
Wayne State University

Library Scholarly Publications Wayne State University Libraries

4-1-2016

One-To-Many: Building a single-search interface
for disparate resources
Cole Hudson
Wayne State University, fi1806@wayne.edu

Graham Hukill
Wayne State University, ej2929@wayne.edu

This Book Chapter is brought to you for free and open access by the Wayne State University Libraries at DigitalCommons@WayneState. It has been
accepted for inclusion in Library Scholarly Publications by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Hudson, C., & Hukill, G. (2016). One-To-Many: Building a single-search interface for disparate resources. In K. Varnum (Ed.),
Exploring Discovery: The front door to your library’s licensed and digitized content (141-153). Chicago, IL: ALA Editions.
Available at: http://digitalcommons.wayne.edu/libsp/114

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital Commons@Wayne State University

https://core.ac.uk/display/56688213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/libsp
http://digitalcommons.wayne.edu/libraries

141

C H A P T E R E L E V E N

ONE-TO-MANY
Building a Single-Search Interface

for Disparate Resources

C O L E H U D S O N A N D G R A H A M H U K I L L

L ibraries provide access to a complex array of resources, but it comes as
little surprise that many struggle with this task. The ubiquity of Google in
modern research has placed libraries in the position of trying to emulate

or set themselves apart from the search engine, regardless of how appropriate it
is to compare libraries to Google. There are numerous ways in which libraries
can improve the search and discovery experience for patrons, and for many,
this improvement currently comes in the form of custom-built or commercial
discovery systems—which aggregate disparate library content into a single
results display. But, regardless of discovery systems’ potential, as Lown, Sierra, and
Boyer (2013) conclude, libraries should learn and balance user expectations with
the actual capabilities of library information systems. In an effort to find this
balance, our work led us to a singular goal: providing a single-search interface
for our complex array of library resources. What resulted was a discovery tool
we named QuickSearch.

Developed in-house, QuickSearch is a single point of interaction, “bento style”
search portal, displaying search results from disparate resources in discrete boxes.
These resources come from numerous independent, back-end systems, including
search results from the library catalog, Serials Solutions Summon Service, research

Part III | Interfaces142

guides, journals, our institutional repository, digital collections, databases, and a
site search of the entire university website. The term bento comes from Japanese
cuisine where different parts of a meal are compartmentalized in aesthetically
pleasing ways; this ultimately is the aesthetic goal of compartmentalizing search
results from disparate resources on the results page.

In this chapter we are not advocating for specific programming languages
or technologies; instead, we aim to share our underlying design principles and
philosophy in developing QuickSearch. As we see discovery moving toward
constantly shifting silos of data that must be aggregated for users, we tried to
imagine an architecture that accommodates this reality.

Vendors (e.g., Serial Solutions, EBSCO) offer products that aggregate library
resources, but as we shall see, these products are, by nature, incomplete and
incomprehensive. We are unable to rely on vendors for a single point of search,
yet we are also unable to create our own single resource index. The discovery
landscape is changing too quickly, and our staff is too small for a monolithic
approach. Instead, we have chosen to address data silos individually and loosely
couple them together under a single banner: QuickSearch—software that our
small team of developers can update and maintain. This approach seems to be
well received by users and has already resulted in increased access to resources.

This chapter will first outline QuickSearch’s key features (see figure 11.1),
discuss explored and realized approaches, and conclude with an appraisal of the
impact QuickSearch has had on user behavior patterns.

FIGURE 11 �1

Screenshot of QuickSearch displaying results for “biology” search

Chapter Eleven | One-to-Many 143

POTENTIAL APPROACHES AND WHY THEY DIDN’T WORK

To meet our goal of providing a comprehensive, intuitive search tool across all
library resources, from a single interface, we first explored a range of different
possible approaches. This section will discuss these, noting why they were not a
good fit for us, in an effort to contextualize the development of QuickSearch and
explain how it addressed problems with these other approaches. (See table 11.1.)

