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The selection of relevant variables in the model is one of the important problems in 
regression analysis. Recently, a few methods were developed based on a model free 
approach. A multilayer feedforward neural network model was proposed for developing 
variable selection in regression. A simulation study and real data were used for evaluating 
the performance of proposed method in the presence of outliers, and multicollinearity. 
 

Keywords: Subset selection, artificial neural network, multilayer feedforward 
network, full network model and subset network model. 

 

Introduction 

The objective of regression analysis is to predict the future value of response 

variable for the given values of predictor variables. In the regression model, the 

inclusion of a large number of predictor variables leads to the problems such as i) 

decrease in prediction accuracy, and ii) increase in cost of the data collection 

(Miller, 2002). To improve the prediction accuracy of the regression model, one 

approach is to retain only a subset of relevant predictor variables in the model, 

and eliminate the irrelevant predictor variables. The problem of choosing an 

appropriate relevant set from a large number of predictor variables is called subset 

selection or variable selection in regression. 

In traditional regression analysis, the form of the regression model must be 

first specified, then fitted to the data. However, if a pre-specified form of the 

model is itself wrong, another model must be used. Searching for a correct model 

for the given data becomes difficult when complexity is present in the data. A 

better alternative approach in the above situation would be to estimate a function 

or model from the data. Such an approach is called Statistical Learning; Artificial 

mailto:tejustat@gmail.com
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Neural Network (ANN) and Support Vector Machine (SVM) are statistical 

learning techniques. 

ANNs have recently received a great deal to attention in many fields of 

study, such as pattern reorganization, marketing research etc. ANN is important 

because of its potential use in prediction and classification problems. Usually, 

ANN is used for prediction when form of the regression model is not specified. In 

this article, ANN is used for selection of relevant predictor variables in the model. 

Mallows’s Cp (Mallows, 1973) and Sp statistics (Kashid and Kulkarni, 2002), 

along with other existing variable selection methods, are suitable under certain 

assumptions with prior knowledge about the data. When no prior knowledge 

about the data is available, ANN is an attractive variable selection method 

(Castellano and Fanelli, 2000), because ANN is a data-based approach. ANN is 

used in this study for obtaining predicted values of the subset regression model. 

The criteria Cp and Sp are based on prediction values of subset models. Therefore, 

we propose modification in Cp and Sp based on predicted values of the ANN 

model. 

Mallows’s Cp (Mallows, 1973) is defined by 

 

  2
2

p

p

RSS
C n p


     (1) 

 

where p is the number of parameters in the subset regression model with p – 1 

regressors, RSSp is the residual sum of squares of the subset model, n is the 

number of data points used for fitting the subset regression model, and σ2 is 

replaced by its suitable estimates, usually based on the full model. In this study, 

the following cases are used. 

Case 1 

A simulation design proposed by McDonald and Galarneau (1975) is used for 

introducing multicollinearity in the regressor variables. It is given by 

 

    

1
22

1
1 , 1,2, , , 1,2, ,ij ij i J

X Z Z i n j J 


      

 

where Zij are independent standard normal pseudo-random numbers of size n, and 

ρ2 is the correlation between any two predictor variables. The response variable Y 

is generated by using the following regression model with n = 30 and ρ = 0.999: 
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1 2 31 4 5 0 , 1,2,...,30i i i i iY X X X i        

 

where εi ~ N(0,1). To identify the degree of multicollinearity, the variance 

inflation factor (VIF) is used (Montgomery, Peck, and Vining, 2006). For this 

data, the VIFs for the variables are 339.6, 572.5 and 350.1. These VIFs indicates 

the presence of severe multicollinearity in the data. We compute the value of the 

Cp statistic Cp(M) and report the results in Table 1. 

Case 2 

Data generated in Case 1 is used, and one outlier is introduced by multiplying the 

actual Y corresponding to the maximum absolute residual by 25. The value of the 

response variable Y = 8.2235 is replaced by Y = 205.5878. The value of the Cp 

statistic Cp(MO) is computed and reported in Table 1. 

Case 3 

The following nonlinear regression model is generated using the above 

Xi, i = 1,2,3 and εi which are generated in Case 1. The nonlinear regression model 

is 

 

  1 2 3exp 1 4 5 0 , 1,2,...,30i i i iY X X X i        

 

The values of the Cp statistic Cp(NL) are computed for the nonlinear regression 

model and reported in Table 1. 
 
 
Table 1. Values of Cp(M), Cp(MO), and Cp(NL). 

Regressors in subset model P Cp(M) Cp(MO) Cp(NL) 

X1 2 1.8617 3.0077 2.0726 

X2 2 2.2565 2.2510 1.0605 

X3 2 3.2585 1.9152 2.3498 

X1X2 3 2.2237 2.8740 2.0059 

X1X3 3 3.8518 3.2340 3.8492 

X2X3 3 4.1730 3.4448 3.0179 

X1X2X3 4 4.0000 4.0000 4.0000 

 
 

As seen in Table 1, the criterion Cp selects the wrong subset models for all 

the above-cited cases. The statistic fails to select the correct model in the presence 

of a) multicollinearity alone, b) both multicollinearity and outlier, and c) 
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nonlinear regression, because OLS estimation does not perform well in each case. 

