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A Monte Carlo simulation study was conducted to examine outliers’ influence on Type I 

error rates in ANOVA and Welch tests, and the effectiveness of two outlier accommodation 
methods: nonparametric rank based method and Winsorizing. Recommendations are given 
regarding outlier handling with different sample sizes and number of outliers. 
 
Keywords: outliers, type I error, Monte Carlo simulation, outlier accommodation, 
nonparametric, Winsorizing 

 

Introduction 

Extreme data points, or outliers, requires attention and investigation (Barnett & 

Lewis, 1994). Outliers are often inevitably seen in data sets of educational research 

projects, even when data come from reputable sources and the data collection is 

carefully executed. The existence of outliers has been recognized and noted for 

centuries, and the outlier problem is generally seen as “reducing and distorting the 

information about the data source or generating mechanism” (Barnett & Lewis, 

1994, p. 4). To put it in a statistical context, there are concerns about the 

disproportionate influence of outliers on statistical analyses, based on sample 

means and variance. Studies have provided evidence that shows the effect of 

outliers resulted in inflation of Type I error rates and reduced power in parametric 

t and F tests (Barnett & Lewis, 1994; Hampel, Ronchetti, Rousseeuw, & Stahel, 

1986; Wilcox, 1998; Zimmerman, 1994b). 

Because distortions of statistical significance tests could lead to faulty 

conclusions if indications of outliers are not carefully examined, it is natural to seek 

a means of identifying and explaining outliers. A number of studies are devoted to 
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investigating the sources of outliers and detecting their presence in various data sets 

and distributions (Beckman & Cook, 1983). However, very few give emphasis on 

how to handle outliers, and there are even fewer studies that compare different 

outlier accommodation techniques. It is useful to investigate the circumstances 

under which outliers can be treated, as well as the effectiveness of outlier treatment 

methods. Hence, the purpose of this study is to focus on the impact of outliers on 

significance tests, and presents simulation results for comparisons of outlier 

accommodation methods in order to provide recommendations for practice. 

Outliers: Definition, Detection, and Accommodation 

An outlier refers to an observation that “appears to be inconsistent with the 

remainder of that set of data” (Barnett & Lewis, 1994, p. 7). Although problems in 

statistical analyses caused by outliers are a concern in the development of statistical 

methods (Barnett & Lewis, 1994), perceptions about outliers evolve with the 

development of educational research methodologies. The restrictive view of 

outliers being erroneous and contaminating has changed. In a present perspective, 

outliers are an “empirical reality” (Rousseeuw & Van Zomeren, 1990, p. 650), and 

instead of being misleading and wrong, they could provide useful information about 

the sample and, in some situations, indicate that a different model or distribution 

may fit the data better (Barnett & Lewis, 1994). 

In parametric analyses, outliers are often identified according to how 

particular data points deviate from the center (the mean) of the distribution of the 

data set. Thus, for a normally distributed data set, the common rule is that an outlier 

is any value that is beyond ± 3 standard deviations from the mean. In addition, for 

different research designs and methods of analysis, there are different approaches 

developed to detect outliers (Barnett & Lewis, 1994; Berkane & Bentler, 1988; 

Cook, 1986; Gnanadesikan, 1997; Jarrell, 1991). Some approaches are adapted 

from univariate methods, such as frequency tables, histograms, and box plots 

(Allison, Gorman, & Primaverya, 1993; Jarrell, 1991); some use residuals of 

various kinds (Cook, 1986; David, 1978); others suggest bivariate and multivariate 

techniques such as Cook’s distance (Allison et al., 1993), principal components 

(Hawkins, 1974), hat matrix (Hoaglin & Welsch, 1978), and Mahalanobis distance 

(Stevens, 1984). However, with such a variety of approaches available, it is still the 

researcher’s decision to define outliers depending on research contexts, and 

researchers should always seek meaning and interpretation of outliers before 

rejecting or choosing any techniques to deal with the deviant observations. The 
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reason for doing so is because, as the nature and origins of outliers differ, the 

approaches to handle outliers vary accordingly. 

Outliers may arise for deterministic reasons or for less tangible reasons. 