TABLE 11 �1

Overview of explored approaches

Approach Problem QuickSearch’s Solution

Web-Scale
Discovery Services

Do not contain all
library resources

WSDS results are valuable,
incorporated as “Articles” box

Single Index
of Library Resources

Difficult to rank,
difficult to maintain

Currently avoids ranking

Monolithic Software
Approach

Brittle, hard to update,
too much maintenance

Simply designed, low barrier to
construction, easy to update,
resilient to catastrophic failure

WEB-SCALE DISCOVERY SERVICES

Providing a single point of interaction for search is increasingly a focus of
vendors, as they realize how valuable this would be to libraries and their users.
Companies such as EBSCO, Ex Libris, OCLC, and ProQuest all have products
that index multiple resource types, including databases that they operate and
provide access to, abstracts from other vendors’ databases, and even MARC
records for books and media from a library’s catalog. These platforms are often
referred to as “web-scale discovery services” (WSDS). The number of distinct
items in these platforms is staggering—our own ProQuest “Summon” platform
returns 632,286,219 results for a blanket search. Yet still, some library resources
are not included, making them effectively invisible to our users.

Web-scale discovery services include resources from a variety of sources. They
are well suited for searching individual articles because they include articles from
a wide variety of journals and databases, in addition to MARC records they
pull from library catalogs and other resources. But in spite of the increasingly
wide net that web-scale discovery services cast over a library’s resources, vast
swaths are often missed: institutional repositories, digital collections, databases,
research guides, information on the university or library website, and so on.
These omissions can happen for a variety of reasons, three of which we will
explore further below.

Part III | Interfaces144

One reason resources might be absent from a WSDS is that they don’t fit
neatly into the model the service is using for indexing and searching resources.
As advanced and sophisticated as they get, web-scale discovery services still rely
on quasi-traditional approaches to modeling library resources: titles, authors,
dates, publishers, and so forth. For example, they are ill prepared to accommo-
date a university’s website search results where complex, algorithmic ranking of
pages is useful, if not essential. Library research guides are another example of
resources that do not fit neatly into that model. Web-scale discovery services are
successful only insofar as the resources we seek can be described and searched
in a meaningful way through their interface.

Second, it is possible the resources are inaccessible to the WSDS, or too small
and unique to be indexed by a large, vendor-created WSDS. For example, at
Wayne State University we have a growing institutional repository (Digital-
Commons@WayneState) and online digital collections, neither of which are
indexed by our Summon platform. These are valuable library resources, but are
missed completely.

Thirdly, even within resource types that a WSDS is able to index and search,
there might be gaps when resources are not included due to “reluctant vendor
participation/partnerships or to choices of resource inclusion made by libraries”
(Ellero 2013). In effect, the coverage of a WSDS is a moving target, which does
not always support comprehensive, repeatable searching.

The point here is not to provide an in-depth analysis of web-scale discovery
services, which other articles have expertly done (e.g., Ellero 2013), but instead
to show that despite their vast reach, there are library resources they currently
cannot, and perhaps will not, index for search.

SINGLE INDEX: APPLES AND ORANGES

Another approach to providing a single-search interface for library patrons is
to put metadata records from disparate sources into a single index, and provide
a search interface from that single point. Cosmetically and conceptually it is
quite similar to Google, in that all resources would come from a central index,
interleaved into a single list of results. This approach looks elegant on paper, but
is fraught with its own problems. A particularly thorny one is that

library data just doesn’t have the same characteristics as Web data. It just doesn’t.
Though . . . lots of folks working on Web Scale Discovery have made big strides,
nobody has “solved” relevance ranking for full library discovery the way Google
solved it for the Web. (Thomale 2015)

Chapter Eleven | One-to-Many 145

This quote from Jason Thomale during his talk at Code4Lib Annual in 2015
(also see chapter 10, “The Bento Box Design Pattern,” by Thomale, Philipps, and
Hicks) very nicely sums up the problem of creating a single index, comprised
of multiple resource types, to search and provide results: the resource types that
are included are simply too different, and ranking them as search results is an
effort in futility. Search algorithms that power a single database or resource
type are complex at best, but ranking multiple resource types increases that
complexity exponentially.

