recent report by Wang et al. [23]. Though, as prepared nanocomposite showed a capacity of 

1505 mAh/g for the first few cycles, severe capacity fade was observed over extended cycles. In 

other study, it has been used three-dimensional sandwich-type architecture with a layer of 

graphene sheets/stacks and a layer of sulfur nanoparticles (Figure 1-6). As a result, 52% capacity 

retention was achieved by such graphene sulfur composite for about 50 charge-discharge cycles.  

Bin et al. used a simple electrochemical assembly strategy to vertically aligned 

sulfur−graphene (S-G) nanowalls into electrically conductive substrates [24]. The graphene arrays 

perpendicularly to the substrates were intended to facilitate the fast diffusions of both lithium and 

electron, easy access of electrolyte and accommodate of the volume change of sulfur (Figure 1-7). 

Figure 1-6   Schematic representations of graphene nanosheets for sulfur loading to use as Li-

S battery cathode [22]. 
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A high reversible capacity of 1261 mAh/g was observed [24], however, the limited sulfur loading 

in this composite limit its practical applications.  

 

 

 

 

 

 

 

Following these studies, there have been wide variety of graphene materials and its 

derivatives have been used to achieve high sulfur loading in the composite. Some of them have 

been tabulated carefully in the Table 1-1 

 

 

 

Figure 1-7 Vertically aligned sulfur−graphene (S-G) Nanowalls [24]. 

Table 1-1 Tabulated graphene-sulfur composites with electrolytes systems and their 

electrochemical performance [25]. 
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Recently, several polymers have been used to prevent polysulfide shuttle process, 

especially special attention has been paid for conductive polymers such as polypyrrole, 

polyaniline, poly(3,4-(ethylenedioxy)thiophene) (PEDOT), etc. (Figure 1-8). Polymers are 

expected to act as a physical barrier for migration of dissolved polysulfides towards anode. Xiao 

et al. [26] utilized self-assembled PANI nanotubes for sulfur encapsulation, as shown in Figure 1-

8a. The PANI nanotubes were treated at 280 °C with sulfur, which resulted in a partial reaction of 

sulfur with the polymer to form a 3D, crosslinked, structurally stable S−PANI composite. Such a 

composite delivered a specific capacity of 432 mAh/g at a 1C rate over 500 charge-discharge 

cycles. The polymer layer is not only rigid and stable but also ionically and electronically 

conductive, which can effectively block the dissolution of polysulfides and provide pathways for 

ions.  

 

 

 

 

 

 

 

 

Even though, several carbonaceous or conducting polymer materials have been extensively 

used as electronic conductors for sulfur composites, problems of processing nano/micro porous 

carbons, binders and achieving high sulfur loading have not yet been thoroughly addressed [28-

36]. In spite of some success on effective sulfur loading in some of these porous materials, 

Figure 1-8  Schematic representation of conductive polymer-sulfur composites a) 

construction of polyaniline-sulfur nanotubes[26] and b) PEDOT/PSS-coated CMK-3−sulfur 

composite[27]. 
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dissolution of polysulfides into the electrolyte solution is unavoidable due to their sulfifobic nature. 

This is because of poor adsorption capability of polysulfides on these non-polar materials and 

results in undesirable mass transport of electroactive species towards Li-anode [16]. In this regard, 

Barchasz et al., [37]and others [38-41] reported that passivation of cathode surface by insoluble 

by-products and poor adsorption of soluble polysulfides are predominant sources for poor 

electrochemical performance of Li-S battery [42].  

Besides these modifications of cathode materials towards improving Li-S battery 

performance, researchers at Wayne State University have developed a novel approach which 

highlights the electrocatalytic effect on lithium polysulfide (LiPS)  red-ox reactions [43]. Use of 

electrocatalytic porous current collectors have proven to enhance the reaction kinetics of LiPS due 

to their catalytic nature and also traps intermediate LiPS due to their porous nature. Further, this 

electocatalytic approach completely eliminates use of carbon in the Li-S battery configuration. 

Such elimination of carbon layer in the Li-S battery configuration has not only reduces the burden 

of making stable electrode (by choosing appropriate binders, additives and solvents), but also 

significantly enhances the volumetric energy density of the cell [28, 44]. As illustrated in Figure 

1-9, the use of electrocatalytic current collectors in Li-S battery configuration has several 

advantages over conventional carbon based systems, as entire polysulfide shuttle reaction is 

confined to the surface of porous electrode. High catalytic activity, high surface area, strong 

affinity towards adsorption of intermediate polysulfides and structural stability towards volume 

changes in the system are believed to be driving characteristics for better performance of Li-S 

battery. Conventional electrocatalysts such as nickel (Ni) and platinum (Pt) in the form of thin-

film configuration has shown a stable capacity, rate capability and high coulombic efficiency in 

Li-S battery. Despite the fact that surface chemistry of metal thin-films enhances the PS anchoring 
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strength, achieving high active material loading is limited due to constrained surface area. Hence, 

there is clear research opportunity to enhance surface area of electrocatalyst and also find an 

alternative electrocatalysts that are efficient in enhancing PS shuttle process and cost effective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5.2 Anode: Protection of Li anodes from polysulfide deposition  

The stability of anode with electrolyte and dissolved polysulfides determines the long-term 

cycle life and practical viability of Li−S batteries. Principally, Li-S battery uses metallic lithium 

as anode due to its low electrochemical potential and high specific capacity. However, use of Li 

metal negatively influence the cycling stability and safety of rechargeable lithium batteries due to 

formation of dendrites and unstable passivation layer, known as solid electrolyte interface (SEI 

layer) on the metallic lithium anode. Apart from dendrite formation, Li-S battery anodes also 

Figure 1-9 Novel electrocatalytically active current collectors containing Li-S battery 

configuration with PS shuttling mechanism confined on the surface of three dimensional 

current collectors [43] 
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suffers from deposition of dissolved sulfide species that diffuses in the electrolyte through the 

separator. Upon extended charge-discharge cycles, it is often found that the lithium anode became 

coated with these polysulfides. Hence, there have been several attempts to prevent the deposition 

of these polysulfides directly on Li-metal surface either in the form of coating a protective layer 

externally or by introducing additives in the electrolytes that can lead to insitu formation of form 

passivation layer on Li surface[45]. 

Silicon with its high theoretical capacity of 3579 mAh/g (Li15Si4) has been considered as a 

promising alternative for metallic lithium as an anode for Li−S batteries. Silicon nanowires were 

configured with Li2S/mesoporous carbon composite cathodes [46] and microspheres of Si/C 

anodes in combination with S/C cathodes [47]. Similar to Si, Sn–C–Li alloy has also been 

attempted to replace Li metal. Functional full cell Li-S battery has been fabricated with Sn–C–Li 

alloy as anode, Li2S/C cathodes across the gel polymer electrolyte, a polyethylene oxide/Li 

trifluoromethanesulfonate (PEO/LiCF3SO3) polymer matrix [48]. Further, Li–Al, Li2.6BMg0.05, 

Li5B4, Li3Mg7 etc., alloys have also been investigated as a potential anodes to replace metallic Li 

anodes [49].  

On the other hand, protecting the Li metal anode using polymer coatings and additives has 

also been under intense investigation. Solid polymer electrolytes with good Li+ conductivity have 

been employed as a protective layer of Li anodes. Some methods like UV cured polymerization 

seem to result in smoother and denser surface morphology [50], but due to sluggish Li+ transport 

through polymer electrolytes they have resulted in low power density and discharge capacity at 

room temperature. Apart from the polymer electrolytes to protect Li anodes, it has been reported 

that polysulfides can be controlled by depositing sulfur powder on Li anodes [51]. Also, additives 

in electrolytes such as LiNO3 have been found to stabilize the SEI layer on a Li anode [52]. 
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1.5.3 Electrolytes: Modification of electrolytes with additives 

A few electrolyte additives have been studied for improving the Li-S cells performance. 

The expected advantages of having additives in the electrolyte include: (1) protecting Li anode 

from dissolved PS attack, (2) enhancing the LiPS solubility and stability during charge-discharge 

process and (3) reducing the viscosity of the liquid electrolyte intern to improve ionic conductivity. 

Among several additives explored, lithium nitrate salt found effective due to its oxidative nature 

which enables the Li metal to form a very favorable surface layer, [53] and addition of P2S5 is 

found to promote the dissolution of polysulfides and protect the Li anode, which led to an increase 

in the capacity retention of the Li-S cells.[54] However, the dissolution of these additives in 

electrolyte has found to influence cell resistance due to formation of protective insulating layer on 

electrode and also due to increase in viscosity of electrolyte. Further, artificial interface formed by 

additives gradually consumed on the Li anode upon long cycling, which leads to a decrease in the 

protection efficiency. Hence it is important to understand effect of these additives on structural 

and morphological properties of electrode and formed SEI layer [55]. 
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CHAPTER 2 SCOPE OF THE WORK AND MOTIVATION 

2.1 Statement of the problem 

Li-ion batteries have been at the forefront in the energy supplying for handheld electronics 

as well as electric vehicles, however, if the future energy needs are taken into account the current 

pace of technological progress will be unable to sustain the demand. The limitations on their energy 

storage capability stimulated the researchers to look for alternate battery technology – Lithium 

Sulfur batteries (Li-S). Li-S system is a promising electrochemical energy storage technology due 

to its low cost, high theoretical energy density, safety, wide temperature range of operation and 

eco-friendliness.  

     However, practical applications of the Li-S battery are hindered by a multitude of issues 

like short cycle life, poor columbic efficiency, poisoning of Li-anode, self-discharge etc. The major 

challenges in lithium sulfur batteries that prevent them of taking a lead role in automotive 

technology: 

1. Poor electronic conductivity of sulfur (10-24 S/cm) and the formation of partially reversible 

discharge products (Li2S and Li2S2) will cause poor reaction kinetics and influence overall 

redox reaction.  

2. High volume expansion due lithiation of sulfur: Starting from solid sulfur all the way to 

Li2S at the end of discharge process will cause the sulfur volume increase by 4 times which 

will affect the physical structure of the sulfur carbon composites as well as the surface 

electron interface layer between the electrode and electrolyte[56, 57].  

3. High solubility of the sulfur into the electrolyte and generation of various soluble 

polysulfide Li2Sn (3 ≤ n ≤ 6) intermediates, results in shuttle mechanism. The diffused 

polysulfide ions have the ability to react directly with Li metal anode causing a formation 
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of a dendrite which will lead to depletion of the Li-S battery performance.  The more 

polysulfide diffused in the electrolyte the less the columbic efficiency of the battery.  

4. High electrochemical polarization of sulfur. Polarization effect is a great challenge for Li-

S as well as other battery technologies.  It represents the difference between the average 

charging and discharging voltages. Poorly controlled Li/electrolyte interface, which is 

responsible for cell polarization upon cycling.  

5. Low sulfur utilization during cycling: Since the discharge process in the Li-S system is a 

chemical conversion reaction, thus all sulfur atoms should react to reach the theoretical 

capacity. However, because of the poor conductivity of sulfur, it is impossible to reach the 

theoretical capacity of sulfur. 

