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A simulation study was conducted to explore the performance of the independent means 
t-test, Satterthwaite’s approximate t-test, and the conditional t-test under various conditions. 

Type I error control and statistical power of these testing approaches were examined and 
guidance provided on the proper selection among them. 
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Introduction 

In elementary statistics courses, the independent means t-test is followed by a 

discussion of statistical assumptions, robustness, Type I error control, and power. 

At the time of writing, the independent means t-test has been widely used in almost 

every discipline to this day. A search completed in June of 2014 with the key words 

“independent means t-test”, with time period between 2013 and 2014, returned 

1,740 articles from the Google Scholar database (excluding citation and patents) 

and 605 articles from the Web of Science database. Among the 605 articles in Web 

of Science, 170 out of the 202 most recent articles mentioned in the abstract that 

these studies utilized the independent means t-test. 

mailto:ekim3@usf.edu
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The independent means t-test relies on the assumptions of population 

normality and equal variances (homoscedasticity). Alternative approaches such as 

the Satterthwaite’s approximate t-test (Satterthwaite’s test hereinafter) relax these 

assumptions, approximating the t distribution and the corresponding degrees of 

freedom. Although the independent means t-test is “the most powerful unbiased 

test” (Bridge & Sawilowsky, 1999, p. 229) for detecting true mean differences 

under the assumption of normality, statisticians to date are still evaluating the 

various conditions and factors for which this test is robust under the violation of the 

equality of variances assumption and departures from normality. 

Controversy about the Independent Means t-Test 

Many statistical textbooks (e.g., Cody & Smith, 1997; Schlotzhauer & Littell, 1997) 

continue recommending what Hayes and Cai (2007) call the “conditional decision 

rule” (p. 217), that researchers screen their samples for variance homogeneity by 

conducting preliminary tests (e.g., the Folded F-test). That is, the t-test assumes 

that the distributions of the two groups being compared are normal with equal 

variances. Although the authors of some statistics textbooks do not even mention 

the assumption of homogeneity of variance (e.g., Gravetter & Wallnau, 2011) as 

one required for the t-test, homoscedasticity is basic and necessary for hypothesis 

testing because the violations of this assumption “alter Type I error rates, especially 

when sample sizes are unequal” (Zimmerman, 2004, p. 173). 

The preliminary test of the null hypothesis 
2 2

1 2   versus the alternative 

2 2

1 2   is conducted using the Folded F-test statistic 
2

1
2

2

S
F

S
 . Common 

practice has been that if the Folded F-test is not statistically significant (e.g., 

p ≥ 0.05), then the test of µ1 = µ2 versus µ1 ≠ µ2 is calculated using the independent 

means t-test: 
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On the other hand, if the preliminary test is statistically significant (e.g., 

p < 0.05) and in addition there are unequal sample sizes, the independent means 

t-test should be avoided and the Satterthwaite’s test should be used instead (Moser, 

Stevens, & Watts, 1989): 
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Recently, researchers have questioned the robustness of the conditional t-test 

with respect to Type I error and statistical power when the assumptions of normality 

and homoscedasticity are not met. Besides the unlikelihood of encountering real 

data that are normally distributed (Micceri, 1989), it is reported that there are also 

serious disadvantages of performing preliminary tests of variances equality (e.g., 

Moser et al., 1989; Zimmerman, 2004). Specifically, Moser et al. (1989) evaluated 

the impact of a preliminary variance test on the power and Type I error rate of the 

regular t-test and the Satterthwaite’s test.  Based on calculations of power and Type 

I error, they suggested that for equal sample sizes (n1 = n2), the t-test and the 

Satterthwaite’s test had the same power and provided very stable Type I error rates 

close to the nominal alpha prescribed for the test of means. For unequal sample 

sizes (n1 ≠ n2), the Satterthwaite’s test still provided reasonable and stable Type I 

error rates close to the nominal significance level. In conclusion, Moser et al. 

recommended applying directly the Satterthwaite’s test for testing the equality of 

means from two independent and normally distributed populations where the ratio 

of the variance is unknown. 