Deterministic reasons refer to apparent errors in execution of data that are 

controllable and correctable. Examples of deterministic outliers include recording 

and calculating errors, erroneous data entries, and failure to specify missing values 

(Barnett & Lewis, 1994; Tabachinick & Fidell, 2001; Warner, 2008). For outliers 

that arise as a result of deterministic reasons, the remedy is simple and 

straightforward: to replace outliers with correct values. However, more often than 

not, the reasons for the existence of outliers are less clear-cut. Scholars suggested 

three major sources of outliers: inherent variability, measurement error, and 

execution error (Anscombe, 1960; Barnett, 1978; Grubbs, 1969; Hampel et al., 

1986; Tabachinick & Fidell, 2001). First, inherent variability refers to the variations 

demonstrated by outliers as a natural feature of the population under study. In other 

words, the outlying observations are representative of the target population, 

because the population has more extreme scores than a normal distribution. Of 

course, outliers are also possible as part of a normal distribution. Second, the 

occurrence of outliers could also be due to measurement error, such as rounding 

errors, recording errors, or variability imposed due to an inadequate measuring 

instrument. Finally, an execution error could be another source of outlying 

observations, such as a biased sample that includes individuals who are not truly 

representative of the population. Although theoretically, measurement and 

execution errors could be examined and corrected, in many circumstances it is very 

difficult, or even impossible, in practical research projects to distinguish from 

which sources outliers truly rise. 

For less tangible outliers, the reasons for their occurrences are often not clear; 

there are two basic approaches to handle such outliers: to reject the outliers or to 

retain and accommodate the outliers to reduce their effect (Jarrell, 1991; Warner, 

2008). Rejection of outliers includes simple removal of outliers after taking into 

account the appropriateness of all data (Field, 2011). Or, as Allison et al. (1993) 

suggested, rejecting outliers can also include running the analyses with and without 

outliers, comparing the results and reporting an assessment of the influence of 

outliers through deletion. 

However, it is often not encouraged to reject outliers, especially when there 

is no tangible explanation about the occurrence of outliers. Outliers can be 

legitimate data points and removal may cause loss of useful information (Orr, 

Sackett, & DuBois, 1991). Sometimes outliers may reflect unusual but 

substantively meaningful aspects of the intended study (Chow, Hamaker, & Allaire, 
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2009; Hampel, 2001). An alternative approach is to use accommodation methods 

to reduce the impact of the outlying observations, including utilizing robust tests 

and outlier treatment methods. However, even with outlier accommodation 

approaches effectively applied, it is uncertain that the influence of outliers can be 

removed completely, but the aim is to minimize such influence. 

There are several approaches that can be used to diminish or lower the impact 

of outliers, such as log transformation (Warner, 2008), nonparametric statistical 

ranking (Zimmerman & Zumbo, 1990), and Winsorizing (Dixon & Tukey, 1969; 

Dixon & Yuen, 1974). Among statistical tests, nonparametric methods based on 

ranks are argued to effectively control Type I error rates in the presence of outliers 

(Zimmerman & Zumbo, 1990). For example, Zimmerman (1994b; 1995) reported 

that compared to parametric methods, the Mann-Whitney-Wilcoxon test can 

effectively control Type I error, and nonparametric methods based on ranks 

exhibited slightly better Type I error rates than ANOVA methods for several 

outlier-prone and non-normal distributions. Zimmerman and Zumbo (1990) 

showed that the Type I error rates of Mann-Whitney-Wilcoxon and pooled-variance 

Student t test were relatively equivalent under simple bounded transformations used 

to handle outlier-prone distributions. 

Furthermore, Winsorizing is another popular method to reduce the weights of 

outliers by replacing them with a specific percentile of data-dependent values 

(Dixon & Yuen, 1974; Orr et al., 1991). In practice, the location of Winsorization 

often depends on prior knowledge, and is suggested to be adjusted according to the 

shapes of the distribution (Dixon & Yuen, 1974; Tukey, 1962). This study, 

therefore, explores the effectiveness of the Winsorizing approach with different 

percentiles. 

Purpose of the Study 

This study is primarily motivated by two very practical questions: what is the 

impact of outliers on Type I error rates with different sample sizes and number of 

outliers, and which outlier accommodation methods can effectively control Type I 

error rates under varying sample size and outlier number conditions? Therefore, the 

purpose and contributions of this study are three-fold: 

First, this study started by examining outliers’ influence on Type I error rates 

in ANOVA and Welch tests with different sample sizes and number of outliers, and 

further explored distinct features of such influence in various combinations of 

conditions. Outlier impact in previous studies is often treated as a type of violation 

of normality, and the number of outliers in data sets was not studied separately 
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(Zimmerman, 1994a; 1994b; 1995). This study highlighted the association of 

outlier number and its influence on Type I error rates. Moreover, given outliers’ 

influence on sample variance, both ANOVA and Welch tests are included and 

compared to take into consideration the problem of unequal variance in mean 

comparison analyses. 