With the goal of a single-search box interface, a bento-style approach
sidesteps some problems with this approach, namely it does not purport to
rank variant resource types. Instead, it provides these resources on equal foot-
ing, leveraging the ranking algorithms internal to each resource’s individual
search interface.

MONOLITHIC SOFTWARE APPLICATION:
LESS CODE, MORE UNIFORMITY

A third approach is to design a system in which resources share common
pathways and code. Each “box” on the page has to ask its associated database
for data in a particular fashion. Each database returns this data in a particular
form. Given five to ten boxes, the complexity of code needed to handle these
differences can grow quite dramatically. The way to prevent this would be to pass
everything through a common processing pipe that would handle requesting
and returning data to the “boxes” on the page. This approach would allow for
less overall code and more uniform features between the boxes. If every box uses
the same processing pipe, potentially when an update to one box is applied, it
would apply to all. This approach, however, is not without its pitfalls.

The main issue with this kind of approach can be best expressed in its need
for dedicated staff to manage the system. In a 2001 IBM white paper, Paul
Horn states that the greatest obstacle facing the IT industry is complexity. “In
fact, the growing complexity of the I/T infrastructure threatens to undermine
the very benefits information technology aims to provide.” This problem is one
of scale, because soon, he warns, there would not be enough IT professionals
to handle the rise in complex, interconnected systems (Horn 2001). Dystopic
vision aside, Horn does touch upon a key issue that applies to any organization
regardless of size—the increased human cost of ever more complex systems.
Horn’s premonitions are relevant to our work with QuickSearch. Maintaining a
more complex and better-integrated system would be cost-prohibitive in terms
of dedicated staff time. We have no full-time front or back-end web developers.

Part III | Interfaces146

The main development team consists of librarians and system administrators,
for which application development is only a part of their job duties. If we
followed a monolithic development approach, one in which we wrote DRY
(Don’t Repeat Yourself) code, this would naturally lead to something such as
a common processing pipe for all resource types, but the costs of maintaining
this approach would increase.

Another issue to contend with is that the resources which power Quick-
Search undergo changes and upgrades at different rates either because of (1)
internal decisions to change how we interact with a resource, or (2) changes to
resources outside of our control (such as Serial Solutions’ Summon service or
Springshare’s LibGuides API). When the resources share a common processing
pipe, any changes we make to one resource would have to not disrupt the
functionality of other resources. This, in turn, increases the amount of testing
needed to ensure that all the resources still retrieve and display results correctly.
With enough people and very established application development workflows,
interconnected systems can be run smoothly. With our small team, this was a
major roadblock to adopting this overall approach.

QUICKSEARCH: OUR APPROACH, OUR SOLUTION

Given our goal of a single-search interface across all library resources, we devel-
oped QuickSearch with the shortcomings of other approaches firmly in mind,
focusing on a low-barrier, manageable approach we hoped would hit all of our
requirements.

The design principle is straightforward: QuickSearch is a representative speci-
men of the bento box-style search interface, where results from different sources
are returned to visually discrete boxes on the results page. One page, one search
box, results from as many library resource types as possible.

DESIGN PRINCIPLE: EVERY BOX FOR ITSELF

As opposed to the monolithic approach discussed above, we opted for an archi-
tecture with a much lower barrier to entry. Figure 11.2 is an overview of the
QuickSearch architecture.

Our strategy going into development—when the number of resources types
(boxes) was still fluctuating—was to have each “box” on the search results page
have its own “pipe” back to the original source that provided results relevant
to the current search. The advantages to this approach have been numerous.

