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2 Introduction

1.1 Background and motivation

It is impossible to imagine a world without public transport, and its contribution to
our society is undisputed. First, public transport is a service of general interest. It
increases mobility for the public and enables to also travel when no private means
of transport are available. As such, public transport contributes to a just society
with equal chances for all. Second, public transport is indispensable for a working
passenger transport system in densely populated areas. In cities and other crowded
places, the consequences of passenger traffic are often severe. Much space is dedicated
to streets and parking areas and vehicles block each other, making traveling time-
consuming and troublesome. Unlike private transport, public transport can carry a
large number of passengers efficiently. By pooling passenger trips and utilizing vehicle
fleets to their full capacity, urban travel can be accomplished in a reasonable amount
of time and space. Third, public transport is a key element for our efforts to mitigate
climate change. The Paris Agreement (2015), signed by more than 190 countries,
aims to keep the increase in average global temperature below 2°C compared to
pre-industrial levels. This can only be achieved by reducing the emissions in all
sectors, in particular in the transport sector, which is responsible for approximately
one-sixth of the emissions (Ritchie and Roser, 2020). Most of the emissions in this
sector are produced by road traffic, while public transport has the least emissions
per passenger-kilometer. Hence, public transport can help achieve the goals of the
Paris agreement.

To reap its benefits, effective public transport services must be designed attracting
large numbers of passengers. This requires public subsidies and constant improve-
ments of the services. Research is necessary to improve the services by giving in-
sights into operations and providing decision support for planning. Even though it
is generally accepted that public transport must be of high quality, the goals and
requirements concerning public transport are versatile and often even contradictory.
We look at public transport from the perspectives of three different stakeholders,
namely those of passengers, public transport authorities, and operators.

Passengers’ perspective. People want or need to travel, for which they often have
several modes of transport available to reach their destination. Depending on the
availability, price, and convenience of the modes, they choose which one to use. To
be an attractive alternative to travelers, public transport must provide a frequent
service with reasonable travel times and, if possible, direct connections. In addition,
fares must be low and the services should be punctual, reliable and close-by.
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Public transport authorities’ perspective. Public transport authorities have
the task to efficiently use taxpayers’ money for the common good. Hence, their goals
concern mainly the consequences of transport, such as carbon footprint, accessibility
and fairness for inhabitants, as well as the attractiveness of regions or cities. To
achieve the desired conditions, they introduce constraints and incentives for operators
and users of transport services. This often takes the form of subsidies for public
transport fares, taxes on private transport, bans on certain technologies in selected
areas, or the requirement of minimum service levels.

Public transport operators’ perspective. In many parts of the world, public
transport operators are privatized and the companies work profit-oriented. They aim
for low operating costs and high revenues. The transport services they provide must
unite the interests of all stakeholders. The service level should be high to attract pas-
sengers, while infrastructural and operational constraints, operational costs, as well
as incentives and restraints from public transport authorities have to be considered.

1.2 Transport planning

In most cases, operators plan public transport services. Nevertheless, all stakehold-
ers’ constraints and objectives have to be considered, making the design of public
transport services a complex task. The literature provides a plethora of models and
methods for public transport design. A rough distinction is made between demand-
oriented and supply-oriented approaches for transport planning (Cascetta, 2013).

1.2.1 Demand-oriented approaches

Demand-oriented approaches model the travel demand for a certain transport situ-
ation and evaluate the performance of the transport situation from several aspects.
This evaluation is mostly done with travel demand models, following a step-wise
approach (de Dios Ortúzar and Willumsen, 2011; McNally, 2010).

Figure 1.1 shows the main steps of a travel demand model. First, activity choice
models are used to estimate the number of trips people make and destination choice
models predict the places they want to travel to. This information is usually stored in
an origin-destination matrix (OD matrix), where each entry represents the number
of people who want to travel from an origin to a destination. The OD matrix may be
time-dependent. Next, the mode of transport travelers use to reach their destination
is estimated with mode choice models. Usually, the transport modes considered are
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Figure 1.1: Travel demand model consisting of activity, destination, mode and route
choice. Settlement structure, mobility behavior and a transport supply are assumed
to be given.

walking, bike, public transport, and car, if available. This step results in several OD
matrices, one for each mode of transport. Last, the individual routes for the people
on their respective modes are predicted with route choice models. All available routes
are evaluated according to different criteria such as travel time, cost, and convenience
factors, among them the number of transfers or vehicle congestion. These models
are influenced by the settlement structure and mobility behavior of people, and a
transport supply, which includes available public transport services. This input is
assumed to be given and fixed in most demand-oriented approaches.

Travel demand models are mainly applied to estimate the travel demand for a certain
transport situation. This allows a thorough and detailed evaluation of the transport
situation from various perspectives. For the design of a public transport service, a
finite set of services are evaluated and compared in an experimental setup. Therefore,
travel demand models do not provide potential transport designs, but rather provide
decision support by allowing a high level of detail in the assessment of designs.

1.2.2 Supply-oriented approaches

Supply-oriented approaches are used for the design of public transport services. The
services are designed to meet a certain passenger demand, which in most cases is as-
sumed to be known before planning. The passenger demand is mostly specified as an
OD matrix and in some cases includes passenger route decisions. Since certain design
decisions are implemented for longer-term than others, public transport services are
usually designed in a step-wise approach as depicted in Figure 1.2.
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Figure 1.2: Step-wise approach for public transport design, consisting of stop loca-
tion, line planning, timetabling, vehicle scheduling and crew scheduling. A transport
infrastructure and passenger demand are assumed to be given.

To begin with, the optimal location of stops in the public transport infrastructure
is determined using stop location models. Depending of the field of application, the
infrastructure can be seen as a street or track network. The stops should be close to
the passengers’ destinations, but also low in number to keep installing and maintain-
ing costs for the operator as well as waiting time for passengers at intermediate stops
low. If a distinction is made between different service categories, such as regional
or intercity transport, it is often also decided at which stop which service will stop.
Afterward, in line planning, the aim is to find the number, routes, and frequencies of
lines in the public transport infrastructure to serve the demand. The line operation
should be cost-efficient for operators but provide reasonable travel times and direct
connections for passengers. These first two steps concern long-term planning which
is referred to as strategical planning.

Given the lines and their respective frequencies, optimal arrival and departure times
for each vehicle on each line are determined in timetabling. Often, the focus is on
spreading vehicle trips over time for a regular service, and on realizing short transfer
times for passengers. Timetabling is classified as tactical planning as it considers
medium-term decision making.

Having found solutions to these steps yields sufficient information for passengers
about a public transport service. Afterward, the vehicles and drivers get assigned
to previously determined trips in vehicle and crew scheduling. The aim is mostly to
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minimize operational costs, considering maintenance rhythms of vehicles and work
regulations of staff. These steps of scheduling are denoted as operational planning.

There are many models and methods developed in the area of Operations Research
for the steps of stop location, line planning, timetabling, and vehicle scheduling.
An overview of Operations Research models in public transport planning is given in
Huisman et al. (2005) or in Borndörfer et al. (2018).

1.2.3 Integration of demand-oriented into supply-oriented ap-
proaches

From Figures 1.1 and 1.2, it can be seen that the approaches require each other’s
results as input. For demand-focused models, a transport supply including public
transport services is assumed to be given, whereas for supply-focused models, knowl-
edge about the demand is assumed to be known. Since passenger demand and public
transport supply are interdependent, they should be treated simultaneously. That
means the passenger demand should be estimated during the design of the public
transport services. Although supply and demand are known to influence each other,
only few and basic combinations of these research fields are developed, probably due
to the complexity of a simultaneous treatment.

In this thesis, we aim at investigating the potential of simultaneous passenger demand
estimation and public transport design. We develop integrated models to optimize
public transport services while estimating the corresponding passenger choices. The
resulting public transport services are designed for the passenger demand they gen-
erate.

We focus on the interaction of mode and route choice from the demand-oriented
models and line planning and timetabling from the supply-oriented models. Mode
and route choice can be significantly impacted by changes in the public transport
services. The activity and destination choice steps also depend on the availability of
public transport, but are less reactive to (moderate) changes in the quality of public
transport. The quality of public transport for passengers is primarily determined
by the line plan and timetable. Therefore, the passengers’ mode and route choices
should be taken into account during line planning and timetabling. Stop location
planning also significantly determines the people’s choice to travel at all, and impacts
their destinations. However, since the location of stops is seldom updated, it is
not considered in the scope of this thesis. The remaining planning steps of vehicle



1.3. New forms of public transport 7

and crew scheduling only have a minor impact on the passenger choices in public
transport.

The challenge of estimating passenger choices during optimization is that demand
models are very detailed and complex, necessitating simplifications. In Chapter 2, we
investigate how simplifications in passenger modeling can impact the evaluation of
timetables. Furthermore, mode and route choice models are usually non-linear and
non-convex in the utility of the alternatives. Hence, the integration in an optimi-
zation framework quickly yields computationally intractable models. In Chapter 3,
we discuss two linear route choice models within timetabling, and in Chapter 4, we
present a mixed-integer linear program for line planning with integrated mode and
route choice.

1.3 New forms of public transport

The previously discussed supply-oriented models mainly address traditional public
transport, that is, a regular, scheduled service, operating on fixed lines. The recent
development of technology enables new forms of public transport: large-scale and
affordable mobility on demand. Instant information sharing, for example of vehicle
occupancy rates or vehicle and passenger locations, allows a flexible approach without
fixed stop locations. Online computing power and new algorithms enable efficient live
planning of operations that do not rely on specified lines and schedules. With the
usage of autonomously driving vehicles, also smaller-scale vehicles can be operated
economically.

For passengers, on-demand services promise a fast and direct service at the time of
their preference. The service adjusts to their needs and wishes, instead of requiring
them to adjust to a rigid schedule. Due to the pooling of several passengers in a
vehicle, the service quality might be inferior to a taxi service, however, this is com-
pensated by considerably lower fares. In general, the launch of on-demand services
is expected to improve the travel quality for passengers and they can easily test the
services without any obligation.

For operators, the consequences of introducing on-demand services are less clear.
Passenger acceptance and associated costs are difficult to estimate, but offering on-
demand services requires large investments. Already now, many operators offer non-
profitable on-demand services with a driver to learn about the operations and to
collect data.
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This possibility of data collection is not feasible for public transport authorities.
Large-scale experiments to measure the impact of on-demand services on cities, re-
gions and the environment are out of reach. Nevertheless, they need to estimate
consequences for the managed region to react with regulatory measures in a timely
manner. Hence, many transport scenarios included on-demand services need to be
investigated and evaluated with the help of travel demand models.

A travel demand model requires a transport situation as input, including the available
public transport service. However, the service level of on-demand services cannot be
predetermined as it depends on the demand, which is to be estimated by the travel
demand model. Hence, the service level of on-demand services has to be estimated
within the travel demand model. In Chapters 5 and 6, we discuss how a travel demand
model can be extended correspondingly. We present a heuristic and an exact solution
approach to estimate the minimum vehicle fleet size and total distance traveled of
on-demand services within a macroscopic travel demand model.

1.4 Thesis outline and contributions

This thesis is structured in two parts and seven chapters.

Part I of this thesis deals with the planning of public transport services as described
in Section 1.2. Demand-oriented approaches are integrated into supply-oriented ap-
proaches with the goal to estimate passenger demand during public transport optimi-
zation. Chapter 2 compares different evaluation functions for consistency and gives
further motivation for the integration of passenger choice models into optimization
models. Chapters 3 and 4 present novel optimization models with integrated demand
estimation for the steps of timetabling and line planning, respectively.

In Part II, we consider the determination of on-demand services within travel demand
modeling, as motivated in Section 1.3. Both Chapters 5 and 6 present solution
algorithms for a vehicle scheduling problem in the context of traffic estimation.

Figure 1.3 outlines the thesis structure and highlights which steps of demand-oriented
and supply-oriented approaches are covered in the respective chapters. It is possible
to read the chapters of this thesis independently, however, we recommend reading
the chapters in each part in the given order. Chapter 7 concludes the main findings
and implications of this thesis, and points out directions for future research. In the
following, we give a brief summary of Chapters 2 to 6 and highlight the contributions.
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Figure 1.3: Structure of this thesis in two parts and 7 chapters. The dotted
and dashed boxes indicate which steps of demand-oriented and supply-oriented ap-
proaches are covered in the chapters, respectively.

Chapter 2: Hartleb, Schmidt, Friedrich, and Huisman: “A good or a bad
timetable: Do different evaluation functions agree?” In preparation for
journal submission.

Estimating passenger demand instead of assuming a fixed demand level when design-
ing public transport services has an impact on how the quality of solutions is assessed.
In terms of optimization models, this means that the objective function is adjusted.
To assess the extent to which solutions found under different objective functions can
differ, we first examine the consistency of evaluation functions using public transport
timetables as an example. The literature has established various ways to evaluate
public transport timetables from the passengers’ viewpoint. In Chapter 2, we inves-
tigate to what extent these evaluation functions agree on the quality of a timetable.
First, we structure common timetabling evaluation functions and identify three com-
ponents in which the functions differ from each other. Then, we use a novel method
to empirically test the extent to which the evaluation functions are consistent. Our
results show that the design of an evaluation function can have a significant impact
on which timetable is considered optimal. Due to the structure of our experiments,
we are further able to identify which components of evaluation functions influence



10 Introduction

the result of the evaluation most. This can help to design simple yet purposeful
objective functions for Operations Research models.

Chapter 3: Hartleb and Schmidt: “Railway timetabling with integrated
passenger distribution”. Accepted for publication at the European Jour-
nal of Operational Research.

Timetabling for railway services often aims at optimizing travel times for passengers.
At the same time, restricting assumptions on passenger behavior and passenger mod-
eling are made. While research has shown that discrete choice models are suitable
to estimate the distribution of passengers on routes, this has not been considered
in timetabling yet. In Chapter 3, we investigate how multi-route passenger route
choice can be integrated into a timetabling optimization framework and present two
mixed-integer linear programs for this problem. Both approaches design timetables
and simultaneously find a corresponding passenger distribution on available routes.
One model uses a linear distribution model to estimate passenger route choices. The
other model uses an integrated simulation framework to approximate a passenger dis-
tribution according to the logit model, a model commonly used in route choice. We
compare the two new approaches with three timetabling approaches without multi-
route search and a heuristic approach on a set of artificial instances and a partial
network of Netherlands Railways (NS). Our experiments provide insights into the
impact of considering multiple routes instead of a single route, and of integrated
route choice instead of predetermined route assignment on the solution quality.

Chapter 4: Hartleb, Schmidt, Huisman, and Friedrich: “Modeling and
solving line planning with integrated mode choice”. Currently under re-
view at a scientific journal

In Chapter 4, we present a mixed-integer linear program (MILP) for line planning
with integrated mode and route choice. The model aims at finding line plans that
maximize the profit for the public transport operator while estimating the corre-
sponding passenger demand with choice models. Both components of profit, revenue
and cost, are influenced by the line plan. More lines result in higher costs but also in-
crease the level of service to passengers, which leads to higher passenger numbers and
more revenue. Hence, the resulting line plans are not only profitable for operators
but also attractive to passengers. The passengers’ mode and route choices depend
on the utility of the service, which includes travel time, number of transfers, and
frequency of service. By suitable preprocessing of the utilities, we are able to apply
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any choice model for mode choices in a MILP. In contrast to existing approaches,
the mode and route decisions are modeled according to the passengers’ preferences
while commercial solvers can be applied to solve the corresponding MILP. We provide
and test means to improve the computational performance. In experiments on the
Intercity network of the Randstad, a metropolitan area in the Netherlands, we show
the benefits of our model compared to a standard line planning model with fixed
passenger demand. Furthermore, we demonstrate with the help of our model the
possibilities and limitations for operators when reacting to changes in demand. The
results suggest that operators should regularly update their line plan in response to
changes in travel demand and estimate their passenger demand during optimization.

Chapter 5: Hartleb, Friedrich, and Richter: “Vehicle Scheduling for On-
demand Vehicle Fleets in Macroscopic Travel Demand Models”. Accepted
for publication at Transportation. An early version of this paper is pub-
lished as Hartleb et al. (2021a).

The planning of on-demand services requires the formation of vehicle schedules con-
sisting of service trips and empty trips. Chapter 5 presents a heuristic algorithm for
building vehicle schedules that uses time-dependent demand as input and determines
vehicle routes and the number of required vehicles as a result. The presented ap-
proach is intended for long-term, strategic transport planning. For this purpose, it
provides planners with an estimate of vehicle fleet size and distance traveled by on-
demand services. The algorithm can be applied to integer and non-integer demand
matrices and is therefore particularly suitable for macroscopic travel demand models.
An implementation of the algorithm is available online (Hartleb et al., 2020). We
illustrate in two case studies potential applications of the algorithm and feature that
on-demand services can be considered in macroscopic travel demand models.

Chapter 6: Hartleb and Schmidt: “A Rolling Horizon Heuristic with
Optimality Guarantee for an On-Demand Vehicle Scheduling Problem”.
Published as Hartleb and Schmidt (2020).

In Chapter 6, we consider the same vehicle scheduling problem as in Chapter 5, which
arises in the context of travel demand models. Given demanded vehicle trips, what
is the minimum number of vehicles needed to fulfill the demand? In this chapter,
we model the vehicle scheduling problem as a network flow problem. Since instances
arising in the context of travel demand models are often so big that the network
flow model becomes intractable, we propose using a rolling horizon heuristic to split
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huge problem instances into smaller subproblems and solve them independently to
optimality. By letting the horizons of the subproblems overlap, it is possible to look
ahead to the demand of the next subproblem. We prove that composing the solutions
of the subproblems yields an optimal solution to the whole problem if the overlap
of the horizons is sufficiently large. Our experiments show that this approach is not
only suitable for solving extremely large instances that are intractable as a whole,
but it is also possible to decrease the solution time for large instances compared to
solving them as a whole.

Contributions

The main contribution of Chapters 2 to 6 is fivefold. First, we show in an empiri-
cal comparison in Chapter 2 that simplifications of passenger modeling can lead to
different results. Furthermore, we identify which components of evaluation functions
are crucial for the result for the example of timetable evaluation.

Second, we present novel optimization approaches for the design of public transport
services with integrated passenger choice models. In Chapter 3 we estimate the
passengers’ route choice during timetabling in two different ways. First, we develop a
linear distribution model resembling the characteristics of the targeted choice model
and, second, we use a simulation framework to approximate it. With these two
representations of the choice model, we develop two mixed-integer linear programs
for timetabling. In Chapter 4, we estimate the passengers’ route and mode choice
during line planning. By preprocessing the utilities of routes and modes, we design
a mixed-integer linear program for this problem.

Third, we develop solution algorithms to solve extremely large vehicle scheduling
problems as they arise during demand estimation with a travel demand model. In
Chapter 5, we present an efficient heuristic approach to estimate the fleet size of an
on-demand service. For the same underlying vehicle scheduling problem, we develop
another solution algorithm approach in Chapter 5. This algorithm is based on a
rolling horizon framework with overlapping horizons and we provide an optimality
guarantee for the solutions if the horizons overlap sufficiently.

Fourth, we test our approaches in experiments on artificial and real-world data. In
Chapter 3, the developed timetabling models are compared to four methods moti-
vated by the literature on a grid network and a partial network operated by Nether-
lands Railways. The line planning approach from Chapter 4 with integrated mode
and route choice is tested on the Intercity network of the Randstad, a metropolitan
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area in the Netherlands. We test the heuristic for vehicle scheduling in Chapter 5
on a travel demand model of the Stuttgart region in Germany, and a model of the
campus of the University of Stuttgart to estimate the impact of an electric scooter
sharing system. The advantages of the rolling horizon heuristic are demonstrated on
a set of randomly generated instances in Chapter 6.

Fifth, we provide valuable insights for public transport operators and public au-
thorities generated with the developed models and methods. In Chapter 2, we show
which components of timetabling evaluation functions are determining for differences
in evaluation results. The other way around, this indicates how evaluation functions
can be simplified without distorting the evaluation results. This is especially rele-
vant for the design of timetables with Operations Research models where evaluation
functions often have to be simplified to serve as an objective function in a tractable
model. The line planning model with integrated mode choice in Chapter 4 stresses
the importance of considering passenger behavior during public transport design.
Our results show that modeling the choices of passengers during optimization yield
line plans that are more profitable for operators and that have a higher level of ser-
vice for passengers. Furthermore, our experiments show that the operators’ profit
is sensitive towards changes in total travel demand. This suggests that they should
adapt their services regularly to maximize their profit. In Chapter 5, our experiments
give insights into how the use of autonomous fleets affects the required fleet size and
the vehicle distance traveled. Both are relevant figures for both operators as well as
public transport authorities in estimating the impact of on-demand services.

1.5 Research statement

Chapter 5 is the result of joint work with Emely Richter from the University of
Stuttgart. The author is responsible for algorithm development and implementation,
as well as manuscript preparation. Emely Richter’s contributions to this chapter are
the integration of the developed algorithm into a travel demand model, analysis of
results, and manuscript preparation. The research in all chapters except Chapter 5
was primarily conducted by the author of this thesis. There, the author is responsible
for research design, modeling, and analysis of the results. The research questions in
all chapters were developed and defined in fruitful discussions with the respective co-
authors. Frequent discussions with and critical feedback from my doctoral advisors
Marie Schmidt, Dennis Huisman, and Markus Friedrich greatly helped to improve
the quality of the research in all chapters.
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2.1 Introduction

When providing public transport, operators should aim for the highest possible qual-
ity from the passengers’ viewpoint, respecting physical and monetary constraints.
However, there are many different definitions for ’quality from the passengers’ view-
point’. The literature on public transport planning, both from Transport Engineering
and Operations Research perspectives, as well as practitioners in railway companies,
have come up with very different measures to evaluate quality. These range from very
basic measures designed to be used in linear programming frameworks to sophisti-
cated multi-variable models optimized to fit observed passenger behavior as well as
possible.

In this chapter, we investigate the following question: Considering a situation char-
acterized by demand for public transport, and different public transport services
provided to satisfy this demand, to what extent do different evaluation functions
agree on the quality of the provided transport services? That is, will the evalu-
ation functions considered - all designed to measure ’quality from the passengers’
perspective’ - lead to the same evaluation of what is a good or a bad timetable?

We give an overview of different evaluation functions for timetables proposed in the
literature and identify three components in which the functions differ from each other.
Based on this, we classify the considered evaluation functions and design a set of
representative evaluation functions that are different in the three components. These
functions represent a wide range of the most commonly used evaluation functions in
mathematical models, evaluation applications, or choice models. Moreover, their
modular structure as a combination of the three components allows a purposeful
analysis of their similarity.

To empirically compare these representative functions with each other and analyze
how similar they are, we conduct three case studies. In each case study, we evaluate
a set of timetables for a given demand situation with each of the representative
evaluation functions. Two sets of timetables are defined for an artificial grid network
and one set is defined for the real-world network of Netherlands Railways (NS).
Since the sets of timetables are designed by different parties with varying methods
and various objectives, the comparison of the functions should not be biased by the
way the timetables were created.

Based on the resulting evaluation values of all timetables with respect to each eval-
uation function, we develop a method to quantify the degree to which the different
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evaluation functions coincide. The result of the method allows a pairwise compari-
son of the evaluation functions and can be interpreted as a measure of inconsistency,
which we investigate in two ways. First, the pairwise inconsistency is interpreted
directly, visualized with the help of heat maps and multidimensional scaling. This
gives an overview of the extent of inconsistency between the evaluation functions
and allows an immediate recognition of patterns of which evaluation functions are
more or less consistent with each other. Second, we use cluster analysis to determine
the strongest inconsistencies between the functions. The cluster analysis identifies
groups of evaluation functions that are consistent while the evaluation functions in
different groups are less consistent.

With this setting, we aim at empirically testing whether timetable evaluation func-
tions agree on what is a good or bad timetable and to what extent they are con-
sistent. In particular, it is not the purpose of the analysis to identify a ’good’ or
’best’ evaluation function. Instead, with the modular design of the timetable eval-
uation functions, we intend to identify which components of the functions have the
most influence on differences in the evaluation results. Our intrinsic motivation is
to show that the formulation of evaluation functions is crucial for the result of the
evaluation. Furthermore, by identifying key components of the evaluation functions
we want to provide information about which part to focus on when designing simple
yet purposeful objective functions for Operations Research models.

The contribution of this chapter is twofold. First, we use a novel and structured
method to compare multiple evaluation functions. In contrast to existing compar-
isons in literature, this is an empirical method that quantifies the difference between
evaluation functions. Since the method is independent of the structure of the eval-
uation functions, it can be applied to empirically compare evaluation functions in
other applications as well. Second, we provide a thorough comparison of timetable
evaluation functions for passengers. Our analysis shows to what extent evaluation
functions agree on what is a good or a bad timetable. Furthermore, we are able to
identify whether and under which circumstances a component of a sophisticated eval-
uation function is crucial for the result of an evaluation. This can be used to either
justify the simplifications made in current state-of-the-art optimization approaches
to public transport planning or to point out which aspect is still lacking and needs
to be incorporated to obtain objective functions providing a valid evaluation.

The remainder of this chapter is organized as follows. Section 2.2 gives an overview
of evaluation functions that are commonly used to measure the quality of public
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transport from the passengers’ viewpoint. Afterward, in Section 2.3, we structure
the evaluation functions used in the literature and define a set of representative
evaluation functions which we use for the analysis in this research. In Section 2.4,
we describe the data which we use in the case studies. Section 2.5 introduces a novel
measure of the inconsistency of evaluation functions and gives insight on the used
method for comparison. We report on the main findings of our experiments in the
same section. In Section 2.6, we demonstrate how the results can be used for the
design of an evaluation function and conclude in Section 2.7.

2.2 Literature on evaluation functions

Naturally, research concerned with the design of public transport also deals with
the corresponding evaluation. There are various evaluation functions proposed in
different research areas. Since we focus on the evaluation of public transport from
the passengers’ point of view, we restrict ourselves to these evaluation functions.
An overview of the most important factors of influence for timetable evaluation for
passengers is given by Parbo et al. (2016). We consider only the planned case and
neither disruptions nor robustness measures are considered, following the motto that
“time savings are the single most important benefit of transport improvement projects
all over the world” (de Dios Ortúzar and Willumsen, 2011). In this section, we give
an overview of different evaluation functions for timetables structured by the different
components of timetable evaluation.

2.2.1 Types of evaluation functions

First, there exist many different ways to evaluate public transport. These differ from
each other in the incorporated characteristics and the structure of the functions. We
distinguish between two principally different types of evaluation functions, where
each of them can appear in different variations.

On the one hand, most commonly used are travel time-based evaluation functions.
This is the default way of evaluation in both the research areas of Operations Re-
search and Traffic Engineering. The key idea is to quantify the quality of public
transport for passengers by a travel time equivalent. Travel time-based evaluation
functions are typically linear functions of the passengers’ travel time, but they vastly
differ in the number and kind of incorporated characteristics (Hensher and Button,
2007). In Operations Research, timetabling models are mostly based on the periodic
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event scheduling problem introduced by Serafini and Ukovich (1989) and often use
the absolute time passengers spend in public transport for evaluation, see for example
Corman et al. (2017). In advanced evaluation functions, the travel time is usually
“subdivided into walking time, waiting time, time on vehicle, transfer time, and
concealed waiting time” (Flyvbjerg et al., 1986). Furthermore, travel time-based
evaluation functions often take more influential factors into account, among them
fare, frequency, or temporal spread of the connections offered to passengers. In this
case, they are mostly referred to as perceived travel time, generalized cost, or disutil-
ity. Sometimes, also preferred departure or arrival times of passengers are modeled
by penalizing early or late departures or arrivals. Kanai et al. (2011) considered late
departures to be equivalent to waiting times for transfers and Robenek et al. (2016)
introduced additional variables and penalty terms for the modeling of departure time
preferences.

A comprehensive overview of generalized cost as evaluation functions can be found
in de Dios Ortúzar and Willumsen (2011). Both in research and practice, the gen-
eralized costs are commonly used for evaluation purposes, although for a long time
there have been many publications recommending to stop using them to evaluate the
quality of timetables from the passengers’ point of view. For instance, Grey (1978)
discussed five aspects of why the generalized cost is unsuitable for evaluation, all fol-
lowing the same argument that depicting peoples’ variety of perceptions in a single
variable leads to an inaccurate representation.

On the other hand, we consider utility-based evaluation models that are mainly
known from research in choice modeling. The difference to travel time-based evalu-
ation models is that the evaluation value is not a travel time equivalent but follows
the concept of passenger supplement. That means, each reasonably good available
connection for passengers adds to their utility and thus improves the quality of the
service. A comprehensive overview of utilities of alternatives is given in Ben-Akiva
and Lerman (1985). Utility-based evaluation functions are still almost exclusively
found in choice modeling, although several publications proposed to employ them
for evaluation purposes as well. For example, de Jong et al. (2007) concluded that
the ’logsum’, a utility-based evaluation function, is well suited for evaluation and a
probable reason for their little success is the seemingly complex theory behind it - in
contrast to travel time-based evaluation functions.
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2.2.2 Passenger distribution

Second, the assumed passenger distribution model is crucial for the evaluation. To
evaluate the quality of a public transport service in a meaningful way, it is important
to estimate how passengers will use it, that means, it is important to estimate how
passengers distribute over available connections. The applied passenger distribution
models in timetable-related research range from very simple assumptions to highly
developed choice models. In Operations Research, it is often assumed that passenger
routes are known before the timetable is fixed and most publications use a priori fixed
passenger loads on the connections (Liebchen, 2018; Nachtigall, 1998). Recently,
there is a change in the timetabling literature visible with more publications focusing
on an integrated timetable-dependent passenger distribution. Since the connections
passengers choose are not always reliably determinable beforehand, Sels et al. (2011)
and Parbo et al. (2014) described an iterative approach for passenger assignment on
shortest routes and timetable optimization. In further publications, the shortest path
search was included in timetabling models. Schmidt and Schöbel (2015b) did that
for the aperiodic case, Borndörfer et al. (2017) for the periodic case and Gattermann
et al. (2016) also for the periodic case using a satisfiability formulation instead of
a periodic event scheduling formulation. In these cases, the total travel time of all
passengers on their shortest connections is evaluated, instead of the travel time on
a previously defined connection. While it is often assumed that passengers only use
a single route for each origin-destination pair, some timetabling papers specifically
focus on a passenger distribution on multiple routes. For instance, Sels et al. (2015)
described a passenger assignment to multiple available routes that are of reasonable
quality for passengers. We are not aware of an integrated search for multiple routes,
most probably due to the high complexity of such a model.

In contrast to that, research in Traffic Engineering primarily applies passenger distri-
bution models including multiple routes for passengers. Depending on the preferred
departure or arrival times, the rooftop model assigns passengers to a connection with
shortest travel time (Guis and Nijënstein, 2015). The preferred departure or arrival
times of passengers are assumed to be known. Indeed, van der Hurk et al. (2014)
show in an analysis of smart card data from the Dutch railway network that many
frequently found assumptions on route choice behavior do not hold in general. To
also include unobserved preferences of passengers, choice models like the probit (Yang
and W. Lam, 2006) or logit model are commonly applied for passenger route choice.
The theory of choice models is explained in Ben-Akiva and Lerman (1985) and an
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overview of choice models suited for passenger route choice in transit networks can
be found in de Dios Ortúzar and Willumsen (2011). It seems that the logit model
is capable of depicting the passenger behavior best and it is therefore found most
regularly. Friedrich et al. (2001) designed an efficient algorithm based on the logit
model to compute passenger distributions in public transport networks. Recently,
Espinosa-Aranda et al. (2018) proposed a new formulation with an estimation of a
constrained nested logit model for connection choice in public transport. The suc-
cessful application of the logit model is not limited to connection choice, C.-H. Wen
et al. (2012) show that it is, for example, well suited to capture passenger behavior
in mode choice as well.

2.2.3 Passenger preferences

Third, the evaluation of public transport services should be suited to the target group,
that is the passengers. Therefore, the passengers’ preferences must be reflected in the
evaluation functions. This is commonly achieved by the use of parameters to tune the
evaluation functions. Wardman and Toner (2018) showed in their analysis for the case
of the generalized cost that choosing the correct parameters is essential for a correct
evaluation. While research in Operations Research focuses on developing algorithmic
methods to compute timetables and mainly uses given or estimated parameters,
there is much research in Traffic Engineering and choice modeling on parameter
identification.

Usually, the parameters are found by either stated preference or revealed preference
approaches. In the first case, people are asked to make decisions in a survey and
their theoretical choice is used to derive rules for passenger behavior. For example,
Bradley and Gunn (1990) determined the value of travel time of the Dutch population
by a stated preference survey. In the case of revealed preference studies, the actual
decisions of passengers are generalized. Recently, with more data being available,
more publications analyze passenger behavior with revealed preferences approaches.
For example, Kusakabe et al. (2010) estimated passenger usage patterns from smart
card data.

The most important parameters for public transport evaluation are of two differ-
ent kinds, modeling passenger preferences and passenger behavior. The preference
parameters specify how the different components of the passenger’s journey are
weighted. Different components include, but are not limited to waiting time, in-
vehicle time, or transfer time. Dell’Olio et al. (2010) provides passenger preference
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parameters measured from a bus transport service and Schittenhelm (2013) lists pref-
erences of passengers of the Copenhagen S-train. A collection of multiple parameter
settings found in various publications is published in Wardman (2004). Part of the
passenger preferences but usually researched individually is the value of time. Many
publications determine values under certain conditions, see for example Wardman
et al. (2012), and Mackie et al. (2001) study the circumstances and ways travel time
values should be used within an evaluation. Parameters for passenger behavior refer
to the parameters used in the passenger distribution model, for example, the logit pa-
rameter. The importance of correct parameter modeling for logit models is stressed
in Swait and Louviere (1993).

2.2.4 Comparison of evaluation functions

Although there are various approaches to evaluate public transport from the pas-
sengers’ point of view, there is only limited research comparing different evaluation
functions. Most publications undertaking a comparison of evaluation functions com-
pare only two evaluation functions, a newly introduced function and the state of the
art. Usually, the purpose is either to illustrate the merits of the newly introduced
evaluation function, as it was done in the previously discussed integrated shortest
path search (Borndörfer et al., 2017; Gattermann et al., 2016; Schmidt and Schöbel,
2015b), or to better fit the evaluation to reality. As an example for the latter, de Jong
et al. (2007) showed that in their case study a logsum based evaluation should be
preferred to the currently applied evaluation since it is more precise in computing
passenger surplus when changing the public transport service. Some publications
undertake a comparison of multiple evaluation functions, however, these are limited
to a theoretical comparison. For example, Parbo et al. (2016) provides a literature
review on public transport evaluation and focuses on the conflict of passenger’s versus
operator’s focus. We are not aware of an empirical comparison of public transport
evaluation functions or of an investigation of their inconsistency, which are the topics
of this chapter.

2.3 Timetable evaluation

From the literature review, it is apparent that researchers and practitioners have come
up with many different evaluation functions to measure the quality of timetables from
the passengers’ viewpoint. We classify this multitude of different functions to define
a set of representative evaluation functions. Each evaluation function is treated
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as a composition of a quality measurement, a passenger distribution model, and
assumptions on passenger preferences and behavior. In this section, we explain how
these three components are modeled and design a set of 16 evaluation functions to
represent the evaluation functions in use.

For this purpose, we define terms that are important for the design of evaluation
functions. All variables introduced are summarized in Appendix 2.A. Passenger
demand is specified by a set of origin-destination (OD) pairs OD, where each of them
is a directed pair of stations in the public transport network with time-dependent
demand. We consider disjoint time slices t ∈ T of one hour and define the hourly
demand of passengers that want to depart in time slice t ∈ T for each OD pair to
be otod. The sum of all hourly demand equals the daily demand ood of each OD
pair, i.e., ∑t∈T otod = ood. To meet the demand of passengers, each timetable offers
connections to the passenger. We use the term connection to denote a time-bound
route for passengers using public transport services and denote a set of reasonable
connections for each OD pair od with preferred departure time slice t by Ctod. To
evaluate timetables, we follow the usual approach to measure and aggregate the
quality of available connections for passengers.

2.3.1 Quality measurements

We quantify five characteristics of a connection c as listed in Table 2.1. These char-
acteristics are important factors of influence for a passenger’s decision whether to
travel on a connection c or not. Note, that we do not take the fare of connections
into account. We assume a fare system where the fares depend on origin and desti-
nation only, as used, e.g., at Netherlands Railways (NS), the largest Dutch railway

IVT(c) In-vehicle
time

The time spent in public transport vehicles

WKT(c) Walk time The time spent walking between platforms for a
transfer

TWT(c) Transfer
wait time

The time spent at a station waiting for the next
connecting public transport vehicle

NTR(c) Number of
transfers

The number of transfers in the connection

DEP(c) Departure
time

The departure time at the origin

Table 2.1: Characteristics of connections
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operator. Consequently, in such a system the ticket price for each OD pair od is
constant and does not affect the attractiveness of connections.

Based on these five measured characteristics we define four quality measurements to
represent the evaluation functions used in the literature. First, the absolute travel
time ATT is defined as the total time spent in public transport from embarking the
first vehicle until alighting the last vehicle during a passenger’s connection,

ATT(c) ∶= IVT(c) +WKT(c) +TWT(c).

Second, the perceived journey time PJT applies a weighting of travel times of the
different trip segments and includes a penalty for transfers,

PJT(c) ∶= IVT(c) + αWKT ⋅WKT(c) + αTWT ⋅TWT(c) + αNTR ⋅NTR(c). (2.1)

As a weighted sum of travel times, the perceived journey time can be interpreted as
a time equivalent expressing how long the public transport journey feels to passen-
gers. With the coefficients αWKT, αTWT and αNTR it is possible to model passenger
preferences.

Third, the adapted journey time AJT generalizes the perceived journey time by ad-
ditionally considering departure time preferences of passengers. To model these pref-
erences, we introduce the adaption time ADTt(c) as the time a passenger has to
deviate from their preferred departure time slice t to take connection c departing
at DEP(c). The adaption time is further explained in Appendix 2.B. Including the
adaption time, it is possible to model the impact of access time and the spread of
available connections in the evaluation. We define the adapted journey time of a
connection c for all passengers with preferred departure time slice t by

AJTt(c) ∶= IVT(c) + αWKT ⋅WKT(c) + αTWT ⋅TWT(c)

+αNTR ⋅NTR(c) + αADT ⋅ADTt(c).
(2.2)

This number quantifies how unattractive a certain connection is perceived by a pas-
senger who wants to start traveling in time slice t.

We denote the passenger preferences by α ∶= (αWKT, αTWT, αNTR, αADT). Note, that
for α = (1,1,0,0) the adapted journey time equals the absolute travel time ATT,
and for α = (αWKT, αTWT, αNTR,0) the adapted journey time equals the perceived
journey time PJT.
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IVT WKT TWT NTR ADT
absolute travel time ATT 1 1 1 0 0

perceived journey time PJT 1 αWKT αTWT αNTR 0
adapted journey time AJT 1 αWKT αTWT αNTR αADT
evaluated total utility ETU ∗ ∗ ∗ ∗ ∗

Table 2.2: Each entry indicates which of the five characteristics (in-vehicle time IVT,
walk time WKT, transfer wait time TWT, number of transfers NTR and adaption
time ADT) are taken into account in the four quality measurements ATT, PJT, AJT
and ETU. Linear dependencies are indicated by coefficients, non-linear by asterisks.

Fourth, there also exist utility-based evaluation functions in the literature that are
derived from choice models. To represent these functions, we consider the evaluated
total utility (ETU) of a connection as a number expressing how useful a connection
is to a passenger with preferred departure time slice t. We define the evaluated total
utility of a connection c to be

ETUt(c) = e−β⋅AJT
t(c), (2.3)

based on the definition of the logit model as a passenger distribution model. The
logit model and its associated parameter β are explained in detail in Section 2.3.3.

We refer to the four characteristics ATT, PJT, AJT and ETU as quality measure-
ments. While the first three quality measurements are travel time equivalents, the
evaluated total utility is a utility-based evaluation function, where each reasonably
good connection for passengers adds to the utility and thus improves the quality of the
service. Hence, we call ATT, PJT and AJT travel time-based, and ETU utility-based
quality measurement.

Table 2.2 gives a summary and theoretical comparison of the four quality measure-
ments. If a characteristic is included linearly in a quality measurement, the table
shows the coefficient, if the dependency is non-linear, it is indicated by an asterisk
whether the characteristic is taken into account.

The goal is to design evaluation functions for a timetable but, so far, just quality
measurements for connections were defined. For evaluating a timetable, we aggregate
the quality measurements of connections to derive a quality measurement for the
whole timetable. To achieve this, we follow the approach commonly used in literature,
divided into two steps. First, we aggregate the values of the quality measurement
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over all connections in Ctod and over all time slices in T . The values are weighted
by the demand otod per time slice and the probability pt(c) that a connection is
chosen which yields a quality measurement for each OD pair. Second, the values of
quality measurements for OD pairs are averaged, weighted by their volume ood, to
obtain a quality measure for the whole timetable. The exact procedure used in our
experiments with examples is described in Appendix 2.C.

2.3.2 Passenger distribution

The decision which connections passengers choose is dependent on the characteristics
of the connections. There are two fundamentally different approaches for passenger
distribution used in the literature. While research in Operations Research often
assumes that all passengers travel on the shortest connection available, most publi-
cations from other research areas apply more realistic passenger distribution models
when evaluating timetables. To investigate this difference, we consider two passenger
distribution models.

On the one hand, we rely on the logit model to obtain a realistic distribution of the
passengers on multiple connections (mc). We assume a set Cod of reasonably good
connections for each OD pair od to be given. Then, the logit model can be interpreted
as a function assigning a probability pt(c) to each connection c ∈ Cod that is used by
passengers with preferred departure time slice t. The logit model is defined by

pt(c) =
e−β⋅AJT

t(c)

∑c′∈Cod
e−β⋅AJT

t(c′) ∀c ∈ Cod, (2.4)

where the parameter β ∈ R≥0 is used to adjust the model to a specific case study (Ben-
Akiva and Lerman, 1985). Note, that the choice set of connections Cod is independent
of the passengers’ preferred departure time slice t. Since the logit model is based on
the adapted journey time of all considered alternative connections, only connections
departing in or close to the time slice t will be assigned a probability that is signifi-
cantly larger than 0.

On the other hand, we consider a shortest connection (sc) strategy for the passengers.
That means, passengers only take connections with lowest journey time departing
within or close to their preferred departure time slice. Let Ctod be the set of all
connections with lowest adapted journey time for passengers of an OD pair od that
want to depart in time slice t. Then, the share of passengers using connection c ∈ Ctod
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is
pt(c) =

1
∣Ctod∣

∀c ∈ Ctod.

That means, in case there are multiple shortest connections available, we assume
that the passenger distribution on them is uniform. We want to point out that in
this modeling both the probability p and the set of available connections C depend
on the applied choice model.

2.3.3 Passenger preferences and behavior

We take different assumptions on passenger preferences and passenger behavior into
account. To begin with, the definitions of perceived and adapted journey time as
well as evaluated total utility in Equations (2.1), (2.2) and (2.3) depend on passenger
preferences. The values of the coefficients α ∈ R4

≥0 indicate how important in-vehicle
time, walk time, transfer wait time, number of transfers, and adaption time are
relative to each other to the passenger.

In addition, it is possible to adjust the logit model with the coefficient β ∈ R≥0 in
Equation (2.4) to fit passenger behavior. This value indicates how sensitive passen-
gers are to absolute differences in the adapted journey time of connections. For exam-
ple, for β = 0 all connections in the choice set will be used by passengers equivalently
and the logit model reduces to a uniform distribution. The higher the coefficient β,
the more passengers will use the connections with lowest adapted journey time. This
coefficient also influences the evaluated total utility of a public transport service, as
defined in Equation (2.3).

Furthermore, the passengers’ tolerance to deviations from their preferred departure
times can be adjusted with a scaling parameter γ ∈ N. A given value γ models that
passengers prefer to depart in a 60

γ
min time window within their departure time

slice t. Hence, high values of γ indicate a low tolerance and vice versa.

To analyze the impact of modeling passenger preferences on the evaluation, we con-
sider two user groups. These are represented by the two parameter settings

ps1 = (α, β, γ) with α = (1, 1, 5, 1), β = 0.13, γ = 1 (2.5)

and
ps2 = (α, β, γ) with α = (2, 2, 10, 2), β = 0.22, γ = 60. (2.6)
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The first parameter setting models passengers that are mainly focused on journey
time (αWKT = 1, αTWT = 1) and are relatively undeterred by transferring (αNTR = 5).
They would also make use of connections with higher adapted journey time (β = 0.13)
and are rather flexible regarding departure time (αADT = 1, γ = 1), as long as
connections are fast.

The second parameter setting models passengers that are more convenience-oriented.
They prefer a public transport service that is suited to their needs with less and short
transfers (αWKT = 2, αTWT = 2, αNTR = 10), preferably use connections with low
adapted journey time (β = 0.22) and are inflexible regarding their desired departure
time (αADT = 2, γ = 60).

The parameters are chosen following recommendations from research and practice.
For example, as of 2012, NS used a penalty of 10min for each transfer (De Keizer
et al., 2012). Wardman (2004) provides a thorough study of values of time, among
them several values for the wait and walk time compared to in-vehicle time are listed.
Usually, the coefficients for wait and walk time are around 2. The logit parameter β
should be adjusted for each case study, but experience has shown that values of
β ∈ [0.13,0.22] are a reasonable choice if minutes are used as time units. Values for
the adaption time are chosen to fit the characteristics of the user groups modeled by
the two parameter sets in Equations (2.5) and (2.6).

2.3.4 Evaluation functions

We define an evaluation function as a combination of a quality measurement, a
passenger distribution model and an assumption on passenger preferences. That
means, applying an evaluation function consists of two steps: Given a timetable with
a connection choice set for passengers, the passengers are first distributed on the
connections according to the distribution model and their preferences. Second, the
quality of the timetable is evaluated with respect to the quality measurement, again
using the passenger preferences. Many publications focus only on the second step
when describing their evaluations. However, we believe that the distribution is an
integral component of the evaluation that influences the evaluation results. Hence,
we also investigate the extent of this influence.

