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PREFACE 

TOWARD A BETTER ESTIMATION OF SHEAR CAPACITY AND 

STRUCTURAL RELIABILITY OF PRESTRESSED 

CONCRETE GIRDERS 

 

The main research objectives of this study are to determine the most accurate and consistent 

method for predicting shear capacity of MDOT PC bridge girders, determine the reliability of PC 

bridge girders in shear, develop an optimal shear design expression for MDOT PC bridge girders, 

and recalibrate the AASHTO LRFD code for shear as necessary, such that PC bridge girders will 

have consistent and adequate level of reliability for shear.  

 

Keywords: Prestressed concrete girder; Shear strength; FEA; AASHTO LRFD; Structural 

reliability. 
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CHAPTER 1: INTRODUCTION AND LITERATUR REVIEW 

1.1 Introduction 

In the last several decades, various models to estimate the shear capacity of prestressed 

concrete girders were proposed.  Some of these developments can be tracked through periodic 

revisions in the American Association of State Highway and Transportation Officials (AASHTO) 

Bridge Design Specifications (AASHTO 1973-2014). These changes include how the shear 

strength contributions attributed to the concrete and transverse steel are calculated, as well as limits 

on the maximum allowable shear stress. For example, in 1983, the 12th edition of the AASHTO 

Standard Specifications (AASHTO 1983) presented a significantly revised shear design method 

for prestressed concrete (PC) bridges from that previously found in the 1979 Interim Specifications 

(AASHTO 1979). Revisions included a new method for calculating the concrete shear strength 

that explicitly accounts for web-shear cracking and flexural-shear cracking; a change in location 

of the critical shear section near supports; and a reduction of 50% in the calculated shear strength 

contribution from the transverse reinforcement, as compared to the 1979 Interim Specifications. 

These 1983 shear provisions have remained unchanged up to the latest, 17th edition of the Standard 

Specifications, which were last published in 2002 (AASHTO 2002).  A second significant change 

in shear design was presented in the 1st edition of the AASHTO Load and Resistance Factor 

Design (LRFD) Specifications, released in 1994 (AASHTO LRFD 1994). Based on the Modified 

Compression Field Theory, the shear design provisions in the AASHTO LRFD Specifications are 

significantly more complex than those in the Standard Specifications, with major changes in 

calculation of the concrete shear strength contribution, horizontal projection of diagonal cracks, 

and maximum allowable shear stress. Although some revisions have been made, the 1994 LRFD 
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shear design approach is essentially the same method presented in the 6th edition of AASHTO 

LRFD, published in 2014 (AASHTO LRFD 2014). 

Despite these new developments and code advancements, it is not clear which methods are 

practically most accurate when predicting the shear capacity of prestressed concrete bridge girders.  

This concern arises as a number of Michigan Department of Transportation (MDOT) bridges 

designed with AASHTO code procedures were recently found to have shear cracks, which may 

indicate inadequacy in the shear design provisions (Eamon et al., 2014). 

A larger concern is that the AASHTO LRFD Code was probabilistically calibrated for shear 

design essentially using the 1994 AASHTO LRFD shear model, which, as noted above, may not 

be as accurate as previously believed (NCHRP 368). Thus, the appropriate resistance factor for 

design may have been determined using an inaccurate model, which can result in inconsistent or 

inadequate levels of shear reliability for bridge girders.    

1.2 Objective and Scope 

The main research objectives of this study are to: 1) assess the adequacy of the current 

AASHTO PC shear design methods, 2) determine the reliability of I-shaped PC bridge girders in 

shear based on the current LRFD General Procedure, 3) determine the most accurate and consistent 

method for predicting shear capacity of AASHTO “I” shape PC bridge girders, 4) recalibrate the 

AASHTO LRFD code for shear design as necessary, such that PC bridge girders will have a more 

consistent and minimum target of reliability for shear, and 5) compute load rating analysis based 

on the HL-93 and MI live loads for PC bridges designed in accordance to the General LRFD 

Procedure for shear. 
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1.3 Literature Review  

1.3.1 AASHTO 1979 Interim Design Specifications  

In the 1979 Interim provisions, contrary to the AASHTO Standard and LRFD Specifications, 

the “concrete” contribution to shear strength Vc was assumed to be linearly related to concrete 

compressive strength and was taken equal to 0.06 f’c. This contribution, however, was limited to 

180 psi, which in practice governed the design value of Vc for all prestressed concrete (PC) girders, 

since this limit was reached with an f’c of only 3000 psi ( '3.3 cf ).   For comparison, for concrete 

compressive strengths of 4000 and 10000 psi, this shear stress limit corresponds to '8.2 cf  and 

'8.1 cf  (psi), respectively. In the 1979 Interim provisions for PC, the shear strength contribution 

of the transverse steel reinforcement is given as: 

 
s

jd
fAV yvs 2                                                                                                   (1.1) 

Where Av is the area of transverse steel reinforcement spaced at a distance s, fy is the yield 

strength of the transverse steel reinforcement, and jd is the distance between the resultant normal 

tension and compression force couple in the section (i.e. truss depth).  

Although the angle of inclination for the diagonal elements to be used in the truss analogy was 

not explicitly specified, the number of layers of steel transverse reinforcement assumed to be 

crossed by a diagonal crack in equation 1.1 is effectively 2jd/s, which leads to a truss angle of 29.1 

degrees. This significantly shallower design angle compared to the typical 45 degree angle used in 

reinforced concrete was due to the effect of the prestressing force in PC beams, which lowers the 

principal compression angle.  However, this beneficial effect is not accounted for in the 1983 nor 

the latest 2002 AASHTO Standard Specifications. Other important provisions of the 1979 Interim 

Specifications are a minimum shear transverse reinforcement requirement to provide a shear stress 
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contribution of at least 100 psi, while maximum stirrup spacing was limited to ¾ of the member 

height.  It should be noted that the 1979 Interim Specifications did not limit the maximum shear 

strength contribution that could be assigned to the steel transverse reinforcement. That is, no 

explicit provisions were provided to prevent web-crushing failures. 

Another aspect of the 1979 Interim Specifications that deserves attention is the critical section 

used for design near the supports.  In the case of simply supported beams, the shear calculated at 

a quarter of the span length from the support is used as the maximum shear design value; i.e. higher 

shear forces closer to the support are neglected. 

1.3.2 AASHTO Standard Specifications 

The shear design provisions in the 1973-2002 AASHTO Standard Specifications are based on 

research conducted at the University of Illinois (MacGregor 1960; MacGregor et al. 1965). In these 

provisions, the “concrete” shear strength is calculated as the smaller of the shear force associated 

with flexural shear cracking and the shear force that causes web-shear cracking. Flexural shear 

cracking will govern in sections with high moment and low shear, while web-shear cracking will 

govern in sections subjected to high shear and low moment.  

Section 9.20.1 (General) in the 2002 AASHTO Standard Specifications states that prestressed 

concrete flexural members shall be reinforced for shear and diagonal tension stresses. Shear 

reinforcement may be omitted if the factored shear force, Vu, is less than half the shear strength 

provided by the concrete.  

Web reinforcement shall consist of stirrups perpendicular to the axis of the member or welded 

wire fabric with wire located perpendicular to the axis of the member.  Web reinforcement shall 

extend to a distance “d” from the extreme compression fiber and shall be carried as close to the 

compression and tension surfaces of the member as cover requirements and the proximity of other 
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reinforcement permit.  Web reinforcement shall be anchored at both ends for its design yield 

strength in accordance with the provisions of Article 8.27.  Members subjected to shear shall be 

designed so that: 

 𝑉𝑢 = 𝜙(𝑉𝑐 + 𝑉𝑠)                                                                                                                            (1.2) 

Where Vu is the factored shear force at the section considered, Vc is the nominal shear strength 

provided by the concrete, and Vs is the nominal shear strength provided by web reinforcement. 

When the reaction to the applied loads introduces compression into the end regions of the 

member, sections located at a distance less than h/2 from the face of the support may be designed 

for the same shear Vu as that computed at a distance h/2.  

In the case of flexural-shear cracking, the shear strength is calculated as the sum of the shear 

corresponding to flexural cracking and the shear required to turn a flexural crack such that it 

becomes a flexural-shear crack. 

