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Introduction 

Species resistance is defined as the ability of a population to avoid displacement from 

initial measures (numbers, biomass, energy content, etc.) following biotic and abiotic disturbances 

(Harrison 1979). A great deal of research in terrestrial systems has focused on the resistance of 

plant species to phytophagous insects (Raffa and Berryman 1983; Simms and Rausher 1989; 

Marquis and Alexander 1992; Strauss and Agrawal 2007) and the increasing threat of invasive 

species (Byers and Noonburg 2003; Dunstan and Johnson 2006; Melbourne et. al 2007). Empirical 

evidence suggests that resistance to herbivory and plant-pathogen interactions is hereditary 

(Simms 1993; Schmid 1994; Montarry et. al 2006) and driven by selective pressures placed upon 

the host by the invasive herbivore. Variation is thus necessary for a continued coexistence of host 

and pathogen. Equally important to host species persistence in the presence of a new invader, 

however, is the ability of the host species to regenerate even while its populations are negatively 

impacted by the invader. 

To persist, host tree species must regenerate and recruit to replace the susceptible adult 

cohort with new reproductively active adults capable of producing seed (Greene 1999; McEuen 

and Curran 2004). Both asexual and sexual regeneration are common and important in post-

disturbance tree species persistence (Plotkin et al. 2013). Regeneration from seed may occur from 

immediate germination of viable seeds produced annually, dormant seed banks in the soil (Bakker 

et. al 1996), and slow-growing seedlings in the understory that established prior to (advanced 

regeneration) and after disturbance (Greene 1999). Dormant seed banks in the soil and seedlings 

in the understory provide a source of genetic variation and may buffer long periods of poor seed 

production (Levin 1989; Leckie 2000). Presence of a seed source and post-disturbance 
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regeneration does not ensure replacement of canopy trees of the same species (McEuen and Curran 

2004) because the new cohort will be subject to varying levels of competition depending on forest 

community composition, densities and demographics, and its response to changing site factors 

such as light, water and nutrient availability (Thompson 1993; Peterson and Carson 1996). 

Disturbances by phytophagous insects may produce a range of these conditions during and 

following attacks depending on host density, composition and mortality rates (Ghandi and Herms 

2010).  Thus, successful post-invasion regeneration depends heavily on advanced regeneration and 

post-disturbance seed rain (Greene et al. 1999). 

Emerald ash borer (EAB) (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae) is an 

invasive, phloem-feeding beetle native to Asia discovered in southeastern Michigan in 2002 

(Cappaert et. al 2005). Based on dendrochronological evidence, EAB became established in 

southeastern Michigan in the early 1990s, with initial ash mortality occurring in 1997 (Siegert et 

al. 2007; 2014). Emerald ash borer attacks all native North American species of the ash genus 

(Fraxinus spp.), often within two to five years of exhibiting symptoms of infestation (Knight et al. 

2010; 2012). Within its native range of northeastern China, Korea, and eastern Russia, EAB 

primarily attacks stressed or dying ash trees (Haack et al. 2002; Liu et al. 2003).  In North America, 

however, even healthy ash trees with a diameter at breast height (DBH) > 1 cm are susceptible to 

exploitation by EAB (Wagner and Todd 2015).  Since its introduction, EAB has killed millions of 

ash trees and projected economic costs of removal and replacement of dead ash trees is in the 

billions (Herms and McCullough 2014). Current and past management attempts to stop or slow 

the rate of spreading infestations and ameliorate their negative impacts have been unsuccessful, 

and the range of EAB continues to grow annually. Since the initial infestations in Michigan, EAB 
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infestations have been confirmed in 26 states and 2 Canadian provinces 

(www.emeraldashborer.info 2016.). 

In southeastern Michigan and northwestern Ohio, where EAB has had the longest residence 

time in North America, ash species such as white ash (F. americana L.), black ash (F. nigra 

Marsh.), and green ash (F. pennsylvanica Marsh.) have documented mortality rates of up to 99% 

within mixed deciduous forests (Kashian and Witter 2011; Klooster et al. 2014).  Some researchers 

have proposed that such high mortality rates have nearly eliminated the seed source for these 

affected ash species, resulting in a depleted seed bank and thus a loss of potential regeneration 

(Kashian and Witter 2011; Knight et al. 2012).  Declining advanced regeneration and post-EAB 

regeneration have also been reported (Kashian and Witter 2011; Klooster et al. 2014), and many 

researchers have suggested that ash species are likely to be extirpated as important canopy trees in 

eastern North American hardwood forests as EAB continues to spread.  

The much rarer blue ash (F. quadrangulata Michx.) exhibits much lower EAB infestation 

rates (Anulewicz et al. 2007) and observed mortality rates between 20% and 40% (Tanis et al. 

2012). Unfortunately, little is known about the regeneration ecology of blue ash, information 

necessary to predict its persistence in the presence of EAB. Southern Michigan marks the northern 

limit of blue ash distribution, which ranges south into Alabama, east into West Virginia, and west 

into Oklahoma and Kansas (Prasad 2007). Barnes and Wagner (2004) describe blue ash as slow-

growing, shade tolerant, and preferring wet-mesic to mesic sites on fine-textured soils in southern 

Michigan. It is typically associated with black maple (Acer nigrum F. Michx.), sugar maple (A. 

saccharum Marsh.), white ash, bitternut hickory (Carya cordiformis (Wangenh.) K. Koch) and 

American elm (Ulmus americana L.) in all height classes. Black and sugar maple in particular are 
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very strong competitors following small gap-forming disturbances (Canham 1988; Lei and 

Lechowicz 1998). If blue ash is not outcompeted in the understory by its associate species, then 

there is potential for canopy replacement at least in part by blue ash following EAB infestations.  