When combining the four quality measurements defined in Section 2.3.1 with the
two distribution models described in Section 2.3.2 and the two different assumptions
on passenger preferences fixed in Section 2.3.3, we obtain 16 evaluation functions in
total.
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sc mc

ATT Borndörfer et al. (2017) Parbo et al. (2014)†

PJT Wardman and Toner (2018) Parbo et al. (2014)†

AJT Kanai et al. (2011) Robenek et al. (2016)

ETU ‡ de Jong et al. (2007)§

Table 2.3: Examples for the use of different evaluation functions in recent literature.
We provide one publication for each cell, exemplifying the use of a quality measure-
ment (absolute travel time ATT, perceived journey time PJT, adapted journey time
AJT and evaluated total utility ETU) in combination with a shortest connection (sc)
or multiple connection (mc) passenger distribution model
† Used ATT in evaluation and PJT in distribution
‡ ETU in combination with sc is not used since ETU does not require a passenger distribution
§ Used a slightly different utility-based evaluation function

This design of evaluation functions entails two advantages. First, these functions
cover a wide range of commonly used evaluation functions in mathematical models,
evaluation applications, and choice models as is indicated in Table 2.3. Second, their
modular structure as a combination of quality measurement, distribution model, and
assumptions on passenger preferences allows a purposeful analysis. Differences or
similarities of evaluation functions can easily be traced down to components of the
functions. We denote the set of the 16 evaluation functions by F .

2.4 Case studies

Our goal is to analyze how inconsistent the 16 different evaluation functions are
by comparing their evaluation behavior on multiple public transport services. In
this section, we describe three case studies in which we perform these evaluations.
Each case study is characterized by a fixed public transport infrastructure, a demand
situation on that infrastructure, and a set of services supplying the demand. A
public transport infrastructure consists of stations and direct links between them
and a demand situation is specified by a set of origin-destination (OD) pairs OD,
where each of them is a directed pair of stations with time-dependent demand. For
this demand situation, we consider several public transport services supplying this
demand, for comparison. Each public transport service is formalized by a line plan
and a timetable which together determine the potential connections and their quality.
The procedure of how we derive connection choice sets is described in Appendix 2.D.
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(a) Grid infrastructure (b) Dutch railway infrastructure. Tracks
and stations in black are operated by NS

Figure 2.1: The evaluation functions are compared on these two infrastructures

2.4.1 Case studies on a grid infrastructure

As a first infrastructure, we use an artificial 5 × 5 grid network1 introduced by the
research group FOR2083. The infrastructure consists of 25 stations and 40 direct
links as depicted in Figure 2.1a. On this infrastructure, we consider two demand
situations with multiple corresponding benchmark services available, each of them
consisting of a line plan and a timetable. Both demand situations have an almost
complete demand matrix with nearly 600 non-zero entries. Although they share the
same infrastructure, we treat them as two different case studies due to the different
data structures of demand and supply. The first demand situation has a typical daily
demand pattern and 27 suitable services that are operated throughout the whole
day. All of these services were designed by traffic engineers with established methods
used in transport planning. We refer to the case study as GL. The second demand
situation depicts a morning peak and 28 services operating only in the morning
hours are available. These services were found with different optimization models by
Operations Researchers and we denote the corresponding case study by GS.

1https://github.com/FOR2083/PublicTransportNetworks/tree/master/Grid_5x5, visited on
November 12, 2018.

https://github.com/FOR2083/PublicTransportNetworks/tree/master/Grid_5x5
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2.4.2 Case study on the Dutch railway infrastructure

The second infrastructure is the Dutch railway network with roughly 270 stations
as it is operated by Netherlands Railways (NS). In Figure 2.1b a route map of the
Dutch railway network is shown. The demand is given by a scientific demand set
of more than 62000 non-zero OD pairs defined between the stations reflecting a
realistic demand situation. For evaluation, we consider the yearly transport services
that were operated by NS in the years 2012 till 2018. Note, that due to changes in
the infrastructure in the Dutch railway network, not all public transport services are
defined on the same network. That means, over the years some stations and tracks
might have been introduced or abolished. However, we evaluate all different services
with the same demand set between the same stations, therefore the evaluation is not
directly affected by the slight changes of the infrastructure. We refer to this case
study by NS.

2.5 Comparison of evaluation functions

We defined 16 evaluation functions for public transport services in Section 2.3 and
introduced the infrastructures with corresponding demand situation and multiple
services for the three case studies in Section 2.4. In this section, we describe a method
to compare different evaluation functions and to set them into relation. Using this
method, the 16 evaluation functions are investigated for their inconsistency in the
three case studies.

The key idea is to compare the evaluation functions when applied to a number of
services. We evaluate all public transport services s ∈ S with each of the evaluation
functions f ∈ F and use the resulting evaluation values vfs to compare the functions
in F . We evaluate the services with PTV Visum (PTV Group, 2018), a software
package for macroscopic traffic analysis and forecasting. The complete results for all
three case studies are provided in Appendix 2.E. To explain and demonstrate the
used method, we discuss the results of the NS case study.

For the NS case study, Table 2.4 shows the evaluation values of the services operated
between 2012 and 2018 for all 16 evaluation functions. At a first glance, all public
transport services in Table 2.4 have very similar evaluation values, suggesting that
the quality of the services is effectively the same. For example, the absolute travel
time on the shortest connection evaluated with the first parameter setting (evaluation
function 1) ranges for all seven services between 35.94 and 36.78 minutes, implying
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ATT PJT AJT 100 ⋅ETU
ps1 ps2 ps1 ps2 ps1 ps2 ps1 ps2

sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NS12 36.78 37.43 36.79 37.60 37.99 38.90 41.04 42.22 38.64 40.49 58.37 53.30 38.31 55.98 1.29 1.77
NS13 36.30 36.96 36.32 37.13 37.44 38.38 40.27 41.58 38.07 39.97 57.60 52.63 34.19 53.60 1.11 1.70
NS14 36.30 36.94 36.31 37.09 37.44 38.37 40.31 41.60 38.03 39.96 56.88 52.22 36.83 56.50 1.21 1.80
NS15 36.22 36.90 36.24 37.07 37.36 38.33 40.22 41.51 37.98 39.93 56.88 52.01 36.68 56.25 1.20 1.77
NS16 36.23 36.91 36.26 37.06 37.38 38.32 40.24 41.52 37.99 39.92 56.90 51.97 38.28 55.93 1.28 1.75
NS17 36.03 36.77 36.04 36.96 37.25 38.29 40.28 41.67 37.87 39.90 56.85 52.03 40.44 57.67 1.33 1.80
NS18 35.94 36.71 35.95 36.89 37.14 38.22 40.14 41.56 37.78 39.83 56.96 51.75 39.72 59.16 1.31 1.85

Table 2.4: Evaluation values vfs in NS case study. Each column corresponds to one
evaluation function f ∈ F and each row to one public transport service s. The name of
the services indicate the year in which this service was operated. The four topmost
rows show the quality measurement, the used parameter setting and distribution
model as introduced in Section 2.3 and lastly an index to identify the evaluation
functions. The values for the travel time-based evaluation functions (ATT, PJT,
AJT) show average travel time in minutes, the values of the utility-based evaluation
functions (ETU) is dimensionless. For ease of exposition, all evaluation values of
utility-based evaluation functions are multiplied with 100.

a difference of only 0.84 minutes. While this difference sounds negligible, it actually
comprises considerable differences for individual OD pairs. A total gain of 0.84
minutes in absolute travel time corresponds to an improvement of 2.3% and could
for example be achieved by decreasing the travel time on all connections of the 20
biggest OD pairs by 10 minutes. This improvement would affect more than 90,000
travelers every day.

Furthermore, Table 2.4 also shows that the best service regarding one evaluation
function is not necessarily the best service regarding another evaluation function.
For example, the best services regarding evaluation functions 7 and 8 do not coin-
cide. While NS18 provides on average the shortest perceived journey time weighted
with the second parameter set on the shortest connection, NS15 yields the shortest
perceived journey time on multiple connections, indicating that the passenger distri-
bution model has an influence on the evaluation in this case. Table 2.5 summarizes
differences in ranking of all public transport services and all evaluation functions in
a ’medal count’, indicating how often the respective service is classified on a certain
rank.

The highest numbers in Table 2.5 appear on, or close to the antidiagonal. This
shows that the evaluation functions essentially agree that the services improved from
NS12 to NS18, or equivalently, improved over the years. Taking an average over
all evaluations, it seems to be conclusive which service is best. However, not all of
the services could be unambiguously classified. Most of the services are ranked over
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1st 2nd 3rd 4th 5th 6th 7th

NS12 0 0 2 0 2 0 12
NS13 0 0 0 2 1 9 4
NS14 0 1 2 0 11 2 0
NS15 1 1 7 5 0 2 0
NS16 0 2 4 8 0 2 0
NS17 3 10 0 1 1 1 0
NS18 12 2 1 0 1 0 0

Table 2.5: ’Medal count’ from NS case study showing the number of times a public
transport service is ranked on the nth rank. Both row and column sum add up to
16, the number of considered evaluation functions.

a range of five, some even over six ranks. Using just one evaluation function, as
it is often done in research, might yield a very different ranking than the average
suggests. To draw inferences from this about the inconsistency of the evaluation
functions, it is interesting to see whether the deviations in the ranking are due to
some random dispersion or whether there is a structural connection between the
rankings of evaluation functions.

2.5.1 Inconsistency of two evaluation functions

Even when the differences in the ranking are large, actual evaluation values may be
very close to each other. To avoid fallacy when comparing the evaluation functions
by rank, we focus on the relative differences in objective values. Since the evaluation
values vfs depend on the evaluation function and, thus, are not directly comparable,
we normalize the evaluation values. These normalized values are in the same number
range and can be compared easily.

We define
V (f) ∶= max

s∈S
vfs −min

s∈S
vfs

to be the range of objective values of all public transport services with respect to
evaluation function f ∈ F . For evaluation functions, for which smaller values are
better, we define the normalized value of service s ∈ S with respect to evaluation
function f ∈ F to be

ϕfs ∶=
vfs −mins′∈S vfs′

V (f)
. (2.7)
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Equivalently, the normalized value for evaluation functions, for which larger values
are better, is defined as

ϕfs ∶=
maxs′∈S vfs′ − v

f
s

V (f)
. (2.8)

It is evident that these two definitions are equivalent since the right-hand sides of
Equations 2.7 and 2.7 add to 1. The normalized values lie in the unit interval and
indicate to what extent service s performs worse than the best service with respect
to the same evaluation function considering the range of all other values. Therefore,
the normalized values ϕ depend on the set of all considered services S of a case study.

The normalized values allow a comparison of the quality of public transport services
regarding different evaluation functions. To compare the evaluation functions pair-
wise with each other, we define the inconsistency of two evaluation functions f1 and
f2 as the mean difference in the normalized value, i.e.,

iϕ(f1, f2) ∶=
1
∣S∣
∑
s∈S

∣ϕf1
s − ϕf2

s ∣.

As the normalized values ϕfs depend on the set of all considered services S of a case
study, also the inconsistency i depends on the set S.

f1 f2

s1

s1

s2

s2

vfs

↝

0

1

f1 f2

s1

s1

s2 s2

∣ϕf1
s1 − ϕf2

s1 ∣

∣ϕf1
s2 − ϕf2

s2 ∣

ϕf
s

Figure 2.2: Normalization of evaluation values vfs for two evaluation functions and
indication of computation of inconsistency iϕ(f1, f2) for two public transport services

The normalization of evaluation values and the definition of the inconsistency as the
mean difference in normalized values is depicted in Figure 2.2. The graph on the left
shows the ranges of the evaluation values vfs of two evaluation functions f1 and f2

as vertical lines. On the lines, the evaluation values of two services s1 and s2 are
marked. As it can be seen in this graph, the two evaluation functions yield different
ranges of evaluation values, and therefore it is difficult to compare them. This is dealt
with by the normalization of the evaluation values, which is depicted in the graph on



2.5. Comparison of evaluation functions 37

the right. Both ranges of the two evaluation functions f1 and f2 cover exactly the
unit interval and it is possible to compare the normalized evaluation values ϕfs . This
is shown with the same two services s1 and s2 from the left graph. It reveals that
service s1 is rated differently by f1 and f2 while the two evaluation functions nearly
agree on the quality of service s2. The vertical distance of the normalized evaluation
values, averaged over all services, is defined to be the inconsistency of two evaluation
functions in a certain case study.

One shortcoming of this approach is that the normalized evaluation values depend
on the set of all considered services of a case study. As defined in Equations (2.7)
and (2.8), all deviations in objective values between two services are compared rel-
ative to the largest differences between any services of the respective case study.
That means, in case all services are almost identical in quality, different evaluation
functions might be indicated as being inconsistent although they hardly show consid-
erable differences in the evaluation. However, when considering services that do show
differences in quality, such an incorrect indication of inconsistency cannot occur.

In the three case studies NS, GS, and GL we derive the pairwise inconsistencies
between all 16 evaluation functions. Altogether, we find qualitatively similar results,
which means, the inconsistencies of the studied evaluation functions are qualitatively
alike in the different case studies. Only for very few pairs of evaluation functions,
we observe a qualitative difference in the pattern of inconsistencies between the case
studies. This indicates that the results are not dependent on the structure of the
case study but indeed on the structure of the evaluation functions. Therefore, we
discuss the findings independently of the case studies where this is applicable and
just highlight differences in the results.

For a collective discussion we compute the weighted average of the inconsistencies
between the evaluation functions over all case studies by

i(f1, f2) =

∑
I∈{GS,GL,NS}

∣SI ∣i
I
ϕ(f1, f2)

∑
I∈{GS,GL,NS}

∣SI ∣
∀f1, f2 ∈ F,

where ∣SI ∣ is the number of services considered in case study I and iIϕ(f1, f2) is the
inconsistency of evaluation functions f1 and f2 derived in case study I.

For better comprehensibility, the inconsistencies are presented in a heat map, a
quadratic 16 × 16 matrix where each entry displays the inconsistency of two evalua-
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Figure 2.3: Heat map showing the weighted average inconsistencies from all three
case studies. For better depiction, all values are multiplied with 100.

tion functions. To make differences in inconsistencies easily identifiable, high values
are indicated by a dark shading and low values have a light shading. Naturally, all
diagonal values of the matrix are zero as each evaluation function is fully consistent
with itself and the matrices are symmetric since iϕ(f1, f2) = iϕ(f2, f1) holds. The
weighted average inconsistencies of the three case studies are tabulated in the heat
map in Figure 2.3.

The absolute values of the inconsistencies i allow an interpretation of the extent to
which the evaluation functions agree in their assessment of the services. For example,
an inconsistency of 19.36% between evaluation functions 1 and 16 can be found in
the top right corner of Figure 2.3. This inconsistency implies that the normalized
values of all services regarding these two evaluation functions deviate by 19.36% on
average. Visualized in Figure 2.2, this would mean that the differences ∣ϕ1

s −ϕ
16
s ∣ are

on average over all services s approximately one-fifth of the total range of normalized
evaluation values.

The heat map in Figure 2.3 shows obvious patterns with dark and bright areas,
indicating large and small differences in the inconsistencies between the evaluation
functions. To provide a better intuition, we use multidimensional scaling to visualize
the inconsistencies in Figure 2.4 as distances between the evaluation functions. That
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Figure 2.4: The inconsistencies of pairs of evaluation functions visualized as distances
on the plane. Each star corresponds to one evaluation function displaying its id. The
labels next to the stars explain how the evaluation function is constructed. The
quality measurement ATT, PJT, AJT, or ETU is written in the labels. A round
label shape indicates that passengers are distributed on the shortest connections (sc),
while squared labels indicate the use of a passenger distribution model on multiple
connections (mc). The used parameter setting is distinguishable by solid (ps1) or
dashed label edging (ps2).

means, we depict each evaluation function f as a point xf ∈ R2 on the plane such
that the Euclidean distance d(xf1 , xf2) between each two points is representative for
the inconsistency i(f1, f2) of the corresponding evaluation functions. This is ensured
by minimizing the relative deviation of Euclidean distance from the inconsistency,
i.e., we solve

min
x∈R2∣F ∣

∑
f1,f2∈F

(d(xf1 , xf2) − i(f1, f2))
2

∑
f1,f2∈F

i(f1, f2)
2 .

More on multidimensional scaling can be found in Borg and Groenen (2005). In
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general, the representation of inconsistencies as distances in Figure 2.4 allows a faster
and easier interpretation but all observations can be confirmed with the derived
inconsistencies in Figure 2.3.

Observations

It is obvious from Figure 2.4 that the four utility-based evaluation functions are
separated from the travel time-based evaluation functions. This is independent of
the chosen parameter setting or passenger distribution model. Also, the heat map
indicates by a dark shading in the upper right (or equivalently lower left) part that
the evaluation functions based on travel time are generally inconsistent with those
based on utility. Furthermore, both figures suggest that the utility-based evaluation
functions are rather consistent with each other, visible from low distances between
pairs of utility-based evaluation functions in Figure 2.4 and also from light shading
in the lower right corner of Figure 2.3. The utility-based evaluation functions are
especially far from the functions of adapted journey time although ETU and AJT
are the only two quality measurements that consider the adaption time besides other
characteristics, see Table 2.2. This shows that the shape of an evaluation function is
in this case more relevant for the inconsistency than the characteristics it takes into
account in the evaluation.

A second group of evaluation functions that are consistent with each other but a bit
separate from other groups is formed by the evaluation functions of absolute travel
time. By design, this group of evaluation functions is least affected by different
parameter settings and therefore it was expected that evaluation functions from this
group are relatively consistent with each other. In line with this, a close inspection
also shows that in our case studies the passenger distribution model has a higher
impact on the inconsistency of evaluation functions of absolute travel time than
the parameter setting. The group of evaluation functions of absolute travel time is
far from the utility-based evaluation functions and closer to other travel time-based
evaluation functions.

The closest group to the evaluation functions of absolute travel time are the four
evaluation functions of perceived journey time and the two evaluation functions of
adapted journey time with the first parameter setting. Especially with the first
parameter setting this closeness is plausible since the first parameter setting is very
similar to the fixed parameters of absolute travel time, see Equation (2.5). That the
two evaluation functions of perceived journey time with the second parameter setting
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are a little further away indicates that the penalties for transfers and the weighting
of transfer wait time have a measurable effect on the inconsistency of the evaluation
functions.

In the top left corner of Figure 2.4 we find the two evaluation functions based on
adapted journey time with the second parameter setting, separate from the other
evaluation functions and also relatively far from each other. This is also reflected in
the inconsistencies in the heat map in Figure 2.3 where both evaluation functions
11 and 12 show fairly high inconsistencies with all other evaluation functions. A
plausible explanation for this is the adaption time. The adapted journey time is the
only travel time-based quality measurement comprising the adaption time, and with
the second parameter setting the adaption is penalized much higher than when using
the first parameter setting.

A possible reason for the high inconsistency between the two evaluation functions
of adapted journey time with the second parameter setting might be found in the
set of services in our case studies; One kind of service provides no reasonably good
alternative to the best connection(s) whereas the second kind of service additionally
offers such alternatives. The evaluation of these two kinds of services is similar when
considering the shortest connection since both offer comparable shortest connections.
However, the adaption time in the second kind of service, which provides many
comparably good connections for each OD pair, is drastically lower when considering
multiple connections which leads to a different rating of the two kinds of services.
The presence of both kinds of services in the case studies might account for the visible
inconsistency between the two outliers for different passenger distribution models.

To summarize, Figure 2.4 suggests that there are three groups of evaluation functions
that are close to each other, but far from functions of other groups. One group is
formed by the four utility-based evaluation functions, one by the four evaluation
functions of absolute travel time, and one by the evaluation functions of perceived
journey time and adapted journey time with the first parameter setting. Additionally,
the remaining two evaluation functions of adapted journey time with the second
parameter setting seem to be two outliers apart from the three groups.

2.5.2 Cluster analysis

In addition to an investigation of the inconsistencies, we perform cluster analyses of
the evaluation functions in each of the three case studies. These help to determine
which of the evaluation functions are similar to each other and which are fundamen-
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tally different. With the cluster analyses we can, on the one hand, verify the group
formation that is apparent in Figure 2.4 and, on the other hand, identify individual
variations of the inconsistencies in the different case studies.

The evaluation functions f ∈ F are clustered based on the normalized evaluation
values ϕfs of all considered services s ∈ S. For a given k ∈ N, each evaluation function
is assigned to exactly one of k clusters such that the sum of all distances between the
evaluation functions and their cluster center is minimal. As distance measure between
an evaluation function f and a cluster center m we use the rectilinear distance of the
normalized evaluation values ϕ to the cluster center,

d(m,f) =
1
∣S∣
∑
s∈S

∣ϕfs −ms∣. (2.9)

Note, that this distance d(m,f) is consistent with the definition of the inconsis-
tency iϕ(f,m), in the sense that

d(f1, f2) = iϕ(f1, f2).

The complete mixed-integer program we use to solve the clustering problem is speci-
fied in Appendix 2.F. In each case study we cluster the set of 16 evaluation functions F
into k clusters, for k ∈ {2, . . . ,5}. Varying the number of clusters k helps to get a
better understanding of the inconsistency of evaluation functions.

These 12 clusterings are summarized in Figure 2.5, each clustering represented by
lines grouping several points. As before, each point corresponds to one evaluation
function and for each cluster of evaluation functions, there is a line surrounding the
corresponding points. The thickness of a line depends on the cumulative frequency
of appearance of the cluster. Hence, the number and thickness of the lines separating
two evaluation functions visualize how often these two functions were separated into
different clusters. Note, that in Figure 2.5 the distances between evaluation functions
are not representative of the inconsistencies.

Observations

In general, the cluster analysis confirms the observations made from a direct inter-
pretation of the inconsistencies in Figure 2.4. Additionally, it contributes some kind
of ranking of which inconsistencies are more substantial.
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Figure 2.5: The accumulated clusterings of all evaluation functions

It can be seen that the strongest separation is between the utility-based evaluation
functions and the travel time-based evaluation functions. In no case study two evalu-
ation functions from the two different bases were found in the same cluster. This gives
evidence that the decision of whether to use a travel time-based or a utility-based
evaluation is most crucial in this setting. Also within the group of travel time-based
evaluation functions, we observe that the visible inconsistencies in Figure 2.4 get
confirmed by the cluster analysis. For the grouping of evaluation functions, it seems
to be important whether the absolute travel time or a weighted travel time equiv-
alent is used. In combination with the different passenger distribution models and
assumptions on the passenger preferences, this can significantly influence how the
evaluation functions are separated into different clusters. This is especially visible
when comparing evaluation functions of the adapted journey time in combination
with the second parameter setting to other travel time-based evaluation functions.

In addition to that, the cluster analysis adds a refinement of the previous observa-
tions and reveals coherences that are not or less visible in Figure 2.4. For example,
the cluster analysis shows that there is a difference between utility-based evaluation
functions for the different passenger distribution models. Functions of evaluated total
utility are always clustered together when they use the same distribution model but
are occasionally separated from each other when using different distribution mod-
els. This effect is mainly found in the NS case study and only visible in the cluster
analysis since the three case studies are examined individually in contrast to an in-
vestigation of averaged values as in Figure 2.3. A probable explanation is that the
services in this case study offer good alternative connections to the shortest connec-
tion for the main demand pairs. This affects the evaluation when considering all
reasonable connections or the shortest connection only.

Figure 2.5 also shows that neither the parameter setting nor the choice of the distri-
bution model is solely decisive for a clustering of the evaluation functions across the
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case studies. For some combinations of parameter settings and distribution models,
evaluation functions of the different quality measurements are clustered together.

2.6 Implications

It is interesting to see that there are structural differences in the consistency of time-
table evaluation functions. In addition to a mere statement that different evaluation
functions might not agree on what is a good or a bad timetable, the structure of
this study can identify and explain reasons for these differences. The analysis in
Section 2.5 helps to determine which components of the functions have the most
influence on the found inconsistencies. In this section, we give a brief indication of
how this can be used for further research dealing with the evaluation of timetables.

Often, the design of evaluation functions is restricted for different reasons, such as
unavailable data, imperfect knowledge about passenger behavior, or computational
complexity. The observations from the inconsistencies and the cluster analysis allow
implications on how to deal with these restrictions and which design element to focus
on during the design or choice of an evaluation function.

On the one hand, the analysis can help to identify which simplifications of an evalu-
ation function are justifiable. That means, it is possible to determine which simpli-
fications have only a minor effect on the result of the evaluation. A simplification is
justified if the desired evaluation function and its simplified version are rather consis-
tent with each other, visible by not being separated into different clusters or by low
values of inconsistency. For example, when designing an evaluation function based
on absolute travel time without being aware of the precise parameters of the passen-
ger preferences, approximate parameters will not drastically change the evaluation
according to our case studies. This holds for both distribution models we tested,
obvious from the low inconsistencies between evaluation functions 1 and 3, as well as
between evaluation functions 2 and 4. Since, in the case of absolute travel time, the
parameter settings for the passenger preferences affect only the connection choice,
the validity of this simplification is expected and the analysis confirms that. This
implies for the case of absolute travel time as the quality measurement that the neg-
ative impact of non-reflected modeling of passenger preferences can be disregarded
as the resulting error is rather negligible.

On the other hand, this research helps to identify possibilities for improving a cur-
rently used evaluation function most effectively. Knowing that the evaluation func-
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tion in use does not fully depict reality, it can be improved in various ways. The
main categories of improvement are the quality measurement including which char-
acteristics are considered, the modeling of passenger preferences and behavior, as
well as the connection choice model. Since modifying an evaluation function often
involves elaborate data acquisition or expensive remodeling, it is desirable to estimate
the effects of possible modifications beforehand. For example, assume that a public
transport operator applies the adapted journey time on a logit distribution for the
evaluation of their services. To model passenger preferences of user groups, they use
estimated parameters. In this case, it is highly recommended to identify the correct
parameters for modeling the preferences and behavior of their customers properly.
Using wrong parameters can lead to very different evaluation results as this research
identified a high inconsistency between evaluation functions 10 and 12.

As mentioned, simplifying evaluation functions can be useful or necessary for several
reasons. However, it is only reasonable if the evaluation results are consistent. It is
therefore of utter importance to estimate the impact of a simplification on the evalu-
ation. While this is important for any evaluation application, it is especially relevant
when designing timetables. Using a wrong evaluation function as an objective in an
optimization approach might not only give a wrong indication of what is a good or
a bad timetable but can even misdirect the search for good solutions.

2.7 Conclusion

In this chapter, we structured evaluation functions for public transport timetables
that are commonly used in the literature and identified three components in which
the functions differ from each other. Based on this, we designed a set of evaluation
functions representing a wide range of commonly used evaluation functions used in
mathematical models, evaluation applications, and choice models.

Furthermore, we introduced and applied a novel method to quantify the inconsistency
between evaluation functions. This is, unlike existing comparisons, an empirical
approach based on the evaluation values of multiple timetables. Therefore, this
definition is generally applicable for comparing evaluation functions and is not limited
to the set of evaluation functions presented in this chapter.

With this method, we provided an analysis of the inconsistency of the designed eval-
uation functions. This analysis was conducted on three sets of timetables for an arti-
ficial grid network and the real-world network of Netherlands Railways. The findings
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are qualitatively similar for both infrastructures even though the networks and the
timetables considered are structurally different. This suggests that a generalization
of the results is possible.

In our experiments, we found that there are high inconsistencies between different
evaluation functions although they are all designed to measure the same - the qual-
ity of timetables from the passengers’ perspective. In all case studies, it appeared
most crucial whether a travel time-based or a utility-based evaluation is used, which
raises the question of why utility-based evaluation functions are commonly accepted
for choice models but hardly used for evaluation. Furthermore, we observed that
also within the group of travel time-based evaluation functions high inconsistencies
can appear. It seemed most important which quality measurement is used but also
different parameter settings and passenger distributions can significantly impact the
inconsistency between evaluation functions. These inconsistencies can be used to
validate simplifications of evaluation functions or to identify aspects of an evaluation
function that need to be incorporated for a valid evaluation.

This research supports the impression that even within a set of evaluation functions
which are all meant to evaluate the quality of timetables for passengers, the choice
of the evaluation function can have a significant impact on the assessed quality of
timetables, and thus also on which timetable is considered optimal. This observa-
tion is particularly crucial for Operations Research models in public transport as
optimizing on the wrong objective function could make the world worse rather than
better.
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Appendix

2.A Notation

Greek letters

α Scaling parameter for passenger preferences
β Scaling parameter for logit model
γ Scaling parameter for departure time tolerance
δ Filter coefficient for ATT and PJT
ε Filter parameter for ATT, PJT and NTR
ϕ Normalized value of a service w.r.t. an evaluation function

Latin capitals

ADT Adaption time
AJT Adapted journey time
ATT Absolute travel time

C Set of connections
DEP Departure time
ETU Evaluated total utility

F Set of evaluation functions
GL Case study on grid infrastructure
GS Case study on grid infrastructure
I Index for case studies

IVT In-vehicle time
NS Case study on infrastructure of Netherlands Railways

NTR Number of transfers
OD Set of OD pairs
PJT Perceived journey time
S Set of public transport services
T Analysis period

TWT Transfer wait time
WKT Walk time
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Latin lower case letters

c Index for connection
f Index for evaluation function
i Inconsistency
k Number of clusters

mc Distribution model on multiple connections
o Passenger load
od Index for OD pair
p Probability for connection choice
ps Parameter setting
s Index for public transport service
sc Distribution model on shortest connection
t Index for time slice
v Value of a service w.r.t. an evaluation function

2.B Definition of adaption time

The adaption time (ADT) is the time a passenger has to deviate from their preferred
departure time slice t to take connection c. We use the adaption time to model the
departure time preferences of passengers. Each time slice t corresponds to a one hour
interval [ t, t ) of preferred departure time. Let t̂ ∈ t be a time point in the time slice
t = [ t, t ) and DEP(c) the departure time of connection c. Then, the adaption time
is defined as

ADTt(c) ∶= ADT[ t, t )
(c) ∶= min

t̂∈[ t, t )
∣t̂ −DEP(c)∣.

The adaption time could similarly be defined for arrival times, however, for the sake
of simplicity we restrict ourselves to an adaption time at departures only. To model
stronger departure time preferences we split each time slice t in γ ∈ N time windows tj
of equal length, with

t =
γ

⊍
j=1

tj .

Then, we assume that ot
od/γ passengers want to depart in each of the γ time windows

and the adaption time generalizes to the average adaption time to the γ time windows,
i.e.,

ADTt(c) = 1
γ

γ

∑
j=1

ADTtj(c).
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2.C Aggregation of characteristics of connections

For the evaluation of timetables, we aggregate the characteristics of connections. As
a first step, we aggregate the characteristics over all time slices t ∈ T and connections
c ∈ Ctod to obtain characteristic values for each OD pair. Let pt(c) be the probability
that connection c is chosen by passengers with preferred departure time slice t ∈ T ,
i.e.,

∑
c∈Ct

od

pt(c) = 1 ∀t ∈ T

and
pt(c) ≥ 0 ∀t ∈ T, c ∈ Ctod.

How we derive meaningful values for this probability is outlined in Section 2.3.2.
Let Xt(c) ∈ {ATT(c),PJT(c),AJTt(c)} be a travel time-based characteristic of con-
nection c ∈ Ctod with a value that possibly depends on the preferred departure time
slice t. Then the average value of that characteristic over all time slices t ∈ T and
connections c ∈ Ctod for the OD pair od is derived by

Xod ∶=
∑t∈T (otod∑c∈Ct

od
pt(c) ⋅Xt(c))

∑t∈T o
t
od

. (2.10)

To compute the characteristic value for OD pairs, this value is weighted with the
probability pt(c) that a connection c is chosen, given the preferred departure time
slice t.

Furthermore, we define the evaluated total utility for passengers as

ETUod ∶=
∑t∈T (otod∑c∈Ct

od
ETUtod(c))

∑t∈T o
t
od

. (2.11)

This characteristic is not weighted with the passenger distribution pt(c) since the
evaluated total utility of each connection ETUtod(c) is derived from the logit model
which we use as the passenger connection choice model. However, note that the
assumed passenger distribution model determines the set Ctod of reasonably good
alternatives. How the distribution model influences the set of alternatives is addressed
in Section 2.3.2.
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We define the characteristics of the public transport service X to be the weighted
average of the characteristics for OD pairs, computed by

X ∶=
∑od∈OD ood ⋅Xod

∑od∈OD ood
,

for Xod ∈ {ATTod,PJTod,AJTod,ETUod}. These aggregated quality measurements
are used for evaluation of the public transport services.

2.D Derivation of a connection choice set

In all case studies, multiple services are considered, each of them consisting of a
line plan and a timetable. The evaluation functions assume a set Ctod of reasonable
connections for each OD pair od with preferred departure time slice t to be given.
In this section, we describe how we derive such sets from a given public transport
service. To ensure better comparability of the evaluation, we derive the same choice
sets for all evaluation functions within each case study.

In Section 2.3.2 we remark that two different connection choice sets are assumed,
depending on the applied passenger distribution model. In the case of a distribution
on multiple connections with the logit model, we assume that a set Cod of reasonably
good connections for OD pair od is given. When all passengers are assigned to
the shortest connections, we assume that the set Ctod of all connections with lowest
adapted journey time for passengers of OD pair od that want to depart in time slice
t is given.

2.D.1 Choice set for logit model

To obtain a set with all reasonably good connections for an OD pair, we consider
all connections with low absolute travel time, low perceived journey time, and a low
number of transfers. The perceived journey time of the connections is compared
using the fixed parameters

(αWKT, αTWT, αNTR) = (1.5, 1.5, 7.5).

These values are the arithmetic mean of the values used for α in the two parameter
settings ps1 and ps2. In addition, we use parameters δPJT, δATT, εPJT, εATT and
εNTR to decide whether a connection is good enough to be considered. Then, the
choice set Cod contains
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• all connections c which have at most an absolute travel time ATT(c) with

ATT(c) < δATT ⋅ATT(c′) + εATT

where c′ is the connection with the lowest possible absolute travel time for OD
pair od,

• all connections c which have at most a perceived journey time PJT(c) with

PJT(c) < δPJT ⋅PJT(c′) + εPJT

where c′ is the connection with the lowest possible perceived journey time for
OD pair od and

• all connections c which have at most NTR(c) transfers with

NTR(c) < NTR(c′) + εNTR

where c′ is the connection with the lowest possible number of transfers for OD
pair od.

For the derivation of choice sets for the analysis we use the values

δPJT ∶= 1.5, δATT ∶= 1.5, εPJT ∶= 10, εATT ∶= 10 and εNTR ∶= 1.

All dominated connections are removed from the choice sets. A connection c ∈ Cod
is dominated by another connection c′ ∈ Cod if

• connection c′ starts simultaneously or later and arrives simultaneously or earlier
than connection c, and

• connection c′ has at most as many transfers as c, and

• the perceived journey time of connection c′ is at most as high as the perceived
journey time of connection c and

• at least one of the three conditions is a strict inequality

Since the search is independent of the time slice t, the choice set Cod contains all
reasonably good connections for the OD pair during the whole analysis period T . As
mentioned before, the logit model assigns a share of passengers significantly different
from 0 only to those connections with low adaption time.
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2.D.2 Choice set for shortest connections

For the assumption that all passengers use the shortest connections only, one choice
set for each departure time slice t is required. We define these to be the subset of
the choice set Cod with reasonably good connections, containing only the connections
with minimal adapted journey time, i.e.,

Ctod ∶= {c ∈ Cod ∶ AJTt(c) ≤ AJTt(c′) ∀c′ ∈ Cod}.

2.E Results of case studies

We provide the normalized evaluation values, the medal counts, heat maps, and
clusterings of all three case studies NS, GS, and GL in this section.

Explanation for the clusterings depicted in Tables 2.7, 2.10 and 2.13: The clusterings
were found with the mixed-integer program described in Appendix 2.F. In the first
column of each table is stated how many clusters are used. An asterisk indicates
that the clustering is not proven to be optimal. The remaining columns contain the
clusterings. The clusterings are separated by horizontal lines and in each row, one
cluster is represented by the ids of the evaluation functions contained in the cluster.

2.E.1 NS case study
ATT PJT AJT ETU

ps1 ps2 ps1 ps2 ps1 ps2 ps1 ps2
sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NS12 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,34 0,57 0,20 0,51
NS13 0,43 0,35 0,44 0,35 0,35 0,23 0,14 0,10 0,34 0,22 0,49 0,57 1,00 1,00 1,00 1,00
NS14 0,43 0,31 0,43 0,29 0,35 0,22 0,19 0,13 0,29 0,20 0,02 0,31 0,58 0,48 0,56 0,34
NS15 0,34 0,27 0,35 0,26 0,26 0,17 0,09 0,00 0,23 0,15 0,02 0,17 0,60 0,52 0,60 0,49
NS16 0,35 0,28 0,38 0,24 0,28 0,16 0,10 0,01 0,25 0,14 0,03 0,15 0,35 0,58 0,24 0,66
NS17 0,12 0,08 0,11 0,11 0,13 0,11 0,15 0,23 0,11 0,11 0,00 0,18 0,00 0,27 0,00 0,29
NS18 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,07 0,00 0,00 0,07 0,00 0,12 0,00 0,10 0,00

Table 2.6: Normalized evaluation values ϕ in NS case study
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Figure 2.6: Heat map showing inconsistencies in the normalized value iϕ(f1, f2) in
NS case study

ATT PJT AJT ETU
ps1 ps2 ps1 ps2 ps1 ps2 ps1 ps2

sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16

3
1 2 3 4 5 9 12

6 7 8 10 11
13 14 15 16

4

1 2 3 4 5 9 12
6 7 8 10 11

13 15
14 16

5

1 2 3 4 5 9 12
6 7 8 10

11
13 15

14 16

Table 2.7: Optimal clustering of the set of evaluation functions F into k clusters in
the NS case study
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2.E.2 GS case study
ATT PJT AJT ETU

ps1 ps2 ps1 ps2 ps1 ps2 ps1 ps2
sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

GS1 0,67 0,64 0,64 0,58 0,53 0,52 0,50 0,48 0,45 0,48 0,24 0,29 0,70 0,73 0,68 0,68
GS2 0,61 0,64 0,58 0,60 0,50 0,52 0,46 0,49 0,43 0,49 0,29 0,33 0,84 0,84 0,83 0,80
GS3 0,62 0,64 0,59 0,61 0,51 0,52 0,47 0,50 0,45 0,49 0,36 0,36 0,88 0,87 0,87 0,83
GS4 0,93 0,95 0,89 0,88 0,96 1,00 0,95 0,98 0,81 0,91 0,44 0,61 0,79 0,82 0,78 0,79
GS5 0,93 0,88 0,89 0,81 0,96 0,95 0,97 0,96 0,79 0,87 0,36 0,57 0,61 0,65 0,60 0,61
GS6 0,71 0,84 0,69 0,88 0,62 0,72 0,54 0,61 0,57 0,66 0,43 0,45 1,00 0,96 0,97 0,91
GS7 0,66 0,73 0,63 0,76 0,55 0,62 0,48 0,54 0,50 0,58 0,42 0,43 0,88 0,91 0,86 0,87
GS8 0,48 0,52 0,46 0,50 0,38 0,43 0,33 0,37 0,35 0,40 0,38 0,38 0,92 0,95 0,89 0,89
GS9 0,50 0,52 0,48 0,51 0,39 0,41 0,32 0,35 0,36 0,39 0,30 0,44 0,88 0,92 0,85 0,86
GS10 0,91 0,87 0,87 0,80 0,68 0,67 0,56 0,55 0,57 0,62 0,31 0,34 0,84 0,87 0,86 0,86
GS11 0,91 0,87 0,87 0,80 0,68 0,67 0,56 0,55 0,57 0,62 0,31 0,34 0,84 0,87 0,86 0,86
GS12 0,32 0,53 0,30 0,47 0,48 0,62 0,52 0,66 0,81 0,57 0,71 0,34 0,83 0,79 0,77 0,78
GS13 0,80 0,85 0,81 0,87 0,64 0,70 0,51 0,57 0,57 0,66 0,43 0,54 0,98 0,98 0,98 0,97
GS14 0,65 0,71 0,63 0,71 0,49 0,54 0,39 0,45 0,44 0,50 0,39 0,42 1,00 1,00 0,99 0,96
GS15 0,00 0,02 0,00 0,02 0,00 0,03 0,00 0,04 0,00 0,04 0,10 0,29 0,54 0,55 0,53 0,54
GS16 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,34 0,00 0,00 0,00 0,00
GS17 0,48 0,47 0,46 0,45 0,39 0,39 0,39 0,40 0,36 0,37 0,42 0,67 0,93 0,98 0,92 0,93
GS18 0,70 0,67 0,67 0,62 0,55 0,55 0,51 0,49 0,48 0,51 0,45 0,40 0,79 0,79 0,80 0,77
GS19 1,00 0,96 0,95 0,89 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,92 0,97 0,94 0,96
GS20 0,66 0,63 0,63 0,59 0,53 0,52 0,50 0,48 0,56 0,54 0,65 0,56 0,82 0,83 0,83 0,81
GS21 0,97 0,94 0,93 0,88 0,71 0,72 0,58 0,58 0,77 0,74 0,69 0,64 0,97 1,00 1,00 1,00
GS22 0,38 0,51 0,36 0,47 0,51 0,61 0,55 0,65 0,61 0,59 0,71 0,51 0,82 0,81 0,81 0,82
GS23 0,98 1,00 1,00 1,00 0,77 0,82 0,64 0,67 0,82 0,83 0,78 0,76 0,94 0,97 0,97 0,98
GS24 0,94 0,91 0,90 0,84 0,70 0,69 0,58 0,57 0,67 0,67 0,56 0,52 0,91 0,95 0,93 0,94
GS25 0,01 0,06 0,01 0,03 0,02 0,09 0,02 0,05 0,04 0,10 0,10 0,00 0,19 0,13 0,13 0,13
GS26 0,48 0,48 0,46 0,45 0,43 0,45 0,41 0,43 0,43 0,43 0,50 0,52 0,87 0,90 0,87 0,88
GS27 0,59 0,56 0,57 0,51 0,48 0,47 0,45 0,44 0,46 0,46 0,44 0,38 0,78 0,82 0,78 0,79
GS28 0,56 0,52 0,53 0,48 0,47 0,45 0,44 0,42 0,45 0,45 0,47 0,28 0,15 0,17 0,12 0,12

Table 2.8: Normalized evaluation values ϕ in GS case study

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

GS16 10 5 1
GS15 5 5 2 4
GS25 1 2 13
GS28 4 1 2 4 1 2 1 1
GS9 2 4 1 3 1 1 1 1 2
GS8 2 2 2 2 1 1 2 3 1
GS1 2 4 1 3 1 1 1 1 2
GS27 1 1 5 2 4 1 1 1
GS26 2 2 4 2 1 1 3 1
GS2 2 1 3 4 2 3 1
GS17 4 3 1 2 1 1 1 1 1 1
GS12 2 2 2 1 2 1 1 2 1 1 1
GS3 3 2 4 1 3 1 1 1
GS22 2 2 1 1 1 1 1 1 2 1 1 1 1
GS18 2 1 1 2 2 1 3 3 1
GS20 1 1 5 1 1 2 3 1 1
GS14 1 1 1 1 1 1 4 2 1 2 1
GS7 2 4 1 4 5
GS10 2 1 1 1 1 1 1 2 1 5
GS11 2 1 1 1 1 1 1 2 1 5
GS5 4 1 1 2 3 3 2
GS6 1 2 5 1 3 1 2 1
GS4 1 1 1 1 1 2 1 1 4 3
GS13 1 1 6 2 1 1 4
GS24 1 2 2 4 4 1 2
GS21 1 1 5 4 2 1 2
GS23 2 6 5 3
GS19 1 2 1 3 9

Table 2.9: ’Medal count’ from GS case study showing the number of times a public
transport service is ranked on the nth rank. Zeros are omitted for better visibility.
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Figure 2.7: Heat map showing inconsistencies in the normalized value iϕ(f1, f2) GS
case study

ATT PJT AJT ETU
ps1 ps2 ps1 ps2 ps1 ps2 ps1 ps2

sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16

3
1 2 3 4

5 6 7 8 9 10 11 12
13 14 15 16

4

1 2 3 4
5 6 7 8 9 10

11 12
13 14 15 16

5∗

1 2 3 4
5 6 7 8 9 10

11
12

13 14 15 16

Table 2.10: Optimal clustering of the set of evaluation functions F into k clusters
in the GS case study. The asterisk indicates that the clustering is not proven to be
optimal.
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2.E.3 GL case study
ATT PJT AJT ETU

ps1 ps2 ps1 ps2 ps1 ps2 ps1 ps2
sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

GL1 0,38 0,35 0,38 0,34 0,44 0,40 0,49 0,45 0,41 0,41 0,34 0,21 0,44 0,46 0,39 0,39
GL2 0,40 0,37 0,40 0,37 0,46 0,42 0,50 0,46 0,43 0,43 0,34 0,22 0,46 0,47 0,40 0,40
GL3 0,63 0,61 0,63 0,61 0,67 0,64 0,63 0,60 0,64 0,65 0,50 0,29 0,69 0,69 0,72 0,72
GL4 0,39 0,37 0,39 0,37 0,43 0,41 0,45 0,42 0,44 0,42 0,62 0,21 0,52 0,53 0,51 0,51
GL5 0,34 0,33 0,34 0,33 0,39 0,37 0,40 0,38 0,41 0,38 0,68 0,18 0,50 0,51 0,51 0,51
GL6 0,51 0,47 0,51 0,47 0,54 0,50 0,63 0,60 0,54 0,51 0,73 0,34 0,64 0,65 0,60 0,60
GL7 0,38 0,35 0,37 0,34 0,44 0,40 0,50 0,47 0,42 0,41 0,45 0,23 0,55 0,56 0,50 0,50
GL8 0,64 0,63 0,65 0,62 0,69 0,66 0,69 0,66 0,65 0,67 0,49 0,40 0,84 0,85 0,88 0,88
GL9 0,50 0,47 0,50 0,47 0,61 0,58 0,71 0,68 0,58 0,58 0,46 0,36 0,48 0,49 0,42 0,42
GL10 0,47 0,44 0,47 0,44 0,53 0,49 0,61 0,57 0,51 0,50 0,45 0,30 0,45 0,46 0,39 0,39
GL11 0,41 0,38 0,41 0,38 0,47 0,44 0,55 0,51 0,46 0,45 0,49 0,26 0,64 0,65 0,60 0,61
GL12 0,41 0,38 0,40 0,37 0,46 0,43 0,52 0,49 0,45 0,44 0,51 0,25 0,62 0,63 0,60 0,60
GL13 0,40 0,37 0,40 0,37 0,45 0,42 0,53 0,50 0,45 0,43 0,54 0,26 0,64 0,65 0,60 0,60
GL14 0,44 0,41 0,44 0,41 0,49 0,45 0,55 0,52 0,47 0,46 0,55 0,27 0,60 0,61 0,59 0,59
GL15 0,45 0,44 0,46 0,45 0,53 0,50 0,54 0,51 0,53 0,51 0,63 0,19 0,37 0,38 0,35 0,35
GL16 0,54 0,52 0,54 0,52 0,58 0,55 0,63 0,60 0,56 0,54 0,56 0,32 0,79 0,79 0,79 0,80
GL17 0,50 0,48 0,50 0,48 0,54 0,51 0,59 0,55 0,52 0,51 0,51 0,29 0,77 0,78 0,79 0,79
GL18 0,82 0,80 0,81 0,80 0,86 0,84 0,88 0,86 0,83 0,85 0,78 0,67 0,93 0,93 0,94 0,94
GL19 0,81 0,80 0,81 0,80 0,87 0,86 0,94 0,92 0,83 0,86 0,71 0,71 0,83 0,83 0,82 0,82
GL20 0,98 0,98 0,98 0,97 0,98 0,98 0,98 0,96 0,94 0,97 0,79 0,78 0,94 0,94 0,95 0,95
GL21 0,26 0,24 0,26 0,24 0,29 0,27 0,32 0,29 0,28 0,28 0,29 0,30 0,76 0,75 0,76 0,76
GL22 0,22 0,21 0,22 0,21 0,24 0,23 0,26 0,25 0,23 0,24 0,21 0,21 0,66 0,65 0,67 0,67
GL23 0,11 0,10 0,11 0,10 0,14 0,12 0,16 0,14 0,12 0,13 0,08 0,09 0,37 0,37 0,36 0,36
GL24 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
GL25 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
GL26 0,74 0,77 0,74 0,77 0,78 0,80 0,81 0,85 0,76 0,78 0,80 0,84 0,98 0,98 0,94 0,94
GL27 0,66 0,68 0,66 0,69 0,70 0,71 0,72 0,75 0,74 0,70 0,90 0,87 0,97 0,97 0,97 0,97

Table 2.11: Normalized evaluation values ϕ in GL case study

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

GL24 16
GL23 14 2
GL1 4 1 4 6 1
GL22 11 1 4
GL5 1 1 2 2 1
GL7 4 4 4 2 2
GL21 11 1 4
GL2 5 3 3 4 1
GL4 1 3 4 5 2 1
GL13 2 5 1 3 4 1
GL15 2 2 1 2 4 1 3 1
GL12 4 7 4 1
GL10 4 1 4 4 2 1
GL11 1 9 4 2
GL14 4 9 2 1
GL9 4 1 4 4 1 2
GL6 2 3 1 6 2 1 1
GL17 1 1 4 4 2 4
GL3 1 1 4 2 8
GL16 1 7 4 4
GL8 1 2 9 4
GL19 5 1 4 6
GL27 1 2 4
GL26 1 2 2 2
GL18 1 5 6 4
GL20 4 2 1
GL25 16

Table 2.12: ’Medal count’ from GL case study showing the number of times a public
transport service is ranked on the nth rank. Zeros are omitted for better visibility.
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Figure 2.8: Heat map showing inconsistencies in the normalized value iϕ(f1, f2) in
GL case study

ATT PJT AJT ETU
ps1 ps2 ps1 ps2 ps1 ps2 ps1 ps2

sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16

3
1 2 3 4 5 6 7 8 9 10 11

12
13 14 15 16

4

1 2 3 4 5 6 7 8 9 10
11

12
13 14 15 16

5

1 2 3 4
5 6 7 8 9 10

11
12

13 14 15 16

Table 2.13: Optimal clustering of the set of evaluation functions F into k clusters in
the GL case study
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2.F Mixed-integer program for clustering problem

Let ϕfs be the normalized evaluation values of a public transport service s ∈ S with
respect to evaluation function f ∈ F . Then, an optimal clustering of the set of
evaluation functions F into k clusters can be found by solving the program

min ∑
f∈F

d(f)

s.t.
k

∑
j=1

bj,f = 1 ∀f ∈ F

d(f) =
k

∑
j=1

d(mj , f) ⋅ bj,f ∀f ∈ F

d(mj , f) =
1
∣S∣
∑
s∈S

∣ϕfs −mj,s∣ ∀f ∈ F, ∀j = 1, . . . , k

mj,s =
1

∑f∈F bj,f
∑
f∈F

ϕfs ⋅ bj,f ∀s ∈ S, ∀j = 1, . . . , k

mj,s ∈ R ∀s ∈ S, ∀j = 1, . . . , k
bj,f ∈ {0,1} ∀f ∈ F, ∀j = 1, . . . , k

d(mj , f) ∈ R ∀f ∈ F, ∀j = 1, . . . , k
d(f) ∈ R ∀f ∈ F

The binary variable bj,f links the evaluation functions f to the clusters j and the
first constraint ensures that each function is assigned to exactly one cluster. The
second constraint assigns the distance of each evaluation function f to its cluster
center mj to the variable d(f). The distance between the functions f and the cluster
centers mj are computed in the third constraint using the distance function d(m,f)
as defined in Equation (2.9). With the fourth constraint, the cluster centers are
computed as the arithmetic mean of all evaluation functions that are assigned to the
cluster. The objective is to minimize the total distance of all evaluation functions
to their respective cluster center. We solve a linearized version of this clustering
problem.
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3.1 Introduction

Public transport is important to our society for various reasons, such as increased
mobility for the general public or lower air pollution compared to individual trans-
port. Especially the potential of public transport to reduce emissions is recently much
discussed in the context of climate change. To be considered an alternative to indi-
vidual transport, public transport has to be as attractive as possible to passengers.
For decades both researchers and practitioners have been working on the improve-
ment of public transport from different perspectives using various approaches. Most
of them follow the same pattern and design public transport sequentially. First,
long-term planning decisions are taken, such as stop location planning and, in the
case of railways, infrastructure design. Afterward, the line routes are designed and
the corresponding frequencies of lines are fixed. On the tactical level, a timetable is
determined, based on the results of the previous steps. Finally, vehicles and crews
are scheduled.