Chapter Eleven | One-to-Many 147

LOW BARRIER TO CREATION

Even during the process of identifying and configuring data sources that would
populate the search results, we could start building “pipes” for known resource
types and could begin prototyping the page. In a monolithic-based approach,
it might have been cumbersome to wait on unknowns like this, such that we
could fold them into more terse and purposeful code.

EASY TO COMPREHEND

Just follow the arrows! Most librarians who work with electronic resources will
be familiar with the databases at the bottom of the figure (some are vendors,
some are databases with indexed resources). Except for a couple of unique cases
where different “boxes” share “pipes,” there is a near 1:1:1 ratio from JavaS-
cript-populated “box,” to PHP “tunnel,” to database on the back end.

FIGURE 11 �2

Architecture of QuickSearch

Part III | Interfaces148

WELL SUITED FOR A SMALL TEAM

The distributed nature of the design—highly modular and autonomous routes
for each “box”—made it easy to develop with a small number of people working
on the front and back ends. In many instances, we split up the work by resource
type, where each person would code the “pipe” for a given resource from begin-
ning to end. They would be responsible for the actual database queries, moving
up through PHP, JavaScript, and finally into displaying results. In a larger, more
monolithic system, this kind of workflow would be nearly impossible. The only
constraint we had was that box results must be reliable and consistent with the
resource’s native results set; the mechanics of each “pipe” were determined by
the nature of the resource database.

NUTS AND BOLTS OVERVIEW OF QUICKSEARCH

Aside from the traditional markup and styling in HTML and CSS, the application
consists of JavaScript- and PHP-mediated interactions with HTTP-accessible
data end points. JavaScript renders resource data onto a user’s page, while PHP
communicates with the data resource. Each resource has its own JavaScript and
PHP scripts which handle querying and response separately from the other
available QuickSearch resources.

When a patron first uses the QuickSearch tool, their query term(s) are
captured via JavaScript. AJAX (Asynchronous JavaScript and XML) calls, each
connected to a separate box on the page, then pass along the data for process-
ing by the server. Server-side scripts written in PHP take care of formatting
and sending query terms to their corresponding database. When the database
responds back with the patron’s requested resources, the PHP script processes
and sends the data back up the pipeline. Finally, the data is passed back to the
QuickSearch web page where it is inserted into the database’s corresponding box.
Due to the built-in asynchronicity of the AJAX calls, which handle the patron’s
input and the database’s corresponding output, each set of data is returned only
when it is ready and the resource’s failure and speed (or lack thereof) has no
impact upon the other resource boxes or their ability to load data from their
own data sources.

IMPACT AND ENGAGEMENT

QuickSearch was launched November 6, 2013, as an additional search option
among a cluster of search interfaces. Though it provided an umbrella search that

Chapter Eleven | One-to-Many 149

covered resources from other search interfaces, it was not until August 2014,
when we launched a redesign of the website, that we did away with the search
interface cluster approach and featured QuickSearch as the primary search
interface from the library home page.

Since that time, inroads for search and discovery have changed dramati-
cally. What used to be unique and isolated search interfaces have become a
single point of interaction. The result has been largely positive. Users have
demonstrated active and sustained engagement on the search page; resources
that were previously unsearchable and inaccessible from the library website
are now discoverable; and we received a healthy dose of “No News is Good
News” feedback from users.

INCREASED ACCESS TO RESOURCES

A driving force for the creation of QuickSearch was to provide discoverabil-
ity to resources that were previously unsearchable from the library website.
Nevertheless, many of the resources now searched by QuickSearch were, in
fact, previously searchable from the library website via a tabbed search inter-
face on the library home page: Articles (“Everything”), Books and Media
(“Catalog”), Databases (“Article Databases”), Journals (“Online Journals”),
and even Site Search.

Though all of these resource types were searchable, tab usage was inconsistent,
and search was certainly not possible across all resource types at once. The effect
hurt serendipitous discovery across resource types, and required a duplication
of effort on the user’s part, constantly repeating searches in different interfaces,
navigating the challenge and peculiarities of each.