Rasch, Kubinger, and Moder (2011) conducted a simulation study to compare 

the performance of the regular (Student) t-test, Welch test, and Wilcoxon U-test to 

investigate if we should perform the t-test conditionally after testing the 

assumptions. These authors suggested not testing the underlying assumptions of the 

t-test because such testing was not effective. Zimmerman (2004) found similar 

optimal results for the Welch-Satterthwaite separate-variance t-test if applied 

unconditionally whenever sample sizes were unequal and noted that the power of 

this test deteriorated if it was conditioned by a preliminary test. Grissom (2000) 
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argued that it is realistic to expect heteroscedasticity in data as well as outliers, and 

examined the effect of these factors on variance. He also addressed issues of 

robustness (i.e., control of Type I error rate) in the presence of heteroscedasticity 

and departures from normality, for which he suggested trimming as a way to 

stabilize variances. 

Purpose of the Present Study 

The purpose of this study was to explore the performance of the independent means 

t-test and two alternatives, Satterthwaite’s test and the conditional t-test, by 

conducting a series of simulations under various manipulated conditions. The 

current study extended previous studies on the independent means t-test and its 

alternatives by taking into account the non-normality of population distribution and 

various levels of heteroscedasticity. Accordingly, extensive simulation conditions 

were included in this study: a wide range of total sample sizes (from 10 to 400 in 

contrast with 10 to 100 in Rasch et al., 2011 and 30 and 60 in Zimmerman, 2004); 

various variance ratios between populations up to 1:20 (beyond the realistic 

maximum sample variance ratio of 1:12 suggested in Grissom, 2000 and the great 

variance ratio of 1:16 mentioned in Wilcox, 1987); wide range of alpha set for 

testing treatment effects and testing homogeneity assumption for the conditional 

t-test; large range of non-normality (skewness from 0 to 6 and kurtosis from 0 to 

25). In the study of Rasch et al. (2011), skewness and kurtosis were examined from 

0 to 3 and 0 to 15, respectively. In addition, this paper provides some guidelines for 

researchers on the selection of an appropriate test for the equality of two population 

means.  

Methodology 

A simulation approach was used to explore and compare the behaviors of the 

independent means t-test, Satterthwaite’s test, and the conditional t-test for two 

means because simulation allows for the controlling of designed factors. 

Manipulated Factors 

A crossed factorial mixed design included seven factors: (a) total sample size (10, 

20, 50, 100, 200, 300, and 400), (b) sample size ratio between groups (1:1, 2:3, and 

1:4), (c) variance ratio between populations (1:1, 1:2, 1:4, 1:8, 1:12, 1:16, and 1:20), 

(d) effect size for mean difference between populations (Δ = 0, .2, .5, and .8), 

(e) alpha set for testing treatment effects (α = 0.01, 0.05, 0.10, 0.15, 0.20, and 0.25), 
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(f) alpha set for testing homogeneity assumption for the conditional t-test (α = 0.01, 

0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.45, and 0.50), and (g) population 

distributions with varying kurtosis and skewness values (i.e., γ1 = 1.0 and γ2 = 3.0, 

γ1 = 1.5 and γ2 = 5.0, γ1 = 2.0 and γ2 = 6.0, γ1 = 0.0 and γ2 = 25.0, as well as γ1 = 0.0 

and γ2 = 0.0 for the normal distribution, where γ1 and γ2 represent skewness and 

kurtosis, respectively). This crossed factorial design provided a total of 176,400 

conditions for the conditional t-test and 17,640 conditions for the Satterthwaite’s 

test and the regular t-test. 

Data Generation 

A random number generator, RANNOR in SAS/IML statistical software, was 

employed with a different seed value for each execution of the simulation program 

to generate data for this study. For each condition in the simulation, 100,000 

samples were generated. The use of 100,000 replications provides a maximum 

standard error of an observed proportion (i.e., Type I error rate estimate) of .00158, 

and a 95% confidence interval no wider than ± .003 (Robey & Barcikowski, 1992). 

Statistically Analytical Procedures 

For each sample generated, both the independent means t-test and Satterthwaite’s 

test, each at a range of nominal alpha levels (i.e., 0.01 through 0.25), were 

conducted. The independent means t-test and Satterthwaite’s test were investigated 

under a total of 17,640 conditions. In addition, the conditional t-test was conducted. 

The testing procedures for the conditional t-test were as follows. Firstly, the Folded 

F-test was implemented to examine the variance homogeneity assumption using a 

range of nominal alpha levels (i.e., 0.01 through 0.50). Based upon the results of 

the Folded F-test, either the independent means t-test or Satterthwaite’s test was 

applied. Thus, for the conditional t-test, a total of 176,400 conditions were 

examined. 