2.2 Hypothesis and objectives of proposed research  

The above mentioned problems like poor conductivity of sulfur and its discharge products, 

the Li2S induced volume expansion, polysulfide intermediate’s dissolution inspired us to look for 

new catholyte type cells, in which the overall redox reaction is primarily driven by the dissolution 

of polysulfides in the electrolyte[58]. Similar to solid C-S composite based cathode configurations, 

liquid cells based polysulfides have also utilized several carbon matrix, graphene, conducting 

polymer etc., to trap these polysulfides. However, the poor adsorption of hydrophilic polysulfides 

into hydrophobic carbons matrix along with poor conductivity associated with end products 

motivates to find alternative host materials. Recent studies from our group shows enhancement in 

electrochemical performance of these liquid cathode based system (lithium polysulfides as starting 

materials) when catalytically active thin-film metals are used [43]. Strong affinity towards 

polysulfides adsorption along with efficient electron transfer makes Pt and Ni thin film electrodes 

promising alternatives to conventional carbons. However, the constrained surface area of this 

novel configuration limits the loading of active material onto it. Thus the need of easily accessible 
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electrocatalytic system is of great demand to explore this new concept of electrocatalytically driven 

high performance Li-S batteries. Also, the highly conducting matrix ensures the availability of 

high surface area to host the polysulfides. Thus to utilize the synergetic effect of catalytic 

properties and high surface area, developing tailored architectures is a necessary step. 

Thus, the present aimed at effectively utilizing catalysts like Pt and Ni by dispersing on 

high surface area and conductive materials like graphene and also investigating alternative cost-

effective catalyst for polysulfide redox reactions. The high surface area, superior mechanical and 

electrical properties, electrochemical compatibility and its prior attempts to host sulfur cathode, 

makes graphene as an ultimate choice for supporting electrocatalysts [59-61]. We hypotheses that 

when the electrocatalyst embedded in high surface graphene and used as cathode for Li-S batteries, 

the improved electrochemical performances can be easily achieved. The conventional metal 

catalysts like Pt, Ni can be used to prove the concept and later on can be replaced by easily 

available cost effective electrocatalyst such as sulfides and carbides, which are proved to be 

catalytically active towards red-ox reactions. 

Based on the above mentioned hypothesis we formulate following objectives as core focus of this 

dissertation: 

 Investigation of lithium polysulfide redox reactions by dispersing Pt and Ni 

nanocatalysts on two-dimensional graphene nanosheets:  

     The high surface area, superior mechanical and electrical properties, electrochemical 

compatibility and its prior attempts to host sulfur cathode, makes graphene as an ultimate choice 

for supporting electrocatalysts for polysulfide redox reactions [59]. Hence, our objective in this 

regard is to functionalize metal nanoparticles graphene nanosheets and study the electrochemical 

properties of metal/graphene composites by fabricating Li-S cells. By understanding the relation 
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between the physical properties of composites and their electrochemical properties, better 

electrocatalyst/graphene configurations will be engineered.  

 Investigate non-noble metal based electrocatalyst for lithium polysulfide redox 

reactions: 

            Most of the conventional electrocatalysts are either noble metals or composites of them. 

Identifying an effective electrocatalysts alternative to expensive noble metal based electrocatalysts 

gains paramount importance in the general field of electrocatalysis. Hence, it is planned to identify 

suitable and cheaper electrocatalysts towards polysulfide conversion reactions evolved as one of 

the important objective for this dissertation. Towards this end, transition metal dichalcogenides 

(TMDs) and metal carbides have been chosen due to their prior attempts as a catalyst in other fields 

and their known high electrochemical activity similar to most of noble metals.  Hence, in this study 

we propose to synthesize these alternative catalysts in the nanoscale dimensions and investigate 

their application as potential electrode materials for Li-S battery.  
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CHAPTER 3 EXPERIMENTAL METHODS 

3.1 Important battery terminologies 

• Discharge: when the battery is connected to external load, electrons start to flow from 

the anode (oxidation) to the cathode (reduction).  

• Charge: oxidation occurs in the cathode whereas reduction happens in the anode side 

• Cell potential:  the potential difference between two half cells in a battery, E0 

• Free energy: the amount of energy change during the reaction  

∆G0= - nFE0 where:  F is faraday constant (96500 C or 26.8Ah) 

n : number of electrons participated in the reaction 

   and E0: is the standard potential based on the combination of the electrodes  

• Theoretical capacity of the cell: it depends on the mass of the active material of the 

cell and the number of the electrons involve in the reaction, where 1 g of an active 

materials (1gram-equivalent weight=molecular weight of active material divided by the 

number of electrons involved) will deliver 26.8Ah 

• The C-rate: the current to discharge the nominal capacity of the battery in 1 hour and 

it is also the current that is needed for charging or discharging the battery 

• State of charge (SOC): gives information about how much charge left in 

your battery cycle 

• Depth of discharge (DOD): is used to describe how deeply the battery is used or 

discharged. The 100% fully charged battery means the DOD of it is 0%. the battery 

that delivered 40% of its energy, has DOD equal to 40% and based on that the less the 

depth of discharged before recharging, the longer the battery will last 

http://www.energymatters.com.au/deep-cycle-batteries-c-153.html
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• Open cell voltage (OCV):  the voltage of a cell when no current is going in or out of 

the battery and this is measured immediately after battery fabrication 

• Internal resistance (IR): the resistance to the flow of the current within the battery.  

• Columbic efficiency:  the ratio of the discharge capacity of the battery to the charge 

capacity.  

• Specific energy and energy density (Wh/Kg): energy delivered by the cell per unit 

mass or per unit volume.  

• Power density (W/Kg): the amount of power per given volume or weight 

3.2 Electrochemical techniques 

3.2.1 Cyclic Voltammetry (CV) 

     Cyclic Voltammetry (CV) is an electrochemical technique which measures the current that 

develops in an electrochemical cell under conditions where voltage is in excess of that predicted 

by the Nernst equation. CV is performed by cycling the potential of a working electrode, and 

measuring the resulting current. The potential of the working electrode is measured against a 

reference electrode which maintains a constant potential, and the resulting applied 

potential produces an excitation signal.  Fabricated cells first scan negatively, starting from a 

higher potential (normally OCV) and ending at a lower cut-off potential.  CV can be used to predict 

and understand the red-ox reaction in the cell. VMP3 potentiostat (Biologic Science Instrument) 

was used to perform cyclic voltammetry (CV) studies in the potential window of 1.5-3.0 V at a 

different scan rates from 0.05 to 1.0 mV/s. 

 

 

 

http://chemwiki.ucdavis.edu/Analytical_Chemistry/Electrochemistry/Nernst_Equation
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3.2.2 Electrochemical Impedance Spectroscopy (EIS) 

By using the electrochemical impedance spectroscopy technique (EIS), information on the 

electrochemical reactions in the system and transport of reactants/products is obtained. This 

technique is applied on an electrochemical system which is in equilibrium or under steady state 

conditions. EIS is based on the application of a sinusoidal voltage (or current) signal on the 

electrochemical cell. The response of the cell to the sinusoidal perturbation is a sinusoidal current 

(or voltage), which has the same frequency as the perturbation and is normally shifted in phase. 

The ratio between the perturbation and the answer is a frequency-dependent complex number, 

called impedance. Modern instruments to measure impedance spectra are the frequency response 

analyzers (FRA), commercially available since the 1970's which are directly integrated in the 

potentiostats [62-63]. An electrochemical system is simulated, using the resistance of the 

electrolyte, the charge transfer resistance, and the double layer capacitance. The most common 

representation is the Nyquist plot. The Nyquist plot shows in the x-axis the real part of the 

impedance and in the y-axis the opposite of the imaginary part of the impedance. It is important 

that the x-axis and y-axis have the same scale length. The shape of the Nyquist plot is 

representative of the electrochemical processes at the surface of the electrodes and in the bulk of 

the electrolyte. It is possible to recognize immediately the resistance of the electrolyte, the 

resistance of the charge transfer, and other properties of the system. Moreover, the kinetic 

parameters can be obtained from the plot in the case of simple redox systems. VMP3 potentiostat 

(Biologic Science Instrument) was used to perform electrochemical impedance studies from 100 

mHz to 100 KHz. 
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3.2.3 Linear Sweep voltammetry   

In linear sweep voltammetry, the current at a working electrode is measured while the 

potential between the reference electrode and the working electrode is swept linearly in time. The 

experimental setup for linear sweep voltammetry utilizes a potentiostat and three-electrode setup 

to deliver a potential to a solution and monitor its change in current. Oxidation or reduction of 

species is registered as a peak or trough in the current signal at the potential at which the species 

begins to be oxidized or reduced. 

3.2.4 Tafel plot 

Catalytic reaction parameters can be estimated by plotting logarithm current density vs 

potential, which is known as Tafel plot (Figure 3-1). The slope of the linear region is related to the 

catalytic activity of the material, which should be low for an efficient catalyst. Exchange current 

density (i0) is also related to the reaction kinetics which is determined from the Tafel plot by 

extrapolating the current density in the linear region [65]. A high i0 attribute towards the 

significantly smaller activation barrier which requires a small over potential.  The rate of 

an electrochemical reaction to the overpotential is given by this equation: 

∆𝑉 = 𝐴 𝑋 ln (𝑖/𝑖𝑜) 

Where: 

 ∆V is the overpotential, V (note that the graph uses η for this quantity) 

  is the so-called "Tafel slope", V 

  is the current density, A/m2  

  is the so-called "exchange current density", A/m2 

 

 

https://en.wikipedia.org/wiki/Working_electrode
https://en.wikipedia.org/wiki/Reference_electrode
https://en.wikipedia.org/wiki/Electrochemistry
https://en.wikipedia.org/wiki/Overpotential
https://en.wikipedia.org/wiki/Current_density
https://en.wikipedia.org/wiki/Exchange_current_density
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3.3 Physical characterization techniques [65] 

3.3.1 X-ray Diffraction Techniques (XRD)  

X-ray diffraction (XRD) has a dual wave/particle nature, which is an effective non-

destructive analytical instrument for the analysis of structure, chemical composition and physical 

properties of different materials. Basically, X-rays are high energy electromagnetic radiation 

having energies ranging from 200eV to about 1MeV. The interatomic separation in the materials 

is only a few Angstrom and its corresponding radiation is X-rays. Much of the information about 

the internal structure of crystals can be obtained by their interaction with X-rays [66, 67]. XRD 

works based on two basic principles: Bragg’s Law and Debye-Scherrer equation 

 Bragg’s law is used to investigate the crystal structure using the equation called Bragg’s Equation 

and it can be mathematically written as:         

𝑛λ = 2𝑑𝑠𝑖𝑛θ   

where: 

n: is integer determining order 

λ: is the wavelength  

Figure 3-1  Electrochemical potential vs the logarithm of exchange current density. 
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d: is the spacing between the planes n atomic lattice.                                

𝑑ℎ𝑘𝑙 =
1

√ℎ2

𝑎2+
𝑘2

𝑏2+
𝑙2

𝑐2

     

where: 

 a, b, c are lattice spacing of the crystal 

  h, k, l are Miller indices of the Bragg plane. 

  θ is angle between incident ray and scattered planes.        

Debye-Scherrer equation is used to explain the effect of finite crystallite sizes which is seen as 

broadened peaks in an XRD. The peak broadening can be due to the size, strain, and instrument. 

This is applicable if the crystallite size is less than 1000 A0. By Debbye Scherrer’s formula, average 

grain size (nm) is estimated as: 

𝐷 =
0.9𝛌 

𝑐𝑜𝑠θ
 

 Where:  λ is the wavelength of CuKα radiation in A0 units 

               θ is the angle of diffraction in radians 

β =
𝐹𝑊𝐻𝑀 ∗  

180
 

β is the Full Width Half Maximum (FWHM) in radians of the XRD peak with highest intensity 

 From the maximum of recorded diffractograms, lattice parameter (a) and crystallite size 

can be obtained. Lattice parameter was calculated assuming cubic symmetry and planes were 

identified by matching with standard values of ICDD. 

The main information that can be obtained from a XRD analysis is related to: 

 ▪ Identification of crystalline phase: the space group and unit cell of the crystal structure can be 

determined by analyzing the peak position and peak intensity of the sample.  