Section 9.20.2 (Shear Strength Provided by Concrete) in the 2002 AASHTO Standard 

Specifications states that the shear strength provided by concrete, Vc, shall be taken as the lesser 

of the values Vci or Vcw.   The shear strength, Vci, shall be computed by the following equation: 

          𝑉𝑐𝑖 = 0.6√𝑓𝑐′𝑏𝑣𝑑 + 𝑉𝑑 +
𝑉𝑖𝑀𝑐𝑟

𝑀𝑚𝑎𝑥
                                                                                                  (1.3) 

However, 𝑉𝑐𝑖 need not be less than 1.7√𝑓𝑐
′𝑏′𝑑, and d need not be taken less than 0.8h.  Here, 

𝑏𝑣 is the web width, d is the member effective depth, 𝑉𝑑 is the shear force due to unfactored dead 

load, 𝑉𝑖, is the factored shear that occurs simultaneously with the maximum factored moment at 

the section (𝑀𝑚𝑎𝑥), while 𝑀𝑐𝑟 is the cracking moment due to external loads.  The last term in 

equation 1.3 represents the factored shear due to external loads (in addition to dead load) that leads 

to flexural cracking in the section. For sections subjected to low moment, equation 1.3 will lead to 

very large shear strength values (infinity at points where 𝑀𝑚𝑎𝑥 = 0). In these cases, design shear 
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strength is governed by the shear corresponding to web-shear cracking.  The shear strength Vcw is 

computed by assuming that the section is uncracked in flexure and that first diagonal cracking will 

develop on the member web when the principal tensile stress in the concrete, calculated including 

the effect of prestressing, reaches the assumed concrete tensile strength of '5.3 cf (psi). This 

shear force, combined with the vertical component of the prestressing force, Vp, is then taken as 

the web shear strength, Vcw: 

        𝑉𝑐𝑤 = (3.5√𝑓𝑐′ + 0.3𝑓𝑝𝑐)𝑏𝑣𝑑 + 𝑉𝑝                                                                                                (1.4) 

Where fpc is the stress due to prestressing at the centroid of the cross section or at the web-

flange interface when the centroid is in the flange. But d need not be taken less than 0.8h. 

Section 9.20.3 (Shear Strength Provided by Web Reinforcement) in the 2002 AASHTO Standard 

Specifications states that the shear strength provided by web reinforcement shall be takes as: 

        𝑉𝑠 =
𝐴𝑣𝑓𝑠𝑦𝑑

𝑠
                                                                                                                                       (1.5) 

Where Av is the area of web reinforcement within a distance s. Vs shall not be taken greater 

than 8√𝑓𝑐′𝑏𝑣𝑑, and d need not be taken less than 0.8h.   The spacing of web reinforcing is not to 

exceed 0.75h or 24 inches. When Vs exceeds 4𝑓𝑐
′𝑏′𝑑, this minimum spacing shall be reduced by 

50%.  The minimum area of web reinforcement shall be determined as follows: 

        𝐴𝑣 =
50𝑏′𝑠

𝑓𝑠𝑦
                                                                                                                                        (1.6) 

Where 𝑏′ and 𝑠 are in inches, and 𝑓𝑠𝑦 (the design yield strength of web reinforcement) is in 

psi and shall not exceed 60,000psi. 
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1.3.3 AASHTO LRFD Design Specifications 

The General Sectional Method for shear design in the AASHTO LRFD Specifications 

represents a significant departure from the traditional shear design methods applied to reinforced 

and prestressed concrete members in other design codes (e.g. ACI Building Code, AASHTO 

Standard Specifications). Based on the Modified Compression Field Theory (MCFT) developed 

at the University of Toronto in the late 1970s and early 1980s (Vecchio and Collins, 1986), this 

shear design method relies on the use of equilibrium, strain compatibility, and material constitutive 

relations to determine the “concrete” and steel reinforcement contributions to shear strength. In 

compression, the concrete behavior is assumed to “soften” (or become weaker) due to the presence 

of transverse tensile strains. Moreover, on average terms, concrete is assumed to carry some 

tension beyond cracking to account for tension stiffening (i.e. the tension carried by the concrete 

between cracks). 

The shear resistance of a concrete member may be separated into a component, Vc that relies 

on tensile stresses in the concrete, a component Vs, that relies on tensile stresses in the transverse 

reinforcement, and a component Vp, that is the vertical component of the prestressing force. 

Section 5.8.3.3 (Nominal Shear Resistance) in the 2012 AASHTO LRFD states that the 

nominal shear resistance, Vn, shall be determined as the lesser of:  

        𝑉𝑛 = 𝑉𝑐 + 𝑉𝑠 + 𝑉𝑝                                                                                                                               (1.7) 

        𝑉𝑛 = 0.25𝑓𝑐
′𝑏𝑣𝑑𝑣 + 𝑉𝑝                                                                                                                      (1.8) 

In which: 

        𝑉𝑐 = 0.0316𝛽√𝑓𝑐′𝑏𝑣𝑑𝑣                                                                                                                     (1.9) 

Where bv is the effective web width taken as the minimum web width, measured parallel to 

the neutral axis, between the resultants of the tensile and compressive forces due to flexure (in), dv 
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is the effective shear depth taken as the distance, measured perpendicular to the neutral axis, 

between the resultants of the tensile and compressive forces due to flexure (and need not be taken 

less than the greater of 0.9de or 0.72h ), s is the spacing of transverse reinforcement measured in a 

direction parallel to the longitudinal reinforcement, β is a factor indicating the ability of diagonally 

cracked concrete to transmit tension and shear, θ is the angle of inclination of diagonal compressive 

stresses, and α is the angle of inclination transverse reinforcement to longitudinal axis.  The 

concrete contribution is controlled by the value of the coefficient β.  The value of 0.0316 is and is 

used to convert the relationship for 𝑉𝑐  from psi to ksi units.  Note that 𝑉𝑐 is taken as the lesser of 

Vci and Vcw if the procedures of Article 5.8.3.4.3 (Simplified Procedure) are used.  Vs is in general 

given as: 

        𝑉𝑠 =
𝐴𝑣𝑓𝑦𝑑𝑣(𝑐𝑜𝑡𝜃 + cot 𝛼)𝑠𝑖𝑛𝛼

𝑠
                                                                                                (1.10) 

When α = 90 degrees (shear reinforcement placed vertically), Eq.14 reduces to: 

        𝑉𝑠 =
𝐴𝑣𝑓𝑦𝑑𝑣cot (𝜃)

𝑠
                                                                                                                       (1.11) 

The expressions Vc and Vs apply to both prestressed and non-prestressed sections, with the 

terms β and θ depending on the applied loading and the properties of the section. The upper limit 

of Vn given by Eq. 8 is intended to ensure that the concrete in the web of the beam will not crush 

prior to yield of the transverse reinforcement.   A variable angle truss model is used to calculate 

the contribution of the shear reinforcement. The angle of the field of diagonal compression, θ, is 

used in calculating how many stirrups, [dvcot(θ)/s], are included in the transverse tie of the 

idealized truss.  The parameters β and θ may be determined either by the General Procedure or the 

Simplified Procedure.  
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The actual section is represented by an idealized section consisting of a flexural tension flange, 

a flexural compression flange, and a web. After diagonal cracks have formed in the web, the shear 

force applied to the web concrete, (Vu -Vp) will primarily be carried by diagonal compressive 

stresses in the web concrete.   These diagonal compressive stresses will result in a longitudinal 

compressive force in the web concrete of (Vu -Vp)cot θ. Equilibrium requires that this longitudinal 

compressive force in the web be balanced by tensile forces in the two flanges, with half the force, 

that is 0.5(Vu -Vp)cot θ, being taken by each flange. For simplicity, 0.5cot θ may be taken as 2.0 

and the longitudinal demand due to shear in the longitudinal tension reinforcement becomes (Vu – 

Vp), without significant loss of accuracy. After the required axial forces in the two flanges are 

calculated, the resulting axial strains 𝜀𝑡 𝑎𝑛𝑑 𝜀𝑐 can be calculated based on the axial force-axial 

strain relationship.  