Finding a good timetable is an integral step for providing high-quality public trans-
port services to passengers. Next to the driving times of vehicles, the timetable
determines the transfer times and thereby the travel times of passengers. Since
transfer and travel times have a significant effect on the chosen routes of passengers
and also their satisfaction with public transport, timetabling is a relevant problem
with high practical impact. Moreover, from an algorithmic perspective timetabling
is an interesting task since finding a feasible periodic timetable is NP-complete. For
this reason, research often focuses on efficient solution strategies. In recent years,
many publications deal with the question of how passenger travel time can be used
as an objective to guide the search for timetables of high quality.

When designing public transport services, a good compromise must be made between
service quality and the costs of operating a public transport service. Since costs are
mainly determined by the line plan as well as the vehicle and crew schedule, many
optimization approaches for timetabling only aim at providing the best quality to
passengers. Even though the focus is on the quality for passengers, strong assump-
tions on passenger demand are made. Among them, two assumptions are commonly
found: First, all passengers travel on their shortest available route. Second, a pre-
determined passenger assignment to routes is sufficient to estimate passenger loads
in the public transport network. In this context, a passenger route defines when
and on which lines passengers travel. As summarized in Table 3.1, the impact of
each of these two assumptions has been studied individually. Improvements could be



3.1. Introduction 61

Predetermined route choice Integrated route choice
Nachtigall and Opitz (2008) Gattermann et al. (2016)

Single route Pätzold and Schöbel (2016)1 Borndörfer et al. (2017)
Liebchen (2018) Löbel et al. (2019)

Parbo et al. (2014)
Distribution Sels et al. (2015) this chapter

Robenek et al. (2016)

Table 3.1: Selection of timetabling publications, categorized by (1) whether a pre-
determined route choice is assumed or a route choice model is integrated and (2)
whether it is assumed that passengers use a single route only or distribute on mul-
tiple routes. The mentioned publications are discussed together with other related
literature in Section 3.2.

achieved by considering a passenger distribution on multiple routes and by integrat-
ing a shortest-route search into optimization, respectively.

Motivated by these improvements, we relax both assumptions at the same time. We
study the problem of finding a travel-time minimal timetable under the assumption
that passengers’ route choice can be modeled using a discrete choice model. To our
best knowledge, this is the first time that a choice model is used to derive a passenger
distribution within a timetable optimization model.

Depending on the quality of all available routes, discrete choice models estimate the
probability that a route is chosen by passengers. This route choice corresponds to
a passenger distribution in the network. We use the logit model, a commonly used
passenger route choice model in transport applications, to estimate passenger dis-
tributions on available routes and incorporate it in an optimization framework for
timetabling. Due to the non-linear structure of the logit model, the mathematical
program for this problem requires reformulation to be solved exactly. We present
two ways to integrate a passenger distribution on multiple routes into a timetabling
model as a linear formulation. Our first model uses a novel linear distribution model.
This distribution model is designed to have the same characteristics as the logit

1Publications with predetermined route choice mostly assume a passenger weight to be given
without explicitly mentioning which distribution was used to obtain the weights. The authors know
from conference presentations and personal conversations that almost always a shortest path routing
is used. If a passenger distribution is derived from a choice model or historic data, this is usually
reported. Therefore, we assume that publications with a predetermined route choice applied an
assignment to a single route unless explicitly stated otherwise. This matches with reports of other
authors, see for example Siebert and Goerigk (2013), Schmidt and Schöbel (2015b) or P. Schiewe
and Schöbel (2020).
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model. Due to its linear formulation, it can easily be incorporated into an optimi-
zation model. The second model relies on a simulation of the logit distribution of
passengers. By considering multiple scenarios, the distribution of passengers accord-
ing to a logit model can be approximated within an optimization model that is linear
in all variables.

We aim at maximizing the quality of timetables for passengers. Researchers and
practitioners developed a variety of ways to evaluate timetables from the passen-
gers’ perspective. Due to their design, not all of these evaluations are suitable as
an objective function in an optimization program. Chapter 2 shows in an empirical
comparison that different evaluation methods do not necessarily yield a consistent
evaluation of timetables. To best reflect the quality of the found solutions, we eval-
uate all timetables in our experiments with multiple evaluation functions. As an
objective function, the first model uses the absolute travel time to minimize the time
spent in the public transport system, which matches common practice in timetabling
literature. In the second model, simulated travel times are minimized to incorporate
passengers’ preferences that are not captured by absolute travel times only. These
preferences can include any kind of non-modeled factors of influence, from differently
perceived transfer times through to a popular ice cream shop at a certain transfer
station. We discuss the theoretical properties of the chosen objective functions of the
two models and analyze their influence on the resulting timetable in the experiments.
This discussion suggests that the absolute travel time, although commonly used in
literature, might not be suitable for evaluating timetables when considering multiple
alternative routes for passengers.

We compare our models for timetabling with integrated passenger distribution with
four timetabling approaches motivated from the literature. Two of these approaches
assume that a passenger assignment to routes is fixed before optimizing the timetable,
using either a single route for all passengers traveling between the same stations or a
distribution on multiple routes. Another approach finds optimal timetables based on
the assumption that passengers use the shortest available routes. A fourth approach
solves the problem of timetabling with integrated passenger distribution heuristically
by iterating between assigning passengers to routes according to the logit model and
finding optimal timetables. The experiments show that the two proposed models
are capable of finding better solutions than the benchmark approaches. The found
timetables performed better concerning some evaluation functions while being of
comparable quality concerning other evaluation functions when compared to the
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timetables found by existing approaches. These improvements come at the expense
of increased complexity of the models. From this, we conclude that the integration
of a passenger distribution model has the potential to find better timetables for
passengers, but more efficient solution strategies have to be developed.

We want to highlight two contributions of this chapter: First, we present a novel time-
tabling model with an integrated choice model to derive a passenger distribution on
multiple routes. We provide and discuss alternative representations of the passenger
distribution and develop two mixed-integer linear timetabling programs. Second, we
show on multiple artificial instances and a partial real-world network the advantages
and disadvantages of the novel approaches when compared to state-of-the-art meth-
ods. In particular, our experiments provide insight into (1) how considering multiple
routes for passengers instead of a single route, and (2) how integrating route choice
instead of a predetermined route assignment affects solution quality.

The remainder of this chapter is structured as follows. We summarize the literature
on passenger distribution models, on optimization approaches for timetabling, and
on the evaluation of timetables in Section 3.2. In Section 3.3, the basic models
relevant for this chapter are introduced and the problem is defined. In Section 3.4, we
develop and discuss two mixed-integer linear timetabling programs with an integrated
passenger distribution model. Section 3.5 describes the experimental setup, such as
considered instances, benchmark methods, and used evaluation functions. We report
and discuss our results of the experiments in Section 3.6 and conclude in Section 3.7.

3.2 Related literature

3.2.1 Passenger Route choice

State-of-the-art discrete choice models provide appropriate solutions for describ-
ing passengers’ behavior concerning mode and route choices (de Dios Ortúzar and
Willumsen, 2011). A choice model estimates which alternative is chosen by an indi-
vidual given the utilities of all alternatives. Ben-Akiva and Lerman (1985) give in
their book a comprehensive overview of the theory of choice models. In aggregate
form, the chosen routes of individual passengers correspond to a distribution of all
passengers in the public transport network. For estimating passenger distributions in
public transport applications, the logit model is most commonly applied. To adjust
to specific requirements, the logit model is continually developed further. For exam-
ple, Espinosa-Aranda et al. (2018) propose a constrained nested logit model to model
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passenger distributions on routes in public transport. Since recently, choice models
in general and the logit model in specific are applied in optimization approaches for
public transport applications. Canca et al. (2019) use it to estimate a passenger dis-
tribution and mode choice in the context of transit network planning. They solve the
resulting non-linear program with a neighborhood search-based matheuristic. Due
to the non-linear structure, exact solution approaches rely mostly on a linearization
of the logit model. De-Los-Santos et al. (2017) developed a linear approximation by
using that one alternative with fixed utility is available. An overview of common
linearizations of the logit model is given by Haase and Müller (2014).

One interpretation of choice theory is that each alternative is perceived differently by
people. This is usually modeled by adding an error term to the deterministic utility
of alternatives. The error terms are used as an unknown part of the utility in many
choice models. They model different sources of uncertainty and imperfect knowledge
of analysts, such as unobserved route attributes, unobserved passenger preferences,
or measurement errors (Ben-Akiva and Lerman, 1985). The distribution of the error
terms determines the choice model. For example, independent and identical Gumbel
distributed error terms yield a logit model. By drawing random terms from a specific
distribution, the corresponding choice model can be simulated (Train, 2009). Pacheco
et al. (2016) described such a simulation framework to compute optimal pricing
strategies for different parking options while considering passenger behavior.

3.2.2 Timetabling

Timetabling approaches for public transport applications are usually classified into
periodic and aperiodic cases. As we aim at finding a periodic timetable, we focus
on the periodic timetabling literature. Most formulations are based on the periodic
event scheduling problem (PESP) as introduced by Serafini and Ukovich (1989) or
the cyclic periodicity formulation (CPF), which is a further development of the PESP
model by Nachtigall (1994). While the PESP has one variable for each event modeling
points in time, the CPF uses one variable for each activity expressing a time duration.

Serafini and Ukovich (1989) showed that the problem of finding a periodic timetable
is NP-complete. Many publications focus on finding efficient ways to solve periodic
timetabling. Schrijver and Steenbeek (1994) developed a constraint propagation al-
gorithm which later on served as a basis for one of the first successful implementations
of a timetable found with methods of Operations Research (Kroon et al., 2009). A
powerful heuristic to solve the PESP model is the modulo network simplex algorithm
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developed by Nachtigall and Opitz (2008). The algorithm is inspired by the simplex
algorithm for solving linear programs where a feasible solution is improved in each
iteration by exchanging a basis and a non-basis variable. Pätzold and Schöbel (2016)
proposed a promising matching-based heuristic that could find timetables in short
computation times. Their algorithm was designed for a reduced PESP model with
fixed drive and dwell times for vehicles. Liebchen (2018) described how to exploit
the specific structure of a PESP instance to derive effective preprocessing techniques
that reduce the complexity of the timetabling problem. An overview of models and
solution methods for railway timetabling is given in Borndörfer et al. (2018).

Initially introduced as a feasibility program, the PESP model was quickly extended
by objective functions to guide the optimization. Recent publications often aim at
designing timetables with minimal passenger travel time or with the lowest energy
consumption during operation. We refer to Scheepmaker et al. (2017) for a summary
of energy-efficient timetabling approaches and focus on passenger travel time. How-
ever, to model the objective of passenger travel time, two restrictive assumptions on
passenger behavior are usually made. These assumptions have been shown to distort
the search for an optimal solution.

First, passengers are usually assigned to routes in the transport network before the
timetable optimization. With this passenger assignment to routes, the arcs in the
network are assigned weights to consider passenger routes during optimization in a
heuristic way. Many publications have challenged this assumption and shown that
the routes passengers use depend on the timetable (Schmidt, 2014) and, therefore,
cannot be reliably determined beforehand. To take passengers’ reactions on the de-
signed public transport into consideration, Nachtigall (1998) and Siebert and Goerigk
(2013) experimented with iterative approaches. They alternately assigned passengers
to shortest routes and optimized the timetable given the updated passenger routes.
Schmidt and Schöbel (2015b) integrated a shortest-route search for passengers into
the timetabling optimization model and further improved the quality of timetables
found. They used that the exact route of passengers does not need to be known in
the aperiodic case since start and end events contain sufficient information for travel
time computation. With this trick, the resulting timetabling model with integrated
passenger assignment to shortest routes could be solved efficiently. Borndörfer et
al. (2017) developed a general timetable optimization model that allows the imple-
mentation of different passenger routing models. They discussed theoretical bounds
for four passenger routing models: a lower-bound routing model where passenger
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routes are found before knowing the timetable; a shortest path routing model where
passengers use the shortest path depending on the timetable; a capacitated multi-
path routing model where passengers distribute on several paths to avoid violation
of capacity constraints; and a capacitated unsplittable path routing model, where all
passengers between the same origin and destination travel on the same path while
respecting capacity constraints. Their results include the finding that, for different
objectives, the travel time on a timetable optimized with predetermined passenger
routes can be arbitrarily higher than the travel time on a timetable optimized with
integrated passenger routing. Next to theoretical gaps, Borndörfer et al. (2017) also
compared the lower-bound routing model with the shortest path routing model in
experiments and found significantly improved transfer waiting times for passengers
by integration of the passenger routing model. A different solution approach to peri-
odic timetabling with integrated shortest-route search was described in Gattermann
et al. (2016). They used time slices to model departure time preferences and de-
fined a translation of the integrated model to a satisfiability problem. P. Schiewe
and Schöbel (2020) provide a heuristic approach for the timetabling problem with
an integrated shortest-route search that considers only a small share of the OD pairs
for timetable-dependent routes. Depending on whether the remaining OD pairs are
assigned to fixed routes or not, upper or lower bounds for the exact solution can be
found. Together with a preprocessing procedure that reduces the problem size by
eliminating unnecessary routing variables, they are able to find improved solutions
for close-to-real-world instances. Recently, Löbel et al. (2019) proposed an adjust-
ment of the modulo simplex algorithm to incorporate a shortest-route search during
optimization. Assuming that passengers always take the next available train in a
high-frequency network, Polinder et al. (2019) and Polinder et al. (2020) integrated
a route selection of passengers in a PESP model.

Second, for the design of a majority of timetable objective functions, it is assumed
that passengers only travel on the shortest route. Van der Hurk et al. (2014) con-
cluded from their study based on smart card travel data that this is one of the
common misassumptions on passenger behavior. Many publications challenged this
assumption and proposed enhanced models to develop better timetables for passen-
gers. As input to their timetabling model, Sels et al. (2015) described a passenger
assignment to routes that are at most 20% longer than the potentially shortest route.
Robenek et al. (2016) used estimates for utilities of available connections as defined
for choice models together with time-dependent demand structures to estimate the
distribution of passengers. A similar approach was used by Parbo et al. (2014) for
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deriving passenger distributions, who updated the passenger distribution after each
timetable computation. As mentioned in the literature review on passenger choice
models in Section 3.2.1, first choice models were integrated into optimization ap-
proaches of other public transport applications. To the best of our knowledge, other
choice models for passenger route choice than a shortest-route search were not inte-
grated into an optimization framework for timetabling, which we do in this chapter.

3.2.3 Timetable evaluation

As discussed in Section 3.2.2, the majority of publications in Operations Research
use the absolute travel time of passengers on predetermined routes as objective. This
evaluation function is suitable for optimization because of its simple structure. In
other research areas, timetables are usually evaluated differently. For evaluation
purposes in Transport Engineering, the perceived travel time is often used. That is
a weighted travel time equivalent that incorporates more factors of influence, such
as penalties for transfers, fares, or adaption time (de Dios Ortúzar and Willumsen,
2011). In contrast to that, commonly applied choice models use an evaluated utility
to measure the quality of a timetable for passengers. An evaluated utility is usually
a non-linear function of a weighted travel time equivalent, such as the perceived
travel time. Recently, evaluated utilities are often proposed as a replacement for
established evaluation functions. For example, de Jong et al. (2007) summarized the
literature on ’logsums’, an evaluated utility, and showcased the advantages of this
evaluation in a case study on high-speed trains in the Netherlands. Indeed, Chapter 2
showed that timetable evaluation functions do not yield consistent evaluation results,
although they are all designed to evaluate the quality of timetables for passengers.
This suggests that timetables should be evaluated from different perspectives.

3.3 Problem definition

In this section, we define the problem of timetabling with an integrated passenger
distribution on multiple routes. To this end, we give a basic formulation for both
problems: timetabling assuming that a passenger assignment to routes is given, and
route choice modeling assuming that a timetable is known.

All formulations are based on an event activity network N = (E ,A) with a set of
events E and a set of activities A. In this context, an event i ∈ E denotes an arrival
or a departure of a vehicle at a station, and an activity ij ∈ A represents a drive or a
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wait activity of a vehicle between two events i ∈ E and j ∈ E . Activities can be used
to model more than vehicle actions, for example, transfer activities of passengers and
headway or synchronization constraints between vehicles (Liebchen and Möhring,
2007).

3.3.1 Passenger distribution

Discrete choice models can be used to describe passengers’ behavior concerning route
choice when a timetable is known. We use the logit model to estimate the distribution
of passengers on their routes. The passenger routes in the public transport network
are represented by paths in the event activity network. A path p = (i1, . . . , imp) is a
sequence of events i in the event activity network such that two consecutive events
are connected by a drive, wait, or transfer activity. We denote the perceived travel
time of path p by tp, which is a weighted linear combination of the influencing factors
such as travel time and the number of transfers. The perceived travel time is often
interpreted as a negative utility of the path p and assumed to be given in the context
of choice modeling.

Let a set P of alternative paths with perceived travel times tp for all paths p ∈ P

be given. Then, the logit model can be interpreted as a probability function wlmp

that assigns a probability to alternative p, based on the utility of all considered
alternatives;

wlmp ((tq)q∈P ) =
eβtp

∑q∈P e
βtq

, (3.1)

where (tq)q∈P is a vector containing the utilities of all paths in the set P . With the
scalar β ∈ R, the logit model can be adjusted to suit the specific instance.

3.3.2 Timetabling

In the literature, an instance I = (N , l, u,OD) for a timetabling problem usually
consists of an event activity network N with lower and upper bounds l and u on
the activity durations and a demand matrix OD that indicates how many passengers
wish to travel from each origin to destination. It remains to find arrival and departure
times for each line at each station. We focus on the cyclic periodicity formulation for
periodic timetabling problems, as described in Nachtigall (1994). This integer linear
formulation is based on an event activity network with constraints ensuring that the
duration δij ∈ Z+ of each activity ij ∈ A is between a given lower lij ∈ Z+ and upper
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bound uij ∈ Z+, i.e.,
lij ≤ δij ≤ uij ∀ij ∈ A. (3.2)

We assume that the timetable has an accuracy of one time unit and the duration
between events is integer-valued. To ensure that the durations can be transformed
into a feasible timetable that assigns a point in time to each event, cycle constraints
need to be added to the model (Nachtigall, 1994). It is sufficient to include cycle
constraints for each cycle c in an integral cycle basis C of the event activity net-
work (Liebchen and Peeters, 2009). We add

Γcδ = T ⋅ µc ∀c ∈ C (3.3)

to the constraints, using an integer cycle variable µc ∈ Z. The vector Γc indicates
all forward or backward edges in cycle c, and T denotes the length of the period.
The objective of most timetabling formulations is to minimize the total travel time
of passengers. Mostly, this is achieved with the help of passenger weights xij on each
activity ij and by minimizing

∑
ij∈A

xij ⋅ δij . (3.4)

Note that the passenger weights xij are predetermined by assigning passengers to
routes before optimization. The cyclic periodicity formulation for timetabling with
predetermined passenger routes uses Constraints (3.2) and (3.3) and is given by

min ∑
ij∈A

xij ⋅ δij

s.t. δij ≥ lij ∀ij ∈ A

δij ≤ uij ∀ij ∈ A

Γcδ = T ⋅ µc ∀c ∈ C

δij ∈ Z+ ∀i ∈ E

µc ∈ Z+ ∀c ∈ C

3.3.3 Integration of passenger distribution and timetabling

Section 3.3.1 defines the logit model to estimate passengers’ route choice for a given
timetable, and Section 3.3.2 provides a standard model to optimize a timetable for a
predetermined passenger route choice. Since the result of one model is the input for
the other and vice versa, we aim at developing a model integrating both aspects.
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We assume that for each OD pair k a finite choice set Pk of nk possible paths is given.
Each path p ∈ Pk is a sequence of events in the event activity network that could
be taken by the passengers of OD pair k. Since these paths are defined in the event
activity network, two paths for one OD pair can be different although they might use
the same stations and tracks. In fact, such two paths do not need to have a single
event in common. The passenger weight xij on each activity ij is not assumed to
be predetermined as in the timetabling program introduced in Section 3.3.2, but we
derive it from the distribution on the paths. To this end, we compute the respective
length

tp = ∑
ij∈p

δij ∀p ∈ Pk, ∀k ∈ OD (3.5)

of each path for all OD pairs as the sum of durations of the activities. Note that the
definition of tp can easily be extended by additional external influencing factors such
as a fare for taking path p or a penalty for each transfer included in path p. Since the
path choice sets for OD pairs are assumed to be given, fares or transfer penalties can
be determined in a preprocessing step for each path and are constant in the model
formulation. As these constants added to tp do not affect the structure of the model,
they are omitted in the problem formulation for ease of exposition. Given the path
lengths tp, we can use the logit distribution wlmp to compute a share of each OD pair
using the path p. Multiplied by the number of passengers ok of OD pair k, this yields
the number of passengers on each activity ij using path p, which we denote by

xpij = w
lm
p ((tq)q∈Pk

) ⋅ ok ∀ij ∈ p, ∀p ∈ Pk, ∀k ∈ OD. (3.6)

This is an expected value and not necessarily integral. By aggregating these numbers
over all paths p for each OD pair, we obtain the number of passengers on each activity

xij = ∑
k∈OD

∑
p∈Pk

xpij ∀ij ∈ A. (3.7)

As in the timetabling formulation from Section 3.3.2, this number is used in the
objective function to find a travel time minimal timetable. We formulate a general
optimization problem for timetabling assuming that a passenger distribution can be
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modeled with a logit model:

min ∑
ij∈A

xij ⋅ δij

s.t. δij ≥ lij ∀ij ∈ A

δij ≤ uij ∀ij ∈ A

Γcδ = T ⋅ µc ∀c ∈ C

tp = ∑ij∈p δij ∀p ∈ Pk, ∀k ∈ OD

xpij = wlmp ((tq)q∈Pk
) ⋅ ok ∀ij ∈ p, ∀p ∈ Pk, ∀k ∈ OD

xij = ∑k∈OD∑p∈Pk
xpij ∀ij ∈ A

δij ∈ Z+ ∀i ∈ E

µc ∈ Z+ ∀c ∈ C

xij ∈ R+ ∀ij ∈ A

xpij ∈ [0, ok] ∀ij ∈ A, ∀p ∈ Pk, ∀k ∈ OD

tp ∈ Z+ ∀p ∈ Pk, ∀k ∈ OD

Note that the variables δ and t can be relaxed to be continuous since the lower l
and upper bounds u are integer and C is an integral cycle basis. No matter which
domain is chosen, this formulation cannot be solved efficiently due to the passenger
distribution function wlmp . Furthermore, the objective is non-linear in the variables
since the passenger loads x are modeled to be dependent on the durations δ.

3.4 Models

Already Parbo et al. (2014) argued that the problem from Section 3.3.3 is “extremely
difficult to solve mathematically, since the timetable optimization is a non-linear
non-convex mixed-integer problem, with passenger flows defined by the route choice
model, where the route choice model is a non-linear non-continuous mapping of the
timetable.” In this section, we describe two different representations of the route
choice model. Using these, we introduce two linear formulations for the problem
of finding travel-time minimal routes under the assumption that passengers’ routes
choice can be modeled using a logit model.

3.4.1 Model 1 - Timetabling with linear distribution model

The model from Section 3.3.3 is not tractable because of the integration of the non-
linear formulation of the logit model to derive a passenger distribution. In a first
model, we use a novel linear passenger distribution model that is developed inspired
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by characteristics of the logit model. Furthermore, the quadratic objective is lin-
earized. We address these two details in the following and provide a mixed-integer
linear program for timetabling with an integrated passenger distribution model.

Linear distribution model

Using the non-linear analytic expression of the logit distribution from Equation (3.1)
as a distribution model in the program of Section 3.3.3 yields an intractable opti-
mization program. The literature provides multiple linearizations of the logit model
for applications in Operation Research. To our best knowledge, these linearizations
can be classified into two cases. Either, just the utility of a single alternative is vari-
able while the utilities of all remaining alternatives are fixed. Or, the utilities of all
alternatives for customers are fixed and the decision is whether to offer alternatives
or not. Since in our case all alternative paths are always available and their utility
depends on the timetable, these linearizations are not appropriate.

Therefore, we develop a linear distribution model to approximate the logit model by
requiring appropriate characteristics for the linear functions. Our model allows all
utilities to be flexible in their domain, i.e., tp ∈ [mk,mk] ∀p ∈ Pk, and satisfies the
probability characteristics. For each OD pair k ∈ OD, we require the following five
characteristics.

Distribution characteristics

wp((tq)q∈Pk
) ∈ [0,1] and ∑

p∈Pk

wp((tq)q∈Pk
) = 1 (3.8)

Monotonicity Let ∣Pk ∣ > 1, let ε > 0 and let ep be the unit vector with a 1 at the
position of path p. Then

wp((tq)q∈Pk
+ ε ⋅ ep) < wp((tq)q∈Pk

) (3.9)

Uniform distribution on equivalent alternatives

wp((tq)q∈Pk
) =

1
∣Pk ∣

, (3.10)

if all paths have the same length, that is, tp = tq ∀q ∈ Pk.
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Independence of order Let πp∶Pk → Pk be any permutation on a set of paths Pk
that keeps path p constant, i.e., πp(p) = p. Then

wp((tq)q∈Pk
) = wp((tπp(q))q∈Pk

) (3.11)

Logit characteristic: absolute utility differences determine probability

wp((tq + t̂)q∈Pk
) = wp((tq)q∈Pk

), (3.12)

where t̂ ∈ R+ is a constant.

This yields a family of linear distribution functions.
Lemma 3.1. Let nk = ∣Pk ∣ be the number of alternative paths and let mk and mk be
the minimal and maximal possible length of any considered path in the event activity
network for OD pair k, respectively. Then all linear distribution functions fulfilling
the five characteristics (3.8) to (3.12) can be characterized according to the three
following cases:

I nk = 1:
If there is just one path p for OD pair k given, then Pk = {p} and

wp((tp)) = 1. (3.13)

II nk ≠ 1 and mk =mk:
If mk =mk, all paths have the same fixed length, i.e., tp = tq ∀p, q ∈ Pk. Then,

wp((tq)q∈Pk
) = wp((tp, . . . , tp)) =

1
nk
. (3.14)

III nk ≠ 1 and mk ≠mk:
In the general case all linear functions with the required characteristics have
the form

wp((tq)q∈Pk
) =

α

nk(mk −mk)

⎛
⎜
⎜
⎝

tp −
1

nk − 1 ∑q∈Pk
q≠p

tq

⎞
⎟
⎟
⎠

+
1
nk

(3.15)

with α ∈ (0,1].
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Figure 3.1: Probabilities of a logit and a linear distribution model that path p is
chosen, given an alternative path q with fixed length tq

A constructive proof for Lemma 3.1 is given in Appendix 3.B. We replace the logit
model by the linear distribution functions (3.13), (3.14), and (3.15) in their respective
cases in the model from Section 3.3.3. This yields a linearly constrained feasible region
of the optimization problem and further ensures that the five characteristics (3.8)
to (3.12) hold.

The linear distribution function is defined in the range [mk,mk] for the length tq

of each path q. The slope of the function in that domain can be adjusted with
the parameter α ∈ (0,1]. For example, for α → 0, we approximate the uniform
distribution, independent of the path lengths. The higher α, the more do passengers
react to differences in path lengths. In experiments, we learned that the linear
distribution function from Lemma 3.1 tends to distribute passengers more evenly on
paths than a logit distribution. Therefore, we use a value of α = 1 to scale the linear
distribution function in all experiments.

Figure 3.1 visualizes the probabilities that path p is chosen according to a logit and
a linear distribution model, given a second path q with fixed length tq. To better
demonstrate the linear distribution model, three cases for the fixed path length tq

are considered. For example, in Figure 3.1a it is assumed that the length of the
alternative path q is as short as possible, i.e., tq = mk. Then, the probability that
path p is chosen is at most 0.5 since it cannot be shorter than path q. The higher the
length of path q, the higher the probability that path p is chosen, see Figures 3.1b
and 3.1c.
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This figure also illustrates how the probability of the logit distribution can be overes-
timated or underestimated by the linear distribution model. Knowing the length tq
of the alternative path q, a better linear approximation of the logit model is possi-
ble. However, since the utilities of all alternatives depend on the timetable, a linear
distribution model can only rely on the bounds mk and mk.

Reformulation of the model

Using the linear distribution functions from Lemma 3.1 instead of the logit distribu-
tion allows us to express the number of passengers on each activity xij as a linear
function of the durations δij . We obtain the quadratic integer program for time-
tabling with Integrated passenger Distribution according to a LINear distribution
model (ID-LIN):

min δ†Aδ + b†δ

s.t. δij ≥ lij ∀ij ∈ A

δij ≤ uij ∀ij ∈ A

Γcδ = T ⋅ µc ∀c ∈ C

δij ∈ Z+ ∀i ∈ A

µc ∈ Z+ ∀c ∈ C

where δ† and b† denote the transpose of the column vectors δ and b, respectively.
The coefficients in the objective function are defined as

Aij,i′j′ ∶= ∑
k∈OD∗

α ⋅ ok
nk(mk −mk)

⎛
⎜
⎜
⎜
⎝

∑
p∈Pk ∶
ij,i′j′∈p

1 − ∑
p∈Pk ∶
ij∈p

∑
q≠p∈Pk ∶
i′j′∈q

1
nk − 1

⎞
⎟
⎟
⎟
⎠

, ∀ij, i′j′ ∈ A (3.16)

and
bij ∶= ∑

k∈OD
∑

p∈Pk ∶ij∈p

ok
nk
, ∀ij ∈ A.

In equation (3.16), OD∗ denotes the set of OD pairs k with nk > 1 and mk ≠ mk.
This means, that only OD pairs with multiple paths contribute to the matrix A,
and thus add to the quadratic part of the objective function. OD pairs with only
one path, or with multiple paths of fixed length, only add to the linear part of the
objective. The derivation of the coefficient matrix A and vector b can be found in
Appendix 3.C.

(ID-LIN) is a minimization program and the coefficient matrix A can be proven
to be negative semi-definite, see Appendix 3.D. That means the objective function
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is concave and standard methods for quadratic programs are not expected to be
efficient. We therefore apply a linearization to the objective function. To this end,
we express the integer variables δij as a sum of binary variables,

δij = lij +
⌊log(uij−lij)⌋
∑
m=0

2mσmij

and linearize the products of binaries σmij ⋅ σm
′

i′j′ . The corresponding linearization of
the optimization program (ID-LIN) as used for the experiments can be found in
Appendix 3.E.

3.4.2 Model 2 - Simulation of logit model

In a second model, we integrate a simulated passenger distribution into the time-
tabling framework. The simulation is based on an alternative way to compute the
logit probabilities. According to Train (2009), it holds that

wp((tq)q∈Pk
) =

eβtp

∑
n
q∈Pk

eβtq
= Prob(tp + εp ≤ min

q∈Pk

(tq + εq)) , (3.17)

where the εp are independent and identically Gumbel distributed. That means the
logit probability that alternative p is chosen equals the probability that the length of
path p, deferred by some random value εp, is shorter than the length of any alternative
path q, deferred by some random value εq. Following similar steps as Pacheco et al.
(2016), we use the representation in Equation (3.17) to simulate the logit model by
drawing random values for ε. That means we consider several scenarios r ∈ R, draw
a random value εpr for each path p in each scenario r, and add these to the path
lengths. This yields a different, randomized path length in each scenario, which we
denote by

tpr = ∑
ij∈p

δij + εpr ∀k ∈ OD, ∀p ∈ Pk, ∀r ∈ R.

Note that similar to the path length computation in Equation (3.5), this modeling
can easily be extended by additional factors like fares or a penalty for each transfer
as well. Then, we choose the shortest path in each scenario for each OD pair and
denote the travel time for OD pair k in scenario r by

tkr = min
p∈Pk

tpr ∀k ∈ OD, ∀r ∈ R. (3.18)



3.4. Models 77

This discrete choice of the shortest path in each scenario r yields a distribution of the
passengers of OD pair k over the available paths in the path choice set Pk. Since we
choose the random terms εpr to be independent and identically Gumbel distributed,
this distribution converges towards a logit distribution for an increasing number of
scenarios, see Equation (3.17).

Using a binary choice variable zpr that is set to one if and only if path p is the
shortest in scenario r, constraint (3.18) can be linearized to

tkr ≤ tpr ∀k ∈ OD, ∀p ∈ Pk, ∀r ∈ R

tkr ≥ tpr − (1 − zpr)Mkr ∀k ∈ OD, ∀p ∈ Pk, ∀r ∈ R

∑
p∈Pk

zpr = 1 ∀k ∈ OD, ∀r ∈ R

where

Mkr = max
p∈Pk

⎛

⎝
∑
ij∈p

uij + εpr
⎞

⎠
−min
p∈Pk

⎛

⎝
∑
ij∈p

lij + εpr
⎞

⎠

is sufficiently large.

Note that if in a scenario two paths are the shortest, this modeling will do a random
assignment of the passenger choice. We obtain the model for timetabling with an
Integrated passenger Distribution by SIMulation of the logit model (ID-SIM):

min ∑
k∈OD

ok
1
∣R∣
∑
r∈R

tkr

s.t. δij ≥ lij ∀ij ∈ A

δij ≤ uij ∀ij ∈ A

Γcδ = T ⋅ µc ∀c ∈ C

tpr = ∑ij∈p δij + εpr ∀k ∈ OD, ∀p ∈ Pk, ∀r ∈ R

∑p∈Pk
zpr = 1 ∀k ∈ OD, ∀r ∈ R

tkr ≤ tpr ∀k ∈ OD, ∀p ∈ Pk, ∀r ∈ R

tkr ≥ tpr − (1 − zpr)Mkr ∀k ∈ OD, ∀p ∈ Pk, ∀r ∈ R

δij ∈ Z+ ∀ij ∈ A

µc ∈ Z ∀c ∈ C

tpr ∈ R+ ∀k ∈ OD, ∀p ∈ Pk, ∀r ∈ R

tkr ∈ R+ ∀k ∈ OD, ∀r ∈ R

zpr ∈ {0,1} ∀k ∈ OD, ∀p ∈ Pk, ∀r ∈ R
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The constraints and the objective function of this formulation are linear in the vari-
ables.

There is a trade-off between the solvability of the MILP model (ID-SIM) and the
accuracy of the simulation. Considering only a few scenarios results in a small model
which, however, yields a random solution because a path could be privileged or
disadvantaged by chance. With an increasing number of scenarios, we expect the
passenger distribution on paths to converge and the solution to stabilize, but the
model size and hence solution time to increase. To choose a setting that balances
solvability and accuracy, we ran preliminary experiments with varying numbers of
scenarios. Based on this, we choose to use a low number of ∣R∣ = 10 scenarios and pick
the best solution of 10 repetitions instead of using a large number of scenarios. In our
experiments, this has been shown to yield a good trade-off between computation time
and a high probability to find a solution of high quality. Another advantage of solving
each instance multiple times with a small number of scenarios over considering large
scenario sets is the independence of repetitions that can easily be parallelized.

3.4.3 Illustration of model differences

In this section, we compare the two models (ID-LIN) and (ID-SIM) concerning their
objective functions. The objective function of (ID-LIN) is the sum of the absolute
travel times of all passengers on their respective paths, which are chosen based on the
linear distribution function introduced in Lemma 3.1. This distribution assumption
implies that not everyone travels on a shortest path, but passengers make use of paths
with slightly longer travel times than the shortest as well. Combining the distribution
of passengers on multiple paths with the objective to minimize absolute travel time
can have undesirable consequences, as can be seen in the following example.
Example 1. Consider a network consisting of two stations A and B and one OD
pair k that wants to travel from A to B. Assume, there are two available paths, p
and q, with respective bounds [10,22] and [11,21]. The example network is illustrated
in Figure 3.2.

A B

tp ∈ [10, 22]

tq ∈ [11, 21]

Figure 3.2: Example network
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(tp, tq) Shortest path Logit distribution Linear distribution
t1 (11,11) 11 11 11
t2 (10,13) 10 11.02 11.13
t3 (10,21) 10 10.90 10.46

Table 3.2: Comparison of travel times of three timetables w.r.t. different distributions

We compare three different timetables t1, t2 and t3. The first timetable offers two
equally good paths, these are t1p = 11 = t1q. The second and third timetable has one
short path and one longer alternative. These are t2p = 10, t2q = 13 and t3p = 10, t3q = 21,
respectively.

We evaluate the three timetables with the travel time on the passengers’ respective
shortest path, the travel time when assuming that passengers distribute according to
a logit distribution, and the travel time when assuming that passengers distribute
according to the linear distribution model from Lemma 3.1. For the logit and linear
distribution models, we use the parameters β = −0.22 and α = 1.0, respectively. The
objective values of one passenger of OD pair k can be found in Table 3.2.

We find, as expected, that the travel time on the shortest path is best in timetables
t2 or t3, regardless of the length of alternative q. Regarding travel time according
to a linear or logit distribution, timetable t2 is worse than timetable t1. This result
is open for discussion as none of the two timetables is obviously better than the
other. However, it is striking that timetable t3 is better than timetable t2 according
to a linear or logit distribution. This result is undesired for evaluation purposes and
might be unexpected at first glance, but it has a simple explanation: The worse the
travel time tq of alternative q, the more probable it is that passengers choose to travel
via path p, which yields a lower total travel time.

The objective of the second model (ID-SIM) is to minimize the weighted sum of
randomized shortest path lengths tkr instead of the absolute travel time as used
in the first model (ID-LIN). In this formulation, a path only enters the objective
function if it is perceived better than any alternative in at least one scenario. Hence,
no considered path in the path choice set can deteriorate, but only improve the
objective value. That means the objective function of the program (ID-SIM) does
not have a bias towards the undesirable effects demonstrated in Example 1.
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(a) 3x3 grid infrastructure

Ut

Gd

Rta
Rtd

Gvc

Gv

Ledn

Hlm Asd

(b) Partial network of Netherlands Railways

Figure 3.3: The methods are compared on instances defined on these two infrastruc-
tures

3.5 Experimental setup

3.5.1 Instances

To test and compare our approaches, we run experiments on a number of instances.
Each instance I consists of an event activity network N with lower and upper
bounds l and u and a demand situation. The event activity network is derived from
information about the public transport network, i.e., stations and tracks, as well as
a line plan. Both models (ID-LIN) and (ID-SIM) assume a choice set of paths Pk
for each OD pair k to be given. The paths are defined in the event activity network
and can be interpreted as a sequence of line trips. Depending on the line plan, there
can be multiple paths on the same geographical route or just a single path although
origin and destination are connected by several geographical routes. Hence, a track
network can indicate but does not determine the number of passenger paths for an
OD pair. How we preprocess the instances and derive a path choice set is described
in Appendix 3.F.

Instances on grid network

We consider 32 instances defined on a 3 × 3 grid network, which is depicted in Fig-
ure 3.3a. On this network, we consider four different demand situations, and for each
of them, several line plans with corresponding event activity networks. The number
of events and activities in the corresponding timetabling instances range from 120
to 208 and 326 to 760, respectively. The instances are partial instances of a bigger
grid network introduced by Friedrich et al. (2017a) and made available in an online
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repository2. The grid infrastructure has several geographically different routes of
comparable length for passengers. Depending on the line plan, this provides good
conditions to find multiple passenger paths in the event activity network. On the
32 instances, there are on average 1.7 paths for each OD pair with a maximum of
8 paths for one OD pair across all instances. On average, 29.9 OD pairs have more
than one path.

Instance on Dutch railway network

To test our approaches on a real-world instance, we consider a part of the Dutch
railway network operated by Netherlands Railways (NS). The partial network in-
cludes the stations Amsterdam Centraal (Asd), Den Haag Centraal (Gvc), Den Haag
HS (Gv), Gouda (Gd), Haarlem (Hlm), Leiden Centraal (Ledn), Rotterdam Alexan-
der (Rta), Rotterdam Centraal (Rtd), and Utrecht Centraal (Ut) in the Randstad,
a metropolitan region in the Netherlands. The track network is depicted in Fig-
ure 3.3b. We consider eight Intercity lines operating between the stations, yielding
128 events and 357 activities for the timetabling model. Based on this, 1 to 7 paths
are available per OD pair, with an average of 2.4 paths. On the Dutch railway net-
work, 40 OD pairs have multiple available paths. Both the number of OD pairs with
multiple paths and the average number of paths per OD pair are higher than in the
grid network although this network contains fewer cycles. This indicates that the
optimization problem for the Dutch instance is larger and thus potentially harder to
solve.

3.5.2 Timetabling approaches

We compare the timetabling models with integrated passenger distribution (ID-LIN)
and (ID-SIM) with three state-of-the-art methods for timetabling: two methods (PS)
and (PD) assume a predetermined passenger assignment to routes, and one method
(IS) has an integrated passenger routing on the shortest paths. Besides the time-
tabling models (ID-SIM) and (ID-LIN) that integrate the passenger distribution, we
also test and compare a heuristic solution approach (ID-ITR) for timetabling with
passenger distribution. These approaches are described in more detail below.

(PS) First, a timetabling model with Predetermined passenger assignment on
a Single path is considered. In this model, the passengers’ routes are
fixed before the optimization step. We assign passengers to the shortest

2https://github.com/FOR2083/PublicTransportNetworks/tree/master/Grid_5x5
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route using the average bounds 1
2(lij + uij) on edges in the event activ-

ity network. This basic version of the timetabling model is the subject
of many publications since the development of the PESP model, see for
example Nachtigall and Opitz (2008) or Liebchen (2018). An integer pro-
gramming formulation is given by Equations (3.2) to (3.4), as described in
Section 3.3.2.

