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Chapter 1

Introduction



2 Introduction

1.1 Background and motivation

It is impossible to imagine a world without public transport, and its contribution to
our society is undisputed. First, public transport is a service of general interest. It
increases mobility for the public and enables to also travel when no private means
of transport are available. As such, public transport contributes to a just society
with equal chances for all. Second, public transport is indispensable for a working
passenger transport system in densely populated areas. In cities and other crowded
places, the consequences of passenger traffic are often severe. Much space is dedicated
to streets and parking areas and vehicles block each other, making traveling time-
consuming and troublesome. Unlike private transport, public transport can carry a
large number of passengers efficiently. By pooling passenger trips and utilizing vehicle
fleets to their full capacity, urban travel can be accomplished in a reasonable amount
of time and space. Third, public transport is a key element for our efforts to mitigate
climate change. The Paris Agreement (2015), signed by more than 190 countries,
aims to keep the increase in average global temperature below 2°C compared to
pre-industrial levels. This can only be achieved by reducing the emissions in all
sectors, in particular in the transport sector, which is responsible for approximately
one-sixth of the emissions (Ritchie and Roser, 2020). Most of the emissions in this
sector are produced by road traffic, while public transport has the least emissions
per passenger-kilometer. Hence, public transport can help achieve the goals of the

Paris agreement.

To reap its benefits, effective public transport services must be designed attracting
large numbers of passengers. This requires public subsidies and constant improve-
ments of the services. Research is necessary to improve the services by giving in-
sights into operations and providing decision support for planning. Even though it
is generally accepted that public transport must be of high quality, the goals and
requirements concerning public transport are versatile and often even contradictory.
We look at public transport from the perspectives of three different stakeholders,

namely those of passengers, public transport authorities, and operators.

Passengers’ perspective. People want or need to travel, for which they often have
several modes of transport available to reach their destination. Depending on the
availability, price, and convenience of the modes, they choose which one to use. To
be an attractive alternative to travelers, public transport must provide a frequent
service with reasonable travel times and, if possible, direct connections. In addition,

fares must be low and the services should be punctual, reliable and close-by.
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Public transport authorities’ perspective. Public transport authorities have
the task to efficiently use taxpayers’ money for the common good. Hence, their goals
concern mainly the consequences of transport, such as carbon footprint, accessibility
and fairness for inhabitants, as well as the attractiveness of regions or cities. To
achieve the desired conditions, they introduce constraints and incentives for operators
and users of transport services. This often takes the form of subsidies for public
transport fares, taxes on private transport, bans on certain technologies in selected

areas, or the requirement of minimum service levels.

Public transport operators’ perspective. In many parts of the world, public
transport operators are privatized and the companies work profit-oriented. They aim
for low operating costs and high revenues. The transport services they provide must
unite the interests of all stakeholders. The service level should be high to attract pas-
sengers, while infrastructural and operational constraints, operational costs, as well

as incentives and restraints from public transport authorities have to be considered.

1.2 Transport planning

In most cases, operators plan public transport services. Nevertheless, all stakehold-
ers’ constraints and objectives have to be considered, making the design of public
transport services a complex task. The literature provides a plethora of models and
methods for public transport design. A rough distinction is made between demand-

oriented and supply-oriented approaches for transport planning (Cascetta, 2013).

1.2.1 Demand-oriented approaches

Demand-oriented approaches model the travel demand for a certain transport situ-
ation and evaluate the performance of the transport situation from several aspects.
This evaluation is mostly done with travel demand models, following a step-wise
approach (de Dios Ortizar and Willumsen, 2011; McNally, 2010).

Figure 1.1 shows the main steps of a travel demand model. First, activity choice
models are used to estimate the number of trips people make and destination choice
models predict the places they want to travel to. This information is usually stored in
an origin-destination matriz (OD matrix), where each entry represents the number
of people who want to travel from an origin to a destination. The OD matrix may be
time-dependent. Next, the mode of transport travelers use to reach their destination

is estimated with mode choice models. Usually, the transport modes considered are
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ROUTE CHOICE

Figure 1.1: Travel demand model consisting of activity, destination, mode and route
choice. Settlement structure, mobility behavior and a transport supply are assumed
to be given.

walking, bike, public transport, and car, if available. This step results in several OD
matrices, one for each mode of transport. Last, the individual routes for the people
on their respective modes are predicted with route choice models. All available routes
are evaluated according to different criteria such as travel time, cost, and convenience
factors, among them the number of transfers or vehicle congestion. These models
are influenced by the settlement structure and mobility behavior of people, and a
transport supply, which includes available public transport services. This input is

assumed to be given and fixed in most demand-oriented approaches.

Travel demand models are mainly applied to estimate the travel demand for a certain
transport situation. This allows a thorough and detailed evaluation of the transport
situation from various perspectives. For the design of a public transport service, a
finite set of services are evaluated and compared in an experimental setup. Therefore,
travel demand models do not provide potential transport designs, but rather provide

decision support by allowing a high level of detail in the assessment of designs.

1.2.2 Supply-oriented approaches

Supply-oriented approaches are used for the design of public transport services. The
services are designed to meet a certain passenger demand, which in most cases is as-
sumed to be known before planning. The passenger demand is mostly specified as an
OD matrix and in some cases includes passenger route decisions. Since certain design
decisions are implemented for longer-term than others, public transport services are

usually designed in a step-wise approach as depicted in Figure 1.2.
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STOP LOCATION
TRANSPORT
i LINE PLANNING | INFRASTRUCTURE

PASSENGER
DEMAND
>
TIMETABLING

a

[VEHICLE SCHEDULING]

[ CREW SCHEDULING J

Figure 1.2: Step-wise approach for public transport design, consisting of stop loca-
tion, line planning, timetabling, vehicle scheduling and crew scheduling. A transport
infrastructure and passenger demand are assumed to be given.

To begin with, the optimal location of stops in the public transport infrastructure
is determined using stop location models. Depending of the field of application, the
infrastructure can be seen as a street or track network. The stops should be close to
the passengers’ destinations, but also low in number to keep installing and maintain-
ing costs for the operator as well as waiting time for passengers at intermediate stops
low. If a distinction is made between different service categories, such as regional
or intercity transport, it is often also decided at which stop which service will stop.
Afterward, in line planning, the aim is to find the number, routes, and frequencies of
lines in the public transport infrastructure to serve the demand. The line operation
should be cost-efficient for operators but provide reasonable travel times and direct
connections for passengers. These first two steps concern long-term planning which

is referred to as strategical planning.

Given the lines and their respective frequencies, optimal arrival and departure times
for each vehicle on each line are determined in timetabling. Often, the focus is on
spreading vehicle trips over time for a regular service, and on realizing short transfer
times for passengers. Timetabling is classified as tactical planning as it considers

medium-term decision making.

Having found solutions to these steps yields sufficient information for passengers
about a public transport service. Afterward, the vehicles and drivers get assigned

to previously determined trips in vehicle and crew scheduling. The aim is mostly to
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minimize operational costs, considering maintenance rhythms of vehicles and work

regulations of staff. These steps of scheduling are denoted as operational planning.

There are many models and methods developed in the area of Operations Research
for the steps of stop location, line planning, timetabling, and vehicle scheduling.
An overview of Operations Research models in public transport planning is given in
Huisman et al. (2005) or in Borndoérfer et al. (2018).

1.2.3 Integration of demand-oriented into supply-oriented ap-

proaches

From Figures 1.1 and 1.2, it can be seen that the approaches require each other’s
results as input. For demand-focused models, a transport supply including public
transport services is assumed to be given, whereas for supply-focused models, knowl-
edge about the demand is assumed to be known. Since passenger demand and public
transport supply are interdependent, they should be treated simultaneously. That
means the passenger demand should be estimated during the design of the public
transport services. Although supply and demand are known to influence each other,
only few and basic combinations of these research fields are developed, probably due

to the complexity of a simultaneous treatment.

In this thesis, we aim at investigating the potential of simultaneous passenger demand
estimation and public transport design. We develop integrated models to optimize
public transport services while estimating the corresponding passenger choices. The
resulting public transport services are designed for the passenger demand they gen-

erate.

We focus on the interaction of mode and route choice from the demand-oriented
models and line planning and timetabling from the supply-oriented models. Mode
and route choice can be significantly impacted by changes in the public transport
services. The activity and destination choice steps also depend on the availability of
public transport, but are less reactive to (moderate) changes in the quality of public
transport. The quality of public transport for passengers is primarily determined
by the line plan and timetable. Therefore, the passengers’ mode and route choices
should be taken into account during line planning and timetabling. Stop location
planning also significantly determines the people’s choice to travel at all, and impacts
their destinations. However, since the location of stops is seldom updated, it is

not considered in the scope of this thesis. The remaining planning steps of vehicle
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and crew scheduling only have a minor impact on the passenger choices in public

transport.

The challenge of estimating passenger choices during optimization is that demand
models are very detailed and complex, necessitating simplifications. In Chapter 2, we
investigate how simplifications in passenger modeling can impact the evaluation of
timetables. Furthermore, mode and route choice models are usually non-linear and
non-convex in the utility of the alternatives. Hence, the integration in an optimi-
zation framework quickly yields computationally intractable models. In Chapter 3,
we discuss two linear route choice models within timetabling, and in Chapter 4, we
present a mixed-integer linear program for line planning with integrated mode and

route choice.

1.3 New forms of public transport

The previously discussed supply-oriented models mainly address traditional public
transport, that is, a regular, scheduled service, operating on fixed lines. The recent
development of technology enables new forms of public transport: large-scale and
affordable mobility on demand. Instant information sharing, for example of vehicle
occupancy rates or vehicle and passenger locations, allows a flexible approach without
fixed stop locations. Online computing power and new algorithms enable efficient live
planning of operations that do not rely on specified lines and schedules. With the
usage of autonomously driving vehicles, also smaller-scale vehicles can be operated

economically.

For passengers, on-demand services promise a fast and direct service at the time of
their preference. The service adjusts to their needs and wishes, instead of requiring
them to adjust to a rigid schedule. Due to the pooling of several passengers in a
vehicle, the service quality might be inferior to a taxi service, however, this is com-
pensated by considerably lower fares. In general, the launch of on-demand services
is expected to improve the travel quality for passengers and they can easily test the

services without any obligation.

For operators, the consequences of introducing on-demand services are less clear.
Passenger acceptance and associated costs are difficult to estimate, but offering on-
demand services requires large investments. Already now, many operators offer non-
profitable on-demand services with a driver to learn about the operations and to

collect data.
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This possibility of data collection is not feasible for public transport authorities.
Large-scale experiments to measure the impact of on-demand services on cities, re-
gions and the environment are out of reach. Nevertheless, they need to estimate
consequences for the managed region to react with regulatory measures in a timely
manner. Hence, many transport scenarios included on-demand services need to be

investigated and evaluated with the help of travel demand models.

A travel demand model requires a transport situation as input, including the available
public transport service. However, the service level of on-demand services cannot be
predetermined as it depends on the demand, which is to be estimated by the travel
demand model. Hence, the service level of on-demand services has to be estimated
within the travel demand model. In Chapters 5 and 6, we discuss how a travel demand
model can be extended correspondingly. We present a heuristic and an exact solution
approach to estimate the minimum vehicle fleet size and total distance traveled of

on-demand services within a macroscopic travel demand model.

1.4 Thesis outline and contributions

This thesis is structured in two parts and seven chapters.

Part I of this thesis deals with the planning of public transport services as described
in Section 1.2. Demand-oriented approaches are integrated into supply-oriented ap-
proaches with the goal to estimate passenger demand during public transport optimi-
zation. Chapter 2 compares different evaluation functions for consistency and gives
further motivation for the integration of passenger choice models into optimization
models. Chapters 3 and 4 present novel optimization models with integrated demand

estimation for the steps of timetabling and line planning, respectively.

In Part II, we consider the determination of on-demand services within travel demand
modeling, as motivated in Section 1.3. Both Chapters 5 and 6 present solution

algorithms for a vehicle scheduling problem in the context of traffic estimation.

Figure 1.3 outlines the thesis structure and highlights which steps of demand-oriented
and supply-oriented approaches are covered in the respective chapters. It is possible
to read the chapters of this thesis independently, however, we recommend reading
the chapters in each part in the given order. Chapter 7 concludes the main findings
and implications of this thesis, and points out directions for future research. In the

following, we give a brief summary of Chapters 2 to 6 and highlight the contributions.
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Figure 1.3: Structure of this thesis in two parts and 7 chapters. The dotted
and dashed boxes indicate which steps of demand-oriented and supply-oriented ap-
proaches are covered in the chapters, respectively.

Chapter 2: Hartleb, Schmidt, Friedrich, and Huisman: “A good or a bad
timetable: Do different evaluation functions agree?” In preparation for

journal submission.

Estimating passenger demand instead of assuming a fixed demand level when design-
ing public transport services has an impact on how the quality of solutions is assessed.
In terms of optimization models, this means that the objective function is adjusted.
To assess the extent to which solutions found under different objective functions can
differ, we first examine the consistency of evaluation functions using public transport
timetables as an example. The literature has established various ways to evaluate
public transport timetables from the passengers’ viewpoint. In Chapter 2, we inves-
tigate to what extent these evaluation functions agree on the quality of a timetable.
First, we structure common timetabling evaluation functions and identify three com-
ponents in which the functions differ from each other. Then, we use a novel method
to empirically test the extent to which the evaluation functions are consistent. Our
results show that the design of an evaluation function can have a significant impact
on which timetable is considered optimal. Due to the structure of our experiments,

we are further able to identify which components of evaluation functions influence
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the result of the evaluation most. This can help to design simple yet purposeful

objective functions for Operations Research models.

Chapter 3: Hartleb and Schmidt: “Railway timetabling with integrated
passenger distribution”. Accepted for publication at the European Jour-

nal of Operational Research.

Timetabling for railway services often aims at optimizing travel times for passengers.
At the same time, restricting assumptions on passenger behavior and passenger mod-
eling are made. While research has shown that discrete choice models are suitable
to estimate the distribution of passengers on routes, this has not been considered
in timetabling yet. In Chapter 3, we investigate how multi-route passenger route
choice can be integrated into a timetabling optimization framework and present two
mixed-integer linear programs for this problem. Both approaches design timetables
and simultaneously find a corresponding passenger distribution on available routes.
One model uses a linear distribution model to estimate passenger route choices. The
other model uses an integrated simulation framework to approximate a passenger dis-
tribution according to the logit model, a model commonly used in route choice. We
compare the two new approaches with three timetabling approaches without multi-
route search and a heuristic approach on a set of artificial instances and a partial
network of Netherlands Railways (NS). Our experiments provide insights into the
impact of considering multiple routes instead of a single route, and of integrated

route choice instead of predetermined route assignment on the solution quality.