Secondly, although outlier accommodation methods are available and 

effective for different conditions and distributions (Dixon & Tukey, 1969; Dixon 

& Yuen, 1974; Orr et al., 1991; Zimmerman, 1995), no comparison between the 

methods are provided in terms of the effectiveness of Type I error control under the 

same conditions. This study investigated two basic approaches in handling outliers 

and how effective they were in controlling Type I error rates. Specifically, the study 

compared the Type I error rates when outliers are removed and retained using 

nonparametric methods and Winsorizing. Comparing the sensitivity of 

nonparametric and Winsorizing methods on outlier impact not only fills the current 

gap about the two methods, but can also provide basic information for guidelines 

of the use of outlier treatment methods. Finally, our study was also conducted to 

explore the Winsorizing methods with different Winsorization percentiles because 

no consensus has been reached regarding Winsorization locations, and little 

information was provided on how to decide the locations in existing literature. 

In short, this study ventured to explore some new areas on outlier impact and 

outlier treatment based on existing studies. From the research design perspective, 

when the occurrence of outliers cannot be traced, which frequently happens in 

statistical analyses of educational research, it is reasonable to retain the outliers but 

give less weight to their influence. Therefore, understanding the impact brought by 

the presence of outliers and choosing an appropriate method for outlier 

accommodation are critical for credible analysis and conclusion. 

Methods 

A Monte Carlo program was developed in the R language for data simulation and 

computation of statistical results for different outlier and accommodation 

conditions. As a useful approach to evaluate the quality of statistical procedures (in 

this case the Type I error rate), a Monte Carlo program allows sample data to be 

drawn with many iterations in simulation. Rejection rates of significant tests could 

be counted with many iterations, through which Type I error rate under the true null 

hypotheses would be obtained (Mooney, 1997). In addition, R as an open-source 

computer statistical package and programming language has built-in functions to 

perform the ANOVA F test and the nonparametric Kruskal-Wallis rank sum test. 
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The general procedures for this simulation study are as follows: first, as this 

study focuses on multiple comparisons of Type I errors, samples of varied sample 

sizes and varied number of outliers were drawn from the same univariate normally 

distributed data simulated using the built-in R function rnorm. For each condition, 

equal sample sizes were manipulated for three groups and a varied number of 

outliers are included in only one group (group three). Second, ANOVA and Welch 

tests were performed using the same group of simulated data for analysis with 

outliers excluded, outliers included but with no treatment, and outliers 

accommodated by the nonparametric test and the Winsorizing method. For each 

condition, 10,000 replications were conducted and Type I error rates for different 

conditions were computed. Finally, simulation and statistical results were analyzed 

to examine outlier impact on Type I error rates, as well as advantages and 

disadvantages of the outlier treatment techniques under different conditions. Details 

about data generation, outlier injection, replication, and analysis procedures are 

provided in the following sections. 

Data Generation 

The sample sizes (n = 20, 40, 60, 80, and 100) were manipulated in the way that 

the three groups for ANOVA test always had equal sample sizes with the outlier(s) 

being inserted into only one group. 200,000 normally distributed N(0, 1) cases were 

generated using the function rnorm (sample size, mean, standard deviation). The 

generated population data were split into two data sets: data without outliers 

(u – 3σ ≤ x ≤ u + 3σ) and data with outliers (x < u – 3σ and x > u + 3σ). Data for 

each group of a sample were randomly selected from these two data sets. The built-

in R function sample was used to randomly sample the required number of 

observations from different data sets. The random selection procedures were 

performed in the following way: first, for the first two groups that contain no 

outliers, n points of data were randomly sampled from each data set 

(u1 – 3σ ≤ x ≤ u1 + 3σ) and (u2 – 3σ ≤ x ≤ u2 + 3σ), respectively. For the third group 

that has inserted outliers, noutliers outliers were sampled from the data set (x < u3 – 3σ 

and x > u3 + 3σ), and the absolute value of each was taken to ensure positive outliers. 

Then the rest of data for group three, n – noutliers (noutliers = 0, 1, 2, 3, 4, and 5) number 

of data were sampled from the data set (u3 – 3σ ≤ x ≤ u3 + 3σ). To study Type I error 

rates, the null hypothesis is set to be true. Therefore, each group was randomly 

drawn from the same normal distribution N(0, 1). 
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Outlier Injection 

 

As indicated in the sampling procedures, outliers were sampled from data beyond 

3 standard deviations on both directions of the generated data, and were injected 

into each sample. Generating data only between u – 3σ and u + 3σ results in a 

slightly decreased standard deviation than the population value but provides a 

certain gap between normal data and outliers. By “injecting” outliers into the 

normal data, we can ensure the required number of outliers for the research purpose. 