With the launch of QuickSearch, a new tab was created allowing users to
search across these resources with one search (see figure 11.3).

FIGURE 11 �3

Pre-redesign website tabbed search interfaces with QuickSearch included

Part III | Interfaces150

FIGURE 11 �4

Current website without tabbed search interfaces, featuring QuickSearch as the sole
search box in header

Even with the addition of QuickSearch, tab usage was still inconsistent and
confusing, and patrons still had the option to search specific resource types via
their isolated search interface. With the redesign in August 2014, we moved away
from the tabbed search cluster, and for the first time, started pushing all library
search and discovery traffic from our new standard header (see figure 11.4) through
QuickSearch.

As user searching began routing through QuickSearch only, many library
resources that were previously hidden from search and discovery on the main
library website were, for the first time, exposed to all searches, for all users. This
includes our Institutional Repository (DC@WSU), our Digital Collections
(WSUDOR), Library Research Guides, and a more sophisticated Site Search
of the entire wayne.edu domain.

This exposure has resulted in increased use and awareness of these resources.
Since QuickSearch launched in August 2014, through March 2015, it has directed
users to resources previously unsearchable from the library website:

`` 800 + visits to digital collections
`` 3,800 + visits to library research guides
`` 3,500 + visits to DC@WSU

Those visits to DC@WSU, as an example, are particularly encouraging. DC@
WSU is a Software-as-a-Service (SaaS) from Bepress, with a website and search
interface entirely removed from the library infrastructure. Usage of this resource
was limited to the traffic we could direct there, often just for known items such
as electronic theses or dissertations. These near 4,000 visits not only demonstrate
increased usage of DC@WSU’s valuable, Wayne State scholarship, but have pro-
duced increased awareness around DC@WSU and its mission as the university’s
institutional repository. Increased campus awareness of DC@WSU is a major,
somewhat unforeseen benefit of simply showing up on the QuickSearch results
page. The same can be said about Digital Collections, Research Guides, and
other parts of the university website that Site Search scours.

Chapter Eleven | One-to-Many 151

USER ENGAGEMENT BY THE NUMBERS

Just shy of 300,000 visits (where a “visit” is defined as a new user visiting the
page, or a returning user after thirty minutes or more) at the time of this writing,
QuickSearch represents a substantial portion of all traffic to the library website,
which had approximately 1,600,000 visits in this same time period. But even
more interesting than simple visits to the page is user behavior once there.

To collect statistics on QuickSearch, we use an open-source website analytics
platform, Piwik (http://piwik.org/). We tracked visits to the page, searches on
the page, and clicks to actual resources. While “outlinks” (in Piwik nomenclature)
may contain clicks to the header menu items, we believe the vast majority of
those clicks are to QuickSearch search results. We have recently started quan-
tifying only QuickSearch clicks; this will allow us greater granularity in future
analysis. From this tracking, a couple interesting insights emerge.

First, use of QuickSearch was minimal until it was featured as the primary
library search interface; even though it was offered as a tab on the search interface
cluster, and at one point even the default one, it was not widely used. Traffic
increased sharply around the beginning of the fall semester after the redesign.
For our team, this slow rollout was a good time to identify and fix bugs, while
traffic was slow. Having other librarians test the system by performing searches
and noting irregularities was instrumental during that time.

Second, and perhaps the most interesting insight to emerge from the numbers,
is the behavior of users on the page. Reviewing the analytics have identified a
rough 1:2:4 ratio of visits: searches: resource use.

Piwik’s web logs serve as a cross-check. We can look at anonymized indi-
vidual user visits to see the activity in search terms and links out. While these
do not perfectly model the 1–2-4 ratio we see in the graphs, they serve as
sketches of common user behavior that leads to the patterns we observe
among users overall.