Chapter 4: Hartleb, Schmidt, Huisman, and Friedrich: “Modeling and
solving line planning with integrated mode choice”. Currently under re-

view at a scientific journal

In Chapter 4, we present a mixed-integer linear program (MILP) for line planning
with integrated mode and route choice. The model aims at finding line plans that
maximize the profit for the public transport operator while estimating the corre-
sponding passenger demand with choice models. Both components of profit, revenue
and cost, are influenced by the line plan. More lines result in higher costs but also in-
crease the level of service to passengers, which leads to higher passenger numbers and
more revenue. Hence, the resulting line plans are not only profitable for operators
but also attractive to passengers. The passengers’ mode and route choices depend
on the utility of the service, which includes travel time, number of transfers, and

frequency of service. By suitable preprocessing of the utilities, we are able to apply
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any choice model for mode choices in a MILP. In contrast to existing approaches,
the mode and route decisions are modeled according to the passengers’ preferences
while commercial solvers can be applied to solve the corresponding MILP. We provide
and test means to improve the computational performance. In experiments on the
Intercity network of the Randstad, a metropolitan area in the Netherlands, we show
the benefits of our model compared to a standard line planning model with fixed
passenger demand. Furthermore, we demonstrate with the help of our model the
possibilities and limitations for operators when reacting to changes in demand. The
results suggest that operators should regularly update their line plan in response to

changes in travel demand and estimate their passenger demand during optimization.

Chapter 5: Hartleb, Friedrich, and Richter: “Vehicle Scheduling for On-
demand Vehicle Fleets in Macroscopic Travel Demand Models”. Accepted
for publication at Transportation. An early version of this paper is pub-
lished as Hartleb et al. (2021a).

The planning of on-demand services requires the formation of vehicle schedules con-
sisting of service trips and empty trips. Chapter 5 presents a heuristic algorithm for
building vehicle schedules that uses time-dependent demand as input and determines
vehicle routes and the number of required vehicles as a result. The presented ap-
proach is intended for long-term, strategic transport planning. For this purpose, it
provides planners with an estimate of vehicle fleet size and distance traveled by on-
demand services. The algorithm can be applied to integer and non-integer demand
matrices and is therefore particularly suitable for macroscopic travel demand models.
An implementation of the algorithm is available online (Hartleb et al., 2020). We
illustrate in two case studies potential applications of the algorithm and feature that

on-demand services can be considered in macroscopic travel demand models.

Chapter 6: Hartleb and Schmidt: “A Rolling Horizon Heuristic with
Optimality Guarantee for an On-Demand Vehicle Scheduling Problem”.
Published as Hartleb and Schmidt (2020).

In Chapter 6, we consider the same vehicle scheduling problem as in Chapter 5, which
arises in the context of travel demand models. Given demanded vehicle trips, what
is the minimum number of vehicles needed to fulfill the demand? In this chapter,
we model the vehicle scheduling problem as a network flow problem. Since instances
arising in the context of travel demand models are often so big that the network

flow model becomes intractable, we propose using a rolling horizon heuristic to split
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huge problem instances into smaller subproblems and solve them independently to
optimality. By letting the horizons of the subproblems overlap, it is possible to look
ahead to the demand of the next subproblem. We prove that composing the solutions
of the subproblems yields an optimal solution to the whole problem if the overlap
of the horizons is sufficiently large. Our experiments show that this approach is not
only suitable for solving extremely large instances that are intractable as a whole,
but it is also possible to decrease the solution time for large instances compared to

solving them as a whole.

Contributions

The main contribution of Chapters 2 to 6 is fivefold. First, we show in an empiri-
cal comparison in Chapter 2 that simplifications of passenger modeling can lead to
different results. Furthermore, we identify which components of evaluation functions

are crucial for the result for the example of timetable evaluation.

Second, we present novel optimization approaches for the design of public transport
services with integrated passenger choice models. In Chapter 3 we estimate the
passengers’ route choice during timetabling in two different ways. First, we develop a
linear distribution model resembling the characteristics of the targeted choice model
and, second, we use a simulation framework to approximate it. With these two
representations of the choice model, we develop two mixed-integer linear programs
for timetabling. In Chapter 4, we estimate the passengers’ route and mode choice
during line planning. By preprocessing the utilities of routes and modes, we design

a mixed-integer linear program for this problem.

Third, we develop solution algorithms to solve extremely large vehicle scheduling
problems as they arise during demand estimation with a travel demand model. In
Chapter 5, we present an efficient heuristic approach to estimate the fleet size of an
on-demand service. For the same underlying vehicle scheduling problem, we develop
another solution algorithm approach in Chapter 5. This algorithm is based on a
rolling horizon framework with overlapping horizons and we provide an optimality

guarantee for the solutions if the horizons overlap sufficiently.

Fourth, we test our approaches in experiments on artificial and real-world data. In
Chapter 3, the developed timetabling models are compared to four methods moti-
vated by the literature on a grid network and a partial network operated by Nether-
lands Railways. The line planning approach from Chapter 4 with integrated mode

and route choice is tested on the Intercity network of the Randstad, a metropolitan
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area in the Netherlands. We test the heuristic for vehicle scheduling in Chapter 5
on a travel demand model of the Stuttgart region in Germany, and a model of the
campus of the University of Stuttgart to estimate the impact of an electric scooter
sharing system. The advantages of the rolling horizon heuristic are demonstrated on

a set of randomly generated instances in Chapter 6.

Fifth, we provide valuable insights for public transport operators and public au-
thorities generated with the developed models and methods. In Chapter 2, we show
which components of timetabling evaluation functions are determining for differences
in evaluation results. The other way around, this indicates how evaluation functions
can be simplified without distorting the evaluation results. This is especially rele-
vant for the design of timetables with Operations Research models where evaluation
functions often have to be simplified to serve as an objective function in a tractable
model. The line planning model with integrated mode choice in Chapter 4 stresses
the importance of considering passenger behavior during public transport design.
Our results show that modeling the choices of passengers during optimization yield
line plans that are more profitable for operators and that have a higher level of ser-
vice for passengers. Furthermore, our experiments show that the operators’ profit
is sensitive towards changes in total travel demand. This suggests that they should
adapt their services regularly to maximize their profit. In Chapter 5, our experiments
give insights into how the use of autonomous fleets affects the required fleet size and
the vehicle distance traveled. Both are relevant figures for both operators as well as

public transport authorities in estimating the impact of on-demand services.

1.5 Research statement

Chapter 5 is the result of joint work with Emely Richter from the University of
Stuttgart. The author is responsible for algorithm development and implementation,
as well as manuscript preparation. Emely Richter’s contributions to this chapter are
the integration of the developed algorithm into a travel demand model, analysis of
results, and manuscript preparation. The research in all chapters except Chapter 5
was primarily conducted by the author of this thesis. There, the author is responsible
for research design, modeling, and analysis of the results. The research questions in
all chapters were developed and defined in fruitful discussions with the respective co-
authors. Frequent discussions with and critical feedback from my doctoral advisors
Marie Schmidt, Dennis Huisman, and Markus Friedrich greatly helped to improve

the quality of the research in all chapters.
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2.1 Introduction

When providing public transport, operators should aim for the highest possible qual-
ity from the passengers’ viewpoint, respecting physical and monetary constraints.
However, there are many different definitions for 'quality from the passengers’ view-
point’. The literature on public transport planning, both from Transport Engineering
and Operations Research perspectives, as well as practitioners in railway companies,
have come up with very different measures to evaluate quality. These range from very
basic measures designed to be used in linear programming frameworks to sophisti-
cated multi-variable models optimized to fit observed passenger behavior as well as

possible.

In this chapter, we investigate the following question: Considering a situation char-
acterized by demand for public transport, and different public transport services
provided to satisfy this demand, to what extent do different evaluation functions
agree on the quality of the provided transport services? That is, will the evalu-
ation functions considered - all designed to measure ’quality from the passengers’

perspective’ - lead to the same evaluation of what is a good or a bad timetable?

We give an overview of different evaluation functions for timetables proposed in the
literature and identify three components in which the functions differ from each other.
Based on this, we classify the considered evaluation functions and design a set of
representative evaluation functions that are different in the three components. These
functions represent a wide range of the most commonly used evaluation functions in
mathematical models, evaluation applications, or choice models. Moreover, their
modular structure as a combination of the three components allows a purposeful

analysis of their similarity.

To empirically compare these representative functions with each other and analyze
how similar they are, we conduct three case studies. In each case study, we evaluate
a set of timetables for a given demand situation with each of the representative
evaluation functions. Two sets of timetables are defined for an artificial grid network
and one set is defined for the real-world network of Netherlands Railways (NS).
Since the sets of timetables are designed by different parties with varying methods
and various objectives, the comparison of the functions should not be biased by the

way the timetables were created.

Based on the resulting evaluation values of all timetables with respect to each eval-

uation function, we develop a method to quantify the degree to which the different
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evaluation functions coincide. The result of the method allows a pairwise compari-
son of the evaluation functions and can be interpreted as a measure of inconsistency,
which we investigate in two ways. First, the pairwise inconsistency is interpreted
directly, visualized with the help of heat maps and multidimensional scaling. This
gives an overview of the extent of inconsistency between the evaluation functions
and allows an immediate recognition of patterns of which evaluation functions are
more or less consistent with each other. Second, we use cluster analysis to determine
the strongest inconsistencies between the functions. The cluster analysis identifies
groups of evaluation functions that are consistent while the evaluation functions in

different groups are less consistent.

With this setting, we aim at empirically testing whether timetable evaluation func-
tions agree on what is a good or bad timetable and to what extent they are con-
sistent. In particular, it is not the purpose of the analysis to identify a ’good’ or
best’ evaluation function. Instead, with the modular design of the timetable eval-
uation functions, we intend to identify which components of the functions have the
most influence on differences in the evaluation results. Our intrinsic motivation is
to show that the formulation of evaluation functions is crucial for the result of the
evaluation. Furthermore, by identifying key components of the evaluation functions
we want to provide information about which part to focus on when designing simple

yet purposeful objective functions for Operations Research models.

The contribution of this chapter is twofold. First, we use a novel and structured
method to compare multiple evaluation functions. In contrast to existing compar-
isons in literature, this is an empirical method that quantifies the difference between
evaluation functions. Since the method is independent of the structure of the eval-
uation functions, it can be applied to empirically compare evaluation functions in
other applications as well. Second, we provide a thorough comparison of timetable
evaluation functions for passengers. Our analysis shows to what extent evaluation
functions agree on what is a good or a bad timetable. Furthermore, we are able to
identify whether and under which circumstances a component of a sophisticated eval-
uation function is crucial for the result of an evaluation. This can be used to either
justify the simplifications made in current state-of-the-art optimization approaches
to public transport planning or to point out which aspect is still lacking and needs

to be incorporated to obtain objective functions providing a valid evaluation.

The remainder of this chapter is organized as follows. Section 2.2 gives an overview

of evaluation functions that are commonly used to measure the quality of public
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transport from the passengers’ viewpoint. Afterward, in Section 2.3, we structure
the evaluation functions used in the literature and define a set of representative
evaluation functions which we use for the analysis in this research. In Section 2.4,
we describe the data which we use in the case studies. Section 2.5 introduces a novel
measure of the inconsistency of evaluation functions and gives insight on the used
method for comparison. We report on the main findings of our experiments in the
same section. In Section 2.6, we demonstrate how the results can be used for the

design of an evaluation function and conclude in Section 2.7.

2.2 Literature on evaluation functions

Naturally, research concerned with the design of public transport also deals with
the corresponding evaluation. There are various evaluation functions proposed in
different research areas. Since we focus on the evaluation of public transport from
the passengers’ point of view, we restrict ourselves to these evaluation functions.
An overview of the most important factors of influence for timetable evaluation for
passengers is given by Parbo et al. (2016). We consider only the planned case and
neither disruptions nor robustness measures are considered, following the motto that
“time savings are the single most important benefit of transport improvement projects
all over the world” (de Dios Ortuzar and Willumsen, 2011). In this section, we give
an overview of different evaluation functions for timetables structured by the different

components of timetable evaluation.

2.2.1 Types of evaluation functions

First, there exist many different ways to evaluate public transport. These differ from
each other in the incorporated characteristics and the structure of the functions. We
distinguish between two principally different types of evaluation functions, where

each of them can appear in different variations.

On the one hand, most commonly used are travel time-based evaluation functions.
This is the default way of evaluation in both the research areas of Operations Re-
search and Traffic Engineering. The key idea is to quantify the quality of public
transport for passengers by a travel time equivalent. Travel time-based evaluation
functions are typically linear functions of the passengers’ travel time, but they vastly
differ in the number and kind of incorporated characteristics (Hensher and Button,

2007). In Operations Research, timetabling models are mostly based on the periodic
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event scheduling problem introduced by Serafini and Ukovich (1989) and often use
the absolute time passengers spend in public transport for evaluation, see for example
Corman et al. (2017). In advanced evaluation functions, the travel time is usually
“subdivided into walking time, waiting time, time on vehicle, transfer time, and
concealed waiting time” (Flyvbjerg et al., 1986). Furthermore, travel time-based
evaluation functions often take more influential factors into account, among them
fare, frequency, or temporal spread of the connections offered to passengers. In this
case, they are mostly referred to as perceived travel time, generalized cost, or disutil-
ity. Sometimes, also preferred departure or arrival times of passengers are modeled
by penalizing early or late departures or arrivals. Kanai et al. (2011) considered late
departures to be equivalent to waiting times for transfers and Robenek et al. (2016)
introduced additional variables and penalty terms for the modeling of departure time

preferences.

A comprehensive overview of generalized cost as evaluation functions can be found
in de Dios Ortizar and Willumsen (2011). Both in research and practice, the gen-
eralized costs are commonly used for evaluation purposes, although for a long time
there have been many publications recommending to stop using them to evaluate the
quality of timetables from the passengers’ point of view. For instance, Grey (1978)
discussed five aspects of why the generalized cost is unsuitable for evaluation, all fol-
lowing the same argument that depicting peoples’ variety of perceptions in a single

variable leads to an inaccurate representation.

