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Designing a tightened normal tightened sampling plan requires sample sizes and 
acceptance number with switching criterion. An evolutionary algorithm, the genetic 
algorithm, is designed to identify optimal sample sizes and acceptance number of a 

tightened normal tightened sampling plan for a specified consumer’s risk, producer’s risk, 
and switching criterion. Optimal sample sizes and acceptance number are obtained by 
implementing the genetic algorithm. Tables are reported for various choices of switching 
criterion, consumer’s quality level, and producer’s quality level. 
 
Keywords: tightened normal tightened sampling plan, average outgoing quality, 
switching criterion, genetic algorithm 

 

Introduction 

Companies aiming to remain competitive in order to retain a market share in a 

global economy need to maintain quality standards of highest order. The 

importance of consumer protection in sectors like the pharmaceutical industry has 

resulted in the popularity of c = 0 attribute sampling plans. It is to be observed that 

use of any positive acceptance number in a sampling plan results in passing lots 

which are likely to have defective units in them. 

However, in safety and compliance testing, an acceptance number of zero is 

particularly desirable. In situations involving expensive testing procedures, 

practitioners often tend to use a single sampling plan with a sample of smaller size 

and acceptance number zero. But a sampling plan of this kind may result in the 

rejection of an entire lot based on the presence of even a single non-conforming 

unit. Apart from this, acceptance probabilities tend to decrease very rapidly for 

smaller values of p, namely, the fraction nonconforming in the lot. 
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This results in an Operating Characteristic (OC) curve with very poor shape. 

Even though these limitations can be overcome by using a single sampling plan 

with c ≥ 1, a double sampling plan, or a multiple sampling plan, these sampling 

plans require larger sample sizes resulting in prohibitively expensive situations. 

Hence, to deal with such situations, Calvin (1977) devised a sampling scheme 

called Tightened Normal Tightened (TNT) sampling scheme.  

Soundararajan and Vijayaraghavan (1992) studied TNT schemes with 

acceptance number c > 0 and compared its efficiency over single and double 

sampling plans. Suresh and Balamurali (1994) developed a Tightened Normal 

Tightened TNT(n; 0, 1) scheme which has a switching rule between two sampling 

plans with fixed sample size and two minimum acceptance numbers, namely, c = 0 

and c = 1. Suresh and Ramkumar (1996) studied the selection of single sampling 

plans indexed through Maximum Allowable Average Outgoing Quality (MAAOQ). 

Vijayaraghavan and Soundararajan (1996) developed procedures for the selection 

of TNT(n; c1, c2) indexed by (AQL, LQL) and (AQL, AOQL) under the application 

of a Poisson model. Balamurali (2001) studied the selection of sampling schemes 

indexed by crossover point for compliance testing. Here, AQL, LQL and AOQL 

stand for Acceptable Quality Level, Limiting Quality Level and Average Outgoing 

Quality Level respectively. 

Recently, the question of identifying sampling plans based on certain 

optimality criterion is receiving the attention of researchers. Because most of the 

times optimality criterion based on quantities like Average Sample Number assume 

complicated forms identifying optimal sampling plans is not a straightforward job. 

However, the availability of high speed computers and the evolution of soft 

computing tools have opened up a new direction in this regard. Sampath and Deepa 

(2012) developed a genetic algorithm for the determination of optimal sample sizes 

and acceptance number of double sampling plans under a crisp situation, and 

Sampath and Deepa (2013) designed a genetic algorithm for the same problem in 

situations involving both randomness and impreciseness. In this paper, it is 

proposed to identify optimal sample sizes and acceptance number of a tightened 

normal tightened plan using a genetic algorithm. Organization of the paper is as 

follows: A brief description on the tightened normal tightened scheme is given, 

followed by a description of the various stages involved in the implementation of 

the genetic algorithm. Finally, computational results are given in the final section. 
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Tightened Normal Tightened Scheme 

The Tightened Normal Tightened (TNT) plan is a sampling plan appropriate for 

use in compliance sampling as well as in other areas of acceptance sampling. The 

conditions under which tightened normal tightened scheme can be applied are 

explained below. 