 Given these results, more information on the regeneration ecology of blue ash is critical 

for management of ash species. In particular, the role of life history differences among species 

may impact vulnerability to EAB, requiring a species-by-species assessment of impact as the range 

of EAB continues to expand. Blue ash persistence may provide a baseline for ash mortality and 

regeneration levels upon which future stressors of native ecosystems can be compared.  

To study and document the regeneration ecology of blue ash, I asked the following three 

questions: 

1. What is the current condition of blue ash in the presence of EAB?   

Based largely on the literature, I hypothesized that blue ash currently persists as a dominant 

overstory species despite the reduction in health caused by EAB. I expected to find blue ash age 

and size class distributions to be more even across all sites than white ash (see Methods), with its 

mode and mean occurring at higher values than white ash. I also expected to find the average 

mortality rates of blue ash to be significantly lower than those observed for white ash across all 

sites.  

2. What is the regenerative capacity of blue ash relative to its associated species?  

Based on initial field observations, I expected to find blue ash seedling and sapling densities equal 

to or greater than all of its associated species within blue ash-dominated stands at all size classes. 

I expected annual growth rates of blue ash to be similar to those of white ash, but greater than 

those of its associated species within blue ash stands.   
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3. Given the first two questions, what is the potential for blue ash to persist in the presence 

of EAB?   

I hypothesized that blue ash has the potential to persist as an important canopy species within its 

range in North American forests even in the presence of EAB. I expected blue ash to persist with 

a truncated life span and overall reduction in overstory density and diameter, but with regeneration 

and recruitment levels that are capable to eventually replace canopy mortality.  

 

Methods 

Study Area 

I sampled a total of 18 blue ash stands at 6 sites in southeastern Michigan near the epicenter 

of the EAB introduction point (Figure 1). There are no blue ash stands in southeastern Michigan 

that have been unaffected by EAB and thus a proper blue ash control stand could not be established. 

For this reason, I also sampled 18 white ash stands across the 6 sites for reference. I chose white 

ash as a reference species because it was determined during preliminary field work to be the most 

commonly occurring associate ash species, and because much of the research describing ash 

resistance and regeneration associated with EAB has focused on white ash (Hausman et al. 2010; 

Kashian and Witter 2011; Palla and Pijut 2011; Klooster et al. 2014). White ash thus served as a 

base comparison for EAB susceptibility.  

LaFurge Woods Nature Preserve (LaFurge), Lower Huron Metropark (Lower Huron), and 

Kosch Headwaters Preserve (Kosch) were sampled during July and August 2014. Conant Farm in 

Salem Township (Conant), Eberwhite Woods in Ann Arbor (Eberwhite Woods) and Portland State 

Game Area (Portland) were sampled the following July and August in 2015. The Conant Farm site 
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is on privately owned property currently being managed for historic and ecological restoration; all 

other sites were on State, County, or municipal property designated for public use as park or 

gaming recreation areas. Blue ash was found growing most often on mesic to wet-mesic sites with 

clay-rich, dense soils on river banks or near streams or swamps. Three of the 18 stands occurred 

on well-drained upland areas with sandy-clay textured soils, with one stand at each of Eberwhite 

Woods, Lower Huron, and Kosch. 

Stand Selection 

All sites included at least a 0.1-ha area where blue ash dominated the overstory and 

represented > 50% of the basal area (50% relative density determined from DBH).  Each site was 

sampled using three 10 x 30 m (300 m2) plots placed randomly within each stand. Three stands at 

each site that are currently or were, prior to EAB, dominated by white ash were also sampled using 

the same methods as those used for the blue ash stands.  

Current condition of blue ash  

Current stand density was determined by counting stems of all living trees > 1.5 cm DBH 

(0.5 cm larger than minimum size for EAB exploitation; Wagner and Todd 2015). All overstory 

(> 9.0 cm DBH) were measured and counted, and all understory trees (1.5 - 9.0 cm DBH) were 

grouped into 1-inch (1.5 - 4.0 cm DBH), 2-inch (4.1 - 6.6 cm), and 3-inch (6.7 - 9.0 cm) size 

classes for analysis. Tree age of overstory blue ash and white ash was estimated from increment 

cores sampled 30 cm above the ground. Prior to aging, increment cores were mounted and sanded 

per standard techniques (Speer 2010), and annual rings were counted and measured under a 

dissecting microscope. Presence of EAB was determined and evaluated using identification of 

external symptoms (EAB exit holes, epicormic sprouting, bark splitting, and/or woodpecker 
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damage; Smith 2006). Crown condition for all living ash was rated by severity using standard 

techniques for assessing progressive degrees of ash health on a categorical scale of 1 – 5, where 1 

is a healthy canopy and 5 is a dead tree (Smith 2006). All trees > 9.0 cm DBH killed by EAB were 

identified using the presence of EAB galleries (larvae tracks in phloem) and/or exit holes in bark 

of standing and fallen dead trees. Post-EAB mortality levels were estimated for blue and white ash 

by comparing current and pre-EAB densities of ash for each site, and pre-EAB stand density was 

reconstructed by combining living trees with dead trees determined to have been killed by EAB.  

Differences in live/dead ratios between white and blue ash stands at each site were 

compared using Fisher’s exact test and across all sites using hierarchical log-linear analysis to 

examine potential interaction between site and species. All statistical analyses were conducted 

using IBM SPSS statistics version 23 (IBM Corp 2015). Fallen trees that lacked evidence of EAB-

caused mortality were considered to pre-date EAB infestation and were not used in calculations.  

