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Little research has been devoted to multiple imputation (MI) of derived variables. This 
study investigates various MI approaches for the outcome, rate of change, when the 
analysis model is a two-stage linear regression. Simulations showed that competitive 
approaches depended on the missing data mechanism and presence of auxiliary terms. 
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Introduction 

Multiple imputation (MI) techniques, although sound in theory, often present 

challenges in practice. One issue involves how best to multiply impute derived 

variables. These include interaction terms, higher-order terms, variables that are 

functions of others such as body mass index (BMI) – a function of height and 

weight – and rate of change in a measure (or the slope). Consider interaction 

terms. A natural question is whether the main effects should first be imputed so 

that the interaction term can then be derived, or whether the interaction terms 

should be imputed as any other variable. The former approach falls under the 

umbrella of what is called passive imputation methods and the latter under the 

umbrella of active imputation techniques (von Hippel, 2009; van Buuren, 2012). 

Similar issues arise in other contexts. For example, if one has data on height but 

not on weight for a subject, where BMI is of interest, a passive approach would be 

to first impute weight and then derive BMI, while an active approach would 

impute BMI directly as any other variable along with weight.  

This work is motivated by the ongoing Stanford GOALS randomized 

clinical trial, which is designed to evaluate a novel intervention in reducing BMI 

mailto:manishad@stanford.edu
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(weight in kilograms divided by the square of height in meters) among overweight 

and obese children (Robinson et al., 2013). The primary outcome of the trial is the 

rate of change in BMI, which entails measuring BMI at 4 time points over a 3-

year period (at baseline and at approximately 1, 2, and 3 years post-

randomization). As typically occurs in clinical trials, it is anticipated that a 

proportion of children will be missing one or more follow-up BMI measurements 

upon which to calculate the rate of change. The focus of this study is on how to 

impute slopes when slope is the outcome of interest and missing for a proportion 

of subjects due to incomplete BMI measurements. 

Multiple imputation (MI) 

MI is a simulation-based method for handling missing data (Rubin, 1996). There 

are three main steps involved in its use. The first is the imputation step where 

plausible values for missing data are drawn and filled in to create a full data set. 

This is done multiple, or m, times. The second step is the model-fitting step where 

the scientific model is fitted to each of the m data sets. The third step is the 

combination step where Rubin’s rules are applied to provide one summary result 

(Little & Rubin, 2002). Standard MI produces results that are statistically valid 

when the data are missing at random (MAR) (Ibid.). Essentially this means that 

missingness can be related to observed features, although conditional on such 

features, missingness is not related to unobserved data. The data are considered 

missing completely at random (MCAR) if missingness is unrelated to both 

unobserved and observed features, and the data are not missing at random 

(NMAR) if missingness is related to unobserved features. See Rubin’s seminal 

text on missing data for a complete description on mechanisms of missingness 

(Ibid.). MI may also be applied when the data are NMAR, but this requires 

explicit modeling of the missing data mechanism (Ibid.). Further, even when the 

data are NMAR, in the presence of sufficiently strong auxiliary data, applying MI 

assuming MAR may be reasonable (Collins et al., 2001). Importantly, MI yields 

estimates with desirable statistical properties under the same conditions in which 

the more ideal maximum likelihood-based methods for handling missing data 

produce estimates (Little & Rubin, 2002). MI, in contrast, is more accessible as it 

is available in several mainstream packages, while software is not available for all 

cases when applying maximum likelihood-based approaches. 

Specification of the imputation model (Step 1 of the MI process described 

above) is a critical step when applying MI, and requires the user to make key 

decisions. This includes the choice of one of two main approaches for imputing 
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the data. These are the joint modeling (JM) approach and the fully conditional 

specification (FCS) approach (van Buuren, 2007). Briefly, the JM approach 

involves specification of a joint model for the data from which the posterior 

predictive distribution for the missing data can be derived in order to impute the 

missing data. The approach typically assumes a multivariate normal distribution 

(although other parametric distributions are possible) and has well established and 

tractable statistical properties (Ibid.). FCS was developed to accommodate data 

sets of mixed type (i.e., when categorical variables are present), and therefore is 

useful when a plausible multivariate distribution may not be appropriate. 

Although the statistical properties are not tractable, use of FCS has been shown to 

be comparable to that of JM in practice and through simulation studies (Ibid.). In 

his excellent text on MI, van Buuren (2012) described other considerations, 

including which variables to include as predictors, the number of imputations to 

be performed, and how to handle derived variables. 

Current literature on active versus passive imputation approaches 

There are two main umbrellas of approaches that can be used to impute derived 

variables: active and passive. In general, active imputation involves imputing the 

derived variable as just another variable or JAV method (Seaman et al., 2012). In 

contrast, purely passive imputation – as implemented in STATA through ICE, 

which was developed by Patrick Royston (and more recently through MI 

IMPUTE CHAIN) or MICE in R – is an iterative process that involves using the 

derived variable in the imputation of all variables with the exception of the main 

effects (van Buuren, 2012; Royston, 2009). The derived term is then created once 

the main effects have been imputed (Ibid.). The advantage of an active approach 

is that it adheres to the generally well-accepted rule that the relationships 

specified in the scientific model are included in the imputation model (i.e., that 

the imputation model is congenial with the scientific model leading to what is 

called proper imputations (van Buuren, 2012; Rubin, 1996; Rubin, 1987; Meng, 

1994). For a more detailed discussion on this topic see Rubin (1987) and Meng 

(1994). This ensures that interrelationships are preserved appropriately, leading to 

unbiased descriptions of the relationship of interest. Passive approaches, on the 

other hand, ensure that imputed values adhere to consistent relationships and are 

therefore plausible. For example, under active imputation, if BMI is imputed as 

just another variable, it is possible to get a value of say 30 instead of 20 when 

observed weight is 54.5 kg (120 lbs.) and imputed height is 1.65 meters (65 

inches). Passive imputation can prevent such inconsistencies. 
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Research on optimal approaches for imputing derived variables has been 

limited. Much of the literature has focused on one of the more common derived 

variables – interaction terms (von Hippel, 2009; Seaman et al., 2012; Allison, 

2002). Allison (2002) briefly introduced the problem of multiply imputing 

interaction terms in his widely used and practical textbook on missing data. von 

Hippel (2009) discussed two major approaches for handling missing data of 

interaction and higher-order terms under an assumption that the data are MCAR – 

a “transform then impute“ or active approach and an “impute then transform” or 

passive-like approach, and provided a mathematical argument to demonstrate that 

under MCAR the active approach is less biased than the passive. von Hippel 

(2009) also argued that the purely passive approach is similarly biased. White at 

al. (2011) compared passive and active approaches for interaction terms under 

MAR and through simulations demonstrated that they are both biased but 

comparable. The authors recommend sensitivity analyses of both approaches in 

assessing robustness of findings. Mitani and others (2015) evaluated active and 

passive methods across different software platforms for interaction terms that 

involved categorical variables. They found an improved passive approach – where 

an interaction between the outcome and main effect is included in the imputation 

of the other main effect is included in a passive imputation -- outperformed both 

active and purely passive approaches. van Buuren (2012) emphasizes the 

importance of internally consistent imputed values, and therefore recommends 

passive approaches that are designed for this purpose. Although active approaches 

may yield valid statistical inferences under certain conditions, he argues that if 

implausible combinations of imputed values are produced that would not have 

been observed otherwise it undermines the imputation process. van Buuren (2012) 

discussed active versus passive imputation in the context of interaction terms, sum 

scores, and other derived variables such as ratios. However, their variability in 

performance for measures of rate of change or slope was not discussed. Although 

imputation in the context of mixed effects models has received some attention 

(e.g., Schafer, 1997b), no research has been conducted on imputation when the 

scientific model is a two-stage linear regression. Our paper focuses on situations 

in which slope – a variable derived from repeated measurements – is the outcome 

of interest and the scientific model is a two-stage linear regression. Furthermore 

we consider a wider range of active and passive methods under a variety of 

missing data mechanisms that include the NMAR condition. 