Consequently, variable selection methods based on OLS estimator fail to select 

the correct model. 

Regression Model and Neural Network Model 

In general, the regression model is defined as 

 

  ,f X Y    (2) 

 

where f is any function of predictor variables X1, X2, …, Xk−1 and unknown 

regression coefficients β. If f is a non-linear function, then regression parameters 

are estimated by using nonlinear least squares method (or some other method). If f 

is linear, the regression model can be expressed as 

 

  Y X   (3) 

 

where Y is an n × 1 vector of response variables, X is a matrix of order n × k with 

1’s in the first column, β is a k × 1 vector of regression coefficients and ε is an 

n × 1 vector of random errors which are independent and identically distributed 

N(0,σ2I). The least squares estimator of β is given by (Montgomery et al., 2006) 

 

  
1ˆ 

 X X X Y    

 

The predicted value of the regression model is obtained by the fitted 

equation 

 

 ˆˆ Y X   

 

The prediction accuracy of the regression model depends on the selection of an 

appropriate model, which means the form of the function (f) must be specified 

before the regression analysis. If form of the model is not known, then one of the 

most appropriate alternative methods to handle this situation is artificial neural 

network. 
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Multilayer Feedforward Network (MFN)  

The MFN can approximate any measurable function to any desired degree of 

accuracy (Hornik, Stinchcombe, and White, 1989). This MFN model consists of 

an input layer, an output layer, and one or more hidden layer(s). We represent the 

architecture of MFN with one hidden layer consisting of J hidden nodes, and a 

single node in an output layer, as shown in Figure 1. A vector X = [X0, X1, …, 

Xk−1]' is the vector of k units in the input layer and Y is the output of the network. 
 
 

 
 
Figure 1. Multilayer feedforward network 

 

 
 

From Figure 1, each input signal is connected to each node in the hidden 

layer with weight wjm, m = 0,1,2,3,…,k – 1, j = 1,2,…,J, and hidden nodes are 

connected to a node in the output layer with weight vj, j = 1,2,…,J. The final 

output Yi for the ith data point is given by 

 

   1

2 11 0
1,2,...,

J k

i j jm imj m
Y g V g w X i n



 
    

 

where g1 and g2 denote activation functions used in the hidden layer and output 

layer respectively; it is not necessary that g1 and g2 are the same activation 

functions.  The above network model can be written as 
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  ,f XY   (4) 

 

where β = (v1, …, vJ, w0, w1, w2, …, wk−1), wm = (w1m, w2m, …, wJm), 

m = 0,1,2,…,k – 1 and f(X,β) is a nonlinear function of the inputs 

X0, X1, X2, …, Xk−1 and the weight vector β. If we add an error term in the above 

model (4), then it becomes a regression model as in Equation 2, where ε is the 

random error. 

The next step in ANN modeling is training the network. The purpose of 

training the network is to obtain weights in a neural network model using the 

training data. Various training methods or algorithms are available in the literature. 

The robust back-propagation method (see Kasko, 1992) is one such. First, two 

types of MFN models must be defined, namely the full MFN model and the 

subset MFN model, for proposing modification in Cp and Sp statistics. 

Full MFN and subset MFN model 

A full MFN model is constructed with input units X1, X2, …, Xk−1 and bias node 

X0 = −1. The MFN model in Equation 4 is a full MFN model. The network 

weights are obtained by training the network and the network output vector based 

on a full MFN model, as 

 

  ˆˆ ,f XY   (5) 

 

where ̂  is the estimated weight vector. 

A subset MFN model is constructed with a subset of input units 

XA = (X0, X1, X2, …, Xp−1)' of size p(p ≤ k) in the input layer. The subset network 

model is given by 

 

  ,A Af XY   (6) 

 

where X and β are partitioned as X = [XA : XB] and β = [βA : βB]. Similarly, the 

network output vector based on subset MFN model is 

 

  ˆˆ ,A Af XY   (7) 

 

where ˆ
A  is the estimated weight vector. 
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To implement the training procedure using network training algorithm, we 

need to select the number of hidden layers in the MFN and the number of hidden 

nodes in that hidden layer. This is discussed in the next section. 

Selection of Hidden Layer and Hidden Nodes 

The selection of learning rate parameter, initial weights and number of hidden 

layers in the MFN model and the number of hidden nodes in each hidden layer is 

an important task. The number of hidden layers is determined first. The network 

begins as a one-hidden-layer network (Lawrence, 1994). If the one-hidden-layer 

MFN network does not sufficient for training the network, then more hidden 

layers are added. In the MFN model, theoretically a single hidden layer is 

sufficient, because any continuous function defined on a compact set in Rn can be 

approximated by a multilayer ANN with one hidden layer with sigmoid activation 

function (Cybenko, 1989). Based on this result, we consider the single hidden 

layer MFN model with sigmoid activation function. 

The choice of number of hidden neurons in the hidden layer is also a 

considerable problem, and it depends on the data. Research has proposed various 

methods for selection of hidden nodes in the hidden layer (see Chang-Xue, Zhi-

Guang and Kusiak, 2005), as follows: 

 

 H1 = 2I + 1 (Hecht-Nelson, 1987) 

 H2 = (I + O)/2 (Lawrence and Fredrickson, 1998) 

 n/10 − I – O ≤ H3 ≤ n/2 − I – O (Lawrence and Fredrickson, 1998) 

 H4 = I log2n (Marchandani and Cao, 1989) 

 H5 = O(I + 1) (Lipmann, 1987) 

 

Here, I is the number of inputs, O is the number of output neurons, and n is the 

number of training data points. 