Crown conditions were compared among size classes using a Spearman rank correlation 

test to determine whether infestation rates varied with size. Spearman rank scores for each species 

were checked for significance using Fisher’s Z test. Frequency distributions of crown condition 

class ratings for overstory blue ash and white ash were compared using skewness and kurtosis for 

assessment of histogram asymmetry and tested for significance using a Mann-Whitney U rank test 

for ordinal data. 

The central tendency of living overstory trees was calculated using the quadratic mean 

diameter (Qm) across all plots for each site (√
∑𝐷2

𝑛
). Qm has a more direct relationship to basal area 

than the arithmetic mean diameter and assigns greater weight to larger trees in a forest stand (Curtis 
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and Marshall 2000). Qm was not normalized and thus compared between white and blue ash stands 

across all sites using a non-parametric Mann-Whitney U test.  

Mean age of overstory trees across all sites for white and blue ash was assessed for 

normality using the Shapiro-Wilk test and residual plots, and was compared between white and 

blue ash using Welch’s t-test due to unequal variances (Welch 1938). Welch’s t-test was chosen 

because sample sizes did not differ greatly (N=60 white, N=67 blue) and because the variable with 

the higher variance (blue ash) also had the higher sample size (Zar 1999). When compared at each 

site independently, difference in mean age was tested for significance using a non-parametric 

Mann-Whitney U test due to small sample sizes.   

Regenerative capacity of blue ash relative to other tree species 

Each 300 m2 plot was subdivided into three 5 x 10 m (50 m2) subplots established 

perpendicular to the long axis of the main plot. Within each subplot, all tree seedlings and saplings 

(< 1.5 cm DBH or shorter than breast height) were identified by species and recorded; non-ash tree 

species counted were pooled into a single category. Seedling and sapling densities were tallied by 

height classes per Kashian and Witter (2011): < 0.5 m, 0.5 - 1.0 m, and > 1.0 m tall. Ash seedlings 

in all height classes were characterized as advanced regeneration (established prior to EAB) or 

new seedlings (establishing post-EAB) by counting axillary bud scars (Kashian in press) and 

comparing to time since EAB infestation estimates presented by Prasad et al. (2010). Moreover, 

ash seedlings < 3 years old were tallied separately.   

Five-year growth rates for seedlings and saplings for each size class were recorded by 

measuring the distance between axillary bud scars for white ash, blue ash and other species 
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growing within blue ash stands. Differences between mean growth rates were used to determine 

the probability of blue ash being outcompeted or outcompeting its associated species. 

 Belt transects 1 x 10 m long were run perpendicular to a long axis of each plot (plot line 

chosen by coin flip) and all seedlings and saplings growing within the belt were measured. A new 

belt was run at 2-m intervals along the plot axis until 10 of each species (blue ash, white ash, other 

spp.) within each size class were measured. If 10 individuals of each species for each size class 

could not be found on the first randomly chosen long axis, then the method was repeated on the 

opposite length (Figure 2). 

Light readings were recorded for each plot using a LI-250 light meter with a Li-190SA 

quantum sensor attached (Li-COR, Inc., Nebraska-USA). Light readings were taken between the 

hours of 12 p.m. and 2 p.m. during similar weather conditions (overcast) one meter above the 

ground from a flat surface. Three readings were recorded at each corner of each blue ash plot 

located at the outer edge and midpoint of each growth rate sampling area. These readings were 

then averaged for each plot at each site. 

Seedling and sapling densities were computed as stems per hectare prior to statistical 

analysis and could not be normalized. Seedling and sapling densities were averaged for blue ash, 

white ash, and other species (independent variables) in each size class for each site and compared 

using the non-parametric Kruskal-Wallis test to assess whether differences in establishment with 

change in EAB overstory resistance (dependent variables) were significant. White ash seedling 

densities within the white ash stands were compared to its most abundant associate species using 

the non-parametric Mann-Whitney U test. The ratio of pre-EAB to post-EAB seedlings and 

saplings in each size class were compared between white and blue ash both within the blue ash 
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stands and between the blue and white stands using a Chi-square test for independence to analyze 

relative establishment and recruitment. Densities of seedlings < 3 yrs old were averaged for each 

site and compared between white and blue ash using a non-parametric Mann-Whitney U test. 

Growth rates were transformed using either a logarithmic or square root transformation to 

correct for normality and heteroscedasticity. The log10(X+1) and √𝑋 + 0.05
2

  equations were used 

for transformations because many of the recorded values were between 0 and 1 making these forms 

of the equations more appropriate (Zar 1999).  Growth rates for each species at each size class 

(independent variables) were compared between species with a repeated-measures analysis of 

variance (ANOVA) using a mixed linear model with plots (random independent variable) nested 

within site (fixed independent variable) and light readings applied as a covariate using an 

unstructured covariate structure to check for significance of differences in growth rates (dependent 

variable). I chose an unstructured covariate structure to minimize bias because it does not make 

assumptions about the relationships between observations and because it gave the lowest values 

for Akaike’s information criterion (AIC) and Hurvich and Tsai’s criterion (AICC) (see Results). 

When growth rates were found to be significantly different, a least significance difference (LSD) 

multiple comparison was used to determine which means differed. 

Results 

Current condition of blue ash 

Overstory white ash experienced higher EAB-caused mortality than blue ash at all sites 

(Figure 3). White ash overstory mortality ranged from 43.5% at Conant Farms to 83.3% at 

Eberwhite Woods, with an overall estimated mortality (all sites combined) of 56.1%. Blue ash 

mortality ranged from 7.1% at Portland to 31.6% at Conant Farm with an overall estimated 
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mortality of 23% (Appendix 1).  Blue ash mortality was consistently lower than that for white ash 

at all sites, and overall mortality differed significantly between white ash and blue ash (p < 0.001).  