  



MULTIPLE IMPUTATION FOR RATE OF CHANGE 

164 

The Stanford GOALS trial 

This work is motivated by a large-scale community-based randomized clinical 

trial currently being conducted at Stanford called Stanford GOALS (Robinson et 

al., 2013). The objective of the trial is to evaluate a novel multi-level, multi-

component intervention to treat overweight and obese children aged 7-11 years 

old. The intervention consists of access to after-school team sports, home visits 

for behavioral counseling and modifications of the home environment, and 

primary care counseling. Two-hundred forty subjects are randomized to 1 of 2 

groups – the intervention group or a control group receiving health and nutrition 

education plus their current standard of care. The primary outcome is a derived 

measure – the rate of change in BMI. Baseline BMI is measured for all 

randomized subjects. BMI is then measured at approximately 1, 2, and 3 years 

post randomization, and the outcome is a function of the 4 BMI measurements. 

As with most prospective randomized clinical trials, some subjects are expected to 

be missing one or more of the follow-up BMI measures.  

The data are not expected to be missing completely at random. Missingness 

may be related to follow-up time, treatment arm, baseline BMI and even rate of 

change in BMI itself. However, conditional on baseline and intermittent BMI 

values, as well as a number of related measures including triceps skinfold, waist 

circumference, blood pressure, fasting blood lipids, insulin, glucose, and 

hemoglobin A1c to name a few, recorded at baseline and annually, we expect the 

data to be MAR. Our analytic plan specifies that we will use MI to impute the 

outcome or rate of change. For subjects who have at least 2 measurements, slope 

can be calculated with the baseline and subsequent measurements. Thus, the plan 

is to impute slope for those subjects who only have a baseline BMI and no other 

follow-up measurements. 

Slope model versus mixed effects models 

A simplified version of the primary analysis proposed for Stanford GOALS is a 

two-stage linear model or what we will refer to here as a slope model. More 

specifically, in the first stage, we derive a slope for all individuals with at least 

two BMI measurements by regressing BMI on time for each individual: 

 

 BMIij = α0i + α1i timeij + εij, (1a) 

 



DESAI ET AL. 

165 

where timeij represents time in months since randomization for the ith person at the 

jth visit, and εij represents normally distributed random error; and in the second, 

we regress slope on treatment arm: 

 

 ̂ 1i = η0 + η1Treatmenti + δi, (1b) 

 

where Treatmenti is an indicator for whether the ith subject is in the intervention 

group, and δi represents normally distributed random error. As a secondary 

analysis, we will fit a mixed effects model where we regress BMI on treatment 

arm, time, and an interaction between time and treatment, and include subject-

specific random effects for the intercept and slope with time: 

 

 BMIij = (γ0i + β0) + β1Treatmenti + (β2 + γ1i)timeij + β3Treatmenti×timeij + ξij, (2) 

 

where γ0i and γ1i are normally-distributed subject-specific random effects – a 

random intercept and slope for time for the ith subject – and ξij is the normally 

distributed error term for the jth observation corresponding to the ith subject. The 

parameter of interest is the difference in rate of change in BMI between the 

treated and non-treated groups. For the slope model, this is η1 and for the mixed 

effects model, this is β3. Although equivalent in that both models assume subjects 

have their own random intercept and random slope, the procedures for fitting 

these models differ and may yield different estimates particularly in the presence 

of missing data. The mixed effects model with random intercepts and random 

slopes or RIRS model – yields an estimate based on any subject who contributes 

at least one outcome of BMI and relies on an assumption that the data are missing 

at random. The slope model yields an estimate based on any subject who 

contributes at least two outcomes of BMI (at baseline and at least one follow-up 

time point). Thus, those who contribute only a baseline measurement are excluded 

from the analysis. Incorporating MI methods into the process to impute rate of 

change for those missing all 3 follow-up BMI values and then applying the slope 

model relies on a MAR assumption about the missing data as well. 

Issues with choosing a two-stage linear regression or slope model over the 

RIRS model have been discussed at great length (e.g., Rogosa & Saner, 1995; 

Gelman, 2005; Jusko & Shively, 2013; Duch & Stevenson, 2005). There are 

several reasons, however, why the slope model might be chosen over the RIRS 

model (Rogosa & Saner, 1995; Gelman, 2005; Liao et al., 2013). Specialized 

software is required in the latter case and the complexity of the model 

parameterization can compromise interpretability; in contrast, Equation 1b above 
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is easy to interpret compared to a mixed effects model that in a longitudinal 

setting involves interpreting an interaction term. In addition, in the process of 

fitting the slope model, insight into the data can be gained; in particular, 

heterogeneity in estimates of intercepts and slopes across subjects can be assessed. 

These features are not typically examined when fitting the RIRS model; rather, 

they are treated as nuisance parameters. There may be advantages, however, in 

the properties of estimates resulting from RIRS models over those resulting from 

the two-stage models. Gelman (2005) advocated the two-stage model over the 

mixed effects model in certain conditions, because of the simplicity and insight 

gained which are strong reasons to choose the two-stage model when it is 

appropriate. It was noted there are situations where the advantages of the mixed 

effects model outweigh its complexity – e.g., in the longitudinal setting, if data 

within individuals are sufficiently sparse, it may be desirable to borrow strength 

from other individuals by fitting the RIRS model.  

Therefore, the goal is to determine whether different approaches to imputing 

slope – when a two-stage linear model or slope model is of interest – affect 

properties of estimates of interest. In particular we are interested in approaches 

that can be employed by mainstream packages that have incorporated MI 

procedures. To that end, variability will be evaluated among active versus passive 

methods of imputation that are readily accessible in STATA and R. We focus on 

situations where the treatment effect is of interest and where auxiliary information 

may or may not be present. 

Methodology 

A simulation study was conducted to closely mimic the Stanford GOALS trial, 

where there were two treatment arms with 120 subjects per group. Other 

parameters were not based on empirical findings, as the study is currently ongoing. 

Specifically, we assumed there was a treatment effect such that those in the 

treatment group did not increase their BMI over time, while those in the control 

group increased by 0.5 BMI units per year, the percent of observations (not 

individuals) missing varied (20% and 40%), the true model varied (RI or 

slope/RIRS model), and auxiliary information was and was not present (Table 1). 
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Table 1. Description of Scenarios 

 

Scenario 
Model for Data 

Generation 

Model for 

Missingness 

Average % 

Missing 

Auxiliary 
Data 

Available 

Auxiliary 
Data Related 

to Variables 

Auxiliary Data 
Related to 

Missingness 

A1 RI model MAR 40 No N/A N/A 

A2 RI model NMAR 40 No N/A N/A 

B3 RI model MAR 40 Yes Yes No 

B4 RI model MAR 40 Yes Yes Yes 

B5 RI model NMAR 40 Yes Yes No 

B6 RI model NMAR 40 Yes Yes Yes 

B7 RI model NMAR 20 Yes Yes Yes 

C8 RIRS/Slope model MAR 40 Yes Yes Yes 

C9 RIRS/Slope model NMAR 40 Yes Yes Yes 

 

Generating BMI 

The true model from which the data were generated under Scenarios A and B was 

a mixed effects model with random intercept only – which we will refer to as the 

RI model – a special case of the RIRS model which includes both random 

intercept and random slope for time for each subject (Table 1). The RI model can 

be expressed as: 

 

 BMIij = (γ0i + β0) + β1Treatmenti + β2timeij + β3Treatmenti×timeij + ξij,  

 

where β3 = −0.5, ξij ~ N(0,1), γ0i ~ N(0,2). 

The true model from which the data were generated under Scenario C was 

the slope model, so that we first generated slopes from the following model: 

 

 α1i = η0 + η1Treatmenti + δi  

 

where η1 = −0.5, δi ~ N(0,0.7). BMI values for each subject were than generated 

based on the realized slope values and random intercepts according to the 

following model: 

 

 BMIij = α0i + ̂ 1itimeij + εij  

 

where α0i ~ N(25,2), εij ~ N(0,1), and timeij takes on values of j=0, 1, 2, or 3 to 

represent the jth visit of the ith individual. Note that this is also the RIRS model, as 
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each individual has its own intercept and slope generated as random variables 

from a normal distribution.  