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▪ Crystallinity: sharp peaks in the diffractogram are related to the crystallinity of the phases. 

Amorphous phase are present as broad bands.  

▪ Crystallite size: the width of the peaks becomes larger when the crystalline size decreases.  

 ▪ Orientation of particles in a sample: preferred orientations of a phase in a sample are related to 

the relation between the intensity of the hkl peaks.  

X-ray unit used in present study is a fully automated Rigaku Miniflex II X-ray 

diffractometer using a CuKα source of radiation of λ=1.5418Ao at an energy of 8.04 KeV at a scan 

rate of 0.02°/s. Detection is by ionization and using a Geiger Muller (GM) counter. The 

arrangement provides for rotation of detector so as to match as that of sample. The use of CuKα 

radiation minimizes the fluorescence. 

3.3.2 Optical Absorption Spectroscopy 

Ultraviolet-visible spectroscopy (UV-Vis) deals with the absorption spectroscopy in the 

ultraviolet-visible spectral region (it uses light in the visible and adjacent (near-UV and near-

infrared (NIR)) ranges). In this region of the electromagnetic spectrum, molecules undergo 

electronic transitions [68]. This technique is complementary to fluorescence spectroscopy, in 

which the fluorescence deals with transitions from the excited state to the ground state, while 

absorption measures transitions from the ground state to the excited state. The absorption spectra 

were collected using Shimadzu UV-3600 UV- Vis- NIR spectrophotometer. 

3.3.3 Transmission Electron Microscopy (TEM) 

TEM is a microscopic technique where a beam of electrons is transmitted through an 

ultrathin specimen and interacting with the specimen as it passes through. An image is formed 

from the interaction of the electrons transmitted through the specimen. This image is magnified 

http://en.wikipedia.org/wiki/Absorption_spectroscopy
http://en.wikipedia.org/wiki/Ultraviolet
http://en.wikipedia.org/wiki/Visible_spectrum
http://en.wikipedia.org/wiki/Near-infrared
http://en.wikipedia.org/wiki/Near-infrared
http://en.wikipedia.org/wiki/Electromagnetic_spectrum
http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Molecular_electronic_transition
http://en.wikipedia.org/wiki/Fluorescence_spectroscopy
http://en.wikipedia.org/wiki/Fluorescence
http://en.wikipedia.org/wiki/Excited_state
http://en.wikipedia.org/wiki/Ground_state
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and focused onto an imaging device, such as a fluorescent screen, on a layer of photographic film, 

or to be detected by a sensor such as a CCD camera. 

 A TEM is composed of several components, which include a vacuum system in which the 

electrons travels, an electron emission source for generation of the electron stream, a series of 

electromagnetic lenses, as well as electrostatic plates. The latter two allow the operator to guide 

and manipulate the beam as required. Also required is a device to allow the insertion into, motion 

within, and removal of specimens from the beam path. Imaging devices are subsequently used to 

create an image from the electrons that exit the system. TEM studies were carried out with a JEOL 

JEM-2010 instrument.  

3.3.4 Scanning Electron Microscope (SEM) 

A focused beam of electrons is used to scan the surface of the material to produce images 

for the samples.  When electrons interact with atoms, various types of elastic and inelastic 

processes occur, including electron scattering and excitation, which produces (1) secondary 

electrons, (2) backscattered electrons, (3) Auger electrons, (4) characteristic X-rays, (5) 

bremsstrahlung or continuous X-rays, and (6) photons of various energies, including those in the 

infrared, visible, and ultraviolet. All the produced signals can be detected to know the information 

about the sample's surface topography and composition [70]. The electron beam is generally 

scanned and the beam's position is combined with the detected signal to produce an image. SEM 

can achieve resolution up to 1 nanometer. Specimens can be observed in high vacuum, in low 

vacuum, in wet conditions and at a wide range of cryogenic or elevated temperatures. By scanning 

the sample and collecting the secondary electrons with a special detector, an image displaying the 

topography of the surface is created. 

https://en.wikipedia.org/wiki/Topography
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The fraction of energy deposited by an electron beam in a sample associated with these 

different processes is dependent on the sample.  Secondary and Auger electrons can only be 

observed when they come from the near-surface region of a solid (typically < 500 Å for insulators, 

such as silicate minerals, and < 100 Å for metals such as gold). Thus, measurements involving 

these types of electrons are “surface sensitive”.  Secondary electrons are generated by the primary 

electron beam as it enters a sample as well as by backscattered electrons as they exit a sample.  

Secondary electrons, which typically have kinetic energies < 50 eV, are sensitive enough to 

differences in surface topology that they can be readily observed from the surface of a sample.  

Such electrons form the basis of scanning electron microscopy.   

3.3.5 Energy Dispersive X-ray Analysis (EDX) 

Energy-dispersive X-ray spectroscopy (EDX) is an analytical technique used for rapid 

qualitative and quantitative analysis of elemental composition with a sampling depth of 1-2 

microns. It is one of the variants of X-ray fluorescence spectroscopy which relies on the 

investigation of a sample through interactions between electromagnetic radiation and matter, 

analyzing X-rays emitted by the matter in response to being hit with charged particles [71]. Its 

characterization capabilities are due in large part to the fundamental principle that each element 

has a unique atomic structure allowing X-rays that are characteristic of an element's atomic 

structure to be identified uniquely from one another. Morphology (Field emission electron 

microscopy images) and elemental compositions (Energy dispersive X-ray spectrum) of the 

prepared samples like graphene composites, carbides and sulfides were studied by JEOL JSM-

7500F system operated with accelerating voltage 20 kV in this present study. 

 

 

http://en.wikipedia.org/wiki/X-ray_fluorescence
http://en.wikipedia.org/wiki/Spectroscopy
http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/X-ray
http://en.wikipedia.org/wiki/Atom
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3.3.6 X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a quantitative surface chemical analysis 

technique used to analyze the elemental composition, empirical formula, chemical state and 

electronic state of the elements in the materials under ultra-high vacuum conditions. XPS spectra 

are obtained by irradiating a material with a beam of X-rays while simultaneously measuring 

the kinetic energy and number of electrons that escape from the surface (1 to 10 nm of the 

material) being analyzed [72]. Also the elemental compositions of the newly prepared 

nanomaterials are studied using this technique. PHI Quantera X-ray photoelectron spectrometer 

(XPS) has been used in our studies. 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Photoelectron
http://en.wikipedia.org/wiki/Spectroscopy
http://en.wikipedia.org/wiki/Empirical_formula
http://en.wikipedia.org/wiki/Chemical_state
http://en.wikipedia.org/wiki/Electronic_state
http://en.wikipedia.org/wiki/Spectrum
http://en.wikipedia.org/wiki/X-ray
http://en.wikipedia.org/wiki/Kinetic_energy
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Nanometre
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CHAPTER 4 ELECTROCATALYTIC POLYSULFIDE-TRAPS FOR 

CONTROLLING REDOX SHUTTLE PROCESS OF LI-S BATTERY  

4.1 Introduction 

Practical applications of the Li-S battery is hindered by a multitude of issues like short 

cycle life, poor columbic efficiency, poisoning of Li-anode, self-discharge etc.[15]. The underlying 

primary reason behind these performance barriers is the well-known polysulfide-shuttle 

mechanism, a process initiated in the preliminary stages of battery discharging. This mechanism 

results in dissolution of polysulfides (PS) into the electrolyte solution causing undesirable mass 

transport of electroactive species resulting in the formation a passivation layer on Li-anode [16]. 

Insulating nature of sulfur and its end products of discharge (Li2S2 and Li2S) further lead to slow 

charge/discharge process and cell polarization losses [73, 74]. Barchasz et al. [37]and others [38-

41] reported that passivation of cathode surface by insoluble by-products and poor adsorption of 

soluble polysulfides are predominant sources for poor electrochemical performance of Li-S battery 

[42]. 

To tackle the above mentioned challenges, majority of recent research efforts have been 

directed towards designing polymer electrolytes that prevents the migration of PS,[75, 76] and 

surface coatings on Li-anode to avoid PS passivation[77, 78]. In other hand, carbon materials for 

improving conductivity of sulfur and trapping intermediate polysulfides with the cathode of the 

cell [17, 18]. In search of finding carbon hosts for polysulfides, several micro/meso porous 

structures, carbon nanotubes, graphene etc. [30, 33, 79-84] have been investigated thoroughly. The 

poor adsorption capabilities of carbons towards polar natured polysulfides [85] have further 

triggered research interest in finding alternative host materials [86, 42, 87-89]. Moreover, the 

polysulfide conversion reaction kinetics worsens with prolonged cycling due to increase in internal 

resistance caused by deposition of insulating natured short-chain PS. 
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In marked contrast to all the above mentioned approaches, we have recently demonstrated 

that the polysulfide-shuttle process in Li-S cell can be controlled by means of electrocatalysis [43]. 

Use of electrocatalytic current collectors such as Pt or Ni when coated on Al foil has shown to 

enhance both cycle life and reaction kinetics (charge/discharge rates) of the Li-S battery [43]. 

Despite the fact that surface chemistry of metal thin films enhances the PS anchoring strength, 

active material loading is limited due to constrained surface area. In order to effectively utilize 

catalysts (Pt and Ni) while ensuring high surface area to host polysulfides, the present study is 

aimed at understanding structural and electrochemical properties of graphene supported 

nanocatalyst. The high surface area, superior mechanical and electrical properties, electrochemical 

compatibility and its prior attempts to host sulfur cathode, makes graphene as an ultimate choice 

for supporting electrocatalysts [59-61]. We envisage electrocatalyst anchored graphene opening 

up a new avenue for resolving the host problems associated with Li-S battery. 

4.2 Experimental section 

4.2.1 Synthesis of metal particles anchored graphene nanocomposites 

Graphene flakes were procured from graphene-supermarket and functionalized by 

refluxing with concentrated nitric acid to decorate metal nanoparticles. In a typical procedure, 1 g 

of graphene was treated with 50 ml of concentrated HNO3 and the resulting suspension was 

refluxed for 7 h and cooled. It was then filtered, washed with de-ionized water and methanol, and 

dried at 70 C. To anchor metal (Pt and Ni) nanoparticles on the graphene flakes, NaBH4-assisted 

polyol reduction was employed. Briefly, stoichiometric amount of metal precursor (H2PtCl6 as Pt 

precursor and NiCl2 as Ni precursor, respectively) dispersed in ethylene glycol solution and 

functionalized graphene dispersed in ethylene glycol solution were mixed together and taken in a 

round-bottom flask equipped with a N2 in/outlet. The pH of resulting suspension was adjusted to 
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11 by adding 2.5 M NaOH in ethylene glycol and heated to 120 C. During this process, NaBH4 

solution (dissolved in ethylene glycol) was added slowly and refluxed for 3 h. It was then filtered, 

washed copiously with ethanol, and dried at 70 C in a vacuum oven. The chemical reactions are 

as follows: 

H2PtCl6 + 6NaBH4 + 3CH2OH-CH2OH  Pt + 6B (OC2H5)3 + 6NaCl + H2 

NiCl2 + 2NaBH4 + 2CH2OH-CH2OH  Ni + 2B (OC2H5)3 + 2NaCl + H2 

4.2.2 Preparation of catholyte 

The electro-active species containing catholyte solution (600 mM) for electrochemical 

properties has been prepared using calculated amounts of Li2S and S to attain nominal formula of 

long-chain LiPS (Li2S8) in tetraethylene glycol dimethyle ether (TEGDME) at 90 °C for 12h or 

until all the solid particles dissolves. These molar concentrations are calculated based on the 

amount of active species i.e sulfur in LiPS solution. 