 

(i) Production is in a steady state so that results of past, present, and 

future lots are broadly indicative of a continuing process. 

(ii) Lots are submitted substantially in the order of their production. 

(iii) Inspection is by attributes, with quality defined as p, the fraction 

nonconforming. 

 

A TNT scheme is specified by tightened sample size n1 (large), normal sample 

size n2 (small), criterion for switching to normal inspection t, and criterion for 

switching to tightened inspection s. Usually, s is smaller than t. It is carried out 

starting with tightened inspection. 

 

1. Inspect using tightened inspection, with larger sample size n1 and 

acceptance number c = 0. 

2. Switch to normal inspection when t lots in a row are accepted under 

tightened inspection. 

3. Inspect using normal inspection, with smaller sample size n2 and 

acceptance number c = 0. 

4. Switch to tightened inspection after a rejection if an additional lot is 

rejected in the next s lots. 

 

The operating procedure for the above scheme, denoted by TNT(n1, n2; 0), is 

based on the switching rule of United States Department of Defense (1963) with 

s = 4 and t = 5. One can refer to Dodge (1965), Hald and Thyregod (1965), and 

Stephens and Larson (1967) for derivation of composite OC function according to 

United States Department of Defense with the switching parameters s = 4 and t = 5. 

Let P1(p) be the probability of accepting a lot using tightened inspection and P2(p) 

be the probability of accepting a lot under normal inspection. The probability of 

accepting the lot is given by 

 

  
   1 2

a

P p P p
P p

 

 





  (1) 
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where 
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is the average number of lots inspected on tightened inspection and 
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is the average number of lots inspected on normal inspection. 

When a Poisson model is implemented, 
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Calvin (1977) devised the OC function of the TNT scheme as 

 

  
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     
  (4) 

 

The composite OC curve, normal OC curve, and tightened OC curve of the TNT 

scheme TNT(200, 100; 0) for s = 4 and t = 5 are as described in Figure 1. 
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Figure 1. Composite OC curve, normal OC curve, and tightened OC curve of the TNT 

scheme 

 

 
 

A TNT plan is characterized by three parameters, namely, n1, n2, and c, with 

switching criterion s and t. One can determine the optimal parameters which satisfy 

the following two conditions for a specified producer’s risk α, consumer’s risk β, 

producer’s quality level p0, consumer’s quality level p1, s, and t. 
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or, equivalently, 
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1

Accept Lot

Accept Lot 1

p

p

P

P







 
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It may be noted that there exists infinite number of solutions for n1, n2, and c 

satisfying (5) (or (6)). In order to obtain an optimal TNT plan, one has to define a 

suitable optimality criterion. In acceptance sampling, optimal sampling plans are 

determined based on measures of performance such as Average Sample Number, 
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Average Outgoing Quality (AOQ), and Average Total Inspection (ATI). In this 

paper, the problem of developing an optimal tightened normal tightened plan that 

minimizes the AOQ subject to the condition (5) (or (6)) is considered. 

Average Outgoing Quality 

In acceptance sampling programs, when the lots are rejected, they require some 

corrective actions in the form of replacement or elimination through 100 percent 

inspection. Such programs are known as rectifying inspection programs. AOQ is 

widely used for the evaluation of rectifying inspection, and represents average 

value of the lot quality that would be obtained over a long sequence of lots from a 

process with fraction defective p. AOQ for a TNT plan (Schilling and Neubauer, 

2008) is given by 

 

  0 0a

N n
AOQ p P p

N

 
  

 
  (7) 

 

where 
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and the lot size N is taken as (n1 + n2)×10 following Naidu et al. (2006). 