Generating auxiliary terms 

Two auxiliary terms – one continuous to represent age, and one dichotomous to 

represent gender – were generated. In some scenarios (B3 and B5), the auxiliary 

variables were related to baseline BMI and the rate of change in BMI or the slope, 

and in others they were additionally related to missingness (B4, B6, B7, C8, C9) 

(Table 1). Specifically, in Scenarios B3-B7 and C8-C9, one continuous variable 

representing Age, was generated for the ith person as follows: 

 

 Agei = 5 × Slopei + 2 × BaselineBMIi + εij  

 

where the error was normally distributed with variance of 4. An indicator for male 

gender was generated as follows: 

 

 logit(Malei) = −5 + 0.5 × Slopei + 0.2 × BaselineBMIi  

 

Inducing missingness 

Missingness (under MAR) was related to time since randomization and treatment 

arm for Scenarios A1 and B3: 

 

 logit(missingij|Treatmenti = control) = −1.5 + 2 × timeij, and  

 logit(missingij|Treatmenti = intervention) = 2.  

 

Missingness (under MAR) was additionally related to auxiliary terms for 

Scenarios B4 and C8: 

 

 logit(missingij|Treatmenti = control) = −3 + 2 × timeij + 1.5 × I[Agei < 50] 

 + I[Malei = 1], and  

 logit(missingij|Treatmenti = intervention) = −1.8 + I[Malei = 0].  

 

Missingness (under NMAR) was related to time since randomization, treatment 

arm, and slope for Scenarios A2 and B5: 
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 logit(missingij|Treatmenti = control) = −1.5 + 2 × I[slopei ≥ 0.2] + timeij, and  

 logit(missingij|Treatmenti = intervention) = −2.5 + I[slopei < 0.5].  

 

Missingness (under NMAR) was additionally related to auxiliary terms for 

Scenarios B6, B7, and C9: 

 

 logit(missingij|Treatmenti = control) = −2.5 + 2 × I[slopei ≥ 0.2]  + timeij 

 + I[Agei < 50] + I[Malei = 1], and  

 logit(missingij|Treatmenti = intervention) = −2.5 + I[slopei < 0.5] + I[Malei = 0].  

 

One thousand simulated data sets were generated for each of nine scenarios. 

Modeling approaches considered 

A variety of methods were considered (Table 2). For reference, three models were 

fit: both mixed effects models ((1) the true or RI model for Scenarios A and B, 

and (2) the full RIRS model or true model for Scenario C that includes both 

random intercept and random slope) and (3) slope model (also the true model for 

Scenario C). In addition, the RI, RIRS, and slope models were fit to the 

incomplete data sets (for the RI and RIRS models, the incomplete data set 

consisted of any individual who contributed at least one outcome measurement 

and for the latter model, the incomplete data set included any individual who 

contributed at least two outcome measurements). The distinction between the 

slope and RIRS models lies in how the models were fit. In the former, slopes are 

derived and then linear regression is applied, regressing the derived slope on 

treatment arm and then using maximum likelihood methods to obtain estimates 

for the relevant parameter (treatment effect), whereas in the latter, a likelihood 

that incorporates normally distributed random effects for the slope and intercept is 

optimized to obtain estimates for the relevant parameter (a time by treatment 

interaction effect).  

Five MI methods – 2 under the active approach, 2 under the passive 

approach, and 1 hybrid approach – were applied to the slope model. Under Active 

imputation (Active) the slope was derived and imputed as any other variable 

together with any missing underlying BMI measurements. In addition, slope is 

only imputed for those missing all 3 follow-up BMI measurements. Inconsistent 

values can then be obtained if the imputed slope does not match the imputed BMI 

measurements or when observed slope does not match all BMI measurements in 

cases where 1 or 2 BMI measurements are imputed. Active imputation all (Active-
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All) is a variation on Active in which slope is only considered observed if all 4 

BMI measurements contribute to its derivation. If slope is missing, it is imputed 

as any other variable as in Active. Passive and Passive-All involve deriving slope 

after imputing BMI measurements, where the variable slope can be considered for 

all variables other than those involved in its derivation. Thus, slope can be used in 

the imputation of covariates age and gender, for example, but it cannot be used in 

the imputation of the BMI measurements themselves.  

After the imputation step, slope is derived from the underlying BMI 

measurements. In Passive this is done for those missing all 3 follow up 

measurements, and in Passive-All it is done for those missing at least one BMI 

measurement. As a consequence, internal inconsistencies may still be observed in 

Passive (but not in Passive-All) because slope is derived only for a proportion of 

subjects so that imputed BMI measurements may not match observed slope.  The 

Derive-Impute-Derive approach is considered a hybrid approach of active and 

passive approaches. Slope is derived for those who contribute at least 2 

measurements and imputed as any other variable as in Active and Active-All. After 

completing the imputation step, however, slope is re-derived from the underlying 

BMI measurements, some of which are observed and some of which are imputed. 

By including slope in the imputation model, relevant interrelationships among the 

variables are preserved. By re-deriving slope after the imputation process, internal 

consistency is gained. It is unclear, however, whether this step will interfere with 

what was gained in the imputation step by preserving interrelationships.  

Ten imputations (m=10) were performed for each MI method for each data 

set. As passive approaches require imputation be performed using the FCS 

approach, FCS was used for all MI approaches. Procedures in Stata and R were 

used for this purpose. 

Metrics for evaluation of methods 

To evaluate performance of the methods, the relative mean squared error (rMSE) 

– or the mean squared error (MSE) relative to the MSE for the true model fitted to 

the full data set (gold standard) – was utilized, because this statistic considers both 

bias and efficiency. Other relevant statistics to gauge performance included the 

bias (the difference between the true (−0.5) and estimated parameter averaged 

over the number of simulations), the average model-based standard error, the 

empirical standard error, the square root of the variance of the coefficients across 

the simulations, the coverage probability (the percentage of time the true 

parameter is contained in the 95% confidence interval constructed using the 
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model-based standard error), and power (the percentage of time the null 

hypothesis that the parameter is zero is rejected using a two-sided Wald test at the 

0.05 level of significance). 

 
 
Table 2. Methods considered 

 
Method Description 

RI Model Full Mixed effects model with random intercept fit to the full data set 

Slope Model Full Slope model fit to the full data set 

RIRS Model Full 
Mixed effects model with random intercept and slope fit to the 
full data set  

RI Model Incomplete 
Mixed effects model with random intercept fit to those who 
provide at least one outcome measurement 

Slope Model Incomplete 
Slope model fit to those who provide at least two outcome 
measurements 

RIRS Model Incomplete 
Mixed effects model with random intercept and slope fit to 
those who provide at least one outcome measurement 

  
MI Methods for Slope Model 

 

Active Imputation  
Impute slope as any other variable for those who only have 
baseline outcome measurement 

Active Imputation All  
Impute slope as any other variable for those who do not have 
all four outcome measurements 

Passive  

Impute BMI using all variables except slope and derive slope 
for those with only baseline outcome measurements; slope is 
considered in imputation of variables other than those involved 
in derivation. 

Passive All 
Impute BMI using all variables except slope and derive slope 
for those missing any BMI measurements; slope is considered 
in imputation of variables other than those involved in derivation 

Hybrid Derive-Impute-Derive  
Derive slope and use in imputations of all variables and re-
derive for consistency after imputation procedure 

 

Results 

The gold standard for comparisons is the true model fit to the full data set (RI 

model for Scenarios A and B and RIRS/slope model for Scenario C). The RIRS 

model is statistically equivalent to the slope model, although methods for fitting 
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differ – and thus, both the RIRS and slope models are considered the true model 

for Scenario C. 

Performance of methods when data are generated from an RI model 

and data are MAR (Scenarios A1, B3, and B4) 

Performance of RI, Slope, and RIRS models without imputation:         When the 

data were MAR, both the RI model (true model) and the slope model were 

unbiased (true parameter = −0.5) when fit on the observed or incomplete data 

(e.g., average point estimates for Scenario A1 for all 3 models were −0.498, See 

Table 3a). The slope model yielded least biased estimates (−0.004 versus −0.005 

for the RI and RIRS models, Table 3a). Whereas the RI and RIRS models 

provided excellent coverage of 95.1% and 94.5 %, however, the slope model 

provided a lower coverage percentage of 85 (Figure 1). The RI and RIRS models 

had rMSEs of 6.5 and 6.6, whereas the slope model had an rMSE of 10.2. 
 