On the other hand, we consider utility-based evaluation models that are mainly
known from research in choice modeling. The difference to travel time-based evalu-
ation models is that the evaluation value is not a travel time equivalent but follows
the concept of passenger supplement. That means, each reasonably good available
connection for passengers adds to their utility and thus improves the quality of the
service. A comprehensive overview of utilities of alternatives is given in Ben-Akiva
and Lerman (1985). Utility-based evaluation functions are still almost exclusively
found in choice modeling, although several publications proposed to employ them
for evaluation purposes as well. For example, de Jong et al. (2007) concluded that
the 'logsum’, a utility-based evaluation function, is well suited for evaluation and a
probable reason for their little success is the seemingly complex theory behind it - in

contrast to travel time-based evaluation functions.
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2.2.2 Passenger distribution

Second, the assumed passenger distribution model is crucial for the evaluation. To
evaluate the quality of a public transport service in a meaningful way, it is important
to estimate how passengers will use it, that means, it is important to estimate how
passengers distribute over available connections. The applied passenger distribution
models in timetable-related research range from very simple assumptions to highly
developed choice models. In Operations Research, it is often assumed that passenger
routes are known before the timetable is fixed and most publications use a priori fixed
passenger loads on the connections (Liebchen, 2018; Nachtigall, 1998). Recently,
there is a change in the timetabling literature visible with more publications focusing
on an integrated timetable-dependent passenger distribution. Since the connections
passengers choose are not always reliably determinable beforehand, Sels et al. (2011)
and Parbo et al. (2014) described an iterative approach for passenger assignment on
shortest routes and timetable optimization. In further publications, the shortest path
search was included in timetabling models. Schmidt and Schobel (2015b) did that
for the aperiodic case, Borndorfer et al. (2017) for the periodic case and Gattermann
et al. (2016) also for the periodic case using a satisfiability formulation instead of
a periodic event scheduling formulation. In these cases, the total travel time of all
passengers on their shortest connections is evaluated, instead of the travel time on
a previously defined connection. While it is often assumed that passengers only use
a single route for each origin-destination pair, some timetabling papers specifically
focus on a passenger distribution on multiple routes. For instance, Sels et al. (2015)
described a passenger assignment to multiple available routes that are of reasonable
quality for passengers. We are not aware of an integrated search for multiple routes,

most probably due to the high complexity of such a model.

In contrast to that, research in Traffic Engineering primarily applies passenger distri-
bution models including multiple routes for passengers. Depending on the preferred
departure or arrival times, the rooftop model assigns passengers to a connection with
shortest travel time (Guis and Nijénstein, 2015). The preferred departure or arrival
times of passengers are assumed to be known. Indeed, van der Hurk et al. (2014)
show in an analysis of smart card data from the Dutch railway network that many
frequently found assumptions on route choice behavior do not hold in general. To
also include unobserved preferences of passengers, choice models like the probit (Yang
and W. Lam, 2006) or logit model are commonly applied for passenger route choice.

The theory of choice models is explained in Ben-Akiva and Lerman (1985) and an
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overview of choice models suited for passenger route choice in transit networks can
be found in de Dios Ortizar and Willumsen (2011). It seems that the logit model
is capable of depicting the passenger behavior best and it is therefore found most
regularly. Friedrich et al. (2001) designed an efficient algorithm based on the logit
model to compute passenger distributions in public transport networks. Recently,
Espinosa-Aranda et al. (2018) proposed a new formulation with an estimation of a
constrained nested logit model for connection choice in public transport. The suc-
cessful application of the logit model is not limited to connection choice, C.-H. Wen
et al. (2012) show that it is, for example, well suited to capture passenger behavior

in mode choice as well.

2.2.3 Passenger preferences

Third, the evaluation of public transport services should be suited to the target group,
that is the passengers. Therefore, the passengers’ preferences must be reflected in the
evaluation functions. This is commonly achieved by the use of parameters to tune the
evaluation functions. Wardman and Toner (2018) showed in their analysis for the case
of the generalized cost that choosing the correct parameters is essential for a correct
evaluation. While research in Operations Research focuses on developing algorithmic
methods to compute timetables and mainly uses given or estimated parameters,
there is much research in Traffic Engineering and choice modeling on parameter

identification.

Usually, the parameters are found by either stated preference or revealed preference
approaches. In the first case, people are asked to make decisions in a survey and
their theoretical choice is used to derive rules for passenger behavior. For example,
Bradley and Gunn (1990) determined the value of travel time of the Dutch population
by a stated preference survey. In the case of revealed preference studies, the actual
decisions of passengers are generalized. Recently, with more data being available,
more publications analyze passenger behavior with revealed preferences approaches.
For example, Kusakabe et al. (2010) estimated passenger usage patterns from smart

card data.

The most important parameters for public transport evaluation are of two differ-
ent kinds, modeling passenger preferences and passenger behavior. The preference
parameters specify how the different components of the passenger’s journey are
weighted. Different components include, but are not limited to waiting time, in-

vehicle time, or transfer time. Dell’Olio et al. (2010) provides passenger preference
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parameters measured from a bus transport service and Schittenhelm (2013) lists pref-
erences of passengers of the Copenhagen S-train. A collection of multiple parameter
settings found in various publications is published in Wardman (2004). Part of the
passenger preferences but usually researched individually is the value of time. Many
publications determine values under certain conditions, see for example Wardman
et al. (2012), and Mackie et al. (2001) study the circumstances and ways travel time
values should be used within an evaluation. Parameters for passenger behavior refer
to the parameters used in the passenger distribution model, for example, the logit pa-
rameter. The importance of correct parameter modeling for logit models is stressed
in Swait and Louviere (1993).

2.2.4 Comparison of evaluation functions

Although there are various approaches to evaluate public transport from the pas-
sengers’ point of view, there is only limited research comparing different evaluation
functions. Most publications undertaking a comparison of evaluation functions com-
pare only two evaluation functions, a newly introduced function and the state of the
art. Usually, the purpose is either to illustrate the merits of the newly introduced
evaluation function, as it was done in the previously discussed integrated shortest
path search (Borndorfer et al., 2017; Gattermann et al., 2016; Schmidt and Schébel,
2015b), or to better fit the evaluation to reality. As an example for the latter, de Jong
et al. (2007) showed that in their case study a logsum based evaluation should be
preferred to the currently applied evaluation since it is more precise in computing
passenger surplus when changing the public transport service. Some publications
undertake a comparison of multiple evaluation functions, however, these are limited
to a theoretical comparison. For example, Parbo et al. (2016) provides a literature
review on public transport evaluation and focuses on the conflict of passenger’s versus
operator’s focus. We are not aware of an empirical comparison of public transport
evaluation functions or of an investigation of their inconsistency, which are the topics

of this chapter.

2.3 Timetable evaluation

From the literature review, it is apparent that researchers and practitioners have come
up with many different evaluation functions to measure the quality of timetables from
the passengers’ viewpoint. We classify this multitude of different functions to define

a set of representative evaluation functions. Each evaluation function is treated
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as a composition of a quality measurement, a passenger distribution model, and
assumptions on passenger preferences and behavior. In this section, we explain how
these three components are modeled and design a set of 16 evaluation functions to

represent the evaluation functions in use.

For this purpose, we define terms that are important for the design of evaluation
functions. All variables introduced are summarized in Appendix 2.A. Passenger
demand is specified by a set of origin-destination (OD) pairs OD, where each of them
is a directed pair of stations in the public transport network with time-dependent
demand. We consider disjoint time slices t € T' of one hour and define the hourly
demand of passengers that want to depart in time slice ¢ € T' for each OD pair to
be of ;. The sum of all hourly demand equals the daily demand 0,4 of each OD
pair, i.e., Yier OZd = 0oq- To meet the demand of passengers, each timetable offers
connections to the passenger. We use the term connection to denote a time-bound
route for passengers using public transport services and denote a set of reasonable
connections for each OD pair od with preferred departure time slice ¢ by C*,;. To
evaluate timetables, we follow the usual approach to measure and aggregate the

quality of available connections for passengers.

2.3.1 Quality measurements

We quantify five characteristics of a connection ¢ as listed in Table 2.1. These char-
acteristics are important factors of influence for a passenger’s decision whether to
travel on a connection ¢ or not. Note, that we do not take the fare of connections
into account. We assume a fare system where the fares depend on origin and desti-

nation only, as used, e.g., at Netherlands Railways (NS), the largest Dutch railway

IVT(c) In-vehicle | The time spent in public transport vehicles
time
WKT(c) | Walk time | The time spent walking between platforms for a
transfer

TWT(c) Transfer The time spent at a station waiting for the next
wait time | connecting public transport vehicle

NTR(c) Number of | The number of transfers in the connection
transfers
DEP(c¢) Departure | The departure time at the origin
time

Table 2.1: Characteristics of connections
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operator. Consequently, in such a system the ticket price for each OD pair od is

constant and does not affect the attractiveness of connections.

Based on these five measured characteristics we define four quality measurements to
represent the evaluation functions used in the literature. First, the absolute travel
time ATT is defined as the total time spent in public transport from embarking the

first vehicle until alighting the last vehicle during a passenger’s connection,

ATT(c) = IVT(c) + WKT(c) + TWT(c).

Second, the perceived journey time PJT applies a weighting of travel times of the

different trip segments and includes a penalty for transfers,
PJT(¢) =IVT(c) + awkT - WKT(¢) + arwr - TWT(c) + anTr - NTR(c).  (2.1)

As a weighted sum of travel times, the perceived journey time can be interpreted as
a time equivalent expressing how long the public transport journey feels to passen-
gers. With the coefficients awkT, arwT and anTr it is possible to model passenger

preferences.

Third, the adapted journey time AJT generalizes the perceived journey time by ad-
ditionally considering departure time preferences of passengers. To model these pref-
erences, we introduce the adaption time ADT'(c) as the time a passenger has to
deviate from their preferred departure time slice ¢t to take connection ¢ departing
at DEP(c¢). The adaption time is further explained in Appendix 2.B. Including the
adaption time, it is possible to model the impact of access time and the spread of
available connections in the evaluation. We define the adapted journey time of a

connection ¢ for all passengers with preferred departure time slice ¢ by

AJT!(¢) = IVT(c) + awkT - WKT(¢) + arwr - TWT(c)

(2.2)
+antr - NTR(c) + aapt - ADT'(c).

This number quantifies how unattractive a certain connection is perceived by a pas-

senger who wants to start traveling in time slice t.

We denote the passenger preferences by « = (ewkT, @TwT, ONTR, ®ADT ). Note, that
for @ = (1,1,0,0) the adapted journey time equals the absolute travel time ATT,
and for a = (awkT, aTwT, ONTR,0) the adapted journey time equals the perceived
journey time PJT.
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VT WKT TWT NTR  ADT

absolute travel time ATT 1 1 1 0 0

perceived journey time PJT 1 AQWKT QTWT  ONTR 0
adapted journey time AJT 1 OWKT OTWT ONTR  OADT

evaluated total utility ETU * * * * *

Table 2.2: Each entry indicates which of the five characteristics (in-vehicle time IVT,
walk time WKT, transfer wait time TWT, number of transfers NTR and adaption
time ADT) are taken into account in the four quality measurements ATT, PJT, AJT
and ETU. Linear dependencies are indicated by coefficients, non-linear by asterisks.

Fourth, there also exist utility-based evaluation functions in the literature that are
derived from choice models. To represent these functions, we consider the evaluated
total utility (ETU) of a connection as a number expressing how useful a connection
is to a passenger with preferred departure time slice ¢. We define the evaluated total

utility of a connection ¢ to be
ETU'(c) = e @A), (2.3)

based on the definition of the logit model as a passenger distribution model. The

logit model and its associated parameter § are explained in detail in Section 2.3.3.

We refer to the four characteristics ATT, PJT, AJT and ETU as quality measure-
ments. While the first three quality measurements are travel time equivalents, the
evaluated total utility is a utility-based evaluation function, where each reasonably
good connection for passengers adds to the utility and thus improves the quality of the
service. Hence, we call ATT, PJT and AJT travel time-based, and ETU utility-based

quality measurement.

Table 2.2 gives a summary and theoretical comparison of the four quality measure-
ments. If a characteristic is included linearly in a quality measurement, the table
shows the coefficient, if the dependency is non-linear, it is indicated by an asterisk

whether the characteristic is taken into account.

The goal is to design evaluation functions for a timetable but, so far, just quality
measurements for connections were defined. For evaluating a timetable, we aggregate
the quality measurements of connections to derive a quality measurement for the
whole timetable. To achieve this, we follow the approach commonly used in literature,

divided into two steps. First, we aggregate the values of the quality measurement
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over all connections in C’; and over all time slices in 7. The values are weighted
by the demand of; per time slice and the probability p’(c) that a connection is
chosen which yields a quality measurement for each OD pair. Second, the values of
quality measurements for OD pairs are averaged, weighted by their volume 0,4, to
obtain a quality measure for the whole timetable. The exact procedure used in our

experiments with examples is described in Appendix 2.C.

2.3.2 Passenger distribution

The decision which connections passengers choose is dependent on the characteristics
of the connections. There are two fundamentally different approaches for passenger
distribution used in the literature. While research in Operations Research often
assumes that all passengers travel on the shortest connection available, most publi-
cations from other research areas apply more realistic passenger distribution models
when evaluating timetables. To investigate this difference, we consider two passenger

distribution models.

On the one hand, we rely on the logit model to obtain a realistic distribution of the
passengers on multiple connections (mc). We assume a set C,q of reasonably good
connections for each OD pair od to be given. Then, the logit model can be interpreted
as a function assigning a probability p’(c) to each connection c € C,y that is used by

passengers with preferred departure time slice ¢. The logit model is defined by

e—,B-AJTt(c)

p'(c) = S HAIT() Vee Coyq, (2.4)
where the parameter § € Ry is used to adjust the model to a specific case study (Ben-
Akiva and Lerman, 1985). Note, that the choice set of connections C,q is independent
of the passengers’ preferred departure time slice t. Since the logit model is based on
the adapted journey time of all considered alternative connections, only connections
departing in or close to the time slice ¢ will be assigned a probability that is signifi-

cantly larger than 0.

On the other hand, we consider a shortest connection (sc) strategy for the passengers.
That means, passengers only take connections with lowest journey time departing
within or close to their preferred departure time slice. Let C?, be the set of all
connections with lowest adapted journey time for passengers of an OD pair od that

want to depart in time slice ¢. Then, the share of passengers using connection c € C?,
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is .
t t
p'(c) = —— VeeCyy.
|Gl ’
That means, in case there are multiple shortest connections available, we assume
that the passenger distribution on them is uniform. We want to point out that in
this modeling both the probability p and the set of available connections C' depend

on the applied choice model.

2.3.3 Passenger preferences and behavior

We take different assumptions on passenger preferences and passenger behavior into
account. To begin with, the definitions of perceived and adapted journey time as
well as evaluated total utility in Equations (2.1), (2.2) and (2.3) depend on passenger
preferences. The values of the coefficients « € Rio indicate how important in-vehicle
time, walk time, transfer wait time, number of transfers, and adaption time are

relative to each other to the passenger.

In addition, it is possible to adjust the logit model with the coefficient 8 € Ry in
Equation (2.4) to fit passenger behavior. This value indicates how sensitive passen-
gers are to absolute differences in the adapted journey time of connections. For exam-
ple, for § =0 all connections in the choice set will be used by passengers equivalently
and the logit model reduces to a uniform distribution. The higher the coefficient S,
the more passengers will use the connections with lowest adapted journey time. This
coefficient also influences the evaluated total utility of a public transport service, as
defined in Equation (2.3).