The preparation procedure as follows:  

0.6*[Li2S + 7S → Li2S8] + LiNO3 + LiTFSI 

0.6[
𝐿𝑖2𝑆

200
+ 7

𝑆

200
→

𝐿𝑖2𝑆8

200
] +  

𝐿𝑖𝑁𝑂3

200
+

LiTFSI

200
 

0.6[
45.95

200
+ 7

32

200
] +   

68.95

200
+

287.1

200
 

0.1378𝑔 𝑜𝑓 𝐿𝑖2𝑆 + 0.672𝑔 𝑜𝑓 𝑆 +   0.3448𝑔 𝑜𝑓 𝐿𝑖𝑁𝑂3 + 1.4355g of LiTFSI in 5ml of 

TEGDME. 
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4.2.3 C-rate Calculation 

The C-rate of a battery is a measure of the rate at which a battery is discharged relative to 

its maximum capacity. A 1C rate means that the discharge current will discharge the entire 

battery in 1 hour. For a battery with a capacity of 10 A.h, this equates to a discharge current of 10 

A. Current needed for constant current discharge in 1 hour , Also called 1-hour rate , C/10 = rate 

needed to discharge in 10 hours , 3C = rate needed to discharge in 1/3 hour = 20 minutes. The C-

rate can be calculated using the theoretical capacity of the sulfur electrode from the following 

equation: 

𝐶 − 𝑅𝑎𝑡𝑒(𝑚𝐴) =
1675 ∗ 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑢𝑙𝑓𝑢𝑟(𝑚𝑔)

1000
    

Molarity Concentration 0.06M 0.2M 0.6M 0.8M 1M 

Mass of sulfur in 10 microliter of PS 0.1513mg 0.513mg 1.53mg 2.048mg 2.56mg 

C rate (A) 0.000256 0.000859 0.00256 0.00343 0.00429 

C/2 rate(A) 0.000128 0.000429 0.00128 0.00172 0.00214 

C/5 rate(A) 0.000051 0.000172 0.00051 0.00069 0.00086 

C/10 rate(A) 0.000026 0.000086 0.00026 0.00034 0.00043 

 

Table 4-1 Catholyte concentration, mass of sulfur and corresponding C-rate. 

An active material containing catholyte solutions were prepared from stoichiometric 

amounts of Li2S and S to form long-chain lithium polysulfides (Li2S8) in tetraethylene glycol 

dimethyle ether (TEGDME) with effective stirring at 90 °C for 12h. The catholyte concentrations 

used in this study is 0.6, 0.8 and 1.0 M of Li2S8 corresponds to 1.21, 1.61 and 2.0 mg of sulfur per 

cm-2 and these are calculated based on the sulfur content in Li2S8 and the quantity of catholyte 

used per cell (10 l). 
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4.2.4 Electrode Preparation 

Aluminum (Al) foil as a current collector and a routine blade coating procedure is widely 

used to fabricate Li-S batteries. This traditional battery production process does not allow a high 

mass loading because a thick electrode tends to delaminate from the Al current collector after 

coating and drying. Furthermore, the kinetic limitation of lithium diffusion through a thick 

electrode would induce large polarization and, as a consequence, loss of energy efficiency. The 

positive electrode was fabricated by mixing graphene and its composites individually with 

conductive carbon (Super-P) and polyvinylidene fluoride binder in the weight ratio of 80%: 10%: 

10%.   The mixture was made as slurry using N-methyl-2-pyrrolidone (NMP) as solvent and coated 

on aluminum foil. The coated electrode was dried in oven at 80 °C to evaporate NMP, and cut into 

circular discs of 12.7 mm diameter Figure 4-1.  

 

 

 

 

 

 

 

 
 

The electrochemical measurements were performed on CR2032 type coin cells containing 

coated graphene and its composites as working electrodes and lithium metal as counter and 

reference electrode. Known molar concentration of catholyte used as active material along with an 

Figure 4-1 25µm the thickness of the electrode 
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electrolyte consists of 1 M of lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) and lithium 

nitrate (LiNO3) in TEGDME and celgard separator. For better comparison, parameters such as 

concentration and quantity of catholyte (0.6 M and 10 l) during cell fabrication have been 

maintained constant. Cell fabrication and assembly is shown in Figure 4-2. 

 

 

 

 

 

 

 

 

4.2.5 Characterization techniques 

X-ray diffraction (XRD) patterns are recorded on a Rigaku Miniflex II X-ray diffracto 

meter using a CuKα source at a scan rate of 0.02° s-1. Morphology (Field emission electron 

microscopy images) and elemental compositions (Energy dispersive X-ray spectrum) are studied 

by JEOL JSM-7500F system operated with accelerating voltage 20 kV.  PHI Quantera X-ray 

photoelectron spectrometer (XPS) has been used to characterize electrodes surface. VMP3 

potentiostatic (Biologic Science Instrument) was used to perform cyclic voltammetry (CV) studies 

in the potential window of 1.5-3.0 V at a different scan rates from 0.05 to 1.0 mV/s.  Tafel plots 

have been obtained from potentiostatic polarization technique. Galvanostatic charge- discharge 

measurements were performed for composites at different current rates (0.1, 0.2, 0.5 and 1.0 C 

rate) in the potential range of 1.5 - 3.0 V using ARBIN charge-discharge cycle life tester. 

Figure 4-2 Cell assembly configuration 
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4.3 Results and discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chemical functionalization of few layer graphene was performed in reflux condenser using 

concentrated nitric acid at 120 C under the Argon (Ar) flow. Platinum and nickel nanoparticles 

are dispersed uniformly on such a functionalized graphene sheets to increase their surface 

anchoring strength [89, 90]. Step-by-step process of graphene nanocomposites preparation and 

their interaction with lithium polysulfides during charge/discharge process are illustrated 

schematically in Figure 4-3. 

4.3.1 X-ray diffraction studies 

Powder XRD patterns recorded for commercial graphene, functionalized graphene, and 

metal/graphene in the 2θ range of 20-90 deg. are shown in Figure 4-4. Both graphene and 

functionalized graphene exhibited a characteristic (0 0 2) diffraction peak at 26.5, corresponding 

to the interspacing between the graphene layers as 3.34 Å and graphitization degree as 95.3%. 

Figure 4-3 Schematic representation of the electrocatalyst anchored graphene naonocomposite 

preparation and interaction of electrocatalyst-polysulfides during charge/discharge process of Li-

S battery 
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Pt/graphene exhibited five characteristic diffraction peaks at 2θ values around 40, 47, 68, 82, and 

87 corresponding to the (1 1 1), (2 0 0), (2 2 0), (3 1 1) and (2 2 2) planes of face-centered cubic 

(fcc) structure of Pt. Ni/graphene exhibited three characteristic diffraction peaks at 2θ values 

around 44, 51, and 76 corresponding to the (1 1 1), (2 0 0), and (2 2 0) planes of face-centered 

cubic (fcc) structure of Ni. Broad diffraction indicated the nano-sized metal crystallites in the 

prepared metal/graphene materials. Average crystallite size was calculated from Scherrer’s 

equation for the XRD peak assigned to Pt (2 2 0) and Ni(2 2 0). It is determined to be 2.8 and 4.1 

nm for the Pt/graphene and Ni/graphene, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2 Field Emission Scanning Electron Microscopy (FESEM) 

Field emission scanning electron spectroscopy (FESEM) images and elemental mapping 

of Ni/Graphene and Pt/Graphene are shown in Figure 4-5. FESEM images depicted randomly 

Figure 4-4 Powder XRD patterns recorded for the graphene and metal/graphene composite 

materials. 
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oriented, transparent graphene sheets of few microns in size and ripple-like flake morphology. In 

the case of Ni/Graphene and Pt/Graphene composites, a spatial distribution of metallic 

nanoparticles about 20 nm in size over the layered graphene sheets was observed (Figure 4-5a, b). 

Further, energy dispersive X-ray spectroscopic (EDX) analysis confirmed the homogeneous 

distribution of respective elements with (Figure 4-5c, d). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

4.3.3 Electrochemical properties 

To evaluate the electrochemical performance of graphene and its nanocomposites, standard 

2032 coin cells were fabricated using them as cathode vs metallic lithium as an anode and dissolved 

Li2S8 in electrolyte (catholyte) as an active material. For better comparison, parameters such as 

Figure 4-5 Characterization of nanocomposites: (a) and (b) FESEM images (c) and (d) 

EDX and elemental mapping (inset) of Ni and Pt nanoparticles anchored graphene layers 

prepared by polyol process respectively. 
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concentration and quantity of catholyte (0.6 M and 10 l) during cell fabrication have been 

maintained constant. Galvanostatic charge-discharge studies were performed at a constant current 

rate of 0.1 C (based on sulfur mass in the cell) and obtained results for 100 cycles have been 

displayed in Figure 4-6. From Figure 4-6a, it has been observed that electrodes exhibited well 

defined discharge plateaus corresponding to the formation of soluble long-chain PS and their 

spontaneous dissociation to short-chain PS and vice-versa during charging process. On careful 

observation, Pt/Graphene electrode shows two discharge plateaus at 2.4 and 1.97 V and a charging 

plateau at 2.34 V. These features along with reduced polarization at any depth of discharge (DOD) 

compared to that of pristine graphene electrode is clear evidence for improved PS conversion 

reaction kinetics.  

 

 

 

 

 

 

 

 

 

The specific capacity and columbic efficiency of Graphene, Ni/Graphene and Pt/Graphene 

cathodes with 0.6M of Li2S8 (1.21 mg of Sulfur per cm-2) at 0.1 C rate has been displayed in Figure 

4-6b. Ni/Graphene and Pt/Graphene electrodes exhibit initial specific capacity of 740 and 1100 

mAh g-1 and retains a stable capacity of 585 and 780 mAh g-1 after 100 cycles of charge/discharge. 

Figure 4-6 Electrochemical performance: (a) voltage vs specific capacity profile and (b) 

galvanostatic charge-discharge behavior and coulombic efficiency of pristine and electrocatalyt 

anchored graphene electrodes vs Li+/Li at 0.1C rate in the potential range of 1.5-3.0 V. 
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In comparison with pristine graphene, Ni/Graphene and Pt/Graphene resulted in 21% and 41% 

enhancement in capacity respectively. More notably, Pt/Graphene electrode showcases excellent 

stability in columbic efficiency (~99.3%) upon cycling. The deposition of insulating PS on 

graphene impedes the electron transfer at electrode/electrolyte interface and results in an increase 

of internal resistance. In case of electrocatalyst anchored graphene, the presence of catalyst (Pt or 

Ni) helps to convert these PS deposits back to soluble long chain polysulfides and hence enhances 

reaction kinetics and retains high columbic efficiency. As Pt/Graphene is found to exhibit superior 

performance over Ni/Graphene and graphene (Table 4-2), we have further evaluated its 

electrochemical properties under various conditions such as high current rates, concentrations of 

PS and temperature of the cell.    

Table 4-2 Tabulated electrochemical parameters of pristine and electrocatalyt anchored graphene 

nanocomposite electrodes vs Li+/Li at 0.1C rate in the potential range of 1.5-3.0 V. 