For the General Procedure, for sections containing at least the minimum amount of transverse 

reinforcement specified in Article 5.8.2.5, the value of β is taken as: 

         𝛽 =
4.8

(1 + 750𝜀𝑠)
                                                                                                                           (1.12) 

When sections do not contain at least the minimum amount of shear reinforcement, the value 

of β is taken as: 

        𝛽 =
4.8

(1 + 750𝜀𝑠)

51

(39 + 𝑠𝑥𝑒)
                                                                                                       (1.13) 

The value of θ in both cases is: 

        𝜃 = 29 + 3500𝜀𝑠                                                                                                                          (1.14) 

where 𝜀𝑠 is the net longitudinal tensile strain in the section at the centroid of the tension 

reinforcement: 
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        𝜖𝑠 =
(
𝑀𝑢

𝑑𝑣
+ 0.5𝑁𝑢 + 0.5|𝑉𝑢 − 𝑉𝑝| − 𝐴𝑝𝑠𝑓𝑝𝑜)

(𝐸𝑠𝐴𝑠 + 𝐸𝑝𝐴𝑝𝑠)
                                                                         (1.15) 

The crack spacing parameter 𝑠𝑥𝑒 , is: 

        𝑠𝑥𝑒 = 𝑠𝑥

1.38

𝑎𝑔 + 0.63
                                                                                                                        (1.16) 

Where 12.0 in ≤ 𝑠𝑥𝑒 ≤ 80.0 in., Ac is the area of concrete on the flexural tension side of the 

member, Aps is the area of prestressing steel on the flexural tension side of the member, As is the 

area of non-prestressed steel on the flexural tension side of the member at the section under 

consideration, ag is the maximum aggregate size, fpo is a parameter taken as modulus of elasticity 

of prestressing tendons multiplied by the locked-in difference in strain between the prestressing 

tendons and the surrounding concrete. For the usual level of prestressing, a value of 0.7fpu will be 

appropriate for both pretensioned and post-tensioned members, Nu is the factored axial force, taken 

as positive if tensile and negative if compressive,│Mu│ is the factored moment, sx is the lesser of 

either dv or the maximum distance between layers of longitudinal crack control reinforcement, 

where the area of the reinforcement in each layer is not less than 0.003bvsx,  and Vu is the factored 

shear force.  

In using the General Procedure, some additional considerations are: 

 │Mu│shall not to be taken less than │Vu -Vp│dv 

 In calculating As and Aps, the area of bars or tendons terminated less than their development 

length from the section under consideration should be reduced in proportion to their lack 

of full development. 



11 
 

 
 

 If the value of 𝜀𝑠 is negative, it should be taken as zero or the value should be calculated 

using (𝐸𝑠𝐴𝑠 + 𝐸𝑝𝐴𝑝𝑠 + 𝐸𝑐𝐴𝑐𝑡) as the denominator. However, 𝜀𝑠 should not be taken less 

than -0.40x10-3. 

 For sections closer than dv to the face of the support, the value of 𝜀𝑠 calculated at dv from 

the face of the support may be used in evaluating β and θ. 

 If the axial tension is large enough to crack the flexural compression face of the section, 

the value calculated by the denominator for  𝜀𝑠 should be doubled. 

 It is permissible to determine β and θ using a greater value of 𝜀𝑠 than calculated by the 

equation above, however, 𝜀𝑠 should not be taken greater than 6.0x10-3. 

The relationships for evaluating β and θ in the previous equations are based on calculating the 

stresses that can be transmitted across diagonally cracked concrete. As the cracks become wider, 

the stress that can be transmitted decreases. For members containing at least the minimum amount 

of transverse reinforcement, it is assumed that the diagonal cracks will be spaced about 12.0 in 

apart. For members without transverse reinforcement, the spacing of diagonal cracks inclined at θ 

degrees to the longitudinal reinforcement is assumed to be sx/sinθ. Hence, deeper members having 

larger values of sx are calculated to have more widely spaced cracks and hence, cannot transmit 

such high shear stresses. The ability of the crack surfaces to transmit shear stresses is influenced 

by the aggregate size of the concrete. Members made from concretes that have a smaller maximum 

aggregate size will have a larger value of sxe and hence, if there is no transverse reinforcement, 

will have smaller shear strength. 

As an alternative to the General Procedure, a Simplified Procedure may be used in some cases.  

The Simplified Procedure is based on the recommendations of NCHRP Report 549. These 

concepts are compatible with ACI 318-11 and the AASHTO Standard Specifications for Highway 
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Bridges (2002) for evaluation of the shear resistance of concrete members. For nonprestressed 

sections, Section 5.8.3.4.1 (Simplified Procedure) states that for concrete sections not subjected to 

axial tension and containing at least the minimum amount of transverse reinforcement, or having 

an overall depth of less than 16 in, β can  be taken as 2.0 and θ can be taken as 45°.   Section 

5.8.3.4.3 (Simplified Procedure) addresses prestressed sections as well.  Here, for concrete beams 

not subject to significant axial tension, prestressed or non-prestressed, and containing at least the 

minimum amount of transverse reinforcement, Vn may be determined with Vp taken as zero and 

Vc taken as the lesser of Vci and Vcw, where Vci is the nominal shear resistance provided by the 

concrete when inclined cracking results from combined shear and moment, and Vcw is the nominal 

shear resistance provided by the concrete when inclined cracking results from excessive principal 

tension in web.  In this case, Vci shall be determined as: 

        𝑉𝑐𝑖 = 0.02√𝑓𝑐′𝑏𝑣𝑑𝑣 + 𝑉𝑑 +
𝑉𝑖𝑀𝑐𝑟𝑒

𝑀𝑚𝑎𝑥
≥ 0.06√𝑓𝑐′𝑏𝑣𝑑𝑣                                                             (1.17) 

Where Vd is the shear force at the section due to the unfactored dead load and includes both 

DC and DW, Vi is the factored shear force at section due to externally applied loads occurring 

simultaneously with Mmax, Mcre is the moment causing flexural cracking at section due to externally 

applied loads, and Mmax is the maximum factored moment at section due to externally applied 

loads.  Mcre hall be determined as:  

        𝑀𝑐𝑟𝑒 = 𝑆𝑐 (𝑓𝑟 + 𝑓𝑐𝑝𝑒 −
𝑀𝑑𝑛𝑐

𝑆𝑛𝑐
)                                                                                                    (1.18) 

Where fcpe is the compressive stress in the concrete due to the effective prestress forces only 

at the extreme fiber or section where tensile stress is caused by externally applied loads, Mdnc is 

the total unfactored dead load moment acting on the monolithic or noncomposite section, Sc is the 

section modulus for the extreme fiber of the composite section where tensile stress is caused by 
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externally applied loads, and Snc is the section modulus for the extreme fiber of the monolithic or 

noncomposite section where tensile stress is caused by externally applied loads.  Vcw shall be 

determined as: 

        𝑉𝑐𝑤 = (0.06√𝑓𝑐′ + 0.30𝑓𝑝𝑐)𝑏𝑣𝑑𝑣 + 𝑉𝑝                                                                                      (1.19) 

Where fpc is the compressive stress in the concrete at the centroid of the cross section resisting 

the externally applied loads or at the junction of the web and flange when the centroid lies within 

the flange.  

For the simplified procedure, the angle θ used to calculate Vs can be determined as follows: 

When Vci < Vcw :  cot θ = 1.0 

When Vci > Vcw :  cot 𝜃 = 1.0 + 3(
𝑓𝑝𝑐

√𝑓𝑐
′
) ≤ 1.8                                                                              (1.20) 

Transverse reinforcement is required in all regions where there is a significant chance of 

diagonal cracking. A minimum amount of transverse reinforcement is required to restrain the 

growth of diagonal cracking and to increase the ductility of the section. A larger amount of 

transverse reinforcement is required to control cracking as the concrete strength is increased.  