Furthermore, the passengers’ tolerance to deviations from their preferred departure
times can be adjusted with a scaling parameter v € N. A given value v models that
passengers prefer to depart in a % min time window within their departure time

slice . Hence, high values of v indicate a low tolerance and vice versa.

To analyze the impact of modeling passenger preferences on the evaluation, we con-

sider two user groups. These are represented by the two parameter settings
ps1 = (a, B, v) with a=(1,1,5,1), 5=0.13, v=1 (2.5)

and
pse = («, B, v) with a = (2, 2, 10, 2), 58=10.22, v =60. (2.6)
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The first parameter setting models passengers that are mainly focused on journey
time (awkT = 1, arwT = 1) and are relatively undeterred by transferring (axtgr = 5).
They would also make use of connections with higher adapted journey time (S = 0.13)
and are rather flexible regarding departure time (aapr = 1, v = 1), as long as

connections are fast.

The second parameter setting models passengers that are more convenience-oriented.
They prefer a public transport service that is suited to their needs with less and short
transfers (awkr = 2,arwr = 2,antr = 10), preferably use connections with low
adapted journey time (8 = 0.22) and are inflexible regarding their desired departure
time (aapT =2, 7 = 60).

The parameters are chosen following recommendations from research and practice.
For example, as of 2012, NS used a penalty of 10 min for each transfer (De Keizer
et al., 2012). Wardman (2004) provides a thorough study of values of time, among
them several values for the wait and walk time compared to in-vehicle time are listed.
Usually, the coefficients for wait and walk time are around 2. The logit parameter 3
should be adjusted for each case study, but experience has shown that values of
B €[0.13,0.22] are a reasonable choice if minutes are used as time units. Values for
the adaption time are chosen to fit the characteristics of the user groups modeled by

the two parameter sets in Equations (2.5) and (2.6).

2.3.4 Evaluation functions

We define an evaluation function as a combination of a quality measurement, a
passenger distribution model and an assumption on passenger preferences. That
means, applying an evaluation function consists of two steps: Given a timetable with
a connection choice set for passengers, the passengers are first distributed on the
connections according to the distribution model and their preferences. Second, the
quality of the timetable is evaluated with respect to the quality measurement, again
using the passenger preferences. Many publications focus only on the second step
when describing their evaluations. However, we believe that the distribution is an
integral component of the evaluation that influences the evaluation results. Hence,

we also investigate the extent of this influence.

When combining the four quality measurements defined in Section 2.3.1 with the
two distribution models described in Section 2.3.2 and the two different assumptions
on passenger preferences fixed in Section 2.3.3, we obtain 16 evaluation functions in
total.
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sc me
ATT Borndorfer et al. (2017) Parbo et al. (2014)T
PJT Wardman and Toner (2018) Parbo et al. (2014)F
AJT Kanai et al. (2011) Robenek et al. (2016)
ETU t de Jong et al. (2007)8

Table 2.3: Examples for the use of different evaluation functions in recent literature.
We provide one publication for each cell, exemplifying the use of a quality measure-
ment (absolute travel time ATT, perceived journey time PJT, adapted journey time
AJT and evaluated total utility ETU) in combination with a shortest connection (sc)
or multiple connection (mc) passenger distribution model

T Used ATT in evaluation and PJT in distribution

$ ETU in combination with sc is not used since ETU does not require a passenger distribution

§ Used a slightly different utility-based evaluation function

This design of evaluation functions entails two advantages. First, these functions
cover a wide range of commonly used evaluation functions in mathematical models,
evaluation applications, and choice models as is indicated in Table 2.3. Second, their
modular structure as a combination of quality measurement, distribution model, and
assumptions on passenger preferences allows a purposeful analysis. Differences or
similarities of evaluation functions can easily be traced down to components of the

functions. We denote the set of the 16 evaluation functions by F'.

2.4 Case studies

Our goal is to analyze how inconsistent the 16 different evaluation functions are
by comparing their evaluation behavior on multiple public transport services. In
this section, we describe three case studies in which we perform these evaluations.
Each case study is characterized by a fixed public transport infrastructure, a demand
situation on that infrastructure, and a set of services supplying the demand. A
public tramsport infrastructure consists of stations and direct links between them
and a demand situation is specified by a set of origin-destination (OD) pairs OD,
where each of them is a directed pair of stations with time-dependent demand. For
this demand situation, we consider several public transport services supplying this
demand, for comparison. Each public transport service is formalized by a line plan
and a timetable which together determine the potential connections and their quality.

The procedure of how we derive connection choice sets is described in Appendix 2.D.
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(b) Dutch railway infrastructure. Tracks

(a) Grid infrastructure
and stations in black are operated by NS

Figure 2.1: The evaluation functions are compared on these two infrastructures

2.4.1 Case studies on a grid infrastructure

As a first infrastructure, we use an artificial 5 x 5 grid network! introduced by the
research group FOR2083. The infrastructure consists of 25 stations and 40 direct
links as depicted in Figure 2.1a. On this infrastructure, we consider two demand
situations with multiple corresponding benchmark services available, each of them
consisting of a line plan and a timetable. Both demand situations have an almost
complete demand matrix with nearly 600 non-zero entries. Although they share the
same infrastructure, we treat them as two different case studies due to the different
data structures of demand and supply. The first demand situation has a typical daily
demand pattern and 27 suitable services that are operated throughout the whole
day. All of these services were designed by traffic engineers with established methods
used in transport planning. We refer to the case study as GL. The second demand
situation depicts a morning peak and 28 services operating only in the morning
hours are available. These services were found with different optimization models by

Operations Researchers and we denote the corresponding case study by GS.

Ihttps://github.com/FOR2083/PublicTransportNetworks/tree/master/Grid_5x5, visited on
November 12, 2018.
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2.4.2 Case study on the Dutch railway infrastructure

The second infrastructure is the Dutch railway network with roughly 270 stations
as it is operated by Netherlands Railways (NS). In Figure 2.1b a route map of the
Dutch railway network is shown. The demand is given by a scientific demand set
of more than 62000 non-zero OD pairs defined between the stations reflecting a
realistic demand situation. For evaluation, we consider the yearly transport services
that were operated by NS in the years 2012 till 2018. Note, that due to changes in
the infrastructure in the Dutch railway network, not all public transport services are
defined on the same network. That means, over the years some stations and tracks
might have been introduced or abolished. However, we evaluate all different services
with the same demand set between the same stations, therefore the evaluation is not
directly affected by the slight changes of the infrastructure. We refer to this case
study by NS.

2.5 Comparison of evaluation functions

We defined 16 evaluation functions for public transport services in Section 2.3 and
introduced the infrastructures with corresponding demand situation and multiple
services for the three case studies in Section 2.4. In this section, we describe a method
to compare different evaluation functions and to set them into relation. Using this
method, the 16 evaluation functions are investigated for their inconsistency in the

three case studies.

The key idea is to compare the evaluation functions when applied to a number of
services. We evaluate all public transport services s € S with each of the evaluation
functions f € F' and use the resulting evaluation values v{ to compare the functions
in F. We evaluate the services with PTV Visum (PTV Group, 2018), a software
package for macroscopic traffic analysis and forecasting. The complete results for all
three case studies are provided in Appendix 2.E. To explain and demonstrate the

used method, we discuss the results of the NS case study.

For the NS case study, Table 2.4 shows the evaluation values of the services operated
between 2012 and 2018 for all 16 evaluation functions. At a first glance, all public
transport services in Table 2.4 have very similar evaluation values, suggesting that
the quality of the services is effectively the same. For example, the absolute travel
time on the shortest connection evaluated with the first parameter setting (evaluation

function 1) ranges for all seven services between 35.94 and 36.78 minutes, implying
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ATT PJT AJT 100-ETU
Ps1 ps2 ps1 ps2 ps1 Ps2 psy psg
sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NS12| 36.78 37.43 36.79 37.60| 37.99 38.90 41.04 42.22| 38.64 40.49 58.37 53.30| 38.31 55.98 1.29 1.77
NS13| 36.30 36.96 36.32 37.13 | 37.44 38.38 40.27 41.58| 38.07 39.97 57.60 52.63| 34.19 53.60 1.11 1.70
NS14| 36.30 36.94 36.31 37.09| 37.44 38.37 40.31 41.60| 38.03 39.96 56.88 52.22| 36.83 56.50 1.21 1.80
NS15| 36.22 36.90 36.24 37.07| 37.36 38.33 40.22 41.51| 37.98 39.93 56.88 52.01| 36.68 56.25 1.20 1.77
NS16| 36.23 36.91 36.26 37.06| 37.38 38.32 40.24 41.52| 37.99 39.92 56.90 51.97| 38.28 55.93 1.28 1.75
NS17| 36.03 36.77 36.04 36.96| 37.25 38.29 40.28 41.67 | 37.87 39.90 56.85 52.03| 40.44 57.67 1.33 1.80
NS18| 35.94 36.71 35.95 36.89| 37.14 38.22 40.14 41.56 | 37.78 39.83 56.96 51.75| 39.72 59.16 1.31 1.85

Table 2.4: Evaluation values v{ in NS case study. Each column corresponds to one
evaluation function f € F and each row to one public transport service s. The name of
the services indicate the year in which this service was operated. The four topmost
rows show the quality measurement, the used parameter setting and distribution
model as introduced in Section 2.3 and lastly an index to identify the evaluation
functions. The values for the travel time-based evaluation functions (ATT, PJT,
AJT) show average travel time in minutes, the values of the utility-based evaluation
functions (ETU) is dimensionless. For ease of exposition, all evaluation values of
utility-based evaluation functions are multiplied with 100.

a difference of only 0.84 minutes. While this difference sounds negligible, it actually
comprises considerable differences for individual OD pairs. A total gain of 0.84
minutes in absolute travel time corresponds to an improvement of 2.3% and could
for example be achieved by decreasing the travel time on all connections of the 20
biggest OD pairs by 10 minutes. This improvement would affect more than 90,000

travelers every day.

Furthermore, Table 2.4 also shows that the best service regarding one evaluation
function is not necessarily the best service regarding another evaluation function.
For example, the best services regarding evaluation functions 7 and 8 do not coin-
cide. While NS18 provides on average the shortest perceived journey time weighted
with the second parameter set on the shortest connection, NS15 yields the shortest
perceived journey time on multiple connections, indicating that the passenger distri-
bution model has an influence on the evaluation in this case. Table 2.5 summarizes
differences in ranking of all public transport services and all evaluation functions in
a 'medal count’, indicating how often the respective service is classified on a certain

rank.

The highest numbers in Table 2.5 appear on, or close to the antidiagonal. This
shows that the evaluation functions essentially agree that the services improved from
NS12 to NS18, or equivalently, improved over the years. Taking an average over
all evaluations, it seems to be conclusive which service is best. However, not all of

the services could be unambiguously classified. Most of the services are ranked over
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‘ 1st 2nd 3rd 4th 5th 6th 7th

NS12 | 0O 0 2 0 2 0 12
NS13 | 0O 0 0 2 1 9 4
NS14 | 0 1 2 0 11 2 0
NS15 | 1 1 7 5 0 2 0
NS16 | 0O 2 4 8 0 2 0
NS17 | 3 10 0 1 1 1 0
NS18 | 12 2 1 0 1 0 0

Table 2.5: 'Medal count’ from NS case study showing the number of times a public
transport service is ranked on the n!* rank. Both row and column sum add up to
16, the number of considered evaluation functions.

a range of five, some even over six ranks. Using just one evaluation function, as
it is often done in research, might yield a very different ranking than the average
suggests. To draw inferences from this about the inconsistency of the evaluation
functions, it is interesting to see whether the deviations in the ranking are due to
some random dispersion or whether there is a structural connection between the

rankings of evaluation functions.

2.5.1 Inconsistency of two evaluation functions

Even when the differences in the ranking are large, actual evaluation values may be
very close to each other. To avoid fallacy when comparing the evaluation functions
by rank, we focus on the relative differences in objective values. Since the evaluation
values vf depend on the evaluation function and, thus, are not directly comparable,
we normalize the evaluation values. These normalized values are in the same number

range and can be compared easily.

We define

V(f) = maxv! — minv/
seS seS

to be the range of objective values of all public transport services with respect to
evaluation function f € F. For evaluation functions, for which smaller values are
better, we define the normalized value of service s € S with respect to evaluation
function f € F' to be

I vf — Mingeg vg,
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Equivalently, the normalized value for evaluation functions, for which larger values

are better, is defined as
' maXgres ’Uéf,, - v!

TV

It is evident that these two definitions are equivalent since the right-hand sides of

(2.8)

Equations 2.7 and 2.7 add to 1. The normalized values lie in the unit interval and
indicate to what extent service s performs worse than the best service with respect
to the same evaluation function considering the range of all other values. Therefore,

the normalized values ¢ depend on the set of all considered services S of a case study.

The normalized values allow a comparison of the quality of public transport services
regarding different evaluation functions. To compare the evaluation functions pair-
wise with each other, we define the inconsistency of two evaluation functions f; and

f2 as the mean difference in the normalized value, i.e.,

Z(p(f17f2 |S| Z|9051 SOS

seS

As the normalized values f depend on the set of all considered services S of a case

study, also the inconsistency ¢ depends on the set S.

vsf 1 @g
S] #---------
5 ol -l
51 ~~ | - - S1
52
S
2 0 52 @z-zzzzzc-:x So ‘SD |
i f2 fi f2

Figure 2.2: Normalization of evaluation values v{ for two evaluation functions and
indication of computation of inconsistency i, ( fi, f2) for two public transport services

The normalization of evaluation values and the definition of the inconsistency as the
mean difference in normalized values is depicted in Figure 2.2. The graph on the left
shows the ranges of the evaluation values v{ of two evaluation functions f; and fo
as vertical lines. On the lines, the evaluation values of two services s; and s, are
marked. As it can be seen in this graph, the two evaluation functions yield different
ranges of evaluation values, and therefore it is difficult to compare them. This is dealt

with by the normalization of the evaluation values, which is depicted in the graph on
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the right. Both ranges of the two evaluation functions f; and f; cover exactly the
unit interval and it is possible to compare the normalized evaluation values ¢f. This
is shown with the same two services s; and sy from the left graph. It reveals that
service s7 is rated differently by fi and fo while the two evaluation functions nearly
agree on the quality of service so. The vertical distance of the normalized evaluation
values, averaged over all services, is defined to be the inconsistency of two evaluation

functions in a certain case study.

One shortcoming of this approach is that the normalized evaluation values depend
on the set of all considered services of a case study. As defined in Equations (2.7)
and (2.8), all deviations in objective values between two services are compared rel-
ative to the largest differences between any services of the respective case study.
That means, in case all services are almost identical in quality, different evaluation
functions might be indicated as being inconsistent although they hardly show consid-
erable differences in the evaluation. However, when considering services that do show

differences in quality, such an incorrect indication of inconsistency cannot occur.