Electrochemical behaviour of Graphene and Pt/Graphene electrodes at different C-rates 

has been performed to reveal the surface anchoring strength of electrocatalyst towards PS 

conversions. As shown in Figure 4-7a, Pt/Graphene electrode delivers superior specific capacity 

compared to that of pristine graphene electrode at both C/5 and C/10. For instance, the discharge 

capacity of 780 mAh g-1 has been exhibited by Pt/Graphene electrode at 0.2 C for 100 cycles. This 

is almost double as that of graphene (380 mAh g-1) under similar conditions. 
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Voltage vs capacity plot for the Pt/Graphene electrode shows typical discharge and charge 

plateaus at high current rates (Figure 4-7b). The charging plateau relies more on the 

electrochemical activity of cathode material which includes conversion of short-chain to long-

chain LiPS. The consistency in charging plateaus, even with high C-rates suggests the enhanced 

reaction kinetics due to presence of electrocatalyst. As Pt/Graphene is found to exhibit superior 

performance over Ni/Graphene and graphene, we have further evaluated its electrochemical 

properties under various conditions such as high current rates, concentrations of PS and 

temperature of the cell. The Pt/Graphene electrode was further subjected to long cycling (about 

300 cycles) at 1C-rate and it exhibited a stable performance with minimal capacity loss of 0.09% 

per cycle (Figure 4-8).  

 

 

Figure 4-7 (a) Cyclic stability and C-rate tests and (b) corresponding charge-discharge profiles of 

Pt/Graphene electrodes vs Graphene ones. 
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In order to validate the electrocatalytic activity of Pt/Graphene over pristine 

graphene, Cyclic voltammograms (CVs) have been recorded at a slow scan rate of 0.05 

mV s-1 (Figure 4-9).  

 

 

 

 

 

 

 

 
 

 Further, Tafel plots and corresponding exchange current density values have been derived 

from potentiostatic polarization experiments to understand the effect of catalyst on charge transfer 

Figure 4-8 Long cycling behavior of Pt/graphene electrode at 1C rate. 
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Figure 4-9   Cyclic voltammograms of Graphene and Pt/Graphene electrodes at a scan rate of 0.05 

mV s-1  
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kinetics during charge and discharge reaction process (Figure 4-10). The calculated exchange 

current densities (i0) of pristine and Pt/Graphene electrodes are 1.18 and 3.18 mA cm−2 for cathodic 

process and 0.17 and 0.29 mA cm−2 for anodic process, respectively (Table 4-3). 

Electrode E1pa & E2pa 
E1pc & E2pc 

(V) 

Peak separation 

(E1pa ~E2pc) 

Exchange current 

density (I0) (mA cm-2 ) 

Pristine 

Graphene 
2.57 (broad) 2.42 & 1.93 0.64 

1.25 (cathodic) 

0.25 (anodic) 

Pt anchored 

Graphene 
2.51 & 2.60 2.45 & 1.96 0.55 

3.98 (cathodic) 

0.40 (anodic) 

 

Table 4-3 . Electrocatalytic parameters for pristine and Pt anchored graphene electrodes are 

derived from cyclic voltammograms and potentiostatic polarization 

 

 

 

 

 

 

 

 Thus, the increase in exchange current density values of Pt/Graphene in both charge and 

discharge process confirms the enhancement in rate of LiPS conversion reactions. During 

potentiostatic technique, we step down the 10mV step-by-step from OCV to 200 mV for cathodic 

process; on each potential step current has been recorded with respect to time for 60 seconds. 

Similarly, electrodes have been discharged completely (up to 1.5 V) and rested for couple of hours 

to attain the equilibrium state.  Such electrodes were polarized by applying step-by-step constant 

(a

) 

(b

) 

Figure 4-10  Tafel plots for corresponding oxidation and reduction reactions 
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potential to monitor current with respect to time. Tafel plots have been obtained to derive kinetic 

parameters from such constant potential steps versus current values at charge-transfer kinetics 

(after 5 seconds).  

Further, electrochemical impedance spectra (EIS) have been recorded to envisage the 

electrocatalyst influence on charge transfer resistance. Figure 4-11 shows the typical Nyquist plots 

measured before and after 10 charge-discharge cycles. An inferior electrode-electrolyte interface 

resistance for Pt/Graphene (60) over pristine graphene electrode (170) has been observed. 

Furthermore, EIS of pristine graphene exhibits an extra-flattened semicircle, which could be due 

to deposition of insoluble products on electrode surface. Hence, reduced redox peak separation, 

higher exchange current density and minimal electrode-electrolyte resistance are clearly in 

agreement with the claimed catalysis of PS in presence of Pt/Graphene electrode. 

 

 

 

 

 

 

In order to validate the electrocatalytic behavior of Pt/Graphene electrode towards LiPS 

conversions, effect of catholyte concentration and temperature on electrochemical properties has 

been studied. It is important to consider concentration of the starting polysulfides (catholyte), 

which determines the volumetric sulfur loading and hence energy density of Li-S system. The 

increase in the sulfur loading is expected to affect the electrochemical performance due to increase 

Figure 4-11 Electrochemical impedance spectra of graphene and Pt/Graphene electrodes 

recorded from 100 mHz to 100KHz (before and after 10 charge-discharge cycles). 
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in the viscosity of the polysulfides. However, the presence of electrocatalyst is believed to have a 

positive effect towards redox reactions of highly viscous catholyte.To do this feasibility study of 

Pt/Graphene electrode towards high sulfur loading, higher molar concentration of catholyte 

containing 0.8M and 1.0M Li2S8 (corresponds to 1.61 and 2.0 mg of sulfur per cm-2 respectively) 

have been prepared and subjected to electrochemical behaviour. Herein, Pt/Graphene electrode 

exhibits specific capacities of 550 and 410 mAh g-1 with 0.8 and 1.0 M of Li2S8 respectively at 0.2 

C-rate with stability over 100 cycles (Figure 4-12).   

 

 

 

 

 

 

 

 

 

 

In order to validate electrocatalyst sensitivity towards temperature, the cell containing  

Pt/Graphene electrode was first cycled at room temperature for 5 cycles and then cycled at 

60 C. In agreement with electrocatalysis behavior, Pt/Graphene electrode showed significantly 

reduced polarization at 60 C compared to RT with almost 50% enhanced specific capacity (Figure 

4-13). Such improvements in the cell polarization and capacity with temperature confirm the 

electrocatalysis of polysulfides. These results including enhanced electrochemical reversibility of 

Figure 4-12 Feasibility of electrocatalyst containing electrode (Pt/Graphene) for high sulfur 

loading. 
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LiPS highlight the significance of electrocatalytically active metal nanoparticles and their surface 

anchoring strength towards LiPS conversion reactions.  

 

 

 

 

 

 

 

 

 

 

 

The interaction between electrocatalyst and polysulfides during charge and discharge 

process have been probed by conducting FESEM, XRD and X-ray photoelectron spectroscopy 

(XPS) studies on cycled cells. Electrodes are de-crimped carefully from 2032 coin cells, washed 

thoroughly with tetra ethylene glycol dimethyl ether (TEGDME) solvent and dried in vacuum for 

12h. After five charge-discharge cycles, both Graphene and Pt/Graphene electrodes are examined 

in discharge and charged state separately. FESEM images of Graphene and Pt/Graphene electrodes 

at charged state are respectively shown in Figure 4-14(a,b). The presence of precipitated insoluble 

LiPS (some of them are marked with broken yellow lines) in Graphene electrode and its significant 

reduction in Pt/Graphene further evident that catalyst helps to keep the electrode structure active 

even after several cycles of charge/discharge process (Figure 4-15).  

Figure 4-13 Enhancement of charge transfer kinetics (decreased charge-discharge polarization) 

of the Pt/Graphene electrode with increase of temperature (from 25 to 60 C) for LiPS 

conversions vs Li+/Li. 
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(a) (b) 

(a) (b) 

Figure 4-14 Low-magnification images of cycled electrodes a) pristine graphene and b) Pt anchored 

graphene at charged state. 

 

Figure 4-15  FESEM images reveal the large amount of insoluble LiPS deposition on (a) pristine 

graphene (highlighted in yellow circles) and (b) reduced amount of LiPS species on Pt anchored 

graphene 

 



49 
 

 
 

 

 

 

 

 

 

 

 

Figure 0-3 (a) XRD patterns of cycled electrodes (b) selected range of slow scan (0.5/min.) - 

XRD pattern to confirm formation of Pt-S peak at discharged state and its reversibility at charged 

state. 

 

From XRD patterns, formation of platinum sulfide on the discharged state (2=29.2 and 

36.4) and further it’s fading up on charging (Figure 4-16a,b) has been observed. Hence, it is 

confirmed that nature of interactions between Pt and sulfur is reversible and accountable for stable 

electrochemical performance [92, 93]. 

Further, XPS spectra for Graphene and Pt/Graphene electrodes at discharged and charged 

state have been recorded to understand Pt-polysulfide interactions. From Figure 4-17, XPS spectra 

of de-convoluted S2p peaks, peaks 159.3 eV corresponding to the formation of insoluble Li2S and 

Li2S2 products observed in both discharge and charged states of Graphene electrode. The presence 

of such peaks in charged state indicates poor reversibility of deposited short-chain polysulfides to 

long-chain polysulfides. In other hand, significant reduction in the relative area of XPS peak is 

observed for the charged state of Pt/Graphene electrode witness the better reversibility (Table 4-

Figure 4-16 (a) XRD patterns of cycled electrodes (b) selected range of slow scan (0.5/min.) - 

XRD pattern to confirm formation of Pt-S peak at discharged state and its reversibility at charged 

state. 
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4).[86, 42, 94] The positive shift in other two peaks 

of Pt (charged state) at 162.7 and 163.9 eV are 

ascribed to S-O and S-S band, especially later 

evidence the formation of elemental sulfur with 

respect to Pt/Graphene. Furthermore, from the de-

convoluted 4f 7/2 and 4f 5/2 peaks of Pt (Figure 4-18), 

the presence of Pt2+ species indicates interactions 

with LiPS products during discharge.[95] Decrease in 

presence of Pt2+ compared to its counterpart Pt0 

during charge process further supports the argument 

that Pt aids bonding of LiPS species on electrode 

surface during discharge process and helps the 

reversible reaction during charging process. Hence, 

Pt nanoparticle plays crucial role in adsorbing 

polysulfide species during discharge process and 

further converting them into long-chain LiPS and 

elemental sulfur during charging process. As a proof 

of concept, the feasibility of extending this concept to 

non-noble metal catalyst, similar experiments have 

been conducted by taking bulk WC and TiC as electrodes against PS based electrolyte. 

 

 

 

 

Figure 4-17 XPS analsysis (SP2) of 

pristine graphene (d) & (e) and 

Pt/Graphene electrodes (f) & (g) in 

discharged and charged state 

respectively. 
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Table 4-4 Relative area of XPS (S2p) peaks in different electrochemical conditions 

 

Figure 4-18 High resolution XPS scan of Pt on Pt/Graphene electrode at (a) discharged state and 

(b) charged state. 
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4.4 Conclusion: 

In summary, we bring in electrocatalysis principles into Li-S battery configuration to 

stabilize polysulfide shuttle process and to enhance the rate capabilities. Pt/Graphene and 

Ni/Graphene has exhibited reduced overpotential and excellent specific capacity over pristine 

graphene electrodes. More importantly, presence of electrocatalyst (Pt) helps to demonstrate 40% 

enhancement in the specific capacity over pristine graphene with columbic efficiency above 

99.3%. Postpartum analysis of electrodes further confirms the catalyst affinity towards adsorbing 

soluble polysulfides and converting them into long-chain polysulfides without allowing them to 

precipitate much on the electrode. Thus, introdusing catalyst in Li-S system will open a new 

avenue for improving electrochemical performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

 
 

CHAPTER 5 SHEAR-EXFOLIATED WS2 ELECTROCATALYSTS: 

CHEAP AND ALTERNATIVE FOR STABILIZING LITHIUM/SULFUR 

BATTERY PERFORMANCE 

5.1 Introduction    

 In search of an efficient and cost effective electrocatalyst as an alternative to noble metals, 

transition-metal dichalcogenide (TMDs) materials have found attractive due their long research 

interest and pre-established knowledge as a catalyst in hydro-desulfurization, photocatalysis solar 

cells, hydrogen evolution reactions and their stability towards sulfur chemistries. Metal sulfides 

are considered as an alternative electrocatalysts to expensive Pt since they are relatively stable in 

acidic media, resistant to chemical poisoning, have exceptional mechanical robustness and more 

importantly possess desirable electronic conductivity [96]. Experimental and theoretical 

investigations of these electrocatalysts confirm that the introduction of sulfur into the lattice of the 

early transition metals results in an expansion of the lattice constant. Further, density functional 

theory (DFT) calculations have specified that the synergism among metal d-orbitals and the sulfur 

s- and p- orbitals results in broadening in the d-band structure, imparting characteristics 

approaching the d-band of Pt [97-99].  