Note that for a specified producer’s risk α, consumer’s risk β, producer’s 

quality level p0, consumer’s quality level p1, s, and t, the expressions for Pa(p0) and 

Pa(p1) are functions of n1, n2, and c. Hence solving for these sampling plan 

parameters such that (5) (or (6)) hold good becomes a complicated process. We 

therefore intend to make use of an unconventional algorithm like a genetic 

algorithm. The algorithm looks at a solution for n1, n2, and c such that (7) is 

minimum subject to the condition (5) (or (6)). The various steps associated with a 

genetic algorithm meant for solving the above problem are given in the following 

section. 

Genetic Algorithm 

Genetic algorithms (GAs) are evolutionary algorithms designed using the principle 

called Survival of the Fittest. These algorithms were first pioneered by Holland 

(1975). Genetic algorithms find their application in many fields, such as science, 
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engineering, business, and social sciences. Genetic algorithms are a domain 

independent problem solving approach and are very effective in identifying the 

optimal solution to a given problem. Details on the mechanism of GAs can be found 

in Goldberg (1989). 

Genetic algorithms randomly search feasible points in a solution space in 

order to obtain best possible solution. It starts with the definition of what is known 

as population, which is made up of points representing different regions of the 

feasible solution space to the maximum extent possible. Each member in the given 

population is represented in the form of a string called a chromosome, and 

characters in a string are referred as genes. Defining a chromosome depends on the 

nature of the given problem. Fitness of a chromosome is determined by evaluating 

its objective function, namely the function being optimized, which indicates the 

nature of the solution as well as closeness towards optimality. A genetic algorithm 

tries to identify the best chromosome by successive breeding of existing 

chromosomes. Implementation of a genetic algorithm involves five different stages 

are explained below. 

Defining initial population is the first stage of the genetic algorithm. Sets of 

chromosomes are formed in such a way that each chromosome produces one 

possible solution for the given optimization problem. Each chromosome defined in 

the initial population must be distinct in order for the GA to result in better solution. 

In this study, the initial population consists of 50 randomly generated chromosomes 

satisfying the probabilistic constraints given in (5) (or (6)). Each chromosome is 

comprised of nineteen genes. The first eight genes represent the binary encoding of 

the sample size n1, the second set of eight genes, i.e. from the ninth to the sixteenth 

bit position, represents the binary encoding of sample size n2, and the last three 

genes, the seventeenth, eighteenth, and nineteenth bit positions, gives the binary 

encoding of the parameter c. For example, if n1 = 130, n2 = 100, and c = 2, then the 

individual formation of the chromosome is as follows: 

 

 

1 2

1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0

n n c

  

 

Fitness value evaluation is the second stage of the genetic algorithm. For each 

chromosome existing in the initial population, the objective function corresponding 

to the given optimization problem is evaluated. These values are treated as fitness 

values. In this study, fitness values are computed by making use of the expression 

given in (7). Chromosomes having minimum AOQ value are treated as fitter. 
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Selection is the third stage of genetic algorithm. In this stage, chromosomes 

having high fitness value are selected to enter the mating pool with higher 

probabilities and a chromosome with lower fitness value is given a lower 

probability for entering the mating pool. Some of the selection procedures available 

in the literature are Roulette Wheel selection, Tournament selection, Ranking 

selection, and Proportional selection. In this paper, the Roulette Wheel selection 

procedure is used. For details related to selection procedures, one can refer to any 

standard text book on soft computing, such as Sivanandam and Deepa (2008). 

Crossover is the fourth stage of genetic algorithm. In this stage, pair of 

chromosomes exist in the mating pool are combined to generate new chromosomes, 

called offspring. Many crossover mechanisms are available in the literature. In this 

work, a single point crossover mechanism is applied. In single point crossover, a 

crossover point is selected randomly in the interval [1, l-1] where l is the length of 

a chromosome. The portions of the chromosome lying to the right of the crossover 

point are exchanged to produce offspring. For example, if 

 

 
1 :1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 0C   

 

and 

 

 2 : 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1C   

 

are two chromosomes with l = 14, the resulting offspring are 

 

 1 :1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1Ch   

 

and 

 

 2 : 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0Ch  , 

 

respectively. 