This differs from the approach adopted by many to use a "contaminated" standard 

normal distribution, where some data are generated N(0, 1) while other data are 

generated at perhaps N(0, 3) or N(2, 1). The difference between the “injection” and 

the “contamination” methods lie in that the "injection method" guarantees that 

outliers are from the same normally distributed population and that they are 

included in every sample. The design is important to study Type I errors because 

the null hypothesis is held true when drawing the whole sample, including normal 

data and outliers from the same population. 

 

Replication 

 

10,000 replications were conducted for each condition to minimize the Monte Carlo 

sampling impact. Robey and Barcikowski (1992) tabulated the number of iterations 

required for examining departures from varied nominal Type I error rates. Mooney 

(1997) proposed that the more the better in choosing the number of iterations for 

Monte Carlo simulations. Thus, in order to sufficiently ensure the stability and 

generalizability of the results and, meanwhile, to avoid inefficiency in excessive 

iterations, 10,000 iterations were used for the current study. 

Monte Carlo Analysis 

For each sample from the simulated population (e.g., u1 = u2 = u3 = 0, n = 20, 

noutliers = 1, 2, 3, 4, 5, sd = 1), ANOVA and Welch tests were used to test the Null 

hypothesis. Statistical p values were documented for data with no outliers, data with 

outliers, data with outliers deleted, and data treated by two commonly used outlier 

accommodation methods: nonparametric and Winsorizing (Winsorized at 95 th, 90th, 

85th, 80th, and 75th percentile). In R codes, the function anova was used except for 

the nonparametric Kruskal-Wallis test, which used the built-in R function 

kruskal.test. 
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Type I error rates were calculated at the nominal significance level α = 0.05. 

The calculated p values were compared to the liberal criterion α ± 1/2α with an 

interval of [0.025, 0.075], the stringent criterion α ± 1/10α with an interval of 

[0.045, 0.055] (Bradley, 1978), and the intermediate criterion α ± 1/4α with an 

interval of [0.0375, 0.0625] (Robey & Barcikowski, 1992). 
 
 
Table 1. Type I error rates of parametric significance tests and outlier removed under 

varied sample sizes and outlier conditions 
 

  Parametric  Outlier Removed 

Sample Size Outlier Number Anova Welch   Anova Welch 

N = 20 0 outliers 0.0492 0.0467  0.0492 0.0467 

 1 outlier 0.0455 0.0459  0.0503 0.0479 

 2 outliers 0.0846 0.0702  0.0504 0.0489 

 3 outliers 0.1599 0.1182  0.0486 0.0475 

 4 outliers 0.3002 0.1940  0.0486 0.0475 

 5 outliers 0.4881 0.3168  0.0486 0.0471 

N = 40 0 outliers 0.0528 0.0528  0.0528 0.0528 

 1 outlier 0.0533 0.0513  0.0513 0.0514 

 2 outliers 0.0767 0.0707  0.0530 0.0525 

 3 outliers 0.1233 0.1038  0.0517 0.0520 

 4 outliers 0.1920 0.1536  0.0523 0.0525 

 5 outliers 0.2918 0.2222  0.0516 0.0512 

N = 60 0 outliers 0.0497 0.0522  0.0497 0.0522 

 1 outlier 0.0509 0.0518  0.0511 0.0512 

 2 outliers 0.0659 0.0638  0.0516 0.0516 

 3 outliers 0.0981 0.0890  0.0516 0.0518 

 4 outliers 0.1480 0.1288  0.0512 0.0514 

 5 outliers 0.2156 0.1803  0.0507 0.0509 

N = 80 0 outliers 0.0546 0.0535  0.0546 0.0535 

 1 outlier 0.0520 0.0514  0.0538 0.0530 

 2 outliers 0.0647 0.0625  0.0545 0.0531 

 3 outliers 0.0925 0.0844  0.0546 0.0532 

 4 outliers 0.1319 0.1161  0.0538 0.0528 

 5 outliers 0.1820 0.1571  0.0531 0.0535 

N = 100 0 outliers 0.0489 0.0483  0.0489 0.0483 

 1 outlier 0.0507 0.0489  0.0499 0.0492 

 2 outliers 0.0590 0.0568  0.0494 0.0486 

 3 outliers 0.0809 0.0761  0.0505 0.0498 

 4 outliers 0.1104 0.1018  0.0501 0.0489 

  5 outliers 0.1523 0.1338   0.0503 0.0495 
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Table 2. Type I error rates of different outlier accommodation techniques under varied sample sizes and outlier conditions 