The interaction between site and species and between site and mortality were not significant. Four 

of the six sites exhibited significantly different living and dead overstory stem ratios (Eberwhite 

Woods: p = 0.005, La Furge: p = 0.001, Lower Huron: p = 0.037, Portland: p = 0.004). Comparison 

of living stem densities of overstory trees between white ash and blue ash in their respective stands 

showed no consistent pattern and did not differ greatly when tallied across all sites. 

The quadratic mean diameter (Qm) of surviving overstory trees was significantly larger for 

blue ash (30.6 cm) than white ash (15.6 cm) when compared across all sites (U = 5.991; p < 0.001). 

Blue ash Qm was larger than white ash at all sites and differed significantly at three sites, (Lafurge: 

p = 0.0001, Kosch: p = 0.0001 and Lower Huron: p = 0.006). Similarly, blue ash mean age (65 

yrs) was more than double that of white ash (24 yrs), and the difference was significant when 

averaged across all sites (t = 14.079; p < 0.001).  Mean age for blue ash ranged from 41 years 

(Conant Farm) to 75 years (Portland), and white ash mean age ranged from 19 years (Lower 

Huron) to 32 years (Eberwhite Woods) (Appendix 1). Blue ash was significantly older than white 

ash at all sites except Eberwhite Woods, which was more than likely due to an inadequate sample 

size for white ash at this site; only two living overstory white ash were present across all three 

stands sampled. Age distribution for blue ash followed a near perfect normal distribution (W = 

.990; p = 0.869) with minimal skewness (0.033, S.E. 0.295) and kurtosis (-0.309, S.E. 0.582). The 

white ash age distribution was normal at α = 0.05 (W = 0.962; p = 0.086), but compared to blue 

ash was much more skewed (0.632, S.E. 0.327) with a tail extending towards higher age and 

kurtotic (2.113, S.E. 0.644) with most of the trees falling between 20 and 30 years old (Figure 4). 
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Much of the deviation of the white ash age distribution was due to one outlier tree at Eberwhite 

woods site estimated at 43 years. With the anomaly removed, the distribution was much more 

normal (W = 0.986; p = 0.801) with a severe reduction in skewness (-0.134, S.E. 0.330) adding 

more weight to the young trees, and kurtosis (0.056, S.E. 0.650). 

Crown condition ratings were found to be positively correlated with size class for both blue 

ash (ρs = 0.542, p < 0.001) and white ash (ρs = 0.341, p < 0.001), such that larger crown ratings 

were associated with large-diameter (and thus older) trees. The correlation coefficient for blue ash 

was significantly greater than white ash (Z = 2.72, p = 0.007), meaning the correlation between 

tree size and crown dieback was stronger (i.e. more positive) for blue ash, with larger blue ash 

trees exhibiting higher levels of infestation and higher crown ratings than white ash for smaller 

size classes. Crown rating frequencies for overstory stems differed significantly between white 

and blue ash (U = 3.407; p = 0.001). White ash crown rating distribution was negatively skewed 

(-0.597, S.E. 0.291) and platykurtic (- 1.102, S.E. 0.574) with 64.7% of observed crown ratings > 

3. Blue ash crown rating distribution followed a much more normal distribution with minimal 

skewness (.082, S.E. 0.279) and marginal kurtosis (-0.638, S.E. 0.552) with 31.2% of crown ratings 

> 3 (Figure 5).  

Seedling and sapling densities and growth rates 

Mean density for the < 0.5 m height class was by far the highest for non-ash species (35,833 

stems/ha) and was lowest for white ash (604), but mean densities did not differ between species at 

any height class when averaged across all sites. Much of the error associated with non-ash species 

group was due to the Lafurge site, which was the only site with significant differences between 

average species densities (H = 6.543; df = 2, N = 9; p = 0.033). White ash and blue ash densities 
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did not differ from each other, but both white and blue ash densities differed from non-ash species 

density. When Lafurge values were treated as an outlier and removed, the error dropped greatly 

with mean values of 2204 (+ 882), 600 (+ 363) and 1947 (+ 634) stems/ha for blue ash, white ash 

and non-ash species respectively. Blue ash densities did not differ from white ash or non-ash 

densities, but white ash was significantly less dense than non-ash species (p = 0.010) (Figure 6a). 

Saplings 0.5 - 1.0 m or > 1 m tall did not differ between species. Mean density of new seedlings 

(< 3 yrs old) was greater for blue ash than white ash in their respective stands at all sites. Across 

all sites, mean densities differed significantly between blue ash (485 + 104 stems/ha) and white 

ash (109 + 47 stems/ha; t = 3.289; p = 0.008; Appendix 2). 

White ash seedling densities within white ash stands occurred at higher average densities 

than within blue ash stands (Figure 6b). White ash seedling densities within white ash stands were 

higher than associated non-ash species at all height classes, and significantly higher for the 0.5-1 

m height class (p = 0.026) and the > 1 m height class (p = 0.002). Blue ash seedlings were not 

present within any white ash dominated stand at any height class.  