 
Table 3a. Results from applying methods to Scenarios A1-A2 

 

  
  

 
Model/Method 

Average 
Beta 

Average 
SE 

Bias Cov   rMSE 

RI, Slope, and RIRS Models Fit to Full 
Data from Scenario A (RI is true 

model; no auxiliary variables) 

 RI (True) -0.498 0.052 0.002 95.4 1.0 

 Slope -0.498 0.052 0.002 95.4 1.0 

 RIRS -0.498 0.052 0.002 95.9 1.0 

A1 

RI, Slope, and RIRS Models 
Fit to Incomplete Data 

 RI (True) -0.505 0.136 -0.005 95.1 6.5 

 Slope -0.504 0.123 -0.004 85.4 10.2 

 RIRS -0.505 0.136 -0.005 94.5 6.6 

Slope Models with MI 

 Active -0.460 0.130 0.040 87.1 9.9 

 Active-All -0.443 0.583 0.057 99.6 22.2 

 Passive -0.445 0.181 0.055 85.1 15.3 

 Passive-All -0.391 0.275 0.109 77.5 41.5 

 Derive-Impute-Derive -0.447 0.155 0.053 91.4 10.3 

A2 

RI, Slope, and RIRS Models 

Fit to Incomplete Data 

 RI (True) -0.260 0.105 0.240 36.5 24.8 

 Slope -0.304 0.114 0.196 56.1 21.9 

 RIRS -0.262 0.106 0.238 38.5 24.4 

Slope Models with MI 

 Active -0.333 0.120 0.167 67.8 17.3 

 Active-All -0.331 0.443 0.169 94.1 25.2 

 Passive -0.243 0.118 0.257 41.9 28.8 

 Passive-All -0.182 0.144 0.318 37.2 43.4 

 Derive-Impute-Derive -0.331 0.121 0.169 66.3 17.5 
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Figure 1. Coverage probability by method for Scenario A1, where data are generated 

from an RI model, data are MAR, and there are no auxiliary data 
 

 
 

Slope model with MI approaches when no auxiliary information is available 

(Scenario A1):  When no auxiliary information was present and the 

data were MAR (Scenario A1) modest improvement in the slope model could be 

obtained through use of MI, but depended on the choice of MI method, where the 

rMSEs ranged from 9.9 (Active) to 41.5 (Passive-All) and where coverage ranged 

from 77.5% to 99.6% (Figure 1). Bias ranged from 0.04 (Active) to 0.11 (Passive-

All). The “All” approaches suffered a loss in efficiency relative to their 

corresponding counterparts (e.g., Active-All gave an average standard error of 

0.58 versus 0.13 for Active, and consequently yielded a high coverage of 99.6). 

With rMSEs of 9.9 and 10.3, the Active and Derive-Impute-Derive approaches 

were comparable to the slope model without MI, where Active MI provided slight 

improvement to the slope model without MI. Use of other MI methods with the 

slope model (Active-All, Passive, and Passive-All) gave worse results than using 

the slope model alone. The true (RI) and RIRS models without imputation 

performed best among all approaches, when considering bias, average SE, 

coverage and rMSE. 

 

Slope model with MI approaches when auxiliary information is available 

(Scenarios B3 and B4): Similar variability across MI methods was observed 

when auxiliary data were present (rMSEs varied from 8.7 to 20.5 in Scenario B3 

and 6.8 to 26.2 in Scenario B4, Table 3b). There was a marked change, however. 

The inclusion of auxiliary terms in the imputation model greatly affected the 

performance  of  passive  approaches.   To  see  this,   we  compared  results  from 
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Table 3b. Results from applying methods to Scenarios B3-B7 

 

  
  

 Model/ 

Method 

Avg  

Beta 

Avg 

 SE 
Bias Cov   rMSE 

RI, Slope, and RIRS Models Fit to Full Data from 
Scenario B (RI is true model; no auxiliary 
variables) 

 RI (True) -0.498 0.052 0.002 94.8 1.0 

 Slope -0.498 0.052 0.002 94.8 1.0 

 RIRS -0.498 0.052 0.002 95.1 1.0 

B3 

RI, Slope, and RIRS Models Fit to 

Incomplete Data 

 RI (True) -0.503 0.136 -0.003 95.5 6.5 

 Slope -0.499 0.123 0.001 84.4 9.9 

 RIRS -0.503 0.136 -0.003 95.6 6.5 

Slope Models with MI 

 Active -0.462 0.127 0.038 88.0 9.5 

 Active-All -0.440 0.588 0.060 100.0 20.5 

 Passive -0.456 0.134 0.044 88.8 8.7 

 Passive-All -0.428 0.183 0.072 80.0 20.1 

 Derive-Impute-Derive -0.446 0.154 0.054 90.8 10.3 

B4 

RI, Slope, and RIRS Models Fit to 
Incomplete Data 

 RI (True) -0.530 0.119 -0.030 94.5 5.2 

 Slope -0.481 0.122 0.019 87.9 8.5 

 RIRS -0.531 0.119 -0.031 94.0 5.2 

Slope Models with MI 

 Active -0.492 0.127 0.008 90.6 8.1 

 Active-All -0.492 0.698 0.008 99.4 26.2 

 Passive -0.452 0.120 0.048 90.9 6.8 

 Passive-All -0.448 0.158 0.052 88.1 12.3 

 Derive-Impute-Derive -0.488 0.138 0.012 91.1 8.5 

B5 

RI, Slope, and RIRS Models Fit to 
Incomplete Data 

 RI (True) -0.259 0.105 0.241 36.0 24.2 

 Slope -0.310 0.114 0.190 58.2 20.7 

 RIRS -0.262 0.106 0.238 38.2 23.8 

Slope Models with MI 

 Active -0.405 0.116 0.095 78.9 11.0 

 Active-All -0.403 0.503 0.097 96.6 20.4 

 Passive -0.368 0.099 0.132 72.1 10.0 

 Passive-All -0.331 0.105 0.169 60.6 14.7 

 Derive-Impute-Derive -0.402 0.117 0.098 79.4 11.3 

B6 

RI, Slope, and RIRS Models Fit to 
Incomplete Data 

 RI (True) -0.297 0.099 0.203 44.9 17.8 

 Slope -0.332 0.115 0.168 64.3 17.0 

 RIRS -0.301 0.100 0.199 47.9 17.2 

Slope Models with MI 

 Active -0.426 0.117 0.074 86.0 9.0 

 Active-All -0.431 0.517 0.069 98.3 18.8 

 Passive -0.371 0.098 0.129 72.6 9.4 

 Passive-All -0.339 0.101 0.161 61.0 13.2 

 Derive-Impute-Derive -0.426 0.118 0.074 83.2 9.1 

B7 

RI, Slope, and RIRS Models Fit to 
Incomplete Data 

 RI (True) -0.390 0.064 0.110 59.1 5.8 

 Slope -0.485 0.083 0.015 93.0 2.8 

 RIRS -0.394 0.065 0.106 62.3 5.5 

Slope Models with MI 

 Active -0.489 0.083 0.011 93.3 2.8 

 Active-All -0.486 0.498 0.014 100.0 10.2 

 Passive -0.487 0.080 0.013 93.2 2.6 

 Passive-All -0.417 0.063 0.083 73.3 3.9 

 Derive-Impute-Derive -0.490 0.083 0.010 92.6 2.8 
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Scenario A1 where there were no auxiliary variables to those from Scenarios B3 

and B4 (Figure 2). In the latter scenarios, two auxiliary variables incorporated into 

the imputation process – one continuous and one dichotomous – were related to 

BMI measurements and the rate of change in BMI, and in Scenario B4 they were 

additionally related to missingness. Passive MI had a performance that was much 

improved (e.g., rMSE of Passive was 8.7 and 6.8 in Scenarios B3 and B4 versus 

15.3 in Scenario A1; Figure 2, Table 3b) and provided estimates that were now 

competitive to those from Active MI; Passive MI yielded the lowest rMSEs of all 

MI methods and demonstrated improvement over the slope model without MI 

(rMSE of 8.7 versus 9.9 and 6.8 versus 8.5 for Scenarios B3 and B4, respectively).  