 Among various types of TMDs available in nature, most of the literature replete with either 

WS2 or MoS2 owing to their inherent electronic and electrochemical properties, however other 

TMDs are progressively emerging. Due to their lamellar structure analogous to that of graphite, 

several well established graphene synthesis techniques such as chemical vapor deposition, wet-

chemical, mechanical and electrochemical exfoliation methods have been currently adopted for 

the synthesis of layered TMDs. However, majority of exfoliation methods are resulted in 

producing small quantities of nanosheets. More importantly, applications such as energy storage 

and conversion devices, electrocatalyst in batteries require the substantial large amounts of 2D 

nanoflakes which limit their applications in various fields.  
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 Among various methods reported to produce 2D nanosheets of TMDs, liquid-exfoliation 

methods has been promising due to its ability to produce bulk quantities and its precise control 

over flake-sizes. Recently, liquid exfoliation has been performed in aqueous solution of surfactant 

to produce large quantities of graphene using shear rates. A simple kitchen blender was used to 

exfoliate graphene sheets of equivalent quality of those produced by conventional sonication 

method. The significance of shear-exfoliation method over sonication technique is that achieving 

high volumes and higher production rates of 2D materials in a given time. Moreover, this approach 

utilizes water as an exfoliation medium which is eco-friendly and cost-effective especially for 

scaling up towards industrial applications. It is well understood that liquid exfoliation is generally 

produce exfoliated nanosheets with broader size and lateral dimensions. However, this could be 

partially addressed by optimizing or selecting post-processing steps such as altering centrifugation 

rates and pore size of filtration membranes. For an effective catalysis, it is reported that smaller 

nanosheets with length below 100nm are preferable.  

With this background, large-scale synthesis and precise control over the flake size of WS2 

nanosheets has been achieved by shear-exfoliation method. The ability to tune the electrical 

conductivity along with high carrier mobility, layered WS2 has become the topic of research 

interest in recent days especially for various opto-electronic applications. However, their catalytic 

properties have not thoroughly looked and their electrocatalytic properties towards polysulfide-

shuttle process are utterly unknown. Herein, for the first time, we have conducted detailed 

investigations on electrocatalytic properties of WS2 nanosheets to control polysulfide-shuttle 

process in Li-S battery. We believe electrocatalysis of polysulfides using layered TMDs will open 

a new avenue for developing efficient energy storage technologies. 
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5.2 Experimental section 

5.2.1 Shear-exfoliation of WS2 

 In a typical experiment, bulk WS2 (2µm, Sigma Aldrich) was dispersed in the aqueous 

solution of sodium cholate (Surfactant, Sigma Aldrich). The optimized ratio between bulk WS2 

and surfactant is 5:1(25:5 g) in a 500 ml millipore water for each shear-exfoliation process in a 

kitchen blender (Vitamix). To avoid re-stacking of exfoliated WS2 nanosheets due to overheat of 

solution. The mixing has been performed for 2min with an interval rest-time of 2 min in ice-cold 

bath. The same cycling process was continued for 6 hours to obtain WS2 nanosheets in surfactant 

solution. Firstly, well-dispersed 2D nanosheets were separated from un-exfoliated WS2 by 

centrifugation at as low as 1500 rpm and followed by the concentrated  supernatant liquid contains 

few layer WS2 were purified and concentrated by centrifuging at 12000 rpm for 30 minutes. 

Finally, 2D nanosheets were collected after filtration using 0.02 µm pore size membrane using the 

copious amount of water to remove surfactant from exfoliated nanosheets and dried under vacuum 

for 12h prior to investigate their physicochemical and electrochemical properties. 

5.2.2 Preparation of lithium polysulfides (Li2S4 and Li2S8) 

 For LiPS adsorption and electrocatalytic studies, 10 mM of lithium polysulfide (Li2S4) 

solution was used by reacting stoichiometric amount of Li2S and S in 1:1 v/v of 1,3-dioxalane and 

1,2-dimethoxyethane at 50 C for overnight. The electro-active species containing catholyte 

solution (600 mM) for electrochemical properties has been prepared using calculated amounts of 

Li2S and S to attain nominal formula of long-chain LiPS (Li2S8) in tetraethylene glycol dimethyle 

ether (TEGDME) at 90 °C for 12h or until all the solid particles dissolves. These molar 

concentrations are calculated based on the amount of active species i.e sulfur in LiPS solution. 
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5.2.3 Adsorption and electrocatalytic studies 

 Two Li2S4-WS2 solutions were prepared along with blank solution (only LiPS as controlled 

experiment) to examine the polysulfides adsorption on WS2 nanosheets. In a typical process, 250 

and 500 µg of WS2 were dispersed individually in 1:1 v/v of 1,3-dioxalane and 1,2-

dimethoxyethane and the same was added to 1mL of LiPS (Li2S4) solution with an effective stirring 

for 30min. To speculate color changes in solution, the mixtures were undisturbed for 12h.  The 

supernatant and WS2 nanosheets (precipitate) were taken for ultraviolet-visible spectrophotometer 

(UV-Vis) and X-ray photoelectron spectroscopy (XPS) studies respectively. The electrocatalytic 

activity of WS2 towards LiPS conversion reactions was performed using voltammetry techniques 

(CV and LSV) on three-electrode cell, consisting of WS2 coated glassy carbon (GC) as working 

electrode, lithium foil as counter/reference electrodes and 10 mM Li2S4 solution as an electrolyte. 

An electrocatalyst was loaded on GC using 5 wt% nafion solution as reported previously in 

literature. 

5.2.4 Cell fabrication and electrochemical measurements 

 Electrocatalytic active electrodes were prepared by an appropriate mixing of bulk WS2 or 

shear-exfoliated WS2 individually with conductive carbon (Super-P) and polyvinylidene fluoride 

(PVDF) binder in the weight ratio of 80: 10: 10.   Such composite was taken as slurry using N-

methyl-2-pyrrolidone (NMP) as solvent and coated uniformly on 18 µm thin aluminum foil. An 

electrode coated Al foil was dried in vacuum oven at 90 °C to evaporate NMP, and cut in to circular 

discs of 12.7 mm diameter. Standard 2032 coin cells were fabricated to measure electrochemical 

properties using coated WS2 materials as working electrode and lithium metal as counter and 

reference electrode and celgard separator. Pre-calculated mount of 600 mM catholyte containing 

1.56 mg of sulfur used as active material along with an electrolyte consists of 1 M of lithium 
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bis(trifluoromethanesulfonyl) imide (LiTFSI) and 0.1M of lithium nitrate (LiNO3) in TEGDME. 

Linear sweep and cyclic voltammetry studies were conducted using VMP3 potentiostat (Biologic 

Science Instrument) in the potential window of 3.0-1.5 V at a scan rates from 0.1 mV/s. 

Galvanostatic charge- discharge studies were performed for WS2 electrodes at different current 

rates in the potential range of 1.5 - 3.0 V using ARBIN charge-discharge cycle life tester.   

5.2.5 Characterizations 

 X-ray diffraction (XRD) patterns are recorded at a scan rate of 0.03° s-1 on a Rigaku 

Miniflex II X-raydiffractometer using CuKα source. Surface morphology (Field emission electron 

microscopy images) studies are performed on JEOL JSM-7600 system operated with accelerating 

voltage 20 kV. X-ray photoelectron spectrums (XPS) of electrode surfaces have been collected 

using PHI Quantera spectrophotometer. Transmission electron microscopy (TEM) images were 

recorded on JEOL 2010 TEM using LaB6 Filament Gun. Raman studies have been carried out on 

Triax 550 (Horiba Jobin Yvon, Edison, NJ) with a 514 nm laser excitation. 

5.3 Results and discussion 

  Liquid exfoliation is considered as one of the favorable way to produce large-scale 

nanosheets of TMDs to meet their potential applications. In a typical experiment, shear-exfoliation 

process is performed to exfoliate tungsten sulfide (WS2) using simple kitchen blender in aqueous 

surfactant solution. Sodium cholate has been used as surfactant to stabilize exfoliated nanosheets, 

however, the ratio of WS2 and surfactant (sodium cholate) at start of the experiment is 

predominantly determines the quality of nanosheets. The shear-exfoliated WS2 nanosheets were 

washed thoroughly to remove surfactants and vacuum dried for overnight, subsequently subjected 

for their physical and electrochemical studies. As shear-exfoliated WS2 along with bulk 
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counterpart are characterized systematically using microscopy, X-ray diffraction (XRD), X-ray 

photoelectron (XPS) and Raman spectroscopy techniques.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 Field emission scanning electron microscopy (FESEM) image of bulk WS2 was shown 

large polygonal stacks up to hundreds of nanometer thicknesses with the few micrometer flake 

sizes (Figure 5-1). Upon shear-exfoliation, a significant disintegration of WS2 flakes across its 

width represents a successful exfoliation in aqueous solution. Such exfoliated flakes have been 

observed along with extensive wrinkling of the edges, as expected from shear force generated by 

high shear rate during the blending process. 

 

Figure 5-1 FESEM images of (a) bulk WS2, (b) and (c) WS2 nanosheets produced via. Shear- 

exfoliation process in surfactant containing aqueous solution (Scale bars represent 1 µm) 
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To further observe nature of dispersed nanosheets resulted from shear-exfoliation of WS2, 

transmission electron microscopy (TEM) study has been performed. Figure 5-2a and b have shown 

the TEM images of shear-exfoliated WS2 nanosheets with a narrow distribution of nanosheets with 

desirable lateral dimensions.  Unlike, other liquid exfoliation methods, which yield broad range of 

flake sizes, shear exfoliation resulted in planar objects with the small lateral size below 100 nm 

which is suitable for electrocatalysis. Herein, images were proven the successful exfoliation of 

nanosheets with folded edges. 

In addition, we have investigated X-ray diffraction (XRD) patterns (Figure 5-3a) and 

Raman spectrums (Figure 5-3b) for exfoliated WS2 in comparison with its bulk to evaluate further 

exfoliated WS2 nanosheets. In XRD study, both the samples exhibit identical patterns with 

significant reduction in peaks intensity, especially for (002) reflection at 2=14.24 which is 

another indication for production of WS2 nanosheets via. shear-exfoliation process [100]. 

Similarly, raman spectra of both bulk and exfoliated WS2 display two strong peaks at 350 and 415 

cm-1. However, the intensity ratios of Raman peaks reveal the distinguishable evidence that the 

Figure 5-2 TEM images of WS2 nanosheets produced via. shear-exfoliation process. 
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quality of shear-exfoliated WS2 nanosheets. Yet another information gained from Raman 

spectroscopy is that no vibration due to impurities (for example, no surfactant are detected). 