(PD) Second, we consider another model with Predetermined passenger routes.
In contrast to the model (PS), passengers are Distributed on multiple
paths according to a logit model with the parameter β = −0.22 and using
average bounds on edges. In consultation with traffic engineers, the value
of β is chosen similar to values that are typically found when fitting the
logit model on instances with similar travel distances. We are not aware
of a published timetabling approach that explicitly states a predetermined
passenger distribution according to a logit model. Still, this strategy can be
compared to those made in Parbo et al. (2014) or Robenek et al. (2016),
where passenger distributions were derived from utilities of alternative
routes. The underlying integer programming model is all the same as the
one in (PS), only the passenger weights are predetermined differently.

(IS) Third, we consider a timetabling model with Integrated Shortest path
search. The timetable is optimized with the objective of minimizing pas-
senger travel times for passengers that choose the shortest path based on
the timetable. This approach resembles the idea of the integrated shortest
path models described in Siebert and Goerigk (2013), Gattermann et al.
(2016) and Borndörfer et al. (2017), for example. An integer programming
formulation of this model is attached in Appendix 3.G.1.

(ID-ITR) Fourth, we consider a heuristic approach for timetabling with Integrated
passenger Distribution that ITeRates between timetable design and pas-
senger distribution. To compute the passenger distribution based on a
fixed timetable, we use the logit model with the parameter β = −0.22.
The initial passenger loads are determined by using the average bounds
as edge lengths. In all following iterations, the realized edge lengths of
the timetable are used. This yields fixed passenger loads on each edge
in the event activity network in each iteration and a standard timetabling
model assuming a predetermined passenger distribution can be solved with
the given loads. We iterate until the solution value does not change sig-
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nificantly between two iterations or a maximum number of iterations is
reached. Similar iterative approaches for timetabling and passenger route
choice are described in Sels et al. (2011) or Parbo et al. (2014), for example.
The pseudocode for this method can be found in Appendix 3.G.2.

We refer to these benchmark models by (PS), (PD), (IS), and (ID-ITR), respectively.
Table 3.3 indicates whether the route choice is integrated into the methods as well
as which kind of route choice model is assumed.

Predetermined route choice Integrated route choice
Single route (PS) (IS)
Distribution (PD) (ID-ITR), (ID-LIN), (ID-SIM)

Table 3.3: Summary indicating which solution approach (1) assumes a predetermined
route choice or has an integrated route choice and (2) assumes that passengers use a
single route only or distribute on multiple routes

With a comparison of the models (ID-LIN) and (ID-SIM) with the heuristic approach
(ID-ITR) and the three benchmark models (PS), (PD), and (IS), we can identify the
benefits of integrating (1) passenger route search and (2) simultaneous modeling of
a passenger distribution.

3.5.3 Implementation

To reduce the size of the search space, the domain of the variables µc is constrained
in all models with the following inequalities.

⎡
⎢
⎢
⎢
⎢
⎢

1
T
∑
ij∈c+

lij − ∑
ij∈c−

uij

⎤
⎥
⎥
⎥
⎥
⎥

≤ µc ≤

⎢
⎢
⎢
⎢
⎢
⎣

1
T
∑
ij∈c+

uij − ∑
ij∈c−

lij

⎥
⎥
⎥
⎥
⎥
⎦

∀c ∈ C.

Here, c+ and c− denote the set of edges in cycle c in forward and backward direction,
respectively, and lij and uij are the lower and upper bounds of activity ij. These
well-established inequalities were first described in Odijk (1996).

All mixed-integer linear programs are solved with the general-purpose solver Fico
Xpress 8.5 on a laptop with 32GB RAM and an Intel® Core™ i7-6700HQ. A time
limit of one hour is used for the grid instances and no time limit for the Dutch railway
instance. For all experiments, we use a start solution to warm start the optimization.
This start solution consists of an initial timetable for the instance and, if applicable,
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a corresponding passenger routing according to the passenger distribution model of
the solution approach used.

3.5.4 Evaluation of timetables

Different research areas apply different measures to evaluate timetables from the pas-
sengers’ perspective. We could see in Example 1 that different evaluation functions
can yield different results on small networks. This small example suggests two fea-
tures: First, although travel time is commonly used to evaluate timetables, it might
not be suitable when considering a passenger distribution on multiple routes. Sec-
ond, different evaluation measures may consider different timetables to be better,
although the functions are commonly accepted to serve for the evaluation of timeta-
bles. Chapter 2 compared multiple timetable evaluation functions for passengers on
different instances and indeed found that these functions are often not consistent
in their evaluation. We learn that there is no default objective function to be used
when optimizing timetables with an integrated passenger distribution. To avoid mis-
interpretation of the results due to a simplistic or biased evaluation, we evaluate all
resulting timetables with four different evaluation functions. As before, we denote
the total passenger load of OD pair k with ok and the length of path p with tp, as
defined in Equation (3.5). Let Pk be a set of available paths for OD pair k. The used
evaluation functions are

ttsp The total travel time of all passengers on their shortest path:

ttsp = ∑
k∈OD

ok ∑
p∈Pk

wspp ⋅ tp,

where wspp is the probability that passengers choose path p assuming that all
passengers use their shortest paths only.

ttmp The total travel time of all passengers when distributed on multiple paths
according to the logit model:

ttmp = ∑
k∈OD

ok ∑
p∈Pk

wlmp ⋅ tp,

where wlmp is the probability that passengers choose path p assuming that all
passengers distribute on their paths according to a logit distribution.
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utsum The evaluated total utility for all passengers, defined as the weighted sum of
all logit denominators:

utsum = ∑
k∈OD

ok ∑
p∈Pk

eβtp ,

with β = −0.22. Derived from the logit model, this measure indicates utility of
a public transport service for passengers. The utility of a path p is weighted
with the passenger load ok.

utlog The logsums, a utility-based evaluation function, defined as the weighted sum
of the logarithm of all logit denominators:

utlog = ∑
k∈OD

ok ⋅ ln
⎛

⎝
∑
p∈Pk

eβtp
⎞

⎠
,

with β = −0.22. Similar to the evaluated total utility, the logsums are a measure
of utility for passengers. Due to the logarithm in this evaluation function, the
effect of changing travel time tp on the evaluation utlog depends not only on the
passenger load but also on the number of paths of that OD pair. For example,
changing the travel time on one path of an OD pair with many good paths
might affect the value of utlog less than changing the travel time of one path
of an OD pair with just a few and bad paths, even if the passenger load in the
first case is higher than in the second case. That means OD pairs have different
weights relative to each other, as contrasted with the evaluated total utility.

All four functions evaluate the quality of timetables from the passengers’ perspective.
Note that these functions are commonly used for evaluation, but due to their struc-
ture, not all are suitable as objective functions in an optimization program. The first
two evaluation functions are travel time-based and thus to be minimized while the
latter two evaluation functions are utility-based and hence to be maximized. Consid-
ering all four evaluation functions allows a thorough investigation and comparison of
the timetables and, in this way, of the proposed timetabling methods.

For better comparability, we present the relative solution values when compared to
an ideal solution. In an ideal solution, it is assumed that the travel time on each
path for each OD pair is equal to the length of the path using the lower bounds
on all edges. This is also called lower-bound routing of passengers, see Borndörfer
et al. (2017). For most instances, such an ideal solution does not exist, but it is a
common measure to see how close solutions are to perfect conditions. More details
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about ideal solutions and about how they are used in practice can be found in Caimi
et al. (2017).

3.6 Results

In the experiments, we showcase the benefits and drawbacks of the timetabling models
with integrated passenger distribution (ID-LIN) and (ID-SIM) when compared to
existing timetabling approaches.

3.6.1 Experiments on 32 instances on the grid network

We conduct experiments on 32 instances on the grid network as depicted in Fig-
ure 3.3a. On seven instances, all six methods find an ideal solution, and on another
four instances, the model (ID-LIN) could not find an optimal solution or could not
prove optimality in tests with a time limit of ten hours. Therefore, we exclude these
11 instances from the discussion. In Figure 3.4, we present the evaluation values
of the solutions found by the different approaches averaged over the remaining 21
instances on the grid network. This figure shows the average performance of the six
methods on the four considered evaluation functions introduced in Section 3.5.4. All
values are given in percent, relative to the evaluation value of an ideal solution.

The relative evaluation values can be read as follows. For example, a relative value
of 1.77 for ttsp in Figure 3.4a of the model (PS) means that the travel time on the
shortest connection in the solution of (PS) is, on average, 1.77 percent longer than
the travel time on the shortest connection in an ideal solution. Comparing this to
the relative travel time on a shortest connection of the model (IS), 0.57, shows that
(IS) performs, on average, better than (PS) regarding the travel time on the shortest
path. In general, the relative evaluation values show to what extent a solution is
worse than an ideal solution, according to the used evaluation function. We discuss
the results per evaluation function.

Figure 3.4a When evaluating timetables with travel time on the shortest path ttsp,
on average, the methods (IS) and (ID-SIM) provide the best solutions. This is
expected for the method (IS) since its objective is to minimize the total travel
time of passengers on their shortest paths. To simulate a logit distribution in
the model (ID-SIM), in each scenario the shortest path is chosen, as modeled
in Equation (3.18). It seems that in many scenarios the same path is chosen,
which in turn gets assigned high weights in the objective function. The model
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Figure 3.4: The bars show the evaluation values of the six different methods relative
to those of an ideal solution, averaged over 21 instances on the grid network.

(ID-LIN) finds solutions with travel times on the shortest route that are, on
average, higher than those of methods (IS) and (ID-SIM) and only slightly
lower than those of methods (PD) and (ID-ITR). As discussed in Section 3.4.1,
the linear distribution model in (ID-LIN) tends to distribute passengers more
evenly on paths than the logit model. Thus, the weights assigned to the shortest
paths are lower compared to those in the models (IS) and (ID-SIM). This could
explain the worse performance of (ID-LIN) regarding travel time on the shortest
path. The remaining three methods, (PS), (PD), and (ID-ITR) perform worse
according to travel time on the shortest path. Compared to the best found
solutions, their respective travel times are up to three times as far away from
an ideal solution.

Figure 3.4b In the case of evaluating travel time using a logit distribution ttmp, the
method (ID-SIM) performs best, which is presumably due to the simulated logit
distribution of passengers. The model (ID-LIN) performs, on average, worse
than (ID-SIM) and finds solutions that are only as good as those found by (PD)
and (ID-ITR). This indicates that the passenger distribution of the linear
distribution model used in (ID-LIN) is different from the distribution according
to a logit model, which is used for evaluation. Furthermore, we can observe
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that the method (IS) finds better solutions than (PD) and (ID-ITR) averaged
over all 21 instances. This is surprising since the methods (PD) and (ID-ITR)
consider a passenger distribution according to a logit model, whereas (IS) does
not consider any alternatives to the shortest route.

We identify the combination of ttmp as an evaluation function and a passen-
ger distribution on multiple routes as the reason for this observation. In the
model (IS), alternative routes might get assigned high travel times, which im-
plies a low utilization of these routes in a subsequent distribution of passengers
according to the logit model. As shown in Example 1 with the comparison of
timetables t2 and t3, this can result in lower total travel times for passengers
than providing low travel times on all alternative routes. Indeed, with all six
methods, we find solutions on certain instances with negative relative evalu-
ation values for ttmp, implying that the found solutions are ’better’ than an
ideal solution. As in Example 1, this finding appears unexpected at first glance
and is undesired for evaluation. This questions whether the total (or average)
travel time of passengers, while assuming that passengers distribute over mul-
tiple routes in the network, is a valid evaluation function for public transport
timetables.

Figure 3.4c The evaluation with the evaluated total utility utsum shows a different
pattern. The methods (PD), (ID-ITR), (ID-LIN), and (ID-SIM) outperform
the methods (PS) and (IS). The gap to the evaluation value of an ideal so-
lution is more than halved. On average, the method (ID-LIN) finds the best
solutions, almost halving the gap to the ideal solution once more compared
to the model (ID-SIM). This is contrary to the observations made with the
travel time-based evaluation functions ttsp and ttmp where (ID-SIM) performs
better than (ID-LIN), see Figures 3.4a and 3.4b. A similar observation can be
made for the model (IS). While it performs very well on the travel time-based
evaluation functions, (IS) yields solutions that are among the worst according
to the evaluated total utility.

Figure 3.4d We make similar observations with the total logsums utlog as the
evaluation function. Also here, the methods (PD), (ID-ITR), (ID-LIN), and
(ID-SIM) find better solutions than the methods (PS) and (IS). However, when
evaluating the found timetables with the total logsums, the gaps to an ideal
solution are by far larger. Furthermore, the solutions of (IS) are, on average,
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rated better than those of (PS), which is not visible with the other utility-based
evaluation function utsum in Figure 3.4c.

Cross-figure discussion As indicated in Table 3.3, we consider four different cate-
gories of modeling passengers in optimization approaches for timetabling. They
result from a combination of (1) whether a predetermined route choice is as-
sumed or a route choice model is integrated into optimization and (2) whether
passengers are assumed to use a single route only or to distribute on multiple
routes.

With the utility-based evaluation functions, utsum and utlog, our experiments
show that the quality of timetables can be considerably improved by consider-
ing multiple routes instead of a single route for passengers. All four methods
that consider a passenger distribution on multiple routes find solutions with a
significantly lower gap to an ideal solution than the two models that assume
passengers to use a single route only. In comparison, the integration of a pas-
senger route choice model, as opposed to a predetermined route assignment,
did not help to improve the quality of the found timetables according to the
utility-based evaluation functions. Only the solutions of (IS) are, on average,
slightly better than those of (PS), but the others were not in comparison to
(PD).

Regarding the travel time-based evaluation functions, ttsp and ttmp, the meth-
ods with an integrated route choice model find better timetables than the corre-
sponding single or multiple route methods that assume a predetermined route
choice. Especially the models (IS) and (ID-SIM) could find timetables with sig-
nificantly better travel time on the shortest path and the latter also on a logit
distribution. Considering multiple routes for passengers during optimization
instead of only one route yields better solutions for ttmp, but not necessarily
for ttsp since there just the shortest path is considered for evaluation. Moreover,
although the method (PD) finds, on average, better solutions than (PS), (PD)
is outperformed by all other methods regarding travel time-based evaluation
functions. In our experiments, considering multiple routes for passengers is not
sufficient to find timetables with best travel times.

We find that considering a passenger distribution on multiple routes mainly improves
the utilities, and integrating a passenger route choice model mainly improves the
travel times of the found timetables. Furthermore, by integrating a passenger distri-
bution model, it is possible to find solutions with multiple good routes that yield both
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Method CPU time no. instances
(PS) 0.4s 21/21
(IS) 5.6s 21/21

(PD) 0.8s 21/21
(ID-ITR) 0.8s 21/21
(ID-LIN) 1952.9s 17/21 (5.68)
(ID-SIM) 1184.0s 19/21 (1.17)

Table 3.4: Average CPU times and the number of instances that were solved within
one hour. The remaining gap to the best bound after one hour is given in parentheses.

good travel times and high utilities for passengers on the considered instances. The
model (ID-SIM) provided the best solutions regarding the travel time-based evalua-
tion functions and comparable solutions with respect to one utility-based evaluation
function. The model (ID-LIN) could not perform as well as one state-of-the-art
approach according to the travel time-based evaluation functions but provided the
solutions with the best utilities. Thus, by integrating a passenger distribution model,
it is possible to find better timetables than the benchmark methods regarding some
evaluation functions while maintaining the quality regarding some other evaluation
functions.

These improvements by the integration of a passenger distribution model come at
the expense of significantly larger models. Table 3.4 shows the average solution
times of the six different methods on the discussed 21 instances on the grid network.
From the computation times, it is apparent that the two proposed models (ID-LIN)
and (ID-SIM) need by far the most time for solving the instances. It took almost 20
minutes to solve the model (ID-SIM) and more than 30 minutes to solve the model
(ID-LIN), on average. The other methods were solved within a few seconds.

The second column displays the number of instances that were solved within one hour.
The model (ID-LIN) could only find optimal solutions for 17 of the 21 instances and
(ID-SIM) provided optimal solutions for 19 instances. After one hour, the model
(ID-LIN) had, on average, a gap of more than 5% to the best bound, whereas the
simulation-based model was close to an optimal solution with a remaining gap of a
little more than 1%. The other four methods were always able to terminate within
one hour.



3.6. Results 91

Method CPU time
(PS) 1.4s
(IS) 9.8s

(PD) 30.3s
(ID-ITR) 35.7s
(ID-LIN) 14007.6s
(ID-SIM) 9150.2s

Table 3.5: CPU times for solving the Dutch railway instance with the six different
methods.

3.6.2 Experiments on Dutch railway network

We also compare the six different methods on a part of the network of Netherlands
Railways as depicted in Figure 3.3b. Table 3.5 shows that the solution times for the
Dutch railway instance are generally higher compared to the solution times of the
instances on the grid network. Model (ID-LIN) required almost four hours to be
solved to optimality, and model (ID-SIM) took on average two and a half hours for
solving, where three random scenarios could be solved in less than one hour.

In Figure 3.5, the evaluation values of all methods are given relative to those of an
ideal solution. We observe in Figures 3.5a and 3.5b that two models with an inte-
grated passenger route choice model, (IS) and (ID-SIM), perform best. The gap to
an ideal solution is significantly lower compared to the other methods. This is in
line with the observation made in the evaluation by the travel time-based evaluation
functions on the grid instances and demonstrates once more the benefits of inte-
grating a passenger route choice model into timetabling optimization. The model
(ID-LIN) provides a solution with higher travel times, but it has notably shorter
travel times than the remaining methods on the shortest path and comparable travel
times assuming a passenger distribution.

The relative evaluation values of the utility-based evaluation functions in Figures 3.5c
and 3.5d suggest that the method (ID-LIN) performs best, as it was observed on
the grid instances. In contrast to the instances on the grid network, there seems
to be no visible advantage of the methods that consider a passenger distribution on
multiple routes over the methods that assume that passengers use only a single route.
Instead, the method (IS) performs better than the two methods (PD) and (ID-ITR)
with respect to the logsums.
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Figure 3.5: The bars show the evaluation values of the six different methods relative
to those of an ideal solution on a partial network of Netherlands Railways

We find that the solutions found by (IS) and (ID-SIM) dominate the solutions found
by all other methods regarding the travel time-based evaluation functions, while the
consideration of multiple routes brings only a slight advantage to the model (ID-SIM).
According to the utility-based evaluation functions, the solution found by (ID-LIN)
dominates all other solutions. Moreover, the results in Figure 3.5 demonstrate the
importance of a thorough evaluation with multiple evaluation functions. Together
with the results on the grid network, these experiments illustrate that an evaluation
with a single evaluation function is likely to falsify the interpretation.

3.7 Conclusion

In this chapter, we study the problem of finding a travel time minimal timetable
under the assumption that the distribution of passengers on available routes can be
modeled using a discrete choice model. We use the logit model to estimate a passenger
distribution and formulate this problem as a mixed-integer program. Based on this,
we develop two mixed-integer linear programs proposing different ways to model
the interaction of passenger route choice and timetable design. In the first model,
we incorporate a novel multidimensional linear passenger distribution model that
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resembles the logit model. Our second model approximates a logit distribution of
the passengers from an integrated simulation framework.

We compare the two timetabling models with integrated passenger distribution with
three state-of-the-art methods and a heuristic approach that iterates between time-
tabling and passenger routing to find travel time-optimal timetables for passengers.
The experiments are conducted on a set of artificial instances and a part of the net-
work of Netherlands Railways. We provide a thorough comparison of all solutions
with four structurally different evaluation functions.

With the integration of a passenger distribution model into a timetabling framework,
we were able to find better timetables for passengers than the considered state-of-
the-art methods. The gap to an ideal solution for passengers could be significantly
reduced for some evaluation functions while performing similarly according to other
evaluation functions. In general, the experiments give insight into how two model
decisions for passenger distribution on routes affect the solution quality. The first
decision examined is whether to consider multiple routes or a single route for pas-
sengers, and the second is whether route choice is integrated or the assignment of
passengers to routes is predetermined.

It is interesting to observe that the different evaluation functions yield different re-
sults for the considered methods. This supports the impression that a comprehensive
evaluation with multiple functions is useful and necessary to make clear statements
about the quality of methods. In particular, we address observations that a com-
monly used evaluation function for timetables, the total travel time of passengers, in
combination with a passenger distribution model might yield an undesired assessment
of the timetable. Our results and a simple example raise the question of whether this
function is suitable for evaluation or as an objective function when considering a
distribution of passengers on multiple paths.

The integration of a passenger distribution model in both timetabling models comes
at the expense of significantly higher solution times. Future research could deal with
the development of solution approaches to be able to solve large instances.
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Appendix

3.A Notation

Greek letters

α Scaling parameter for linear distribution function
β Scaling parameter for logit model
δij Duration of activity ij ∈ A
εp,r Random term to vary the path length of path p in scenario r

Γ Indicator matrix for forward and backward edges in cycles
µc Auxiliary variable for cycle constraints
σmij Variable for binary representation of δij

γm,m
′

ij,i′j′ Variable for linearization of product σmij ⋅ σm
′

i′j′

Latin upper case letters

A Coefficient matrix of program (ID-LIN)
A Set of activities in the event activity network
C Integral cycle basis in the event activity network
E Set of events in the event activity network
I Timetabling instance

(ID-ITR) Iterative heuristic for timetabling problem with passenger
distribution

(ID-LIN) Timetabling model with integrated linear passenger distribution
model

(ID-SIM) Timetabling model with simulated passenger distribution model
(IS) Timetabling model with integrated shortest path search
Mij Set of indices for binary representation of δij
Mkr Auxiliary number for linearization of choice constraints
N Event activity network

OD Set of OD pairs
Pk Set of alternative paths for OD pair k

(PD) Timetabling method with predetermined passenger distribution
(PS) Timetabling method with predetermined passenger assignment to

one path
R Set of scenarios
T Length of period
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Latin lower case letters

b Coefficient vector of program (ID-LIN)
c Index for cycles in the event activity network

i, j Indices for events in the event activity network
ij Index for activity from events i to event j in the event activity

network
k Index for OD pairs
lij Lower bound on activity ij ∈ A
m Index for binary representation of δij
mk Length of shortest path for OD pair k w.r.t lower bounds
mk Length of longest path for OD pair k w.r.t upper bounds
nk Number of alternative paths for OD pair k
ok Number of passengers of OD pair k
p, q Indices for paths in the event activity network
r Index for scenarios
tp Length of path p
tpr Length of path p in scenario r
tkr Length of shortest path for OD pair k in scenario r
ttmp Evaluation function: travel time assuming a logit distribution of

passengers
ttsp Evaluation function: travel time assuming shortest paths for

passengers
uij Upper bound on activity ij ∈ A

utlog Evaluation function: total logsums
utsum Evaluation function: evaluated total utility

wp Probability that path p is chosen
xij Passenger load on activity ij ∈ A
xpij Passenger load of path p on activity ij ∈ A
zpr Binary variable indicating whether path p is the shortest in

scenario r

3.B Linear distribution function with characteris-
tics of logit model

To prove Lemma 3.1, we consider the three cases

I nk = 1:
It obviously follows by the property ’certain event’ in Equation (3.8) that

wp((tp)) = ∑
p∈Pk

wp((tp)) = 1.
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This does not conflict with any other required characteristic.

II nk ≠ 1 and mk =mk:
If mk =mk, all paths have to have the same fixed length, i.e., tp = tq ∀p, q ∈ Pk.
Then, it follows by the property ’uniform distribution on equivalent alterna-
tives’ in Equation (3.10) that

wp((tq)q∈Pk
) = wp((tp, . . . , tp)) =

1
nk
.

This also does not conflict with any other required characteristic.

III nk ≠ 1 and mk ≠mk:
To show that all linear functions with the five desired characteristics are of the
stated shape, we take a linear function

wp((tq)q∈Pk
) = αp0 + ∑

q∈Pk

αpqtq ∀p ∈ Pk

in its general form and restrict it by adding the desired characteristics to it.

Logit characteristic: absolute utility differences determine probabil-
ity, Equation (3.12)
To obtain a linear distribution function with the characteristics of a logit dis-
tribution, we require that the probabilities do not depend on the values of the
utilities but on their absolute differences only. Thus, we get for each path p

wp((tq + t̂)q∈Pk
) = wp((tq)q∈Pk

) ∀t̂ ∈ R

⇔ αp0 + ∑
q∈Pk

αpq(tq + t̂) = α
p
0 + ∑

q∈Pk

αpqtq ∀t̂ ∈ R

⇔ ∑
q∈Pk

αpq t̂ = 0 ∀t̂ ∈ R

⇔ ∑
q∈Pk

αpq = 0

That means, to obtain a linear distribution function with the logit characteris-
tic, all coefficients of the utilities tp have to sum up to zero.

Uniform distribution on equivalent alternatives, Equation (3.10)
We add the requirement that the distribution function should be a uniform
distribution in case all alternatives have the same utility. We therefore require
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that

wp(t, . . . , t) =
1
nk

∀p ∈ Pk ∀t ∈ R

⇔ αp0 + ∑
q∈Pk

αpqt =
1
nk

∀p ∈ Pk ∀t ∈ R

Plugging in the result that the coefficients sum up to zero, this leaves the second
condition

αp0 =
1
nk

∀p ∈ Pk.

Since this equation has to hold for all paths p ∈ Pk, it follows that

αp0 = α
q
0 ∀p, q ∈ Pk

and we define α0 ∶= α
p
0 for any path p ∈ Pk. This yields that all linear functions

with the characteristics in Equations (3.10) and (3.12) are of the form

wp((tq)q∈Pk
) = ∑

q∈Pk

αpqtq +
1
nk

with
∑
q∈Pk

αpq = 0.

Independence of order, Equation (3.11)
Next, we consider the condition ’independence of order’ of alternatives. As-
sume the probability of path p ∈ Pk is to be determined. Then, its probability
depends on the quality of all alternatives, but it should be independent of which
alternative takes which of these values. We consider any permutation πp that
permutes two paths q1, q2 ≠ p ∈ Pk and keeps all other paths constant. Then,

wp((tq)q∈Pk
) = wp((tπp(q))q∈Pk

)

⇔ ∑
q∈Pk

αpqtq +
1
nk

= ∑
q∈Pk

αpqtπp(q) +
1
nk

⇔ αpq1tq1 + α
p
q2tq2 = α

p
q1tq2 + α

p
q2tq1

⇔ αpq1(tq1 − tq2) = α
p
q2(tq1 − tq2)

⇔ αpq1 = α
p
q2
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The last equivalence holds since we require this for all values of the perceived
travel times tq1 and tq2 of paths q1 and q2. Since we require this to hold for all
permutations πp, in particular for those that permute two arbitrary paths, the
coefficients αpq have to be equal for all q ∈ Pk, i.e.,

αpq1 = α
p
q2 ∀q1, q2 ≠ p ∈ Pk.

This condition is sufficient to obtain the independence of order with any per-
mutation πp. Together with the characteristic

∑
q∈Pk

αpq = 0

from the property ’uniform distribution on equivalent alternatives’ we get

αpp = − ∑
q∈Pk
q≠p

αpq = −(nk − 1)αpq

⇔ αpq =
−αpp

(nk − 1)
.

Note that this is well defined since we discuss here only the cases where nk ≠ 1.
This means, we can express all αpq by the single parameter αpp. Defining αp ∶= αpp
we can plug this into the linear probability function and get

wp((tq)q∈Pk
) = αptp − ∑

q∈Pk
q≠p

αptq

(nk − 1)
+

1
nk

∀p ∈ Pk

= αp

⎛
⎜
⎜
⎝

tp −
1

(nk − 1) ∑q∈Pk
q≠p

tq

⎞
⎟
⎟
⎠

+
1
nk

∀p ∈ Pk

Monotonicity, Equation (3.9)
With the monotonicity of the distribution function follows

wp((tq)q∈Pk
+ ε ⋅ ep) < wp((tq)q∈Pk

)

⇔ αp

⎛
⎜
⎜
⎝

tp + ε −
1

(nk − 1) ∑q∈Pk
q≠p

tq

⎞
⎟
⎟
⎠

+
1
nk

< αp

⎛
⎜
⎜
⎝

tp −
1

(nk − 1) ∑q∈Pk
q≠p

tq

⎞
⎟
⎟
⎠

+
1
nk

⇔ αpε < 0
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⇔ αp < 0

Note that for αp = 0 we obtain the uniform distribution

wp((tq)q∈Pk
) =

1
nk

∀p ∈ Pk

which would not fulfill the required monotonicity.

Note that this only implies that αp < 0 has to be chosen in the general case
III. In particular, case II, where all paths have the same fixed length, does not
contradict the required monotonicity although a uniform distribution is applied.
This is apparent when comparing two inputs ((tq)q∈Pk

and (tq)q∈Pk
+ ε ⋅ ep)).

For at least one of the inputs case III applies and monotonicity holds if αp < 0.

Distribution characteristics, Equation (3.8)
Finally, we add the distribution characteristics

wp((tq)q∈Pk
) ∈ [0,1] and ∑

p∈Pk

wp((tq)q∈Pk
) = 1.

To fulfill the first characteristic, we consider the cases with the highest and
lowest possible probability. The lowest probability for path p is achieved, if
path p is as long as the upper bound mk and all other paths q ≠ p ∈ Pk are as
short as as the lower bound mk(due to monotonicity and the probability of the
certain event). Then, we require

wp((tq)q∈Pk
) ≥ 0 ∀tq ∈ [mk,mk], ∀q ∈ Pk

⇔ αp

⎛
⎜
⎜
⎝

tp −
1

(nk − 1) ∑q∈Pk
q≠p

tq

⎞
⎟
⎟
⎠

+
1
nk

≥ 0 ∀tq ∈ [mk,mk], ∀q ∈ Pk

⇔ αp

⎛
⎜
⎜
⎝

mk −
1

(nk − 1) ∑q∈Pk
q≠p

mk

⎞
⎟
⎟
⎠

+
1
nk

≥ 0

⇔ αp (mk −mk) +
1
nk

≥ 0

⇔ αp ≥
−1

nk (mk −mk)
(3.19)
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Similarly, the highest probability for path p is achieved, if path p is as short as
possible and all other paths q ≠ p ∈ Pk are as long as possible, i.e., tp =mk and
tq =mk ∀q ≠ p ∈ Pk. Then, we require

wp((tq)q∈Pk
) ≤ 1 ∀tq ∈ [mk,mk], ∀q ∈ Pk

⇔ αp

⎛
⎜
⎜
⎝

mk −
1

(nk − 1) ∑q∈Pk
q≠p

mk

⎞
⎟
⎟
⎠

+
1
nk

≤ 1

⇔ αp (mk −mk) +
1
nk

≤ 1

⇔ αp ≥
−(nk − 1)

nk (mk −mk)
(3.20)

Note that both lower bounds (3.19) and (3.20) on αp are negative and well
defined as we consider the case where mk ≠mk. The second lower bound (3.20)
is less strict, equality can only be achieved for nk = 2. This also implies that we
always have wp < 1 by construction of the probability function, unless nk = 2.

In total we obtain
αp ∈ [

−1
nk(mk −mk)

,0)

In this range for αp the function wp can be tuned.

The second distribution characteristic requires that the probability of the cer-
tain event equals one. This is

∑
p∈Pk

wp((tq)q∈Pk
) = 1

⇔ ∑
p∈Pk

⎛
⎜
⎜
⎝

αp

⎛
⎜
⎜
⎝

tp −
1

(nk − 1) ∑q∈Pk
q≠p

tq

⎞
⎟
⎟
⎠

+
1
nk

⎞
⎟
⎟
⎠

= 1

⇔ ∑
p∈Pk

αptp − ∑
p∈Pk

αp

(nk − 1) ∑q∈Pk
q≠p

tq + 1 = 1

⇔ ∑
p∈Pk

tp

⎛
⎜
⎜
⎝

αp −
1

(nk − 1) ∑q∈Pk
q≠p

αq

⎞
⎟
⎟
⎠

= 0
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Here, we factorized the path length tp. Since the sum has to vanish for all
tp ∈ [mk,mk], each of the addends has to vanish, which yields

⇔ αp −
1

(nk − 1) ∑q∈Pk
q≠p

αq = 0 ∀p ∈ Pk

⇔ αp = αq ∀p, q ∈ Pk

That means, for each OD pair k, the parameter αp are equal for all probability
functions wp with p ∈ Pk. We therefore define αk ∶= αp for any p ∈ Pk. This
yields the linear distribution functions

wp((tq)q∈Pk
) = αk

⎛
⎜
⎜
⎝

tp −
1

(nk − 1) ∑q∈Pk
q≠p

tq

⎞
⎟
⎟
⎠

+
1
nk

∀p ∈ Pk

As from now, we use a scaling factor α ∈ (0,1] and write

αk =
α

nk(mk −mk)
∀k ∈ OD.

For nk > 1 and mk ≠ mk, all linear probability functions fulfilling the given
criteria can be written as

wp((tq)q∈Pk
) =

α

nk(mk −mk)

⎛
⎜
⎜
⎝

tp −
1

nk − 1 ∑q∈Pk ∶
q≠p

tq

⎞
⎟
⎟
⎠

+
1
nk

with α ∈ (0,1].

3.C Derivation of A and b

For the derivation of the coefficient matrix A and the coefficient vector b of the
program (ID-LIN), we split the set of OD pairs into three disjoint sets:

OD = OD∗
⊍OD1 ⊍OD=, (3.21)

where OD1 denotes the set of OD pairs k with nk = 1, OD= denotes the set of OD
pairs k with nk > 1 and mk =mk, and OD∗ denotes the set of remaining OD pairs k
with nk > 1 and mk ≠ mk. Then, we plug the Constraints (3.5), (3.6) and (3.7)
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into the objective function (3.4). In Constraint (3.6) we use the respective linear
distribution for the OD sets OD1, OD= and OD∗ as given in Lemma 3.1.

∑
(i,j)∈A

xijδij

(3.7)
= ∑

(i,j)∈A
∑
k∈OD

∑
p∈Pk ∶
ij∈p

xpijδij

(3.21)
= ∑

(i,j)∈A
∑

k∈OD∗
∑
p∈Pk ∶
ij∈p

xpijδij + ∑
(i,j)∈A

∑
k∈OD1

∑
p∈Pk ∶
ij∈p

xpijδij + ∑
(i,j)∈A

∑
k∈OD=

∑
p∈Pk ∶
ij∈p

xpijδij

(3.6)
= ∑

(i,j)∈A
∑

k∈OD∗
∑
p∈Pk ∶
ij∈p

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α

nk(mk −mk)

⎛
⎜
⎜
⎝

tp −
1

nk − 1 ∑q∈Pk ∶
q≠p

tq

⎞
⎟
⎟
⎠

+
1
nk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

okδij

+ ∑
(i,j)∈A

∑
k∈OD1

∑
p∈Pk ∶
ij∈p

okδij

+ ∑
(i,j)∈A

∑
k∈OD=

∑
p∈Pk ∶
ij∈p

ok
nk
δij

= ∑
(i,j)∈A

∑
k∈OD∗

∑
p∈Pk ∶
ij∈p

α

nk(mk −mk)

⎛
⎜
⎜
⎝

tp −
1

nk − 1 ∑q∈Pk ∶
q≠p

tq

⎞
⎟
⎟
⎠

okδij

+ ∑
(i,j)∈A

∑
k∈OD∗

∑
p∈Pk ∶
ij∈p

1
nk
okδij

+ ∑
(i,j)∈A

∑
k∈OD1

∑
p∈Pk ∶
ij∈p

ok
nk
δij

+ ∑
(i,j)∈A

∑
k∈OD=

∑
p∈Pk ∶
ij∈p

ok
nk
δij

= ∑
(i,j)∈A

∑
k∈OD∗

∑
p∈Pk ∶
ij∈p

α

nk(mk −mk)

⎛
⎜
⎜
⎝

tp −
1

nk − 1 ∑q∈Pk ∶
q≠p

tq

⎞
⎟
⎟
⎠

okδij

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶quadr(δij)

+ ∑
(i,j)∈A

∑
k∈OD

∑
p∈Pk ∶
ij∈p

1
nk
okδij

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶lin(δij)
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Here, we can see that the quadratic part quadr(δij) of the objective function only
depends on the OD pairs k ∈ OD∗ that have multiple paths with possibly different
lengths at choice. All OD pairs k ∈ OD1 with just one optional path per period and
all OD pairs k ∈ OD= with multiple paths of the same fixed lengths are uniformly
distributed on their respective path(s) and their total travel time is added to the
objective function. These addends

∑
(i,j)∈A

∑
k∈OD1

∑
p∈Pk ∶
ij∈p

ok
nk
δij

and
∑

(i,j)∈A
∑

k∈OD=

∑
p∈Pk ∶
ij∈p

ok
nk
δij

are hidden in the linear part lin(δij) of the objective function. To derive a closed
form for the coefficients, we will consider the quadratic and the linear part of the
objective function separately.

quadr(δij)

= ∑
ij∈A

∑
k∈OD∗

∑
p∈Pk ∶
ij∈p

α

nk(mk −mk)

⎛
⎜
⎜
⎝

tp −
1

nk − 1 ∑q∈Pk ∶
q≠p

tq

⎞
⎟
⎟
⎠

okδij

(3.5)
= ∑

ij∈A
∑

k∈OD∗

αok
nk(mk −mk)

∑
p∈Pk ∶
ij∈p

⎛
⎜
⎜
⎝

∑
i′j′∈p

δi′j′ −
1

nk − 1 ∑q∈Pk ∶
q≠p

∑
i′j′∈q

δi′j′
⎞
⎟
⎟
⎠

δij

= ∑
ij∈A

∑
k∈OD∗

αok
nk(mk −mk)

∑
p∈Pk ∶
ij∈p

∑
i′j′∈p

δi′j′δij

+ ∑
ij∈A

∑
k∈OD∗

αok
nk(mk −mk)

∑
p∈Pk ∶
ij∈p

⎛
⎜
⎜
⎝

−
1

nk − 1 ∑q∈Pk ∶
q≠p

∑
i′j′∈q

δi′j′δij

⎞
⎟
⎟
⎠

= ∑
ij∈A

∑
k∈OD∗

αok
nk(mk −mk)

∑
i′j′∈A

∑
p∈Pk ∶
ij∈p,
i′j′∈p

δi′j′δij
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− ∑
ij∈A

∑
k∈OD∗

αok
nk(mk −mk)

1
nk − 1 ∑p∈Pk ∶

ij∈p

∑
i′j′∈A

∑
q∈Pk ∶
q≠p,
i′j′∈q

δi′j′δij

= ∑
ij∈A

∑
i′j′∈A

∑
k∈OD∗

αok
nk(mk −mk)

⎛
⎜
⎜
⎜
⎝

∑
p∈Pk ∶
ij,i′j′∈p

1 − 1
nk − 1 ∑p∈Pk ∶

ij∈p

∑
q≠p∈Pk ∶
i′j′∈q

1
⎞
⎟
⎟
⎟
⎠

δi′j′δij

This yields the proposed matrix A as given in Equation (3.16).

Aij,i′j′ = ∑
k∈OD∗

αok
nk(mk −mk)

⎛
⎜
⎜
⎜
⎝

∑
p∈Pk ∶
ij,i′j′∈p

1 − ∑
p∈Pk ∶
ij∈p

∑
q≠p∈Pk ∶
i′j′∈q

1
nk − 1

⎞
⎟
⎟
⎟
⎠

Next, the linear term will be computed.

lin(δij) = ∑
ij∈A

∑
k∈OD

∑
p∈Pk ∶
ij∈p

1
nk
okδij

This yields directly the proposed vector b.

bij = ∑
k∈OD

∑
p∈Pk ∶ij∈p

ok
nk

3.D Proof of negative semi-definiteness of coeffi-
cient matrix A

To prove that the coefficient matrix A is negative definite, it is sufficient to prove
that δ†Aδ ≤ 0 holds for all δ ∈ R∣A∣. Here, δ† denotes the transpose of δ. For this
purpose, we rewrite the term δ†Aδ using the definition of the path length tp.

δ†Aδ

= ∑
ij∈A

∑
i′j′∈A

∑
k∈OD

αok
nk(mk −mk)

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∑
p∈Pk ∶
ij,i′j′∈p

1 − 1
nk − 1 ∑p∈Pk ∶

ij∈p

∑
q∈Pk ∶
q≠p,
i′j′∈q

1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

δi′j′δij
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= ∑
k∈OD

αok
nk(mk −mk)

⎛
⎜
⎜
⎜
⎝

∑
p∈Pk

∑
ij∈A
ij∈p

∑
i′j′∈A
i′j′∈p

δi′j′δij −
1

nk − 1 ∑p∈Pk

∑
q∈Pk ∶
q≠p

∑
ij∈A∶
ij∈p

∑
i′j′∈A
i′j′∈q

δi′j′δij

⎞
⎟
⎟
⎟
⎠

= ∑
k∈OD

αok
nk(mk −mk)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
p∈Pk

∑
ij∈p

δij

´¹¹¹¹¹¹¸¹¹¹¹¹¶
tp

∑
i′j′∈p

δi′j′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
tp

−
1

nk − 1 ∑p∈Pk

∑
q∈Pk ∶
q≠p

∑
ij∈p

δij

´¹¹¹¹¹¹¸¹¹¹¹¹¶
tp

∑
i′j′∈q

δi′j′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
tq

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= ∑
k∈OD

αok
nk(mk −mk)

⎛
⎜
⎜
⎝

∑
p∈Pk

t2p −
1

nk − 1 ∑p∈Pk

∑
q∈Pk ∶
q≠p

tptq

⎞
⎟
⎟
⎠

= ∑
k∈OD

αok
2nk(nk − 1)(mk −mk)

⎛
⎜
⎜
⎝

2 ∑
p∈Pk

(nk − 1)t2p − 2 ∑
p∈Pk

∑
q∈Pk ∶
q≠p

tptq

⎞
⎟
⎟
⎠

= ∑
k∈OD

αok
2nk(nk − 1)(mk −mk)

⎛
⎜
⎜
⎝

∑
p∈Pk

(nk − 1)t2p − ∑
p∈Pk

∑
q∈Pk ∶
q≠p

2tptq + ∑
p∈Pk

(nk − 1)t2p
⎞
⎟
⎟
⎠

(∗)
= ∑
k∈OD

αok
2nk(nk − 1)(mk −mk)

⎛
⎜
⎜
⎝

∑
p∈Pk

(nk − 1)t2p − ∑
p∈Pk

∑
q∈Pk ∶
q≠p

2tptq + ∑
p∈Pk

∑
q∈Pk ∶
q≠p

t2q

⎞
⎟
⎟
⎠

= ∑
k∈OD

αok
2nk(nk − 1)(mk −mk)

∑
p∈Pk

⎛
⎜
⎜
⎝

(nk − 1)t2p − ∑
q∈Pk ∶
q≠p

2tptq + ∑
q∈Pk ∶
q≠p

t2q

⎞
⎟
⎟
⎠

= ∑
k∈OD

αok
2nk(nk − 1)(mk −mk)

∑
p∈Pk

∑
q∈Pk ∶
q≠p

(t2p − 2tptq + t2q)

= ∑
k∈OD

αok
2nk(nk − 1)(mk −mk)

∑
p∈Pk

∑
q∈Pk ∶
q≠p

(tp − tq)
2,

where we used in the starred equation that

∑
p∈Pk

(nk − 1)t2p

=nk ∑
p∈Pk

t2p − ∑
p∈Pk

t2p

= ∑
p∈Pk

∑
q∈Pk

t2q − ∑
p∈Pk

t2p
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= ∑
p∈Pk

∑
q∈Pk ∶
q≠p

t2q.

Since (tp − tq)
2, ok and α are positive, nk is at least 2, and (mk −mk) is negative, it

follows that
δ†Aδ ≤ 0.

In our application, δij represents the duration of each activity ij ∈ A in the event
activity network, so we require them to be positive. However, in general no such
restriction is required and the implication δ†Aδ ≤ 0 holds for all δ ∈ RA. This implies
that the matrix A is negative semi-definite for all practical relevant instances and
the objective function is concave.

3.E Linearized formulation of Model (ID-LIN)

Using the binary representation

δij = lij + ∑
m∈Mij

2mσmij

with Mij ∶= {0, . . . , ⌊log2(uij − lij)⌋} and replacing the product of the binary vari-
ables σmij ⋅ σm

′

i′j′ by γ
m,m′

ij,i′j′ , we obtain a linearized version of the model (ID-LIN)

min ∑
ij∈A

∑
i′j′∈A

Aij,i′j′
⎛

⎝
∑

m′∈Mi′j′

2m
′
lijσ

m′

i′j′ + ∑
m∈Mij

2mli′j′σmij

+ ∑
m∈Mij

∑
m′∈Mi′j′

2m+m′
γm,m

′

ij,i′j′
⎞

⎠
+ ∑
ij∈A

bijδij

s.t. δij ≥ lij ∀ij ∈ A

δij ≤ uij ∀ij ∈ A

Γcδ = µc ⋅ T ∀c ∈ C

γm,m
′

ij,i′j′ ≤ σmij ∀ij, i′j′ ∈ A∶Aij,i′j′ < 0, ∀m ∈Mij , ∀m
′ ∈Mi′j′

γm,m
′

ij,i′j′ ≤ σm
′

i′j′ ∀ij, i′j′ ∈ A∶Aij,i′j′ < 0, ∀m ∈Mij , ∀m
′ ∈Mi′j′

γm,m
′

ij,i′j′ ≥ σmij + σ
m′

i′j′ − 1 ∀ij, i′j′ ∈ A∶Aij,i′j′ > 0, ∀m ∈Mij , ∀m
′ ∈Mi′j′

σmij ∈ {0,1} ∀ij ∈ A, ∀m ∈Mij

γm,m
′

ij,i′j′ ∈ {0,1} ∀ij, i′j′ ∈ A, ∀m ∈Mij , ∀m
′ ∈Mi′j′

µc ∈ Z+ ∀c ∈ C
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For the sake of simplicity we omitted the constant term ∑ij∈A∑i′j′∈AAij,i′j′ lij li′j′ in
the objective function.

To prove that γm,m
′

ij,i′j′ = σ
m
ij ⋅ σ

m′

i′j′ in an optimal solution to the ILP, two cases are
considered

• If Aij,i′j′ < 0, then γm,m
′

ij,i′j′ ≤ min{σmij , σm
′

i′j′}. That means, as soon as σmij = 0 or
σm

′

i′j′ = 0 it follows that γm,m
′

ij,i′j′ = 0. Otherwise γm,m
′

ij,i′j′ = 1 can be chosen, which is
preferable since Aij,i′j′ < 0.