According to the 2014 AASHTO LRFD Code (Section 5.8.2.4; Regions Requiring Transverse 

Reinforcement), for beams, transverse reinforcement shall be provided where: 

        𝑉𝑢 > 0.5𝜙(𝑉𝑐 + 𝑉𝑝)                                                                                                                        (1.21) 

 

Here, Vu is the factored shear force, Vc is the nominal shear resistance of the concrete, Vp is 

the component of prestressing force in direction of the shear force (Vp = 0 when the simplified 

method of Section 5.8.3.4.3 is used), and Φ is the resistance factor specified in Article 5.5.4.2.  For 

shear (normal weight concrete), Φ is taken as 0.90, but for compression in strut-and-tie models, Φ 

is taken as 0.70. 
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Section 5.8.2.5 (Minimum Transverse Reinforcement) states that the area of steel shall satisfy: 

        𝐴𝑣 ≥ 0.0316√𝑓𝑐′
𝑏𝑣𝑠

𝑓𝑦
                                                                                                                    (1.22) 

Where Av is the area of transverse reinforcement within distance s, bv is the width of web 

adjusted for the presence of ducts, s is the spacing of transverse reinforcement, and fy is the yield 

strength of transverse reinforcement. Section 5.8.2.7 (Maximum Spacing of Transverse 

Reinforcement) states that the spacing of the transverse reinforcement shall not exceed the 

maximum permitted spacing, smax, determined as: 

If vu < 0.125𝑓𝑐
′, then smax = 0.8dv ≤ 24.0 in                                                                              (1.23) 

If vu > 0.125𝑓𝑐
′, then smax = 0.4dv ≤ 12.0 in                                                                              (1.24) 

Where vu is the shear stress calculated in accordance with 5.8.2.9, and dv is the effective shear 

depth. Section 5.8.3.2 (Sections near Supports) states that where the reaction force in the direction 

of the applied shear introduces compression into the end region of a member, the location of the 

critical section for shear shall be taken as dv from the internal face at the support. 

When a beam is loaded on top and its end is not built integrally into the support, all the shear 

funnels down into the end bearing. Where the beam has a thin web so that the shear stress in the 

beam exceeds 0.18𝑓𝑐
′, there is a possibility of a local diagonal compression or horizontal shear 

failure along the interface between the web and the lower flange of the beam. Here strut-and-tie 

models are useful for analysis. 

1.3.4 ACI 318-11 

The calculation for nominal shear capacity in ACI 318-11 is similar to previous versions (1983 

to 2002) of the AASHTO Standard Specifications for Highway Bridges. ACI 318-11 divides the 
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nominal shear strength into contributions from concrete and steel transverse reinforcement. They 

are computed using the following equations: 

        𝑉𝑐𝑖 = 0.6√𝑓𝑐′𝑏𝑤𝑑𝑝 + 𝑉𝑑 +
𝑉𝑖𝑀𝑐𝑟𝑒

𝑀𝑚𝑎𝑥
                                                                                             (1.25) 

        𝑉𝑐𝑤 = (3.5√𝑓𝑐′ + 0.3𝑓𝑝𝑐)𝑏𝑤𝑑𝑝 + 𝑉𝑝                                                                                          (1.26) 

        𝑉𝑠 = 
𝐴𝑣𝑓𝑦𝑑𝑣

𝑠
                                                                                                                                   (1.27) 

Where Vci is the concrete shear capacity when cracking results from combined shear and moment, 

Vcw is the concrete shear capacity when cracking results from high principal tensile stress, Vs is 

the shear capacity of steel web reinforcement, Mcre is the moment causing flexural cracking at the 

section due to externally applied loads, Vd is the unfactored shear due to dead load, Vi is the factored 

shear at the section due to externally applied loads, Mmax is the factored moment at the section due 

to externally applied loads, f’c is the concrete compressive strength (psi), fpc is the compressive 

stress in the concrete at the centroid of the gross section resisting externally applied loads including 

effective prestressing force, bw is the width of the web adjusted for ducts, dv is the effective shear 

depth (in), Av  is the total area of shear stirrups, fy  is the yield stress of the web reinforcement, s is 

the spacing of shear stirrups, and Vp is the vertical component of prestressing force. 

The nominal shear resistance of concrete is taken as the lesser of Vci  or Vcw. Typically, Vcw 

will control near the supports and Vci will control closer to midspan. The effective prestressing 

force is included directly in the equation for Vcw as the vertical contribution of prestressing force 

and in the term fpc which includes only the uniform axial compression due to the effective 

prestressing force. It is important to note that, although not shown explicitly in the equations above, 

the effective prestressing force is used in Vci as it must be considered when determining Mcre. 

The minimum shear reinforcement area is determined as follows: 



16 
 

 
 

        𝐴𝑣 ≥
0.75√𝑓𝑐′𝑏𝑤𝑠

𝑓𝑦𝑡
                                                                                                                         (1.28) 

Where 𝑓𝑐
′ is the compressive strength of concrete, 𝑏𝑤 is the effective width of the web, 

s is the spacing of shear reinforcement, and 𝑓𝑦𝑡 is the tensile strength of shear reinforcement. 

1.3.5 Strut and Tie Modeling 

Both AASHTO and ACI allow strut and tie models.  Strut and tie models can be used when 

beam theory is not applicable, such as in D-regions.  Here, the girder is modeled as a truss where 

concrete struts take the compressive loads and steel ties take the tension loads (Kuchma et al. 

2008).  A proper truss model should show how forces are distributed throughout the girder. 

Schlaich et al. (1987) states that the model producing the least strain energy is the most appropriate.  

In almost all cases where a point load is applied with a shear span to depth ratio less than 2.0, the 

least strain energy occurs when a compressive strut connects the load and support (Brown and 

Bayrak, 2008).  Nominal strut and tie capacities for AASHTO LRFD are determined as follows, 

respectively: 

        𝑃𝑛 = 𝑓𝑐𝑢𝐴𝑐𝑠                                                                                                                                      (1.29) 

        𝑃𝑛 = 𝑓𝑦𝐴𝑠𝑡 + 𝐴𝑝𝑠(𝑓𝑝𝑒 + 𝑓𝑦)                                                                                                         (1.30) 

Nominal strut and tie capacities for ACI 318 are determined by the following equations: 

        𝐹𝑛𝑠 = 𝑓𝑐𝑒𝐴𝑐𝑠                                                                                                                                     (1.31) 

      𝐹𝑛𝑡 = 𝑓𝑦𝐴𝑡𝑠 + 𝐴𝑡𝑝(𝑓𝑠𝑒 + ∆𝑓𝑝)                                                                                                       (1.32) 

These equations are very similar as both codes use a limiting stress for the concrete strut 

capacity and include both conventional steel reinforcement and prestressing strands in the 

calculation of tie capacity. The development of stress in the steel ties must be considered in 
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evaluating the tie capacity and the main difference between the codes is how the limiting stress of 

the concrete struts is calculated.  For AASHTO LRFD, limiting concrete strengths are given as: 

        𝑓𝑐𝑢 =
𝑓𝑐

′

0.8 + 170𝜀1
≤ 0.85𝑓𝑐

′                                                                                                        (1.33) 

        𝑓𝑐𝑒 = 0.85𝛽𝑠𝑓𝑐
′                                                                                                                                (1.34) 

        𝜀1 = 𝜀𝑠 + (𝜀𝑠 + 0.002)𝑐𝑜𝑡2𝛼                                                                                                      (1.35) 

The value for 𝜀1 is based on the tensile strain in the strut due to the adjoining tie and the angle 

between the strut and tie. The 𝜀𝑠 factor is determined by the type of strut. When the width of a strut 

is allowed to increase at its midsection, it is called bottle shaped. For a bottle shaped strut the 𝜀𝑠 

factor is taken as 0.6 or 0.75 depending on whether the minimum transverse reinforcement 

requirement is met.  The strength of nodal regions is also considered. AASHTO LRFD applies a 

factor of 0.85, 0.75 and 0.65 to 𝑓𝑐
′ for nodes containing no ties, ties in one direction and ties in 

more than one direction, respectively. ACI uses similar equations. 

1.3.6 Shear Models 

Most traditional shear design procedures are generally derived from a parallel chord truss 

model by Ritter (1899) and Mörsch (1920 and 1922). In this model, for any member under shear 

forces, there are four unknowns (diagonal compressive stress, stress in stirrups, stress in 

longitudinal reinforcement, and the angle of the diagonal compression), but only three equations 

of statics to determine the unknowns. The determination of the final condition required for solution 

is what makes for the largest difference between design codes.  The angle of the diagonal 

compression strut is an important factor in deciding the shear reinforcement contribution to shear 

resistance.   In early parallel chord truss models, θ was taken as 45 degrees. However, it was 

determined by various researchers that this angle often poorly estimated capacity, and thus over 

the past several decades, the use of a truss analogy with angles shallower than 45 degrees has been 
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explored (Ramirez and Breen, 1991; Vecchio and Collins, 1986; Hsu, 1988).  Reducing this angle 

implies a higher efficiency of the transverse reinforcement (as geometrically, more stirrups will 

cross a shear crack with a lower angle) and thus results in less shear reinforcement required for the 

same shear demand. The concrete shear strength contribution can be considered as well, and in 

early formulations, it was based on a limiting shear stress. Later it was taken to be the diagonal 

cracking strength (i.e. the concrete contribution at ultimate, based on test data).  Code provisions 

such as those of ACI 318 and the AASHTO Standard Specifications take into account the effect 

of flexure, axial force, and prestressing into the diagonal cracking strength.  However, they also 

make the assumption that the concrete shear strength contribution is independent of shear 

reinforcement.  In contrast, some European design methods take θ as the angle defined by a 

plasticity-based model and different equations can result in values as low as 21.8 degrees. 