Mean growth rates for the < 0.5 m height class differed significantly between all species 

when averaged across all sites, with white ash having the fastest rate of growth (3.13 cm/yr; 

Appendix 3, Figure 7). The interaction between site and species was not significant. When 

compared at each site independently, blue ash mean growth rates for the < 0.5 m height class did 

not differ from or were significantly greater than non-ash species at all sites and did not differ from 

white ash at four of the six sites surveyed. Growth rates for blue ash were significantly less than 

those for white ash at Kosch (blue ash: 2.56 cm/yr, white ash: 3.29 cm/yr; F = 3.931; p = 0.024; 

Appendix 3) and Conant Farm (blue ash: 2.67 cm/yr; white ash: 36 cm/yr; F = 4.551; p = 0.013; 
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Appendix 3). Mean growth rates for the 0.5 - 1.0 m height class did not differ significantly between 

species across all sites (blue ash: 5.81 cm/yr; white ash: 5.86 cm/yr; Figure 7). The interaction 

between site and species was significant (F = 4.420; p < 0.001) which was likely due to variation 

in mean growth rates of non-ash species and white ash. When compared at each site independently, 

blue ash mean growth rate either did not differ from the species with the highest mean growth rate 

(5 sites) or had the highest mean growth rate (1 site) itself for the 0.5 – 1 m height class (Appendix 

3, Figure 7). 

Mean growth rates for saplings > 1 m differed between species (F = 12.725; p < 0.001), 

with blue ash (10.7 cm/yr) and white ash (10.8 cm/yr) differing from non-ash species (8.82 cm/yr) 

but not from each other (Figure 7) across all sites. There was a significant interaction between site 

and species (p = 0.001). When compared at each site, blue ash growth rates were greater than or 

equal to non-ash species but less than white ash growth rates with significant difference at one site, 

LaFurge, where mean growth rates were 7.54 and 10.55 cm/yr for blue ash and white ash 

respectively (p = 0.022; Appendix 3). 

Ratios of pre-EAB to post-EAB seedlings did not differ significantly between species in 

their respective stands when pooled across all sites (Figure 8). The interaction between site, species 

and establishment was significant following a hierarchical log-linear analysis (p < 0.001), and 

analysis by site showed no discernable pattern (Appendix 1). Comparison of establishment ratios 

between blue and white ash seedlings growing within the same stands (blue ash stands) was also 

dependent on site with a significant interaction between site, species and establishment (p < 0.001); 

analysis by site was variable and showed no evident patterns.  

Discussion 
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  Blue ash mortality is far less than that of white ash at all sites despite the similarity in living 

overstory stem densities. Remaining overstory blue ash trees are almost double the diameter and 

more than double the age of white ash overstory, suggesting that blue ash is continuing to persist 

in the presence of EAB.  In contrast, most of the remaining white ash overstory trees are young, 

small, and likely are individuals released from the subcanopy and understory following EAB-

caused mortality of the larger and older trees and removal of the canopy. More than 90% of all 

overstory white ash stems sampled were < 30 years old while > 96% of blue ash stems sampled 

were >30 years old (Figure 4), suggesting that blue ash is being killed by EAB at a much lower 

frequency than white ash.  

 Patterns of sudden increase in annual growth ring widths observed in the 57 overstory 

white ash tree cores show evidence of a release in growth from the understory (19%) or 

groundcover (39%) over the past 7 – 13 years that correspond to the period of EAB-caused tree 

mortality.  Also, several overstory individuals (11%) were < 15 years old but exhibited rapid and 

steady growth characteristic of root collar sprouts (Kashian in press). Thus at least 68% of the 

current overstory sampled in white ash stands had not yet attained overstory stature prior to EAB; 

their placement in the overstory today likely resulted from a release of advanced regeneration 

following the disturbance. These data also suggest that much of the canopy within white ash stands 

is being replaced by white ash at these sites, such that the main effect of EAB-caused mortality is 

on stand structure rather than tree species composition or dominance.  

The distributions in crown conditions for overstory blue ash shows evidence of a 

continuing resistance to EAB. A larger proportion of blue ash, though much older than white ash, 

maintain a lower crown rating (Figure 5). The majority (69%) of blue ash overstory had a canopy 
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rating of 3 or less while the majority of white ash (> 60%) had a canopy rating of 4 or 5. Both 

white and blue ash showed an increase in higher crown rating frequency with increase in diameter 

size class meaning the larger and likely older trees of both species are experiencing higher levels 

of EAB infestation while younger and smaller ash trees of the understory and subcanopy remain 

with healthier crowns, poised for further canopy replacement. This trend was, as expected, much 

stronger for blue ash. Overall, blue ash overstory consistently exhibited lower stand mortality and 

a higher percentage of healthy individuals than white ash at all sites, consistent with reports of 

EAB-caused mortality in common garden experiments and forest settings (Herms 2015; Tanis and 

McCullough 2012; Anuliwicz et. al 2007). 

Overstory trees in stands dominated by blue ash are clearly experiencing a reduction in 

health and moderate levels of EAB caused mortality. The severity of EAB-caused mortality 

appears to be related to the length of time since EAB infestation. Portland, in Ionia County, had 

the lowest blue ash mortality rates and did not have confirmed EAB infestation until 2005 while 

all other sites were infested by 2002, though dendrochronological reports suggest that EAB was 

probably present in these areas by the mid to late 1990s (Siegert et. al 2014; Siegert et. al 2007). 

It may be that simply not enough time has passed for overstory blue ash to reach the same stand-

wide levels of mortality as other native ash species growing in the same areas as proposed by 

(Anuliczwicz et. al 2007). Tanis and McCullough (2012) reported mortality rates of < 40% at two 

sites surveyed for blue ash in southeastern Michigan, with the majority of surviving trees being 

relatively healthy (< 30% canopy dieback). Similarly, this study revealed that the majority (> 60%) 

of living blue ash in the five sites I sampled in southeastern Michigan had a crown rating of 3 or 

less which is equivalent to approximately 50% canopy dieback and 50% gallery cover or less 
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(Flower et. al 2013). Though slightly higher than those found by Tanis and McCullough (2012) 

prior to 2012, these crown conditions and mortality rates on their own do not suggest that a 

dramatic decline of overstory blue ash is imminent. 