Variable Selection Methods and Proposed Methods  

In the classical linear regression, several variable selection procedures have been 

suggested by the researchers. Most methods are based on least squares (LS) 

parameter estimation procedure. The variable selection methods based on LS 

estimates of β fail to select the correct subset model in the presence of outlier, 

multicollinearity, or nonlinear relationship between Y and X. Here, we modified 

existing subset selection methods using MFN model for prediction. 
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It is demonstrated that the Mallows’s Cp statistic does not work well when 

assumptions are violated. Researchers have suggested some other methods for 

variable selection (see Ronchetti and Staudte, 1994; Sommer and Huggins, 1996). 

Also Kashid and Kulkarni (2002) have suggested a more general criterion, the Sp 

statistic for variable selection in cases of clean and outlier data. It can be defined 

as 

 

 
 

 

2

1

2

ˆ ˆ

2

n

ik ipi

p

Y Y
S k p






  


 (8) 

 

where ˆ
ikY  is the predicted value of the full model, ˆ

ipY  is the predicted value of the 

subset model based on M-estimator of the regression parameters, and k and p are 

the number of parameters in the full and subset model respectively. The σ2 is 

replaced by its suitable estimates, which usually consists of the full model. 

The subset selection procedure is same for both the methods. The Sp statistic is 

equivalent to the Cp statistic when LS method is used for estimating regression 

coefficients. The following suggests modification in both criteria using the 

complicity measure. 

MCp and MSp Criteria 

In a modified version of the Cp and Sp statistics, the network output (estimated 

values of response Y) is obtained by using the single hidden layer with a single 

output MFN model. 

The network outputs  ˆˆ ,ik iY f X   and  ˆˆ ,ip iA AY f X   denote outputs 

based on full MFN and subset MFN model, respectively. The residual sum of 

squares for the full and subset network models are defined as 

 

 
 

 

2

1

2

1

ˆ , and

ˆ

n

k i iki

n

p i ipi

RSS Y Y

RSS Y Y





 

 




  

 

The modified version of Cp and Sp are denoted as MCp and MSp. They are defined 

by 
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  2
, , and

p

p

RSS
MC C n p


   (9) 

 

 
 

 

2

1

2

ˆ ˆ

,

n

ik ipi

p

Y Y
MS C n p






 


 (10) 

 

where n is the number of data points and p is the number of inputs including bias 

node (Xo). ˆ
ikY  and ˆ

ipY  are the predicted values of Y based on the full and subset 

MFN models, respectively, C(n,p) is the penalty term, and σ2 is replaced by its 

suitable estimate if it is unknown. The motivation for proposing modified versions 

of Cp and Sp are as follows. 

In criterion MCp, we use two types of measures. The first term measures the 

discrepancy between the desired output and network output based on the subset 

MFN model. The smaller this value is, the closer to the desired output it is; the 

smallest value of this measure is smallest for the full model. Therefore, it is 

difficult to select the correct model by minimizing criterion. So, we add a 

complicity measure called the penalty function, comprised of only p, only n, or 

both n and p. 

In the second criterion MSp, we use sum of squared difference between 

network output of the full and subset MFN models. The smallest value indicates 

that a prediction based on the subset MFN model is as accurate as the full MFN 

model. When full MFN model is itself the correct model, this value is zero. It is 

difficult to select the correct model using the minimizing criterion. Therefore we 

added the penalty function similar to criterion defined in (9) and used the same 

logic for the selection of subset. The selection procedure for both methods is as 

follows. 

 

Step I: Compute the MCp for all possible subsets. 

Step II: Select the subset corresponding to the minimum value of MCp. 

Use the same procedure for MSp. 

Choice of Estimator of σ2 

An estimator of σ2 is required to implement the MCp and MSp criteria. In the 

literature of regression, various estimators of σ2 are available. What follows are 

estimators of σ2 used in MCp and MSp based on full network output, and a study of 

the effect of these estimators on the value of MCp and MSp. 
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1. 
 

2

12

1

ˆ

ˆ

n

i iki
Y Y

n k









 

 

2.   
2

2

2
ˆ 1.4826median mediani ir r    

 

3.  
22

3
ˆ 1.4826median ir   

 

 

where n is the number of data points, k is the number of inputs in the full MFN 

model including bias node ˆ
i i ikr Y Y  , and ˆ

ikY  is the network output for the ith 

data point based on the full MFN model. 

Performances of MCp and MSp 

To evaluate the performance of MCp and MSp, we have used single hidden layer 

MFN model and robust back-propagation training method with sigmoid activation 

function in the hidden layer and output layer. In robust back-propagation, we use 

an error suppressor function s(e) by replacing the scalar squared error e (Kasko, 

1992), because s(e) = e2 is not robust. The following error suppressor functions 

are used in this study. 