However, the concrete shear strength contribution depends on the shear reinforcement and is 

calculated by different expressions used that are based on shear-friction models.  In AASHTO 

LRFD, the angle θ is often taken between 20 and 25 degrees, consequently providing a larger shear 

strength contribution from the shear reinforcement than that found from a 45 degree model.  The 

concrete shear strength contribution is defined as the ability of the cracked concrete to carry 

diagonal tension in the web of the member, and it depends on the longitudinal strain, the reserve 

capacity of the longitudinal reinforcement at a crack location, and the shear-slip resistance of 

concrete. The Tureyen and Frosch (2003) model takes the angle θ as 45 degrees and bases the 

concrete strength contribution on the limiting capacity of the uncracked section (Kuchma and 

Hawkins 2008). 

Traditional provisions for shear capacity such as those of the ACI code do not explicitly take 

into account shear friction as a contributor to shear strength; they rather lump it together with other 
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contributors such as the dowel effect and the shear strength capacity of the compression zone of 

the beam. This term is referred to as the concrete contribution to shear strength Vc.  In the last 20 

years, more rational methods for shear strength calculation (such as AASHTO LRFD and the 

Canadian Code CSA) have been able to explicitly account for the contribution of shear friction 

across cracks in resisting shear, by referring to concepts of the Modified Compression Field Theory 

(MCFT).  The MCFT also provides a way to study the softening of concrete (effect of tensile stress 

in lowering the compressive strength of concrete below its uniaxial strength). 

The MCFT (Vecchio and Collins, 1986) is a rational theory that satisfies the equilibrium of 

forces and moments, compatibility of displacements, and stress-strain relationship of concrete and 

steel to predict the shear strength of RC and PC beams. The assumption MCFT makes is that the 

principal direction of stress and strain coincide. The shear strength is given by the sum of the steel 

reinforcement contribution (based on the angle θ truss model) and the concrete contribution (shear 

resisted by the tensile stresses in the diagonally cracked concrete). While some researchers 

(Richart, 1927; Bresler and Pister, 1958; Tureyen and Frosch, 2003) have argued that most of the 

“concrete” contribution to beam shear strength is provided by shear carried in the beam 

compression zone, others (Vecchio and Collins, 1986) have claimed that most of this shear is 

resisted by the member web through aggregate interlock, which is the approach followed by 

MCFT. After the transverse reinforcement yields, the transfer of tension across the cracks requires 

local shear stresses τ along the stress. The ability of the crack interface to transmit shear stresses τ 

depends on the crack width w. According to MCFT, 

       𝑉 = 𝑉𝑠 + 𝑉𝑐 =
𝐴𝑣𝑓𝑣

𝑠
𝑗𝑑 𝑐𝑜𝑡𝜃 + 𝑓𝑐1𝑏𝑤𝑗𝑑 cot 𝜃                                                                            (1.36)  

        
𝜏

𝜏𝑚𝑎𝑥
= 0.18 + 1.64

𝜎

𝜏𝑚𝑎𝑥
− 0.82(

𝜎

𝜏𝑚𝑎𝑥
)2                                                                                (1.37) 
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        𝜏𝑚𝑎𝑥 =
√𝑓𝑐′

0.3 +
24𝑤

𝑐 + 16

                                                                                                                    (1.38) 

Where σ is the compressive normal stresses across the cracks, c is the maximum aggregate 

size, and 𝑓𝑐
′ is the compressive strength of concrete.  

Another expression developed later by Collins and Mitchell (1991) for τ is: 

        𝜏 = 0.18𝜏𝑚𝑎𝑥                                                                                                                                   (1.39) 

MCFT assumes a parabolic relationship between stress and strain of concrete in compression: 

        
𝑓𝑐2

𝑓𝑐2𝑚𝑎𝑥
= 2(

𝜀2

𝜀0
) − (

𝜀2

𝜀0
)

2

                                                                                                             (1.40) 

Where 𝜀0 is the strain at peak uniaxial stress, and 𝑓𝑐2𝑚𝑎𝑥 is the compressive strength of 

concrete panels in biaxial tension-compression and depends on the transverse tensile strain 𝜀1. A 

softening parameter was derived from tests with a mean value of 0.98 and coefficient of variation 

of 0.16. and fc2 is then a function of the principal compressive strain ε2 and the principal tensile 

strain ε1.  

        𝛽 =
𝑓𝑐2𝑚𝑎𝑥

𝑓𝑐′
=

1

0.80 +
0.34𝜀1

𝜀0

≤ 1.0                                                                                           (1.41) 

For ε0=0.002,  

        𝛽 =
1

0.80 + 170𝜀1
                                                                                                                         (1.42) 

Two major research directions for the shear behavior in reinforced concrete are the 

characterization of shear friction, which controls the transfer of shear force across a crack, and the 
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characterization of softening, which reduces the compressive strength of concrete when in a state 

of bi-axial compression and tension.  Work related to shear friction is discussed first.   

Walraven and Reinhardt (1981) and Walraven (1981) developed early equations for predicting 

the normal and shear stresses in cracked concrete. They based their expressions on experimental 

investigations of shear friction. The experiments consisted of internally and externally beam 

sections loaded in direct shear. It was observed that the behavior of the externally reinforced beams 

was different from that of the internally reinforced ones; the shape of the crack width vs. crack slip 

curve was more sensitive for the externally reinforced beams. However, the authors used the same 

model for aggregate interlock for both types of beams. This model involved two components, a 

rigid plastic mortar component and a rigid spherical aggregate component. When the crack faces 

open and slide against one another, the portion of mortar in contact with the aggregates is assumed 

to yield and therefore creates normal and shear stresses that are related by a coefficient μ. Walraven 

and Reinhardt’s equation for normal and shear stresses are given as:  

        𝜎 = 𝜎𝑝𝑢(𝐴𝑥 − 𝜇𝐴𝑦)   𝑎𝑛𝑑   𝜏 = 𝜎𝑝𝑢(𝐴𝑦 − 𝜇𝐴𝑥)                                                                   (1.43) 

Where Ax and Ay are the nondimensionalized sums of ax and ay (contact areas), and depends 

on crack width w, crack slip v, the maximum particle diameter, and the total aggregate volume per 

unit volume of concrete. The coefficient μ and strength of mortar 𝜎𝑝𝑢 were found by fitting curves 

to experimental results: 

        𝜇 = 0.40   𝑎𝑛𝑑  𝜎𝑝𝑢  = 6.39(𝑓𝑐𝑐)
0.56                                                                                         (1.44) 

The authors developed an empirical expression for shear friction capacity of internally 

reinforced cracks as a function of concrete strength and amount of reinforcement: 

        𝜏𝑚𝑎𝑥 = 𝐶1(𝜌𝑣𝑓𝑦)                                                                                                                            (1.45) 
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Where 𝐶1 = 0.822(𝑓𝑐𝑐)
0.406      𝑎𝑛𝑑    𝐶2 = 0.159(𝑓𝑐𝑐)

0.303 ,  𝜌𝑣 𝑎𝑛𝑑 𝑓𝑦   are the cross 

sectional area and yield strength of the steel reinforcement, respectively, and 𝑓𝑐𝑐 is the compressive 

strength of a concrete test cube.   