In the three case studies NS, GS, and GL we derive the pairwise inconsistencies
between all 16 evaluation functions. Altogether, we find qualitatively similar results,
which means, the inconsistencies of the studied evaluation functions are qualitatively
alike in the different case studies. Only for very few pairs of evaluation functions,
we observe a qualitative difference in the pattern of inconsistencies between the case
studies. This indicates that the results are not dependent on the structure of the
case study but indeed on the structure of the evaluation functions. Therefore, we
discuss the findings independently of the case studies where this is applicable and

just highlight differences in the results.

For a collective discussion we compute the weighted average of the inconsistencies

between the evaluation functions over all case studies by

> 1115 (f1, f2)
1e{G5.GL,NS}

i(f1, f2) =

v e F
|S[| f1>f2 y

I1e{GS,GL,NS}

where |S7| is the number of services considered in case study I and zi,( f1, f2) is the

inconsistency of evaluation functions f; and fo derived in case study I.

For better comprehensibility, the inconsistencies are presented in a heat map, a

quadratic 16 x 16 matrix where each entry displays the inconsistency of two evalua-
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ATT PJT AIT ETU
sy ps2 s ps2 s ps; sy ps2
sc mc sc mc sc mc sc mc sc mc sc mc mc
1 2 3 4 5 6 7 8 9 10
1| 000 3,63 1,37 4,73| 7,70 7,52 12,84 12,80| 9,72
2| 363 000 349 203 808 7,33 12,97 12,59| 9,59
3| 1,37 349 000 417| 7,24 7,4 12,39 12,34 8,97
4| 473 2,03 417 0,00| 7,45 681 12,26 12,03| 857
s| 7,70 808 7,24 7,45 000 332 532 547 4,01 13,26
6| 7,52 7,33 7,14 681 332 000 644 556 448 1,77 12,89
7|12,84 12,97 12,39 12,26| 532 6,44 0,00 3,38 599 554 11,98
8[12,80 12,59 12,34 12,03| 547 556 3,38 0,00| 578 502 11,15
9| 9,72 959 897 857| 401 448 599 578 0,00 3,45 10,46
10 321 1,77 554 3,45 0,00 12,01
11 13,26 11,98 10,46 0,00
12 15,99 14,48 13,16

Figure 2.3: Heat map showing the weighted average inconsistencies from all three
case studies. For better depiction, all values are multiplied with 100.

tion functions. To make differences in inconsistencies easily identifiable, high values
are indicated by a dark shading and low values have a light shading. Naturally, all
diagonal values of the matrix are zero as each evaluation function is fully consistent
with itself and the matrices are symmetric since i, (f1, f2) = i, (f2, f1) holds. The
weighted average inconsistencies of the three case studies are tabulated in the heat

map in Figure 2.3.

The absolute values of the inconsistencies i allow an interpretation of the extent to
which the evaluation functions agree in their assessment of the services. For example,
an inconsistency of 19.36% between evaluation functions 1 and 16 can be found in
the top right corner of Figure 2.3. This inconsistency implies that the normalized
values of all services regarding these two evaluation functions deviate by 19.36% on
average. Visualized in Figure 2.2, this would mean that the differences |p! — 1% are
on average over all services s approximately one-fifth of the total range of normalized

evaluation values.

The heat map in Figure 2.3 shows obvious patterns with dark and bright areas,
indicating large and small differences in the inconsistencies between the evaluation
functions. To provide a better intuition, we use multidimensional scaling to visualize

the inconsistencies in Figure 2.4 as distances between the evaluation functions. That
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Figure 2.4: The inconsistencies of pairs of evaluation functions visualized as distances
on the plane. Each star corresponds to one evaluation function displaying its id. The
labels next to the stars explain how the evaluation function is constructed. The
quality measurement ATT, PJT, AJT, or ETU is written in the labels. A round
label shape indicates that passengers are distributed on the shortest connections (sc),
while squared labels indicate the use of a passenger distribution model on multiple
connections (mc). The used parameter setting is distinguishable by solid (ps;) or
dashed label edging (ps2).

means, we depict each evaluation function f as a point xf € R? on the plane such
that the Euclidean distance d(zy,,xy,) between each two points is representative for
the inconsistency i(f1, f2) of the corresponding evaluation functions. This is ensured
by minimizing the relative deviation of Euclidean distance from the inconsistency,

i.e., we solve

> (d(zgap) ~i(fis f2))”

. f1,f2eF
min

2eR2IFI Z i(f1, f2)?

J1.f2eF

More on multidimensional scaling can be found in Borg and Groenen (2005). In
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general, the representation of inconsistencies as distances in Figure 2.4 allows a faster
and easier interpretation but all observations can be confirmed with the derived

inconsistencies in Figure 2.3.

Observations

It is obvious from Figure 2.4 that the four utility-based evaluation functions are
separated from the travel time-based evaluation functions. This is independent of
the chosen parameter setting or passenger distribution model. Also, the heat map
indicates by a dark shading in the upper right (or equivalently lower left) part that
the evaluation functions based on travel time are generally inconsistent with those
based on utility. Furthermore, both figures suggest that the utility-based evaluation
functions are rather consistent with each other, visible from low distances between
pairs of utility-based evaluation functions in Figure 2.4 and also from light shading
in the lower right corner of Figure 2.3. The utility-based evaluation functions are
especially far from the functions of adapted journey time although ETU and AJT
are the only two quality measurements that consider the adaption time besides other
characteristics, see Table 2.2. This shows that the shape of an evaluation function is
in this case more relevant for the inconsistency than the characteristics it takes into

account in the evaluation.

A second group of evaluation functions that are consistent with each other but a bit
separate from other groups is formed by the evaluation functions of absolute travel
time. By design, this group of evaluation functions is least affected by different
parameter settings and therefore it was expected that evaluation functions from this
group are relatively consistent with each other. In line with this, a close inspection
also shows that in our case studies the passenger distribution model has a higher
impact on the inconsistency of evaluation functions of absolute travel time than
the parameter setting. The group of evaluation functions of absolute travel time is
far from the utility-based evaluation functions and closer to other travel time-based

evaluation functions.

The closest group to the evaluation functions of absolute travel time are the four
evaluation functions of perceived journey time and the two evaluation functions of
adapted journey time with the first parameter setting. Especially with the first
parameter setting this closeness is plausible since the first parameter setting is very
similar to the fixed parameters of absolute travel time, see Equation (2.5). That the

two evaluation functions of perceived journey time with the second parameter setting
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are a little further away indicates that the penalties for transfers and the weighting
of transfer wait time have a measurable effect on the inconsistency of the evaluation

functions.

In the top left corner of Figure 2.4 we find the two evaluation functions based on
adapted journey time with the second parameter setting, separate from the other
evaluation functions and also relatively far from each other. This is also reflected in
the inconsistencies in the heat map in Figure 2.3 where both evaluation functions
11 and 12 show fairly high inconsistencies with all other evaluation functions. A
plausible explanation for this is the adaption time. The adapted journey time is the
only travel time-based quality measurement comprising the adaption time, and with
the second parameter setting the adaption is penalized much higher than when using

the first parameter setting.

A possible reason for the high inconsistency between the two evaluation functions
of adapted journey time with the second parameter setting might be found in the
set of services in our case studies; One kind of service provides no reasonably good
alternative to the best connection(s) whereas the second kind of service additionally
offers such alternatives. The evaluation of these two kinds of services is similar when
considering the shortest connection since both offer comparable shortest connections.
However, the adaption time in the second kind of service, which provides many
comparably good connections for each OD pair, is drastically lower when considering
multiple connections which leads to a different rating of the two kinds of services.
The presence of both kinds of services in the case studies might account for the visible

inconsistency between the two outliers for different passenger distribution models.

To summarize, Figure 2.4 suggests that there are three groups of evaluation functions
that are close to each other, but far from functions of other groups. One group is
formed by the four utility-based evaluation functions, one by the four evaluation
functions of absolute travel time, and one by the evaluation functions of perceived
journey time and adapted journey time with the first parameter setting. Additionally,
the remaining two evaluation functions of adapted journey time with the second

parameter setting seem to be two outliers apart from the three groups.

2.5.2 Cluster analysis

In addition to an investigation of the inconsistencies, we perform cluster analyses of
the evaluation functions in each of the three case studies. These help to determine

which of the evaluation functions are similar to each other and which are fundamen-
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tally different. With the cluster analyses we can, on the one hand, verify the group
formation that is apparent in Figure 2.4 and, on the other hand, identify individual

variations of the inconsistencies in the different case studies.

The evaluation functions f € F' are clustered based on the normalized evaluation
values ¢! of all considered services s € S. For a given k € N, each evaluation function
is assigned to exactly one of k clusters such that the sum of all distances between the
evaluation functions and their cluster center is minimal. As distance measure between
an evaluation function f and a cluster center m we use the rectilinear distance of the

normalized evaluation values ¢ to the cluster center,

= S lel - ml (29

Note, that this distance d(m, f) is consistent with the definition of the inconsis-

tency i, (f,m), in the sense that

d(f1, f2) =i,(f1, f2)-

The complete mixed-integer program we use to solve the clustering problem is speci-
fied in Appendix 2.F. In each case study we cluster the set of 16 evaluation functions F’
into k clusters, for k € {2,...,5}. Varying the number of clusters k helps to get a

better understanding of the inconsistency of evaluation functions.

These 12 clusterings are summarized in Figure 2.5, each clustering represented by
lines grouping several points. As before, each point corresponds to one evaluation
function and for each cluster of evaluation functions, there is a line surrounding the
corresponding points. The thickness of a line depends on the cumulative frequency
of appearance of the cluster. Hence, the number and thickness of the lines separating
two evaluation functions visualize how often these two functions were separated into
different clusters. Note, that in Figure 2.5 the distances between evaluation functions

are not representative of the inconsistencies.

Observations

In general, the cluster analysis confirms the observations made from a direct inter-
pretation of the inconsistencies in Figure 2.4. Additionally, it contributes some kind

of ranking of which inconsistencies are more substantial.
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Figure 2.5: The accumulated clusterings of all evaluation functions

It can be seen that the strongest separation is between the utility-based evaluation
functions and the travel time-based evaluation functions. In no case study two evalu-
ation functions from the two different bases were found in the same cluster. This gives
evidence that the decision of whether to use a travel time-based or a utility-based
evaluation is most crucial in this setting. Also within the group of travel time-based
evaluation functions, we observe that the visible inconsistencies in Figure 2.4 get
confirmed by the cluster analysis. For the grouping of evaluation functions, it seems
to be important whether the absolute travel time or a weighted travel time equiv-
alent is used. In combination with the different passenger distribution models and
assumptions on the passenger preferences, this can significantly influence how the
evaluation functions are separated into different clusters. This is especially visible
when comparing evaluation functions of the adapted journey time in combination

with the second parameter setting to other travel time-based evaluation functions.

In addition to that, the cluster analysis adds a refinement of the previous observa-
tions and reveals coherences that are not or less visible in Figure 2.4. For example,
the cluster analysis shows that there is a difference between utility-based evaluation
functions for the different passenger distribution models. Functions of evaluated total
utility are always clustered together when they use the same distribution model but
are occasionally separated from each other when using different distribution mod-
els. This effect is mainly found in the NS case study and only visible in the cluster
analysis since the three case studies are examined individually in contrast to an in-
vestigation of averaged values as in Figure 2.3. A probable explanation is that the
services in this case study offer good alternative connections to the shortest connec-
tion for the main demand pairs. This affects the evaluation when considering all

reasonable connections or the shortest connection only.

Figure 2.5 also shows that neither the parameter setting nor the choice of the distri-

bution model is solely decisive for a clustering of the evaluation functions across the
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case studies. For some combinations of parameter settings and distribution models,

evaluation functions of the different quality measurements are clustered together.

2.6 Implications

It is interesting to see that there are structural differences in the consistency of time-
table evaluation functions. In addition to a mere statement that different evaluation
functions might not agree on what is a good or a bad timetable, the structure of
this study can identify and explain reasons for these differences. The analysis in
Section 2.5 helps to determine which components of the functions have the most
influence on the found inconsistencies. In this section, we give a brief indication of

how this can be used for further research dealing with the evaluation of timetables.

Often, the design of evaluation functions is restricted for different reasons, such as
unavailable data, imperfect knowledge about passenger behavior, or computational
complexity. The observations from the inconsistencies and the cluster analysis allow
implications on how to deal with these restrictions and which design element to focus

on during the design or choice of an evaluation function.

On the one hand, the analysis can help to identify which simplifications of an evalu-
ation function are justifiable. That means, it is possible to determine which simpli-
fications have only a minor effect on the result of the evaluation. A simplification is
justified if the desired evaluation function and its simplified version are rather consis-
tent with each other, visible by not being separated into different clusters or by low
values of inconsistency. For example, when designing an evaluation function based
on absolute travel time without being aware of the precise parameters of the passen-
ger preferences, approximate parameters will not drastically change the evaluation
according to our case studies. This holds for both distribution models we tested,
obvious from the low inconsistencies between evaluation functions 1 and 3, as well as
between evaluation functions 2 and 4. Since, in the case of absolute travel time, the
parameter settings for the passenger preferences affect only the connection choice,
the validity of this simplification is expected and the analysis confirms that. This
implies for the case of absolute travel time as the quality measurement that the neg-
ative impact of non-reflected modeling of passenger preferences can be disregarded

as the resulting error is rather negligible.

On the other hand, this research helps to identify possibilities for improving a cur-

rently used evaluation function most effectively. Knowing that the evaluation func-
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tion in use does not fully depict reality, it can be improved in various ways. The
main categories of improvement are the quality measurement including which char-
acteristics are considered, the modeling of passenger preferences and behavior, as
well as the connection choice model. Since modifying an evaluation function often
involves elaborate data acquisition or expensive remodeling, it is desirable to estimate
the effects of possible modifications beforehand. For example, assume that a public
transport operator applies the adapted journey time on a logit distribution for the
evaluation of their services. To model passenger preferences of user groups, they use
estimated parameters. In this case, it is highly recommended to identify the correct
parameters for modeling the preferences and behavior of their customers properly.
Using wrong parameters can lead to very different evaluation results as this research

identified a high inconsistency between evaluation functions 10 and 12.

As mentioned, simplifying evaluation functions can be useful or necessary for several
reasons. However, it is only reasonable if the evaluation results are consistent. It is
therefore of utter importance to estimate the impact of a simplification on the evalu-
ation. While this is important for any evaluation application, it is especially relevant
when designing timetables. Using a wrong evaluation function as an objective in an
optimization approach might not only give a wrong indication of what is a good or

a bad timetable but can even misdirect the search for good solutions.