• If Aij,i′j′ > 0, then γm,m
′

ij,i′j′ ≥ max{0, σmij + σm
′

i′j′ − 1}. That means, as soon as
σmij = 1 and σm

′

i′j′ = 1 it follows that γm,m
′

ij,i′j′ = 1. Otherwise γm,m
′

ij,i′j′ = 0 can be
chosen, which is preferable since Aij,i′j′ > 0.

It follows that γm,m
′

ij,i′j′ = σmij ⋅ σ
m′

i′j′ for Aij,i′j′ ≠ 0. Note that for this linearization
only constraints for non-zero coefficients Aij,i′j′ have to be installed. By definition
of Aij,i′j′ , this can only happen if two activities ij and i′j′ are contained in paths for
the same OD-pair.

To decrease the search space in the computations we additionally add the constraints

γm,m
′

ij,i′j′ = γm
′,m

i′j′,ij ∀ij < i′j′ ∈ A∶Aij,i′j′ ≠ 0, ∀m ∈Mij , ∀m
′ ∈Mi′j′

γm,m
′

ij,ij = γm
′,m

ij,ij ∀ij ∈ A∶Aij,ij ≠ 0, ∀m <m′ ∈Mij

γm,mij,ij = σmij ∀ij ∈ A∶Aij,ij ≠ 0, ∀m ∈Mij

3.F Path choice sets

In this section, we describe how we preprocess the instances to derive a path choice
set based on the line plan and the line frequency.

The quality of the path choice sets is of major importance for the quality of the results.
There are two possibilities when designing a choice set. One should either take all
alternatives into account and let ’the choice model decide that the choice probabilities
of unrealistic options are low or zero’ or take ’into account only subsets of the options
which are effectively chosen in the sample’ (or a heuristic approximation of that) (de
Dios Ortúzar and Willumsen, 2011). Since a large path choice set implies a large
number of variables and constraints in both models, the first option of including all
alternatives is impractical in this setting. However, if the choice sets are too small,
they might not contain all routes that are important for passengers, and the timetable
will be constructed neglecting some relevant connections.
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The literature provides multiple path generation algorithms to derive realistic path
choice sets. Although most of them focus on road networks, the concept is often
applicable to public transport networks as well. An overview of different algorithms
is given in Bekhor et al. (2006). The number of alternative paths in such choice
sets turned out to be very large, complicating the solution process of the models.
Since these choice sets often contain many routes that are identical to some extent,
we use a simple heuristic to find small choice sets of independent paths that are of
comparable quality, as described in Sels et al. (2015). For each OD pair, we iteratively
add the shortest path in the event activity network to the path choice set and delete
all visited vertices. This procedure is repeated until origin and destination are not
connected anymore, or the found path is too long or too inconvenient to be a possible
alternative. Furthermore, we set the lengths of all transfer activities to the upper
bounds and apply the same procedure to the event activity network again to find a
choice set of paths with a minimum number of transfers. We take the union of these
two sets and remove dominated paths.

This heuristic has shown to provide a small choice set for each OD pair with a
representative selection of paths. The size of the choice sets is small enough for usage
in an optimization framework. At the same time, all paths are good alternatives for
the passengers and they are independent of each other. Since the paths are generated
in the event activity network, there can be several independent paths for an OD pair
if multiple lines are available. These paths might follow the same geographical route,
which means, they use the same stations and tracks, but they are independent of
each other in the sense that they have no event nor activity in common.
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3.G Reference methods

3.G.1 Integer programming formulation for model (IS)

We implement the following mixed-integer linear program for timetabling with inte-
grated shortest-route search for passengers.

min ∑k∈OD oktk

s.t. δij ≥ lij ∀ij ∈ A

δij ≤ uij ∀ij ∈ A

Γcδ = T ⋅ µc ∀c ∈ C

tp = ∑ij∈p δij ∀k ∈ OD, ∀p ∈ Pk

tk = minp∈Pk
tp ∀k ∈ OD, ∀p ∈ Pk,

δij ∈ Z+ ∀ij ∈ A

µc ∈ Z ∀c ∈ C

tp ∈ R+ ∀k ∈ OD, ∀p ∈ Pk

tk ∈ R+ ∀k ∈ OD

The minimum is linearized with the following set of constraints

tkr ≤ tp ∀k ∈ OD, ∀p ∈ Pk

tkr ≥ tp − (1 − zp)Mk ∀k ∈ OD, ∀p ∈ Pk

∑p∈Pk
zp = 1 ∀k ∈ OD

zp ∈ {0,1} ∀k ∈ OD, ∀p ∈ Pk

where

Mk = max
p∈Pk

∑
ij∈p

uij −min
p∈Pk

∑
ij∈p

lij .
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3.G.2 Pseudocode for method (ID-ITR)

We give the pseudocode of the algorithm used for the iterative method (ID-ITR).

Algorithm 3.1: Pseudocode for method (ID-ITR)
Input: Instance I = (N , l, u,OD), period T
Output: Durations δ, cycle numbers z and passenger distribution x
Initialize: Set edge lengths to average bounds δij ∶= 1

2(lij + uij);
while Termination criterion not reached do

Compute passenger weight on edges with Equations (3.5), (3.6) and (3.7)
and the logit model in Equation (3.1) as distribution function;
Find timetable with given weights with model from Equations (3.2), (3.3)
and (3.4);

Return (δ, z, x);

The termination criterion is reached if one of the following two conditions is met:

1. The improvement in objective value between two iterations is marginal, i.e., if

vi − vi−1

vi
< 0.01,

where vi denotes the objective value of the i-th iteration.

2. The number of iterations exceeds 4.
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4.1 Introduction

In previous years, public transport operators around the globe recorded a continuous
increase in passenger numbers. There is a variety of reasons that might explain
changes in passenger numbers, such as a shift in passenger interests and behavior,
the development of regions, or policy measures. Since the onset of the Covid-19
pandemic in early 2020, however, the number of passengers in many countries has
dropped dramatically to a fraction of its original size. The pandemic is likely to have
long-term effects on travel behavior, as, for example, working from home is more
accepted by many companies. In the case of the Netherlands Railways (NS), the
expectation is that passenger numbers will not reach their pre-pandemic level before
20241, but increase slowly over time.

Before and after the pandemic, railway operators like NS were and will be constantly
faced with changing travel demand. To adapt their service to small fluctuations,
operators can make adjustments on the level of tactical planning. For example, small
adaptions in the timetables and rolling stock schedules can be implemented relatively
spontaneously and with comparatively little effort. However, such adjustments are
not suitable to cope with greater and longer-term changes in demand. Instead, this
issue needs to be approached from a strategic planning perspective and the line plan
needs to be adjusted from time to time.

When designing a public transport line plan, it is important to distinguish between
passenger and traveler demand. With traveler demand we refer to the total number
of people who want to travel. Travelers may choose to use any available mode of
transport, such as train or car. Passenger demand includes only those travelers who
choose to use the public transport service. The decision of travelers for their mode
of transport, and thus the number of passengers, depends to a certain extent on
the quality of the service offered. This poses an interesting yet complex situation for
operators: public transport services have to be designed to provide sufficient capacity
for passenger demand, which in turn depends on the service.

In this chapter, we consider the problem of finding a line plan and simultaneously
estimating the corresponding passenger demand based on a prognosis for traveler
demand. The aim is to estimate both the share of travelers deciding to use public
transport (mode choice) and the passenger distribution in the network (route choice).
The travelers’ choices depend on the quality of the service offered: they value a ser-

1https://nos.nl/artikel/2344006-ns-lijdt-185-miljoen-verlies-door-corona.html, vis-
ited on February 19, 2021.

https://nos.nl/artikel/2344006-ns-lijdt-185-miljoen-verlies-door-corona.html
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vice with fast, direct, and frequent connections. A line plan offering such connections
between two stations will attract more passengers between those stations, while pas-
sengers between stations with slow and infrequent connections will be inclined to
turn to other modes of transport. Considering travelers’ decisions allows an accurate
estimation of passenger demand during optimization, and the resulting line plans are
aligned with the demand they generate.

Although many approaches state that passenger demand and line plans are inter-
dependent, we identify two reasons why demand estimation is mostly not modeled
accurately. First, travelers’ mode choice is in most cases neglected. Second, if a
passenger distribution on routes is considered, usually one of the following two sim-
plifications is applied: either all passengers traveling between two stations are re-
quired to use the same route, or the model can assign passengers to routes in favor
of a system optimum, rather than considering passenger preferences. An imprecise
demand estimate is obstructive to the search for efficient line plans and carries the
risk of insufficient seating capacity. Only a few publications deal with the integration
of passenger choice models in line planning. However, these approaches are usu-
ally not computationally tractable and the quality of solutions found with heuristic
approaches is hard to assess. In Section 4.2 we discuss the related line planning
literature in detail.

In this chapter, we present a mixed-integer linear programming (MILP) formulation
for finding a line plan and corresponding passenger loads from given traveler demand.
The passenger loads depend on the line plan and are estimated with passenger choice
models. By suitable preprocessing of the utilities for the passengers’ mode and route
decisions, the choice models can be linearized and commercial solvers can be used
to find solutions. Approaching the problem from the operator’s perspective, our
objective is profit maximization, where profit is equal to the revenue from serving
passenger demand minus the operating costs. This yields line plans that attract
many passengers, while being efficient with respect to operational costs.

We test and analyze the model in experiments on the Intercity network of the Rand-
stad region that is operated by NS, the largest Dutch railway operator. Additional
constraints and branching strategies are tested to improve the computational perfor-
mance. The model is compared to a basic line planning model with predetermined
passenger loads which highlights the advantages of demand estimation during op-
timization. Furthermore, the integration of passenger decision models enables to
conduct a sensitivity analysis of the service level and operator profit on fluctuations
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in traveler demand. This gives valuable insights for operators into their business
models and the optimal solutions provide concepts for how the line plans should be
adjusted in response to demand changes.

Summarizing, our main contributions are fourfold. First, we present a novel line
planning model that considers both route and mode choice from a customer’s per-
spective. In contrast to existing optimization approaches, passengers are not assigned
to routes according to a system optimum but distribute on the best routes in our
model. Second, we develop a linear formulation for this model which allows the usage
of commercial solvers and we provide means to improve the computational perfor-
mance. Third, we show in experiments that operators should include an estimation
of mode and route choice during optimization to achieve the best possible profit and
passenger shares. Fourth, we show the impact of drastic changes in travel demand
on the modal split and the financial performance of the public transport operator.

The remainder of this chapter is structured as follows. In Section 4.2, related line
planning approaches are summarized. The modeling of line planning and passenger
demand estimation is described in Section 4.3. This section discusses the used choice
models in detail and the assumptions made in order to linearize them. Section 4.4
gives information about the experimental setup, used data sets, and parameters. The
experiments are described and discussed in Section 4.5, followed by practical insights
for operators in Section 4.6. The chapter concludes in Section 4.7 with a summary
of the findings.

4.2 Related literature

The goal of the line planning problem is to find a set of lines with corresponding
frequencies such that conditions on operating costs and passenger service level are
satisfied. In this context, lines are defined as a sequence of stations that are served
by a vehicle. Schöbel (2012) summarizes different modeling approaches and solution
methods for the line planning problem in public transport and identifies several vari-
ations: In some formulations, the task is to select lines from a given pool of lines
(Gattermann et al., 2017), while in others the line routes are constructed during
optimization (Borndörfer et al., 2007). There also exist different objectives for line
planning. On the one hand, cost-oriented objectives aim at minimizing operational
costs while ensuring a certain passenger service level (Claessens et al., 1998; Friedrich
et al., 2017b; Goossens et al., 2006). On the other hand, passenger-oriented objectives
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mostly consider a budget constraint on operational costs to maximize passenger ser-
vice level, represented by the share of passengers with direct connections (Bussieck,
1998; Bussieck et al., 1997; Schöbel and Scholl, 2006) or by passenger journey times
(Goerigk and Schmidt, 2017; Schöbel and Scholl, 2006).

The impact of the service on passengers is often neglected. Most of the existing ap-
proaches have the assumption in common that (an estimate of) the passenger demand
is known before the line plan is found. This means the number of passengers between
each station pair is assumed to be fixed. In addition, passengers are in many cases
assigned a priori to paths in the network to estimate the required capacity between
stations. However, both the number of passengers and the passenger paths depend
on the line plan and the corresponding passenger service level (de Dios Ortúzar and
Willumsen, 2011).

Most existing approaches that have included passenger route choice either applied
a single (shortest) route search (Guan et al., 2006; D. Liu et al., 2019; Nachtigall
and Jerosch, 2008) or a distribution according to a system optimum (Borndörfer
et al., 2007; Borndörfer and Karbstein, 2012). Both strategies are unlikely to accu-
rately estimate a passenger distribution, bearing the risk for operators of crowded
or underutilized vehicles. In a cross-entropy heuristic for integrated line planning
and timetabling presented by Kaspi and Raviv (2013), passengers are distributed on
shortest paths for evaluation, which serves as the basis to refine the search for an
updated solution in the next iteration. Schmidt and Schöbel (2015a) and Friedrich
et al. (2017b) present generic line planning models with integrated passenger route
choice and discuss complexity and bounds. A passenger-optimal route search was in-
troduced in Schmidt (2014) and Goerigk and Schmidt (2017) where sufficient seating
capacity is ensured assuming that passengers distribute over the available shortest
routes. This approach overcomes the problem that passengers are assigned to sub-
optimal routes by the model and prevents capacity conflicts during operation. A.
Schiewe et al. (2019) propose a game-theoretical approach where passengers are in-
dividual players choosing their routes with the highest travel quality.

All of the approaches discussed above consider a flexible passenger to route assign-
ment or search but assume the total passenger demand to be fixed. Only a few
publications consider the mode choice of travelers during line planning to estimate
the number of passengers attracted by the solution. The integrated stop location and
line planning approaches discussed in Laporte et al. (2005) and Laporte et al. (2007)
aim at a maximum trip coverage. Similarly, Klier and Haase (2015) maximize the
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number of expected passengers and estimate the mode choice with the logit model
as a traveler’s decision between the best available route and an alternative mode.
Bertsimas et al. (2021) have the same objective to maximize ridership of the pub-
lic transport service. In their model, each additional line increases the modal split
by a predefined percentage, independent of which other lines are selected and their
frequencies. De-Los-Santos et al. (2017) use the logit model for the mode choice as
well and approximate it with a piecewise linear function. For the specific case of
Intercity buses, Steiner and Irnich (2018) consider different passenger demand lev-
els depending on departure and travel time in a combined optimization approach for
stop selection on a line and timetabling. A comprehensive model integrating network
design, line planning, traveler mode choice, passenger route choice, and fleet invest-
ment is discussed in Canca et al. (2016). Later, the authors provide in Canca et al.
(2017) an adaptive large neighborhood search metaheuristic for this model, limiting
the passenger route search to a shortest route. For a revised model including an
integrated passenger distribution on routes, Canca et al. (2019) present a two-level
local search matheuristic which was successfully used to find solutions for real-world
sized instances.

These models include a modeling of travelers’ mode choice during line planning, but
they contain at least one of the two limitations. Either, the passenger distribution
on routes, although relevant for seat capacity estimation, does not reflect passenger
preferences. Or, the quality of the solutions found by the applied metaheuristics is
in many cases hard to assess.

4.3 Modeling

In this chapter, we develop a mixed-integer linear programming model for finding a
line plan that is tailored to the corresponding passenger demand. Lines are selected
from a pool of potential lines. The passenger demand is estimated with a discrete
choice model and the distribution on routes is modeled according to passengers’
choices. This modeling of passengers provides a basis for an accurate estimation of
the required seat capacity and the expected revenues from ticket sales. The objective
is to find a profit-optimal line plan, which means, the difference between revenue
and cost is maximized. In the following sections, we discuss all components of the
line planning problem, the underlying assumptions made, and how we model it.
Throughout this chapter, we use the terminology of public rail transport, however,
the proposed model applies to public transport services of any kind.
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4.3.1 Network structure and line selection

We consider a public transport network with a set of stations S as nodes, a set of
tracks T as direct connections between the stations, and symmetric traveler demand
between the stations. Let k denote an origin-destination (OD) pair, that is, an
unordered pair of stations s1 and s2 ∈ S, and let OD be the set of OD pairs. The
traveler demand, that is, the number of persons wanting to travel between OD pair k ∈
OD, is denoted by δk. We assume a line pool P to be given, where each line l ∈ P is
an undirected sequence of stations (s1, s2, . . . , snl

).

The aim is to find a line plan L ⊆ P, a subset of lines from the line pool, for a regular,
symmetric service. When selecting a line from the pool P, it is assumed to operate
in both directions.

The selection of lines is modeled using binary decision variables

zl ∈ {0,1} with zl =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, Line l is not selected,

1, Line l is selected.

This constitutes the basis of the line planning problem: Lines have to be selected from
a line pool to meet passenger demand. Higher line frequencies can be achieved by
selecting multiple lines with the same itinerary. This indirect modeling of frequencies
is accepted to unambiguously link lines and passenger routes in Section 4.3.3. In
the following, the objective of the line planning model is defined, the procedure to
estimate the passenger demand is explained, and, based on that, the required capacity
is calculated.

4.3.2 Profit maximization

Our objective is to find a line plan that is optimal with respect to profit, that means,
the difference of revenue generated by passenger fares and costs for installing and op-
erating lines should be as high as possible. The costs cl for installation and operation
of line l comprise acquisition and maintenance of rolling stock as well as personnel
and energy expenses. We assume an OD pair-dependent passenger pricing as it is
applied in the Netherlands. There, passengers are charged based on the locations
of their origin and destination only, and ticket prices are independent of the chosen
route. Let pk denote the ticket price for a passenger of OD pair k and let wk denote
the share of travelers of OD pair k that choose to use public transport. Then, the
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following function describes the profit made by a line plan L.

∑
k∈OD

pk ⋅ δk ⋅wk − ∑
l∈P

cl ⋅ zl (4.1)

The total cost calculation is defined as the sum of costs for all selected lines. The
product of the total number of travelers δk, the share of travelers using public trans-
port wk and the ticket price pk gives the total revenue from passengers of OD pair k.
Note that next to the cost, also the revenue is affected by the selected lines. With
a better service, more passengers decide to use public transport and generate more
revenue. Therefore, the share of travelers deciding to use public transport wk is
a variable in this context. How the value of wk ∈ [0,1] is estimated based on the
selected lines is described in the next section.

4.3.3 Demand estimation

Only travelers that decide to use public transport because of the quality of the line
plan generate revenue for the operator. Travelers that choose to travel with an alter-
native mode, such as private car, do not contribute to the objective function (4.1).
Mode choices of travelers can be estimated with discrete choice models (de Dios Or-
túzar and Willumsen, 2011). We assume a traveler demand instead of a passenger
demand to be given and include a mode choice based on the quality of the line plan.

Furthermore, passengers that choose to travel with public transport distribute over
available routes. A route is a sequence of consecutive line segments, where each line
segment corresponds to a track in the network operated by a certain line. This con-
cept of a route corresponds to a path in the change&go network introduced by Schöbel
and Scholl (2006). Estimating which routes passengers use is important to determine
the required seating capacity correctly.

Route choice

Passengers distribute over multiple available routes if they are of reasonably good
quality. A route is available if all lines that are used on the route are selected. Since
the availability of routes is only known after the line plan is known, we consider a
choice set Ck of routes for each OD pair k to be given. The availability of a route r ∈ Ck
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is modeled with the binary auxiliary decision variable

yr ∈ {0,1} with yr =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, Route r is not available,

1, Route r is available.

The selection of lines and availability of routes can be linked with the following set
of constraints

yr ≤ zl ∀k ∈ OD, r ∈ Ck, l ∈ Pr (4.2a)

yr ≥ ∑
l∈Pr

zl − ∣Pr ∣ + 1 ∀k ∈ OD, r ∈ Ck (4.2b)

where Pr is the set of lines in the pool used on route r.

In practice, we observe that passengers predominantly distribute over the best avail-
able routes. Hence, we restrict the choice sets Ck to contain only the best routes.
The quality of a route is determined by the driving time as well as the number of
transfers. Let jr be the journey time of route r, that is, the approximate driving time
including dwell times plus a transfer penalty for each transfer. Then, we consider
only those passenger routes for OD pair k that are among the journey-time shortest
routes. By restricting the choice sets to the shortest routes, all alternative routes
for one OD pair are of very similar quality to the passengers. As a consequence, we
assume that passengers of one OD pair distribute uniformly on available routes.

Note that this assumption of a uniform distribution on routes of similar journey time
does not perfectly represent passenger behavior. The distribution of passengers on
routes also depends on the temporal spread of departure and arrival times of the
available routes. Since the timetable is not known yet at the stage of line planning,
it is only possible to estimate the passenger distribution based on the quality of the
available routes. Based on the information available, the uniform distribution on the
journey-time shortest routes is a good approximation. In any case, we believe that
this modeling comes closer to an actual distribution than the common assumptions
that all passengers of an OD pair use a single (shortest) route or can be assigned to
routes according to a system optimum. Hence, this distribution is expected to give
a better estimate of required seating capacity than existing approaches.

To assume that passengers distribute uniformly on routes is an essential component
to achieve a tractable model. It is therefore important to consider comparable routes
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for each OD pair. In this chapter, we use the journey time to compare routes, but in
principle, any definition of quality that is independent of the timetable can be used.

Let the variable wr denote the share of travelers using route r. Then,

wr ∈ [0,1] with wr =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, yr = 0,
wk

∑r′∈Ck
yr′
, yr = 1

∀k ∈ OD, r ∈ Ck (4.3)

The values of wr are the same for all available routes for OD pair k and they sum
up to the share of travelers using public transport wk. To linearize the computation
of wr in Equation (4.3), the binary auxiliary variable

bik ∈ {0,1} with bik =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, OD pair k has less than i available routes,

1, OD pair k has at least i available routes

to count the number of available routes of OD pairs is introduced. Using variable bik,
the route choice constraints (4.3) can be linearized with the following set of con-
straints

wr ≤ yr ∀k ∈ OD, r ∈ Ck (4.4a)

wr ≤
wk
i
− bik + 1 ∀k ∈ OD, r ∈ Ck, i ∈ {1, . . . , ∣Ck ∣} (4.4b)

∑
r∈Ck

wr = wk ∀k ∈ OD (4.4c)

Constraints (4.4a) ensure that wr is positive only if route r is available, that is, if
yr = 1. Constraints (4.4b) impose an upper bound of wk

i
to wr if at least i routes are

available for OD pair k, that is, if bik = 1. For increasing i, wk

i
decreases and these

constraints get tighter. If less than i routes are available and bik = 0, the right-hand
side is greater than 1 and the constraints are redundant. Constraints (4.4c) ensure
that the shares wr of passengers of OD pair k using route r sum up to the share
of travelers using public transport wk. Together, constraints (4.4) model that the
passengers of OD pair k distribute uniformly on all available routes from the set Ck.
Note that both the number of passengers and the number of available routes depend
on the line plan.
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The number of available routes can be counted within the model with the following
constraints

∑
r∈Ck

yr ≥ i ⋅ b
i
k ∀k ∈ OD, i ∈ {1, . . . , ∣Ck ∣} (4.5a)

bik ≥
1

∣Ck ∣

⎛

⎝
∑
r∈Ck

yr − i + 1
⎞

⎠
∀k ∈ OD, i ∈ {1, . . . , ∣Ck ∣} (4.5b)

Constraints (4.5a) force bik to 0 if less than i routes are available for OD pair k, and
constraints (4.5b) ensure that bik equals to 1 if at least i routes are available.

Mode choice

It remains to estimate the modal share wk, that means, the share of travelers deciding
to use public transport. The travelers’ mode choice depends on both the utility of
public transport and the utility of alternatives. We consider one alternative mode
representing individual road transport, such as driving by private car. In general,
changes in the public transport service affect the modal split, with this the congestion
on roads, and eventually the utility of the alternative mode. However, as long as the
utility of the public transport service is not changed substantially, the impact on the
utility of the alternative mode is negligible. Hence, we assume that the utility of the
alternative mode is independent of the utility of public transport in this research.
As a consequence, the utility of the alternative mode is constant and the travelers’
decision whether to take public transport or not solely depends on the utility of
public transport.

Since a line plan is designed, not all information about the public transport service
determining its utility is available. For example, departure and arrival times, as well
as transfer durations are only known after a timetable is found. Nevertheless, the line
plan determines the most important factors of influence for the travelers’ decision
about their mode of transport: the number of available routes, the approximate
driving time, and the number of transfers.

While the number of available routes depends on the line plan, the approximate
driving time and the number of transfers can be predetermined for each route r ∈ Ck.
Both are combined in the route journey time jr that is known for each route. Since
all routes in the choice set Ck have a very similar journey time, the journey time jk
for OD pair k is very close to the route journey time jr for any route r ∈ Ck and does
not depend on which routes are available. Hence, it can be predetermined as well
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and we define
jk =

1
∣Ck ∣
∑
r∈Ck

jr ∀k ∈ OD.

The journey time jk captures the duration needed for OD pair k when traveling with
public transport. It is a travel time equivalent comprising drive and dwell times, and
possibly transfer penalties. The number of available routes indicates the frequency
of the service for the passengers. The more routes are available within a time period,
the fewer passengers have to adapt to the schedule of the public transport. This is
quantified in the adaption time ak, the time passengers need to deviate from their
preferred departure or arrival times. With a more frequent service, the expected
adaption time decreases inversely proportional.

We define the utility of the public transport for OD pair k as the sum of the journey
time and the adaption time.

uk = jk + ak ∀k ∈ OD (4.6)

The utility uk does not depend on which routes are available, but only on the number
of available routes. Thus, the number of available routes is the main factor of influence
on travelers’ mode choice that cannot be predetermined. However, it is possible to
express the utility of public transport, and consequently the mode choice of travelers
for each OD pair as a function of the number of available routes.

Figure 4.1 shows the expected share of travelers using public transport for different
numbers of routes, exemplified for one OD pair. In this chapter, we use a logit
model to estimate the travelers’ mode choice and to derive the modal split. The logit
model is a discrete choice model that is commonly used to estimate travelers’ choices.
The probability that an alternative is chosen depends on the utilities of all available
alternatives. For the mode choice of travelers, just two alternatives are considered:
traveling by public transport and traveling by individual transport such as by private
car. Let uk be the utility of public transport for OD pair k from Equation (4.6) and
ûk be the utility of the alternative mode. Then, the logit model estimates the modal
share for public transport as

wk =
eβuk

eβuk + eβûk
,

where β is the logit coefficient to tune the model.
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Figure 4.1: Estimated modal split for one OD pair k as a function of the number of
available routes

The increments in modal share ∆i
k indicated in Figure 4.1 express the additional

share of travelers of OD pair k deciding to use public transport if i instead of (i− 1)
routes are available. Using these values, the mode choice of travelers can be modeled
linearly with the constraints

wk =
∣Ck ∣
∑
i=1

∆i
k ⋅ b

i
k ∀k ∈ OD (4.7)

As discussed for the passenger route choice in Section 4.3.3, the binary variables bik
equal 1 if OD pair k has at least i routes. Hence, constraints (4.7) set the modal
share of public transport wk for OD pair k dependent on the number of routes.

Note that the coefficients ∆i
k can be predetermined for each OD pair k and each pos-

sible number of available routes 1 ≤ i ≤ ∣Ck ∣. Hence, the ∆i
k are constant parameters

in the model formulation. This framework allows the integration of travelers’ mode
choice according to any choice model using the linear constraints (4.7). Our model
is thus not limited to the logit model which is used in this chapter.
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4.3.4 Operational requirements

Capacity constraints

The strength of the demand modeling in Section 4.3.3 is that the number of passengers
on each route can be estimated accurately. It should be ensured by the operator
that there is sufficient seating capacity on each available route r for the number
of passengers that is expected to choose route r. We model this as one capacity
constraint per line segment, the part of a line l traversing a track t. Let κl be the
seating capacity of line l, P(t) be the set of lines in the line pool that operate on
track t and Ck(l, t) be the choice set of routes for OD pair k using line l on track t. The
following constraints ensure that on each line segment sufficient capacity is provided
by the line plan for all passengers on their chosen routes.

∑
k∈OD

∑
r∈Ck(l,t)

δk ⋅wr ≤ κl ⋅ zl ∀t ∈ T , l ∈ P(t) (4.8)

Note that the presented model uses individual capacity constraints for each line
segment and considers a distribution on routes according to passenger preferences.
The combination of individual capacity constraints and passenger-optimal routes is
important for accurate capacity estimation. It achieves that passengers use the same
routes in the model as they would choose in real life, thus avoiding potential conflicts
with capacity constraints. Existing line planning models often use only one capacity
constraint per track t, aggregated over all lines operating on that track, or they
assign passengers on a single route or according to a system optimum. Both can
cause capacity conflicts unless passengers accept additional transfers to make space
for other passengers, which is unrealistic.

Minimum service requirement

In addition to their aim to meet the passenger demand, most operators are required
to offer a minimum level of service in certain parts of the networks. This ensures
that all passengers have access to public transport, also in sparsely-populated areas.
We model this as an additional set of constraints ensuring that at least ft vehicles
service track t.

∑
l∈P(t)

zl ≥ ft ∀t ∈ T (4.9)
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(LPwMC)
max profit = revenue - cost
max ∑

k∈OD
pk ⋅ δk ⋅wk − ∑

l∈P
cl ⋅ zl

link between line and route variables
s.t. yr ≤ zl ∀k ∈ OD, r ∈ Ck, l ∈ Pr

yr ≥ ∑
l∈Pr

zl − ∣Pr ∣ + 1 ∀k ∈ OD, r ∈ Ck

passenger route choice
wr ≤ yr ∀k ∈ OD, r ∈ Ck

wr ≤
wk
i
− bik + 1 ∀k ∈ OD, r ∈ Ck,

i ∈ {1, . . . , ∣Ck ∣}
∑
r∈Ck

wr = wk ∀k ∈ OD

counting of available routes

∑
r∈Ck

yr ≥ i ⋅ bik ∀k ∈ OD, i ∈ {1, . . . , ∣Ck ∣}

bik ≥
1

∣Ck ∣

⎛

⎝
∑
r∈Ck

yr − i + 1
⎞

⎠
∀k ∈ OD, i ∈ {1, . . . , ∣Ck ∣}

traveler mode choice

wk =

∣Ck ∣
∑
i=1

∆i
k ⋅ b

i
k ∀k ∈ OD

capacity constraints per line segment

∑
k∈OD

∑
r∈Ck(l,t)

δk ⋅wr ≤ zl ⋅ κl ∀t ∈ T , l ∈ P(t)

minimum service requirement

∑
l∈P(t)

zl ≥ ft ∀t ∈ T

domains of variables
zl ∈ {0,1} ∀l ∈ P
yr ∈ {0,1} ∀k ∈ OD, r ∈ Ck
bik ∈ {0,1} ∀k ∈ OD, r ∈ Ck,

i ∈ {1, . . . , ∣Ck ∣}
wr ∈ [0,1] ∀k ∈ OD, r ∈ Ck
wk ∈ [0,1] ∀k ∈ OD

4.3.5 Line planning model with integrated mode choice

In this section, we give the mixed-integer linear program for line planning with in-
tegrated mode choice (LPwMC). As described in Section 4.3.2, the objective is to
maximize profit, defined as revenue minus cost in Equation (4.1). The first part deals
with the demand estimation explained in Section 4.3.3 including auxiliary modeling
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constraints. The linking constraints between route and line variables are discussed in
Equations (4.2) and the uniform passenger distribution on available routes is modeled
with Equations (4.4). The number of available routes is counted within the model
with Equations (4.5) and the traveler mode choice according to any choice model is
estimated with Equations (4.7). The second part deals with the operational require-
ments from Section 4.3.4. It is ensured by Equations (4.8) that sufficient seating
capacity is available for the expected number of passengers on each line segment.
This links the line selection and estimation of passenger demand in the model. Fur-
thermore, the minimum service requirement in Equations (4.9) ensures a minimum
frequency on each part of the network. The last part defines the domains of the
variables.

4.4 Experimental setup

We solve the model (LPwMC) with the branch and bound method implemented in
the Fico® Xpress Optimizer version 35.01. All experiments are conducted on the Lisa
cluster2 operated by SURFsara with a time limit of one hour per model run. In the
following sections, the instances are introduced, the derivation of passenger routes is
explained and the choices for parameters described.

4.4.1 Instances

We consider the Intercity network of the Randstad, a metropolitan area in the Nether-
lands. This is a partial network of the network operated by the largest Dutch railway
operator, Netherlands Railways (NS). The network contains 21 stations connected
by 31 direct tracks between them. The network is depicted in Figure 4.2 and de-
noted by IC21, indicating the number of stations in the network. The line pool P
contains 107 lines, 43 of which are duplicates in order to be able to model higher
line frequencies. The pool contains all relevant lines that currently operate in the
considered area and is given in Appendix 4.B. A reference line plan is available that
is used as a feasible start solution. The reference line plan is a solution of a line
planning model with fixed passenger assignment. Based on this reference line plan, a
competing mode such as driving by car, and passenger count data from NS, traveler
demand was estimated with the logit model. This resulted in 174 undirected OD
pairs with positive traveler demand.

2https://userinfo.surfsara.nl/systems/lisa
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Figure 4.2: IC Network of the Randstad region in the Netherlands

To obtain a variety of instances in some experiments, we consider two additional
instances IC08 and IC16 and randomized demand situations for all networks. These
instances have 8 and 16 stations, respectively, and are sub-networks of network IC21.
In Figure 4.2 the stations in network IC08 are marked by a dark node color scheme.
The stations that are additionally in network IC16 have a lighter grey color scheme.
The remaining stations with the lightest color scheme are only contained in network
IC21. The randomized demand situations are generated by multiplying the number
of travelers δk with a random number between 0.5 and 1.5 for each OD pair k.

4.4.2 Passenger routes

In a preprocessing step, a choice set of passenger routes Ck for each OD pair k is
determined and used as input to the model (LPwMC). As described in Section 4.3.3,
we consider the journey-time shortest passenger routes for the route choice sets. In
our experiments, we model this with a tolerance coefficient α and a tolerance addend ε
to limit the maximum acceptable journey time. First, we derive the shortest possible
journey time ĵk for each OD pair based on an extensive line pool for each network.
Then, a route r is in the set Ck, if and only if its journey time jr is at most αĵk + ε.
Only routes that are at most 5% (α = 1.05) and ε = 10min longer than the shortest
possible journey time were accepted. The journey time of a route comprises drive
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and dwell times and a transfer penalty, if applicable. Average driving times per track
are used and at all stations a dwell time of 4min is assumed. A penalty of 20min
is added to the journey time of routes including a transfer. In the experiments, we
restrict the route choice sets to routes with at most one transfer.

This yields a set Ck of passenger routes of comparable journey time for each OD
pair k. For the Intercity network of the Randstad IC21 from Figure 4.2, a total of
6391 routes are considered, which is on average 36.7 routes per OD pair.

4.4.3 Parameters

The monetary values for ticket price pk for a passenger of OD pair k, and cost cl
related to line operation were chosen to represent a simplified situation for the Dutch
railway operator NS. All lines are operated by trains with a capacity of κl = 1000
seats.

For estimating the mode choice, the logit model is used with a logit parameter
of β = −0.1. We estimate the adaption time based on the assumption that demand is
uniformly distributed over the period, and that route departures are spread evenly
over the hour. We therefore arrive at an adaption time of half of the considered
period of 60min, divided by the number of available routes. The alternative mode
resembling individual transport does not have an adaption time. Hence, the util-
ity ûk of the alternative mode is quantified by the journey time only. We use the
SAQ method (FGSV, 2008) to estimate the journey time based on the Euclidean
distance between stations.

For the minimum service requirement (4.9), a minimum track frequency of ft = 2 for
all tracks t ∈ T is used. This is in line with the requirements for the Dutch railway
operator NS.

4.5 Comparison and analysis

To test the line planning model with integrated mode choice, we conduct experiments
on the Randstad network. We test means to improve the computational performance
and compare our model (LPwMC) with a standard line planning model with fixed
passenger demand to investigate differences in solution quality.
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4.5.1 Improvement of computational performance

We test the impact of adding order constraints (order), adding symmetry breaking
constraints (sym), and setting priorities for branching (prio) on the solution-finding
process. We observe the CPU time until an optimal solution is found, and the gap
to the best bound found in case the time limit of 1 hour is exceeded. The settings
order, sym and prio are explained in the following.

order The auxiliary variables bik are used for counting the number of available routes
for each OD pair. By definition, bik equals 1 if for OD pair k at least i routes are
available, and 0 otherwise. This implies that bik can only be 1 if bi−1

k equals 1.
The other way around, bik can only be 0 if bi+1

k equals 0. This relation can be
modeled with the order constraints

bik ≥ b
i+1
k ∀k ∈ OD, ∀i ∈ {1, . . . , ∣Ck ∣ − 1}

sym The binary decision variables zl model whether line l is selected in the line plan
or not. To model higher frequencies of a line, duplicates are considered in the
line pool that can be selected independently. To break the symmetry implicated
by this setting, we consider constraints enforcing an order of selection of a line
and its duplicates.

prio The solution of the line planning problem is uniquely determined by the line
plan L, that means, the solution values for the line selection variables zl. The
corresponding solution values of all other variables can be reconstructed from
the solution values of zl. However, model (LPwMC) uses three different sets of
binary variables, zl, yr, and bik, where yr and bik are auxiliary variables to model
the availability and the number of routes. By default, any of these variables
can be used for branching. We test whether branching first on the variables zl
is preferable to the standard branching strategy of Fico Xpress. The Xpress
Optimizer offers the option to set the branching priority of a variable between 0
and 1000, where always a variable with a lower priority number will be selected
for branching. We set a high branching priority (1) for variables zl, medium
branching priority (500) for variables yr, and low branching priority (999) for
variables bik.

The tests are conducted on the three networks IC21, IC16, and IC08 with 10 ran-
domized demand situations per network. Table 4.1 gives the CPU times in seconds
and the gaps to the best bound for solving the model (LPwMC). The CPU times
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average CPU time[s] average gap[%]
IC08 IC16 IC21 IC08 IC16 IC21

none 166 3600 3600 - 30.5(10) 8.9(10)
order 144 3600 3600 - 11.4(10) 17.2(10)
sym 31 303 3194 - - 1.6(5)
prio 1034 3600 3600 - 2.5(10) 9.3(10)
all 32 248 1305 - - -

Table 4.1: CPU times in seconds and gaps in percent to the best bound for
model (LPwMC) in different settings. The number in brackets gives the number
of cases where the time limit of 1 hour is exceeded

in Table 4.1 are averaged over ten randomized demand situations on each network.
Only those runs that exceed the time limit are included for computing the average
gap. The number in brackets behind the average gap shows how often the time limit
of 1 hour is exceeded. The first and last row show results for the settings where none
(reference case) or all three options are used, respectively.

Adding order constraints (setting order) reduces the average CPU time for the small-
est network and the average gap for the midsize network. However, it increases the
average gap for the largest network compared to the reference case (setting none).
The reason might be that the additional constraints increase the problem size. This
could initially make the search for a feasible solution more difficult, but accelerate
the solution process at a later point in time. The symmetry-breaking constraints
(setting sym) significantly reduce the CPU times and gaps for all instance sizes. For
the largest instances with 21 stations, the time limit is exceeded in only five out of
ten cases and the resulting average gap is with 1.6% very small. Setting branching
priorities (setting prio) drastically increases the CPU time for IC08, showing that
the solver was able to find better branching strategies for the small network. In con-
trast to that, the average gap for the medium network size is significantly reduced by
setting the branching priorities, and the found solutions were close to the optimum.
For the large instances, no improvement is found with the setting prio. The gaps are
slightly higher than in the reference case without branching priorities. Tests with all
strategies combined (setting all) yield by far the best CPU times and all instance
sizes can be solved to optimality within the time limit of one hour. The largest in-
stance considered with 21 stations is solved within an average CPU time of less than
22 minutes. Therefore, we keep this setting with all options (order, sym and prio)
for further experiments.



4.5. Comparison and analysis 131

4.5.2 Comparison of (LPwMC) with line planning without
mode choice

To investigate the added value of estimating passenger loads during optimization,
we compare model (LPwMC) with a line planning model (LP) without integrated
mode or route choice. Such a model requires a passenger assignment to tracks as
input and assumes that passenger demand and distribution are independent of the
solution found. The objective is to find a line plan meeting all demand with minimal
cost. Since the passenger demand is assumed to be fixed, the revenue is constant and
this objective corresponds with finding a profit-optimal line plan in model (LPwMC).
Similar to model (LPwMC), model (LP) considers a minimum service requirement
and seating capacity constraints. In contrast to model (LPwMC), the capacity con-
straints are aggregated per track. Individual constraints per line segment are not
feasible since the passengers are assigned to the network before the line plan is found.
The MIP formulation for the line planning model (LP) used in the experiments can
be found in Appendix 4.C.

To obtain a passenger assignment for model (LP), we assume a fixed percentage of
travelers to use public transport and distribute them uniformly on the routes in the
choice set Ck. This yields a passenger load on each track in the network. We test
model (LP) with an assigned modal share for public transport ranging from 40% to
90%.

Table 4.2 shows the modal share MS for public transport in decimals, and the rev-
enue R, cost C, and profit P of the found line plans. The values are given for
model (LP) with different assigned passenger shares and for model (LPwMC). The
column P (LP) gives the objective value of model (LP), that is, the profit assum-
ing the assigned passenger demand used as input. This value is only available for
model (LP) with assigned passenger shares. All monetary values are given in relation
to the profit of the line plan found by model (LPwMC), which is normalized to the
value 100. That means, a value of 110 implies that the corresponding monetary value
is 10% higher than the profit of the solution of model (LPwMC).

The numbers in brackets in the first column give the share of travelers in decimals
that are assigned to use public transport in the input for model (LP). Based on
the found solution, we estimate the expected share of travelers that decide to use
public transport in a subsequent distribution of passengers with the logit model.
This average modal share MS coincides with the integrated modal share estimate
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MS R C P P (LP)

(LP) (0.4) 0.36 174.1 115.3 59.2 98.4
(LP) (0.5) 0.36 176.0 115.3 60.7 151.7
(LP) (0.6) 0.42 205.0 128.7 76.3 191.6
(LP) (0.7) 0.42 203.4 129.3 74.1 244.5
(LP) (0.8) 0.44 211.2 133.6 77.6 293.8
(LP) (0.9) 0.48 229.9 155.5 74.5 325.2
(LPwMC) 0.49 240.5 140.5 100.0 -

Table 4.2: Results of models (LP) with different passenger shares and (LPwMC).
The modal share is given as decimal and the monetary values are normalized such
that the profit of the solution of (LPwMC) equals 100

in model (LPwMC) and is given in the second column of Table 4.2. For all tests
with model (LP), the assigned share of travelers is higher than the estimated modal
share MS. While the modal share is comparable for a low number of assigned trav-
elers, the assigned and estimated modal share significantly differ for high numbers.
This shows that in our experiments, the solutions of model (LP) do not attract as
many passengers as they were planned for.

In particular, line planning models without an integrated estimation of mode choice
are not suitable for operators that strive for increasing their modal share. It is
striking that the highest modal share is achieved by the solution of model (LPwMC).

The monetary observation variables revenue R, cost C, and profit P are based on the
modal share MS as estimated with the logit model. Both revenue and cost increase
with the given passenger share for model (LP) but the profit stagnates at around
75% of the profit generated by the solution of model (LPwMC). The last column
gives the anticipated profit P (LP) based on the assigned share of travelers, i.e., the
objective value of model (LP). Especially for high values of the assigned passenger
share, the estimated profit P (LP) is significantly higher than the corresponding profit
based on estimated passenger numbers. By fixing the modal split before making the
line plan, line planning models such as (LP) are prone to drastically overestimating
the number of passengers and, with this, their revenue and profit. This causes these
models to choose for solutions in which many lines are established, without attracting
sufficient passengers to be profitable in the end.

The experiments clearly show the advantages of our model (LPwMC) over line plan-
ning models without an integrated mode choice. Due to an accurate estimation of
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passenger demand, profitable line plans of high quality can be designed that attract
a high number of travelers.

4.6 Practical insights

Over years, travel demand is constantly changing and public transport operators need
to react with an adjustment of their service. For operators, it is important to under-
stand the impact of changes in travel demand on the quality of their service and the
generated profit. Due to the integration of route and mode choices, model (LPwMC)
is capable of computing profit-optimal line plans for different levels of travel demand.
In this section, we outline which insights this can provide for operators.

The integrated traveler mode choice allows conducting a sensitivity analysis of the
travel demand on passenger service level and operator performance. The different
levels of traveler numbers are obtained by multiplying the original traveler demand
with a factor ranging from 0.5 to 1.5. Figure 4.3 shows the results per traveler factor.
The corresponding data is given in Table 4.4 in Appendix 4.D. We analyze the number
of lines ∣L∣ in the line plan, the number of available routes ∣R∣, the modal share MS,
and the profit P of the line plans found by model (LPwMC) for different levels of
traveler demand. The profit P is normalized such that the profit of the solution for
the traveler factor 1.0 equals 100. The number of available routes ∣R∣OD averaged
per OD pair and the number of available routes ∣R∣pax averaged per passenger are
examined separately.

With higher traveler numbers, more lines ∣L∣ can be installed and the service for
passengers improves. Accordingly, the number of available routes for OD pairs ∣R∣OD

and passengers ∣R∣pax increase. Large OD pairs mostly have direct routes in the
route choice sets, while for small OD pairs we often observe transfer routes. Since
the number of lines increases, many more line combinations form feasible transfer
routes for passengers. Hence, the number of available routes increases proportionally
more for small OD pairs than for large OD pairs, which explains the steeper increase
of ∣R∣OD than of ∣R∣pax.

The higher number of available routes implies an improved service level for passengers
and with this a higher modal share for public transport. The increase in modal share
from 44% to 52% is rather moderate, considering that the overall number of travelers
as specified in the input data triples, and the average number of routes per OD pair
almost doubles. The low effect on the modal split can be explained with the structure
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Figure 4.3: Results of model (LPwMC) for varying passenger load

of the choice model that we use to estimate the travelers’ mode choice. As indicated
in Figure 4.1, the increase in modal share flattens for a higher number of available
routes. This is in line with observations in the real world where the modal split is
hardly affected by improvements in service for passengers, once a certain service level
is reached.