The average standard error by bias across all methods for Scenario B4 is 

shown in Figure 3. A desirable method is one closest to the (0,0) point on the 

graph (and closest to the true (RI), RIRS, and slope models fitted to the full data) 

as this implies low bias and high efficiency. Although Passive in the presence of 

auxiliary terms is more competitive to Active, Active yields estimates with the 

least bias (e.g., in Scenario B4, bias for Active is 0.008 versus 0.048 for Passive). 

With rMSEs of 8.1 and 6.8, however, neither Active nor Passive MI applied to the 

slope model improved overall performance over the true (RI) model without 

imputation (rMSE=5.2). 
 
 

 
 
Figure 2. Ratio of relative mean squared error for MI methods with auxiliary data applied 

to slope model to relative mean squared error for MI methods without auxiliary data 
applied to slope model 
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Figure 3. Bias by average standard error for Scenario B4, where data, generated from an 

RI model, are MAR, and auxiliary data are available 

 

 

Performance of methods when data are generated from an 

RIRS/slope model and data are MAR (Scenario C8) 

Performance of RI, Slope, and RIRS models without imputation:  When 

the data were MAR, among models without imputation, the slope model produced 

the least biased results (−0.07 for the slope model and −0.097 and −0.092 for the 

RI and RIRS models; Table 3c). Coverage was lower for the RI model relative to 

the slope and RIRS models (84.3 versus 89.8 and 90.7 for the slope and RIRS 

models). The RIRS model gave the lowest rMSE of 3.4 with the RI and slope 

models providing comparable rMSEs of 3.8 and 4.2. 

 

Slope model with MI approaches when auxiliary information is available 

(Scenario C8):  The rMSEs for the MI approaches applied to the 

slope model ranged from 3.0 (Active) to 8 (Active-All). Active MI yielded the least 

biased and most efficient estimates with Passive MI performing comparably. The 

results from fitting a slope model with either Active or Passive MI indicated 

improvement over the true models without imputation, where Active provided 

results with the least bias. 
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Table 3c. Results from applying methods to Scenarios C8-C9 

 

  
  

 
Model/Method 

Average 

Beta 

Average 

SE 
Bias Cov   rMSE 

RI, Slope, and RIRS Models Fit to Full 

Data from Scenario C (RI is true model; no 
auxiliary variables) 

 RI -0.510 0.069 -0.010 83.8 1.0 

 Slope (True) -0.510 0.096 -0.010 93.9 1.0 

 RIRS (True) -0.510 0.096 -0.010 93.8 1.0 

C8 

RI, Slope, and RIRS Models Fit 

to Incomplete Data 

 RI -0.597 0.138 -0.097 84.3 3.8 

 Slope (True) -0.570 0.157 -0.070 89.8 4.2 

 RIRS (True) -0.592 0.154 -0.092 90.7 3.4 

Slope Models with MI 

 Active -0.464 0.143 0.036 89.5 3.0 

 Active-All -0.450 0.693 0.050 99.7 8.0 

 Passive -0.456 0.152 0.044 91.7 3.2 

 Passive-All -0.453 0.196 0.047 90.7 6.0 

 Derive-Impute-

Derive 
-0.461 0.153 0.039 91.4 3.1 

C9 

RI, Slope, and RIRS Models Fit 

to Incomplete Data 

 RI -0.159 0.111 0.341 20.4 14.9 

 Slope (True) -0.253 0.150 0.247 60.7 9.5 

 RIRS (True) -0.258 0.140 0.242 58.7 8.4 

Slope Models with MI 

 Active -0.444 0.149 0.056 89.4 3.2 

 Active-All -0.393 0.539 0.107 98.6 6.3 

 Passive -0.403 0.127 0.097 88.9 2.7 

 Passive-All -0.368 0.132 0.132 82.7 3.8 

 Derive-Impute-

Derive 
-0.385 0.134 0.115 83.8 3.6 

 

Performance of methods when data are generated from an RI model 

and data are NMAR (Scenarios A2, B5, and B6) 

Performance of RI, Slope, and RIRS models without imputation:  Under 

NMAR, the slope model yielded results with the least bias, highest coverage and 

lowest rMSE (Tables 3a and 3b). For example, in Scenario A2, bias ranged from 

0.196 (slope model) to 0.24 (RI/true model), coverage ranged from 36.5 (RI/true 

model) to 56.1 (slope model), and rMSE ranged from 21.9 (slope model) to 24.8 

(RI/true model). 

 

Slope model with MI approaches when no auxiliary information is available 

(Scenario A2:)  As under MAR, there was considerable variability 

among MI methods applied to the slope model with rMSEs ranging from 17.3 to 

43.4 (Table 3a). With no auxiliary information, passive approaches exhibited the 

most bias (0.257 and 0.318 for Passive and Passive-All) and the worst coverage 

probabilities (41.9 and 37.2). The active approaches (Active and Active-All) and 
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Derive-Impute-Derive proved superior to the passive approaches when 

considering both bias and efficiency. 

 

Slope model with MI approaches when auxiliary information is available 

(Scenarios B5 and B6):  Improvement in MI methods from 

incorporating auxiliary data under NMAR was similar to that seen under MAR. 

Specifically, auxiliary terms greatly improved performances for the passive 

approaches and modestly for the Active and Derive-Impute-Derive approaches. 

All methods, however, had larger improvements when auxiliary variables were 

also related to missingness (Scenario B6). rMSEs ranged from 10 (Passive) to 

20.4 (Active-All) for Scenario B5 and 9 (Active) to 18.8 (Active-All) for Scenario 

B6 and suggested that the performances of Passive, Active, and Derive-Impute-

Derive were comparable overall. Active and Derive-Impute-Derive, however, 

achieved estimates with comparable and less bias than Passive (e.g., 0.095 and 

0.098 versus 0.132 in Scenario B5) and higher coverage, where, for example, 

Active and Derive-Impute-Derive provided coverage estimates of 86% and 83.2% 

compared to Passive, which yielded coverage of 72.6% in Scenario B6. Figure 4 

depicts efficiency and bias across MI methods and shows that under NMAR in the 

presence of auxiliary information, the true (RI) and slope models performed 

considerably worse with respect to bias and efficiency than the slope model with 

(and even without) MI. The Active and Derive-Impute-Derive approaches were 

the most preferable choices here (Figure 4). 
 
 

 
 
Figure 4. Bias by average standard error for Scenario B6, where data, generated from an 

RI model, are NMAR, and auxiliary data are available 
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Performance of methods when data are generated from an RIRS 

model and data are NMAR (Scenario C9) 

Performance of RI, Slope, and RIRS models without imputation:         When the 

data were NMAR, rMSEs ranged from 8.4 (RIRS/true model) to 14.9 (RI model) 

(Table 3c). Coverage was low for the RI model (20.4%) and higher (although not 

at nominal levels) for the RIRS and slope models (58.7% and 60%). Bias ranged 

from 0.242 (RIRS model) to 0.341 (RI model). 

 

Slope model with MI approaches when auxiliary information are available 

(Scenario C9):  When applying MI to the slope model and auxiliary 

information was present, rMSEs ranged from 2.7 (Passive) to 6.3 (Active-All) 

(Table 3c). Although Passive yielded the lowest rMSE, Active yielded the least 

biased estimate (0.056 compared to 0.097 for Passive and 0.115 for Derive-

Impute-Derive) and the best coverage of the three competing methods (89.4%). 

Figure 5 plots the average standard error by the bias for each method. Points 

corresponding to the Active, Derive-Impute-Derive, and Passive methods were 

closer to those corresponding to the RI and true (RIRS and slope) models fitted to 

the full data set than the RI and true (RIRS and slope) models fitted to the 

incomplete data set, demonstrating the improvement of MI approaches that was 

not observed under MAR. 
 
 

 
 
Figure 5. Bias by average standard error for Scenario C8, where data, generated from 

an RIRS model, are MAR, and auxiliary data are available 
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Impact of percentage missing under NMAR (comparison of 

Scenarios B6 and B7) 

In Scenario B7, only 20% of the observations were missing on average. Similar 

patterns emerged in variability across approaches (Table 3b). The slope model 

without MI was superior to the true model (RI), with relative MSEs of 2.9 versus 

5.8, achieved good coverage of 93% compared to only 59.1% for the RI (true) 

model and 62.3% for the RIRS model. Relative MSEs among MI methods applied 

to the slope model varied from 2.6 to 10.2. As in Scenario B6 where 40% of the 

observations were missing, improvement over the slope model without MI was 

gained with Active, Derive-Impute-Derive, and Passive methods. The advantage, 

however, was more modest than when the percentage missing was higher.  