2.7 Conclusion

In this chapter, we structured evaluation functions for public transport timetables
that are commonly used in the literature and identified three components in which
the functions differ from each other. Based on this, we designed a set of evaluation
functions representing a wide range of commonly used evaluation functions used in

mathematical models, evaluation applications, and choice models.

Furthermore, we introduced and applied a novel method to quantify the inconsistency
between evaluation functions. This is, unlike existing comparisons, an empirical
approach based on the evaluation values of multiple timetables. Therefore, this
definition is generally applicable for comparing evaluation functions and is not limited

to the set of evaluation functions presented in this chapter.

With this method, we provided an analysis of the inconsistency of the designed eval-
uation functions. This analysis was conducted on three sets of timetables for an arti-

ficial grid network and the real-world network of Netherlands Railways. The findings
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are qualitatively similar for both infrastructures even though the networks and the
timetables considered are structurally different. This suggests that a generalization

of the results is possible.

In our experiments, we found that there are high inconsistencies between different
evaluation functions although they are all designed to measure the same - the qual-
ity of timetables from the passengers’ perspective. In all case studies, it appeared
most crucial whether a travel time-based or a utility-based evaluation is used, which
raises the question of why utility-based evaluation functions are commonly accepted
for choice models but hardly used for evaluation. Furthermore, we observed that
also within the group of travel time-based evaluation functions high inconsistencies
can appear. It seemed most important which quality measurement is used but also
different parameter settings and passenger distributions can significantly impact the
inconsistency between evaluation functions. These inconsistencies can be used to
validate simplifications of evaluation functions or to identify aspects of an evaluation

function that need to be incorporated for a valid evaluation.

This research supports the impression that even within a set of evaluation functions
which are all meant to evaluate the quality of timetables for passengers, the choice
of the evaluation function can have a significant impact on the assessed quality of
timetables, and thus also on which timetable is considered optimal. This observa-
tion is particularly crucial for Operations Research models in public transport as
optimizing on the wrong objective function could make the world worse rather than
better.
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Appendix

2.A Notation

Greek letters

T o o2 @R

Scaling parameter for passenger preferences

Scaling parameter for logit model

Scaling parameter for departure time tolerance

Filter coefficient for ATT and PJT

Filter parameter for ATT, PJT and NTR

Normalized value of a service w.r.t. an evaluation function

Latin capitals

ADT
AJT
ATT
C
DEP
ETU
F

GL
GS

I
VT
NS
NTR
OD
PJT
S

T
TWT
WKT

Adaption time

Adapted journey time

Absolute travel time

Set of connections

Departure time

Evaluated total utility

Set of evaluation functions

Case study on grid infrastructure
Case study on grid infrastructure
Index for case studies

In-vehicle time

Case study on infrastructure of Netherlands Railways
Number of transfers

Set of OD pairs

Perceived journey time

Set of public transport services
Analysis period

Transfer wait time

Walk time
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Latin lower case letters

Index for connection
Index for evaluation function
Inconsistency
Number of clusters
mec | Distribution model on multiple connections
o | Passenger load
od | Index for OD pair
p | Probability for connection choice
ps | Parameter setting
s | Index for public transport service
sc | Distribution model on shortest connection
t | Index for time slice
v | Value of a service w.r.t. an evaluation function

T .0

2.B Definition of adaption time

The adaption time (ADT) is the time a passenger has to deviate from their preferred
departure time slice t to take connection c¢. We use the adaption time to model the
departure time preferences of passengers. Each time slice ¢ corresponds to a one hour
interval [¢, £) of preferred departure time. Let £ € ¢ be a time point in the time slice
t =[t,t) and DEP(c) the departure time of connection ¢. Then, the adaption time
is defined as

ADT!(c) = ADT D (¢) = min |f- DEP(c)|.
ie[t,1)

The adaption time could similarly be defined for arrival times, however, for the sake
of simplicity we restrict ourselves to an adaption time at departures only. To model
stronger departure time preferences we split each time slice ¢ in v € N time windows ¢;

of equal length, with
.
t=Jt;.
j=1

Then, we assume that 9.4/, passengers want to depart in each of the v time windows
and the adaption time generalizes to the average adaption time to the v time windows,
i.e.,
" 12 "
ADT'(c) == ) ADT"%(c).
7 =1
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2.C Aggregation of characteristics of connections

For the evaluation of timetables, we aggregate the characteristics of connections. As
a first step, we aggregate the characteristics over all time slices t € T' and connections
ce C!, to obtain characteristic values for each OD pair. Let p’(c) be the probability
that connection c¢ is chosen by passengers with preferred departure time slice t € T,
i.e.,
S pi(e)=1 VteT
ceCly
and
p'(c)>0 VteT,ceC,.

How we derive meaningful values for this probability is outlined in Section 2.3.2.
Let X*(c) € {ATT(c),PJT(c), AJT"(c)} be a travel time-based characteristic of con-
nection ¢ € C!, with a value that possibly depends on the preferred departure time
slice t. Then the average value of that characteristic over all time slices t € T" and

connections c € Ct, for the OD pair od is derived by

Srer (04 Deecr, () - X'(c) )

Xod = n
YieT O
teT Yod

(2.10)

To compute the characteristic value for OD pairs, this value is weighted with the
probability p’(c) that a connection c is chosen, given the preferred departure time

slice t.

Furthermore, we define the evaluated total utility for passengers as

2teT (Ogd Leect, ETUZd(C))

ETU,4 =
¢ ZteT Oid

. (2.11)

This characteristic is not weighted with the passenger distribution p‘(c) since the
evaluated total utility of each connection ETU?,(c) is derived from the logit model
which we use as the passenger connection choice model. However, note that the
assumed passenger distribution model determines the set C?, of reasonably good
alternatives. How the distribution model influences the set of alternatives is addressed
in Section 2.3.2.
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We define the characteristics of the public transport service X to be the weighted

average of the characteristics for OD pairs, computed by

X > 0deOD Ood * Xod
Y 0deOD Ood

for Xoq € {ATT,q,PJ T4, AJTq, ETU,q}. These aggregated quality measurements

are used for evaluation of the public transport services.

2.D Derivation of a connection choice set

In all case studies, multiple services are considered, each of them consisting of a
line plan and a timetable. The evaluation functions assume a set C?; of reasonable
connections for each OD pair od with preferred departure time slice ¢ to be given.
In this section, we describe how we derive such sets from a given public transport
service. To ensure better comparability of the evaluation, we derive the same choice

sets for all evaluation functions within each case study.

In Section 2.3.2 we remark that two different connection choice sets are assumed,
depending on the applied passenger distribution model. In the case of a distribution
on multiple connections with the logit model, we assume that a set C\,q of reasonably
good connections for OD pair od is given. When all passengers are assigned to
the shortest connections, we assume that the set C?; of all connections with lowest
adapted journey time for passengers of OD pair od that want to depart in time slice

t is given.

2.D.1 Choice set for logit model

To obtain a set with all reasonably good connections for an OD pair, we consider
all connections with low absolute travel time, low perceived journey time, and a low
number of transfers. The perceived journey time of the connections is compared

using the fixed parameters

(aWKT;aTWT,aNTR) = (1.5, 1.5, 75)

These values are the arithmetic mean of the values used for « in the two parameter
settings ps; and pss. In addition, we use parameters dpyT, daTT, €PJT, EATT and
enTr to decide whether a connection is good enough to be considered. Then, the

choice set C,4 contains
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« all connections ¢ which have at most an absolute travel time ATT(c) with
ATT(C) < 6ATT -ATT(C,) + EATT

where ¢’ is the connection with the lowest possible absolute travel time for OD

pair od,

« all connections ¢ which have at most a perceived journey time PJT(c) with
PJT(C) < 5PJT . PJT(C,) +EPJT

where ¢’ is the connection with the lowest possible perceived journey time for
OD pair od and

o all connections ¢ which have at most NTR(¢) transfers with
NTR(C) < NTR(C,) + ENTR
where ¢’ is the connection with the lowest possible number of transfers for OD
pair od.

For the derivation of choice sets for the analysis we use the values
6PJT = 1.5, 5ATT = 1.5, EPJT = 10, EATT = 10 and ENTR = 1.

All dominated connections are removed from the choice sets. A connection ¢ € Cyy

is dominated by another connection ¢’ € C,q if

¢ connection ¢’ starts simultaneously or later and arrives simultaneously or earlier

than connection ¢, and
¢ connection ¢’ has at most as many transfers as ¢, and

¢ the perceived journey time of connection ¢’ is at most as high as the perceived

journey time of connection ¢ and
o at least one of the three conditions is a strict inequality

Since the search is independent of the time slice ¢, the choice set C,q contains all
reasonably good connections for the OD pair during the whole analysis period T'. As
mentioned before, the logit model assigns a share of passengers significantly different

from 0 only to those connections with low adaption time.
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2.D.2 Choice set for shortest connections

For the assumption that all passengers use the shortest connections only, one choice
set for each departure time slice ¢ is required. We define these to be the subset of
the choice set C\,q with reasonably good connections, containing only the connections

with minimal adapted journey time, i.e.,

Cly={ceCoq: AJT'(c) <AIT () VY €CLa}.

2.E Results of case studies

We provide the normalized evaluation values, the medal counts, heat maps, and

clusterings of all three case studies NS, GS, and GL in this section.

Explanation for the clusterings depicted in Tables 2.7, 2.10 and 2.13: The clusterings
were found with the mixed-integer program described in Appendix 2.F. In the first
column of each table is stated how many clusters are used. An asterisk indicates
that the clustering is not proven to be optimal. The remaining columns contain the
clusterings. The clusterings are separated by horizontal lines and in each row, one

cluster is represented by the ids of the evaluation functions contained in the cluster.

2.E.1 NS case study

ATT PJT AJT ETU
psy pPs2 pPs1 ps2 psy pPs2 psy ps2

se me se me se me se me se me se me se me sc me

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
NSs12| 1,00 1,00 1,00 1,00 | 1,00 1,00 1,00 1,00 | 1,00 1,00 1,00 1,00 | 0,34 0,57 0,20 0,51
NS13| 0,43 0,35 0,44 0,35 | 0,35 0,23 0,14 0,10 | 0,34 0,22 0,49 0,57 | 1,00 1,00 1,00 1,00
NS14| 0,43 0,31 043 0,29 | 0,35 0,22 0,19 0,13 | 0,29 0,20 0,02 0,31 | 0,58 0,48 0,56 0,34
NS15| 0,34 0,27 0,35 0,26 | 0,26 0,17 0,09 0,00 | 0,23 0,15 0,02 0,17 | 0,60 0,52 0,60 0,49
NS16| 0,35 0,28 0,38 0,24 | 0,28 0,16 0,10 0,01 | 0,25 0,14 0,03 0,15 | 0,35 0,58 0,24 0,66
NS17| 0,12 0,08 0,11 0,11 | 0,13 0,11 0,15 0,23 | 0,11 0,11 0,00 0,18 | 0,00 0,27 0,00 0,29
NS18| 0,00 0,00 0,00 0,00 | 0,00 0,00 0,00 0,07 | 0,00 0,00 0,07 0,00 | 0,12 0,00 0,10 0,00

Table 2.6: Normalized evaluation values ¢ in NS case study
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ATT PIT AT ETU
psy ps2 ps1 ps2 ps1 ps2 ps1 [
sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc

1 2 3 4 5 6 7 3 9 10 11
0,00 552 065 6,08 4,76 11,24 15,33 21,43| 6,58 12,12 18,70
552 000 594 1,26 1,28 6,35 10,73 16,83| 1,75 7,49 15,51
0,65 594 0,00 6,50 530 11,67 15,87 21,97| 7,01 12,62 18,90
608 1,26 650 000 1,77 516 947 1557| 0,75 6,22 15,02
4,76 1,28 530 1,77| 0,00 6,93 10,57 16,67| 2,27 7,81 16,68
11,24 6,35 11,67 516/ 6,93 0,00 4,38 10,48/ 4,66 1,13 13,05
15,33 10,73 15,87 9,47|10,57 4,38 0,00 6,10/ 898 3,25 12,71
21,43 16,83 21,97 15,57|16,67 10,48 6,10 0,00/ 15,08 9,35 10,94
658 1,75 7,00 0,75 2,27 4,66 898 1508| 0,00 5,74 14,84
12,12 7,49 12,62 6,22| 7,81 1,13 325 9,35 574 0,00 12,72
18,70 15,51 18,90 15,02| 16,68 13,05 12,71 10,94 0,00
10,53 7,14| 7,75 7,22 10,06 15,14 12,60

O] N O Lfd W N =

=
= O

[y
N

13
14

0,00 14,64 4,23 17,80
14,64 0,00 17,85 4,87
4,23 17,85 0,00 21,01
17,80 4,87 21,01 0,00

Figure 2.6: Heat map showing inconsistencies in the normalized value i, (f1, f2) in
NS case study

ATT PJT AJT ETU
ps1 ps2 psy1 ps2 psy Ps2 pPs1 ps2
sc me sc mc sc mc sc me sc me sc me sc me sc me
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16
1 2 3 4 5 9 12
3 6 7 8 10 11
13 14 15 16
1 2 3 4 5 9 12
4 6 7 8 10 11
13 15
14 16
1 2 3 4 5 9 12
6 7 8 10
5 11
13 15
14 16

Table 2.7: Optimal clustering of the set of evaluation functions F' into k clusters in
the NS case study
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2.E.2 GS case study