 

1. E1 = s(e) = max(−c, min(c,e))  (Huber function) 

 (where c = 1.345 is bending constant) 

 

2. E2 = s(e) = 2e/(1+e2)   (Cauchy function) 

 

3. E2 = s(e) = tanh(e/2)   (Hyperbolic tangent function) 

 

The learning rate parameter (η) is selected by trial and error, and the number 

of hidden nodes in hidden layer is selected using the selection methods given 

earlier. The following seven penalty functions are used for computing MSp and 

MCp; some are available in the literature (Sakate and Kashid, 2014). 

 

1. 1 2P p   
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2.  2 log 2P p n    

 

3. 
  

3

2 1 2
2

2
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4.  4 log 1P p n    

 

5. 5

2

1

pn
P

n p


 
  

 

6. 
 

6

2 1
2

1

p p
P p

n p


 

 
  

 

7. 
7 logP p n   

 

The performance of the proposed methods is measured for different 

combinations of penalty functions (Pl) l = 1,2,…,7, selection methods of hidden 

nodes in the hidden layer (Hm) m = 1,2,…,5, and error suppressor functions 

(Eo) o = 1,2,3; these are denoted by (Pl, Hm, Eo). Three simulation designs are used 

for the evaluation of the performance of MSp and MCp. 

Simulation Design A 

The performance of proposed modified versions of Sp(MSp) and Cp(MCp) are 

evaluated using the following models with two error distributions. 

 

Model I: Y = β0 + β1X1 + β2X2 + β3X3 + ε, where β = (1,5,10,0), 

 

Model II: Y = β0 + β1X1 + β2X2 + β3X3 + β4X4  + ε, where β = (1,5,10,0,0) 

The regressor variables were generated from U(0,1) and the error term was 

generated from N(0,1) and Laplace (0,1). The response variable Y was generated 

using Models I and II for sample sizes 20 and 30, respectively. This experiment is 

repeated 100 times and ability of these methods to select the correct model is 

measured using learning parameter (η) = 0.1 and 2

1̂ . The results are reported in 

Tables 2 through 5. 
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Table 2. Model selection ability of MSp and MCp in 100 replications for Model I of size 20 

 

Error 
distribution 

Error suppressor 
function 

 
H1 

 
H2 

 
H3 

 
H4 

 
H5 

Pn MSp MCp   MSp MCp   MSp MCp   MSp MCp   MSp MCp 

Normal 

Huber 

P1 79 66   84 77   72 75   73 64   77 71 

P2 86 81 
 

92 82 
 

81 87 
 

84 77 
 

87 84 

P3 88 86 
 

94 90 
 

90 92 
 

89 86 
 

93 89 

P4 88 85 
 

94 88 
 

88 90 
 

87 81 
 

90 87 

P5 86 81 
 

92 85 
 

82 87 
 

85 79 
 

88 85 

P6 86 81 
 

92 85 
 

82 87 
 

85 79 
 

88 85 

P7 85 79 
 

92 82 
 

79 87 
 

82 77 
 

87 84 

                

Cauchy 

P1 78 58 
 

77 32 
 

76 52 
 

67 57 
 

63 69 

P2 91 71 
 

85 35 
 

83 72 
 

79 68 
 

80 76 

P3 93 79 
 

85 34 
 

86 77 
 

87 80 
 

84 83 

P4 92 74 
 

85 36 
 

84 77 
 

84 74 
 

83 81 

P5 91 71 
 

85 36 
 

83 72 
 

79 69 
 

82 76 

P6 91 71 
 

85 36 
 

83 72 
 

79 69 
 

82 76 

P7 91 70 
 

85 35 
 

82 72 
 

79 66 
 

79 75 

                

Hyperbolic 
Tangent 

P1 79 66 
 

74 77 
 

75 79 
 

75 79 
 

77 83 

P2 86 81 
 

86 84 
 

85 87 
 

85 87 
 

86 91 

P3 88 86 
 

91 89 
 

87 90 
 

87 90 
 

92 91 

P4 88 85 
 

88 86 
 

86 89 
 

86 89 
 

89 91 

P5 86 81 
 

86 84 
 

85 88 
 

85 88 
 

87 91 

P6 86 81 
 

86 84 
 

85 88 
 

85 88 
 

87 91 

P7 85 79   85 84   85 87   85 87   85 91 

                 

Laplace 

Huber 

P1 69 67 
 

75 66 
 

75 69 
 

77 34 
 

78 66 

P2 83 81 
 

86 80 
 

87 73 
 

89 36 
 

79 79 

P3 86 86 
 

91 84 
 

89 80 
 

94 35 
 

80 81 

P4 87 83 
 

88 82 
 

89 76 
 

93 36 
 

81 81 

P5 84 81 
 

86 80 
 

87 73 
 

91 36 
 

80 79 

P6 84 81 
 

86 80 
 

87 73 
 

91 36 
 

80 79 

P7 81 81 
 

86 77 
 

85 73 
 

88 35 
 

79 79 

                

Cauchy 

P1 74 54 
 

77 52 
 

68 67 
 

70 51 
 

71 62 

P2 83 75 
 

81 60 
 

80 77 
 

80 66 
 

78 74 

P3 86 85 
 

86 67 
 

84 80 
 

85 76 
 

80 81 

P4 86 84 
 

84 65 
 

82 79 
 

84 72 
 

79 78 

P5 84 77 
 

82 60 
 

80 77 
 

82 67 
 

78 74 

P6 84 77 
 

82 60 
 

80 77 
 

82 67 
 

78 74 

P7 83 74 
 

80 60 
 

79 77 
 

79 65 
 

75 73 

                