The simulation focused on Type I error rates and power. Type I error was 

examined when the population effect size (or two-group mean difference) was 

simulated zero; otherwise power was computed. Type I error rates were evaluated 

on the basis of the liberal criterion for robustness suggested by Bradley (1978). 

Given a nominal alpha level, Bradley’s liberal criterion provides a plausible range 

of Type I error rates in which a test can be considered robust. The liberal criterion 

for the robustness is set at 0.5α around the nominal alpha. For example, when 

α = 0.05, a test is considered robust when the Type I error rate falls between 0.025, 

which is given by 0.5*.05, and .075, which is given by 1.5*.05. When there was 



PARAMETRIC TESTS FOR TWO POPULATION MEANS 

146 

considerable variability in the estimated Type I error and power across simulation 

conditions, eta-square analyses were conducted to examine the design factors 

related to the variability. 

Results 

The results of simulation are reported in the following order: (a) power of the 

Folded F-test for the test of equal variances, (b) Type I error control for the test of 

means, and (c) power for the test of means. Under the Type I error control for the 

test of means, an overview of Type I error rates, an analysis of design factors 

associated with Type I error control, and an analysis based on Bradley’s liberal 

criterion for robustness are presented. 

Power for the Folded F-Test 

The distributions of statistical power estimates for the Folded F-test were examined 

across all conditions simulated in which population variances were not equal. As 

expected, when the alpha level used for the Folded F-test was small (e.g., 0.01 or 

0.05), the average power was low. However, the power of the Folded F-test 

increased when the applied alpha level increased. 

Nominal alpha levels of 0.05 and 0.25 for the Folded F-test were selected for 

further analysis of power. The average power of the Folded F-test based on 

simulation design factors is presented in Table 1. As seen in the table, the power 

remained stable regardless of distribution shapes; yet using the alpha level of 0.25 

consistently yielded more power. The average powers for 0.05 and 0.25 alpha levels 

were around .81 and .90, respectively, across normal and non-normal distributions. 

Further, as the value of variance ratio increased, the power of the Folded F-test 

increased as well. Using the alpha level of 0.25 provided substantially more power 

when the variance ratios were small (i.e., variance ratio = 1:2 and 1:4). As the 

variance ratios increased, the power differences between the two nominal alpha 

levels decreased. 

It is well-known that the power increases when the sample size increases. 

Using an alpha level of 0.05 for the Folded F-test yielded average power of .80 with 

sample size of 50 and of 0.90 with 100. In contrast, the average power reached .80 

with as few as 20 observations and 0.90 with 50 observations using an alpha level 

of 0.25. The use of extremely unbalanced samples (sample size ratios of 1:4 or 4:1) 

reduced the power of the Folded F-test, but power advantages of the more liberal 

alpha level remained evident. 
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Table 1. The power of the Folded F-Test using α = .05 and α = .25 

 
Condition α = .05 α = .25  Condition α = .05 α = .25 

Total N    Variance ratio   

10 0.36 0.62  1:2 0.55 0.73 

20 0.64 0.82  1:4 0.76 0.87 

50 0.85 0.92  1:8 0.85 0.93 

100 0.92 0.96  1:12 0.89 0.93 

200 0.96 0.98  1:16 0.91 0.96 

300 0.98 0.99  1:20 0.92 0.97 

400 0.99 0.99     

       

N ratio    Shape   

1:04 0.74 0.86  0.0, 0 0.82 0.91 

2:03 0.83 0.92  1.0, 3 0.81 0.90 

1:01 0.85 0.93  1.5, 5 0.81 0.90 

3:02 0.85 0.92  2.0, 6 0.81 0.89 

4:01 0.80 0.82  0.0, 25 0.81 0.91 
 

For Shape, the two values indicate skewness and kurtosis, respectively 

Type I Error Control for the Test of Means 

An overall view of the Type I error control of the tests is provided in Figures 1 and 

2. These boxplots describe the distributions of the Type I error rate estimates under 

a nominal alpha level of 0.05 across all conditions in which the population means 

were identical. The first two plots are for the independent means t-test and 

Satterthwaite’s test, respectively. The remaining plots delineate the Type I error 

rate estimates for the conditional t-test across the different conditioning rules (i.e., 

the alpha levels for the Folded F-test) that were investigated. For instance, the plot 

for C(01) provides the distribution of the Type I error rates for the conditional t-test 

when an alpha level of 0.01 was used with the Folded F-test as the rule to choose 

between the independent means t-test and Satterthwaite’s test. 