ATT PJT AJT ETU
ps1 Ps2 Ps1 ps2 ps1 ps2 ps1 Ps2
sc mc sc mec sc mec sc mc sc mc sc mc sc mc sc mc
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
GS1 0,67 0,64 0,64 0,58 0,53 0,52 0,50 0,48 0,45 0,48 0,24 0,29 0,70 0,73 0,68 0,68
GS2 0,61 0,64 0,58 0,60 0,50 0,52 0,46 0,49 0,43 0,49 0,29 0,33 0,84 0,84 0,83 0,80
GS3 0,62 0,64 0,59 0,61 0,51 0,52 0,47 0,50 0,45 0,49 0,36 0,36 0,88 0,87 0,87 0,83
Gs4 0,93 0,95 0,89 0,88 0,96 1,00 0,95 0,98 0,81 0,91 0,44 0,61 0,79 0,82 0,78 0,79
GS5 0,93 0,88 0,89 0,81 0,96 0,95 0,97 0,96 0,79 0,87 0,36 0,57 0,61 0,65 0,60 0,61
GSe 0,71 0,84 0,69 0,88 | 0,62 0,72 0,54 0,61 | 0,57 0,66 0,43 0,45 | 1,00 0,96 0,97 0,91
GS7 0,66 0,73 0,63 0,76 | 0,55 0,62 0,48 0,54 | 0,50 0,58 0,42 0,43 | 0,88 0,91 0,86 0,87
GSs 0,48 0,52 0,46 0,50 | 0,38 0,43 0,33 0,37 | 0,35 0,40 0,38 0,38 | 0,92 0,95 0,89 0,89
GS9 0,50 0,52 0,48 0,51 0,39 0,41 0,32 0,35 0,36 0,39 0,30 0,44 0,88 0,92 0,85 0,86
GS10 0,91 0,87 0,87 0,80 0,68 0,67 0,56 0,55 0,57 0,62 0,31 0,34 0,84 0,87 0,86 0,86
GS11 0,91 0,87 0,87 0,80 0,68 0,67 0,56 0,55 0,57 0,62 0,31 0,34 0,84 0,87 0,86 0,86
GSs12 0,32 0,53 0,30 0,47 0,48 0,62 0,52 0,66 0,81 0,57 0,71 0,34 0,83 0,79 0,77 0,78
GS13 0,80 0,85 0,81 0,87 0,64 0,70 0,51 0,57 0,57 0,66 0,43 0,54 0,98 0,98 0,98 0,97
GS14 0,65 0,71 0,63 0,71 0,49 0,54 0,39 0,45 0,44 0,50 0,39 0,42 1,00 1,00 0,99 0,96
GS15 0,00 0,02 0,00 0,02 0,00 0,03 0,00 0,04 0,00 0,04 0,10 0,29 0,54 0,55 0,53 0,54
GS16| 0,00 0,00 0,00 0,00 | 0,00 0,00 0,00 0,00 | 0,00 0,00 0,00 0,34 | 0,00 0,00 0,00 0,00
GS17| 0,48 0,47 0,46 0,45 | 0,39 0,39 0,39 0,40 | 0,36 0,37 0,42 0,67 | 0,93 0,98 0,92 0,93
Gsi18| 0,70 0,67 0,67 0,62 | 0,55 0,55 0,51 0,49 | 0,48 0,51 0,45 0,40 | 0,79 0,79 0,80 0,77
Gs19| 1,00 0,96 0,95 0,89 | 1,00 1,00 1,00 1,00 | 1,00 1,00 1,00 1,00 | 0,92 0,97 0,94 0,96
GS20 0,66 0,63 0,63 0,59 0,53 0,52 0,50 0,48 0,56 0,54 0,65 0,56 0,82 0,83 0,83 0,81
GS21 0,97 0,94 0,93 0,88 0,71 0,72 0,58 0,58 0,77 0,74 0,69 0,64 0,97 1,00 1,00 1,00
GS22 0,38 0,51 0,36 0,47 0,51 0,61 0,55 0,65 0,61 0,59 0,71 0,51 0,82 0,81 0,81 0,82
GS23 0,98 1,00 1,00 1,00 0,77 0,82 0,64 0,67 0,82 0,83 0,78 0,76 0,94 0,97 0,97 0,98
GS24 0,94 0,91 0,90 0,84 0,70 0,69 0,58 0,57 0,67 0,67 0,56 0,52 0,91 0,95 0,93 0,94
GS25 0,01 0,06 0,01 0,03 0,02 0,09 0,02 0,05 0,04 0,10 0,10 0,00 0,19 0,13 0,13 0,13
GS26 0,48 0,48 0,46 0,45 0,43 0,45 0,41 0,43 0,43 0,43 0,50 0,52 0,87 0,90 0,87 0,88
Gs27| 0,59 0,56 0,57 0,51 | 0,48 0,47 0,45 0,44 | 0,46 0,46 0,44 0,38 | 0,78 0,82 0,78 0,79
Gs28| 0,56 0,52 0,53 0,48 | 0,47 0,45 0,44 0,42 | 0,45 0,45 0,47 0,28 | 0,15 0,17 0,12 0,12
Table 2.8: Normalized evaluation values ¢ in GS case study

‘ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
GS16 10 5 1
GS15 5 2 4
GS25 1 2 13
GS28 4 1 2 4 1 2 1 1
GS9 2 4 1 3 1 1 1 1 2
GS8 2 2 2 2 1 1 2 3 1
GS1 2 4 1 3 1 1 1 1 2
G827 1 1 5 4 1 1 1
GS26 2 2 4 2 1 1 3 1
GS2 2 1 3 4 2 3 1
GS17 4 3 1 2 1 1 1 1 1 1
GS12 2 2 2 1 2 1 1 2 1 1 1
GS3 3 2 4 1 3 1 1 1
GS22 2 2 1 1 1 1 1 1 2 1 1 1 1
GS18 2 1 1 2 2 1 3 3 1
GS20 1 1 5 1 1 2 3 1 1
GS14 1 1 1 1 1 1 4 2 1 2 1
GS7 2 4 1 4 5
GS10 2 1 1 1 1 1 1 2 1 5
GS11 2 1 1 1 1 1 1 2 1 5
GS5 4 1 1 2 3 3 2
GS6 1 2 5 1 3 1 1
GS4 1 1 1 1 1 2 1 1 4 3
GS13 1 1 6 1 1 4
GS24 1 2 2 4 4 1 2
GS21 1 1 5 4 2 1 2
GS23 2 6 5 3
GS19 1 2 1 3 9

Table 2.9: ’Medal count’ from GS case study showing the number of times a public
transport service is ranked on the n'* rank. Zeros are omitted for better visibility.
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ATT PIT AIT ETU
ps1 ps2 pPs1 ps2 ps1 ps2 pS1 ps2
SsC mc sC mc sc mc sC mc SsC mc sc mc sC mc SsC mc
1 2 3 4 5 & 7 8 9
1] 000 461 2,65 6,80[11,66 11,64 16,78 16,92| 16,69
2| 461 000 430 394]11,66 10,80 16,52 16,13 1593
3| 265 430 000 554/10,41 10,59 15,53 15,66 14,81
4| 680 3,94 554 0,00[1015 9,95 1526 15,23| 13,93
5[11,66 11,66 10,41 10,15 0,00 331 521 535| 644 15,67
6|11,64 10,80 10,59 9,95/ 3,31 0,00 7,41 5,69| 7,08 15,95
7| 16,78 16,52 15,53 1526 521 7,41 0,00 3,30| 580 6,03 13,12
8| 16,92 16,13 15,66 1523| 535 569 3,30 0,00| 545 5,09 12,73
9[16,69 15,93 14,81 13,93( 644 7,08 580 545 000 4,73 11,19
10 11,34 3,44 2,98 6,03 509 4,73 0,00 14,04
11 15,67 15,95 13,12 12,73| 11,19 14,04 0,00
12 15,57 17,83 13,85 10,02

Figure 2.7: Heat map showing inconsistencies in the

normalized value i, (f1, f2) GS

case study
ATT PJT AJT ETU
psi ps2 ps1 ps2 psy pPs2 psi ps2
sc mec sc mec sc mec sc mc sc mc sc mc sc mc sc mc
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 2 3 4 5 6 7 9 10 11 12
13 14 15 16
1 2 3 4
3 5 6 7 8 9 10 11 12
13 14 15 16
1 2 3 4
4 5 6 7 8 9 10
11 12
13 14 15 16
1 2 3 4
5 6 7 8 9 10
5% 11
12
13 14 15 16

Table 2.10: Optimal clustering of the set of evaluation functions F' into k clusters
in the GS case study. The asterisk indicates that the clustering is not proven to be
optimal.
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2.E.3 GL case study

ATT PJT AJT ETU
psi ps2 ps1 ps2 psi ps2 psi ps2
sc mc sc mc sc mc sc mc sc mc sc mc sc mc sc mc
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
GL1 0,38 0,35 0,38 0,34 0,44 0,40 0,49 0,45 0,41 0,41 0,34 0,21 0,44 0,46 0,39 0,39
GL2 0,40 0,37 0,40 0,37 0,46 0,42 0,50 0,46 0,43 0,43 0,34 0,22 0,46 0,47 0,40 0,40
GL3 0,63 0,61 0,63 0,61 0,67 0,64 0,63 0,60 0,64 0,65 0,50 0,29 0,69 0,69 0,72 0,72
GL4 0,39 0,37 0,39 0,37 0,43 0,41 0,45 0,42 0,44 0,42 0,62 0,21 0,52 0,53 0,51 0,51
GL5 0,34 0,33 0,34 0,33 0,39 0,37 0,40 0,38 0,41 0,38 0,68 0,18 0,50 0,51 0,51 0,51
GL6 | 0,51 0,47 0,51 0,47 | 0,54 0,50 0,63 0,60 | 0,54 0,51 0,73 0,34 | 0,64 0,65 0,60 0,60
GL7 | 0,38 0,35 0,37 0,34 | 0,44 0,40 0,50 0,47 | 0,42 0,41 0,45 0,23 | 0,55 0,56 0,50 0,50
GL8 | 0,64 063 0,65 0,62 | 0,69 066 0,69 066 | 065 067 0,49 0,40 | 0,84 0,85 0,88 0,88
GL9 0,50 0,47 0,50 0,47 0,61 0,58 0,71 0,68 0,58 0,58 0,46 0,36 0,48 0,49 0,42 0,42
GL10 0,47 0,44 0,47 0,44 0,53 0,49 0,61 0,57 0,51 0,50 0,45 0,30 0,45 0,46 0,39 0,39
GL11 0,41 0,38 0,41 0,38 0,47 0,44 0,55 0,51 0,46 0,45 0,49 0,26 0,64 0,65 0,60 0,61
GL12| 0,41 0,38 0,40 0,37 0,46 0,43 0,52 0,49 0,45 0,44 0,51 0,25 0,62 0,63 0,60 0,60
GL13| 0,40 0,37 0,40 0,37 0,45 0,42 0,53 0,50 0,45 0,43 0,54 0,26 0,64 0,65 0,60 0,60
GL14| 0,44 0,41 0,44 0,41 0,49 0,45 0,55 0,52 0,47 0,46 0,55 0,27 0,60 0,61 0,59 0,59
GL15| 0,45 0,44 0,46 0,45 0,53 0,50 0,54 0,51 0,53 0,51 0,63 0,19 0,37 0,38 0,35 0,35
GL16| 0,54 0,52 0,54 0,52 | 0,58 0,55 0,63 0,60 | 0,56 0,54 0,56 0,32 | 0,79 0,79 0,79 0,80
GL17| 0,50 0,48 0,50 0,48 | 0,54 0,51 0,59 0,55 | 0,52 0,51 0,51 0,29 | 0,77 0,78 0,79 0,79
GL18| 0,82 0,80 0,81 0,80 | 0,86 0,84 0,88 0,86 | 0,83 0,85 0,78 0,67 | 0,93 0,93 0,94 0,94
GL19| 0,81 0,80 0,81 0,80 | 0,87 0,86 0,94 0,92 | 0,83 0,86 0,71 0,71 | 0,83 0,83 0,82 0,82
GL20 0,98 0,98 0,98 0,97 0,98 0,98 0,98 0,96 0,94 0,97 0,79 0,78 0,94 0,94 0,95 0,95
GL21 0,26 0,24 0,26 0,24 0,29 0,27 0,32 0,29 0,28 0,28 0,29 0,30 0,76 0,75 0,76 0,76
GL22 0,22 0,21 0,22 0,21 0,24 0,23 0,26 0,25 0,23 0,24 0,21 0,21 0,66 0,65 0,67 0,67
GL23| 0,11 0,10 0,11 0,10 0,14 0,12 0,16 0,14 0,12 0,13 0,08 0,09 0,37 0,37 0,36 0,36
GL24| 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
GL25 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
GL26| 0,74 0,77 0,74 0,77 0,78 0,80 0,81 0,85 0,76 0,78 0,80 0,84 0,98 0,98 0,94 0,94
GL27| 0,66 0,68 0,66 0,69 | 0,70 0,71 0,72 0,75 | 0,74 0,70 0,90 0,87 | 0,97 0,97 0,97 0,97
Table 2.11: Normalized evaluation values ¢ in GL case study
‘ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
GL24 16
GL23 14 2
GL1 4 1 4 6 1
GL22 11 1 4
GL5 1 1 2 2 1
GLT7T 4 4 4 2 2
GL21 11 1 4
GL2 5 3 3 4 1
GL4 1 3 4 5 2 1
GL13 2 5 1 3 4 1
GL15 2 2 1 2 4 1 3 1
GL12 4 7 4 1
GL10 4 1 4 4 2 1
GL11 1 9 4 2
GL14 4 9 2 1
GL9 4 1 4 4 1 2
GL6 2 3 1 6 2 1 1
GL17 1 1 4 4 2 4
GL3 1 1 4 2 8
GL16 1 7 4 4
GL8 1 2 9 4
GL19 5 1 4 6
GL27 1 2 4
GL26 1 2 2 2
GL18 1 5 6 4
GL20 4 2 1
GL25 16

Table 2.12: "Medal count’ from GL case study showing the number of times a public
transport service is ranked on the n'” rank. Zeros are omitted for better visibility.
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ATT PIT AT

pPs1
sc

ps2 pPs1 pS2
sc sc sC

1 2 3 4 5 6 7 8 9
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Figure 2.8: Heat map showing inconsistencies in the normalized value i, (f1, f2) in

GL case study

ATT PJT AJT ETU
ps1 ps2 psy ps2 ps1 ps2 ps1 ps2
sc me sc mec sc mc sc me sc me sc me sc me sc me
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 2 3 5 6 7 8 9 10 11 12
13 14 15 16
1 2 3 4 5 6 7 8 9 10 11
3 12
13 14 15 16
1 2 3 4 5 6 7 8 9 10
11
4 12
13 14 15 16
1 2 3 4
5 6 7 8 9 10
5 11
12
13 14 15 16

Table 2.13: Optimal clustering of the set of evaluation functions F' into k clusters in

the GL case study
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2.F Mixed-integer program for clustering problem

Let <pf: be the normalized evaluation values of a public transport service s € S with
respect to evaluation function f € F. Then, an optimal clustering of the set of

evaluation functions F' into k clusters can be found by solving the program

min > d(f)

feF
k
s.t. by = 1 VfeF
j=1
k
acf)y = Y dimy, f)-biy VfeF
j=1
1 .
d(my, f) = @ZId—mj,sl VieF, Yj=1,....k
seS
1
Mjs = ———— S ol b VseS Vji=1,... k
Zferm‘feF
m;s € R VseS, Vji=1,... )k
by ¢ {0,1} VieF, Yj=1,...,k
d(mj, f) € R VfeF, Yj=1,...,k
a(f) ¢ R VfeF

The binary variable b; s links the evaluation functions f to the clusters j and the
first constraint ensures that each function is assigned to exactly one cluster. The
second constraint assigns the distance of each evaluation function f to its cluster
center m; to the variable d(f). The distance between the functions f and the cluster
centers m; are computed in the third constraint using the distance function d(m, f)
as defined in Equation (2.9). With the fourth constraint, the cluster centers are
computed as the arithmetic mean of all evaluation functions that are assigned to the
cluster. The objective is to minimize the total distance of all evaluation functions
to their respective cluster center. We solve a linearized version of this clustering

problem.
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3.1 Introduction

Public transport is important to our society for various reasons, such as increased
mobility for the general public or lower air pollution compared to individual trans-
port. Especially the potential of public transport to reduce emissions is recently much
discussed in the context of climate change. To be considered an alternative to indi-
vidual transport, public transport has to be as attractive as possible to passengers.
For decades both researchers and practitioners have been working on the improve-
ment of public transport from different perspectives using various approaches. Most
of them follow the same pattern and design public transport sequentially. First,
long-term planning decisions are taken, such as stop location planning and, in the
case of railways, infrastructure design. Afterward, the line routes are designed and
the corresponding frequencies of lines are fixed. On the tactical level, a timetable is
determined, based on the results of the previous steps. Finally, vehicles and crews

are scheduled.