Mutation is the last stage of the algorithm. Each gene of a chromosome 

available in the given generation is randomly chosen and a small change is made 

with the help of mutation operator. In this work, each chromosome undergoes the 

following changes: A bit position is chosen randomly from the first eight bits 

(which is an encoding of sample size n1) and its value is flipped. A second bit 

position is selected randomly from the ninth to sixteenth bit positions (which is an 
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encoding of sample size n2) and its value is flipped. Similarly, flipping is done 

based on the last three bit positions (which is an encoding of acceptance number c). 

After mutation is over, mutated chromosomes form the new generation of 

chromosomes. 

The five stages of the genetic algorithm described above are repeatedly 

performed. In this study, the number of times the above algorithm is to be repeated 

is taken as 50. 

Determination of Optimal TNT(n1, n2; c) Plan 

The optimal TNT sampling plans for a wide range of p0, p1, s, and t with producer’s 

risk α = 0.05 and consumer’s risk β = 0.10 are determined by implementing the 

genetic algorithm discussed earlier. The optimal sampling plans are displayed in 

Tables 1 to 4 in the appendix. The calculations are carried out using macros 

developed in Microsoft Excel VBA. The Microsoft Excel VBA codes developed in 

the determination of optimal TNT sampling plan are available from the authors. 

Conclusion 

A genetic algorithm has been designed and implemented for the determination of 

optimal TNT(n1, n2; c) scheme. Various stages involved in a genetic algorithm are 

discussed in detail. Tables giving optimal sampling plans are constructed for 

various choices of s and t. The values are obtained using macros developed in 

Microsoft Excel VBA. It is observed that, for a specified α = 0.05 and β = 0.10, 

acceptance number c increases when the producer’s quality level p0 increases. Also, 

the sample sizes n1 and n2 increase with increasing producer’s quality level p0. It is 

to be noted that an increase in consumer’s quality level p1 decreases the sample 

sizes n1 and n2. Also, the switching criterion s and t have no significant effect in 

minimum AOQ. That is, various choices of s and t considered in this study have 

almost the same effect in determining the optimal sampling plans. 
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Appendix 

 
Table 1. Optimal TNT plans for s = 1, t = 2 and 3, α =0.05, and β = 0.10. 

 

p0 = 0.001  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.020  125 50 0 0.00092347  121 50 0 0.000922529 

0.025  96 51 0 0.00091696  94 49 0 0.000919000 

0.030  81 50 0 0.00091467  78 50 0 0.000913708 

0.035  75 51 0 0.00091161  68 50 0 0.000910685 

0.040  70 51 0 0.00091006  65 50 0 0.000909672 

0.045  57 50 0 0.00090535  59 50 0 0.000907473 

0.050   56 51 0 0.00090494   56 50 0 0.000906278 

 

p0 = 0.002  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.020   - - - -   195 177 1 0.001810030 

0.025  181 177 1 0.00180668  178 177 1 0.001805900 

0.030  181 177 1 0.00180668  181 175 1 0.001809062 

0.035  179 176 1 0.00180737  177 175 1 0.001808043 

0.040  179 176 1 0.00180737  180 175 1 0.001808809 

0.045  179 175 1 0.00180857  179 173 1 0.001810952 

0.050   179 173 1 0.00181097   172 169 1 0.001813895 

 

p0 = 0.003  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.025  162 118 1 0.00273007  158 118 1 0.002727998 

0.030  133 117 1 0.00271945  130 118 1 0.002715045 

0.035  123 117 1 0.00271405  120 118 1 0.002709611 

0.040  118 117 1 0.00271118  120 118 1 0.002709611 

0.045  120 117 1 0.00271234  117 114 1 0.002718657 

0.050   117 115 1 0.00271599   114 113 1 0.002719548 
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Table 1, continued. 