Note that in Figure 1 the independent means t-test has great dispersion of 

Type I error rates. In some conditions, this testing approach provides appropriate 

control of the Type I error probability while in others the Type I error rate is very 

different from the nominal alpha level. In contrast, Satterthwaite’s approximate 

t-test provides adequate Type I error control in nearly all of the conditions simulated. 

The series of plots for the conditional t-test illustrate that the conditional test 

provides a notable improvement in Type I error control relative to the independent 

means t-test and the improvement increases as the alpha level for the Folded F-test 

increases. This improvement occurs because the statistical power of the Folded 

F-test increases as the alpha level increases. That is, the ability of the Folded F-test 
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to detect variance heterogeneity (and to subsequently steer us away from the 

independent means t-test and steer us to Satterthwaite’s test) increases with the 

alpha level for this test, which supports the argument of insufficient power when 

using a more conservative alpha level for a preliminary analysis. 

Considering that the power of Folded F-test was substantially lower when the 

total sample size was 10 or 20 (see Table 1) and the behavior of conditional t-test 

heavily depended on the power of the Folded F-test, we inspected the Type I error 

rates of the conditional t-test only for total sample size greater than 20. As 

speculated, the Type I error rates of the conditional t-test across different alpha 

levels are almost identical to that of Satterthwaite’s test if the decision of 

conditional t-test is made at α = 0.10 or greater (see Figure 2). 
 
 

 
 
Figure 1. Distributions of estimated Type I error rates for independent means t-test 

(t-test), Satterhwaite’s test, and conditional t-test (α = 0.05) for all sample size conditions. 
C(01) denotes the conditional t-test at α = 0.01 of the Folded F-test 
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Figure 2. Distributions of estimated Type I error rates for independent means t-test 

(t-test), Satterhwaite’s test, and conditional t-test (α = 0.05) for N > 20. C(01) denotes the 
conditional t-test at α = 0.01 of the Folded F-test 

 

Impact of Simulation Design Factors on Type I Error Controls 

Variance heterogeneity. The large dispersion of Type I error rates for the 

independent means t-test resulted in large part from the variance heterogeneity that 

was included in the simulation conditions. Figure 3 presents the distributions of 

Type I error rates for the independent means t-test with the results disaggregated 

by population variance ratio. Note that as the population variance ratio increases, 

both the average Type I error rate and the dispersion of Type I error rates increase. 

On the other hand, both Satterthwaite’s test and the conditional t-test provide good 

control of Type I error rate even if the population variances in the two groups are 

heterogeneous (Figure 3). 

Of course, the independent means t-test is known to be relatively robust to 

violations of the assumption of variance homogeneity if the sample sizes in the two 

groups are equal. This phenomenon is illustrated in Figure 4. Note that the Type I 

error rate for the independent means t-test is maintained near the nominal 0.05 level 

if sample sizes are equal. With disparate sample sizes in the two groups, the 

independent means t-test either becomes conservative (Type I error rates lower than 

the nominal alpha level) or liberal (Type I error rates higher than the nominal level) 

depending upon the relationship between sample size and population variance. In 

contrast, both Satterthwaite’s test and the conditional t-test evidence much 
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Figure 3. Distributions of estimated Type I error rates by variance ratio (1:1, 2:1, 4:1, 8:1, 12:1, 16:1, 20:1) at α = 0.05. 

 

 

 
Figure 4. Distributions of estimated Type I error rates by sample size ratio (1:4, 1:3, 1:1, 3:1, 4:1) at α = 0.05. 
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improved Type I error control under variance heterogeneity when samples sizes are 

unequal. 

 

Other design factors related to Type I error control. The variability in the 

estimated Type I error rates for the three tests of means was analyzed by computing 

the eta-squared value associated with each simulation design factor and the first-

order interactions. For the independent means t-test, the factors associated with 

variability in estimated Type I error rates were sample size ratio (η2 = 0.69) and the 

interaction between sample size ratio and variance ratio (η2 = 0.22). For 

Satterthwaite’s test and the conditional t-test respectively, the major factors were 

sample size ratio (η2 = 0.15; η2 = 0.18), total sample size (η2 = 0.18; η2 = 0.14), and 

the interaction between sample size ratio and total sample size (η2 = 0.26; η2 = 0.36). 