Walraven and Reinhardt’s expressions gave good approximations to their experimental data 

for a linear range.  However, the equations require a limit so that shear and normal stresses do not 

increase indefinitely as the crack slip increases. Other researchers did work on the same topic and 

derived expressions for the shear cracking capacity. Mau and Hsu (1988) derived an expression 

that works well for normal strength RC: 

        
𝜏𝑚𝑎𝑥

𝑓𝑐′
= 0.66√𝑤 < 0.3  𝑤𝑖𝑡ℎ     𝑤 =

𝜌𝑣𝑓𝑦

𝑓𝑐′
                                                                                (1.46) 

It was found that the cracks are smoother in High Strength Concrete (HSC) because the cracks 

go through the aggregates (as opposed to NSC where the cracks go around the aggregates), then 

shear friction decreases as concrete strength increases.  It has been shown that shear friction at a 

crack slip of HSC is reduced by 35% of its value for NSC for externally reinforced specimens, and 

between 55-75% of its value for internally reinforced specimens. The expressions for stresses for 

the model cracks then became: 

        𝜎 = 𝑘𝜎𝑝𝑢(𝐴𝑥 − 𝜇𝐴𝑦)   𝑎𝑛𝑑   𝜏 = 𝑘𝜎𝑝𝑢(𝐴𝑦 − 𝜇𝐴𝑥)                                                              (1.47) 

Where k = 0.35 or 0.65 for externally reinforced and internally reinforced concrete specimens, 

respectively.   

Other authors derived expressions based on the experimental results of Walraven.  Reineck 

(1982, 1991) used the following expressions for the friction of shear faces: 

        𝜏 = 𝜏𝑓0 + 1.7𝜎 = 𝜏𝑓0(
𝑣 − 0.24𝑤

0.096𝑤 + 0.01𝑚𝑚)⁄                                                       (1.48) 
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The cohesion friction stress 𝜏𝑓0 is the limiting value of shear strength without the normal stress 

σ on the crack face and is found as: 

        𝜏𝑓0 = 0.45𝑓𝑡 (1 −
𝑤

0.9𝑚𝑚
)                                                                                                         (1.49) 

Where ft is the concrete tensile strength. 

Reineck’s expressions also needed a limit for stresses.  The expressions worked well for w = 

0.5 mm, but lost accuracy when w = 0.8 mm.  Kupfer and Bulicek (1992) used the following 

relationships based on Walraven and Reinhardt's (1981) work: 

  𝜏𝑚𝑎𝑥  = −
𝑓𝑐𝑐
30

+ (1.8(𝑤)−0.8 + (0.234(𝑤)−0.707 − 0.20)𝑓𝑐𝑐)𝑣 ≥ 0                                       (1.50) 

  𝜎 =
𝑓𝑐𝑐
20

− (1.35(𝑤)−0.63 + 0.191(𝑤)−0.552 − 0.15)𝑓𝑐𝑐)𝑣 ≤ 0                                                (1.51) 

Earlier, Kupfer, Mang, and Karavesyroglou (1983) had used: 

        
𝜏

𝑓𝑐′
= 0.117 − 0.085𝑣 𝑓𝑜𝑟 𝐶𝑎𝑠𝑒 𝐴: 𝑣 = 𝑤                                                                                (1.52) 

        
𝜏

𝑓𝑐
′
= 0.117 + 0.1

𝑣

𝑤
− 0.085𝑣 𝑓𝑜𝑟 𝐶𝑎𝑠𝑒 𝐵: 𝑣 ≠ 𝑤                                                                (1.53) 

These expressions were derived based on earlier work from Walraven, which considered 

concrete with strength of 25 MPa and v > 0.20 mm.  However, the relationships established Kupfer 

et al. (1983) were based on weaker concrete and did not agree well with Walraven’s original 

experimental data.  Dei Poli, Prisco, and Gambarova (1990) used a rough crack model to describe 

aggregate interlock stress as: 

        𝜎 = 0.62
𝑟√𝑤𝜏

(1 + 𝑟2)0.25
                                                                                                                   (1.54) 
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        𝜏 = 0.25𝑓𝑐
′ (1 − √

2𝑤

𝑐
)𝑟

𝑎3 + 𝑎4|𝑟|
3

1 + 𝑎4𝑟4
                                                                                     (1.55) 

Here: 𝑎3 = 9.8/𝑓𝑐
′ , 𝑎4 = 2.44 − 39/𝑓𝑐

′ , and 𝑟 =
𝑣

𝑤
 

Various researchers have also explored the effect of concrete softening. The web in a 

reinforced concrete beam in flexure and shear is in a biaxial state of tension-compression. The 

existence of transverse tensile strains leads to a weakening of the cracked concrete compressive 

strength, or 'softening'.  Different researchers derived softening expressions based on models and 

test panels.  Vecchio and Collins (1993) expressed a softening parameter β as a function of the 

ratio of the principal strains: 

        𝛽 =
1

0.85 − 0.27
𝜀1

𝜀2
⁄

                                                                                                                  (1.56) 

Where 𝜀1 is the principal tensile strain averaged over several cracks. They used a parabola for 

the uniaxial compressive stress-strain curve of concrete and multiplied both 𝑓𝑐
′ and its associated 

strain 𝜀0 by 𝛽. They found good agreement with 178 experimental data points. 

Kollegger and Mehlhorn (1987, 1990) determined that the effective compressive strength did 

not reduce beyond 0.8𝑓𝑐
′ and that the primary influencing factor was the tensile stress fc1 rather 

than the tensile strain 𝜀1. They determined the following for calculating 𝛽: 

For     0 ≤ fc1 / ft ≤ 0.25, then 𝛽 = 1.0 

For     0.25 < fc1 / ft ≤ 0.75, then 𝛽 = 1.1 − 0.4 (
𝑓𝑐1

𝑓𝑡
⁄ )                                                                   (1.57) 

For     0.75 < fc1 / ft ≤ 1.0, then 𝛽 = 0.8 
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The tests were based on panels where the tension-compression loads were applied parallel to 

the reinforcement, and some on a 45 degree angle.  Miyahara et al (1988) Proposed a softening 

model based on tensile strains, but predicted lesser degree of softening than the model by Vecchio 

and Collins: 

For 𝜀1 ≤ 0.0012, 𝛽 = 1.0 

For 0.0012 < 𝜀1 < 0.0044, 𝛽 = 1.15 − 125𝜀1                                                                             (1.58) 

For 0.0044 ≤ 𝜀1, 𝛽 = 0.60 

Shirai and Noguchi (1989) and Mikame et al. (1991) proposed the following expression for 

the softening parameter: 

        𝛽 =
1

0.27 + 0.96(
𝜀1

𝜀0
⁄ )0.167

                                                                                                       (1.59) 

It was noted that the softening is greater for HSC than for NSC.  Ueda et al. (1991) proposed 

the following high strength concrete softening parameter: 

        𝛽 =
1

0.8 + 0.6(1000𝜀1 + 0.2)0.39
                                                                                              (1.60) 

Later, Vecchio and Collins updated the model that they had previously developed by basing 

the uniaxial stress-strain curve on Thorenfeldt’s curve, which provided better linear correlation for 

HSC: 

        𝑓𝑐2𝑏𝑎𝑠𝑒 = −𝑓𝑝
𝑛 (−

𝜀2
𝜀𝑝

⁄ )

𝑛 − 1 + (−
𝜀2

𝜀𝑝
⁄ )

𝑛𝑘                                                                                           (1.61) 

Where, 
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        𝑛 = 0.80 +
𝑓𝑝

17  
⁄                                                                                                                        (1.62) 

        𝑘 = 1.0 𝑓𝑜𝑟 − 𝜀𝑝 < 𝜀2 < 0;                                                                                                        

        𝑘 = 0.67 +
𝑓𝑝

62
⁄  𝑓𝑜𝑟   𝜀2 < −𝜀𝑝                                                                                              (1.63) 

Here, fp = maximum compressive stress for softened concrete. In these equations, fp = βfc
’ and 

εp = ε0 = strain in uniaxial compression at peak stress fc
’.  Modifications to the base stress-strain 

curve were explored using two models. Model A used strength and strain softening (both peak 

stress and its appropriate strain decrease): 

        𝛽 =
1

1.0 + 𝐾𝑐𝐾𝑓
                                                                                                                              (1.64) 

        𝐾𝑐 = 0.35 (
−𝜀1

𝜀2
− 0.28)

0.80

≥ 1.0 𝑓𝑜𝑟 𝜀1 < 𝜀1𝐿                                                                    (1.65) 

        𝐾𝑓 = 0.1825√𝑓𝑐′ ≥ 1.0                                                                                                                 (1.66) 