 
   Winsorizing 

   95th percentile  90th percentile  85th percentile  80th percentile  75th percentile 

Sample size Outlier number Nonparametric Anova Welch   Anova Welch   Anova Welch   Anova Welch   Anova Welch 

N = 20 0 outliers 0.0480 0.0492 0.0467  0.0492 0.0467  0.0492 0.0467  0.0492 0.0467  0.0492 0.0467 

 1 outlier 0.0459 0.0514 0.0504  0.0539 0.0523  0.0536 0.0533  0.0540 0.0542  0.0551 0.0534 

 2 outliers 0.0583 0.0832 0.0700  0.0711 0.0663  0.0675 0.0645  0.0654 0.0635  0.0654 0.0642 

 3 outliers 0.0873 0.1601 0.1182  0.1535 0.1167  0.1090 0.0974  0.0928 0.0870  0.0850 0.0801 

 4 outliers 0.1348 0.3081 0.1973  0.2912 0.1917  0.2804 0.1885  0.1752 0.1470  0.1288 0.1197 

 5 outliers 0.2098 0.5090 0.3259  0.4839 0.3174  0.4670 0.3115  0.4525 0.3052  0.2766 0.2245 

N = 40 0 outliers 0.0507 0.0528 0.0528  0.0528 0.0528  0.0528 0.0528  0.0528 0.0528  0.0528 0.0528 

 1 outlier 0.0508 0.0555 0.0533  0.0562 0.0544  0.0565 0.0545  0.0561 0.0544  0.0552 0.0539 

 2 outliers 0.0593 0.0674 0.0646  0.0621 0.0610  0.0615 0.0609  0.0602 0.0600  0.0605 0.0602 

 3 outliers 0.0748 0.1176 0.1019  0.0818 0.0780  0.0742 0.0710  0.0708 0.0676  0.0674 0.0654 

 4 outliers 0.0988 0.1847 0.1509  0.1297 0.1172  0.0990 0.0956  0.0864 0.0847  0.0794 0.0766 

 5 outliers 0.1298 0.2872 0.2217  0.2664 0.2124  0.1429 0.1322  0.1118 0.1073  0.0964 0.0939 

N = 60 0 outliers 0.0508 0.0497 0.0522  0.0497 0.0522  0.0497 0.0522  0.0497 0.0522  0.0497 0.0522 

 1 outlier 0.0511 0.0518 0.0527  0.0520 0.0531  0.0519 0.0528  0.0520 0.0528  0.0527 0.0531 

 2 outliers 0.0559 0.0593 0.0596  0.0562 0.0572  0.0550 0.0558  0.0550 0.0558  0.0553 0.0551 

 3 outliers 0.0644 0.0780 0.0745  0.0682 0.0679  0.0626 0.0624  0.0602 0.0590  0.0591 0.0586 

 4 outliers 0.0805 0.1379 0.1215  0.0872 0.0839  0.0773 0.0744  0.0684 0.0689  0.0646 0.0650 

 5 outliers 0.1004 0.2049 0.1735  0.1221 0.1146  0.0940 0.0920  0.0812 0.0806  0.0729 0.0732 

N = 80 0 outliers 0.0514 0.0546 0.0535  0.0546 0.0535  0.0546 0.0535  0.0546 0.0535  0.0546 0.0535 

 1 outlier 0.0511 0.0554 0.0537  0.0549 0.0542  0.0550 0.0540  0.0550 0.0536  0.0551 0.0531 

 2 outliers 0.0548 0.0591 0.0599  0.0586 0.0574  0.0576 0.0566  0.0566 0.0563  0.0566 0.0557 

 3 outliers 0.0620 0.0730 0.0695  0.0654 0.0643  0.0627 0.0619  0.0599 0.0600  0.0594 0.0591 

 4 outliers 0.0742 0.1002 0.0932  0.0765 0.0756  0.0721 0.0700  0.0677 0.0661  0.0631 0.0621 

 5 outliers 0.0913 0.1674 0.1483  0.0992 0.0942  0.0820 0.0802  0.0758 0.0749  0.0718 0.0693 

N = 100 0 outliers 0.0509 0.0489 0.0483  0.0489 0.0483  0.0489 0.0483  0.0489 0.0483  0.0489 0.0483 

 1 outlier 0.0513 0.0507 0.0501  0.0509 0.0504  0.0511 0.0501  0.0512 0.0504  0.0516 0.0499 

 2 outliers 0.0531 0.0542 0.0538  0.0531 0.0534  0.0532 0.0525  0.0530 0.0517  0.0522 0.0511 

