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This syntax program is an applied complement to Veall and Zimmermann (1994), Menard 
(2000), and Smith and McKenna (2013) and produces nine pseudo R2 indices, not readily 
accessible in statistical software such as SPSS, which are used to describe the results from 

binary logistic regression analyses. 
 
Keywords: Binary logistic regression, R2 indices, SPSS, syntax 

 

Introduction 

The subsequent syntax-based software program (Walker & Smith, 2015) is 

intended to provide an application for users interested in various pseudo R2 indices 

used to describe the results obtained from fitting binary logistic regression models, 

but not freely obtainable in the current SPSS operational format. In logistic 

regression, pseudo R2 indices proffer an indication of model fit, and are similar to 

variance accounted for metrics affiliated with ordinary least-squares (OLS) 

regression models such as R2, R2 adjusted, or eta squared. Although values of 

pseudo R2 indices typically range from zero to unity, values for some indices can 

exceed 1.0. 

The majority of the indices in the current program have been applied 

previously under various research conditions by Veall and Zimmermann (1994), 

Menard (2000), and Smith and McKenna (2013). This program is intended to be a 

software-based complement to these studies. Of the indices affiliated with the nine 

pseudo R2 measures, only two are produced in SPSS: Cox and Snell’s (1989) and 

Nagelkerke’s (1991). 

The Cox and Snell index is represented as 

mailto:dawalker@niu.edu
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where L(Null) and L(Full) are the likelihood functions for the constant-only model 

and the model with the predictors, respectively, and N is the sample size. The 

Nagelkerke index, which is a “corrected” version of the Cox and Snell index in the 

sense that it constrains the index value so that it does not exceed 1.0, is expressed 

as 

 

 

 
 

 

2

2

N 2

L Null
1

L Full

1 L Null

N

N

R

 
  
 


 , (2) 

 

where the rescaling is accomplished by dividing Cox and Snell’s index by its 

maximum possible value. 

The remaining seven indices produced in the program are not produced in the 

default logistic regression output provided by SPSS. The McFadden (1974) and the 

McFadden adjusted metrics are stated as, respectively, 
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where LL(Full) is the log-likelihood value for the model containing the predictors 

and LL(Null) is the log-likelihood value for the constant-only model. The latter 

index “adjusts” (penalizes) for the number of predictors (K) in the model. The 

Aldrich and Nelson (1984) index is expressed as 
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The Veall and Zimmerman (1994) index, which is a “corrected” version of the 

Aldrich and Nelson index, is formulated as 
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where LL(Full) and LL(Null) are as defined previously, and N is the sample size. 

The Sapra (2004) index is represented as 
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where LL(Null), LL(Full), and K are as defined previously, and LL(Max) indicates 

the maximum possible log-likelihood value for the saturated model (typically zero, 

for most data and models). Finally, the Estrella (1998) formulates both unadjusted 

and adjusted metrics, respectively, 
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where LL(Null), LL(Full), N, and K are as defined previously. 

Program 

The data set used in the current SPSS syntax program is a randomly sampled subset 

(n = 200) of the 1982 High School and Beyond data (Raudenbush & Bryk, 2002). 

Data were obtained from Acock (2008). To have the outcome variable (i.e., Write) 

fit the profile of a binary measure within a logistic regression model, the values 

were recoded, per the aforementioned data example, as a dichotomized variable 
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called “HonComp” with values ≥ 60 = 1 or “Yes” and values < 60 = 0 or “No.” The 

full model also included three predictor variables: Female (0 = Male; 1 = Female), 

Read, and Science (note that the latter two variables were continuous in 

measurement). 

The program is shown below. In the space between BEGIN DATA and END 

DATA, the user would insert the null model's -2 Log Likelihood (LL) value 

(LLNull), the full model's -2 LL value (LLFull), the sample size (N), and the 

number of predictors (K) in the model. The input values in the example from the 

program are, in this order, 231.289, 160.236, 200, 3, 0. Note that the last value place, 

LLMAX, has a suggested value that is frequently fixed at 0 and will be left as such 

in this example. 

 

Pseudo R2 Program 

************************************************************************ 

Copyright David A. Walker and Thomas J. Smith, 2015 

Contact dawalker@niu.edu or tjsmith@niu.edu 

Northern Illinois University, 204 Gabel, DeKalb, IL 60115  

  **APA 6th Edition Citation** 

Walker, D. A., & Smith, T. J. (2015). Nine pseudo R2 indices for binary 

logistic regression 

models [Computer program]. DeKalb, IL: Authors. 