Regeneration 

My results suggest that blue ash seedling densities are occurring at levels equivalent to or 

greater than all associate species within blue ash-dominated stands. Blue ash seedlings are most 

abundant and dominant in the < 0.5 m height class and become less dense and dominant in larger 

height classes, suggesting (1) there is a high level of blue ash seedling mortality rather than 

recruitment to larger height classes, and (2) potentially higher shade tolerance of associate species 

(which was most commonly sugar maple). Nevertheless, blue ash saplings are present at all height 

classes and do not differ significantly from other ash or non-ash species.  

The presence of seedlings and saplings in the < 0.5 m class suggests that an input of new 

seeds (and thus seedlings) into the understory continues even after EAB infestation for both ash 

species. The majority of the seedlings counted for both ash species were new seedlings that 

established after EAB infestation (Figure 8), which suggests that viable seed production has 

persisted since EAB infestation for both species. It appears that higher EAB-caused mortality of 

overstory white ash has impacted the establishment of new white ash seedlings (< 3 yrs old) 

compared to blue ash; declining regeneration (and presumed seed rain) is not yet evident for blue 

ash.  

The lower density of post-EAB and < 0.5 m white ash seedlings within the blue ash stands 

may be representative of a lag time in seed production, whereby the smaller and younger post-

EAB overstory white ash did not produce seed before it was able reach the canopy. Within the 
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white ash stands, white ash seedling densities showed some evidence of a rebound in seed 

production. Within these stands white ash seedlings dominate at all height classes, but the < 0.5 m 

height class had the highest amount of variation (Figure 6b). This dissimilarity of seedling densities 

and trends for white ash between the white and blue ash stands suggest seed dispersal range has 

narrowed in the time since before EAB. 

Results for average annual growth rates support a similar conclusion that blue ash is not 

being outcompeted by associate species. Surprisingly, white ash showed some evidence of a 

competitive edge in relation to its growth rate. White ash appears to be the only associate species 

at any site or in any height class that showed higher growth rates than blue ash. Considering the 

high susceptibility of white ash to EAB and the ability of blue ash to resist and thus maintain a low 

population of EAB, blue ash is likely to outcompete white ash prior to or shortly after reaching the 

canopy within blue ash-dominated stands. This is reflected in the complete lack of living mature 

white ash trees juxtaposed with several fallen dead mature white ash stems within the blue ash 

stands. 

Will blue ash persist in the wake of EAB? 

Shortly after the discovery of EAB in 2002, efforts were initially aimed at control of the 

invasive pest with hopes of stopping or delaying its spread long enough to develop a means to 

reduce its impact on native forest ecosystems. Rapid spread of EAB and high ash mortality rates 

within its increasing range has quickly changed the direction of research to one aimed at 

understanding and predicting the future composition and function of North American forests as 

ash is removed from the canopy (Smith et al. 2014; Kashian and Witter 2011). Many researchers 

have suggested that black, white, and green ash will be removed from North American forests as 
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a functioning dominant or co-dominant species (Herms and McCullogh 2014; Anulewicz 2007; 

but see Kashian in press). However, the same should not yet be predicted for blue ash given the 

reduced mortality of its overstory trees, the abundance of its regeneration, and its competitive 

growth rate in the understory relative to other species.  

A caveat of this study is that all sites showed evidence of an active EAB population, and 

implications of this for blue ash in the future remains unclear. At the five sites in southeastern 

Michigan, 92.7% of all overstory blue ash stems showed some evidence of EAB infestation. 

However, the majority of these trees continue to maintain a healthy crown, suggesting they are not 

past a point of recovery even after an extended period of exposure. This shows evidence of a 

spectrum of resistance for blue ash, especially given the levels of EAB-caused mortality of other 

ash species in the region (Herms and McCullough 2014; Klooster et. al 2014; Knight et. al 2010; 

Anulewicz 2007). All sites contained ample regeneration at levels comparable to the most 

abundant species and growing at least as quickly. Finally, there remains evidence of viable seed 

inputs (based on the number of new ash seedlings across all plots) to maintain a genetically diverse 

input of further regeneration within all stands. All of these components are supportive of the 

potential for sustainable canopy replacement by blue ash, at least in part, within blue ash stands. 

All that is required for continued ash persistence is a constant input of viable seeds, which can be 

accomplished by the establishment of a new cohort if they grow to reproductive maturity quick 

enough to replace at least the majority of dying canopy trees. This new group of seed bearing 

adults need only maintain their position long enough to once again replenish the seed bank. If 

current trends of blue ash resistance and regeneration continue, it is likely blue ash will persist in 

southern Michigan forests. 
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This study was conducted at sites at or near the documented northern limit of blue ash on 

primarily dense, clay rich soils and slightly drier river banks. In the heart of its distribution (e.g. 

Kentucky and Tennessee), blue ash stands are more common on limestone soils of dry uplands 

(Prasad 2007). Blue ash has only relatively recently become infested with EAB even near its 

introduction point, and it remains to be seen how site factors and ecosystem differences will affect 

the impact of EAB on blue ash. Where blue ash is more common in the overstory, one would 

expect higher regeneration densities and thus higher probability of persistence, but differences in 

overstory composition will produce various competitive species with varying levels of 

regeneration. This study provides an initial description of blue ash regenerative potential, but 

continued studies over time across a diversity of forest types are needed for better predictions of 

the future of blue ash in North American forests.
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Figure 1. Location of six blue ash sites sampled in southeastern Michigan. Star represents EAB 

introduction point near Canton, MI (Smith et. al 2015). 
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Figure 2. Diagram of 30 m x 10 m plot with 10 m belt. First belt was run 2 m in from 10 m side. 