 

p0 = 0.004  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.025  161 88 1 0.00366635  158 88 1 0.003663347 

0.030  200 199 2 0.00362244  198 195 2 0.003631958 

0.035  199 194 2 0.00363504  198 195 2 0.003631958 

0.040  199 197 2 0.00362723  197 194 2 0.003634081 

0.045  89 86 1 0.00362383  94 88 1 0.003619167 

0.050   89 88 1 0.00362142   89 86 1 0.003623784 

 

p0 = 0.005  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.025  - - - -  158 69 1 0.004609512 

0.030  179 163 2 0.00452508  178 163 2 0.004524230 

0.035  171 163 2 0.00451987  166 163 2 0.004516433 

0.040  168 162 2 0.00452204  164 163 2 0.004515071 

0.045  162 160 2 0.00452618  163 161 2 0.004522712 

0.050   163 160 2 0.00452689   162 161 2 0.004522016 

 

p0 = 0.006  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.030  180 135 2 0.00546035  180 135 2 0.005459290 

0.035  162 136 2 0.00544026  153 135 2 0.005438235 

0.040  141 136 2 0.00542138  141 135 2 0.005427310 

0.045  137 135 2 0.00542346  135 134 2 0.005427414 

0.050   139 136 2 0.00541942   135 134 2 0.005427414 

 

p0 = 0.007  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.030  182 116 2 0.00639254  180 116 2 0.006388467 

0.035  198 195 3 0.00632088  199 195 3 0.006321612 

0.040  197 195 3 0.00632008  196 194 3 0.006325072 

0.045  122 116 2 0.00633116  195 192 3 0.006335817 

0.050   118 116 2 0.00632581   196 192 3 0.006336621 
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Table 1, continued. 

 

p0 = 0.008  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.030  - - - -  179 101 2 0.007325087 

0.035  193 170 3 0.00724817  191 170 3 0.007245746 

0.040  174 170 3 0.00722943  175 170 3 0.007230354 

0.045  171 169 3 0.00723385  170 169 3 0.007232756 

0.050   170 169 3 0.00723278   173 169 3 0.007235887 

 

p0 = 0.009  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.030  - - - -  179 89 2 0.008268089 

0.035  195 151 3 0.00818064  195 151 3 0.008178886 

0.040  170 151 3 0.00815343  168 150 3 0.008160119 

0.045  159 151 3 0.00813984  157 150 3 0.008146659 

0.050   151 150 3 0.00813885   155 150 3 0.008144086 

 
 
Table 2. Optimal TNT plans for s = 1, t = 4 and 5, α =0.05, and β = 0.10. 

 

p0 = 0.001  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.020  118 50 0 0.000921715  116 50 0 0.000921029 

0.025  110 50 0 0.000920442  93 50 0 0.000916969 

0.030  82 49 0 0.000915993  87 50 0 0.000915651 

0.035  67 49 0 0.000911642  80 50 0 0.000913943 

0.040  58 49 0 0.000908415  70 50 0 0.000911125 

0.045  52 47 0 0.000908707  54 48 0 0.000908146 

0.050   49 45 0 0.000910168   49 47 0 0.000907333 
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Table 2, continued. 

 

p0 = 0.002  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.020   196 177 1 0.001810177   195 177 1 0.001809868 

0.025  176 175 1 0.001807781  185 177 1 0.001807581 

0.030  176 175 1 0.001807781  184 177 1 0.001807344 

0.035  176 175 1 0.001807781  179 177 1 0.001806137 

0.040  175 173 1 0.001809911  175 174 1 0.001808714 

0.045  175 172 1 0.001811102  175 173 1 0.001809903 

0.050   173 172 1 0.001810583   177 172 1 0.001811595 

 

p0 = 0.003  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.025  158 117 1 0.002730294  158 117 1 0.002729820 