 3 outliers 0.0606 0.0632 0.0619  0.0593 0.0591  0.0575 0.0569  0.0560 0.0551  0.0556 0.0540 

 4 outliers 0.0697 0.0823 0.0799  0.0689 0.0679  0.0633 0.0635  0.0598 0.0606  0.0591 0.0580 

  5 outliers 0.0795 0.1125 0.1052   0.0818 0.0800   0.0719 0.0715   0.0658 0.0658   0.0628 0.0622 
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Results 

The Monte Carlo simulation results are summarized in Table 1 and Table 2. The 

results include Type I error rates of parametric significance tests and different 

outlier accommodation techniques under five sample sizes (20, 40, 60, 80, and 100) 

with six outlier conditions (outlier = 0, 1, 2, 3, 4, 5). Each entry in the tables is the 

probability of falsely rejecting the null hypothesis under the situation of a true Null 

(the Type I error rate). The rows represent sample sizes and the number of outliers, 

and the columns represent the significance tests with either untreated or treated 

outliers. 

The Influence of Outliers on Statistical Results 

The first two major columns in Table 1, “parametric” and “outlier removed” 

columns, provide the Type I error rates in ANOVA and Welch tests for untreated 

outliers and after outliers being removed from the data set. The results show a clear 

influence of outliers on the statistical results of significance tests, which is 

illustrated by inflated Type I error rates. When outliers are removed from the data 

set, the Type I error rates of both ANOVA and Welch tests drop back to a 

significance level of around 0.05. Results in the parametric column show the 

general trend that with an increasing number of outliers being “injected” into the 

sample, the probability of Type I error increases from the significance level of 0.05 

to a maximum of 0.4881 (ANOVA, n = 20, noutliers = 5). 

There are several notable features in the parametric test results regarding the 

influence of outliers on statistical results. First, the impact of outliers reflected in 

inflated Type I error rates varies significantly depending on the number of outliers 

present in the data set. Table 1 shows the number of outlier conditions from 0 to 5. 

Figure 1 shows the Type I error rates of ANOVA and Welch tests when no outlier 

and only one outlier is present. As it is shown in Figure 1, when there is only one 

outlier, the Type I error rates maintain around the significance level 0.05 regardless 

of the sample size and significance tests. For both ANOVA and Welch tests, a 

single outlier exerts little modification on the false rejection rates. Compared with 

a single outlier in the data set, there is an apparent inflation of Type I error rates 

when there are two outliers. 

For example, when there are two outliers, the Type I error rates of ANOVA 

tests for sample size 20, 40, 60 and 80 are 0.0846, 0.0767, 0.0659 and 0.0647, 

respectively. All of them exceed the upper bound of Robey and Barcikowski’s 
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(1992) intermediate criterion 0.0625. When there are three outliers or more, there 

is an even more dramatic increase in the Type I error rate across all sample sizes, 

all of which become greater than the upper bound of the liberal criterion 0.075 

(Bradley, 1978), with the lowest Type I error rates as 0.0761 (Welch, n = 100) and 

0.0809 (ANOVA, n = 100). This tendency of inflated Type I errors with an 

increased number of outliers can be clearly shown in the graphical representations 

of Figure 2, the Type I error rates of ANOVA and Welch tests with 0 to 5 number 

of outliers across five different sample sizes. 

In addition to the number of outliers casting an impact on the Type I error rate, 

the second feature involves sample sizes. As it can also be shown in Figure 2, the 

magnitude of Type I error rate inflation decreases with the growth of sample size. 

In other words, the impact of outliers on the false rejection rates is substantially 

greater with smaller sample sizes, and as sample size increases, the impact of 

outliers decreases although it is still inflated. 

When other conditions hold the same, the Welch test showed a better control 

of Type I error rates when compared with the ANOVA test in presence of outliers. 

Although the Type I error rates are inflated beyond Bradley’s (1978) criteria for 

both ANOVA and Welch tests when there are more than three outliers, at each 

sample size level with the same number of outliers, the Welch test has a less inflated 

Type I error rates than the ANOVA test. 
 
 

 
 
Figure 1. Type I error rates for ANOVA and Welch when zero and one outlier exist 
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Figure 2. Type I error rates for ANOVA and Welch with varied sample sizes and number 

of outliers. 

 

Outlier Treatments Methods can Reduce Outlier Influence on 

Statistical Results 

Table 2 provides Type I error rates of significance tests with outlier accommodation 

methods being applied: the robust approach of using nonparametric Kruskal-Wallis 

test and the outlier treatment method of Winsorizing at the 95th, 90th, 85th, 80th, and 

75th percentiles. 