Where, ε1L is the limiting tensile strain at which the reinforcement at a crack yields and the 

concrete experiences slight additional cracking.  The curve was divided into 3 parts depending on: 

Prepeak: 𝐹𝑜𝑟 − 𝜀2 < 𝛽𝜀0 , 𝑓𝑐2 𝑖𝑠 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑓𝑝 = 𝛽𝑓𝑐
′ 𝑎𝑛𝑑 𝜀𝑝 = 𝛽𝜀0 

Peak: 𝐹𝑜𝑟 𝛽𝜀0 ≤ −𝜀2 ≤ 𝜀0, 𝑓𝑐2 = 𝑓𝑝 = 𝛽𝑓𝑐
′  

Postpeak: 𝐹𝑜𝑟 − 𝜀2 > 𝜀0, 𝑓𝑐2 = 𝛽𝑓𝑐2𝑏𝑎𝑠𝑒 

Note: Kf ≥ 1.0 when 𝑓𝑐
′ ≥ 30 MPa and Kc ≥ 1.0 when –εt / ε2 ≥ 4 

Model B uses strength softening only: 

        𝛽 =
1

1 + 𝐾𝑐
                                                                                                                                      (1.67) 
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        𝐾𝑐 = 0.27 (
𝜀1

𝜀0
− 0.37)                                                                                                                 (1.68) 

        𝐾𝑓 = 2.55 − 0.2629√𝑓𝑐′ ≤ 1.11                                                                                                (1.69) 

Vecchio and Collins repeated experiments with other panels reinforced with a reinforcement 

grid at a 45 degree angle and both models agreed well with the experimental data. It was also found 

that the compression-softening formulation worked well for NSC as well as HSC.  

Belarbi and Hsu (1991) used Hognestad’s parabola but suggested one softening parameter for 

stress and another for strain: 

        𝛽𝜎 =
0.9

√1 + 𝐾𝜎𝜀1

                                                                                                                            (1.70) 

        𝛽𝜀 =
1.0

√1 + 𝐾𝜀𝜀1

                                                                                                                             (1.71) 

Where Kσ and Kε depend on the orientation 𝜙 of the cracks to the reinforcement and the type 

of loading: 

Table 1.1. Values for K for Belarbi and Hsu's Model, 1991  

 Proportional Loading Sequential Loading 

𝜙 Kσ Kε Kσ Kε 

45 deg 400 160 400 160 

90 deg 400 550 250 0 

Later, after experimental testing, Belarbi and Hsu (1995) derived the following expressions 

for softening: 

𝐹𝑜𝑟 𝜀2 ≤ 𝛽𝜀0        𝑓𝑐2 = 𝛽𝑓𝑐
′ [2 (

𝜀2

𝛽𝜀0
) − (

𝜀2

𝛽𝜀0
)
2

]                                                                          (1.72) 
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𝐹𝑜𝑟 𝜀2 > 𝛽𝜀0      𝑓𝑐2 = 𝛽𝑓𝑐
′

[
 
 
 

1 − (

𝜀2

𝛽𝜀0
− 1

2
𝛽

− 1
)

2

]
 
 
 

                                                                               (1.73) 

𝛽 =
0.9

√1 + 𝐾𝜎𝜀1

                                                                                                                                      (1.74) 

Where Kσ = 400 for proportional loading, and Kσ = 250 for sequential loading with some 

tension release immediately prior to failure. 

The softening expression provided by Belarbi and Hsu is less severe than the one by Vecchio 

and Collins. This might be due to the angle of reinforcement (45 degrees in the case of Vecchio 

and Collins and parallel in the case of Belarbi and Hsu). Therefore, even the amount of 

reinforcement is different between the two studies. 

Based on measurements of reinforced cylindrical specimens under axial compression and 

internal pressure, Okamura and Maekawa (1987) developed the following expression for 

softening: 

        𝛽 = 1.0 𝑓𝑜𝑟 𝜀1 < 𝜀𝑎 

        𝛽 = 1.0 − 0.4
𝜀1 − 𝜀𝑎

𝜀𝑏 − 𝜀𝑎
 𝑓𝑜𝑟 𝜀𝑎  ≤ 𝜀1 ≤ 𝜀𝑏                                                                                (1.75) 

        𝛽 = 0.6  𝑓𝑜𝑟 𝜀𝑏 < 𝜀1 

Take 𝜀𝑎 = 0.0012 𝑎𝑛𝑑 𝜀𝑏 = 0.0044. 

Shirai (1989) performed tests on small reinforced panels and derived the following: 

        𝛽1 = −(
0.31

𝜋
) 𝑡𝑎𝑛−1(4820𝜀1 − 11.82) + 0.84                                                                     (1.76) 

        𝛽2 = −5.9 −
𝜎1

𝑓𝑐′
+ 1.0                                                                                                                    (1.77) 
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        𝛽 =  𝛽1 × 𝛽2                                                                                                                                   (1.78) 

Kupfer and Bulicek (1992) opted for a constant softening factor (0.85) coupled with a 

sustained load factor of 0.80: 

        𝑓𝑐2 = 0.80 × 0.85 × 𝑓𝑐
′ ≈

2

3
𝑓𝑐

′                                                                                                    (1.79) 

They also considered the following expression with a constant softening factor:  

        𝑓𝑐2 = 𝑓𝑐
′ × 0.85 × 0.75 (1 −

𝑓𝑐
′

250
)                                                                                           (1.80) 

Where, 0.85 is the factor for sustained load, 0.75 is the factor for irregular crack trajectory, 

and 1 −
𝑓𝑐

′

250
 is the difference between cylinder strength and uncracked concrete prism strength. 

Reineck (1991) also proposed that the strength of the web struts be taken no lower than 𝑓𝑐𝑤. 

𝑓𝑐𝑤 = 0.80𝑓𝑐
′                                                                                                                                    (1.81)   

To account for the effects of transverse reinforcement in tension, Prisco and Gambarova 

(1995) proposed that the concrete strength be reduced by: 

        𝑓𝑐 = 0.75𝑓𝑐
′  𝑜𝑟 𝑓𝑐 =

0.90𝑓𝑐
′

√1 + 600𝜀1

≥
𝑓𝑐

′

2
                                                                                    (1.82) 

Due to the presence of so many formulations for shear friction and concrete softening, a 

parametric study was performed by Duthinh (1999) to examine the effect that shear friction and 

concrete softening have on concrete shear strength according to the Modified Compression Field 

Theory.  The results showed that: 

1) The ratio of reinforcement is in inverse proportion with the shear friction: as the 

reinforcement ratio decreases, the effect of shear friction increases.  
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2) The effects of stresses normal to the interface (σ) were negligible regardless of which 

method was used. 

3) Failure by concrete crushing was predicted to happen for very wide cracks, much higher 

than Walraven’s experimental data (v ≤ 2mm, w ≤ 1.5mm) 

4) The models of Kollegger, Okamura, Miyahara, and Shirai demonstrate significant 

postlinear strength and no concrete crushing. The models by Ueda and Noguchi also 

demonstrate concrete crushing after significant postlinear strength and wide cracks. 

5) The models presented by Vecchio, Collins, and Hsu show no significant postlinear strength 

gained.  

Depending on the method of estimation, the shear strength of beams with low shear 

reinforcement could be decreased by 15-25% if a decrease in shear friction occurs (according to 

MCFT). This has been experimentally observed in HSC beams. 

A similar study was conducted by Suthinh (1997) in which a comparison was presented of the 

various relationships that have been proposed to represent the shear friction behavior of cracked 

reinforced concrete. A decrease in shear friction within the range of experimental data, as found 

for example in high strength concrete, can lower the shear strength of beams with minimum shear 

reinforcement by 15 percent to 25 percent, according to the MCFT. In addition, a comparison was 

presented of different relationships used to represent the biaxial compression-tension strength of 

reinforced concrete for RC and PC beams. Some theories of biaxial softening of concrete did not 

predict concrete crushing even for very high deformations, but rather showed significant shear 

force gain after stirrup yielding and crack slipping. For the RC beam example, some theories 

predict shear tension failure while others predict diagonal compression failure. However, the first 

peaks of shear load, which occur close to stirrup yielding and crack slipping, are within 10 percent 
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of one another for the various theories and within 10 percent of the test values for the PC beams 

considered. 