0.030  134 117 1 0.002719641  133 117 1 0.002718982 

0.035  119 117 1 0.002711724  126 117 1 0.002715464 

0.040  116 114 1 0.002718050  116 115 1 0.002715363 

0.045  115 112 1 0.002722804  115 114 1 0.002717454 

0.050   113 111 1 0.002724269   114 113 1 0.002719532 

 

p0 = 0.004  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.025  162 87 1 0.003668336  157 87 1 0.003664266 

0.030  200 198 2 0.003625040  200 198 2 0.003625024 

0.035  200 198 2 0.003625040  200 198 2 0.003625024 

0.040  198 195 2 0.003631937  198 195 2 0.003631915 

0.045  198 192 2 0.003639654  198 195 2 0.003631915 

0.050   199 197 2 0.003627200   196 194 2 0.003633585 

 

p0 = 0.005  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.025  156 69 1 0.004604499  156 68 1 0.004607669 

0.030  182 163 2 0.004526400  180 163 2 0.004524937 

0.035  166 163 2 0.004516391  168 162 2 0.004521788 

0.040  164 163 2 0.004515057  163 160 2 0.004526771 

0.045  161 160 2 0.004525437  161 159 2 0.004529517 

0.050   161 160 2 0.004525437   167 159 2 0.004533512 
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Table 2, continued. 

 

p0 = 0.006  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.025  156 56 1 0.005554394  156 56 1 0.005543875 

0.030  183 135 2 0.005460090  178 135 2 0.005455578 

0.035  158 135 2 0.005441970  153 135 2 0.005437430 

0.040  136 135 2 0.005422414  135 134 2 0.005427375 

0.045  136 135 2 0.005422414  134 133 2 0.005432312 

0.050   136 135 2 0.005422414   136 130 2 0.005451835 

 

p0 = 0.007  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.030  181 115 2 0.006394767  185 115 2 0.006393767 

0.035  198 194 3 0.006326581  198 195 3 0.006320708 

0.040  196 194 3 0.006325035  196 194 3 0.006324995 

0.045  194 193 3 0.006329237  196 193 3 0.006330752 

0.050   193 192 3 0.006334178   196 193 3 0.006330752 

 

p0 = 0.008  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.030  183 100 2 0.007333215  180 100 2 0.007324785 

0.035  196 170 3 0.007249456  193 170 3 0.007246189 

0.040  174 170 3 0.007229235  182 170 3 0.007236643 

0.045  172 170 3 0.007227226  177 170 3 0.007232004 

0.050   173 169 3 0.007235791   171 169 3 0.007233710 

 

p0 = 0.009  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.030  178 88 2 0.008272107  179 87 2 0.008275323 

0.035  193 151 3 0.008175165  192 150 3 0.008182135 

0.040  170 151 3 0.008152119  168 150 3 0.008158866 

0.045  162 151 3 0.008142936  150 149 3 0.008146914 

0.050   160 151 3 0.008140541   153 149 3 0.008150742 
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Table 3. Optimal TNT plans for s = 2, t = 3 and 4, α =0.05, and β = 0.10. 

 

p0 = 0.001  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.020  117 50 0 0.000921194  117 49 0 0.000921922 

0.025  100 50 0 0.000918348  98 49 0 0.000918885 

0.030  78 47 0 0.000917536  82 49 0 0.000915505 

0.035  71 47 0 0.000915554  66 48 0 0.000912430 

0.040  59 47 0 0.000911510  62 48 0 0.000911094 

0.045  56 47 0 0.000910345  55 48 0 0.000908488 

0.050   54 45 0 0.000912349   48 46 0 0.000908244 

 

p0 = 0.002  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.020   195 177 1 0.001809850   195 177 1 0.001809705 