 

 

 

 

 

 

 

 

 

In spite of insights gained from microscopy, XRD and Raman studies, chemical and 

structural transformation on surface about shear-exfoliated WS2 was insufficient, especially 

towards electrocatalytic phases. It is well-documented that 1T phase of TMDs are greatly 

influenced their electrocatalytic activity towards any red-ox reactions. In this regard, X-ray 

photoelectron spectroscopy (XPS) measurements were performed on both the materials to examine 

elemental composition and phase analysis upon exfoliation. Figure 5-4a and b illustrates the XPS 

spectra of W 4f orbitals for both the samples, observed peaks at 34.3 and 32.2 eV are correlated to 

W4+ 4f5/2 and 4f7/2, respectively. At this juncture, we have also determine a peak at 37.9 eV on both 

the spectra corresponding to oxidized W(IV), as reported previously [101]. Upon deconvoluted 

the W4f, three distinguishable peaks have been observed for both the samples mostly due to 2H 

phase, 1T phase and oxidized W(IV). However, their difference in atomic percentages 

corresponding to different phases reflects the relative structural changes on surface resulting from 

Figure 5-3 XRD patterns of (a) bulk WS2 and shear-exfoliated WS2 nanosheets (Inset: 

selected area to highlight (002) reflection) and (b) Raman spectra of shear-exfoliated WS2 

nanosheets in-comparison with its counterpart bulk WS2 

 



61 
 

 
 

exfoliation as tabulated in Figure 5-4c.  Even though, XPS alone is not an appropriate technique 

to analyze elemental composition of 2-D materials, it is important to note that comparison of their 

ratios holds good and generally gives close approximations. It is well reported that 1T phase is 

metallic in nature and high in electrocatalytic activity towards any red-ox reaction. Hence, 

exfoliated WS2 nanosheets with enhanced 1T phase is expected to exhibit better electrode with 

LiPS conversions. 

 
 

 To understand the adsorption of lithium polysulfides (LiPS) on layered TMDs which 

advances reversible red-ox reactions, we have prepared medium chain-length Li2S4 as represented 

LiPS and verified their adsorption behavior with WS2 using ultraviolet-visible spectrophotometer 

(UV-Vis). The known amount of WS2 material is added to the 1ml of 0.01 M Li2S4 solution 

Figure 5-4 X-ray photoelectron spectra of shear-exfoliated WS2 and its counterpart 

bulk WS2 (a) W4f of bulk, (b) W4f of exfoliated WS2-nanosheets and (c) tabulated 

atomic percentage of different phases respectively 
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prepared in a mixture of 1,3-dioxolane and 1,2-dimethoxyethane(1:1V/V), stirred for 30 minutes 

and kept for overnight as undisturbed. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

     On visual inspection, green solution turned to light-reddish green with 0.25mg of WS2 

indicating part of ionic species getting adsorbed on solid matrix. With the increase of the WS2 

concentration, a complete change in LiPS color has been observed as shown in Figure 5-5 (inset). 

Further, the same interactions have been confirmed analytically from UV absorption study wherein 

a strong absorption peak is identified at 600 nm correlated to the dissolved lithium polysulfides. 

The absorption peak is completely diminished upon addition of WS2 confirms the LiPS affinity 

towards layered TMDs.  

 

 

Figure 5-5 UV absorption studies of lithium polysulfides and corresponding visual 

inspection of LiPS color changes upon their adsorption on WS2 nanosheets (inset) 
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 Cyclic voltammetry (CV) and Linear sweep voltammetry (LSV) studies were conducted to 

understand the kinetics of WS2 nanosheets towards LiPS red-ox reactions using standard three-

electrode cell in 10mM of Li2S4 solution containing 1M LiTFSI salt as electrolyte. The 

electrocatalyst was loaded on a glassy carbon electrode and used as a working electrode vs. 

metallic lithium as reference and counter electrodes. Figure 5-6a displays the representative CV 

performance of WS2 and its comparison with commercial carbon electrode at a scan rate of 

0.1mV/s. Considerable changes in the LiPS red-ox reactions were observed in terms of current 

density and onset potentials of red-ox peaks. The derived parameters from CV’s such as onset 

potentials (Epa, Epc) and peak current densities (Ipa/Ipc) along with exchange current density 

values (derived from LSV) are tabulated in Table 5-1. The positive shift of onset potentials for the 

reduction of LiPS are 2.24 and 1.78 V (for carbon, 2.21 and 1.67 V) and negative shift in oxidation 

of LiPS is 2.39 V (for carbon, 2.42 V) respectively have been observed for WS2 nanosheets 

compared to carbon electrode.  

Figure 5-6 (a) Representative cyclic voltammograms of WS2 nanosheets and bulk WS2 vs. 

Li/Li+ with Li2S4 solution as an electrolyte and (b) Tafel plot derived from linear sweep 

voltammetry 
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 In addition, LiPS red-ox peak current densities of WS2 electrode is much higher than that 

of carbon electrode, demonstrating the electrocatalytic effect of WS2 nanosheets electrode. Such 

an enhanced behavior is mainly attributed to available edge and basal planes (1T-phase) resulted 

in shear-exfoliation of WS2 as confirmed by XPS. Comparatively, improved non-Faradaic current 

for WS2 electrode is an indication of high surface area. The kinetic parameters are derived by 

conducting LSV experiments on both the electrodes. During LSV technique, we sweep-down from 

OCV to 400 mV for cathodic process at a scan rate of 0.1mV/s. Similarly, oxidation sweep has 

been carried out after electrodes discharged completely (up to 1.5 V) and rested for couple of hours 

to attain the equilibrium state. The exchange current density values have been obtained from Tafel 

plot drawn using potential vs. current values Figure 5-6b. Hence, superior electrocatalytic activity 

and reversibility of LiPS reactions for WS2 nanosheets are evident that it could exhibit better 

electrochemical performance. 

 

 

 Electrochemical performance of 2-D WS2 nanosheets and its bulk counterpart has been 

evaluated by fabricating standard 2032 coin cells. The cells consisting of titled compounds as 

working electrodes vs. metallic lithium foil as counter/reference electrode and celgard membrane 

as a separator. Herein, the electrochemical active species are in the form of LiPS (0.6M of Li2S8) 

in TEGDME solution containing 1M of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) and 

0.1M lithium nitrate (LiNO3). Electrochemical properties were measured at a constant current rate 

Table 5-1  Derived electrochemical parameters from CV and LSV 
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of 0.2 C (The full discharge-charge capacity of 1672 mAh/g in 5 h) in a potential window between 

3.0-1.5 V. Figure 5-7 displays galvanostatic discharge-charge profiles and cycling performance of 

bulk WS2.  A well-defined voltage vs. capacity plateaus corresponding to LiPS red-ox reactions 

upon number of cycles are strong indication of electrode/electrocatalyst behavior for newly 

identified WS2 (Figure 5-7a). Typical two-discharge plateaus related to the conversion of long-

chain LiPS to medium (Li2Sx, 6≤ x≥8) at 2.4 V and then followed by further conversion to short-

chain LiPS at 2.0 V. For an initial few cycles of discharge, there is a lower-voltage plateau around 

1.7 V is attributed to formation of insoluble product Li2S, thus responsible large capacity fade at 

first few cycles. Even with after several cycles, the voltage vs. capacity plateaus have been 

observed overlap each other at 2.4 and 2.0 V, which is an indication of the suitability of newly 

identified electrocatalytically active TMDs i.e WS2 electrode for longs cycling of Li-S battery 

 Figure 5-7b demonstrations the cycling behaviour of WS2 cathode for 100 cycles at 0.2 C 

rate with coulombic efficiency of ~98.5%. Apart from few initial cycles, for instance, from 10 to 

100 cycles capacity fade is almost negligible due to an effective improved reversibility of LiPS on 

Figure 5-7 (a) Charge-discharge profiles and (b) cycle life performance of bulk 

WS2 in the potential range 1.5-3.0V 
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WS2 surface. At the end of 100th cycle, the cathode consists of bulk WS2 electrode delivers the 

capacity of 416 mAh/g.  

 An electrode was found to show enhanced performance with plateaus of charge-discharge 

around 2.4 and 2.0 V respectively with reduced polarization and it has been observed to be 

consistent over the long cycles (Figure 5-8a). Though, bulk WS2 exhibit reasonable capacity over 

a one hundred cycles, another key point that poor coulombic efficiency upon number of cycles 

limits its use as electrode for Li-S battery (Figure 5-8b). Furthermore, owing to large surface area 

and more number of available active sites for LiPS red-ox reactions, shear-exfoliated WS2 

enhances not only charge-discharge efficiency but also electrochemical properties. Hence, WS2 

demonstrates as an efficient electrocatalytically active electrode towards LiPS conversion 

reactions with high specific capacity of 630 mAh/g (Figure 5-8b).    

The shear-exfoliated WS2 nanosheets have been examined further for high rate capability 

and obtained results depicted in figure 5-9. As expected, the electrode consist of WS2 nanosheets 

exhibited an excellent high power rate capability as its exhibits as high as 380 mAh/g at 1 C rate. 

Also, the retention in the capacity and columbic efficiency at high rate charge-discharge rate at 1C 

Figure 5-8 (a) Galvanostatic charge-discharge profiles and (b) cycle life performance 

of shear-exfoliated WS2 nanosheets as electrode in the potential range 1.5-3.0V 
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for more than 250 charge-discharge cycles could be understood from the figure. Thus we could 

understand from detailed electrochemical and electrocatalytical studies, shear-exfoliated WS2 

nanosheets are effective to control LiPS shuttle mechanism to stabilize Li-S battery performance.  

 

 

 

 

 

 

 

 

5.4 Conclusion 

Controlling polysulfide-shuttle process in rechargeable Li-S battery holds key for realizing 

its potential applications. Herein, we demonstrated successfully electrocatalysis approach to 

control polysulfide-shuttle process using shear-exfoliated WS2 nanosheets. Large-scale production 

and precise control over the flake size of WS2 nanosheets has been achieved using shear-

exfoliation method. Electrocatalytic activity of WS2 nanosheets towards LiPS conversion reactions 

during charge-discharge process has been studied thoroughly.  Electrochemical properties of WS2 

nanosheets have been investigated by systematically varying catalytic active sites, rate-capabilities 

of the Li-S cell. Unveiling a specific capacity of 630 mAh/g at 0.2C rate and 380 mAh/g at 1C rate 

with excellent stability over 300 cycles clearly indicates yet another promising application of 2D 

layered metal chalcogenides.  

 

Figure 5-9 Long cycling behavior of WS2 electrode at 1C rate 
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CHAPTER 6 METAL CARBIDE NANOPARTICLES AS EFFICIENT 

ELECTROCATALYSTS FOR LITHIUM POLYSULFIDE CONVERSION 

REACTIONS 
6.1 Introduction 

Numerous scientific and engineering approaches also have been implemented and directed 

research to develop cathodes to improve the performances. In our previous chapter, we followed 

a different approach and demonstrated the utilization of nanostructured Pt and Ni electrocatalytic 

materials to trap polysulfides thereby improving the Li-S battery performances. In the present 

work, we have investigated the feasibility/applicability of using a new class of cathodes, 

specifically transition metal carbides, in Li/dissolved polysulfide battery configuration. Transition 

metal carbides have been used as catalyst for many electrochemical reactions including hydrogen 

evolution, oxygen reduction, H2O2 reduction, methanol oxidation and ethanol oxidation and also 

industrially important desulfurization, isomerization and hydrogenolysis processes due to their 

unique physicochemical properties and Pt-like behavior [106]. The electrochemical activities of 

transition metal carbides are thought to relate to the 3d electron number of transition metal atoms 

and strong interactions between metal and electroactive species. We anticipate the characteristics 

of transition metal carbides such as high metallic conductivity, high work function, chemisorption 

of sulfur species via metal–sulfur interactions, redox ability, and excellent thermal/mechanical 

stability will help in improving the polysulfide conversion kinetics as well as battery cycling 

performances. Nanostructured tungsten carbide (WC) and titanium carbide (TiC) powders were 

synthesized and characterized [107, 108]. Electrochemical studies along with ex-situ 

microscopic/spectroscopic studies were carried out to investigate discharge/charge processes and 

physical insights about the interactions between metal carbide and polysulfides were provided in 

detail. 
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6.2 Experimental preparation 

6.2.1 Preparation of tungsten carbide (WC) 

In a typical synthesis, 6.5 g ammonium paratungstate (NH4)6W7O24 was dissolved in 300 

ml of de-ionized water and followed by adding 1.8 g activated carbon (Vulcan XC-72R, Cabot 

corporation). This mixture was stirred vigorously at 343 K for 2 h to realize complete wetting of 

carbon and impregnation of tungsten ions. Then the solvent was fast evaporated at 373 K under 

continuous stirring. The resulting solid was further dried at 343 K for 6 h in a vacuum oven and 

then calcinated at 723 K for 2 h. In succession, this solid was carbonized at 1223 K with a heating 

rate of 5 K/min under a CO stream (flow rate: 180 to 200 ml/min) and maintained at 1223 K for 8 

h. After slow cooling to room temperature, the final product was obtained. 