An analysis of the sole impact of distribution shape on Type I error rates of the 

three tests showed that Type I error rate of Satterthwaite's test was most affected 

(η2 = 0.07). While Type I error rate of the independent means t-test was least 

impacted by the distribution shape (η2 = 0.001), Type I error rate of the conditional 

t-test was also impacted (η2 = 0.04) but to a much lesser degree in comparison with 

that of Satterthwaite's test. 

The mean Type I error rates by total sample size and distribution shape for 

the independent means t-test and Satterthwaite's test under the nominal alpha level 

of .05 are presented in Figures 5 and 6. The graph for the conditional t-test is similar 

to that for Satterthwaite’s test. The mean Type I error rates of the independent 

means t-test are much above the nominal alpha level in all conditions of distribution 

shapes and total sample sizes (see Figure 5). Although the mean estimated Type I 

error rates decrease with larger samples, they remain substantially greater than 0.05. 

In contrast, both Satterthwaite’s test and the conditional t-test provided much better 

Type I error control except for extremely small sample sizes (i.e., total sample size 

of 10 or 20) or the extremely skewed distribution (e.g., skewness of 2) (see Figure 

6 for Satterthwaite’s test). 

The factors related to the Bradley proportions vary across tests (Table 2). For 

the independent means t-test, sample size ratio and variance ratio between the two 

populations emerged as primary factors making an impact on the Type I error 

control. Although the overall proportions of cases meeting the Bradley’s criterion 

for the independent means t-test were very low (below 50%), the Type I error rates 

were perfectly controlled when the homogeneity of variance assumption was met 

(i.e., variance ratio between groups = 1:1). As the disproportion of two group 

variances became larger to 1:20, the Type I error control of independent means 

t-test diminished considerably. When the two groups have equal sample size, the 
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independent means t-test adequately controlled the Type I error rates within the 

Bradley’s criterion for 91% of the conditions. The imbalance of sample size 

between groups worsened the Type I error control noticeably. On the other hand, 

the adequacy of Type I error control of the independent means t-test appears 

independent of total sample size and the shape of distribution. That is, the 

proportions meeting the Bradley’s criterion were consistently low irrespective of 

total sample size and distribution shape. 
 
 

 
 
Figure 5. Mean Type I error rate by total sample size for the independent means t-test 

 

 
 

 
 
Figure 6. Mean Type I error rate by total sample size for the Satterthwaite’s test 
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Table 2. Proportions of cases meeting the Bradley’s Liberal Criterion at α = 0.05 

 
Condition t-test Conditional Satterthwaite  Condition t-test Conditional Satterthwaite 

Total N     Variance ratio    

10 0.45 0.68 0.65  1:1 1.00 0.94 0.92 

20 0.49 0.76 0.82  1:2 0.62 0.93 0.95 

50 0.45 0.93 0.95  1:4 0.40 0.91 0.93 

100 0.43 0.97 0.97  1:8 0.29 0.90 0.91 

200 0.42 1.00 1.00  1:12 0.27 0.89 0.89 

300 0.41 1.00 1.00  1:16 0.25 0.89 0.89 

400 0.41 1.00 1.00  1:20 0.23 0.89 0.90 

         

N ratio     Shape    

1:4 0.18 0.98 0.97  0.0, 0 0.43 0.96 0.97 

2:3 0.67 0.98 0.98  1.0, 3 0.44 0.96 0.97 

1:1 0.91 0.97 0.97  1.5, 5 0.44 0.93 0.94 

3:2 0.28 0.91 0.91  2.0, 6 0.46 0.77 0.78 

4:1 0.14 0.70 0.74  0.0, 25 0.41 0.91 0.91 

 

Conditional indicates conditional t-test at α = .25 of Folded F-test. Shape values indicate skewness and 

kurtosis, respectively. 

 
 

The impact of variance ratio and sample size ratio on the Type I error control 

appears minimal for the Satterthwaite’s test and the conditional t-test. Both tests 

showed adequate levels of Type I error control in the majority of conditions 

regardless of variance ratio and sample size ratio. Instead, total sample size and the 

skewness of the distribution were associated with the Bradley proportions of both 

Satterthwaite’s test and the conditional t-test. When the total sample size was 10, 

the proportions meeting the criterion dropped to about 65%. In this total sample 

size condition (N = 10), the conditional t-test showed slightly better control of Type 

I error (68%) than the Satterthwaite’s test. Interestingly, for both tests the 

proportions meeting the Bradley’s criterion were affected by skewness but not by 

kurtosis (see Table 2). 