Overall, both the nonparametric Kruskal-Wallis test and the Winsorizing 

method are effective in reducing outlier influence on statistical results. Figure 3 

shows graphical comparisons of Type I error rates of ANOVA and Welch with 

untreated and treated outliers under various conditions. For sample size equal to 20, 

40, 60, 80 and 100, the outlier treatment method of Winsorizing is illustrated at 75th, 

80th, 85th, 85th and 90th percentiles as examples, at which the Type I error rates are 

acceptable. It can be seen from Figure 3, with untreated outliers, the Type I error 

rates inflate rapidly as the number of outliers increase. Comparatively, the Type I 

error rate inflation is reduced to the acceptable intervals of criteria when outlier 

accommodation methods are used. This tendency in the results is not only accurate 

for the examples in Figure 3; it is also consistent across all sample size and methods 

conditions. 
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Figure 3. Type I error rates for ANOVA, Welch, nonparametric, and (a) 75 percentile of 

Winsorizing with sample size of 20; (b) 80 percentile of Winsorizing with sample size of 
40; (c) 85 percentile of Winsorizing with sample size of 60; (d) 85 percentile of 
Winsorizing with sample size of 80; (e) 90 percentile of Winsorizing with sample size of 
100. 

 

Outlier Accommodation Methods: Sensitivity 

To a certain extent, the outlier treatment methods “corrected” the influence of 

outliers on the statistical results, although the degree of correction varies for 

different methods. The two outlier accommodation techniques perform differently 

in minimizing the impact of outliers under different conditions. 
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Figure 4. Type I error rates for nonparametric with varied sample size and number of 

outliers. 

 

 

The effectiveness of the Kruskal-Wallis test in controlling Type I error rates 

depends jointly on the number of outliers and sample size. The intertwining effect 

of sample size and outlier numbers can be observed in Figure 4, which shows the 

Type I error rates across five different sample sizes of the nonparametric Kruskal-

Wallis test in the presence of a different number of outliers. 

First, with respect to the number of outliers, two or fewer outliers show little 

modification in the probability of Type I error rates for the Kruskal-Wallis test, and 

this result is in accord with conclusions of previous studies about the robustness of 

nonparametric tests under violations of normality (e.g., Zimmerman, 1994b; 1995). 

However, when there are three or more outliers present, there is still discernable 

inflation of Type I errors, and the Kruskal-Wallis test is not able to effectively 

control Type I error rates to be within the interval of Bradley’s (1978) standards. 

Second, similar to the impact of untreated outliers on the probability of Type 

I errors, sample size plays a role regarding the magnitude of change: the larger the 

sample size, the relatively less inflation in Type I error rates. 

Table 2 shows the Type I error rates of ANOVA and Welch tests after outliers 

being Winsorized at five different percentiles under varying sample size and outlier 

number conditions. In other words, the injected outliers in each data set are replaced 

by the scores at the assigned percentile (95th, 90th, 85th, 80th, and 75th). Similarly to 
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the nonparametric test, Winsorizing also shows an effective control of Type I error 

rates, and the effectiveness of Winsorizing varies at different Winsorization 

locations. How much to Winsorize in order for a reasonable control of Type I error 

is jointly affected by the sample size and the number of outliers. 

A smaller Winsorization percentile, such as the 75th or 80th percentile, is 

necessary to control Type I error rates when sample sizes are small. As the sample 

size increases, the impact of outliers on probability of Type I errors decreases, and 

a relatively larger percentile (90th or 95th) of Winsorization is sufficient to 

accommodate the effects of outliers to achieve an acceptable Type I error rate. 

Regarding the number of outliers, with two or fewer outliers, Winsorizing at the 

95th percentile shows a good control of Type I error rates across all sample sizes 

except when n = 20. At each sample size, with growing number of outliers in the 

data set, a smaller percentile is necessary for a good control of Type I error rates. 

However, it is important to note that when sample sizes are small, such as n = 20 

and 40, even Winsorization at the 75th percentile does not show very effective 

control of Type I error rates when there are four or more outliers. As sample sizes 

grow bigger, a 75th percentile Winsorizing can reduce the inflated Type I error to 

meet the intermediate or liberal standards (Bradley, 1978; Robey & Barcikowski, 

1992). 