6.2.2 Preparation of titanium carbide (TiC) 

In a typical synthesis, 1.6 titanium dioxide, 2.43 g magnesium carbonate and 2.92 metallic 

magnesium powders were mixed thoroughly and loaded into a 50 mL capacity stainless steel 

autoclave. All the manipulations were carried out in a dry glove box. After sealing under inert gas 

atmosphere, the autoclave was heated from room temperature to 823 K at a heating rate of 10 

K/min, and maintained at 823 K for 10 h, followed by cooling gradually to room temperature in 

the furnace. The product obtained from autoclave was washed several times with dilute HCl and 

distilled water to remove the impurities. Finally, the product was washed with absolute ethanol 

and vacuum-dried at 333 K for 12 h. 
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6.3 Results and discussion 

6.3.1 Diffraction and microscopic analyses of the transition metal carbides 

Structural features of the prepared metal carbides were analyzed using powder XRD. 

Diffraction patterns of WC and TiC are indexed and presented in Figure 6-1a and d, respectively. 

Analysis of the Bragg peaks representing hexagonal WC phase with space group, P63mc (No. 

186) and cubic TiC phase with space group, Fd3c (No. 225). Broad diffraction peaks are 

indicative of nanocrystalline nature. No peaks corresponding to the metal oxides or amorphous 

carbon were noticed, indicating phase purity of the materials. Morphological features of the metal 

carbides were examined using FESEM and TEM. SEM images depicted the agglomeration of 

crystallites in the size range of 80-120 nm for WC (Figure 6-1b) and 20-25 nm for TiC (Figure 6-

1e). Close examination of the particles by TEM depicted three-dimensional network of 

interconnected crystallites without any impurities (Figure 6-1c and f). It ensures the electronic 

conductivity.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1(a,d) XRD, (b,e) SEM, and (c,f) TEM of WC and TiC. First and second rows 

correspond to the WC and TiC, respectively. 
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Further, purity of the materials was further confirmed by composition analysis using EDX. 

EDX spectral and element mapping analysis indicated the presence respective elements and also 

the elemental distributions for all metal carbide samples are close to their original ratios (Figure 

6-2). 

 

 

 

 

 

 

 

 

 

 

 

6.3.2 Electrochemical properties 

  To evaluate the electrochemical performance of metal carbides such as WC and TiC, 

standard 2032 coin cells were fabricated using them as cathode vs metallic lithium as an anode 

and dissolved Li2S8 in electrolyte (0.6 M and 10 l) as an active material. Figure 6-3 illustrate 

that representative CV of WC and TiC electrodes vs. Li/Li+ at a scan rate of 0.1 mV/s with 10 

µl of Li2S8 in TEGDME solvent containing 1M LiTFSI and 0.1M LiNO3 as catholyte. 

Recorded CV curves for both the carbides consist of two cathodic peaks at 2.44 and 1.9 V 

corresponding to transformation of long-chain lithium polysulfides to short-chain LiPS and 

Figure 6-2 Secondary electron image (SEI) with corresponding EDX spectrum and elemental mapping 

images of WC and TiC 
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subsequent reduction to lower lithium polysulfides respectively. Upon forward scan, anodic 

peak has been observed related to reversible conversion of short-chain to long-chain LiPS 

which results in excellent reversibility[88].  Further, as a comparison between WC and TiC, 

the high red-ox peak currents for TiC indicating that stability or better activity of 

electrocatalyst. Similarly, onset potentials for TiC have been observed are 1.91 and 2.38 V 

resulting in reduced polarization to that of WC attributed to narroowly distributed TiC 

nanoparticles as understood from SEM images. 

 

 

 

 

 

 

 

 

 

Electrochemical behaviour of metal carbides was studied at a constant current rate of 0.1 

C (based on sulfur mass in the cell) and obtained results have been displayed in Figure 4 and 5. 

Initial charge-discharge capacities of 720 mAh/g at a c-rate of 0.1C with stability over 530 mAh/g 

are realized over 185 cycles (from figure 6-4a), which reveals robustness of WC electrode even 

after long cycling.  Figure 6-4b depicts the charge-discharge profiles of the cell containing WC 
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Figure 6-3 Cyclic voltammetry for both TiC and WC at scan rate of 0.1mV/s 

between the potential range of 1.5-3.0V 

 



73 
 

 
 

electrocatalyst. A stable voltage plateaus with comparable polarization between charge-discharge 

plateaus have been observed.   

Figure 6-4 Galvanostatic cycling behavior and charge-discharge profiles of WC 

electrocatalyst with 0.6M Li2S8 catholyte in the potential window of 1.5 - 3.0 V 

 

Similarly, galvanostatic measurements are conducted on TiC as cathode vs. Li/Li+ at a 

constant current rate of 0.1 C (based on sulfur mass in the cell) and obtained results have been 

monitored for 100 cycles. Figure 6-5a shows that type of electrocatalyst plays a crucial role in 

polysulfide conversion process, thus related electrochemical properties. Herein, TiC exhibit as 

high as specific capacity 1300 mAh/g, however, it has been observed that capacity fade occurs for 

first few cycles. Figure 6-5b reveals that TiC nanoelectrocatalyst electrode exhibited well defined 

typical discharge plateaus corresponding to the formation of soluble long-chain PS and their 

spontaneous dissociation to short-chain PS at plateaus at 2.4 and 1.97 V and reversible conversion 

of short-chain to long-chain LiPS plateaus at 2.34 V during charging process.  

 

 

 

 

(a) (b) 
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6.4 Conclusions 

     Owing to high electrical conductivity, PS adsorptivity due to polared nature and high work 

function, metal carbides are promising as one of the efficient electrocatlyst/electrodes for advanced 

Li-S batteries. Herein, metal carbides such as WC and TiC are synthesized successfully via. 

carbothermal reduction process with desired particle size of about 100 nm. Electrochemical 

properties of these MCs towards LiPS conversion reactions are examined by conducting 

galvanostatic charge-discharge studies. Among studied MCs, TiC exhibited specific capacity of as 

high 1300mAh/g for initial cycles, however, detailed analysis with respect to their electrocatalytic 

activity. The rate performance capability and long cycle life are under study. 

 

a) b)

Figure 6-5 Cycling behavior and charge-discharge profiles of TiC electrocatalyst 

with 0.6M Li2S8 catholyte in the potential window of 1.5 - 3.0 V 
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CHAPTER 7 CONCLUSIONS AND FUTURE WORKS 

     In summary, we bring in electrocatalysis principles into Li-S battery configuration to 

stabilize polysulfide shuttle process and to enhance the rate capabilities. As a proof of concept, we 

have studied LiPS conversion reactions with Pt/Graphene and Ni/Graphene vs. Li/Li+ in sulfur 

containing catholyte solution. Such an electrocatalytically active electrodes, especially 

Pt/graphene composite has exhibited reduced overpotential and excellent specific capacity over 

pristine graphene electrodes. More importantly, presence of electrocatalyst (Pt) helps to 

demonstrate 40% enhancement in the specific capacity over pristine graphene with a coulombic 

efficiency above 99.3%.  

     In search of an efficient and cost effective electrocatalyst as an alternative to noble metals, 

transition-metal dichalcogenide (TMDs) and metal carbides (MCs) have found attractive due their 

long research interest and pre-established knowledge as a catalyst in hydro-desulfurization, 

photocatalysis solar cells and hydrogen evolution reactions and their stability towards sulfur 

chemistries. They have specified that the synergism among metal d-orbitals and the sulfur or 

carbon s- and p- orbitals results in a broadening in the d-band structure, imparting characteristics 

approaching the d-band of Pt. Electrocatalytic activity of WS2 nanosheets towards LiPS conversion 

reactions during charge-discharge process has been studied thoroughly. Electrochemical properties 

of WS2 nanosheets and MCs have been investigated by systematically varying catalytic active 

sites, rate-capabilities of the Li-S cell. Unveiling a specific capacity of 630 mAh/g at 0.2C rate and 

380 mAh/g at 1C rate with excellent stability over 300 cycles clearly indicates that newly identified 

materials are promising electrodes for Li-S battery applications.  The nature of interactions 

between electrodes and LiPS species further confirms the catalyst affinity towards adsorbing 

soluble polysulfides and converting them into long-chain polysulfides without allowing them to 
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precipitate much on the electrode. Thus, introducing catalyst in Li-S system will open a new 

avenue for improving electrochemical performance.  

   Conversion of lower polysulfides to higher polysulfides and trapping them in a conductive 

highly porous matrix especially carbon based materials with wide variety of shapes and size or at 

cathode has been considered as crucial step in the sulfur based battery technologies. It is well know 

that the energy and power density of sulfur based battery configurations including Metal/sulfur, 

Metal/polysulfide and Redox flow batteries depend on rate of polysulfides conversion process. With 

this background, we recommend following materials and strategies for future works 

 Identification and synthesis of large surface area and porous electrocatalysts to trap 

dissolved lithium polysulfides and convert them effectively during charge-

discharge process. For examples, Metal nitrides, metal containing zeolites. 

 The same electrocatalysis approach could be applied to other metal polysulfides 

battery chemistry to improve reaction kinetics and hence overall energy density and 

power density of the battery system improves. For example, Na-S, Mg-S battery 

systems 
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 Stabilizing polysulfide-shuttle process while ensuring high sulfur loading holds the key to 

realize high theoretical energy density (2500 Wh/kg) of lithium-sulfur (Li-S) batteries. Though 

several carbon based porous materials have been used as host structures for sulfur and its 

intermediate polysulfides, the week adsorption of polysulfides on carbon surface and its poor 

reaction kinetics limits them from practical application. Here, we preset a novel electcatalysis 

approach to stabilize polysulfide shuttle process and also enhance its red-ox kinetics. As a proof 

of concept, we have studied in-detail using conventional electrocatalyst (Pt/graphene composite), 

further the same extended to cost-effective electrocatalysts such as WS2 nanosheets and Metal 

carbides for viable practical applications. Nature of electrocatalyst, concentration of polysulfides 

and temperature of the cell on electrochemical properties will be discussed. We reveal substantial 

improvement in electrochemical properties such as specific capacity, rate capability, and 

coulombic efficiency and corroborate our findings with systematic experimental studies. 

Interaction between electrocatalyst and polysulfides has been evaluated by conducting X-ray 

photoelectron spectroscopy and electron microscopy studies at various electrochemical conditions. 
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As a conclusion, introducing a catalyst in the Li−S system will open a new avenue for improving 

electrochemical performance. 
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