Conclusion 

There was variability in results from applying various MI methods when slope 

was the outcome and missing for a proportion of subjects, and a two-stage linear 

regression was applied. When data were generated from an RI model, and the data 

were MAR, the RI model without imputation was the most appropriate choice 

with or without auxiliary data. Without auxiliary information, little was gained by 

doing MI, and in fact, considerable harm could come from using MI under a 

passive approach. When auxiliary information was present, the performance of 

Passive improved and surpassed that of Derive-Impute-Derive and Active in terms 

of the rMSE statistic; all things considered, however, Active, Derive-Impute-

Derive, and Passive were comparable. All methods, however, were worse than the 

true RI model.  

When the data were NMAR, much was gained by using a slope model over 

the RI and RIRS models, and importantly, MI with the slope model was 

considerably preferable over the slope model alone. When the data arose from 

either an RI or RIRS model, the slope model without MI outperformed the true 

model. Even without auxiliary data, Active and Derive-Impute-Derive with the 

slope model provided benefit (in terms of MSE and bias) over the models without 

MI, whereas the passive approaches proved harmful. With auxiliary information, 

however, Passive also provided improved estimates over the models without MI. 

Although it is possible that the slope model is more robust to the violation of 

the MAR condition than the RI model, this difference in performance should be 

explored under various NMAR conditions, particularly in the absence of auxiliary 

data. In the presence of auxiliary information, it makes sense that, as we observed, 
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the slope model with MI outperformed all models fit to the incomplete data 

without MI because of the incorporation of auxiliary terms, making MAR a more 

reasonable assumption, and therefore a better choice under such conditions. 

There were two All approaches considered, which were variations on the 

Active and Passive methods: Active-All, and Passive-All. Each performed worse 

than its counterpart. The idea behind the All approaches was that better slope 

measurements could be obtained by providing one based on a complete set of 

values (in this case, 4) rather than one based on only a partially observed 

trajectory, which may then yield less biased estimates of the relationship of 

interest.  

A reduction in bias was not observed, however. Instead, the All approaches 

were more inefficient and more biased than their counterparts, where Active-All in 

particular suffered the largest loss in efficiency. The loss in efficiency may be 

explained by the application of these approaches to a modified data set with a 

higher proportion of missing data. More specifically, the All approaches assumed 

slope was missing for those missing at least 1 BMI measurement as opposed to 

for those missing all 3 follow-up BMI measurements, thereby increasing the 

fraction of missing information. Despite the increase in missing observations, the 

All method was applied with the same number of imputations (m=10) as with its 

counterpart method. Even when the number of imputations was doubled, however, 

these relative losses in efficiency remained (data not shown).  

It may be that a more substantial increase in the number of imputations is 

needed, and this remains to be explored. In the active setting, such an objective 

simply adds a new variable to be imputed, while making use of the partially 

observed slope as an auxiliary term. While the objective of the passive approaches 

is to have internal consistency, full consistency was not achieved in Passive, 

because the observed slope and not the derived slope was used for subjects with at 

least 2 BMI outcome measurements. Although full internal consistency was 

achieved in Passive-All gains in properties of the estimates were not observed. 

These approaches likely failed because the focus was incorrectly on producing 

imputed values closer to what would have been observed (i.e., by making them 

consistent) with the idea that such values would lead to better descriptions of 

relationships rather than on exploiting the interrelationships among the variables. 

It was demonstrated that use of observed slope (even if based on only a fraction of 

measurements) produced estimates of relevant parameters with superior properties 

to those based on a full number of measurements where a fraction of those 

measurements were imputed. Findings may vary, however, in settings with a 

larger number of longitudinal measurements. 
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Derive-Impute-Derive behaved comparably to Active MI in all scenarios 

including in the presence or absence of auxiliary information. An active-type 

approach that requires an extra step of editing or re-deriving for consistency, 

Derive-Impute-Derive did not demonstrate meaningful improvements over Active. 

Larger variation in performance may be observed in settings with higher 

proportions of internal consistency. This would need to be explored in further 

simulation studies. 

Variability between Active/Derive-Impute-Derive MI and passive 

approaches was largely due to the presence of auxiliary information. Although 

some improvement was observed with Active and Derive-Impute-Derive with the 

presence of auxiliary information, it was modest relative to the improvement 

observed among the passive approaches. It was the auxiliary information that 

allowed Passive to be competitive to Active and Derive-Impute-Derive; because 

observed slope is not considered an auxiliary term when passively imputing BMI, 

other auxiliary information is critical for gleaning the interrelationships among 

relevant variables in the model. In contrast, in Active and Derive-Impute-Derive, 

BMI measurements (and other variables) are used as auxiliary terms when 

imputing slope and vice versa and the interrelationships among these terms are 

jointly considered. It would be interesting to further explore the differences in 

performance of approaches in settings where other covariates have missing values.  

There were some computational issues to consider when implementing the 

passive and hybrid approaches. Unlike Active, they required some extra steps 

beyond the usual MI programming. Derive-Impute-Derive requires re-deriving 

slope to ensure internal consistency after doing an active-type imputation (See 

Appendix A for STATA code). Passive – possible in STATA and R, but not in 

SAS – requires an explicit statement to define the derived term as a function of 

the main effects so that updating of the derived variable can be performed during 

the imputation procedure (See Appendix B). With a derived term that requires 

more than a basic operation of addition or multiplication as in interaction effects, 

this can be challenging. If the derivation requires more than one line, this may be 

problematic in STATA. Thus, if performances across MI methods are equal, 

Active is preferred for its computational simplicity. Further, it is important to note 

that Active – unlike Passive – is available in all MI packages including R, STATA, 

SAS and SPSS.  

It may be argued that the imputation methods considered here do not lead to 

proper imputations. Rubin provides criteria required (i.e., properties necessary for 

the imputation method) to yield imputations that are deemed proper (Rubin, 1987). 

Consequently, estimates of population quantities that incorporate proper multiple 
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imputations are statistically valid (unbiased with appropriate coverage). One such 

assumption requires congeniality of the imputation and scientific models, where 

congeniality implies that the imputed data can be derived from the scientific 

model (Meng, 1994).  

An example of an un-congenial model may be one where the scientific 

model is a linear regression of BMI on treatment arm and age, where BMI is 

missing for a proportion of subjects, and the imputation model assumes 

multivariate normality of BMI, treatment arm, and possibly other auxiliary terms, 

but excludes age. Because the scientific model considers interrelationships 

between age and BMI and treatment arm, and the imputation model does not, the 

models are said to be un-congenial. In this case, when the slope model is the 

scientific model, recall that there are two stages involved: the derivation of the 

slopes (Equation 1a) followed by the regression of the derived slopes on treatment 

arm (Equation 1b).  

Because the imputation model does not incorporate uncertainty of the 

parameters in Equation 1a, it may be considered un-congenial.  Imputing under a 

fully Bayesian paradigm that puts priors on all the parameters listed in both 

Equations 1a and 1b when deriving the posterior predictive distribution would be 

considered proper. MI methods considered here, however, were only those that 

could be implemented using mainstream software like Stata, R, and SAS, with 

minimal additional code, and specifically where the slope model was the scientific 

model of interest. Our reference for ideal performance was the true model fit to 

the data set with no missing values, rather than the ideal MI method. 

Further, methods that incorporate MI with mixed effects models such as 

PAN, developed by Schafer (Schafer, 1997a; Schafer, 1997b), were not 

considered. Nor was a shared parameter model considered, which is also 

appropriate for longitudinal models and allows the missing data mechanism to be 

NMAR (e.g., Wu & Bailey, 1989). The former approach can be implemented 

using a package in R, whereas code for fitting the shared parameter model is not 

available in mainstream software packages. It would be interesting to compare MI 

methods under both the slope model and mixed effects models in the future. The 

current focus, however, was specifically on fitting the slope model, where the 

mixed effects models fit to the full and incomplete data without MI served as 

references. Clinical investigators are often averse to applying mixed effects 

models if they can apply a seemingly simpler two-stage linear regression model. 