Hyperbolic 
Tangent 

P1 70 67 
 

76 69 
 

85 76 
 

85 76 
 

82 63 

P2 83 81 
 

82 82 
 

90 85 
 

90 85 
 

88 75 

P3 86 86 
 

87 88 
 

92 89 
 

92 89 
 

93 75 

P4 87 84 
 

86 87 
 

92 88 
 

92 88 
 

93 78 

P5 84 81 
 

83 83 
 

90 85 
 

90 85 
 

88 76 

P6 84 81 
 

83 83 
 

90 85 
 

90 85 
 

88 76 

P7 82 81   82 82   90 84   90 84   87 74 
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Table 3. Model selection ability of MSp and MCp in 100 replications for Model I of size 30 

 

Error 
distribution 

Error suppressor 
function 

 
H1 

 
H2 

 
H3 

 
H4 

 
H5 

Pn MSp MCp   MSp MCp   MSp MCp   MSp MCp   MSp MCp 

Normal 

Huber 

P1 78 72  78 74  71 69  76 62  74 72 

P2 89 81  89 88  83 85  90 74  90 92 

P3 93 87  92 92  92 87  94 96  92 94 

P4 88 77  84 84  78 82  92 72  85 80 

P5 87 77  82 82  77 79  92 66  80 79 

P6 87 77  82 82  77 79  92 66  80 78 

P7 89 81  88 88  83 85  90 74  88 92 

                

Cauchy 

P1 72 59  74 71  77 59  76 52  70 50 

P2 85 73  81 88  84 74  86 68  86 76 

P3 94 82  87 93  88 81  94 80  94 80 

P4 80 66  83 83  83 69  84 62  80 68 

P5 79 65  82 79  81 68  84 60  80 66 

P6 79 65  82 79  81 68  84 61  80 66 

P7 84 73  81 88  84 74  86 68  86 68 

                

Hyperbolic 
Tangent 

P1 83 74  82 71  78 74  74 62  78 76 

P2 89 82  93 88  92 87  82 72  90 88 

P3 94 87  96 92  94 91  86 68  96 92 

P4 85 81  91 81  88 83  86 72  84 83 

P5 85 81  88 79  86 82  82 70  85 82 

P6 85 81  88 79  86 82  82 71  84 82 

P7 88 92  93 88  91 86  82 74  90 86 

                 

Laplace 

Huber 

P1 73 56  77 70  72 54  80 58  78 62 

P2 82 75  91 85  91 80  80 78  88 80 

P3 89 81  92 87  90 84  86 86  90 86 

P4 82 70  85 81  82 75  81 70  90 76 

P5 81 66  84 77  82 72  81 64  91 72 

P6 81 66  84 77  82 73  81 65  84 72 

P7 82 74  91 85  88 80  80 72  88 80 

                

Cauchy 

P1 62 33  74 47  77 66  76 56  77 60 

P2 78 43  83 66  86 78  86 66  85 76 

P3 87 58  87 73  90 80  92 80  87 84 

P4 75 40  81 58  84 77  80 62  84 70 

P5 73 38  80 56  82 75  78 62  84 66 

P6 73 38  80 56  82 75  78 62  84 66 

P7 77 43  83 64  86 78  86 66  84 74 

                

Hyperbolic 
Tangent 

P1 72 77  72 71  78 68  78 60  82 50 

P2 85 90  89 84  85 86  82 78  96 76 

P3 88 93  91 89  90 88  86 86  97 84 

P4 82 87  84 83  84 83  78 78  94 70 

P5 82 86  83 80  82 80  78 78  94 62 

P6 82 86  83 80  82 80  78 78  94 62 

P7 84 90  89 84  85 87  80 80  98 76 
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Table 4. Model selection ability of MSp and MCp in 100 replications for Model II of size 20 

 

Error 
distribution 

Error suppressor 
function 

 
H1 

 
H2 

 
H3 

 
H4 

 
H5 

Pn MSp MCp   MSp MCp   MSp MCp   MSp MCp   MSp MCp 

Normal 

Huber 

P1 60 33 

 

60 43 

 

62 50 

 

62 38 
 

68 60 

P2 79 53 

 

77 59 

 

72 72 

 

76 60 
 

74 72 

P3 85 68 

 

83 78 

 

82 82 

 

85 72 
 

78 85 

P4 82 64 

 

83 65 

 

83 78 

 

80 78 
 

76 80 

P5 80 57 

 

79 60 

 

72 74 

 

76 64 
 

74 76 

P6 80 57 

 

79 60 

 

72 74 

 

76 64 
 

74 76 

P7 77 53 

 

76 59 

 

72 70 

 

76 58 
 

74 72 

                

Cauchy 

P1 54 40 

 

51 24 

 

60 22 

 

48 32 
 

60 43 

P2 68 40 

 

72 46 

 

70 38 

 

76 49 
 

70 56 

P3 72 43 

 

80 68 

 

82 50 

 

80 56 
 

76 65 

P4 71 45 

 

75 64 

 

80 46 

 

80 52 
 

76 63 

P5 69 51 

 