Finding a good timetable is an integral step for providing high-quality public trans-
port services to passengers. Next to the driving times of vehicles, the timetable
determines the transfer times and thereby the travel times of passengers. Since
transfer and travel times have a significant effect on the chosen routes of passengers
and also their satisfaction with public transport, timetabling is a relevant problem
with high practical impact. Moreover, from an algorithmic perspective timetabling
is an interesting task since finding a feasible periodic timetable is NP-complete. For
this reason, research often focuses on efficient solution strategies. In recent years,
many publications deal with the question of how passenger travel time can be used

as an objective to guide the search for timetables of high quality.

When designing public transport services, a good compromise must be made between
service quality and the costs of operating a public transport service. Since costs are
mainly determined by the line plan as well as the vehicle and crew schedule, many
optimization approaches for timetabling only aim at providing the best quality to
passengers. Even though the focus is on the quality for passengers, strong assump-
tions on passenger demand are made. Among them, two assumptions are commonly
found: First, all passengers travel on their shortest available route. Second, a pre-
determined passenger assignment to routes is sufficient to estimate passenger loads
in the public transport network. In this context, a passenger route defines when
and on which lines passengers travel. As summarized in Table 3.1, the impact of

each of these two assumptions has been studied individually. Improvements could be
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Predetermined route choice Integrated route choice
Nachtigall and Opitz (2008) Gattermann et al. (2016)
Single route Piitzold and Schobel (2016)* Borndorfer et al. (2017)
Liebchen (2018) Lébel et al. (2019)
Parbo et al. (2014)
Distribution Sels et al. (2015) this chapter

Robenek et al. (2016)

Table 3.1: Selection of timetabling publications, categorized by (1) whether a pre-
determined route choice is assumed or a route choice model is integrated and (2)
whether it is assumed that passengers use a single route only or distribute on mul-
tiple routes. The mentioned publications are discussed together with other related
literature in Section 3.2.

achieved by considering a passenger distribution on multiple routes and by integrat-

ing a shortest-route search into optimization, respectively.

Motivated by these improvements, we relax both assumptions at the same time. We
study the problem of finding a travel-time minimal timetable under the assumption
that passengers’ route choice can be modeled using a discrete choice model. To our
best knowledge, this is the first time that a choice model is used to derive a passenger

distribution within a timetable optimization model.

Depending on the quality of all available routes, discrete choice models estimate the
probability that a route is chosen by passengers. This route choice corresponds to
a passenger distribution in the network. We use the logit model, a commonly used
passenger route choice model in transport applications, to estimate passenger dis-
tributions on available routes and incorporate it in an optimization framework for
timetabling. Due to the non-linear structure of the logit model, the mathematical
program for this problem requires reformulation to be solved exactly. We present
two ways to integrate a passenger distribution on multiple routes into a timetabling
model as a linear formulation. Our first model uses a novel linear distribution model.

This distribution model is designed to have the same characteristics as the logit

IPublications with predetermined route choice mostly assume a passenger weight to be given
without explicitly mentioning which distribution was used to obtain the weights. The authors know
from conference presentations and personal conversations that almost always a shortest path routing
is used. If a passenger distribution is derived from a choice model or historic data, this is usually
reported. Therefore, we assume that publications with a predetermined route choice applied an
assignment to a single route unless explicitly stated otherwise. This matches with reports of other
authors, see for example Siebert and Goerigk (2013), Schmidt and Schébel (2015b) or P. Schiewe
and Schobel (2020).
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model. Due to its linear formulation, it can easily be incorporated into an optimi-
zation model. The second model relies on a simulation of the logit distribution of
passengers. By considering multiple scenarios, the distribution of passengers accord-
ing to a logit model can be approximated within an optimization model that is linear

in all variables.

We aim at maximizing the quality of timetables for passengers. Researchers and
practitioners developed a variety of ways to evaluate timetables from the passen-
gers’ perspective. Due to their design, not all of these evaluations are suitable as
an objective function in an optimization program. Chapter 2 shows in an empirical
comparison that different evaluation methods do not necessarily yield a consistent
evaluation of timetables. To best reflect the quality of the found solutions, we eval-
uate all timetables in our experiments with multiple evaluation functions. As an
objective function, the first model uses the absolute travel time to minimize the time
spent in the public transport system, which matches common practice in timetabling
literature. In the second model, simulated travel times are minimized to incorporate
passengers’ preferences that are not captured by absolute travel times only. These
preferences can include any kind of non-modeled factors of influence, from differently
perceived transfer times through to a popular ice cream shop at a certain transfer
station. We discuss the theoretical properties of the chosen objective functions of the
two models and analyze their influence on the resulting timetable in the experiments.
This discussion suggests that the absolute travel time, although commonly used in
literature, might not be suitable for evaluating timetables when considering multiple

alternative routes for passengers.

We compare our models for timetabling with integrated passenger distribution with
four timetabling approaches motivated from the literature. Two of these approaches
assume that a passenger assignment to routes is fixed before optimizing the timetable,
using either a single route for all passengers traveling between the same stations or a
distribution on multiple routes. Another approach finds optimal timetables based on
the assumption that passengers use the shortest available routes. A fourth approach
solves the problem of timetabling with integrated passenger distribution heuristically
by iterating between assigning passengers to routes according to the logit model and
finding optimal timetables. The experiments show that the two proposed models
are capable of finding better solutions than the benchmark approaches. The found
timetables performed better concerning some evaluation functions while being of

comparable quality concerning other evaluation functions when compared to the
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timetables found by existing approaches. These improvements come at the expense
of increased complexity of the models. From this, we conclude that the integration
of a passenger distribution model has the potential to find better timetables for

passengers, but more efficient solution strategies have to be developed.

We want to highlight two contributions of this chapter: First, we present a novel time-
tabling model with an integrated choice model to derive a passenger distribution on
multiple routes. We provide and discuss alternative representations of the passenger
distribution and develop two mixed-integer linear timetabling programs. Second, we
show on multiple artificial instances and a partial real-world network the advantages
and disadvantages of the novel approaches when compared to state-of-the-art meth-
ods. In particular, our experiments provide insight into (1) how considering multiple
routes for passengers instead of a single route, and (2) how integrating route choice

instead of a predetermined route assignment affects solution quality.

The remainder of this chapter is structured as follows. We summarize the literature
on passenger distribution models, on optimization approaches for timetabling, and
on the evaluation of timetables in Section 3.2. In Section 3.3, the basic models
relevant for this chapter are introduced and the problem is defined. In Section 3.4, we
develop and discuss two mixed-integer linear timetabling programs with an integrated
passenger distribution model. Section 3.5 describes the experimental setup, such as
considered instances, benchmark methods, and used evaluation functions. We report

and discuss our results of the experiments in Section 3.6 and conclude in Section 3.7.

3.2 Related literature

3.2.1 Passenger Route choice

State-of-the-art discrete choice models provide appropriate solutions for describ-
ing passengers’ behavior concerning mode and route choices (de Dios Ortizar and
Willumsen, 2011). A choice model estimates which alternative is chosen by an indi-
vidual given the utilities of all alternatives. Ben-Akiva and Lerman (1985) give in
their book a comprehensive overview of the theory of choice models. In aggregate
form, the chosen routes of individual passengers correspond to a distribution of all
passengers in the public transport network. For estimating passenger distributions in
public transport applications, the logit model is most commonly applied. To adjust
to specific requirements, the logit model is continually developed further. For exam-

ple, Espinosa-Aranda et al. (2018) propose a constrained nested logit model to model
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passenger distributions on routes in public transport. Since recently, choice models
in general and the logit model in specific are applied in optimization approaches for
public transport applications. Canca et al. (2019) use it to estimate a passenger dis-
tribution and mode choice in the context of transit network planning. They solve the
resulting non-linear program with a neighborhood search-based matheuristic. Due
to the non-linear structure, exact solution approaches rely mostly on a linearization
of the logit model. De-Los-Santos et al. (2017) developed a linear approximation by
using that one alternative with fixed utility is available. An overview of common

linearizations of the logit model is given by Haase and Miiller (2014).

One interpretation of choice theory is that each alternative is perceived differently by
people. This is usually modeled by adding an error term to the deterministic utility
of alternatives. The error terms are used as an unknown part of the utility in many
choice models. They model different sources of uncertainty and imperfect knowledge
of analysts, such as unobserved route attributes, unobserved passenger preferences,
or measurement errors (Ben-Akiva and Lerman, 1985). The distribution of the error
terms determines the choice model. For example, independent and identical Gumbel
distributed error terms yield a logit model. By drawing random terms from a specific
distribution, the corresponding choice model can be simulated (Train, 2009). Pacheco
et al. (2016) described such a simulation framework to compute optimal pricing

strategies for different parking options while considering passenger behavior.

3.2.2 Timetabling

Timetabling approaches for public transport applications are usually classified into
periodic and aperiodic cases. As we aim at finding a periodic timetable, we focus
on the periodic timetabling literature. Most formulations are based on the periodic
event scheduling problem (PESP) as introduced by Serafini and Ukovich (1989) or
the cyclic periodicity formulation (CPF), which is a further development of the PESP
model by Nachtigall (1994). While the PESP has one variable for each event modeling

points in time, the CPF uses one variable for each activity expressing a time duration.

Serafini and Ukovich (1989) showed that the problem of finding a periodic timetable
is NP-complete. Many publications focus on finding efficient ways to solve periodic
timetabling. Schrijver and Steenbeek (1994) developed a constraint propagation al-
gorithm which later on served as a basis for one of the first successful implementations
of a timetable found with methods of Operations Research (Kroon et al., 2009). A

powerful heuristic to solve the PESP model is the modulo network simplex algorithm
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developed by Nachtigall and Opitz (2008). The algorithm is inspired by the simplex
algorithm for solving linear programs where a feasible solution is improved in each
iteration by exchanging a basis and a non-basis variable. Patzold and Schobel (2016)
proposed a promising matching-based heuristic that could find timetables in short
computation times. Their algorithm was designed for a reduced PESP model with
fixed drive and dwell times for vehicles. Liebchen (2018) described how to exploit
the specific structure of a PESP instance to derive effective preprocessing techniques
that reduce the complexity of the timetabling problem. An overview of models and

solution methods for railway timetabling is given in Borndorfer et al. (2018).

Initially introduced as a feasibility program, the PESP model was quickly extended
by objective functions to guide the optimization. Recent publications often aim at
designing timetables with minimal passenger travel time or with the lowest energy
consumption during operation. We refer to Scheepmaker et al. (2017) for a summary
of energy-efficient timetabling approaches and focus on passenger travel time. How-
ever, to model the objective of passenger travel time, two restrictive assumptions on
passenger behavior are usually made. These assumptions have been shown to distort

the search for an optimal solution.

First, passengers are usually assigned to routes in the transport network before the
timetable optimization. With this passenger assignment to routes, the arcs in the
network are assigned weights to consider passenger routes during optimization in a
heuristic way. Many publications have challenged this assumption and shown that
the routes passengers use depend on the timetable (Schmidt, 2014) and, therefore,
cannot be reliably determined beforehand. To take passengers’ reactions on the de-
signed public transport into consideration, Nachtigall (1998) and Siebert and Goerigk
(2013) experimented with iterative approaches. They alternately assigned passengers
to shortest routes and optimized the timetable given the updated passenger routes.
Schmidt and Schobel (2015b) integrated a shortest-route search for passengers into
the timetabling optimization model and further improved the quality of timetables
found. They used that the exact route of passengers does not need to be known in
the aperiodic case since start and end events contain sufficient information for travel
time computation. With this trick, the resulting timetabling model with integrated
passenger assignment to shortest routes could be solved efficiently. Borndorfer et
al. (2017) developed a general timetable optimization model that allows the imple-
mentation of different passenger routing models. They discussed theoretical bounds

for four passenger routing models: a lower-bound routing model where passenger
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routes are found before knowing the timetable; a shortest path routing model where
passengers use the shortest path depending on the timetable; a capacitated multi-
path routing model where passengers distribute on several paths to avoid violation
of capacity constraints; and a capacitated unsplittable path routing model, where all
passengers between the same origin and destination travel on the same path while
respecting capacity constraints. Their results include the finding that, for different
objectives, the travel time on a timetable optimized with predetermined passenger
routes can be arbitrarily higher than the travel time on a timetable optimized with
integrated passenger routing. Next to theoretical gaps, Borndorfer et al. (2017) also
compared the lower-bound routing model with the shortest path routing model in
experiments and found significantly improved transfer waiting times for passengers
by integration of the passenger routing model. A different solution approach to peri-
odic timetabling with integrated shortest-route search was described in Gattermann
et al. (2016). They used time slices to model departure time preferences and de-
fined a translation of the integrated model to a satisfiability problem. P. Schiewe
and Schobel (2020) provide a heuristic approach for the timetabling problem with
an integrated shortest-route search that considers only a small share of the OD pairs
for timetable-dependent routes. Depending on whether the remaining OD pairs are
assigned to fixed routes or not, upper or lower bounds for the exact solution can be
found. Together with a preprocessing procedure that reduces the problem size by
eliminating unnecessary routing variables, they are able to find improved solutions
for close-to-real-world instances. Recently, Lobel et al. (2019) proposed an adjust-
ment of the modulo simplex algorithm to incorporate a shortest-route search during
optimization. Assuming that passengers always take the next available train in a
high-frequency network, Polinder et al. (2019) and Polinder et al. (2020) integrated

a route selection of passengers in a PESP model.

Second, for the design of a majority of timetable objective functions, it is assumed
that passengers only travel on the shortest route. Van der Hurk et al. (2014) con-
cluded from their study based on smart card travel data that this is one of the
common misassumptions on passenger behavior. Many publications challenged this
assumption and proposed enhanced models to develop better timetables for passen-
gers. As input to their timetabling model, Sels et al. (2015) described a passenger
assignment to routes that are at most 20% longer than the potentially shortest route.
Robenek et al. (2016) used estimates for utilities of available connections as defined
for choice models together with time-dependent demand structures to 