0.025  181 177 1 0.001806620  178 176 1 0.001807066 

0.030  177 175 1 0.001808025  177 175 1 0.001808010 

0.035  176 174 1 0.001808964  177 174 1 0.001809192 

0.040  177 174 1 0.001809214  177 173 1 0.001810373 

0.045  177 174 1 0.001809214  174 172 1 0.001810819 

0.050   177 174 1 0.001809214   177 172 1 0.001811595 

 

p0 = 0.003  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.025  163 117 1 0.002731659  159 117 1 0.002729329 

0.030  131 117 1 0.002717968  134 117 1 0.002719125 

0.035  126 117 1 0.002715442  122 116 1 0.002715917 

0.040  118 116 1 0.002713820  119 116 1 0.002714328 

0.045  116 114 1 0.002718027  116 115 1 0.002715345 

0.050   115 114 1 0.002717451   115 114 1 0.002717435 

 

p0 = 0.004  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.025  156 87 1 0.003664103  157 86 1 0.003666564 

0.030  200 198 2 0.003625019  199 198 2 0.003624566 

0.035  198 197 2 0.003626737  198 195 2 0.003631868 

0.040  198 197 2 0.003626737  197 196 2 0.003628867 

0.045  199 197 2 0.003627179  197 195 2 0.003631434 

0.050   198 196 2 0.003629326   198 196 2 0.003629299 
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Table 3, continued. 
 

p0 = 0.005  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.025  158 69 1 0.004602243  156 68 1 0.004602324 

0.030  178 163 2 0.004523715  186 163 2 0.004527613 

0.035  169 163 2 0.004518243  178 163 2 0.004523300 

0.040  167 163 2 0.004516975  178 163 2 0.004523300 

0.045  162 161 2 0.004521985  172 162 2 0.004524010 

0.050   160 159 2 0.004528829   168 162 2 0.004521611 

 

p0 = 0.006  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.025  - - - -  160 55 1 0.005547309 

0.030  183 135 2 0.005458675  178 135 2 0.005453510 

0.035  164 135 2 0.005445872  154 135 2 0.005437400 

0.040  137 135 2 0.005423333  139 135 2 0.005425051 

0.045  136 134 2 0.005428327  138 134 2 0.005430076 

0.050   138 133 2 0.005436135   135 134 2 0.005427335 

 

p0 = 0.007  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.030  178 115 2 0.006390131  179 114 2 0.006394389 

0.035  199 195 3 0.006321429  198 195 3 0.006320584 

0.040  196 194 3 0.006324985  196 195 3 0.006319167 

0.045  194 193 3 0.006329213  195 193 3 0.006329910 

0.050   194 193 3 0.006329213   197 192 3 0.006337049 

 

p0 = 0.008  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.030  179 100 2 0.007326484  178 99 2 0.007327863 

0.035  191 170 3 0.007244411  191 170 3 0.007243322 

0.040  175 170 3 0.007230061  171 170 3 0.007226132 

0.045  174 170 3 0.007229101  171 170 3 0.007226132 

0.050   171 169 3 0.007233695   170 169 3 0.007232657 
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Table 3, continued. 

 

p0 = 0.009  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.030  183 88 2 0.008268077  180 87 2 0.008264219 

0.035  193 151 3 0.008173139  195 149 3 0.008190940 

0.040  180 151 3 0.008161396  171 149 3 0.008170188 

0.045  157 150 3 0.008146156  150 149 3 0.008146852 

0.050   153 149 3 0.008150708   150 149 3 0.008146852 

 
 
Table 4. Optimal TNT plans for s = 2, t = 4 and 5, α =0.05, and β = 0.10. 