************************************************************************. 

DATA LIST LIST / LLNull LLFull (2F9.3) N K (2F8.0) LLMAX.  

************************************************************************ 

Between BEGIN DATA and END DATA below, put the Null Model's -2 Log 

Likelihood (LL) 

value (LLNull), the Full Model's -2 LL value (LLFull), the sample size 

(N), and the number of 

predictors (K) in the model Note: LLMAX, the last value in the data, is 

typically 0 rather than 

always defaulted to 0 

************************************************************************. 

BEGIN DATA 

231.289 160.236 200 3 0 

END DATA.  

COMPUTE L0 = LLNull/-2. 

COMPUTE L1 = LLFull/-2. 

COMPUTE L2 = ((LLNull-LLFull)/2)+L0. 
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COMPUTE CoxSnell =1-EXP(-1*(LLNull-LLFull)/N). 

COMPUTE Nagelkerke = CoxSnell/(1-EXP(-LLNull/N)). 

COMPUTE McFadden = 1-(LLFull/LLNull). 

COMPUTE McFaddenAdj = 1-((L1-(K+1))/L0). 

COMPUTE Sapra = 1-((LLMax-LLFull+(K+1)/2)/(LLMax-LLNull+.5)). 

COMPUTE AldrichNelson = ((LLNull-LLFull)/((LLNull-LLFull)+N)). 

COMPUTE VeallZimmermann = AldrichNelson*((LLNull+N)/LLNull). 

COMPUTE Estrella = 1-(L2/L0)**((-2/N)*L0). 

COMPUTE EstrellaAdj = 1-((L2-K)/L0)**((-2/N)*L0). 

EXECUTE. 

FORMAT CoxSnell TO EstrellaAdj (F9.3). 

VARIABLE LABELS CoxSnell 'Cox & Snell R2'/ Nagelkerke 'Nagelkerke R2'/ 

McFadden 'McFadden R2'/ 

VeallZimmermann 'Veall & Zimmermann R2'/Sapra 'Sapra R2'/McFaddenAdj 

'McFadden Adjusted R2'/ 

AldrichNelson 'Aldrich & Nelson R2'/ Estrella 'Estrella R2'/ EstrellaAdj 

'Estrella Adjusted R2'/. 

REPORT FORMAT=LIST AUTOMATIC ALIGN (CENTER) 

  /VARIABLES= CoxSnell Nagelkerke McFadden McFaddenAdj AldrichNelson  

Sapra VeallZimmermann Estrella EstrellaAdj 

  /TITLE "Pseudo R Squared Indices". 

Results 

As a simple, one-shot comparison, the values of pseudo R2 obtained by applying 

the program to the High School and Beyond data, recorded in Table 1, indicated 

that seven of the nine indices were much lower in value than the R2 (0.522) or the 

R2 adjusted (0.515) values computed from an OLS model using the same predictors 

as the logistic regression model and with the non-dichotomized, continuous 

outcome variable (i.e., Write). The aforementioned pseudo R2 values ranged from 

a minimum of 0.262 (Aldrich and Nelson) to a maximum of 0.489 (Veall and 

Zimmermann). It should be noted, though, that the lower values of these indices 

compared to OLS R2 values may reflect, in part, less precision in the outcome due 

to the dichotomization of the continuous dependent variable for use in logistic 

regression. Cohen (1983) remarks on of the cost of engaging in such research 

practices where, “…the cost in the degradation of measurement due to 

dichotomization is a loss of one-fifth to two-thirds of the variance, and a 

concomitant loss of power…” (p. 253). 
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The values of the Nagelkerke and the Veall and Zimmermann indices, both 

of which are “corrected” indices, were noticeably similar (i.e., 0.436 and 0.489, 

respectively) to the OLS R2 values. These indices’ comparability in value to the 

OLS R2 values was also found in Smith and McKenna (2013). Of interest is that the 

Smith and McKenna Monte Carlo simulation study, which included four 

continuous predictors, and the current findings indicate, potentially, that the Veall 

and Zimmermann pseudo R2 index’s highly favorable comparisons to OLS R2 

values may signify a robust nature within this index toward countering the full 

effect of dichotomizing an outcome variable in binary logistic regression modeling. 
 
 
Table 1. Pseudo R2 results 

 
Cox-Snell Nagelkerke McFadden McFadden Adj. Aldritch-Nelson 

0.299 0.436 0.307 0.273 0.626 

     
Sapra Veall-Zimmerman Estrella Estrella Adj.  

0.314 .0489 0.346 0.317  
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