Nevertheless, the profit increases approximately linearly from approximately negative
10% to 225% of the reference profit for an increasing number of travelers. The
negative profit values for low passenger numbers are a result of the minimum level
of service required by governmental regulations, which enforces to operate two lines
on each track, even if this cannot be done profitably. This increase in profit can be
explained by the high costs for operating a basic line plan on the whole network.
For up to 80% of the travelers, the capacity of such a basic line plan is sufficient on
the considered instance. Until then, the number of lines, the number of routes, and
the modal split stay almost constant. Only for more travelers, and thus for more
passengers, it pays off to install more lines. It is interesting to see that the slightly
higher modal share and thus the higher revenues offset the costs for additional lines
and, overall, lead to an approximately linear increase in profit.

The evaluation shows that the operator’s profit is very sensitive to changes in the
traveler demand. In case of declining traveler demand, operators cannot prevent
losses even if they react to demand changes in an optimal way. This is in line with
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recent observations where operators incur tangible losses due to considerably lower
traveler demand caused by the Covid-19 pandemic despite efforts to reduce the service
level. Conversely, operators can profit greatly from growing traveler demand when
exploiting the full potential of passenger demand estimation during line planning.

4.7 Conclusion and outlook

4.7.1 Conclusion

The line plan significantly determines the service level of public transport for pas-
sengers. It has an impact on how many travelers decide to use public transport, and
which routes passengers use. In this chapter, we present a line planning model with
integrated mode and route choice models. In contrast to most existing approaches,
both choices are modeled from a passenger’s perspective and are not driven by a
system optimum. This allows an accurate estimation of passenger demand during
optimization, resulting in line plans that are tailored for the demand they generate.

Considering passenger choice models during line plan optimization is a complex and
hard-to-solve problem. In order to obtain a tractable model, we assume (1) that
passengers distribute uniformly on the best available routes and (2) that the utilities
of alternative modes are independent of the designed line plan. By considering only
shortest routes for passengers and making these two assumptions, the presented
model can be linearized and solved with existing branch and bound methods.

The mixed-integer linear program presented in this chapter may be combined with
any choice model to estimate the mode choice of travelers. In particular, the choice
model does not need to be linear. Due to the two assumptions made, the traveler
mode choice can be preprocessed using the preferred choice model without affecting
the solving of the line planning model. In the chapter, a logit model is used to
estimate the mode choice.

We discuss additional constraints and branching priorities for improving the compu-
tational performance and show their effectiveness in experiments. The advantages of
integrated passenger choice models are outlined in a comparison with a standard line
planning model that relies on predetermined passenger loads. Based on the results
of this comparison, considering demand estimation during line planning is strongly
recommended. Integrated demand estimation yields line plans that are well-suited
for the demand they generate. They are more profitable for operators and feature



136 Modeling and solving line planning with integrated mode choice

a higher level of service for passengers compared to line plans found based on fixed
passenger demand. Furthermore, we analyze the sensitivity of the public transport
service level and operator profit on fluctuations in travel demand. This gives valu-
able insights into the business models of operators and suggests that operators should
react to changes in travel demand regularly.

4.7.2 Outlook

In additional experiments, we have noticed that the profit of two line plans can be
very similar while their respective costs and revenues are different from each other.
Indeed, two line plans with the same profit do not need to have any line in common.
This is an interesting observation from both an algorithmic and an application point
of view.

On the one hand, this implies that the concept of ’neighborhood’ of solutions, al-
though a key element in many (heuristic) approaches to solve line planning models,
is less useful than in other contexts. On the other hand, for operators, it can be very
valuable to see different solutions with similar profit. It would allow them to choose
between solutions with different modal shares. This particularly motivates the search
for multiple good solutions instead of one optimal solution only. One approach to
obtain multiple solutions could be to modify the ticket price pk for passengers or
the operational costs cl of lines to shift the weights between revenue and cost in the
objective function.

Future research should address customized solution approaches for solving model
(LPwMC) to find line plans for larger instances, and possibly with the feature to
compute multiple good solutions.
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Appendix

4.A Notation

Sets

C Route choice set
L Line plan
OD OD pairs
P Line pool
R Available routes
S Stations
T Tracks between stations

Indices

i Iterator used to count available routes
l Line
k OD pair
r Route
s Station
t Track between two stations

Parameters

ak Adaption time for OD pair k
β Logit parameter
cl Cost for operator for installing line l
δk Traveler demand of OD pair k

∆i
k Increment in modal share if i instead of i − 1 routes are available
ft Minimum frequency on track t
jk Journey time for OD pair k
κl Capacity of line l
pk Ticket price for OD pair k for using public transport
uk Utility of public transport for OD pair k
ûk Utility of alternative mode for OD pair k
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Variables

bik ∈ {0,1}: OD pair k has at least i available routes or not
wk ∈ [0,1]: Share of travelers of OD pair k using public transport
wr ∈ [0,1]: Share of passengers using route r
yr ∈ {0,1}: Route r is available or not
zl ∈ {0,1}: Line l is selected or not

Observation variables

C Cost for operator
MS Modal share according to logit model
P Profit (= revenue - cost)
R Revenue generated by transporting passengers
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4.B Line pool

count sequence of stations

2 Alm Asd
1 Alm Asd Ass Hlm
1 Alm Asdz Shl Ledn
1 Alm Asdz Shl Ledn Gv
1 Alm Asdz Shl Ledn Gvc
1 Alm Asdz Shl Rtd
1 Alm Asdz Shl Rtd Ddr
1 Alm Hvs Amf
2 Alm Hvs Ut
1 Alm Lls
2 Amf Hvs Asd
1 Amf Hvs Alm Lls
1 Amf Hvs Asd Ass
2 Amf Hvs Asd Ass Hlm
1 Amf Ut
1 Amf Ut Apn Ledn
2 Amf Ut Gd Gvc
4 Amf Ut Gd Rta Rtd
1 Amf Ut Gd Rta Rtd Ddr
1 Asd Alm Lls
1 Asd Ass Hlm Had Ledn
3 Asd Ass Hlm Had Ledn Gvc
2 Asd Ass Shl Ledn Gv
1 Asd Ass Shl Ledn Gvc
1 Asd Ass Shl Ledn
1 Asd Ass Shl Rtd
1 Asd Ass Shl Rtd Ddr
1 Asd Shl Gv Rtd
3 Asd Shl Rtd
1 Asd Shl Rtd Ddr
2 Asdz Shl Ledn Gvc
1 Ass Asd Alm Lls
4 Ass Asd Asa Ut
1 Ass Shl Ledn Gv
2 Ass Shl Ledn Gvc
1 Ass Shl Rtd Ddr
1 Ddr Rtd
1 Ddr Rtd Dt Gv
1 Ddr Rtd Dt Gv Gvc
1 Ddr Rtd Dt Gv Ledn
1 Ddr Rtd Dt Gv Ledn Had Hlm
2 Ddr Rtd Dt Gv Ledn Shl Ass Asd Alm Lls
2 Ddr Rtd Rta Gd Ut
2 Ddr Rtd Shl Asdz Alm Lls
1 Gv Ledn
1 Gv Ledn Had Hlm
1 Gv Ledn Shl Asdz Alm Lls
2 Gv Ledn Shl Ass
5 Gvc Gd Ut
3 Gvc Gv Dt Rtd
1 Gvc Ledn
1 Gvc Ledn Had Hlm
2 Gvc Ledn Shl Asdz Alm Lls
2 Gvc Ledn Shl Ass Asd Alm Lls
2 Hlm Ass Asd Alm Lls
1 Hlm Had Ledn
2 Hlm Had Ledn Gv Dt Rtd
3 Ledn Apn Ut
1 Ledn Gv Dt Rtd
3 Ledn Shl Asdz Alm Lls
1 Lls Alm Asdz Shl Rtd
2 Lls Alm Hvs Ut
4 Rtd Rta Gd Ut
4 Shl Asdz Ut

Table 4.3: Line pool for Intercity network of the Randstad. The first column gives
the number of occurrences of the line in the pool and the remaining columns give the
sequence of stations on the line
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4.C MIP formulation for a standard line planning
model with fixed passenger demand

max profit = revenue - cost

max ∑
k∈OD

pk ⋅ δk ⋅wk − ∑
l∈P

cl ⋅ zl

capacity constraints per track

∑
k∈OD

∑
r∈Ck(t)

δk ⋅wr ≤ ∑
l∈P(t)

zl ⋅ κl ∀t ∈ T

minimum service requirement

∑
l∈P(t)

zl ≥ ft ∀t ∈ T

domains of variables

zl ∈ {0,1} ∀l ∈ P

The objective is to maximize profit, defined as revenue minus cost. Note that the
mode choice of travelers wk is assumed to be known and fixed in this model. Hence,
the revenue is constant and the objective is equivalent to minimizing cost. Similarly,
the passenger assignment wr to routes is predetermined and constant in the model.
Consequently, the constraints for determining passenger loads are omitted and only
the constraints ensuring sufficient capacity and a minimum level of service on each
track remain. Passengers are assigned to routes in the route choice set to obtain
the approximate passenger load on each track between to stations. Since it is not
known yet which routes will be available in the solution, only aggregated capacity
constraints per track can be applied. The set Ck(t) denotes the set of all routes in
the choice set for OD pair k via track t.
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5.1 Introduction

In densely populated areas public transport is more efficient than private means of
transport for two reasons. First, it pools the trips of several people. This leads to
a high occupancy rate and thus reduces the total vehicle distance traveled. Second,
service trips are concatenated to vehicle schedules. This reduces the number of
required vehicles.

In contrast to traditional public transport, on-demand services in the form of car-
sharing or ridesplitting (definitions from Feigon and Murphy (2016)) have neither
a fixed route nor a predetermined timetable. The actual vehicle schedules are only
known at the end of an operating day. For the planning of on-demand services, travel
demand models are used to either determine the number of served passengers for a
given fleet size or to determine the required fleet size for a given demand situation.

So far, primarily microscopic travel demand models are used for modeling on-demand
services (see literature review in Section 5.2). Microscopic models simulate the de-
mand of individuals and the operational processes at the level of individual vehicles
using agent-based approaches. Typical input values are trip requests coming from a
demand model, fleet size, vehicle capacity, and service parameters, e.g. maximum de-
tour factor for passengers. Using some type of vehicle scheduling process, the models
deliver as results indicators describing the service quality from the perspective of pas-
sengers (e.g. waiting time, in-vehicle-time, detour factor, number of passengers not
served) and operators (e.g. empty and loaded vehicle kilometers, occupancy rates,
revenues).

In this chapter, we present an algorithm for the vehicle scheduling process of on-
demand services, which can be embedded in macroscopic travel demand models. The
presented approach is intended for long-term, strategic transport planning. For this
purpose, it provides planners with an estimate of vehicle fleet size and distance trav-
eled by on-demand services. The model aims to extend the four-step model such that
public transport authorities can use it for estimating vehicle fleet size and infrastruc-
ture utilization by on-demand services. Using a macroscopic travel demand model
has advantages and disadvantages compared to a microscopic approach. Important
advantages include the following:

• Many cities, regions, and states use macroscopic travel demand models to quan-
tify the impacts of supply changes on travel demand. Moeckel et al. (2019)
report that most states in the U.S. operate macroscopic travel demand models.
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A survey by Rieser et al. (2018) finds that most travel demand models oper-
ated on regional and state level in German speaking countries are macroscopic
models.

• A macroscopic travel demand model replicates the demand of an average day
in one model run. It works with probabilities so that every model run produces
the same solution. A microscopic model simulates a certain day and requires
multiple simulations to obtain results for an average day.

• Macroscopic model implementations are usually faster.

The main disadvantage of macroscopic models is probably that they can reproduce
the traffic-related decision processes of activity choice, destination choice, mode
choice, departure time choice, and route choice only in a simplified way. Micro-
scopic models can capture a more complex decision process considering household
constraints, vehicle ownership, and temporal constraints coming from an activity
schedule. In case average results are obtained with multiple simulations, microscopic
models also give information about the variability of the results. In case average
results are obtained with multiple simulations, microscopic models also give informa-
tion about the variability of the results.

Looking at the pooling and vehicle scheduling processes in connection with on-
demand services, macroscopic travel demand models bring a further challenge: De-
mand is not represented as discrete trips of individuals but as a probability. This
leads to a non-integer demand that is stored in demand matrices. For modeling
fluctuations in travel demand over the course of a day, demand is divided into time
intervals, e.g. 96 intervals of 15 minutes. This rather abstract representation of
travel demand requires specific methods for integrating on-demand services into a
macroscopic travel demand model. Friedrich et al. (2018) describe an algorithm to
pool macroscopic travel demand to demanded vehicle trips (=service trips).

In this chapter, we present an algorithm for the vehicle scheduling problem that uses
these time-dependent vehicle trips as input. As a result, the algorithm determines the
number of required vehicles and empty trips for vehicle relocation per time interval.
The efficient algorithm design makes it suitable for solving large instances in short
computation time, which is crucial for the use in travel demand models. Furthermore,
it can be applied for both integer and non-integer demand matrices, which also allows
an application to microscopic models with integer demand. A python implementation
can be found in Hartleb et al. (2020).
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The contribution of this chapter is twofold: First, we develop a vehicle scheduling
algorithm to estimate the vehicle fleet size of on-demand services efficiently. Second,
we show in two case studies that the algorithm is suitable for the vehicle scheduling
problem as it arises in macroscopic travel demand models.

The remainder of this chapter is structured in the following way: In Section 5.2,
the presented approach is compared to existing research on on-demand services in
travel demand models and on vehicle scheduling approaches. Section 5.3 defines
the vehicle scheduling problem in a formalized way, followed by a description of the
basic algorithm in Section 5.4. In Section 5.5, extensions of the basic algorithm
are discussed. Section 5.6 illustrates the applicability of the algorithm in two case
studies. A conclusion and outlook complete this chapter in Section 5.7.

5.2 State of the art and related work

In section 2.1, we relate our work to existing research on on-demand services in
travel demand models. The differences of macroscopic and microscopic travel demand
models, i.e. agent-based models, are highlighted. In section 2.2, we report on related
vehicle scheduling approaches and their solution techniques.

5.2.1 On-demand services in travel demand models

Travel demand models replicate the decision-making process of travelers, which is
triggered by the need of people to participate in activities. According to Friedrich
et al. (2016), “these decisions range from long-term to short-term decisions. Long-
term decisions cover decisions concerning the place of residence and the workplace.
These decisions influence subsequent medium-term decisions regarding the purchase
of a car or a season ticket for public transport, which then affect later decisions on
the activity locations and the transport modes. Short-term decisions on departure
time, a certain route or a certain lane are taken within a short time horizon.” Most
transport models cover only some of these decisions or replicate some decisions in a
simplified way. Many macroscopic travel demand models capture the decisions asso-
ciated with the pursuit of activities within the framework of the four-step algorithm.
This framework distinguishes the steps trip generation, destination choice, mode
choice and route choice (de Dios Ortúzar and Willumsen, 2011; McNally, 2010). To
consider temporal travel patterns, macroscopic models are supplemented by a step
for departure time choice. This step requires a model implementation, which dis-
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tinguishes trip matrices not only by trip purpose but rather by activity pairs (e.g.
Home-Work, Home-Education, Home-Shopping, Work-Shopping). For each activity
pair observed temporal distributions are used to compute time-dependent trip tables.
Figure 5.1a provides a schematic flow chart of a standard travel demand model.

While there are many approaches to model pooling and scheduling of on-demand
services in general, only a limited number of modeling approaches replicate the im-
pacts of on-demand services on travel demand, especially on destination and mode
choice. Almost all of these are microscopic approaches. In their overview of demand
models including one-way carsharing services, Vosooghi et al. (2017) come to the
same conclusion.

Examples of microscopic approaches including on-demand services in existing travel
demand models are presented by Azevedo et al. (2016) for SimMobility, Maciejewski
(2016) and Hörl (2017) for MATSim, Heilig et al. (2018) and Wilkes et al. (2019)
for mobiTopp and Martínez et al. (2017) for an agent-based model for Lisbon. A
macroscopic approach is described by Richter et al. (2019).

All approaches need to deal with the challenge that the transport supply provided
by on-demand services depends on the demand and is not given as model input.
Although traditional models capture the impact of demand on the supply in form
of volume-delay functions, the spatial and temporal structure of the supply remains
fixed. For on-demand services, however, the spatial and temporal supply structure
must be adapted to the demand.

Therefore, to include on-demand services in the four-step algorithm, the travel de-
mand model needs to be extended by an additional set of steps determining the
on-demand supply. These steps replicate short-term decisions of operators which
schedule the on-demand supply. Hence, the structure and availability of the on-
demand supply are established in response to the trip requests of travelers. Fig-
ure 5.1b extends the algorithm of Figure 5.1a to include the additional steps. The
short-term decisions of operators can be categorized into two parts: First, pooling of
passenger trip requests into vehicle trips and, second, scheduling of vehicles to serve
the vehicle trips.

The pooling step converts person trip requests into vehicle trip requests. This step
is only required for on-demand services which aim at pooling several independent
travelers into one vehicle, i.e. for ridepooling services. On-demand carsharing does
not require a pooling step as users directly request a vehicle trip. Microscopic ap-
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trip
generation

destination
choice

mode
choice

departure
time choice

route
choice

supply
quality

travelers’
decisions

trip
generation

destination
choice

mode
choice

departure
time choice

person trip
pooling

vehicle
scheduling

route
choice

supply
quality

operators’
decisions on
on-demand
services

(a) Four-step algorithm supplemented by
departure time choice

(b) Extended four-step algorithm to
model the impact of on-demand services

Figure 5.1: Standard and extended travel demand model

proaches to pooling algorithms can be found in Zhang et al. (2015), Bischoff et al.
(2017) or Engelhardt et al. (2020), for example. A macroscopic approach is proposed
by Friedrich et al. (2018).

The focus of this chapter is on the vehicle scheduling step, where vehicle trip requests
are assigned to specific vehicles. This step either determines the number of vehicles
needed for serving a given demand or defines the demand which can be served by a
given vehicle fleet. The scheduling step also identifies empty vehicle trips which are
required for vehicle relocation. Approaches to replicate this step differ for microscopic
and macroscopic travel demand models as discussed in the following.

Microscopic or agent-based travel demand models simulate discrete choices of per-
sons using probability distributions. Each model run replicates the demand situation
of a specific day. This modelling approach is described for example by de Dios Or-
túzar and Willumsen (2011) or Horni et al. (2016). Commonly, persons are assigned
daily plans which are processed chronologically. In this chronological processing, the
problem of vehicle scheduling can be defined as a dynamic vehicle routing problem
(Maciejewski et al., 2017). At the start of the analyzed time period, not all trip
requests are known. Instead, requests come in over time.
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Macroscopic models, in contrast, aim to replicate an average day. This is achieved
by using average trip rates for trip production and by assigning probabilities to each
choice of a choice set. The results are non-integer values that represent the demand
situation of a recurrent average day. As on-demand services are designed to adapt
to a specific demand situation varying from day to day, it is not helpful for planning
purposes to replicate the trip requests of one specific day. Instead, an average demand
situation should be used for the service design. Furthermore, it seems reasonable to
assume that information on all trip requests is available at the beginning of the
vehicle scheduling step. This makes the problem more similar to traditional vehicle
scheduling in timetable-based public transport.

Due to the respective ways they calculate travel demand, microscopic and macrosco-
pic approaches tend to answer different research questions: Microscopic approaches
rather answer the question of how well a certain vehicle fleet can satisfy a given
demand (Maciejewski et al., 2017; Marczuk et al., 2015; PTV Group, 2020). Ma-
croscopic approaches rather take the reverse approach and determine the required
fleet size to fully satisfy a given demand. Nevertheless, it is important to note that
although the model types are prone to the mentioned uses, it is also possible to use
them in the opposite way. Boesch et al. (2016), Wang et al. (2018) and Fagnant
and Kockelman (2018), for example, confirm this by using microscopic approaches to
calculate the number of vehicles needed.

5.2.2 Vehicle scheduling

The literature on vehicle scheduling provides many approaches to find schedules with
a minimum number of vehicles. Standard models and solution approaches for vehicle
scheduling in public transport are summarized in Bunte and Kliewer (2009). Recent
vehicle scheduling approaches usually incorporate problem-specific aspects such as
variable timetables (Desfontaines and Desaulniers, 2018; Lan et al., 2019) or a limited
range of electric vehicles and recharging strategies (Rogge et al., 2018; M. Wen et al.,
2016). To be able to find good schedules for realistic instances, elaborate solution
methods are proposed. For example, Desfontaines and Desaulniers (2018) rely on
column generation, and Lan et al. (2019) combine Benders decomposition with a
branch-and-price approach. With these methods, instances with up to 2100 vehicle
trips could be solved within less than one hour to optimality or close to optimality.
The considered instances in M. Wen et al. (2016) contain up to 500 vehicle trips and
are solved with an adaptive large neighborhood search within 20 minutes. Rogge
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et al. (2018) develop a genetic algorithm and provide results for instances with up to
200 vehicle trips.

A. Lam et al. (2016) formulate a vehicle scheduling problem specifically for a rideshar-
ing setting with automated vehicles. Their model includes admission control and
pooling of passengers, as well as a maximum route length due to a restrictive battery
capacity. They use different instances constructed from taxi data from Boston with
100 trips and propose a genetic algorithm to find vehicle schedules. Lin et al. (2012)
use a simulated annealing approach to find vehicle movements that are both cost-
efficient and convenient for passengers in a ridesharing setting for taxis. They find
that both the mileage as well as the number of vehicles can be reduced significantly
by ridesharing, however, only results of a single and relatively small instance with 29
trips were discussed.

Most vehicle scheduling contributions consider an operational setting and aim at
providing an optimal solution for a certain demand situation. In contrast to these
approaches, our algorithm is designed for usage in an extended four-step algorithm
as depicted in Figure 5.1b. We intend to provide good estimates for the required fleet
size and the impact on the traffic volume within very short computation times. This
is suitable for long-term strategic transport planning. Furthermore, most solution
methods exploit that each planned trip has to be covered exactly once. Since this
does not necessarily hold for macroscopic demand models, a generalized approach is
required. Similar to early approaches as presented in Bodin (1983), we model the
vehicle scheduling problem as a flow problem. This design choice is motivated by the
huge demand data of realistic instances considered in this chapter that include up to
100 million vehicle trips.

We formulate the problem as minimum-cost circulation with lower bounds. A polyno-
mial solution algorithm based on a gradual convergence by iteratively finding better
routes for vehicles is described in Schrijver (2003): First, an initial circulation is
found that is not necessarily optimal. Then, the solution is iteratively improved by
identifying a directed circuit with negative cost in the residual graph. The circulation
is adjusted correspondingly along this circuit. To identify a directed circuit, a flow
problem has to be solved. This yields a time complexity of O(∣Z ∣8∣T ∣5 log(∣Z ∣∣T ∣))

for this approach (Schrijver, 2003), where Z and T correspond to a discretization of
space and time, respectively.

In a project, many vehicle schedules have to be computed since often many scenarios
are considered and a feedback loop between demand estimation and supply design is
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common. Hence, we propose a simple heuristic approach for macroscopic on-demand
problems to realize short solution times for huge instances. Our approach presented
in Section 5.4 has a time complexity of O(∣Z ∣2∣T ∣2) and meets the requirements of
an application in travel demand models.

5.3 Problem definition

In this section, the problem of finding a vehicle scheduling with the minimum fleet
size is formalized. To this end, the required input is described and the underlying
network for the presented solution algorithm is introduced.

5.3.1 Input and notation

Passenger demand is given as demanded vehicle trips, aggregated in time and space.
For ridesharing applications, passenger trips are pooled to vehicle trips in a preceding
step.

The analysis period is split into time intervals of equal length. Time intervals are
indexed with t and the set of time intervals is denoted by T = {1,2, . . . , ∣T ∣}. The
examination area is divided into traffic zones, the set of traffic zones is Z. A traffic
zone is denoted by z, or, when considering a traffic zone as origin or destination zone,
by zo and zd, respectively.

The number of demanded vehicle trips from an origin zone zo to a destination zone zd
starting in time interval t is denoted by dzozdt. In this setting, these requested
vehicle trips are composed of pooled passenger trips and called service trips. It is
assumed that the pooling of passenger trips is done in a previous step, which is not
discussed here. Further, distances δzozd

between traffic zones are given as multiples
of time intervals. They result from the travel time j between traffic zones and the
duration of a time interval l, δzozd

= ⌈
jzozd

l
⌉. For the presentation of the algorithm

in this chapter, two assumptions are made. First, the travel time between zones is
independent of the time of day. To consider the asymmetric nature of congestion,
the distance matrix can be extended by a third dimension representing the departure
time interval. Second, all trips within one zone require a travel time of at most one
time interval, that is δzz = 1 ∀z ∈ Z. If this assumption does not apply, the model
can be extended to distinguish between waiting and traveling within a zone.



154 Vehicle Scheduling for On-demand Vehicle Fleets

The input of an instance I = (δ, d) consists of a distance matrix δ and a demand
situation d. By concatenating the demanded vehicle trips to vehicle schedules, the
presented algorithm determines the number of required vehicles as well as empty
trips for vehicle relocation per time interval as a result. The aim is to serve the
entire demand with as few vehicles as possible.

5.3.2 Underlying network

For a simpler representation of the algorithm, a time-space network G = (V,E) is in-
troduced. Nodes can be interpreted as traffic zones at the beginning of time intervals
and arcs as potential time-bound vehicle trips between zones. In the network, we de-
pict traffic zones on the vertical and time intervals on the horizontal. The presented
vehicle scheduling algorithm is designed to find a feasible vehicle flow in this network
with as few vehicles as possible so that demand is met on all edges. An example
network with three traffic zones and four time intervals is shown in Figure 5.2a.

Formally, we introduce the set of nodes V = VZ ∪ VZ,T with

VZ = {vz0∶ z ∈ Z} and VZ,T = {vzt∶ z ∈ Z, t ∈ T},

where T = T ∪{∣T ∣ + 1, . . . , ∣T ∣ +maxzo,zd∈Z δzozd
} is an extended set of time intervals.

For each traffic zone z ∈ Z, there is a node vz0 in the network G at the beginning
of the analysis period. Moreover, there is a node vzt representing each traffic zone
z ∈ Z at the beginning of each time interval t ∈ T . The nodes in V are connected by
directed edges in E = EZ ∪EZ,T , where

EZ = {(vz0, vz1)∶ z ∈ Z} and EZ,T = {(vzot, vzd(t+δzozd
))∶ zo, zd ∈ Z, t ∈ T}.

From each node vz0 there is a directed edge to the node vz1, which represents the
traffic zone z at the beginning of the first time interval. There are also ∣T ∣ edges that
connect each pair of origin zone zo and destination zone zd. These edges start in the
time intervals t ∈ T and end in t + δzozd

∈ T , where δzozd
corresponds to the distance

between the two traffic zones.

The demand dzozdt can be interpreted as a lower bound on the edges e ∈ EZ,T ,
defining a minimum flow on these edges. The distances δzozd

between the traffic
zones zo and zd are modeled by the horizontal length of the edges. A trip from the
first to the second traffic zone in the example of Figure 5.2a can be covered in one
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Figure 5.2: Step-wise construction of a vehicle schedule on a network with 3 traffic
zones and 4 time intervals. Figure 5.2a shows the input situation without vehicle
flow. The schedule construction in Figures 5.2b to 5.2e is described in detail in
Section 5.4. In each figure, the rectangular labels display the traffic zones on the
vertical and the time intervals on the horizontal. The nodes in V are represented
with round node shapes, reading the node label vzt. For better presentation, nodes
vzt are omitted for t > 5. The directed edges in E are represented with arcs in the
network, distinguished in three cases. Grey dotted lines show potential vehicle trips
without demand or vehicle flow, dashed lines indicate demand on edges, and solid
lines depict edges with vehicle flow. The numbers written at the arcs read the flow
values f , and, in brackets, the demand values d.
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time interval, the return trip needs two time intervals. Asymmetries can be caused
by one-way streets or differing traffic volumes in the network.

5.3.3 Vehicle scheduling

The flow variables fzozdt ∈ R+ are introduced to represent a vehicle flow on the
edges e ∈ EZ,T . The value fzozdt can be interpreted as the amount of vehicles driving
from traffic zone zo to zd, starting in time interval t. To ensure that the total demand
is served, the flow on each edge must be at least as large as the demand,

fzozdt ≥ dzozdt ∀zo, zd ∈ Z, ∀t ∈ T. (5.1)

For the flow to be feasible, it must also be ensured that the total number of arriving
and departing vehicles in each node vzt is equal,

∑
zo∈Z∶

t−δzoz≥1

fzoz(t−δzoz) = ∑
zd∈Z

fzzdt ∀z ∈ Z, ∀t ∈ T ∖ {1}. (5.2)

This ensures that the flow is preserved in every node vzt, that means that no vehicles
“appear” or “disappear” in traffic zone z at time t. A feasible flow f in the network G
is called a vehicle schedule. Next, the variables xz ∈ R+ are introduced to model the
vehicle flow on the edges EZ . These correspond to the total number of vehicles
leaving the traffic zone z ∈ Z in the first time interval, defined as

xz = ∑
zd∈Z

fzzd1 ∀z ∈ Z.

xz can be interpreted as the number of vehicles that must be available in the traffic
zone z at the beginning of the analysis period. The aim is to serve the demand with as
few vehicles as possible, which corresponds to minimizing the sum of vehicles leaving
traffic zones in the first time interval ∑z∈Z xz. Equations (5.1) and (5.2) ensure that
any demand is met and the vehicle schedule is feasible.
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5.4 Algorithm

5.4.1 Description

The basic structure of the algorithm is simple: The nodes vzt in the network are pro-
cessed chronologically and the vehicle flow is expanded step by step on the outgoing
edges. Figures 5.2b to 5.2e illustrate the construction of a vehicle schedule in the
example network in Figure 5.2a. In each step, it is ensured that the demand is met
and that the vehicle flow is feasible at all processed nodes. Thus, the design of the
algorithm ensures that equations (5.1) and (5.2) are fulfilled step by step. While the
algorithm constructs the vehicle flow chronologically, that is, from left to right in the
network in Figure 5.2, the flow in the previous time intervals can be amended. To
perform this amendment efficiently, we maintain node labels a storing the current
number of vehicles at each node during flow construction.

For a simpler representation of the vehicle scheduling algorithm, we split it into
three nested parts. The basic structure is given in Algorithm 5.1. This part specifies
that the nodes in the network are considered in chronological order and that at each
considered node all demand on outgoing edges is met and the flow conservation holds.
The flow conservation, which ensures that there is the same number of incoming and
outgoing vehicles at each node, is specified in Algorithm 5.2. There, three cases are
considered. First, the number of incoming vehicles is sufficient for the number of
demanded vehicles on outgoing edges. Second, vehicles in other zones are available
and can be relocated to the current traffic zone. Third, additional vehicles need to
be added to the vehicle flow under construction. While the first and third cases are
easy to handle, the relocation of vehicles in the second case requires an amendment
of the flow in previous time intervals. This amendment is described in Algorithm 5.3.

The nested structure means that Algorithm 5.1 calls Algorithm 5.2 to ensure the flow
conservation, which in turn calls Algorithm 5.3 for vehicle relocation, if necessary.
In the following, the pseudocode of the three algorithms is described and exemplified
with the flow construction in Figure 5.2.

Basic structure

In Algorithm 5.1 the basic structure of the vehicle scheduling algorithm is given as
pseudocode. The loops in lines 4 and 5 scroll through the nodes vzt in chronological
order. Starting from the considered node, the demand is served on each outgoing
edge, see line 6. This step ensures that there is sufficient vehicle flow on the demanded
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Algorithm 5.1: VehScheduling(I)
1 Input: Instance I = (δ, d) with distance matrix and demand
2 Output: Number of required vehicles x and vehicle flow f
3 Initialisation: Required vehicles per station xz ← 0 ∀z ∈ Z,

available vehicles per traffic zone and time interval
azt ← 0 ∀z ∈ Z, t ∈ T ;

# Process all nodes vzt in the network chronologically;
4 for t ∈ T do
5 for z ∈ Z do

# Fix minimal flow on all outgoing edges, satisfies equation (5.1);
6 fzzdt ← dzzdt ∀zd ∈ Z;

# Update label: Mark vehicles as available in destination zone;
7 azd(t+δzzd

) ← azd(t+δzzd
) + dzzdt ∀zd ∈ Z;

# ensure feasible flow, satisfies equation (5.2);
8 FlowConservation(z, t, a, x, f , I);

9 return (x, f);

edges in the network, see for example Figure 5.2b where a flow of 1.0 and 1.1 vehicles
is set between nodes v11 and v12, and between nodes v21 and v32, respectively, to
meet the demand. Then, in line 7 labels are updated at the nodes indicating how
many vehicles are available in the traffic zones at the beginning of the time intervals.
After the first time interval is processed in Figure 5.2b, there are 1.0 and 1.1 vehicles
available at nodes v12 and v32, respectively. Finally, calling the function FlowCon-
servation() in line 8 ensures that the number of arriving and departing vehicles at
the considered node vzt are equal and, thus, that the vehicle flow is feasible.

Flow conservation

Algorithm 5.2 is called at every node vzt to ensure flow conservation. This is necessary
since in Algorithm 5.1 only the vehicle flow on outgoing edges was set in order to
meet demand. In Algorithm 5.2, sufficient incoming flow is ensured to match the
outgoing flow, or the outgoing flow is increased if the incoming flow is predominant.
To match the number of incoming and outgoing vehicles in that node, vehicles from
three different sources are considered in the following priority.

1. The first step is to try to satisfy as much demand as possible with vehicles
available at the current node vzt. Vehicles are considered available at a node vzt
if they are idle in the traffic zone z at the beginning of the time interval t. In
the algorithm, the number of available vehicles at each node is stored in the
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Algorithm 5.2: FlowConservation(z, t, a, x, f , I)
1 Input: Traffic zone z, time interval t, available vehicles a, number of

required vehicles x, vehicle flow f and instance I = (δ, d)
# 1. If sufficient vehicles are available, these are used;

2 if azt ≥ ∑
zd∈Z

dzzdt then

3 azt ← azt − ∑
zd∈Z

dzzdt;

# Other available vehicles are waiting in the zone;
4 if azt > 0 then
5 fzzt ← fzzt + azt;

# Update label: Mark vehicles in destination zone as available;
6 az(t+1) ← az(t+1) + azt;

# Otherwise additional vehicles are needed;
7 else

# Define n as number of additional vehicles required;
8 n← ∑

zd∈Z
dzzdt − azt;

# Update Label: All available vehicles are used;
9 azt ← 0;

# 2. Relocate as many available vehicles as possible from other zones;
10 n← VehRelocation(z, t, a, n, f , I);

# 3. Insert vehicles if still needed after relocation;
11 if n > 0 then

# Increase number of required vehicles per zone accordingly;
12 xz ← xz + n;

# Increase vehicle flow, vehicles wait in the zone until demanded;
13 fzzt′ ← fzzt′ + n ∀t′ < t;

14 return;

label azt. If more vehicles are available than needed, they wait in the traffic zone
and the labels at the nodes are adjusted, see lines 3, 5, and 6 in Algorithm 5.2.
Both usage of available vehicles and waiting in the traffic zone can be observed
at the node v34 in Figure 5.2e, for example. There, 0.1 vehicles are sent to
node v25 to meet demand, and the remaining 1.0 available vehicles wait in the
third traffic zone.

2. If there are not enough vehicles available, the algorithm tries to relocate vehicles
from other traffic zones zo to traffic zone z. For a permissible relocation, the
vehicles must be available already δzoz time intervals before the considered time
interval t. Only in that case, they can be relocated in time to meet demand at
the beginning of time interval t in traffic zone z. The relocation is designed in
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such a way that demand will continue to be met on all previously considered
edges and that flow will continue to be preserved in all previously considered
nodes.

By relocation, it is possible to find good vehicle schedules requiring few vehicles
only at the expense of empty vehicle kilometers. In Section 5.6, the number of
required vehicles and the length of empty trips are compared in scenarios with
and without vehicle relocation. The exact procedure of vehicle relocation is
described in Algorithm 5.3, which is called in line 10 of Algorithm 5.2 if there
are not enough vehicles available.

3. If after the relocation of vehicles from other traffic zones the total demand
on outgoing edges of the considered node vzt is not met, further vehicles are
necessary for a feasible vehicle flow. These vehicles are inserted in the traffic
zone z by increasing the variable xz and are idle until time interval t, see
lines 12 and 13 in Algorithm 5.2. In the example network, this happens at the
beginning of the analysis period, see Figure 5.2b, and when processing the last
time interval, see Figure 5.2e. In the former, 1.0 and 1.1 vehicles are inserted
in the first and the second traffic zone, respectively. In the latter, another 1.0
vehicles are inserted in the first traffic zone. There, it is possible to see how all
flow variables within this zone are increased, indicating that the vehicles are
idle until demanded in the fourth time interval.

Vehicle relocation

Algorithm 5.3 describes how the relocation of vehicles is performed and the flow in
previous time intervals is amended. First, it is calculated how many vehicles can be
relocated, see lines 5 to 7. Then, the previously set vehicle flow is undone and the
corresponding labels are updated, see lines 8 to 12. Finally, the empty vehicle trip
for relocation is added to the vehicle flow, see line 13. Figures 5.2c and 5.2d show the
relocation of vehicles from the first to the second traffic zone. Initially, 1.0 vehicles
wait in the first traffic zone during the second time interval. When processing the
third time interval, this flow is undone and the vehicles are relocated from the first
to the second traffic zone during the second time interval to meet demand. While
the basic structure in Algorithm 5.1 works chronologically, the relocation of vehicles
in Algorithm 5.3 can be seen as a backward correction.
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Algorithm 5.3: VehRelocation(z, t, a, n, f , I)
1 Input: Traffic zone z, time interval t, available vehicles a, needed vehicles n,

vehicle flow f and instance I = (δ, d)
2 Output: Number of vehicles that are still needed n

# Check all other zones for available vehicles;
3 for zo ∈ Z do

# Relocation can only start within the analysis period;
4 if t − δzoz ≥ 1 then

# Define azo as maximum number of relocatable vehicles from zone zo;
5 azo ← min

t′∶t−δzoz≤t′<t
azot′ ;

# Relocate at most as many vehicles as needed;
6 azo ←min{n, azo};

# Update number of needed vehicles;
7 n← n − azo ;

# Reset previously set vehicle flow;
8 fzozot′ ← fzozot′ − azo ∀(t − δzoz) ≤ t

′ < t;
# Update label: Reset number of available vehicles;

9 azot′ ← azot′ − azo ∀(t − δzoz) ≤ t
′ ≤ t;

# If node vzot has been edited in Algorithm 5.1, reset flow and label;
10 if zo < z then
11 fzozot ← fzozot − azo ;
12 azo(t+1) ← azo(t+1) − azo ;

# Relocate vehicles;
13 fzoz(t−δzoz) ← fzoz(t−δzoz) + azo ;

14 return n;

Summary

The presented vehicle scheduling algorithm is designed such that the vehicle flow
is feasible at each node and the demand is served on each edge. The relocation
of vehicles preserves these properties at nodes and edges that have already been
processed. Therefore, the solution of the algorithm is a feasible vehicle flow f , which
requires as few vehicles x as possible. An implementation of the presented algorithm
is available in Hartleb et al. (2020).

5.4.2 Solution quality

The algorithm is deterministic and provides the same solution in every call. However,
it is a heuristic procedure that does not necessarily find an optimal solution. This can
be seen in the example in Figure 5.2. At node v23 not enough vehicles are available to
serve the outgoing demand. Therefore, attempts are made to relocate vehicles from
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other traffic zones, see Figure 5.2d. In this case, there are enough vehicles available
in the first traffic zone, that are relocated within the second time interval. As a result
of this relocation, no vehicles are available at node v14 in the fourth time interval.
Additional vehicles must be inserted, increasing the total number of required vehicles,
see Figure 5.2e.

In the solution of the algorithm, a total of 3.1 vehicles is required to meet the entire
demand. In an optimal solution, however, only 2.1 vehicles are needed, for example,
by relocating vehicles from the third instead of the first traffic zone to node v23. This
shows that the solution quality depends, among other things, on the order of traffic
zones from which vehicles are relocated. In the example described, the algorithm
finds a solution that is almost 50 percent worse than an optimal one. However,
preliminary tests have shown that the solution quality on both randomly generated
and real networks is significantly higher than in this contrived example. In most
practical applications the deviation from the optimal number of required vehicles
was smaller than the deviation due to other modeling errors.

5.4.3 Complexity

In a case study, many vehicle schedules need to be computed because usually several
transport scenarios are examined and a feedback loop between demand estimation
and supply design is applied within each scenario. Therefore, a heuristic approach
with short computation times is most practical. The vehicle scheduling algorithm
presented in this chapter performs ∣Z ∣∣T ∣(∣Z ∣ + ∣Z ∣ + ∣Z ∣ + ∣Z ∣ + ∣Z ∣ + ∣Z ∣(δ + δ + δ) + ∣T ∣)

operations, where δ ∶= maxzo,zd∈Z δzozd
is the maximum distance between two time

intervals. Hence, the time complexity is in O(∣Z ∣2∣T ∣δ + ∣Z ∣∣T ∣2). Since δ is bounded
by the number of time intervals ∣T ∣, the presented algorithm is strongly polynomial
with complexity O(∣Z ∣2∣T ∣2). This low complexity is achieved by locally improving
the solution during its construction. The network has to be traversed only once.

Existing exact approaches are based on an iterative improvement of an initial cir-
culation by identifying a directed circuit with negative cost in the residual graph.
The circulation is adjusted correspondingly along this circuit. In these approaches,
the graph has to be traversed multiple times, which leads to a time complexity of
O(∣Z ∣8∣T ∣5 log(∣Z ∣∣T ∣)) (Schrijver, 2003).
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5.5 Extensions

In this section, multiple extensions are discussed that enhance the basic algorithm.
They aim at improving the solution quality or the computation time of the algorithm.
All extensions are implemented and in the following paragraphs is stated how they
are used in the experiments.

Consideration of the neighborhood of traffic zones: The relocation of vehicles
from other traffic zones results in empty trips, which should be kept as short as
possible for cost reasons. This can be taken into account by adjusting the order of
the neighboring traffic zones in row 3 in Algorithm 5.3. For all experiments, the
set of traffic zones Z is replaced by a sorted neighborhood N(z) of the considered
traffic zone z. This means that vehicles are first requested from the closest traffic
zones. This favors short empty vehicle trips and implicitly takes operating costs
into account. The total number of vehicles required can be influenced positively or
negatively.

Limitation of the relocation distance: Further, it is possible to not only sort
the set of all neighboring traffic zones but also to limit it. This can, for example,
prevent particularly long empty vehicle trips. This restriction can result in more
vehicles being needed to meet the overall demand. In return, the length of empty
trips will decrease. The trade-off between the number of vehicles and empty trips is
discussed in Section 5.6.

Scanning of future time intervals: Vehicles can be relocated if they have been
available in another traffic zone for a sufficient number of time intervals. Still, it
may be better to not relocate the vehicles, for example, if they are needed shortly
thereafter in their current traffic zone. With the scanning of future time intervals,
it is possible to prevent such unnecessary vehicle relocation. However, both future
incoming and outgoing edges at the nodes should be taken into account. Since this
entails a high calculation effort for each additional time interval, in the current im-
plementation only one future time interval is scanned. The total number of required
vehicles can either increase or decrease, but operating costs are reduced.

Termination criterion: In the current implementation, the vehicle relocation in
Algorithm 5.3 is terminated as soon as enough vehicles have been found. This sig-
nificantly reduces the computation time of the algorithm.
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5.6 Applications

The applicability of the algorithm is illustrated in two case studies. Both case studies
show that it is possible to consider on-demand services in macroscopic demand models
by the use of the vehicle scheduling algorithm. In the first case study, the number of
vehicles required for a regional carsharing system in a region in southern Germany is
determined. It is assumed that carsharing is used for all private car journeys. This
is not a realistic assumption, but it demonstrates the capability of the algorithm in
large networks with a very large number of demanded vehicle trips. In the second
case study, the required fleet size of an electric scooter rental system for operation
on a university campus is computed. This case study emphasizes the importance of
appropriate time interval durations for models with small spatial dimensions as well
as the influence of demand symmetry on the number of vehicles needed.

5.6.1 Regional carsharing

The Stuttgart Region covers an area of 80×80 kilometers with 2.7 million inhabitants
living in urban and rural surroundings. The regional travel demand model is used to
determine the fleet size of a regional carsharing system. The model is a macroscopic
travel demand model covering the four model steps of trip generation, destination
choice, mode choice, and route choice in person transport. It calculates the demand
on workdays for the modes car driver, car passenger, public transport, bicycle and
walking with a tour-based model. The model includes ∣Z ∣ = 1013 traffic zones in the
examination area of the Stuttgart region. The baseline scenario assumes a situation
without carsharing, which describes more or less the current state, where sharing is
a rare event

From this baseline scenario, three scenarios are derived for comparison, all assume
that private car journeys will be carried out with carsharing vehicles. The scenar-
ios S02 and S03 require automated vehicles allowing driverless relocation of the
vehicles. The following scenarios are distinguished:

S00 Baseline scenario without carsharing, private cars only.

S01 Carsharing rides replace car rides,
Carsharing without relocation.

S02 Carsharing rides replace car rides,
Carsharing with relocation aiming at a minimum number of vehicles,
Duration of empty trips is not limited.
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S03 Carsharing rides replace car rides,
Carsharing with relocation aiming at a minimum number of vehicles,
Duration of empty trips must not exceed 15min.

The same demand situation is assumed in all scenarios. It considers 3.6million private
car trips that have their origin and destination in the region. Two input variables
are passed to the scheduling algorithm:

1. Day-time dependent demand d: By using trip-purpose specific temporal distri-
butions, the demand for car trips is divided into 96 time intervals of 15min.
This demand defines the service trips in the network.

2. Distance matrix δ: This matrix describes the travel time between the traffic
zones as multiples of time intervals. The values of the matrix are based on the
car travel times in the congested road network. For service trips and empty
trips the same travel times are assumed.

The algorithm calculates a vehicle schedule and outputs the number of vehicles re-
quired. The vehicle schedule contains all necessary information about empty trips
which are needed for relocating vehicles. An assignment of the service trips and
empty trips to the road network provides the vehicle distance traveled.

From the results of the German national travel survey 2017 (infas et al., 2017) it
can be deduced that only about two-thirds of all private cars in Germany are moved
on an average working day. On average, these moving vehicles perform 3.2 trips per
working day. This leads to about 1.1million vehicles (without not moving vehicles)
in the baseline scenario S00 .

This number of vehicles is normalized in Figure 5.3a to the value 100 and serves as a
reference for the calculated fleet sizes of scenarios S01 to S03 . While demand remains
constant, the number of vehicles in scenario S01 can be reduced to less than one-third
of the private cars required in the baseline scenario although no vehicle relocation is
allowed. When including vehicle relocation in scenarios S02 and S03 , the number of
vehicles drops to about one-eighth of the vehicles required in the baseline scenario.
The limitation of the empty trip duration to 15min in S03 implies a comparatively
small increase in the number of required vehicles.