73 46 

 

70 38 

 

78 49 
 

78 58 

P6 69 63 

 

73 46 

 

70 38 

 

78 49 
 

78 58 

P7 66 50 

 

71 42 

 

68 38 

 

74 49 
 

70 56 

                

Hyperbolic 
Tangent 

P1 63 42 

 

69 60 

 

50 50 

 

61 44 
 

68 70 

P2 74 72 

 

78 72 

 

68 74 

 

88 65 
 

84 84 

P3 82 85 

 

82 78 

 

74 82 

 

88 78 
 

94 86 

P4 79 83 

 

82 74 

 

74 78 

 

88 78 
 

90 86 

P5 75 76 

 

78 74 

 

70 78 

 

88 78 
 

89 85 

P6 75 76 

 

79 74 

 

70 76 

 

88 68 
 

88 84 

P7 72 70 

 

79 74 

 

66 70 

 

89 68 
 

80 84 

                 

Laplace 

Huber 

P1 40 44 

 

54 32 

 

56 35 

 

68 48 
 

41 40 

P2 62 58 

 

68 52 

 

67 56 

 

76 72 
 

62 60 

P3 76 66 

 

88 78 

 

74 75 

 

74 65 
 

70 74 

P4 70 65 

 

72 63 

 

76 73 

 

82 76 
 

64 70 

P5 65 59 

 

68 52 

 

66 60 

 

76 72 
 

60 60 

P6 65 59 

 

68 52 

 

66 60 

 

76 72 
 

61 60 

P7 58 58 

 

67 50 

 

66 54 

 

76 70 
 

60 56 

                

Cauchy 

P1 59 29 

 

50 32 

 

52 32 

 

44 22 
 

44 49 

P2 61 40 

 

64 48 

 

74 50 

 

56 45 
 

64 62 

P3 64 53 

 

65 56 

 

78 60 

 

58 53 
 

73 72 

P4 65 50 

 

64 52 

 

76 58 

 

56 52 
 

67 68 

P5 64 43 

 

65 48 

 

74 50 

 

56 48 
 

64 64 

P6 64 43 

 

65 48 

 

75 50 

 

56 48 
 

64 64 

P7 61 40 

 

62 44 

 

75 46 

 

54 43 
 

62 58 

                

Hyperbolic 
Tangent 

P1 54 44 

 

58 44 

 

56 35 

 

52 38 
 

60 60 

P2 78 60 

 

78 70 

 

67 57 

 

60 53 
 

74 72 

P3 74 66 

 

84 76 

 

74 74 

 

61 56 
 

87 81 

P4 74 66 

 

83 76 

 

78 76 

 

62 54 
 

83 80 

P5 72 60 

 

78 70 

 

66 60 

 

61 52 
 

74 74 

P6 72 60 

 

78 70 

 

66 60 

 

61 52 
 

74 74 

P7 70 60 

 

78 78 

 

66 54 

 

61 50 
 

72 76 
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Table 5. Model selection ability of MSp and MCp in 100 replications for Model II of size 30 

 

Error 
distribution 

Error suppressor 
function 

 
H1 

 
H2 

 
H3 

 
H4 

 
H5 

Pn MSp MCp   MSp MCp   MSp MCp   MSp MCp   MSp MCp 

Normal 

Huber 

P1 69 36 

 

64 55 

 

64 30 

 

72 46 
 

66 46 

P2 82 77 

 

83 64 

 

76 60 

 

84 70 
 

84 66 

P3 83 87 

 

86 73 

 

78 80 

 

86 76 
 

84 88 

P4 80 66 

 

80 63 

 

76 43 

 

82 64 
 

80 64 

P5 78 85 

 

72 60 

 

74 40 

 

78 60 
 

78 62 

P6 78 58 

 

72 61 

 

74 39 

 

78 60 
 

77 62 

P7 83 77 

 

82 64 

 

75 60 

 

84 70 
 

80 66 

                

Cauchy 

P1 45 25 

 

51 44 

 

52 30 

 

52 23 
 

44 34 

P2 68 58 

 

65 68 

 

71 60 

 

72 40 
 

62 52 

P3 79 68 

 

74 74 

 

78 66 

 

79 58 
 

78 62 

P4 56 51 

 

64 64 

 

68 44 

 

66 32 
 

54 42 

P5 57 38 

 

64 64 

 

66 45 

 

65 30 
 

46 42 

P6 57 38 

 

64 64 

 

66 44 

 

64 30 
 

46 42 

P7 66 54 

 

64 68 

 

70 58 

 

65 40 
 

62 52 

                

Hyperbolic 
Tangent 

P1 68 36 

 

70 57 

 

52 53 

 

72 44 
 

56 35 

P2 82 76 

 

80 78 

 

70 69 

 

84 72 
 

76 62 

P3 82 86 

 

80 86 

 

80 82 

 

86 76 
 

86 80 

P4 80 66 

 

78 72 

 

70 74 

 

81 64 
 

68 52 

P5 76 60 

 

76 68 

 

66 69 

 

80 62 
 

68 48 

P6 76 60 

 

76 69 

 

66 69 

 

79 62 
 

68 48 

P7 82 76 

 

81 76 

 

70 69 

 

84 70 
 

32 63 

                 

Laplace 

Huber 

P1 56 36 

 