A new belt was run every 2 m until 10 individuals of each species group at each size class was 

found. 
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Figure 3. Comparison of living and dead overstory stem counts between blue ash and white ash 

in their respective stands, tallied across all sites.  
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Figure 4. Histogram of age distribution for (A) blue ash and (B) white ash within their respective 

stands. Mean age differed significantly between stand types p < 0.001. 
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Figure 5. Frequency of crown rating for overstory stems for (A) blue and (B) white ash.  

Distributions for the two stand types were significantly different p = 0.007.  
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Figure 6. (A) Comparison of mean stem densities (stems/ha) of each species across all sites at 

each height class. Values for Lafurge were not included in the < 0.5 m height class. (B) Comparison 

of mean stem densities (stems/ha) of white ash and other species within white ash stands averaged 

across all sites at each height class. Error bars represent ± 1 SE.  
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Figure 7. Comparison of mean annual growth rates (cm/yr) for each species across all sites at each 

height class. Error bars represent ± 1 SE.  
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Figure 8. Comparison of counts of advanced regeneration (pre-EAB) and new seedlings (post-

EAB) of blue and white ash tallied across all sites. Values are shown for white ash seedlings within 

blue ash and white ash stands. New seedlings are more abundant than advanced regeneration for 

all species categories. Ratios did not differ significantly between categories. 

 
  

0

200

400

600

800

1000

1200

1400

Blue ash White ash White ash (within white
stands)

pre EAB post EAB

st
em

s 
(n

) 



29 
 

 

 

APPENDIX A 

Comparison of number of stems (N), ratio of advanced regeneration to new seedlings, stand 

mortality, quadratic mean diameter (Qm) and mean age (± S.E.) between blue ash and white ash 

stands at each site and across all sites. Values in parenthesis show ratios for pre/post EAB 

established seedling counts for white ash within blue stands. *significant at p < 0.05; **p < 0.001.  

 

Species / Site 

# 

Stems 

Pre/post 

EAB ratio 

Mortality 

(%) 

Qm 

(cm) 

Mean age 

(years) 

La Furge      

Blue Ash 12 1.2 14.3* 42.5** 74 ± 4.2* 

White Ash 7 0.92 (0.19) 72.0 10.9 29 ± 2.0 

Kosch      

Blue Ash 10 1.0 28.6 31.4** 66 ± 4.1** 

White Ash 17 0.65 (0.028) 45.2 14.1 25 ± 0.8 

Lower Huron      

Blue Ash 9 0.21 18.2* 33.8* 63 ± 6.8** 

White Ash 12 0.21 (0.51) 57.1 13.0 19 ± 1.3 

Conant      

Blue Ash 13 0.065 31.6 18.5 41 ± 4.2* 

White Ash 13 1.2 (0.29) 43.5 15.0 23 ± 1.1 

EBW      

Blue Ash 10 0.59 23.1* 27.0 72 ± 4.7 

White Ash 2 0.4 (0.49) 83.3 12.5 32 ± 11.5 

Portland      

Blue Ash 13 0.013 7.1* 27.0 75 ± 9.1* 

White Ash 8 1.0 (0.56) 57.9 25.0 28 ± 1.4 

All Sites      

Blue Ash 67 0.32 23.0** 30.6** 65 ± 2.8** 

White Ash 61 0.62 (0.36) 56.1 15.6 24 ± 0.7 
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APPENDIX B 

 

Mean (± S.E.) number of stems for each species at each height class averaged across all blue ash 

stands for each site and across all sites. Values shown for “Other spp.” represents value of most 

abundant non-ash species at each site. 
 

 

Species/Site 

Density of 

seedlings 

< 3 yrs (stems/ha) 

Density of 

saplings < 0.5 m 

(stems/ha) 

Density of 

saplings 0.5 – 1m 

(stems/ha) 

 

Density of 

saplings > 1m 

(stems/ha) 

La Furge     

Blue ash 289 (113) 1533 (885) 1311 (757) 2000 (1155) 

White ash 22 (22) 622 (359) 2133 (1232) 1267 (731) 

Other spp. - 205266 (118510) 6044 (3490) 378 (218) 

Kosch     

Blue ash 744 (495) 356 (205) 822 (475) 1444 (834) 

White ash 495 (300) 333 (192) 2733 (1578) 2244 (1296) 

Other spp. - 2111 (1219) 2356 (1360) 1956 (1129) 

Lower 

Huron 

    

Blue ash 767 (167) 2178 (1257) 711 (411) 822 (474) 

White ash 111 (80) 2000 (1155) 1511 (872) 867 (500) 

Other spp. - 2311 (1334) 511 (295) 244 (141) 

Conant     

Blue ash 556 (506) 4022 (2322) 311 (180) 378 (218) 

White ash 189 (78) 556 (321) 689 (398) 533 (308) 

Other spp. - 511 (295) 289 (167) - 

EBW     

Blue ash 122 (40) 133 (77) 111 (64) 533 (308) 

White ash 22 (22) - 67 (26) 167 (64) 

Other spp. - 756 (436) 1022 (590) 1222 (706) 

Portland     

Blue ash 433 (33) 4333 (2502) 533 (308) 378 (218) 

White ash 11 (11) 111 (64) 67 (38) - 

Other spp. - 4044 (2336) 22 (13) 22 (13) 

All Sites     

Blue ash 485 (118) 2093 (728) 633 (172) 926 (270) 

White ash 109 (52) 604 (296) 1200 (453) 846 (337) 

Other spp. - 35833 (33891) 1707 (931) 637 (321) 
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APPENDIX C 

 

Mean (± S.E.) growth rates of each species at each height class averaged across all blue ash stands 

at each site and across all sites, and mean (± S.E.) light readings averaged across all blue ash stands. 