Statistical Power Analysis 

Although Satterthwaite’s test generally provides superior Type I error control, it is 

not always the best test to select because of the potential for power differences. 

When the assumptions are met, the independent means t-test is the most powerful 

test for mean differences. For this simulation study, power comparisons were made 

only for conditions in which both Satterthwaite’s test and the conditional  t-test 

procedures evidenced adequate Type I error control by Bradley’s (1978) 

benchmark. The distributions of power estimates (at a nominal alpha level of 0.05 
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for the tests of means) for Satterthwaite’s test and the conditional t-test (using an 

alpha level of 0.25 for the Folded F-test) showed that the power differences 

between the tests were small. 

Figure 7 presents a scatter plot of the power estimates for Satterthwaite’s test 

and the conditional t-test (using an alpha level of 0.25 for the Folded F-test). Data 

points above the line represent conditions in which the conditional t-test was more 

powerful than Satterthwaite’s test, while those below the line are conditions in 

which Satterthwaite’s test is more powerful. Overall, the conditional t-test, using 

an alpha level of 0.25 for the Folded F-test of variances, was more powerful in 29% 

of the conditions, while Satterthwaite’s test was more powerful in only 23% of the 

conditions (identical power estimates were obtained in the other conditions). 

To identify research design factors associated with power differences between 

these two tests, the percentages of conditions in which each test evidenced power 

advantages were disaggregated by the simulation design factors (Table 3). For 

conditions with homogeneous variances, the conditional t-test evidenced more 

power than the Satterthwaite’s test in 61.64% of the conditions, while the 

Satterthwaite’s test was more powerful in 20.55% of the conditions (in the  
 

 
 
Figure 7. Scatterplot of power estimates for the conditional t-test and Satterthwaite’s 

approximate t-test 
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remaining conditions, the two tests evidenced equal power). As the variance ratios 

increased, the power advantages of the conditional t-test diminished, such that the 

Satterthwaite’s test was more often the more powerful test when the population 

variance ratio was 1:8 or larger. 

With balanced samples the conditional t-test was more powerful in 35.38% 

of the conditions and Satterthwaite’s test was never more powerful. With 

unbalanced samples in which the larger sample is drawn from the population with 

the larger variance (in heterogeneous populations), the Satterthwaite’s test presents 

notable power advantages (44.77% and 51.03% of the cases with sample size ratios 

of 2:3 and 1:4, respectively). In contrast, when the larger sample is drawn from the 

population with the smaller variance, the conditional t-test evidences more power 

than the Satterthwaite’s test (47.68% and 48.52% of the conditions with sample 

size ratios of 3:2 and 4:1, respectively). The results by total sample size show that 

the conditional t-test is more powerful in more conditions, except for the smallest 

sample sizes examined (N = 10). Finally, the conditional t-test is more powerful in 

more conditions for all distribution shapes except for the most skewed distribution 

examined (i.e. skewness of 2, kurtosis of 6). 
 
 
Table 3. Percentage of simulation conditions by simulation design factors in which the 

conditional t-test and Satterthwaite’s test were more powerful 
 

Condition Conditional Satterthwaite  Condition Conditional Satterthwaite 

Total N    Variance ratio   

10 48.97 51.03  1:1 61.64 20.55 

20 54.89 44.11  1:2 43.15 34.97 

50 44.79 28.83  1:4 31.03 29.35 

100 29.22 20.98  1:8 21.02 22.08 

200 19.43 12.38  1:12 16.56 18.06 

300 11.62 9.52  1:16 14.62 17.63 

400 8.19 7.81  1:20 13.25 15.81 

       

N ratio    Shape   

1:4 10.59 53.95  0.0, 0 29.20 15.67 

2:3 9.21 44.77  1.0, 3 29.60 21.98 

1:1 35.58 0.00  1.5, 5 28.17 24.63 

3:2 47.68 4.04  2.0, 6 21.69 24.51 

4:1 48.52 4.54  0.0, 25 34.98 27.50 

 

Conditional indicates conditional t-test at α = 0.25 of Folded F-test. Shape values indicate skewness and 

kurtosis, respectively 
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Conclusion 

The testing of differences between two population means is a fundamental 

statistical application, but controversy about the appropriate test to use has been 

evident for many years. When conducting the independent means t-test, major 

statistical software programs (e.g., SAS and SPSS) automatically produce the 

results of the independent means t-test and the alternative Satterthwaite’s test. 