In the scenarios S00 and S01 the vehicle kilometers traveled are identical since there
are no empty trips. In the scenarios S02 and S03 , however, the vehicle kilometers
traveled increase due to empty vehicle trips by 9.2 and 7.7 percent, respectively (see
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(a) Change in number of required vehicles (b) Change in vehicle distance traveled

Figure 5.3: Number of required vehicles and total vehicle distance traveled per sce-
nario. Normalization: S00 = 100.

Figure 5.4: Share of moving vehicles per time interval in relation to the total number
of required vehicles for each scenario.
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Figure 5.3a). In scenario S02 an average carsharing vehicle travels about 230 km
per day. By limiting the empty trip duration to 15min in S03 , this daily distance
goes down to 215 km. This corresponds to an average reduction of the total vehicle
kilometers traveled by about 55 km per additional vehicle.

Figure 5.4 shows the time series of the moving vehicles in relation to the total num-
ber of required vehicles per scenario. Carsharing increases the occupancy rate of
the vehicle fleet considerably, especially during peak hours. In both scenarios S02
and S03 , the maximum share of empty vehicle trips per time interval is 20 percent.
Similar to the service trips, the empty trips take place mainly during peak hours.

5.6.2 Sharing of electric scooters on a university campus

The University of Stuttgart plans to introduce a campus-wide shared scooter ser-
vice with autonomous electric scooters. Autonomous electric scooters still require
a human to drive, but they are able to carry out driverless empty trips to relocate
or to drive to a charging station (Wenzelburger and Allgöwer, 2020). To estimate
the required size of such an electric scooter fleet, the demand for pedestrian traffic
between bus stops, parking lots, and buildings is determined for the campus of the
University of Stuttgart. The basis for this estimation is a travel survey recording
the choices of students and employees regarding their mode of transport (car, public
transport), the exit stop or the destination car park, and the time of day for their
trips to and from the campus. In a baseline scenario C00 , all movements between car
parks or stops and university buildings are walking trips. In scenarios C01 and C02
it is assumed that walking trips longer than 400m are no longer covered by foot, but
with electric scooters. Since the demand at a university shows considerable peaks at
the beginning and end of lectures, many scooters are required in the respective load
direction. An automated relocation of autonomous scooters could reduce the number
of scooters. This results in the following three scenarios:

C00 Baseline scenario without scooter, only walking.

C01 Scooter rides replace walking for trip lengths from 400m,
Scooters are not relocated.

C02 Scooter rides replace walking for trip lengths from 400m,
Scooters are relocated aiming at a minimum number of vehicles,
Duration of empty trips is not limited.
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(a) Change in number of trips (b) Change in total time spent

Figure 5.5: Number of trips and total time spent for all scenarios. Normalization:
C00 = 100.

For walking trips, a speed of 4 km/h, and for scooter rides, a speed of 10 km/h is
assumed. With this speed, a distance matrix is created for the 150 locations on
campus. Since the average time of one scooter trip on campus is only 4min, trip times
would be greatly overestimated when using time intervals of 15min. Therefore, the
demand is divided into 288 time intervals of 5min each. Using these input variables,
the algorithm can be applied as in the carsharing scenarios to find scooter schedules
for the three campus scenarios.

Figure 5.5 shows the number of person and vehicle trips made as well as the to-
tal time spent in each of the three scenarios. On an average workday, there are
almost 40,000 walking trips to and from the buildings. In scenario C00 , the trips
are completely covered by foot. In the scenarios C01 and C02 about a third of
the trips are performed with scooters. This reduces the total time spent trav-
eling by approximately 40 percent. However, in scenario C01 without relocation
nearly 6500 scooters are required. In scenario C02 the number of scooters can be
reduced to about 500 scooters by relocation. The vehicle numbers correspond to
roughly 2.2 vehicle trips per scooter and day in C01 , whereas in scenario C02 a
scooter is used for about 51.0 vehicle trips, of which 23.0 are empty trips.

A test shows the importance of the selected time interval length: If the demand
and the distance matrix are divided into 15min time intervals instead of 5min time
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Figure 5.6: Number of scooters in scenario C02 per time interval, subdivided into
service trips, empty trips and idle.

intervals, the vehicle scheduling algorithm only finds a solution with 1400 scooters
for scenario C02 instead of 500 scooters due to the overestimated travel times.

Figure 5.5 and Figure 5.6, which distinguishes the number of scooters in scenario C02
by activity (service trip, empty trip and idle) per time interval, show that the share
of empty scooter trips on campus is considerably higher compared to the regional
carsharing scenarios discussed in Section 5.6.1. This can be explained by the demand
structure on a university campus with strongly pronounced load directions. The more
asymmetrical the demand, the more vehicles or empty trips are required to serve the
same number of trip requests.

5.7 Conclusion and Outlook

In this chapter, we presented an efficient heuristic for the vehicle scheduling problem
(available at Hartleb et al. (2020)). The aim of the heuristic is to find a vehicle
schedule serving a given demand with as few vehicles as possible.

In contrast to most existing vehicle scheduling approaches, the presented algorithm is
suitable for integration into existing macroscopic travel demand models to estimate
the required vehicle fleet size and the corresponding traffic volumes of on-demand
services. The presented algorithm provides two advantages compared to standard
applications of vehicle scheduling.
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The first advantage is the problem size that it can handle. Due to the simple pro-
cedure of the presented algorithm, vehicle schedules for large instance sizes can be
found in short computation times. This allows the analysis of large-scale on-demand
services with a high number of trip requests. The second advantage is the usability
for integer as well as non-integer demand values. Macroscopic models deal with non-
integer demand structures, which can be handled by the presented algorithm. With
a high temporal resolution, it can also be used in microscopic travel demand models.

In two case studies, we illustrated the applicability of the algorithm in a macroscopic
travel demand model with on-demand services. In the first case study, the algorithm
was used to determine the number of required vehicles and the vehicle distance trav-
eled including empty trips for a regional carsharing system. The results show that
the number of required vehicles can be reduced drastically by using carsharing as
a substitute for private cars. The second case study quantified the impacts of au-
tonomous scooters on the number of required scooters necessary for a shared scooter
service. The results indicated considerable potential for reducing the required fleet
size by relocating the scooters.

One limitation of the algorithm is that travel costs can be considered only to a limited
extent. We discussed extensions to the algorithm to implicitly account for these costs
and illustrate the trade-off between the number of vehicles and empty trips. In further
extensions of the algorithm, time-of-day dependent travel times and different speeds
for service trips and empty trips could be considered. Both extensions allow a more
detailed modeling but potentially have a negative effect on the computation time.

Furthermore, the algorithm does not provide a lower bound on the number of re-
quired vehicles and thus on the solution quality. Although the solution quality was
good in preliminary tests, the gap to the optimal value can be quite large as shown
in the example of Figure 5.2. Further research should address the development of
solution strategies to solve the extremely large instances to optimality, which is done
in Chapter 6.
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Appendix

5.A Notation

Greek letters

δzozd
Distance between two traffic zones zo and zd, in time intervals

δ Maximum distance between any two traffic zones in an instance

Latin capitals

E Set of edges in the network
I Instance

N(z) Set of neighboring traffic zones of zone z
T Set of time intervals
V Set of nodes in the network
Z Set of traffic zones

Latin lower case letters

azt Number of available vehicles at a node vzt
dzozdt Demand from traffic zone zo to zd starting at time intervalt

e Index for edge in the network
fzozdt Flow from traffic zone zo to zd starting at time intervalt
jzozd

Travel time between traffic zones zo and zd, in minutes
l Duration of a time interval
n Number of additionally needed vehicles for relocation
vzt Node representing traffic zone z at beginning of time interval t
t Index for time interval

xz Number of vehicles starting in traffic zone z
z Index for traffic zone
zo Index for origin traffic zone
zd Index for destination traffic zone
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6.1 Introduction

On-demand transport services are becoming more and more popular among travelers
and they have the potential to replace a significant part of the traditional public
transport services in the near future. To be able to react to and regulate such
services in a meaningful way, it is important for infrastructure managers and public
transport authorities to model and estimate the impact of on-demand services on the
utilization of streets. Recently, many microscopic approaches (Bischoff et al., 2017;
Fagnant and Kockelman, 2018; Heilig et al., 2017) have been proposed to model on-
demand services. These rely on the simulation of individual agents to obtain a virtual
traffic volume and estimate the impact of on-demand vehicles on the infrastructure.
In contrast to that, macroscopic approaches such as Richter et al. (2019) model
vehicle and traveler movements as flows to estimate the utilization of streets.

In this chapter, we focus on macroscopic approaches and discuss a simple vehicle
scheduling model for on-demand vehicles: Given demanded vehicle trips, what is the
minimum number of vehicles needed to fulfill the demand? The resulting vehicle
schedule describes vehicle itineraries and yields both the required size of the vehicle
fleet and the positions of the vehicles over time. With this information, the utilization
of streets can be estimated.

Most existing vehicle scheduling approaches are developed for operational purposes
to find an assignment of vehicles to planned trips (El-Azm, 1985; Bunte and Kliewer,
2009; Foster and Ryan, 1976). Recent vehicle scheduling approaches focus on the
integration of further operational aspects, for example, the integration of related
planning steps (Carosi et al., 2019; Schöbel, 2017) or the integration of recharging
strategies of battery electric vehicles (T. Liu and Ceder, 2020; M. Wen et al., 2016).
Compared to these approaches, the application of vehicle scheduling to estimate the
impact of on-demand services in macroscopic models brings two differences: (1) De-
manded vehicle trips are not planned trips but correspond to expected passenger
demand in a macroscopic model. Since these are expected values, both passenger
demand and resulting vehicle fleet size might be fractional. (2) Compared to sched-
uled public transport, the amount of on-demand vehicle trips can be extremely large.
Especially the second difference makes many existing optimization approaches un-
suitable as corresponding problems easily exceed the size of tractable instances. In
Chapter 5, the vehicle scheduling problem is modeled as a network flow problem
that computes the size of the necessary vehicle fleet and their itineraries. Due to the
large instances in realistic applications, in Chapter 5 the vehicle scheduling model
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is solved with a simple heuristic that constructs the vehicle schedule chronologically.
While this heuristic scales well and is thus also able to solve very large instances,
no guarantee on the solution quality is given. Therefore, it is unknown whether a
vehicle schedule computed with the method from Chapter 5 is optimal or how far it
is from an optimal solution.

The contribution of this chapter is a rolling horizon approach to solve the vehicle
scheduling model introduced in Chapter 5 to optimality. The rolling horizon ap-
proach is a heuristic that splits instances into tractable subproblems and solves them
independently. By enforcing overlap of the horizons of these subproblems, it is pos-
sible to look ahead to the demand of the next horizon and include that information
while solving the current subproblem. As a consequence, the decisions taken in the
current subproblem are well suited for the next subproblem and the overall solution
quality can be improved. For a sufficient length of the overlap, we prove that a
globally optimal solution can be found by composing the locally optimal solutions
for the horizons. In numerical experiments, we could solve instances from Chap-
ter 5 to optimality that were too large to be solved as a whole with a commercial
solver. Furthermore, we could show that using the rolling horizon approach can bring
a speed-up in solution time for large instances with millions of trips, compared to
solving them as a whole to optimality.

The remainder of this chapter is structured as follows. In Section 6.2, the vehicle
scheduling problem is introduced and in Section 6.3, we describe the rolling horizon
heuristic in detail as our proposed solution approach. For a sufficiently long overlap
of the horizons, we provide an optimality guarantee for the rolling horizon heuristic
in Section 6.4. By modifying the formulation, we can strengthen the conditions
for optimality. In Section 6.5, we show in numerical experiments that using the
rolling horizon heuristic can help to speed up the solution process for large instances.
Section 6.6 concludes the chapter.

6.2 Problem setting

In this section, we provide a detailed problem description of the vehicle scheduling
problem following from the application in Chapter 5. We want to find a optimal
vehicle schedule, that is, a feasible routing of a minimum number of vehicles meeting
all given demand. A macroscopic model is considered in which neither the demand
nor the resulting size of the vehicle fleet need to be integer.



176 A rolling horizon heuristic with optimality guarantee for vehicle scheduling
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Figure 6.1: Instance with 3 zones and 8 time intervals. A possible assignment of
time intervals to two overlapping horizons {t1, . . . , t1} = {1, . . . ,5} and {t2, . . . , t2} =
{4, . . . ,8} is indicated.

In this setting, the considered time frame and observation area are discretized into a
set of time intervals T and a set of traffic zones Z. The distance δzozd

between two
zones is given as multiples of time intervals, i.e., δzozd

= n means that driving from
zone zo to zd can be done in n time intervals. It is assumed that vehicle trips within
a zone can be performed in one time interval, i.e., δzz = 1 ∀z ∈ Z. The passenger
demand is given aggregated to demanded vehicle trips dzozdt between origin zo and
destination zone zd, starting at the beginning of time interval t. The trips end at
the beginning of time interval t + δzozd

, determined by the distance between origin
and destination zone and the start time. Vehicle trips either correspond to demanded
person trips or, in applications with trip pooling, comprise multiple person trips. For
carsharing or ridesharing applications, we assume that the pooling of person trips
was done in a preceding step, for example, by the approach of Friedrich et al. (2018).

We denote an instance consisting of a set of zones Z, a set of time intervals T , a
distance function δzozd

and aggregated demand dzozdt by I = (Z,T, δ, d). For an
instance I, the aim is to compute a vehicle schedule with a minimum number of
vehicles that meet the demand. The fleet size and the vehicle routes in the schedule
can be used to estimate the infrastructure utilization. Deadheading trips are allowed
to relocate vehicles, and vehicles waiting in a traffic zone can be modeled as empty
trips within a zone.

6.2.1 Network representation

As described in Chapter 5, this problem can be visualized in a time-space network.
Figure 6.1 shows an instance with 3 zones and 8 time intervals. For each combination
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of z and t in the planning horizon, a node vzt is introduced. These nodes are displayed
in a grid structure with time intervals t on the horizontal and traffic zones z on the
vertical axis. Each node vzt represents a traffic zone z at the beginning of a time
interval t. The distance δzozd

between two zones zo and zd is represented by the
horizontal length of the arcs between the corresponding nodes. An arc ezozdt between
two nodes represents a possible vehicle trip between two zones zo and zd, starting
at time interval t. The arrival time t + δzo,zd

results from the start time t and the
distance δzo,zd

. For readability, the arrival time in the notation of an arc is omitted.
The demanded vehicle trips dzozdt are modeled as lower bounds on the arc ezozdt.
A minimum flow in this network corresponds to a vehicle schedule with a minimum
number of vehicles.

6.2.2 Model

In Chapter 5, it is proposed to model the vehicle scheduling problem as a network
flow problem (Ahuja et al., 1988; Bunte and Kliewer, 2009; Schrijver, 2003) on
the time-space network as described in Section 6.2.1. The following linear program
(VS) for finding vehicle tours with a minimum number of vehicles was formulated in
Chapter 5.

min ∑
zo∈Z

∑
zd∈Z

fzozd1 (6.1a)

s.t. fzozdt ≥ dzozdt ∀zo, zd ∈ Z, ∀t ∈ T (6.1b)

∑
zo∈Z∶

t−δzoz≥1

fzoz(t−δzoz) = ∑
zd∈Z

fzzdt ∀z ∈ Z, ∀t ∈ T ∖ {1} (6.1c)

fzozdt ∈ R+ ∀zo, zd ∈ Z, ∀t ∈ T (6.1d)

The flow variables fzozdt ∈ R+ denote the number of vehicle trips from zone zo to
zone zd, starting at the beginning of time interval t. The objective (6.1a) is to
minimize the total number of vehicles, expressed by the number of vehicle trips
starting in the first time interval. The resulting number of vehicles for a flow f is
also referred to as flow value ∣f ∣. The first set of constraints (6.1b) ensures that the
demand is satisfied. If fzozdt > dzozdt, that is, if there are more vehicle trips than
demanded, this can be interpreted as empty trips for vehicle relocation or waiting
in a traffic zone if zo = zd. To obtain a feasible vehicle flow, the second set of
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constraints (6.1c) requires that the number of vehicles is preserved in each zone z at
the beginning of each time interval t. The domains of the flow variables f in (6.1d)
show that the vehicle trips do not need to be integer-valued.

6.2.3 Difficulty of the problem

The problem (VS) is a continuous linear program and can therefore be solved effi-
ciently with available solvers for moderately sized instances. The coefficient matrix is
totally unimodular, hence, the problem of finding integer flows is polynomially solv-
able for integer demand dzozdt ∈ Z (see Garey and Johnson (1979), problem [ND37],
second comment). However, to determine the impact of on-demand vehicles on traffic
and infrastructure in realistic cases of application, the number of time intervals and
traffic zones may be enormous and yield intractable instances.

In Chapter 5, an application instance for the city area of Stuttgart is discussed. In
this instance, the observation area is separated into ∣Z ∣ = 1175 traffic zones and the
time frame of one full day is segmented in ∣T ∣ = 96 time intervals of 15min. The
numbers of variables and constraints of this instance are in the order of 108 and the
corresponding optimization model could not be built with the general-purpose solver
Fico Xpress 8.8 on a laptop with 32GB RAM1.

To handle extremely large instance sizes, in Chapter 5 a simple heuristic is proposed
that chronologically processes the nodes in the network and gradually constructs a
vehicle schedule. By backtracking and repairing the vehicle schedule during construc-
tion, good solutions for huge instances can be achieved. However, the algorithm does
not provide an approximation guarantee for the constructed vehicle schedules (see
Williamson and Shmoys (2011) for more information on approximation algorithms).
That means, it cannot be guaranteed how close the solution is to an optimal one.
Furthermore, no optimality gap is provided by the design of the algorithm.

6.3 Rolling horizon heuristic

In this chapter, we propose using a rolling horizon heuristic to solve the model (VS).
The idea is to divide the considered time frame into shorter time horizons and solve
one subproblem for each time horizon. The solutions to the subproblems can be
composed to a solution for the entire time frame.

1Hardware: Intel® Core™ i7-6700HQ CPU with 32GB of RAM; OS: Windows 10 Enterprise 2015
64-bit
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6.3.1 Generalization of the linear program

To be able to compose the solutions of the subproblems to a feasible global solu-
tion, the optimization model (VS) from Chapter 5 is generalized. We consider an
additional input of vehicles azt that become available in zone z at the beginning
of time interval t. Available vehicles to be considered in one subproblem are a re-
sult of the flow fixed in previous subproblems. We denote the generalized input by
I = (Z,T, δ, d, a) and generalize the optimization program to (VS):

min ∑
zo∈Z

∑
zd∈Z

fzozd1 − azo1 (6.2a)

s.t. fzozdt ≥ dzozdt ∀zo, zd ∈ Z, ∀t ∈ T (6.2b)

∑
zo∈Z∶

t−δzoz≥1

fzoz(t−δzoz) + azt = ∑
zd∈Z

fzzdt ∀z ∈ Z, ∀t ∈ T ∖ {1} (6.2c)

∑
zd∈Z

fzzd1 ≥ az1 ∀z ∈ Z (6.2d)

fzozdt ∈ R+ ∀zo, zd ∈ Z, ∀t ∈ T (6.2e)

As in the program (VS), the objective (6.2a) is to minimize the total number of vehi-
cles needed to serve the demand. Since the flow variables f comprise all moving ve-
hicles (including those that are given as available vehicles), available vehicles a in the
first time interval are subtracted in the objective. This corresponds to minimizing the
number of additional vehicles needed for serving the demand. The constraint (6.2b)
ensuring that all demand is satisfied remains unchanged and is the same as con-
straint (6.1b). It is necessary to generalize the flow conservation constraints (6.2c)
by treating available vehicles azt as incoming flow in nodes vzt. Furthermore, an
additional set of constraints (6.2d) ensures that the outgoing flow in the first interval
considers all available vehicles a since this time interval is not covered in the flow
conservation constraints (6.2c). Note, that for a = 0 the program (VS) coincides with
the program (VS).

6.3.2 Overlapping horizons

The idea of the rolling horizon heuristic is to divide the time frame into horizons and
solve one subproblem for each horizon. By letting the horizons overlap it is further
possible to look ahead to the demand of the next horizon. That means the demand
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in the overlap with the next horizon is considered in the subproblem of the current
horizon. However, the vehicle trips to satisfy this demand are not yet fixed in the
solution to the current subproblem, but in the solution to the next subproblem.

The longer the overlap, the more demand can be considered, which allows moving
vehicles to positions that are well-suited for meeting demand in the next horizon.
These positions of vehicles are considered as available vehicles azt in the subproblem
for the next horizon.

A possible division of a time frame into two overlapping horizons is indicated in the
example network in Figure 6.1. In this example, the first horizon {1, . . . ,5} spans
over the first five time intervals. In the first subproblem, all demand starting in
these five intervals is considered. However, only the flow starting before the overlap,
that is, starting in the first three time intervals is fixed in the solution of the first
subproblem. The flow in the overlap is fixed by solving the subproblem of the second
horizon {4, . . . ,8}.

6.3.3 Algorithm

With the generalized optimization model (VS) we can define the rolling horizon
heuristic. Its general idea is to solve the problem for smaller horizons that may be
overlapping and compose the partial solutions to a solution for the full problem. Let
h denote the number of time intervals in each horizon and let o denote the number
of overlapping time intervals in the rolling horizon heuristic. Naturally, we require
0 ≤ o < h.

The pseudocode for the heuristic is presented in Algorithm 6.1. This algorithm
processes one horizon {ti, . . . , ti} after another (Line 4), with the first horizon starting
in the first time interval (Line 3). The horizons span h time intervals (Line 8) and
each two consecutive horizons have an overlap of o time intervals (Line 7). For each
iteration, the subproblem corresponding to the current horizon is called (Line 5 &
11), which is explained in detail in Algorithm 6.2. Afterward, the available vehicles
are updated to communicate information from the solution of one subproblem to the
next (Line 6). Available vehicles are a mean to model fixed vehicle trips that started
before the overlap. By definition, these trips end max δzozd

− 1 time intervals after
the beginning of the overlap at the latest.

In Algorithm 6.2, the optimization model (VS) is called (Line 5) to find an optimal
vehicle schedule for the subinstance I that is constrained to the current horizon
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Algorithm 6.1: Rolling horizon heuristic
1 Input: Instance I = (Z,T, δ, d), length of horizon h, horizon overlap o
2 Output: Vehicle flow f

# Initialize first horizon from time interval 1 to h, initialize variables for
available vehicles a and flow f with 0;

3 Initialize: i← 1, ti ← 1, ti ← h, azt ← 0 ∀z ∈ Z, t ∈ T ,
fzozdt ← 0 ∀zo, zd ∈ Z, t ∈ T ;

# Iterate through horizons until end of time frame is reached;
4 while ti < ∣T ∣ do

# Solve the subproblem corresponding to the current horizon i and get flow
f;

5 f ← Solve subproblem(I,{ti, . . . , ti}, a, f);
# Update number of available vehicles from fixed flow for next horizons;

6 azt ← ∑
zo∈Z∶

1≤t−δzoz<ti−o

fzoz(t−δzoz) ∀z ∈ Z, t ∈ {ti −o, . . . , ti −o+max δzozd
−1};

# Update bounds of next horizon and goto next horizon by increasing counter
i;

7 ti+1 ← ti + h − o;
8 ti+1 ← ti+1 + h;
9 i← i + 1;

# When reached end of time frame, truncate last horizon at ∣T ∣;
10 t← ∣T ∣;

# Solve the subproblem corresponding to the last horizon i and get flow f;
11 f ← Solve subproblem(I,{ti, . . . , ti}, a, f);
12 Return f ;

Algorithm 6.2: Solve subproblem
1 Input: Instance I, horizon {t, . . . , t}, available vehicles a, (partial) vehicle

flow f
2 Output: Updated vehicle flow f

# Initialize sub-instance I constrained to the horizon;
3 Initialize: T ′ ← {t, . . . , t}, I ← (Z,T ′, δ∣T ′ , d∣T ′ , a∣T ′);
4 do

# Solve generalized optimization problem and get optimal flow f ′ for horizon
T ′;

5 f ′ ← (VS)(I);
# Update total vehicle flow with solution from subproblem;

6 fzozdt ← f ′zozdt
∀zo, zd ∈ Z, t ∈ T

′;
# Add additional vehicles to time intervals before the horizon to conserve

flow;
7 fzzt ← fzzt +min{∑zd∈Z f

′
zzdt

− azt,0} ∀z ∈ Z, t < t;
8 Return f ;
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(Line 3). After each optimization call, the total flow f is updated with the partial
solution found (Line 6). Note, that this overwrites the vehicle flow in the overlap
with the previous horizon. This procedure is equivalent to considering all demand
in the current horizon, but just fixing the flow before the overlap, as described in
Section 6.3.2. The flow in the overlap is discarded and then fixed with the solution
of the next subproblem. If more vehicles were necessary to serve the demand in the
current horizon than in the previous horizons, additional vehicles are added to the
flow f (Line 7). This can be interpreted as introducing waiting vehicles in a traffic
zone during all previous horizons.

Algorithm 6.1 keeps the structure of the rolling horizon heuristic, and for each hori-
zon, the total flow is extended by the vehicle flow found in Algorithm 6.2. In the
end, Algorithm 6.1 returns a vehicle flow for the whole time frame that is composed
by the optimal partial flows for the horizons.

6.4 Quality of the solution

In this section, we prove that the vehicle schedules found by the rolling horizon
heuristic in Algorithm 6.1 are optimal for certain choices of the overlap o. We start
with the argument that the rolling horizon heuristic finds a feasible solution.
Definition 6.1. A flow f is called feasible for an instance I if it satisfies all demand
and fulfills the flow conservation in each vertex, i.e., if constraints (6.1b) and (6.1c)
hold.

Since the partial solutions are optimal and hence feasible solutions to the flow prob-
lems per horizon, the demand is satisfied by the composed vehicle flow. By carrying
over vehicles to the next horizon with the help of available vehicles a, and by intro-
ducing additional waiting vehicles in previous horizons, the flow conservation holds.
Observation 6.2. Hence, the composed vehicle schedule found by the rolling horizon
algorithm is a feasible vehicle schedule for the whole time frame of an instance I.
Theorem 6.3. The rolling horizon heuristic finds an optimal solution for an in-
stance I if

o ≥ 2 ⋅ max
zo,zd∈Z

δzozd
− 1.

Sketch of the proof. The main idea of the proof for Theorem 6.3 is simple: Since the
overlap is long enough, any vehicle trip that was fixed in the solution of a previous
horizon can be corrected by another vehicle trip in any desired direction, if necessary.
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We prove Theorem 6.3 by induction and start with the observation that the flow f1

for the first horizon is optimal.

Next, we consider a flow for the first i horizons, denoted by f i, and assume that
it is optimal for the first i horizons. That means, it is optimal for the instance I =
(Z,T i, δ, d) with restricted time frame T i ∶= {1, . . . , ti}. Hence, the vehicle schedule f i

is a feasible flow that meets all demand starting at the latest at time interval ti, the
end of the ith horizon. Remember that the flow in the overlap {ti − o, . . . , ti} is not
fixed yet but will be overwritten in the next iteration of the rolling horizon heuristic.
The key is to show that fixing vehicle trips that start up to t < ti − o, the beginning
of the overlap, does not prevent the rolling horizon heuristic to find an optimal
solution f i+1 for the first i + 1 horizons if o ≥ 2 ⋅max δzozd

− 1.

To do the induction step, we first consider the demand in the overlap, and, afterward,
vehicles that are not necessary to meet demand in the overlap. Since f i is a feasible
flow for the first i horizons, all demand in the overlap is satisfied. Of course, this
demand is also met in any feasible solution for i+1 horizons. With some adaptions on
the flow in the overlap, it can be shown that any optimal solution f i for i horizons can
be extended by any optimal solution after the overlap. Since these adaptions require
extensive notation, we give a detailed proof for this in Appendix 6.B. The underlying
idea of the proof is, that it is not important which vehicles meet the demand, but it
is ensured that sufficient vehicles are available to meet the demand in the overlap.

For the remaining vehicles, we focus on vehicle trips in f i that start before, and end
at or after the beginning of the overlap ti − o. Vehicle trips that end earlier do not
interfere with the next horizon, and vehicle trips that start later are overwritten by
the solution for the next horizon. Hence, these trips in f i do not restrict the solution
for the (i + 1)st horizon.

The trips under consideration start before the overlap, hence at t ≤ ti − o− 1 and end
at latest at t ≤ ti − o−1+max δzozd

. Relocating the vehicles that have executed these
trips to an arbitrary traffic zone from their current location takes at most another
max δzozd

time intervals. Hence, these vehicles are able to meet demand starting
from any zone at time interval t ≤ ti − o − 1 + 2 ⋅max δzozd

. For o ≥ 2 ⋅max δzozd
− 1,

the vehicles are able to meet demand just after the overlap at t ≤ ti.

Together, this shows that fixing vehicle trips starting before the overlap in the solution
of one subproblem and carrying this decision over to the next subproblem by the
means of available vehicles, does not prevent finding a globally optimal solution.
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There are sufficient vehicles to meet demand starting in the overlap and the remaining
vehicles can be relocated to any zone to meet demand after the overlap.

Theorem 6.3 gives a lower bound on the overlap to ensure finding optimal solutions.
It is further possible to show that this lower bound is minimal.
Lemma 6.4. For o < 2 ⋅ max δzozd

− 1, optimality of the rolling horizon heuristic
cannot be guaranteed.

Proof. We consider an example instance containing two zones and five intervals.
The maximum distance between two zones is δ12 = δ21 = 2. There is only demand
of 1.0 vehicle trips within the first zone starting in time intervals 1 and 5, i.e.,
d111 = d115 = 1.0 and dzozdt = 0.0 otherwise. An outline of the underlying network
can be found in Figure 6.2a.

One optimal solution is to use one vehicle that stays within the first zone all the time
and satisfies the demand during the first and the fifth time interval. This solution is

f11t = 1.0 ∀t ∈ {1, . . . ,5} and fzozdt = 0.0 otherwise,

with an objective value of ∣f ∣ = 1.0. Applying the rolling horizon heuristic to this
instance with a horizon length of h = 4 and an overlap of o = 2 = 2 max δzozd

− 2,
optimality cannot be guaranteed.

When considering the first horizon {1, . . . ,4}, demand d115 = 1.0 lies outside the
horizon and is not considered yet. Therefore, routing 1.0 vehicles to the second zone
after meeting demand d111 is an optimal solution to the first subproblem. This partial
solution

f111 = f122 = f224 = 1.0 and fzozdt = 0.0 otherwise

with an objective value of ∣f ∣ = 1.0 is depicted in Figure 6.2b. Given this partial
solution, it is impossible to satisfy the demand in the fifth time interval with the
same vehicles. When considering the second horizon {3, . . . ,5}, the vehicle trip f122

to the second zone cannot be reverted since it started before the overlap, and it is
impossible to send the 1.0 vehicles back to the first zone in time. In this case, another
1.0 vehicles have to be added to satisfy demand d115 in the fifth interval, yielding a
suboptimal global solution. This solution

f111 = 2.0, f11t = 1.0 ∀2 ≤ t ≤ 5, f122 = f224 = f225 = 1.0 and fzozdt = 0.0 otherwise
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Figure 6.2: Example network with 2 zones and 5 time intervals and suboptimal
solution found by the rolling horizon heuristic for an overlap of o = 2 time intervals.
Dashed lines indicate potential vehicle trips, thick edges positive flow, and grey lines
and vertices are outside of the considered horizon. Numbers in brackets on edges
show demand, numbers without brackets show vehicle flow.

has an objective value of ∣f ∣ = 2.0 and can be seen in Figure 6.2c.

Note, that this example can be generalized to provide a counterexample for any
maximum distance between two zones. Consider a network with the same pattern:
two zones and a distance of δ12 = δ21 between these two zones. Define the demand
by d111 = d11(2 max δzozd

+1) = 1.0 and dzozdt = 0.0 otherwise. Then, the rolling horizon
with a setting of h = 2 max δzozd

and o = 2 max δzozd
− 2 might fail to find the optimal

solution with the same argumentation. This generalization shows that a choice of
o = 2 max δzozd

− 1 is indeed the smallest value for the horizon overlap that ensures
an optimal solution for Algorithm 6.1.

The counterexample in the proof of Lemma 6.4 abuses the fact that an unreasonable
decision to route an empty vehicle to another zone can appear in an optimal solution.
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By preventing this kind of unreasonable vehicle trip, the condition for the optimality
guarantee of the rolling horizon heuristic can be strengthened. In this context, a
vehicle trip to a different zone is considered unreasonable if it does not satisfy any
demand dzozdt or if it is not performed to satisfy any demand in the zone of its
destination. Staying within zones is never considered to be unreasonable as it is
also used to model waiting vehicles during a time interval. This is formalized in the
following definition.
Definition 6.5. A flow f is called unreasonable if for an arc ezozdt with zo ≠ zd
none of the two conditions holds

1. Flow fzozdt satisfies demand dzozdt, i.e., fzozdt = dzozdt.

2. Flow fzozdt is performed to have enough vehicles available to meet demand dzdzt′

starting in zone zd at t′ ∶= t + δzozd
, and otherwise there were too few vehicles,

i.e.,
fzozdt + ∑

zo≠z∈Z∶
t′−δzzd

≥1

fzzd(t′−δzzd
) = ∑

z∈Z
dzdzt′ .

As a consequence, if it is ensured that no flow is unreasonable, all vehicles stay in
the destination zone zd of their last satisfied demand dzozdt unless they are needed
to satisfy demand. In particular, sending 1.0 vehicles from the first to the second
zone in the counterexample is unreasonable. Preventing unreasonable flow helps to
improve the condition for an optimality guarantee.
Theorem 6.6. If it is ensured in each iteration that no vehicle flow is unreasonable,
the rolling horizon heuristic finds an optimal solution for the whole time frame if

o ≥ max
zo,zd∈Z

δzozd
.

Sketch of the proof. The idea for the proof of Theorem 6.6 follows the structure of
the one for Theorem 6.3. In this case, the vehicle trips that start before the overlap
end at the beginning of the overlap t = ti − o, unless they meet demand. Then, after
relocating them, the vehicles are able to meet demand at t ≤ ti − o +max δzozd

, i.e.,
at t ≤ ti for o ≥ max δzozd

.

Since the flow is not unreasonable, the fixed vehicle trips that end after ti − o either
meet demand or relocate vehicles to meet demand in the zone of destination. Hence,
they are not a restriction to finding a globally optimal solution as these trips have to
be performed in any feasible solution. With the same argumentation as in the proof
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of Theorem 6.6, it follows that the rolling horizon heuristic finds an optimal solution
under the given conditions.

Again, it is possible to show that this value is minimal.
Lemma 6.7. For o < max δzozd

optimality of the rolling horizon heuristic cannot be
guaranteed, even if it is ensured in each iteration that no vehicle flow is unreasonable.

Proof. We again provide a counterexample to show that the rolling horizon heuristic
might not be optimal if o = max δzozd

−1. This instance has two zones and max δzozd
+2

intervals, where the case of max δzozd
= δ12 = 2 is depicted in Figure 6.3a. The only

demand in this instance is d111 = d22(max δzozd
+2) = 1.0. An optimal solution is

f111 = f122 = f22(max δzozd
+2) = 1.0 and fzozdt = 0.0 otherwise

with an optimal objective value of 1.0.

With the assumption of no unreasonable flow, the rolling horizon heuristic with
parameter setting h = max δzozd

+ 1 = 3 and o = max δzozd
− 1 = 1 cannot find an

optimal solution for this instance. In the first horizon {1, . . . ,max δzozd
+ 1}, de-

mand d22(max δzozd
+2) is not considered and flow f111 = f112 = ⋅ ⋅ ⋅ = f11(max δzozd

+1) =

1.0 is fixed, see Figure 6.3b for the case max δzozd
= δ12 = 2. In the second horizon

{3, . . . ,max δzozd
+ 2} it is not possible any more to route the available vehicle from

the first zone to the second zone to satisfy demand d22(max δzozd
+2) = 1.0. This situ-

ation can be seen in Figure 6.3c. It is necessary to introduce 1.0 additional vehicles
in the second zone, which yields the suboptimal solution

f11t = f22t = 1.0 ∀t ∈ T and fzozdt = 0.0 otherwise

with the objective value 2.0. This shows that in case of no unreasonable flow
the rolling horizon heuristic only is guaranteed to find an optimal solution for o ≥
max δzozd

.

Unreasonable flow can be avoided, for example, by using the objective function (6.3):

∑
zo∈Z

∑
zd∈Z

fzozd1 − azo1 + ∑
zo∈Z

∑
zd∈Z

czozd ∑
t∈T

fzozdt. (6.3)

with artificial routing costs c. By setting czz = 0 and 0 < czozd
< 1

∣T ∣ ∀zo ≠ zd ∈ Z,
waiting in a zone is always preferred to an unreasonable flow. The upper bound
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(a) Instance:
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(b) An optimal
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Figure 6.3: Example network with 2 zones and 4 time intervals and suboptimal
solution found by the rolling horizon heuristic for an overlap of o = 1 time interval.
Dashed lines indicate potential vehicle trips, thick edges positive flow, and grey lines
and vertices are outside of the considered horizon. Numbers in brackets on edges
show demand, numbers without brackets show vehicle flow.

on czozd
ensures that never additional vehicles are acquired to save artificial routing

costs. This means, using objective (6.3) with that cost setting minimizes the number
of vehicles and at the same time prevents unreasonable flow.

6.5 Numerical experiments

Chapter 5 discusses instances with up to 108 vehicle trips and a similar amount of
variables. While it was not possible to build an optimization model (VS) for such
huge instances with the solver FICO Xpress on a laptop with 32GB RAM, optimal
solutions for these instances could be found with the rolling horizon heuristic on the
same machine.
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p 1 2 3 4 5 6 7 8 9 10 11
h 96 53 39 32 28 25 23 21 20 19 18

∣Z∣ trips rel CPU abs CPU [s]

20 3.8 104 1.0 1.17 1.27 1.43 1.40 1.53 1.69 1.84 1.90 2.05 2.15 1.0
40 1.5 105 1.02 1.01 1.0 1.10 1.16 1.23 1.25 1.36 1.37 1.42 1.65 4.3
60 3.5 105 1.31 1.06 1.0 1.06 1.09 1.15 1.15 1.22 1.26 1.44 1.41 10.7
80 6.1 105 1.42 1.11 1.0 1.03 1.04 1.14 1.12 1.19 1.20 1.21 1.27 22.1

100 9.6 105 1.49 1.08 1.01 1.0 1.02 1.03 1.06 1.09 1.16 1.19 1.27 38.4
120 1.4 106 1.78 1.18 1.0 1.00 1.10 1.04 1.12 1.16 1.15 1.21 1.20 62.2
140 1.9 106 1.72 1.17 1.04 1.0 1.05 1.06 1.07 1.08 1.12 1.13 1.15 95.8
160 2.5 106 1.76 1.18 1.03 1.03 1.0 1.05 1.04 1.06 1.10 1.14 1.12 142.2
180 3.1 106 1.82 1.18 1.04 1.0 1.03 1.02 1.04 1.02 1.04 1.05 1.10 194.0
200 3.8 106 1.95 1.42 1.17 1.12 1.07 1.0 1.04 1.09 1.05 1.07 1.11 241.7
220 4.6 106 1.93 1.25 1.08 1.10 1.07 1.03 1.0 1.05 1.08 1.10 1.08 316.1
240 5.5 106 1.81 1.19 1.02 1.0 1.03 1.04 1.07 1.06 1.09 1.05 1.07 437.2

Table 6.1: Solution times for varying instance sizes (number of zones ∣Z ∣) and length
of horizon h. The top two rows indicate the length per horizon h and the correspond-
ing number of subproblems p. The first two columns state the number of zones ∣Z ∣

and the resulting number of vehicle trips. The last column gives the best absolute
solution time in seconds per instance size. The remaining columns show the solution
times relative to the best solution time per instance size.

Besides the fact that huge instances become tractable, splitting the problem into
subproblems can speed up the solution process for tractable instance sizes. We con-
duct experiments on randomly generated instances with ∣T ∣ = 96 time intervals, a
maximum distance of max δzozd

= 10 time intervals between zones, and a varying
number of zones ∣Z ∣. The rolling horizon heuristic is used with the adjusted objec-
tive function (6.3) and a minimum overlap of o = 10 that ensures finding an optimal
solution. For each instance size, that means, for each number of zones ∣Z ∣, five ran-
domly generated instances are solved with various settings for the horizon length h.
The horizon length h and the overlap o determine the number of subproblems p that
need to be solved during the rolling horizon heuristic. Applying the rolling horizon
heuristic with a horizon length of 96 time intervals means solving the whole problem
at once and is considered as the base case.

Table 6.1 shows relative and best absolute solution times for finding a globally optimal
solution, averaged over five random instances for each instance size. Both the number
of trips and the average absolute solving time increase exponentially with the number
of zones, indicating that large instances are hard to solve.

A value of 1.0 in the top left corner indicates that it is fastest to solve the instances
with 20 zones at once, i.e., with a horizon length of h = 96. With decreasing length of
the horizon, and thus increasing number of subproblems, the solution times increase.
For example, solving the same instances by splitting them up into 11 horizons span-
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ning 18 time intervals each, thus solving 11 (smaller) subproblems, takes more than
twice as long as the fastest option.

The larger the instances, the more it pays off to solve a larger number of small
subproblems instead of only a few but large subproblems. With the tendency to
increase further, solving instances with a number of trips in the order of magnitude
of 106 at once took almost twice as long as solving them with the rolling horizon
approach in the best setting. Comparably low computation times could be achieved
with various settings for the horizon length.

6.6 Conclusion and Outlook

6.6.1 Conclusion

This chapter presented an alternative way to solve a simple vehicle scheduling prob-
lem as it occurs, for example, in the context of traffic estimation. The aim of the
presented solution approach is to meet the given demand with the least amount of
vehicles possible. For certain applications such as on-demand services, the number
of demanded trips can be extremely large, making real-world instances intractable.

We proposed a rolling horizon heuristic to solve large instances of this problem. The
principle is to split the considered time frame into small horizons and solve a vehicle
scheduling problem for each horizon. For a sufficient overlap of the horizons, we
proved that a solution composed of the partial solutions of the horizons is globally
optimal. By introducing artificial routing costs, we could further relax the condition
on the optimality criterion which makes finding optimal solutions less expensive.

In experiments, we found that the rolling horizon approach has a computation time
advantage over solving a full model already for moderately sized instances, which
illustrates the benefit of our approach also for instances of medium size.

6.6.2 Outlook

The presented rolling horizon approach was motivated with and developed for the
application of vehicle scheduling in macroscopic demand models. However, the un-
derlying theory of the solution approach is more general. The vehicle scheduling
problem (VS) was modeled as a general network flow problem on a directed cycle-
free graph. Hence, the presented rolling horizon approach is also applicable to a
wider set of applications that can be modeled similarly.
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Furthermore, it would be interesting to investigate whether the basic idea of the proof
can be adjusted to be used in an even broader range of applications. The key ingredi-
ent of the proof is that decisions do not influence the remote future, which is the case
in many applications with time-space networks, for example. Therefore, it might
be possible to prove that a rolling horizon solution approach is capable of finding
optimal solutions in other applications as well. This could be especially interesting
for applications of online optimization where information is revealed successively.
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Appendix

6.A Notation

Greek letters

γ Vehicle duty
δzozd

Distance between two traffic zones zo and zd, in time intervals
ϕ Value of flow f
τ Vehicle tour

Latin capitals

I Instance
T Set of time intervals
T Set of vehicle tours
W Set of nodes v with waiting vehicles
Z Set of traffic zones

Latin lower case letters

azt Number of available vehicles at node vzt
czozd

Travel cost per vehicle from traffic zone zo to zd
dzozdt Demand from traffic zone zo to zd starting at time intervalt
ezozdt Edge from traffic zone zo to zd starting at time interval t
fzozdt Flow from traffic zone zo to zd starting at time interval t

h Number of time intervals in a horizon
i Iterator used to index horizons
k Iterator used to index vehicle tours
o Number of overlapping time intervals in the rolling horizon heuristic
p Number of subproblems
t Index for time interval

vzt Node representing traffic zone z at beginning of time interval t
wzt Waiting vehicles at node vzt
x Number of vehicles
z Index for traffic zone
zo Index for origin traffic zone
zd Index for destination traffic zone
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6.B Proof of optimality

To proof Theorem 6.3, some additional definitions and observations are helpful. From
Observation 6.2 we know that a composed solution for an instance I found by the
rolling horizon heuristic is feasible. It remains to prove that the solution does not
require more vehicles than an optimal solution to the program (VS). To this end, we
introduce necessary notation to examine the vehicle flow per vehicle tour.
Definition 6.8. A ϕ-vehicle tour is a sequence

τ = ((zo1zd1t1), . . . , (zonzdntn))

of n consecutive vehicle trips with a positive flow of value ϕ ∈ R+. Consecutive trips
are characterized by

zdi = zoi+1 and ti + δzoizdi
= ti+1 ∀1 ≤ i < n.

A ϕ-vehicle tour can be imagined as a tour that is driven by exactly ϕ vehicles.
Obviously, a vehicle schedule consists of many vehicle tours:
Observation 6.9 (Schrijver, 2003). A feasible flow f can be decomposed into a finite
set of vehicle tours {τk}k such that the sum of all vehicle tour values ∑k ϕk equals
the total flow ∣f ∣. Each of the vehicle tours spans the whole time frame, i.e.,

t1 = 1 and tn + δzonzdn
> ∣T ∣.

Such a decomposition is not unique.

Next, we introduce vehicle duties to keep track of which vehicle tour serves which
demand.
Definition 6.10. Let I = (Z,T, δ, d) be an instance and let f be a feasible vehicle
schedule, decomposed to a set of vehicle tours. A mapping γ from a vehicle tour τ
and a vehicle trip (zo, zd, t) to a positive value,

γ∶ (τ, (zo, zd, t)) ↦ R+

is called vehicle duty if the following three conditions hold:

1. The value is only positive if the vehicle trip is in the tour,

γ (τ, (zo, zd, t)) > 0⇒ (zo, zd, t) ∈ τ.
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2. The value is at most the value ϕ of the vehicle tour,

γ (τ, (zo, zd, t)) ≤ ϕ.

3. The sum of values for one vehicle trip (zo, zd, t) sum up to the demand dzozdt

on that trip,

∑
τ ∶(zo,zd,t)∈τ

γ (τ, (zo, zd, t)) = dzozdt ∀(zo, zd, t).