54 48 

 

52 56 

 

48 52 
 

52 36 

P2 86 50 

 

72 70 

 

74 84 

 

70 74 
 

76 70 

P3 92 54 

 

78 74 

 

84 92 

 

74 80 
 

84 70 

P4 74 46 

 

66 64 

 

69 80 

 

66 72 
 

70 50 

P5 74 46 

 

64 64 

 

62 70 

 

64 72 
 

66 46 

P6 74 46 

 

63 64 

 

62 70 

 

64 72 
 

66 46 

P7 86 50 

 

72 68 

 

74 84 

 

68 74 
 

76 70 

                

Cauchy 

P1 32 36 

 

60 24 

 

50 34 

 

40 21 
 

36 21 

P2 52 60 

 

80 42 

 

60 62 

 

74 45 
 

56 48 

P3 64 74 

 

86 48 

 

74 70 

 

84 56 
 

64 60 

P4 40 54 

 

68 32 

 

52 54 

 

62 32 
 

45 36 

P5 40 52 

 

66 30 

 

50 48 

 

56 28 
 

42 32 

P6 40 52 

 

66 31 

 

50 48 

 

56 28 
 

42 33 

P7 48 60 

 

80 40 

 

61 62 

 

72 42 
 

42 42 

                

Hyperbolic 
Tangent 

P1 66 44 

 

52 46 

 

50 81 

 

60 46 
 

52 36 

P2 80 72 

 

80 66 

 

72 68 

 

81 70 
 

79 64 

P3 84 80 

 

84 79 

 

76 80 

 

86 79 
 

86 82 

P4 74 66 

 

71 62 

 

74 68 

 

81 66 
 

60 56 

P5 72 30 

 

64 56 

 

72 68 

 

75 62 
 

60 48 

P6 72 61 

 

64 56 

 

72 68 

 

76 62 
 

60 48 

P7 80 70 

 

76 66 

 

72 68 

 

83 70 
 

74 74 

 
 

From Tables 2 through 5, it can be observed that the overall performance of the 

MSp statistic is better than the MCp statistic. The performance of penalties P2 

through P7 is better than penalty P1, with H1 through H5, for Models I and II. 

Based on these simulations, it is recommended that any hidden node selection 

method be used with penalty P2 through P7 and Huber or Hyperbolic Tangent 

error suppressor function. 
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Simulation Design B 

The experiment was repeated 100 times using the simulation design A. The 

performance of MSp and MCp were compared with Mallows’s Cp for Models I and 

II with sample sizes of 20 and 30. MSp and MCp were computed using (P3,H1,E1), 

and learning parameters (η) = 0.1 and 
2

1̂ . The results are reported in Table 6. 

 
 
Table 6. Model selection ability of correct model for 100 repetitions 

 

Error 
Distribution 

Sample sizes 
Model I 

 
Model II 

MSp MCp Cp 
 

MSp MCp Cp 

Normal 
20 94 90 82   83 78 76 

30 92 92 79 
 

86 73 70 

         

Laplace 
20 91 84 81 

 
88 78 77 

30 92 87 84   78 74 75 

 
 

From Table 6, it is clear that the model selection ability of MSp and MCp is better 

than Cp (based on LS estimates) for sample sizes 20 and 30 for both error 

distributions. The model selection ability of MSp is uniformly larger than that of 

MCp or Cp. 

Simulation Design C 

Three further models based on MFN are used to evaluate the performance of MSp 

and MCp: 

 

Model III: 2 2 2 2

0 1 1 2 2 3 3 4 4Y X X X X           , 

 

Model IV: 
2 2 2 2

0 1 1 2 2 3 3 4 4Y X X X X           , 

 

Model V: 
2 2 2 2

0 1 1 2 2 3 3 4 4X X X X
Y e

        
  , 

 

where β = (1,5,10,0,0). 

In this simulation, Xi = (i = 1,2,3,4) were generated from U(0,1) and error 

was generated from N(0,1) and Laplace(0,1). The response variable Y was 

generated using Models III, IV and V. MSp and MCp were computed using (P1 –
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 P7,H1,E1), learning parameters (η) = 0.1 and 
2

1̂ . The ability of these methods to 

select the correct model over 100 replications is reported in Table 7. 
Table 7. Correct model selection ability over 100 replications 

 

 
 

Model III 
 

Model IV 
 

Model V 

Error 

distribution 

 
n = 20 n = 30 

 
n = 20 n = 30 

 
n = 20 n = 30 

Pn MSp MCp MSp MCp 
 

MSp MCp MSp MCp 
 

MSp MCp MSp MCp 

Normal 

P1 50 40 78 25   71 57 89 65   04 07 72 76 

P2 55 35 89 48 
 

78 70 91 73 
 

05 06 90 91 

P3 55 24 93 58 
 

83 78 88 60 
 

04 07 90 95 

P4 60 38 80 34 
 

80 76 82 56 
 

05 07 91 85 

P5 54 37 77 32 
 

79 72 83 56 
 

05 07 83 82 

P6 55 40 77 35 
 

79 72 85 65 
 

05 06 89 82 

P7 54 34 90 42 
 

76 69 90 70 
 

05 06 75 90 

                