QuickSearch demonstrates a high level of user engagement. By contrast, even
a website such as our LibGuides platform—with plenty of dynamic content—has
a much closer 1:1:1 ratio of visits, activity, and outlinks.

We believe we can assert that users are engaged with the website, performing
and refining queries, and perhaps most importantly, are being exposed to a large
and diverse array of library resources. While we cannot make inferences about
the relevance of search results for our users at this time, we are happy with this
level of engagement. Understanding user engagement with QuickSearch in a
more comprehensive way is a next step as we continue to develop and refine
this tool.

Part III | Interfaces152

“NO NEWS IS GOOD NEWS”

In thinking about the impact QuickSearch has had on discovery for our patrons,
we spoke with our user experience librarian who has been operating a survey
since the launch of QuickSearch and the website redesign. The survey was
provided to users as a banner across the top of QuickSearch. While we initially
lamented only 45–50 survey responses regarding QuickSearch, this librarian
astutely pointed out that considering more than 300,000 QuickSearch searches,
only 45–50 responses, and the somewhat unfortunate reality that most feedback
is negative when it does come back, one might chalk up a small response rate
to “No news is good news,” and assume it quietly became a successful and
functional search interface for users. If things were not working well, we most
likely would have heard about it.

Further user data supports this as well. Figure 11.5 represents returning
visitors to QuickSearch. Over the course of a semester, the number of return-
ing visitors increases. While QuickSearch is our primary search interface now,
other more targeted search interfaces do still exist, even featured prominently
as “QuickLinks” on the front page, yet users continue to return to QuickSearch
to perform their searches.

Given these markers, and some anecdotal testing and feedback from users,
we feel confident that QuickSearch has integrated itself as the primary search
interface for our users, with a high degree of use and engagement, providing
discoverability and access to a wider array of library resources than ever before,
from one location.

FIGURE 11 �5

Returning users to QuickSearch (visits triggered by user searches)

— RETURNING VISITS

Wed 6 Nov

1110

Mon 17 Feb

555

Sat 31 May
0

Thu 11 Sep Tue 23 Dec

Chapter Eleven | One-to-Many 153

CONCLUSION

In building QuickSearch, we are confident that we met our goal of providing a
service that unites our disparate resources. It is sustainable for our development
team, and we see the continued and sustained use by our patrons as positive.
However, regardless of the tool’s current success, we realize that user expectations
about resources and their presentation will evolve. Even now, we are evaluating
radical changes to QuickSearch’s interface. Regardless of how it evolves, we are
confident the design principles that underlie QuickSearch—modular compo-
nents, ease of development for a small team, and flexibility towards resource
types—will remain constant as we move our discovery efforts forward.

ACKNOWLEDGMENTS

Building QuickSearch was a collaborative effort within the library. Develop-
ment would not have been possible without the feedback and input of our
librarians and staff. Particular credit and thanks to Rachael Clark, Joseph Gajda,
Niranjan Jadhav, Axa Mei Liauw, Joshua Neds-Fox, Elliot Polak, Vinay Potluri,
and Negib Sherif.

References
Ellero, Nadine P. 2013. “Integration or Disintegration: Where Is Discovery Headed?” Journal of

Library Metadata 13, no. 4: 311–29.

Horn, Paul. 2001. Autonomic Computing: IBM’s Perspective on the State of Information Technology.

Armonk, NY: IBM.

Lown, Cory, Tito Sierra, and Josh Boyer. 2013. “How Users Search the Library from a Single

Search Box.” College and Research Libraries 74, no. 3: 227–41.

Thomale, Jason. 2015. “You Gotta Keep ’em Separated: The Case for Bento Box Discovery

Interfaces.” Lecture presented at the Code4Lib conference, Portland, Oregon, on

February 11, 2015.

	Wayne State University
	4-1-2016
	One-To-Many: Building a single-search interface for disparate resources
	Cole Hudson
	Graham Hukill
	Recommended Citation

	tmp.1461854393.pdf.t5tkX