A vehicle duty can be interpreted as assigning all demand to vehicle trips that meet
the demand.
Observation 6.11. For each feasible flow f decomposed to a set of vehicle tours,
there exists a vehicle duty such that the tour value ϕ of each vehicle tour equals the
value of the last positive demand assigned to the tour. Demand dzozdt is called the
last demand assigned to the tour if there is no other demand dzo

′zd
′t′ assigned to that

tour with t′ > t.

For any vehicle duty, this can easily be constructed by iteratively splitting each ϕ-
vehicle tour not fulfilling this criterion into two ϕ1 and ϕ2 vehicle tours with the
same sequence of vehicle trips where at least one tour fulfills the criterion.
Definition 6.12. Such a vehicle duty is called maximal vehicle duty.

Proof of Theorem 6.3. We show that a composed vehicle schedule of the rolling hori-
zon heuristic is optimal for the whole time frame by induction over the number of
horizons.

Induction basis
It is easy to see that the optimization program (VS) finds an optimal solution f1 for
the first horizon {t1, . . . , t1} = {1, . . . , h}.

Induction hypothesis
We consider a solution f i of the rolling horizon algorithm for the first i horizons and
as an induction hypothesis, we assume that the solution is optimal. That means, it
is not possible to satisfy all demand dzozdt for t ≤ ti with less than xi ∶= ∣f i∣ vehicles.
This flow f i is fixed up to the beginning of the overlap and may not be changed
by the solution of a future horizon. The flow in the overlap, f izozdt

for t ≥ ti − o is
overwritten by the solution of the next horizon and may change.
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Induction step
Let f∗ be a optimal solution for i + 1 horizons, for example found by solving the
optimization model (VS). Our aim is to show that a solution from the next iteration
of the rolling horizon heuristic with an overlap of o ≥ 2 ⋅max δzozd

− 1 is optimal for
i + 1 horizons. This is done by constructing a feasible flow f i+1 for the first i + 1
horizons that is identical to the flow f i before the overlap and uses x∗ ∶= ∣f∗∣ vehicles.
Since we can construct such a solution, Algorithm 6.2 in the rolling horizon heuristic
will find a solution that is at least as good.

First, we consider a decomposition of the flow f i into finitely many vehicle tours τ i,
and a maximal vehicle duty γi assigning all demand to the vehicle tours. We ’cut
off’ each vehicle tour τ i

I after meeting the last demand that starts in the overlap and that is assigned
to that tour, or else,

II if no demand starting in the overlap is assigned to that tour in the vehicle duty,
after the first vehicle trip that ends in the overlap.

To formalize, let

τ i = ((zo1, zd1, t1), . . . , (zok, zdk, tk), (zok+1, zdk+1, tk+1), . . . , (zon, zdn, tn))

be a vehicle tour in flow f i. Let (zok, zdk, tk) be the last vehicle trip starting in
the overlap with demand assigned to the tour τ i, or else, be the first vehicle trip
that ends in the overlap. Then, the rear part after this vehicle trip, starting with
(zok+1, zdk+1, tk+1), is cut off, which yields the incomplete tour

τ ′ = ((zo1, zd1, t1), . . . , (zok, zdk, tk)).

This can be interpreted as letting all vehicles from vehicle tour τ i wait in zone zdk
at time interval tk + δzokzdk

.

I We denote the number of all vehicles waiting in node vzt after meeting demand
that starts in the overlap by wI

zt and initialize the set of vertices where these
vehicles are waiting as

W I
= {vzt ∶ w

I
zt > 0, z ∈ Z, ti − o < t ≤ ti +max δzozd

}.
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II Equivalently, we denote the number of all vehicles waiting in node vzt after the
first vehicle trip ending in the overlap by wII

zt.

This leaves us with incomplete vehicle tours that start in the first time interval and
end sometime after the beginning of the overlap with waiting vehicles.

Next, we use these incomplete vehicle tours as a basis for the flow f i+1 that we want
to construct as a solution for the first i + 1 horizons. We set

f i+1
zozdt

∶= ∑
τ ′∶(zo,zd,t)∈τ ′

ϕ(τ ′) ∀zo, zd ∈ Z, t ∈ {1, . . . , ti}

where ϕ(τ ′) is the flow value of vehicle tour τ ′. We want to highlight three charac-
teristics of f i+1:

1. Since the tours τ ′ are not cut off before the start of the overlap, f i+1 is iden-
tical to flow f i up to the beginning of the overlap. This is required for the
construction of f i+1 since all vehicle trips before the overlap are fixed by the
design of the rolling horizon heuristic.

2. Since it is defined by incomplete tours, f i+1 is not a feasible flow (yet). The
flow conservation does not hold at some nodes. In this proof, we show that it
is possible to extend it to a feasible flow at these nodes.

3. Since the tours τ ′ are cut off after meeting the last demand, f i+1 does meet all
demand starting up to the end of the overlap.

Our goal is to show that we can complete f i+1 to a feasible flow for i + 1 horizons
while using x∗ vehicles. The sum of all flow values of the incomplete tours is xi,
equal to the flow value of f i. It holds that xi ≤ x∗, otherwise f i is not optimal for the
first i horizons as f∗∣i would be a better solution, which contradicts the induction
hypothesis. In case that xi < x∗ we add (x∗−xi) more vehicles to f i+1 at an arbitrary
zone, for example by letting them stay in the first zone until the beginning of the
overlap:

f i+1
11t ∶= f

i
11t + (x∗ − xi) ∀t < ti

This increases the number of waiting vehicles wII
1ti

in node (1, ti) by (x∗ −xi). Then,
the sum of all flow values in f i+1 is x∗, as in any optimal flow f∗.

Next, we consider an arbitrary but fixed optimal solution f∗ for i + 1 horizons, de-
composed into finitely many vehicle tours τ∗, and a vehicle duty γ∗ assigning all
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demand to the vehicle tours τ∗. Let T be the set of all tours τ∗ in f∗. We aim to
extend the incomplete tours in f i+1 with the rear parts of the tours in f∗.

I First, we consider waiting vehicles wI
zt that met demand starting in the overlap.

We extend f i+1 according to the following procedure:

While W I is not empty, we choose an arbitrary node vzt ∈W I. By defini-
tion of W I, at least wI

zt demanded vehicle trips end in node vzt. Hence,
there exist vehicle tours τ∗ ∈ T that this demand was assigned to, other-
wise f∗ was infeasible. We extend f i+1 at node vzt with these tours τ∗

from f∗ until there are no more waiting vehicles wI
zt in node vzt:

While wI
zt > 0, we take such a tour τ∗ with tour value ϕ(τ∗) and

remove it from the set T . If ϕ(τ∗) > wI
zt, we split the tour τ∗ into

two tours with the same sequence of vehicle trips as τ∗, one tour τ∗w
with flow value wI

zt, and one tour τ∗ϕ−w with flow value ϕ(τ∗) − wI
zt.

Else, for ϕ(τ∗) ≤ wI
zt, we take the tour with the full value ϕ(τ∗) and

define τ∗w ∶= τ∗.

We extend f i+1 at node vzt with tour τ∗w and put τ∗ϕ−w back into the
set T . Extending f i+1 with tour τ∗w means, we increase the flow value
f i+1
zo

′zd
′t′ for each vehicle trip (zo

′, zd
′, t′) in tour τ∗w after node vzt by

the value ϕ(τ∗w),

f i+1
zo

′zd
′t′ = f

i+1
zo

′zd
′t′ + ϕ(τ

∗
w) ∀(zo

′, zd
′, t′) ∈ τ∗w ∶ t

′
≥ t.

Based on this extension of f i+1, we update the number of waiting
vehicles:

At the current node vzt, there are ϕ(τ∗w) waiting vehicles less,
hence, we set wI

zt ∶= w
I
zt −ϕ(τ

∗
w). Moreover, it might be that some

further demand dzo
′zd

′t′ starting in the overlap after node vzt was
assigned to vehicle tour τ∗w in the optimal flow f∗, that means,
γ∗(τ∗w, (zo

′, zd
′, t′)) > 0 for t < t′ ≤ ti. Then, we assign this demand

to the newly extended tour in f i+1 as well. In particular, we undo
the assignment of this demand to another tour τ i+1 in f i+1.

If demand dzo
′zd

′t′ was the last demand assigned to tour τ i+1, this
has two consequences: First, it caused wI

zd
′(t′+δzo′zd

′) waiting vehi-
cles after the demanded vehicle trip (zo

′, zd
′, t′). We remove these
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waiting vehicles since the demand is met by the newly extended
vehicle tour in f i+1 as well:

wI
zd

′(t′+δzo′zd
′) ∶= max{wI

zd
′(t′+δzo′zd

′) − γ
∗
(τ∗w, (zo

′, zd
′, t′)),0}.

Second, since the assignment of the last demand to tour τ i+1 is un-
done, either another demand dzo

′′zd
′′t′′ with ti−o ≤ t′′ < t is the last

demand, or no other demand that starts in the overlap is assigned
to tour τ i+1. In the first case, we increase the number of waiting
vehicles wI

zd
′′(t′′+δzo′′zd

′′) after that demand by γ∗(τ∗w, (zo′, zd′, t′))
since it is now the last demand. In the second case, we increase
the number of waiting vehicles wII

ẑt̂
by γ∗(τ∗w, (zo′, zd′, t′)), where

node (ẑ, t̂) is the first node of tour τ i+1 in the overlap.

If wI
zt = 0 for any node vzt after updating of the number of waiting

vehicles, we remove it fromW I and continue with the next node inW I.

This procedure extends f i+1 with vehicle trips from f∗ until there are no
more waiting vehicles wI

zt at node vzt. During this construction, also the
waiting vehicles at other nodes might be changed. We want to emphasize
that this procedure is well-defined and finite. There exist sufficient vehicle
tours in the set T to be chosen from in the procedure. For each node vzt,
at most vehicle tours with a total flow value of incoming demand at vzt are
requested from set T . Since all demand is met by the solution f∗, these
tours exist. Furthermore, we reduce the waiting vehicles in all future nodes
by the flow value of a tour, if a tour with assigned demand is removed
from T . Hence, taking a tour τ∗ with assigned demand ending in vzt from
set T is well-defined. In each update of the number of waiting vehicles,
the total number of waiting vehicles never increases. Furthermore, it is
impossible to process waiting vehicles caused by the same demand twice,
which makes the procedure finite.

This procedure is applied to all nodes with waiting vehicles wI until the set of
waiting vehicles W I is empty. After this procedure, we obtain an incomplete
flow f i+1 with some complete tours that start in the first time interval and
reach the end of the horizon, and some waiting vehicles wII after the beginning
of the overlap that were not treated yet.
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II Second, we consider these waiting vehicles wII after the beginning of the overlap.
We start with determining the amount of waiting vehicles wII: Let x denote
the sum of the flow values of the complete tours constructed in case I. Since
these tours are based on flow f i and extended with tours from the optimal
solution f∗, the sum of the flow values of the vehicle tours left in the set of
tours T is equal to the total number of waiting vehicles wII, namely (x∗ − x).
The waiting vehicles wII

zt are present at nodes vzt after the first vehicle trip that
starts before and ends in the overlap. Hence, the vehicles are waiting in zone z
at the beginning of time interval t with

t ≤ ti − o − 1 +max δzozd
.

It is important to note that all demand in the overlap is met by the complete
tours constructed in case I and we do not need to take care of this.

We disconnect the remaining vehicle tours in the set T at the first node vz′t′
after the overlap into two incomplete tours. Then, it is possible relocate the
waiting vehicles to zone z′ within at most max δzozd

time intervals, that means
the vehicles can be available in zone z′ at latest at

t ≤ ti − o − 1 + 2 ⋅max δzozd
≤ ti ≤ t

′.

That means, it is possible to relocate the waiting vehicles wII within the overlap
and extend f i+1 with the rear parts of the disconnected vehicle tours from f∗.

As a result, we obtain a feasible flow f i+1 for the first i + 1 horizons that uses x∗

vehicles. This flow is identical to flow f i before the overlap, and identical to flow f∗

after the overlap. For the time intervals in the overlap, we constructed f i+1 in such
a way that it connects f i and f∗. By construction, it is ensured that all demand is
satisfied and with the help of waiting vehicles we could connect the flows ensuring
flow conservation at each node.

Since it is possible to construct a flow f i+1 with these characteristics, the rolling
horizon algorithm will find a vehicle schedule for i + 1 horizons that is at least as
good. The theorem follows by induction.
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In this thesis, we investigated the interaction of the estimation of passenger demand
and the planning of public transport services. Existing research on public transport
planning can in most cases be attributed to either the demand-oriented or the supply-
oriented approaches. In demand-oriented approaches, a transport supply is assumed
to be fixed and the corresponding passenger demand is evaluated. In this setting, a
new or an adapted version of a public transport service is compared to the status
quo and then adjusted. In supply-oriented approaches, a public transport service is
designed for a given demand. Both approaches neglect the interaction of demand
and supply. In particular, if a public transport service changes, the corresponding
demand is likely to change as well. The other way around, when the demand struc-
ture changes, the service should be adjusted to the new demand. We developed novel
optimization models to estimate the passenger demand during public transport ser-
vice optimization. The focus is on the design of the timetable and line plan on the
supply side, and the estimation of the passengers’ route and mode choices on the
demand side.

Furthermore, we considered a vehicle scheduling problem as it occurs in the context
of on-demand services in travel demand modeling. Travel demand models require a
transport supply to be given. However, in contrast to scheduled public transport,
on-demand services cannot be planned beforehand and be used as input. Instead, the
service depends on and changes with the demand. Hence, to estimate the demand,
also the on-demand service has to be estimated simultaneously. We used a vehicle
scheduling model to estimate the fleet size and vehicle distance traveled of the on-
demand service and develop two solution approaches to solve the problem for really
large instances.

In this chapter, we summarize the main findings of this thesis, highlight implications
from our research, reflect on the limitations of this thesis, and discuss directions for
future research.

7.1 Main findings and implications

Enhancing supply-oriented models by integrating passenger demand estimation im-
plies that the considered objective functions have to be modified. Before modifying
objective functions, we first used the example of timetables in Chapter 2 to examine
the extent to which evaluation functions agree on the quality of solutions. To this end,
we classified established evaluation functions from the literature and identified three
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components in which the functions differ from each other. Based on the components,
we defined a set of representative timetable evaluation functions for the commonly
used functions in the literature. All of the considered functions are designed to assess
the quality from the passengers’ perspective.

We investigated to what extent the different timetable evaluation functions agree on
the quality of timetables. For this purpose, we described a novel method to quantify
the inconsistency between evaluation functions. This method allows an analysis of
the inconsistency of the defined evaluation functions. The findings of this analysis
are qualitatively similar for sets of timetables on an artificial grid network and the
railway network of Netherlands Railways. Although the evaluation functions are
defined to assess the quality of timetables from the passengers’ perspective, we found
high inconsistencies between them. Due to the structure of the evaluation functions,
it is possible to identify which components are responsible for differences in evaluation
results. Vice versa, this structure also gives insights into how evaluation functions
can be simplified without distorting the evaluation results.

Most notably was the found difference between travel time-based and utility-based
evaluation functions. While travel time-based functions are mostly used for evalu-
ation, utility-based functions are shown to be suitable for choice modeling of pas-
sengers. This raises the question of why utility-based functions are not used more
for evaluation. Furthermore, also within travel time-based evaluation functions high
inconsistencies were found, caused by different quality measures, parameter settings,
and assumptions on the passenger distribution. Our findings support the supposition
that timetable evaluation functions can be inconsistent, even if they are all designed
for evaluation from the passenger perspective. The inconsistencies implicate that,
depending on which evaluation function for assessing the quality for passengers is
used, different timetables might be considered optimal. This finding is particularly
crucial for Operations Research models where the evaluation functions are used as
objectives to guide the search for solutions.

In Chapter 3 we studied how a passenger distribution can be estimated during time-
tabling. The public transport timetable determines travel and transfer times for
passengers on each possible route and hence has an impact on which routes pas-
sengers choose. Given the quality of the routes, the passenger distribution can be
estimated with the logit model. Since the logit model is non-linear and non-convex
in the quality of routes, we investigated two linear representations of a passenger dis-
tribution within timetabling. For the first representation, we developed a novel mul-
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tidimensional linear passenger distribution model which resembles the logit model.
The second representation is based on a simulation framework to approximate a logit
distribution within the optimization model.

In experiments on a set of artificial instances and a part of the Dutch Railway net-
work, we compared the two novel formulations with four state-of-the-art approaches.
All solutions were compared using four different evaluation functions, including both
travel time-based and utility-based functions. In general, we were able to find better
timetables for passengers using the novel models with an integrated passenger route
choice model than with the considered state-of-the-art approaches. Compared to
the state-of-the-art approaches, the new methods significantly reduced the gap to an
ideal solution for passengers according to some evaluation functions, while achieving
similarly good results according to other evaluation functions. In addition, our exper-
iments provide insight into (1) how considering multiple routes for passengers instead
of a single route, and (2) how integrating route choice instead of a predetermined
route assignment affects solution quality.

In Chapter 4, we investigated the interaction between line planning and mode and
route choices of travelers. Travelers only choose to use a public transport service, if
it offers a good service quality. In particular, the service should be frequent, fast,
and with as few transfers as possible. These factors of influence for both the mode
and route choice of travelers are determined by the line plan. Hence, we considered
mode and route choice during line planning to get a good estimate of the number of
passengers and design the service for the corresponding passenger demand.

We developed a problem formulation for line planning with integrated choice mod-
els for mode and route choice. By suitable assumptions and preprocessing of the
utilities of routes for passengers, we are able to provide a mixed-integer linear pro-
gram for this problem. The mixed-integer linear program can be solved with available
general-purpose solvers and we provide and test means to improve the computational
performance. The model can be combined with any choice model to estimate the
mode choice that does not need to be linear.

In experiments on the Intercity network of the Randstad, a metropolitan area in the
Netherlands, we used the logit model to estimate the mode choice. We compared the
developed model with a standard line planning model that assumes a fixed passenger
demand. We found that integrated demand estimation yields line plans that are
well-suited for the demand they generate. The line plans found with the developed
model generated higher profits for the operator and provided a higher level of service
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to the passengers. These experiments suggest that the passenger demand should
be estimated during line planning, otherwise the solution quality can be limited by
the assumed passenger demand. Furthermore, a sensitivity analysis showed that
the operators’ profit reacts sensitively to the total travel demand. Consequently,
operators should respond regularly to changes in travel demand and adjust their
services. This helps them to obtain the highest possible profit and to offer a high-
quality service to their passengers.

In Chapter 5 we considered a vehicle scheduling problem for on-demand services
within a macroscopic travel demand model. The travel demand model estimates the
travel demand for a given transport supply. However, on-demand services depend
on the demand and the service level cannot be determined before the demand is
known. Hence, the service level and its impact on the transport network have to be
estimated during demand estimation. Important factors are the required fleet size
and the vehicle distance traveled. These values can be found with a vehicle schedule
for the on-demand service. Since the required vehicle trips are not necessarily integer
in a macroscopic model, and the number of required trips is considerably larger than
in scheduled public transport applications, a new approach has to be developed.

We modeled this problem in Chapter 5 as a network flow problem and provided
a heuristic solution algorithm to construct vehicle schedules. The algorithm can
be applied to both integer and non-integer demand values and is therefore especially
suited for an application in macroscopic models. Our heuristic scales well and we were
able to find solutions to huge instances in short computation times. We demonstrated
in two case studies how the algorithm can be applied to estimate the vehicle fleet size
and the vehicle distance traveled of on-demand services within a macroscopic travel
demand model. In both case studies, our results show that the number of required
vehicles can be drastically reduced by relocating vehicles. Furthermore, we provide
extensions to the algorithm to implicitly consider the travel costs of the vehicles.
The trade-off between the number of required vehicles and vehicle distance traveled
is illustrated in experiments.

In Chapter 6, we considered the same vehicle scheduling problem as in Chapter 5.
The solution algorithm developed in Chapter 5 is able to find good vehicle schedules
in short computation times, but it does not provide a guarantee on the solution
quality. It is not known whether the found solution is optimal or how far it is from
an optimal solution.
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Therefore, we developed an alternative solution algorithm for the vehicle scheduling
problem of on-demand services within a macroscopic travel demand model. The al-
gorithm is based on a rolling horizon framework where the considered time frame is
split into smaller horizons. For each horizon, a sub-problem can be solved to optimal-
ity and the partial solutions can be composed to a solution for the whole problem.
We generalized the network flow problem such that the horizons can overlap and
provided an optimality guarantee for the composed solution if the horizons overlap
sufficiently. With this framework, we were able to find optimal solutions for instances
that were too large to be solved at once. In this way, Chapter 6 helped to understand
that the heuristic approach in Chapter 5 provides good solutions also for very large
instances. We also showed in experiments that the rolling horizon framework brings
a speed-up for solving large instances with millions of trips, compared to solving
them as a whole.

Moreover, the presented solution strategy in Chapter 6 is more general. We devel-
oped it for a vehicle scheduling problem modeled as a network flow problem on a
directed cycle-free graph. Hence, it is possible to be applied to a wider set of appli-
cations that are based on a similar network flow problem than only to the presented
vehicle scheduling problem. This means the rolling horizon algorithm with overlap-
ping horizons and the optimality guarantee can be used to find optimal solutions for
extremely large instances for other applications as well.

7.2 Limitations and future research

Solution approaches. The research in this thesis was motivated by the need for
better public transport services that are tailored to the corresponding demand. We
developed novel public transport optimization models with integrated choice models
for passenger demand estimation. In experiments, we showed the benefits of these
approaches and gained valuable insights for operators and public transport authori-
ties. However, for the experiments in Chapters 2 and 3 we relied on the solver Fico®

Xpress for finding solutions. As Xpress is a general-purpose solver, it does not utilize
the special structure of the adjusted timetabling and line planning problems. As a
result, only instances of moderate size could be solved, and solution times were high.
Therefore, further research should deal with the development of suitable solution
algorithms or the adjustment of special purpose solvers to solve larger instances and
reduce computation times.
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For the timetabling problem with integrated route choice, it may be possible to extend
existing methods, such as the modulo network simplex (Nachtigall and Opitz, 2008).
An example of an extension to the modulo network simplex was recently proposed in
Löbel et al. (2019) to consider passenger routes on a shortest path. The structure of
their approach should allow a generalization to also consider a passenger distribution
on multiple routes during optimization.

Similarly, for the line planning model with integrated mode and route choice, more
advanced solution techniques should be investigated. The objective of the model is to
find profit-maximizing line plans, which facilitates that completely different solutions
are rated very similar or even the same. Hence, specialized solution methods should,
unlike many existing ones, not rely on the similarity of solutions or use the concept
of neighborhoods. Furthermore, this motivates that a solution method should ideally
provide multiple solutions of high quality. This would allow operators to choose from
similarly profitable solutions with potentially different modal splits.

Integrating further steps. In this research, we focus on horizontal integration,
that is, the integration of models from both demand-oriented and supply-oriented
approaches. The literature provides approaches for vertical integration, that means,
integration of several supply-oriented models (Schöbel, 2017), or of several demand-
oriented models (Dugge, 2006). Considering multiple steps can be beneficial for
the quality of the solution. In most cases, multiple steps of the demand-oriented
and supply-oriented approaches are dependent on each other. Hence, it seems rea-
sonable to develop models integrating several steps of both demand-oriented and
supply-oriented approaches. For example, a next step could be to develop integrated
line planning and timetabling approaches with simultaneous mode and route choice
estimation.

Robustness. Public transport operations are subject to disruptions that propagate
through the network with potentially significant delays for a large group of passengers.
One limitation of this thesis is that the presented models only consider the nominal
planning case and disregard the performance of the found services under realistic
circumstances with unforeseen events. To minimize the propagation of disruptions
and delays, a stream of research focuses on finding robust public transport services
(Ahuja et al., 2009). When considering a passenger distribution on multiple routes
during line planning or timetabling, the corresponding solutions at least provide
multiple passenger routes which might be beneficial in case of disruptions. However,
the operations are not designed to be robust, with possibly severe consequences for
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operators. Hence, the aspect of robustness should be considered when designing
public transport services, also in models that focus on estimating passenger choices.

Practical applicability. The research in this thesis aims to provide insights for
practitioners on the extent to which integrating passenger demand estimation into
public transport optimization models improves the quality of designed services. While
we think that the models adequately consider the relevant requirements for strate-
gical and tactical planning, they are not capable of providing solutions that can be
implemented for operation. The presented models are limited by the level of detail
considered. For example, the found timetables and line plans might conflict with
the available platforms in stations or tracks between intersections. This should be
investigated in coordination with practitioners.

Generalization of rolling horizon algorithm. The rolling horizon algorithm was
developed to solve a vehicle scheduling problem for on-demand vehicles as it occurs
in the context of travel demand modeling. We provided an optimality guarantee
for the found solution if the horizons overlap sufficiently. The proof for this finding
mainly uses the structure of the cycle free directed graph and that the decisions
taken in one horizon do not influence the remote future. Many applications can
be modeled similarly, for example, many problems relying on time-space networks.
Hence, it would be interesting to investigate whether this solution approach including
optimality guarantee is also applicable to a wider set of problems with a similar
structure. Similar to the presented case, this solution procedure could help to solve
extremely large instances or decrease solution times for large instances. It also might
be very valuable in the case of online optimization, where information is usually
revealed successively. There, the optimality guarantee would ensure the quality of
solutions of a rolling horizon approach, even if not yet all information is available.
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Summary

Public transport services are important to our society for several reasons. They
provide mobility for the public, constitute an efficient transport system in crowded
places, and help reduce traffic emissions compared to other modes of transport. To
make the most of the benefits of public transport, the services must be an attrac-
tive alternative for passengers. This requires the design of efficient and high-quality
services and their continuous improvement. In particular, public transport services
should provide accessible service with reasonably short travel times and as few and
short transfers as possible.

For the design of public transport, the literature provides numerous demand-oriented
and supply-oriented approaches. Demand-oriented approaches estimate the travel
demand for a certain transport scenarios and allow a thorough evaluation of the
supply. This is particularly useful when comparing a number of transport services
and assessing their strength and weaknesses. Supply-oriented approaches design a
public transport service for a given demand situation. The input of demand-oriented
approaches is the output of supply-oriented approaches and vice versa. Although the
interdependence of supply and demand is known, only a few and basic combinations
of these approaches have been developed. This thesis examines approaches that
integrate public transport supply and demand.

In Part I of this thesis, we investigate the potential of integrated demand-oriented and
supply-oriented models by incorporating passenger demand estimation into public
transport service design. In Chapter 2, we compare timetabling evaluation functions
designed to measure the quality of timetables from the perspective of passengers and
examine how consistent their evaluation results are. In this comparison, we find that
the design of an evaluation function can have a significant impact on which time-
table is considered optimal. Furthermore, we identify which components impact the
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results of the evaluation most. In Chapter 3, we develop two timetabling models for
finding travel time-optimal timetables while estimating the passenger distribution on
different routes. The passenger distribution is approximated with the logit model, a
discrete choice model commonly applied to estimate passengers’ route choices. We
provide two linear representations for the logit model to integrate it into an optimi-
zation framework. Our comparison with four state-of-the-art timetabling methods
shows that integrating a passenger distribution model has the potential to find better
timetables for passengers, but more efficient solution strategies have to be developed.
In Chapter 4, we provide a model to find profit-optimal line plans while estimat-
ing passengers’ mode and route choices. By suitable preprocessing of the utilities
for the passengers’ mode and route decisions, the choice models can be linearized
and commercial solvers can be used to find solutions. In experiments, we show that
estimating the mode choice of travelers during optimization yields line plans with
higher profits for operators and higher service levels for passengers. Furthermore,
our experiments suggest that operators should regularly react to changes in travel
demand and update their line plans.

In contrast to scheduled public transport, recent technological developments enable
the implementation of more flexible public transport services: large-scale and afford-
able mobility on demand. The operations of these services are planned online and
do not follow fixed lines or timetables. As on-demand services are not yet operating
on a large scale, the impact of these services on cities, traffic, and the environment
is difficult to assess. To be able to estimate the consequences of the implementation
of on-demand services, public transport authorities investigate and evaluate several
potential transport scenarios using travel demand models. This leads to the following
problem: On the one hand, travel demand models are demand-oriented approaches
that estimate passenger demand and require service levels of the supply as input. On
the other hand, the service level of on-demand services depends on passenger demand
and cannot be determined until the demand is known. Hence, to be able to consider
on-demand services in travel demand models, the models have to be extended.

In Part II of this thesis, we investigate how to estimate the service level of on-demand
services within a travel demand model. We use vehicle scheduling to determine the
required vehicle fleet size of on-demand services. Our models also provide insight
into the vehicle distance traveled and the vehicle location over time. This allows
for a thorough examination of the impact of on-demand services on traffic and the
environment. In Chapter 5, we provide a simple heuristic to find solutions to the
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vehicle scheduling problem of on-demand vehicles in short computation times. It is
capable of handling non-integer demand values and extremely large instance sizes,
both of which are characteristics of the application. We illustrate in two case studies
how the presented algorithm can be applied to estimate the service level of on-
demand services within macroscopic travel demand models. The algorithm presented
in Chapter 5 is able to find good solutions in short computation times but it does
not provide a guarantee on the solution quality. It is not known whether the found
solutions are optimal or how far they are from an optimal solution. In Chapter 6, we
present a solution algorithm for the vehicle scheduling problem of on-demand services
that is capable of finding optimal solutions. This solution algorithm is based on a
rolling horizon framework and we construct a solution by composing the solutions for
the individual horizons. By overlapping the horizons, it is possible to look ahead to
the demand of the next horizon and improve the solution quality. For a sufficiently
large overlap of the horizons, we show that the composed solution is optimal for the
whole problem. In experiments, we show that this approach is suitable to solve very
large instances to optimality and brings a speed-up for large instances compared to
a comprehensive approach.

In summary, we develop and investigate approaches that integrate demand-oriented
into supply-oriented models. We show that the integration is possible and that
the found solutions provide a higher service level to the passengers. However, the
integrated models come at the cost of higher complexity and further research should
address specialized solution approaches.





Samenvatting

Er zijn meerdere redenen waarom openbaar vervoer (ov) belangrijk is voor onze
maatschappij. Ov zorgt ervoor dat mensen mobiel zijn en helpt vervoersemissies te
verminderen in vergelijking met andere vervoersmiddelen. Daarnaast draagt het ov
bij een efficiënt vervoerssysteem in drukke gebieden. Het ov moet een aantrekkelijk
alternatief zijn voor reizigers. Dit vereist de inrichting van efficiënte en hoogwaardige
voorzieningen en een continue verbetering van deze voorzieningen. Ov-systemen
hebben als belangrijkste taak het bieden van toegankelijke vervoer met redelijk korte
reistijden, zo min mogelijk overstappen en zo kort mogelijke overstaptijden.

Voor het inrichten van het openbaar vervoer biedt de literatuur talrijke vraaggerichte
en aanbodgerichte benaderingen. Vraaggerichte benaderingen schatten de reisvraag
voor een bepaald vervoersscenario in en maken een grondige evaluatie van het aanbod
mogelijk. Dit is vooral handig bij het vergelijken van een aantal vervoerssystemen en
de beoordeling van hun sterke en zwakke punten. Aanbodgerichte benaderingen ont-
werpen een ov-systeem voor een gegeven vraagsituatie. De input van vraaggerichte
benaderingen is de output van aanbodgerichte benaderingen en vice versa. Ook al
is het bekend dat vraag en aanbod van elkaar afhankelijk zijn, er zijn slechts enkele
basale combinaties van deze benaderingen ontwikkeld. In deze thesis worden bena-
deringen onderzocht die vraag en aanbod binnen het openbaar vervoer integreren.

In deel I van deze thesis onderzoeken we het potentieel van geïntegreerde vraag-
gerichte en aanbodgerichte modellen door een inschatting van de reizigersvraag in
het ontwerp van het ov-aanbod op te nemen. In hoofdstuk 2 vergelijken we evalua-
tiefuncties voor dienstregelingen die ontworpen zijn om de kwaliteit van dienstrege-
lingen te meten vanuit het perspectief van reizigers, en onderzoeken we in hoeverre
de evaluatieresultaten hiervan overeenkomen. Door deze vergelijking ontdekken we
dat het ontwerp van een evaluatiefunctie een significant effect kan hebben op welke
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dienstregeling als beste wordt gezien. Vervolgens stellen we vast welke componenten
de evaluatieresultaten het meest beïnvloeden. In hoofdstuk 3 ontwikkelen we twee
dienstregelingmodellen om met het oog op reistijd optimale dienstregelingen te vin-
den en tegelijkertijd in te schatten wat de reizigersdistributie over de verschillende
routes is. Er wordt een benadering van de reizigersdistributie gemaakt op basis van
het logitmodel, een discreet keuzemodel dat vaak wordt toegepast om routekeuzes
van reizigers in te schatten. We geven twee lineaire representaties voor het logit-
model om het in een optimalisatiekader te integreren. Onze vergelijking met vier
moderne dienstregelingmethoden laat zien dat het meenemen van een reizigersdis-
tributiemodel het potentieel heeft om betere dienstregelingen voor reizigers te vin-
den, maar ook dat er efficiëntere oplossingsstrategieën moeten worden ontwikkeld.
In hoofdstuk 4 presenteren we een model voor het vinden van een optimale lijnvoer-
ing met als doel winstmaximalisatie en waarmee tegelijkertijd kan worden ingeschat
welke vervoersmiddel- en routekeuze reizigers zullen maken. Door voorafgaand de
voorzieningen voor de vervoersmiddel- en routekeuze van reizigers op een passende
manier te verwerken, kunnen de keuzemodellen worden gelineariseerd en kunnen
er met commerciële solvers oplossingen worden gevonden. Met behulp van experi-
menten tonen we aan dat het inschatten van de vervoersmiddelkeuze van reizigers
tijdens de optimalisatie linvoeringen oplevert met grotere winsten voor vervoerders
en hogere serviceniveaus voor reizigers. Ook komt uit onze experimenten naar voren
dat vervoerders regelmatig op veranderingen in de reisvraag moeten inspelen en hun
linvoering overeenkomstig moeten aanpassen.

Naast het openbaar vervoer met dienstregeling maken technologische ontwikkelingen
de uitvoering van flexibelere ov-voorzieningen mogelijk: grootschalige en betaalbare
mobiliteit on demand. De uitvoer van deze voorzieningen wordt online gepland
en maakt geen gebruik van vaste lijnen of dienstregelingen. Omdat on-demand
voorzieningen nog niet op grote schaal worden toegepast, is het moeilijk te beoor-
delen wat het effect is van deze voorzieningen op steden, het verkeer en het milieu.
Om de gevolgen van het invoeren van on-demand voorzieningen te kunnen inschat-
ten, onderzoeken en evalueren ov-autoriteiten meerdere potentiële vervoersscenario’s
met gebruik van reizigersvraagmodellen. Dit leidt tot het volgende probleem: aan
de ene kant zijn reisvraagmodellen vraaggerichte benaderingen die de reizigersvraag
inschatten en de voorzieningenniveaus van het aanbod als input vereisen. Aan de an-
dere kant is het voorzieningenniveau van on-demand voorzieningen afhankelijk van
de reizigersvraag en kan dit niet worden vastgesteld voordat de vraag bekend is.
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Als we dus on-demand voorzieningen in reisvraagmodellen willen kunnen meenemen,
moeten de modellen worden uitgebreid.

In deel II van deze thesis onderzoeken we hoe het voorzieningenniveau van on-demand
voorzieningen kan worden ingeschat binnen een reisvraagmodel. We gebruiken voer-
tuigplanning om de vereiste wagenparkgrootte voor on-demand voorzieningen te
bepalen. Onze modellen geven ook inzicht in de afgelegde afstand en de locatie
van een voertuig over een bepaalde periode. Dit maakt een grondige bestudering
van het effect van on-demand voorzieningen op het verkeer en het milieu mogelijk.
In hoofdstuk 5 presenteren we een simpele heuristiek om met korte rekentijden op-
lossingen te vinden voor het voertuigplanningsprobleem voor on-demand voertuigen.
Hiermee is het mogelijk te rekenen met vraagwaarden die niet uit gehele getallen
bestaan en met gevallen van extreem grote omvang; dit zijn beide kenmerken van
de toepassing. We illustreren in twee casestudy’s hoe het gepresenteerde algoritme
kan worden toegepast om het voorzieningenniveau van on-demand voorzieningen in
te schatten binnen macroscopische reisvraagmodellen. Het in hoofdstuk 5 gepresen-
teerde algoritme kan met korte rekentijden goede oplossingen vinden, maar het biedt
geen garantie op de oplossingskwaliteit. Het is niet bekend of de gevonden oplossingen
ook optimaal zijn of hoever ze zijn verwijderd van een optimale oplossing. In hoofd-
stuk 6 presenteren we een oplossingsalgoritme voor het voertuigplanningsprobleem
van on-demand voorzieningen waarmee optimale oplossingen kunnen worden gevon-
den. Dit oplossingsalgoritme is gebaseerd op een rollende horizon en we construeren
een oplossing door de oplossingen voor de individuele horizons samen te brengen.
Door overlap van de horizons is het mogelijk om vooruit te kijken naar de vraag
van de volgende horizon en de oplossingskwaliteit te verbeteren. Bij een overlap van
de horizons die groot genoeg is, tonen we aan dat de samengestelde oplossing opti-
maal is voor het gehele probleem. Met behulp van experimenten tonen we aan dat
deze benadering geschikt is om ook bij zeer grote instanties optimale oplossingen te
vinden.

Samengevat ontwikkelen en onderzoeken we methoden die vraag en aanbodgerichte
modellen integreren. We tonen aan dat de integratie mogelijk is en dat de gevonden
oplossingen een hoger kwaliteit voor reizigers opleveren. De geïntegreerde modellen
brengen echter ook een grotere complexiteit met zich mee en vervolgonderzoek zou
zich moeten richten op gespecialiseerde oplossingsmethoden.





Zusammenfassung

Der öffentliche Verkehr ist aus mehreren Gründen wichtig für unsere Gesellschaft.
Er sichert die Mobilität der Menschen und hilft, die Verkehrsemissionen im Vergle-
ich zu anderen Verkehrsmitteln zu reduzieren. Der öffentliche Verkehr trägt auch in
Ballungsräumen zu einem effizienten Verkehrssystem bei. Um die Vorteile des öf-
fentlichen Verkehrs bestmöglich zu nutzen, müssen die öffentlichen Verkehrsangebote
für die Fahrgäste eine attraktive Alternative zu anderen Verkehrsmitteln darstellen.
Dies erfordert die Gestaltung von effizienten und qualitativ hochwertigen Angeboten
und deren kontinuierliche Verbesserung. Insbesondere sollten öffentliche Verkehrssys-
teme ein zugängliches Angebot mit angemessen kurzen Fahrzeiten und möglichst
wenigen und kurzen Umstiegen bieten.

Für die Gestaltung von öffentlichen Verkehrsangeboten bietet die Literatur zahlreiche
nachfrageorientierte und angebotsorientierte Ansätze. Nachfrageorientierte Ansätze
schätzen die Reisenachfrage für ein bestimmtes Verkehrsszenario und ermöglichen
eine gründliche Bewertung des Angebots. Dies ist besonders nützlich, wenn mehrere
Verkehrssysteme miteinander verglichen und ihre Stärken und Schwächen beurteilt
werden sollen. Angebotsorientierte Ansätze entwerfen ein öffentliches Verkehrsange-
bot für eine gegebene Nachfragesituation. Eingangsgrößen für nachfrageorientierte
Ansätze sind die Ausgabegrößen von angebotsorientierten Ansätzen und andersherum.
Obwohl bekannt ist, dass Angebot und Nachfrage voneinander abhängen, wurden
bisher nur einige grundlegende Kombinationen dieser Ansätze entwickelt. In dieser
Arbeit werden Ansätze untersucht, die Angebot und Nachfrage im öffentlichen Verkehr
tiefergehend integrieren.

In Abschnitt I dieser Arbeit untersuchen wir das Potenzial von integrierten nachfrage-
und angebotsorientierten Modellen, indem wir die Passagiernachfrage in Entwurfs-
modellen für öffentliche Verkehrsangebote schätzen. In Kapitel 2 vergleichen wir
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Bewertungsfunktionen für Fahrpläne, die die Qualität von Fahrplänen aus der Sicht
der Reisenden messen sollen, und untersuchen, inwieweit ihre Bewertungsergebnisse
übereinstimmen. Bei diesem Vergleich stellen wir fest, dass das Design einer Be-
wertungsfunktion einen erheblichen Einfluss darauf haben kann, welcher Fahrplan
als der beste angesehen wird. Außerdem ermitteln wir, welche Komponenten der
Bewertungsfunktionen die Bewertungsergebnisse am meisten beeinflussen. In Kapi-
tel 3 entwickeln wir zwei Fahrplanmodelle, um reisezeitoptimale Fahrpläne zu finden
und gleichzeitig die Fahrgastverteilung auf verschiedenen Strecken zu schätzen. Die
Fahrgastverteilung wird mit dem Logit-Modell geschätzt, einem diskreten Wahlmo-
dell, das häufig zur Schätzung der Routenwahl von Fahrgästen verwendet wird. Wir
stellen zwei lineare Repräsentationen für das Logit-Modell zur Verfügung, um es in ein
Optimierungsmodell zu integrieren. Unser Vergleich mit vier modernen Fahrplange-
staltungsmethoden zeigt, dass das Einbeziehen eines Fahrgastverteilungsmodells das
Potenzial hat, bessere Fahrpläne für Passagiere zu finden. Jedoch ist dafür noch die
Entwicklung effizienterer Lösungsstrategien erforderlich. In Kapitel 4 stellen wir ein
Modell vor, um gewinnoptimale Linienpläne zu finden, während die Verkehrsmittel-
und Routenwahl der Fahrgäste geschätzt wird. Durch eine vorherige Bestimmung des
Nutzen von Routen, der für die Entscheidungen der Reisenden wichtig ist, können
die Wahlmodelle linearisiert und kommerzielle Solver zur Lösungsfindung eingesetzt
werden. In Experimenten zeigen wir, dass die Schätzung der Verkehrsmittelwahl der
Reisenden während der Optimierung zu Linienplänen mit höherem Gewinn für die
Betreiber und höherem Servicelevel für die Fahrgäste führt. Darüber hinaus legen
unsere Experimente nahe, dass Betreiber regelmäßig auf Änderungen der Reisenach-
frage reagieren sollten und ihre Linienpläne entsprechend aktualisieren sollten.

Im Gegensatz zu fahrplangebundenem öffentlichen Verkehr ermöglichen die jüng-
sten technologischen Entwicklungen die Umsetzung von flexibleren öffentlichen Ver-
kehrsangeboten: erschwingliche und flächendeckende On-Demand-Dienste. Der Be-
trieb dieser Dienste wird live geplant und folgt keinen festen Linien- oder Fahrplä-
nen. Da On-Demand-Dienste noch nicht in großem Umfang in Betrieb sind, sind
ihre Auswirkungen auf Städte, Verkehr und Umwelt nur schwer abzuschätzen. Um
die Folgen der Einführung von On-Demand-Diensten abschätzen zu können, un-
tersuchen und bewerten Verkehrsbehörden mehrere mögliche Verkehrsszenarien mit
Hilfe von Verkehrsnachfragemodellen. Dies führt zu folgendem Problem: Einerseits
sind Verkehrsnachfragemodelle nachfrageorientierte Ansätze, die die Fahrgastnach-
frage abschätzen und den Servicelevel des Angebots als Input benötigen. Anderer-
seits hängt der Servicelevel von On-Demand-Diensten von der Fahrgastnachfrage ab
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und kann erst bestimmt werden, wenn die Nachfrage bekannt ist. Um On-Demand-
Dienste in Reisenachfragemodellen berücksichtigen zu können, müssen die Modelle
daher erweitert werden.

In Abschnitt II dieser Arbeit untersuchen wir, wie man den Servicelevel von On-
Demand-Diensten innerhalb eines Reisebedarfsmodells abschätzen kann. Wir ver-
wenden ein Fahrzeugumlegungsmodell, um die erforderliche Flottengröße der On-
Demand-Dienste zu bestimmen. Unsere Modelle geben auch Aufschluss über die
zurückgelegten Fahrzeugstrecken und die Fahrzeugstandorte im zeitlichen Verlauf.
Dies ermöglicht eine gründliche Untersuchung der Auswirkungen von On-Demand-
Diensten auf Verkehr und Umwelt. In Kapitel 5 stellen wir eine einfache Heuristik
vor, um Lösungen für das Fahrzeugumlegungsproblem für On-Demand-Fahrzeuge
in kurzen Berechnungszeiten zu finden. Die Heuristik ist in der Lage, mit nicht-
ganzzahligen Nachfragewerten und mit sehr großen Instanzgrößen umzugehen, was
beides übliche Merkmale der Anwendung sind. Wir illustrieren in zwei Fallstudien,
wie die vorgestellte Heuristik zur Abschätzung des Servicelevel von On-Demand-
Diensten innerhalb makroskopischer Verkehrsnachfragemodelle angewendet werden
kann. Die in Kapitel 5 vorgestellte Heuristik kann gute Lösungen in kurzen Berech-
nungszeiten finden, gibt aber keine Optimalitätsgarantie. Es ist also nicht bekannt,
ob die gefundenen Lösungen optimal sind oder wie weit sie von einer optimalen
Lösung entfernt sind. In Kapitel 6 stellen wir einen Lösungsalgorithmus für das
Fahrzeugumlegungsproblem von On-Demand-Diensten vor, mit dem sich optimale
Lösungen finden lassen. Dieser Lösungsalgorithmus basiert auf dem Rolling Horizon-
Prinzip und wir konstruieren eine Lösung, indem wir die Lösungen für die einzelnen
kürzeren Horizonte zusammensetzen. Durch Überlappen der Horizonte ist es möglich,
die Nachfrage aus dem nächsten Horizont zu berücksichtigen und die Lösungsqual-
ität dadurch zu verbessern. Wenn die Horizonte weit genug überlappen, zeigen wir,
dass die zusammengesetzte Lösung optimal für das gesamte Problem ist. In Exper-
imenten zeigen wir, dass der Ansatz geeignet ist, optimale Lösungen für sehr große
Instanzen zu finden. Außerdem konnten wir einen Laufzeitvorteil für große Instanzen
feststellen, verglichen mit dem Ansatz, das gesamte Problem auf einmal zu lösen.

Zusammenfassend entwickeln und erforschen wir Methoden, die Nachfrage- und Ange-
botsmodelle integrieren. Wir zeigen, dass die Integration möglich ist und dass die
gefundenen Lösungen Fahrgästen eine höhere Angebotsqualität bieten. Allerdings
gehen die integrierten Modelle mit einer höheren Komplexität einher und künftige
Forschung sollte sich mit spezialisierten Lösungsansätzen befassen.
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