Laplace 

P1 20 16 60 40 
 

15 16 89 70 
 

07 05 89 19 

P2 21 14 80 66 
 

12 14 93 80 
 

07 04 99 18 

P3 25 15 86 80 
 

7 11 82 65 
 

06 04 100 13 

P4 22 14 75 56 
 

12 15 80 52 
 

05 03 96 10 

P5 20 14 75 50 
 

13 16 80 52 
 

05 04 90 16 

P6 20 15 75 50 
 

13 16 90 70 
 

08 05 90 16 

P7 18 14 80 64   13 14 91 72   04 06 99 14 

 
 

From Table 7, it is clear that performance of MSp is better than MCp for all models 

and sample size 30. The performance of both criteria MSp and MCp is very poor 

for all models when error distribution is Laplace for small samples: the sample 

size must be moderate to large for selection of relevant variables when regression 

model is nonlinear. 

Performance of MCp and MSp in the presence of multicolinearity and 

outlier 

The performance of MSp and MCp is studied using the Hald data (Montgomery et. 

al, 2006). The variance inflation factors (VIF) corresponding to each term are 

38.5, 254.4, 46.9, and 282.5. The VIF values indicate that multicollinearity exists 

in the data. Consider the following cases: 

 

Case I: Data with multicolinearity (original data) 

Case II: Data with multicolinearity and single outlier (Y6 = 109.2 is 

replaced by 150) 

Case III: Data with multicolinearity and two outliers (Y2 = 73.4 and 

Y6 = 109.2 are replaced by 150 and 200 respectively) 
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MSp and MCp was computed for all possible subset models with different 

penalty functions and estimators of σ2. The selected subset model, by various 

combinations of (Pl,
2ˆ
s ), l = 1,2,...,7, s = 1,2,3 is reported in Table 8. For training 

the network, the simulation employs the Huber error suppressor function, number 

of hidden neurons H1, and learning parameter (η) = 0.1. The results are reported in 

Table 8. 
 
 
Table 8. Selected subset by MSp and MCp for Cases I – III 

 

  
Case I 

 
Case II 

 
Case III 

Statistic Pn 
2

1   
2

2  
2

3  

 

2

1   
2

2  
2

3  

 

2

1   
2

2  
2

3  

MSp 

P1 x1x2 x1x2 x1x2   x1x2 x1x2 x1x2   x1x2 x1x2 x1x2 

P2 x1x2 x1x2 x1x2 
 

x1x2 x1x2 x1x2 
 

x1x2 x1x2 x1x2 

P3 x1x2 x1x2 x1x2 
 

x1x2 x1x2 x1x2 
 

x1x2 x1x2 x1x2 

P4 x1x2 x1x2 x1x2 
 

x1x2 x1x2 x1x2 
 

x2 x1x2 x1x2 

P5 x1x2 x1x2 x1x2 
 

x1x2 x1x2 x1x2 
 

x2 x1x2 x1x2 

P6 x1x2 x1x2 x1x2 
 

x1x2 x1x2 x1x2 
 

x2 x1x2 x1x2 

P7 x1x2 x1x2 x1x2 
 

x1x2 x1x2 x1x2 
 

x2 x1x2 x1x2 

             

MCp 

P1 x1x4 x1x4 x1x4 
 

x1x4 x1x4 x1x4 
 

x1x2 x1x4 x1x4 

P2 x1x4 x1x4 x1x4 
 

x1x4 x1x4 x1x4 
 

x1x2 x1x4 x1x4 

P3 x1x4 x1x4 x1x4 
 

x1x4 x1x4 x1x4 
 

x1x2 x1x4 x1x4 

P4 x1x4 x1x4 x1x4 
 

x1x4 x1x4 x1x4 
 

x2 x1x4 x1x4 

P5 x1x4 x1x4 x1x4 
 

x1x4 x1x4 x1x4 
 

x2 x1x4 x1x4 

P6 x1x4 x1x4 x1x4 
 

x1x4 x1x4 x1x4 
 

x2 x1x4 x1x4 

P7 x1x4 x1x4 x1x4   x1x4 x1x4 x1x4   x2 x1x4 x1x4 

 
 

This data is analyzed in the connection of multicolinearity and outlier (see 

Ronchetti and Staudte, 1994; Sommer and Huggins, 1996; and Kashid and 

Kulkarni, 2002). They have suggested {X1, X2} is the best subset model for clean 

data and outlier data. The MSp statistic selects the same subset model for all 

combinations of (Pl,
2ˆ
s ), l = 1,2,...,7, s = 1,2,3, for Case I and II. In Case III, MSp 

fails to select correct model for penalty P4 – P7 with 
2

1̂ . Conclusion: the MSp 

statistic performs better than MCp for all cases with all penalty functions and 

estimators of σ2, excluding few cases. 
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Conclusion 

The proposed modified methods are model-free. It is clear that the performance of 

proposed MSp statistic is better than classical regression methods in the presence 

of multicollinearity, outlier, or both simultaneously. The MSp statistic selects the 

correct model in cases of nonlinear model for moderate to large sample sizes. 

From the simulation study, it can be observed that MFN is useful when there is no 

idea about the functional relationship between response and predictor variables. 

The MSp statistic is also useful for selection of inputs from a large set of inputs in 

a network model, in order to find which network output is closest to the desired 

output. 
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