This is the case with Stanford GOALS. Thus, the intent was to evaluate practical 

MI methods under the slope model. 
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The goal was to provide a set of guidelines on how to analyze rate of change 

in the presence of missing data. Figure 6 provides a flow chart to aid in decision-

making. Typically, the first step when faced with missing data is to consider 

plausible missing data mechanisms.  

We take one more step back, however, and ask to consider from which 

model the data may be reasonably generated. In this study, data were generated 

from both an RI model and the RIRS model. The former assumes each individual 

has a BMI around which a series of BMI values center.Further it assumes that 

how those BMI values change over time may be affected by treatment regimen. 

Data arising from an RIRS model implies each individual additionally has his/her 

own rate of change in BMI, and, as before, trajectories may be affected by a 

treatment regimen. It leads to slight differences in recommendations. If the data 

are likely to arise from a slope model (i.e., if you can assume BMI values arise 

from a rate of change), we recommend using a slope model with Active MI (if 

either MAR or NMAR, and in the presence of auxiliary information).  

Although some improvements were observed with Passive over Active when 

auxiliary data were present, Active was still less biased, comparably efficient and 

simpler to implement.  If auxiliary information are not available, a more 

sophisticated approach should be considered such as the shared parameter model 

as nominal coverage was not achieved with the methods considered here (Duch & 

Stevenson, 2005). If the data arise from an RI model, and if the data are MAR, the 

best choice among those considered is an RI model. Thus, investigators should 

reconsider specifying the scientific model as the slope model in favor of the RI 

model; the slope model without MI produced estimates with inferior properties. 

Further, in the absence of auxiliary information, little was gained with using MI. 

Some investigators, however, may be wary to fit and interpret parameters from a 

mixed effects model and may wish for the simplicity of a linear regression model 

(e.g., Liao et al., 2013) the benefits of which are described here (Rogosa & Saner, 

1995; Gelman, 2005). In this case, Active MI can improve upon the slope model 

without MI in the presence of auxiliary information. If the data are NMAR, the 

slope model with Active MI provides improvement over the mixed effects models 

in the presence of auxiliary terms. In general, however, if the data are NMAR, a 

more sophisticated approach such as the shared parameter model should be 

considered. 
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Figure 6. Flow chart of model choices 

 

 
 

In longitudinal clinical trial settings such as Stanford GOALS it is likely the 

case that the data are NMAR. For example, those who respond well to the 

behavioral intervention may be more likely to have outcome values and 

intermittent BMI values. The availability of numerous solid auxiliary variables, 

however, is also likely, and conditional on these, it may be reasonable to assume 

the data are MAR. Baseline measurements of BMI, other adiposity measures, 

lipid profiles, as well as intermittent values of BMI are potentially useful auxiliary 

terms that can be incorporated into the analysis. Thus, if NMAR, standard MI 

methods that incorporate such terms can provide benefit over the mixed effects 

and slope models without MI. Although it is important to pre-specify a primary 

method of analyses (in Stanford GOALS, the primary approach is the slope model 

with Active MI), it is recommended that sensitivity analyses be performed – in 

particular, the mixed effects and slope models without MI, and the slope model 

with Derive-Impute-Derive, and Passive approaches. If results are comparable, 

this bolsters the findings from the primary analysis. If results are heterogeneous, it 

is critical to report the discrepancy in order to provide a context for the audience 

in which to interpret the findings. 
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Appendix A: Derive-Impute-Derive Imputation of Slope 
Using ICE 

* Read in ith data set  
insheet using "/Users/mdesai/Documents/COPTR/Multiple Imputation 
Research/Simulated Data Sets/reducedwidescenA`i'.csv", clear 
 
destring, ignore("NA") replace 
 
* Derive and Impute: 
* Doing Active imputation by including slope in the imputation model as any 
variable 
 
ice reducedslope bmi0 bmi1 bmi2 bmi3 txgroup age male, 
saving("/Users/mdesai/Documents/nimpute.dta") m(10) replace 
 
use "/Users/mdesai/Documents/nimpute.dta", clear  
 
* Reshape data set from wide format to long format so that slope can be re-
derived 
reshape long bmi, i(id _mj) j(visit)  
 
* Derive again 
statsby _b, by(id _mj) saving("/Users/mdesai/Documents/newb.dta", replace): reg 
bmi visit 
 
* Reshape from long to wide format and sort for analysis  
reshape wide bmi, i(id _mj) j(visit) 
 
use "/Users/mdesai/Documents/newb.dta", clear 
sort id _mj 
 
use "/Users/mdesai/Documents/nimpute.dta", clear 
sort id _mj 
 
merge 1:1 id _mj using "/Users/mdesai/Documents/newb.dta" 
 
save "/Users/mdesai/Documents/merge.dta", replace 
 
use "/Users/mdesai/Documents/merge.dta", clear 
 
sort _mj id  
 
* Now fit the scientific model using the re-derived outcome and summarize using 
MICOMBINE  
* where the newly derived term is called _b_visit 
 
micombine reg _b_visit txgroup  
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Appendix B: Passive and Passive-All Imputation of Slope 
Using ICE 

* read in the ith data set 
 
insheet using "/Users/mdesai/Documents/COPTR/Multiple Imputation 
Research/Simulated Data Sets/reducedwidescenA`i'.csv", clear 
 
destring, ignore("NA") replace 
 
* copy reducedslope 
gen newslope = reducedslope  
 
* passively impute reducedslope using ICE 
 
ice bmi0 bmi1 bmi2 bmi3 txgroup age male newslope, passive(newslope: (-
1.5*(bmi0-(bmi0+bmi1+bmi2+bmi3)/4) + -0.5*(bmi1-(bmi0+bmi1+bmi2+bmi3)/4) + 
0.5*(bmi2-(bmi0+bmi1+bmi2+bmi3)/4) + 1.5*(bmi3-(bmi0+bmi1+bmi2+bmi3)/4))/5) 
saving(/Users/mdesai/Documents/nimpute.dta) m(10) seed(1234) replace 
use "/Users/mdesai/Documents/nimpute.dta", clear  
 
* Fit scientific model for Passive-All and summarize findings using MICOMBINE.   
* Since newslope is used, it replaces the slope based on partially observed BMI 
values 
 
micombine reg newslope txgroup  
  
*Fit scientific model for Passive and summarize findings using MICOMBINE. 
*Here the derived slope is only used when all 3 BMI measurements are missing. 
 
use "/Users/mdesai/Documents/nimpute.dta",clear 
replace reducedslope = newslope if missing(reducedslope) 
micombine reg reducedslope txgroup  
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Appendix C: Full Results from Applying Methods to 
Scenarios A1-C9 (Table A1) 

    
Model/ 

Method 

Avg 

Beta 

Avg  

SE 

Emp 

SE 

Avg 

Bias 
Cov MSE rMSE Power 

RI, Slope, and RIRS Models Fit 

to Full Data from Scenario A 
(RI is true model; no auxiliary 
variables) 

RI (True) -0.498 0.052 0.053 0.002 95.4 2.8 1.0 100.0 

Slope -0.498 0.052 0.053 0.002 95.4 2.8 1.0 100.0 

RIRS -0.498 0.052 0.053 0.002 95.9 2.8 1.0 100.0 

A1 

RI, Slope, and RIRS 
Models Fit to 

Incomplete Data 

RI (True) -0.505 0.136 0.134 -0.005 95.1 18.0 6.5 95.9 

Slope -0.504 0.123 0.167 -0.004 85.4 28.0 10.2 93.9 

RIRS -0.505 0.136 0.135 -0.005 94.5 18.1 6.6 96.1 

Slope Models with 
MI 

Active -0.460 0.130 0.160 0.040 87.1 27.3 9.9 89.0 

Active-All -0.443 0.583 0.241 0.057 99.6 61.3 22.2 1.3 

Passive -0.445 0.181 0.198 0.055 85.1 42.2 15.3 72.2 

Passive-All -0.391 0.275 0.320 0.109 77.5 114.4 41.5 34.4 

Derive-Impute-
Derive 

-0.447 0.155 0.160 0.053 91.4 28.3 10.3 80.7 

A2 

RI, Slope, and RIRS 

Models Fit to 
Incomplete Data 

RI (True) -0.260 0.105 0.104 0.240 36.5 68.5 24.8 69.2 

Slope -0.304 0.114 0.148 0.196 56.1 60.3 21.9 69.3 

RIRS -0.262 0.106 0.104 0.238 38.5 67.2 24.4 69.9 

Slope Models with 
MI 

Active -0.333 0.120 0.141 0.167 67.8 47.7 17.3 74.1 

Active-All -0.331 0.443 0.202 0.169 94.1 69.6 25.2 0.5 

Passive -0.243 0.118 0.115 0.257 41.9 79.5 28.8 54.7 

Passive-All -0.182 0.144 0.136 0.318 37.2 119.6 43.4 26.1 

Derive-Impute-
Derive 

-0.331 0.121 0.140 0.169 66.3 48.2 17.5 74.3 

RI, Slope, and RIRS Models Fit 
to Full Data from Scenario B 
(RI is true model; no auxiliary 

variables) 