Means having different superscripts differed significantly at p < 0.05. 

 

 

Species / 

Site 

< 0.5m Height 

Class 

mean ± SE 

growth rate 

(cm/year) 

0.5 – 1m Height 

Class 

mean ± SE 

growth rate 

(cm/year) 

> 1m Height 

Class 

mean ± SE 

growth rate 

(cm/year) 

mean ± SE 

light 

(lux) 

La Furge     

Blue Ash 2.97 ± 0.171 5.04 ± 0.27 7.54 ± 0.541  

White Ash 3.52 ± 0.201 5.64 ± 0.34 10.55 ± 0.722 120.3 ± 18.0 

Other Spp. 2.08 ± 0.092 4.23 ± 0.29 7.30 ± 0.611  

Kosch     

Blue Ash 2.56 ± 0.171 5.42 ± 0.4012 11.98 ± 0.731  

White Ash 3.29 ± 0.162 7.06 ± 0.511 13.21 ± 0.691 149.4 ± 12.0 

Other Spp. 2.59 ± 0.171 4.30 ± 0.242 6.93 ± 0.432  

Lower 

Huron 

    

Blue Ash 2.34 ± 0.12 4.67 ± 0.29 13.73 ± 0.861  

White Ash 2.50 ± 0.15 4.19 ± 0.24 8.64 ± 0.582 372.3 ± 65.4 

Other Spp. 2.52 ± 0.16 6.37 ± 0.39 13.84 ± 1.091  

Conant     

Blue Ash 2.67 ± 0.141 7.79 ± 0.381 12.49 ± 0.70  

White Ash 3.36 ± 0.202 5.68 ± 0.322 11.61 ± 0.80 190.6 ± 24.1 

Other Spp. 2.39 ± 0.141 5.62 ± 0.502 8.89 ± 1.25  

EBW     

Blue Ash 3.55 ± 0.19 6.36 ± 0.381 10.10 ± 0.6112  

White Ash 3.99 ± 0.24 7.87 ± 0.512 12.96 ± 0.821 190.4 ± 33.0 

Other Spp. 2.92 ± 0.15 5.5 ± 0.261 8.99 ± 0.482  

Portland     

Blue Ash 2.66 ± 0.13 5.53 ± 0.25 8.15 ± 0.47  

White Ash 2.31 ± 0.13 5.09 ± 0.42 7.99 ± 0.52 249.3 ± 20.4 

Other Spp. 2.37 ± 0.14 6.00 ± 0.29 7.02 ± 0.47  

All Sites     

Blue Ash 2.80 ± 0.061 5.81 ± 0.14 10.66 ± 0.281  

White Ash 3.13 ± 0.082 5.86 ± 0.17 10.83 ± 0.291 N/A 

Other Spp. 2.48 ± 0.063 5.33 ± 0.14 8.82 ± 0.302  
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ABSTRACT 

 

AN ANALYSIS OF BLUE ASH (FRAXINUS QUADRANGULATA) REGENERATION IN 

SOUTHEASTERN MICHIGAN IN THE PRESENCE OF EMERALD ASH BORER 

(AGRILUS PLANIPENNIS) 

 

by 

BENJAMIN A. SPEI 

May 2016 

Advisor: Dr. Daniel M. Kashian 

Major: Biological Sciences 

Degree: Master of Science 

Since the introduction of the invasive bark beetle emerald ash borer (EAB) (Agrilus 

planipennis Fairmaire) (Coleoptera: Buprestidae) to southeastern Michigan, most native ash 

species (Fraxinus spp.) such as white ash (F. Americana), black ash (F. nigra), and green ash (F. 

pensylvanica) have suffered mortality rates exceeding 99% after infestation. This has led to the 

loss of seed sources resulting in a depleted seed bank and thus a loss of potential future 

regeneration. These trends suggest that these species will soon no longer function as important 

canopy species in North American hardwood forests as EAB continues to spread. Blue ash (F. 

quadrangulata) is thought to be the most resistant of all native ash species to EAB with observed 

mortality rates between 30% and 40%. This reduced mortality may be sufficient for mature blue 

ash trees to persist and maintain a seed bank robust enough to evolve even higher resistance to 

EAB. While several studies have quantified declining regeneration of other ash species, little 

research exists describing blue ash regeneration in the presence of EAB. A total of 18 blue ash 

stands were sampled at 6 different sites in southeastern Michigan near the EAB introduction point. 

For reference, 18 white ash (F. Americana) stands within the same 6 sites were also sampled. 
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Observed overstory mortality for blue ash ranged between 7.1% and 31.6% and was significantly 

lower than white ash across all sites. Overstory blue ash was on average significantly older and 

larger than white ash across all sites and maintained a higher frequency of healthier crowns. Blue 

ash regeneration densities were found to be abundant at all sizes within all stands. New seedlings 

(< 3 yrs old) were significantly more abundant for blue ash than white ash across all sites 

suggesting blue ash has not experienced the same depletion of its seed bank as white ash. Blue ash 

seedling growth rates were equal to or significantly greater than associate non-ash species at all 

size classes and at all sites; and equal to white ash seedling growth rates at the majority of sites 

and size classes with few exceptions. My results show blue ash maintaining a relatively healthy 

and dominant position in the canopy of several forests in southeastern Michigan. Furthermore, my 

results suggest that blue ash is still regenerating in a capacity that shows a high probability of 

canopy replacement by blue ash and thus its continued persistence in the presence of EAB. 
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