Depending on the statistical significance of homogeneous variance testing (Folded 

F-test in SAS and Levene’s F test in SPSS), researchers are recommended to follow 

one of the options; this has been a common practice in studies comparing two 

population means. However, recent studies on the conditional t-tests in comparison 

to Satterthwaite’s test have strongly supported the Satterthwaite’s test over the 

conditional t-test and suggested even abandoning the conventional practice of 

selecting one of the options based on the results of the homogeneity of variance test. 

Considering the ongoing controversy surrounding these tests and the frequency 

with which two means are compared in applied research, in this simulation study 

we investigated the performance of the independent means t-test, Satterthwaite’s 

approximate t-test, and the conditional t-test under the manipulated conditions of 

population distribution shape, total sample size, sample size ratio between groups, 

variance ratio between populations, difference in means between populations, alpha 

level for testing the treatment effect, and alpha level for testing the homogeneity 

assumption for the conditional t-test. Type I error control and power analysis were 

used to examine the performance of these testing procedures. 

As expected, the independent means t-test performed very well on Type I 

error control when the homogeneity assumption was met regardless of the tenability 

of the normality assumption. This reminds us of the long-known property that the 

independent means t-test requires the homogeneity assumption to be met and this 

test is robust to violations of the normality assumption when two population 

variances are equal. Furthermore, the independent means t-test showed adequate 

Type I error control when sample sizes in the two groups were equal under the 

normal distribution. This re-emphasizes another well-known property that the 

independent means t-test is robust to violations of the homogeneity assumption 

when the sample sizes are equal under the normal distribution. Under these 

conditions, the independent means t-test is the best method to test the difference 

between two independent means. This testing procedure also provides more 

statistical power. On the other hand, the t-test evidenced poor Type I error control 

under heterogeneous variances with non-normal distributions. Thus, two 
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alternatives, Satterthwaite’s test and the conditional t-test, were considered in this 

study. 

It was also found that the Type I error rate of the conditional t-test was 

affected by the alpha level for the Folded F-test that was used to test the 

homogeneity assumption of population variances. The more conservative alpha 

levels for the Folded F-test resulted in larger Type I error rates for the conditional 

test because of lower statistical power, such that the Folded F-test is less likely to 

detect the true difference between population variances. This leads us to re-consider 

the conventional procedures for examining the difference between two population 

means. Thus, the conditional t-test using a relatively large alpha level for the Folded 

F-test may be an appropriate alternative. 

Overall, Satterthwaite’s test performed best in control of Type I error rate but 

the conditional t-test also yielded comparable results using a large alpha level of .25 

for the Folded F-test. Both alternatives made a tremendous improvement in Type I 

error control, compared to the independent means t-test, when group variances were 

unequal. Extreme skewness (e.g. skewness of 2) contaminated the Type I error 

control for both alternative testing procedures. Kurtosis seemed not to have this 

kind of impact. Increasing total sample size was found in this study to improve 

Type I error control for both testing procedures, but not for the independent t-test. 

When total sample size was 200 or more, Bradley’s rates were 100% for both 

alternative testing procedures. Although Satterthwaite’s test provides slightly better 

Type I error control, the use of the conditional t-test may have a slight power 

advantage. 

 

Recommendations. With equal sample size the independent means t-test is the 

appropriate testing procedure to examine the difference of two independent group 

means because it provides adequate Type I error control and more statistical power. 

With unequal sample size the Folded F-test can provide reasonable guidance in the 

choice between the independent t-test and Satterthwaite’s test. A large alpha level 

of .25 is recommended to evaluate the results of the Folded F-test. If the F value is 

not statistically significant at this large alpha level, then the independent means 

t-test should be used. In contrast, if the F value is statistically significant at this 

large alpha level, then Satterthwaite’s test should be chosen. Finally, the confidence 

in this conditional testing procedure increases as the sample sizes become larger. 

To adequately control for Type I error rate in the conditional testing procedure, a 

total sample size of at least 200 is recommended with extremely skewed 

populations (e.g. skewness of 2). For less skewed populations, a total sample size 

of at least 100 is recommended. With a total sample size smaller than these 
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recommended in the corresponding conditions, the Type I error control resulting 

from any of these testing procedures may be questionable. 
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