Conclusion 

Based on the results and figures presented in the result section, certain statements 

of existing studies regarding the impact of outliers were replicated. In addition, it 

was confirmed that outliers can change the probability of Type I errors by exerting 

a disproportionate influence on means and variances in parametric F tests such as 

ANOVA and Welch tests. The current study provides new evidence in two ways: 

first, positive outliers inserted into one of the three groups can inflate the Type I 

error rates of F tests when the null hypothesis is true. Secondly, for previous studies, 

the impact of outliers was investigated using the contamination method in an 

outlier-prone data set (Zimmerman, 1994a; 1994b; 1995), in which the precise 

number of outliers or the extremity of outliers are not specified at each condition. 

The current study, by adopting the injection method, specified the number and 

relative extremity of the outliers, and made sure that the inserted outliers did belong 

to the population. The current study comes to similar conclusions with studies using 

contamination methods, and further confirms the impact of outliers under a 

different circumstance. 
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Furthermore, regarding outlier impact on a nonparametric test, different from 

conclusions drawn from mixed-normal distributions where outliers were studied in 

Zimmerman’s (1994b; 1995) studies, the current study investigated different outlier 

number and sample size conditions, and presented similar results under certain 

conditions and different conclusions in other conditions. The impact of outliers on 

nonparametric tests in terms of Type I error rates depends on sample size and the 

number of outliers. When sample size is relatively large (n = 80 and 100), a 

nonparametric test has a good control of Type I error even when there are five 

outliers, which is in accord with the results of previous studies (Zimmerman, 

1994b; 1995). However, when the sample size is small, there is non-ignorable 

inflation of Type I error caused by outlier influence, especially with two and more 

outliers present. Therefore, the nonparametric test is robust against outlier influence, 

but more attention should be paid when the sample size is small. 

It is the number of outliers that seems to matter on the issue of outlier impact 

on the statistical results, regardless of the sample size. In other words, no matter 

how large the sample size is, the false rejection rates almost adhere to the nominal 

significance level (0.05) when the number of outliers is less than two, indicating 

that no accommodation techniques are necessary. As the number of outliers 

increases, the inflation of Type I errors begins to appear. Different outlier 

accommodation techniques have similar effect when the number of outliers was 

less than two, but the effect began to differ greatly as the number of outliers 

increased. 

As for the comparison of sensitivity to outlier influence between 

nonparametric test and Winsorizing, it largely depends on the number of outliers in 

the data set and the location of Winsorization. When there are only two outliers, 

both the nonparametric test and Winsorizing methods show an effective control of 

Type I error rates. Yet, when sample sizes are small, the nonparametric test shows 

a better control of Type I errors than Winsorizing at the 95th and 90th percentile, but 

the two accommodations methods yield similar results at the 85 th and 80th percentile 

of Winsorization. Therefore, with relatively small sample sizes, nonparametric 

could have an advantage over Winsorizing in controlling Type I error rates, 

especially when a large Winsorization percentile is preferred. When there are more 

than three outliers, a nonparametric test is still relatively robust with large sample 

sizes, but it does not show a good control of Type I errors when sample sizes are as 

small as 20 and 40. Comparatively, the Winsorizing with different percentiles can 

still maintain a good control of the probability of Type I error except that, as the 

number of outliers increases, the Winsorization location requires a smaller 

percentile. Thus, when encountering a relatively small sample size with three or 
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more outliers present, the Winsorizing method offers a more accurate control of 

Type I error rates than the nonparametric test. 

Recommendations can be made regarding the choices of parametric tests 

when outliers exist in the data and outlier accommodation methods. First, since a 

single outlier can have little impact on the Type I error rates under a true Null 

condition, researchers can keep the outlier in the data regardless of the sample size 

and the Type of F tests applied. However, if there is more than one outlier, the 

Welch test shows a better performance in controlling Type I error rates and is 

therefore recommended over ANOVA. Second, with regard to the choice of outlier 

accommodation methods, the nonparametric test is recommended for small sample 

sizes when two or less outliers are identified, or for large sample sizes when the 

number of outliers exceeds three. In addition, the method of Winsorizing is able to 

accommodate different sample size and outlier number conditions with different 

Winsorization percentiles. The smaller the sample size and the more outliers, the 

smaller percentile of Winsorization is required to have a better control of Type I 

error rates. 

Many factors contribute to what approaches or methods should be taken in 

actual research, and the recommendations made in this study are solely based on 

the factor of controlling Type I error inflation and on the premise that both 

parametric and nonparametric approaches are available for use. It is recommended 

that the outliers be investigated as part of the research design before applying any 

accommodation techniques, and decisions on the choice of methods should 

consider the research design and methodology. Apart from Type I errors, other 

statistical factors such as power will also contribute to the effectiveness of outlier 

accommodation methods, which should be investigated in future studies of this 

topic. 
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