 

p0 = 0.001  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.020  118 49 0 0.000921353  125 49 0 0.000922006 

0.025  113 49 0 0.000920707  100 49 0 0.000918607 

0.030  77 48 0 0.000915360  81 48 0 0.000916232 

0.035  66 47 0 0.000913652  70 48 0 0.000913391 

0.040  59 47 0 0.000911304  68 48 0 0.000912808 

0.045  54 47 0 0.000909407  54 47 0 0.000909380 

0.050   50 47 0 0.000907736   52 47 0 0.000908570 

 

p0 = 0.002  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.020   195 177 1 0.001809553   195 177 1 0.001809493 

0.025  182 177 1 0.001806781  187 177 1 0.001807844 

0.030  179 176 1 0.001807280  186 177 1 0.001807631 

0.035  178 176 1 0.001807051  180 176 1 0.001807495 

0.040  177 174 1 0.001809169  177 175 1 0.001807988 

0.045  175 173 1 0.001809871  176 173 1 0.001810098 

0.050   174 173 1 0.001809633   173 172 1 0.001810560 
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Table 4, continued. 

 

p0 = 0.003  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.025  157 117 1 0.002727763  157 117 1 0.002727495 

0.030  133 117 1 0.002718362  140 117 1 0.002721202 

0.035  120 117 1 0.002712145  123 117 1 0.002713613 

0.040  116 115 1 0.002715328  118 117 1 0.002711102 

0.045  116 115 1 0.002715328  116 115 1 0.002715321 

0.050   115 114 1 0.002717420   115 114 1 0.002717412 

 

p0 = 0.004  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.025  157 86 1 0.003663245  157 86 1 0.003662696 

0.030  200 198 2 0.003624961  198 197 2 0.003626702 

0.035  198 197 2 0.003626709  198 197 2 0.003626702 

0.040  198 196 2 0.003629271  195 194 2 0.003633095 

0.045  200 196 2 0.003630100  194 192 2 0.003637721 

0.050   197 195 2 0.003631407   198 196 2 0.003629259 

 

p0 = 0.005  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.025  157 66 1 0.004610771  156 67 1 0.004602109 

0.030  183 162 2 0.004529595  178 163 2 0.004522695 

0.035  163 162 2 0.004518474  165 163 2 0.004515560 

0.040  162 161 2 0.004521936  165 163 2 0.004515560 

0.045  162 161 2 0.004221936  164 163 2 0.004514975 

0.050   162 159 2 0.004530044   163 160 2 0.004526583 

 

p0 = 0.006  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.025  166 53 1 0.005550880  157 54 1 0.005544301 

0.030  183 134 2 0.005459981  185 134 2 0.005460246 

0.035  153 134 2 0.005441853  153 134 2 0.005441560 

0.040  136 134 2 0.005428185  143 134 2 0.005433987 

0.045  135 134 2 0.005427299  135 134 2 0.005427283 

0.050   132 131 2 0.005441986   135 134 2 0.005427283 
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Table 4, continued. 

 

p0 = 0.007  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.030  179 114 2 0.006388881  180 114 2 0.006388371 

0.035  196 195 3 0.006319130  200 195 3 0.006321711 

0.040  196 195 3 0.006319130  199 195 3 0.006321071 

0.045  195 194 3 0.006324159  196 195 3 0.006319114 

0.050   195 194 3 0.006324159   196 194 3 0.006324813 

 

p0 = 0.008  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.030  179 98 2 0.007328779  178 98 2 0.007328104 

0.035  193 170 3 0.007243578  193 170 3 0.007243124 

0.040  177 170 3 0.007231282  175 169 3 0.007236929 

0.045  174 170 3 0.007228724  173 169 3 0.007235221 

0.050   172 170 3 0.007226973   173 169 3 0.007235221 

 

p0 = 0.009  s = 1, t = 2  s = 1, t = 3 

p1   n1 n2 c AOQ   n1 n2 c AOQ 

0.030  186 85 2 0.008271138  188 85 2 0.008272709 

0.035  195 150 3 0.008177279  197 150 3 0.008177442 

0.040  172 150 3 0.008160109  171 150 3 0.008158701 

0.045  152 150 3 0.008139789  156 149 3 0.008153466 

0.050   150 149 3 0.008146798   155 148 3 0.008161672 
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