RI (True) -0.498 0.052 0.053 0.002 94.8 2.8 1.0 100.0 

Slope -0.498 0.052 0.053 0.002 94.8 2.8 1.0 100.0 

RIRS -0.498 0.052 0.053 0.002 95.1 2.8 1.0 100.0 

B3 

RI, Slope, and RIRS 

Models Fit to 
Incomplete Data 

RI (True) -0.503 0.136 0.136 -0.003 95.5 18.4 6.5 95.1 

Slope -0.499 0.123 0.168 0.001 84.4 28.2 9.9 92.9 

RIRS -0.503 0.136 0.136 -0.003 95.6 18.4 6.5 95.2 

Slope Models with 

MI 

Active -0.462 0.127 0.157 0.038 88.0 26.1 9.5 91.3 

Active-All -0.440 0.588 0.230 0.060 100.0 56.5 20.5 0.7 

Passive -0.456 0.134 0.150 0.044 88.8 24.4 8.7 90.1 

Passive-All -0.428 0.183 0.226 0.072 80.0 56.4 20.1 66.4 

Derive-Impute-
Derive 

-0.446 0.154 0.159 0.054 90.8 28.3 10.3 81.3 

B4 

RI, Slope, and RIRS 

Models Fit to 
Incomplete Data 

RI (True) -0.530 0.119 0.118 -0.030 94.5 14.7 5.2 99.2 

Slope -0.481 0.122 0.155 0.019 87.9 24.2 8.5 94.3 

RIRS -0.531 0.119 0.118 -0.031 94.0 14.8 5.2 99.2 

Slope Models with 

MI 

Active -0.492 0.127 0.151 0.008 90.6 22.7 8.1 95.0 

Active-All -0.492 0.698 0.271 0.008 99.4 73.3 26.2 0.9 

Passive -0.452 0.120 0.130 0.048 90.9 19.1 6.8 94.4 

Passive-All -0.448 0.158 0.178 0.052 88.1 34.5 12.3 79.0 

Derive-Impute-
Derive 

-0.488 0.138 0.154 0.012 91.1 23.9 8.5 92.9 
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Table A1 continued 

    
Model/ 

Method 

Avg 

Beta 

Avg 

SE 

Emp 

SE 

Avg 

Bias 
Cov MSE rMSE Power 

B5 

RI, Slope, and 
RIRS Models Fit to 

Incomplete Data 

RI (True) -0.259 0.105 0.105 0.241 36.0 68.9 24.2 70.0 

Slope -0.310 0.114 0.152 0.190 58.2 58.9 20.7 72.5 

RIRS -0.262 0.106 0.106 0.238 38.2 67.6 23.8 70.2 

Slope Models with 
MI 

Active -0.405 0.116 0.147 0.095 78.9 30.4 11.0 88.5 

Active-All -0.403 0.503 0.218 0.097 96.6 57.0 20.4 0.4 

Passive -0.368 0.099 0.103 0.132 72.1 28.0 10.0 94.7 

Passive-All -0.331 0.105 0.112 0.169 60.6 41.2 14.7 87.1 

Derive-Impute-Derive -0.402 0.117 0.148 0.098 79.4 31.6 11.3 86.5 

B6 

RI, Slope, and 
RIRS Models Fit to 

Incomplete Data 

RI (True) -0.297 0.099 0.096 0.203 44.9 50.6 17.8 86.5 

Slope -0.332 0.115 0.143 0.168 64.3 48.4 17.0 76.1 

RIRS -0.301 0.100 0.098 0.199 47.9 48.9 17.2 87.1 

Slope Models with 
MI 

Active -0.426 0.117 0.140 0.074 86.0 25.2 9.0 92.7 

Active-All -0.431 0.517 0.219 0.069 98.3 52.7 18.8 1.2 

Passive -0.371 0.098 0.099 0.129 72.6 26.4 9.4 96.9 

Passive-All -0.339 0.101 0.105 0.161 61.0 37.0 13.2 89.8 

Derive-Impute-Derive -0.426 0.118 0.142 0.074 83.2 25.6 9.1 91.5 

B7 

RI, Slope, and 

RIRS Models Fit to 
Incomplete Data 

RI (True) -0.390 0.064 0.066 0.110 59.1 16.4 5.8 100.0 

Slope -0.485 0.083 0.089 0.015 93.0 8.1 2.8 99.9 

RIRS -0.394 0.065 0.066 0.106 62.3 15.6 5.5 100.0 

Slope Models with 
MI 

Active -0.489 0.083 0.088 0.011 93.3 7.9 2.8 99.9 

Active-All -0.486 0.498 0.168 0.014 100.0 28.4 10.2 2.4 

Passive -0.487 0.080 0.085 0.013 93.2 7.4 2.6 99.9 

Passive-All -0.417 0.063 0.064 0.083 73.3 11.0 3.9 100.0 

Derive-Impute-Derive -0.490 0.083 0.089 0.010 92.6 7.9 2.8 99.9 

RI, Slope, and RIRS Models Fit 
to Full Data from Scenario C 

(RI is true model; no auxiliary 
variables) 

RI -0.510 0.069 0.096 -0.010 83.8 9.3 1.0 100.0 

Slope (True) -0.510 0.096 0.096 -0.010 93.9 9.3 1.0 100.0 

RIRS (True) -0.510 0.096 0.096 -0.010 93.8 9.3 1.0 100.0 

C8 

RI, Slope, and 
RIRS Models Fit to 

Incomplete Data 

RI -0.597 0.138 0.161 -0.097 84.3 35.3 3.8 97.4 

Slope (True) -0.570 0.157 0.185 -0.070 89.8 39.2 4.2 90.7 

RIRS (True) -0.592 0.154 0.153 -0.092 90.7 31.8 3.4 96.9 

Slope Models with 

MI 

Active -0.464 0.143 0.164 0.036 89.5 28.1 3.0 85.9 

Active-All -0.450 0.693 0.268 0.050 99.7 74.5 8.0 0.3 

Passive -0.456 0.152 0.166 0.044 91.7 29.5 3.2 83.8 

Passive-All -0.453 0.196 0.231 0.047 90.7 55.4 6.0 65.8 

Derive-Impute-Derive -0.461 0.153 0.166 0.039 91.4 29.1 3.1 82.2 

C9 

RI, Slope, and 
RIRS Models Fit to 

Incomplete Data 

RI -0.159 0.111 0.147 0.341 20.4 137.9 14.9 36.5 

Slope (True) -0.253 0.150 0.164 0.247 60.7 87.9 9.5 40.6 

RIRS (True) -0.258 0.140 0.138 0.242 58.7 77.5 8.4 46.8 

Slope Models with 

MI 

Active -0.444 0.149 0.164 0.056 89.4 30.0 3.2 81.2 

Active-All -0.393 0.539 0.217 0.107 98.6 58.4 6.3 0.3 

Passive -0.403 0.127 0.127 0.097 88.9 25.5 2.7 89.4 

Passive-All -0.368 0.132 0.133 0.132 82.7 35.0 3.8 79.0 

Derive-Impute-Derive -0.385 0.134 0.143 0.115 83.8 33.7 3.6 80.6 
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