Kuchma and Hawkins (2008) provide a summary of the results from the National Cooperative 

Highway Research Program Report 549, “Simplified Shear Design of Structural Concrete 

Members”.  The report sought to provide some simplifying provisions to the existing Sectional 

Design Method in AASHTO LRFD. These changes were suggested after consideration of 

provisions existing in various other design codes.  Note that the changes proposed are currently 

implemented in AASHTO LRFD.  

Prior to the implemented changes, AASHTO LRFD used a shear design procedure based on 

(and derived from) MCFT (Modified Compression Field Theory), in which the values for the 

critical parameters β and θ were obtained from tables.  Note that the shear strength calculated using 

the AASHTO LRFD Sectional Design Method does not provide the same shear strength calculated 

by MCFT.  An interesting observation was made by the authors regarding the minimum transverse 

reinforcement, in that it was specified in AASHTO LRFD as 50% more than the minimum required 

reinforcement by the AASHTO Standard Specifications.  

Several design procedures that were used in design practice were studied and compared by 

the authors: ACI 318-02, AASHTO Standard Specifications (2002), AASHTO 1979 Interim 

Specifications, Canadian Standard Association (CSA) Design of Concrete Structures (2004), 

AASHTO LRFD Specifications, Eurocode 2 (2004), German code DIN 1045-1 (2001), the 

Japanese specifications for design and construction of concrete structures (2007), and the shear 

design approach by Tureyen and Frosch (2003).  Some results from evaluation and comparison of 

these codes were: 
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1) Most design procedures (Canadian Standard Association (CSA) Design of Concrete Structures 

1994 & 2004, AASHTO 1979 Interim Specifications, AASHTO LRFD Specifications, 

Eurocode 1 and 2, and the German code) permit designers to use the angle θ as less than 45 

degrees when calculating shear strength by shear reinforcement.  

2) AASHTO LRFD Specifications, Eurocode 1&2, and the German code allow the design of 

members that support much larger shear stresses than permitted in the traditional design 

approach. An important observation was made that the AASHTO Standard Specifications 

place a limit on the shear stress that can be supported by the concrete as 8√𝑓𝑐′𝑏𝑣𝑑 to prevent 

diagonal crushing of the concrete before the yielding of the reinforcement.  However, MCFT 

has determined that such failures do not occur until shear stresses reach a level of 0.25 f’
c. This 

makes a difference when it comes to cast concrete with 10 ksi compressive strength.  

3) Basing concrete contribution at ultimate on the diagonal cracking strength enables designers 

to determine whether a member will crack in shear under service loads, which helps assessing 

the condition of structures in the field. 

4) Some design procedures were simple and depended only on a few variables, while others were 

more complex. Such a case is that of AASHTO LRFD Specifications shear design which is an 

iterative process; to determine β and θ, a designer needs to calculate mid-depth strain, which 

on the other hand depends on θ itself. Furthermore, the mid-depth strain, β, and θ all depend 

on Vu.  

5) Different codes take different approaches when considering the effect shear has on longitudinal 

reinforcement. The influence is directly described in the parallel chord and truss model, but 

other codes have specific rules to handle this influence. This influence is particularly of interest 

at the ends of simply supported prestressed members. 
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Kuchma and Hawkins (2008) assembled a large experimental database and evaluated the 

accuracy of the different design methods to determine the shear-strength ratio (Vtest/Vcode). A total 

of 1359 beams were tested from which 878 were RC beams and 481 were PC beams. The majority 

of the PC beams were T-shaped and I-shaped and had depths less than 20 in, simply supported on 

bearings, and only 160 of them were reinforced.  Most members were subjected to four-point 

loading and there was a clear shear span length.  The results of the experiment were tabulated and 

some of the findings were summarized below: 

1) From all methods evaluated, the CSA and the AASHTO LRFD methods provided the most 

accurate estimates for the shear strength ratio. The means were consistent and the COV 

(coefficient of variation) values were low. These two methods would be expected to result in 

conservative design. 

2) Based on the close mean and COV values for the CSA and AASHTO LRFD methods, it was 

determined that these methods would yield similar designs and therefore the design equations 

of CSA 2004 for β and θ could be adopted for the AASHTO LRFD method. 

3) For members with shear reinforcement close to the minimum required by the ACI code, the 

shear strength ratios were often under 1.0, which emphasizes the fact that the higher minimum 

shear reinforcement imposed by AASHTO LRFD method is necessary. 

4) Beams with a large amount of reinforcement were able to support high shear stresses (up to 

0.25f’
c), which means that the upper shear strength limit imposed by the ACI code is 

conservative compared with the higher strength limit in the AASHTO LRFD specifications. 

These findings resulted in two main changes to the LRFD Design Specifications as follows: 

1) The Simplified Method.  The simplified provisions differed from the existing AASHTO LRFD 

specifications in the expressions for web shear cracking, the angle θ of diagonal compression 
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in the parallel chord truss model, the maximum allowed shear stress, the minimum required 

amount of reinforcement, the evaluation of shear depth, and the requirements for the amount 

of longitudinal reinforcement that must be developed at the face of the support. 

New equations were developed for the web shear component Vw and the flexure shear 

strength Vci. The shear strength contribution of concrete Vc was taken to be the smaller of the 

two. Therefore the new provisions present the Vc as the lower bound of the possible concrete 

shear strength at ultimate state. During this state the concrete shear strength contribution is 

comprised of the shear carried in the compression zone, shear carried along diagonal cracks 

due to shear friction (aggregate interlock), direct tension across diagonal cracks, dowel action, 

and arch action.  However, accounting for all of these factors would complicate the procedure. 

Therefore, the simplified provisions accounted for the lower bound estimate of the diagonal 

cracking load that when summed with the stirrup contribution to shear resistance, resulted in a 

conservative estimate of the capacity.  

2) Equations to calculate β and θ values.  The second significant change involved using the 

expressions for calculating β and θ present in CSA method. This would eliminate the iterative 

aspect of the shear design in the AASHTO LRFD specifications. In addition, a new equation 

for the mid-depth strain was developed which assumed θ was 30 degrees when evaluating the 

influence of shear on longitudinal strain.   The equations for these changes were presented in 

the AASHTO LRFD Bridge Design Specifications summary in Part 1 of this review.  

Other researchers have conducted code comparisons for shear design of prestressed concrete 

girders as well, and the general opinion appears to be that relative to LRFD, shear design by the 

Standard Specifications are generally less conservative (in terms of ultimate strength) as girder 

spacing increases and span decreases. These differences are detailed in NCHRP Report 368 
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(Nowak 1999) and must be considered along with capacity to assess differences and problems 

among the design approaches.  Kuchma, Hawkins, and Kang (2008) also recommend using the 

LRFD Sectional Design Model for high strength prestressed concrete girders.  

Additional research has been conducted to develop new approaches to shear design in RC and 

PC beams. These approaches were mainly based on the MCFT method (on which AASHTO LRFD 

or the Canadian Code CSA were based) or the Strut and Tie model.  

Ramirez and Breen (1991) proposed a modified truss model with a variable angle of 

inclination diagonals and a concrete contribution for beams with web reinforcement. The model 

includes a diminished concrete contribution to account for the variable angle truss model. For PC 

beams, the model utilizes a constant concrete contribution, but limits the compressive strength to 

30√𝑓𝑐′, and lowered the angle of inclination from 30 degrees for RC beams to 25 degrees for PC 

beams. The provisions were compared with a large number of test results and were found 

satisfactory. 

Shahawy and Cui (1999) worked to develop a tied-arch model for the shear design of PC 

beams. This model was applied to predict the failure load and to study the interaction between the 

tie, the shear reinforcement, and the struts.  Iteration is required to solve the equations and a few 

critical assumptions must be made.  Experimental testing was conducted on 25 full scale AASHTO 

girders, and the proposed model was used to rate the girder capacities and compared to the 

AASHTO Standard Specifications and the AASHTO LRFD values. The girders were found to be 

overdesigned in shear to achieve flexural failure. The authors recommended use of the model due 

to its consistency. They also suggest, in the case of deep beams and beam ends, to include the 

contribution of shear reinforcement which is usually ignored in typical strut-and-tie models. 
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Wang and Meng (2008) developed a modified strut-and-tie model which is useful for the 

design of simply supported deep beams. The effects of prestressing are modeled with equivalent 

externally applied loads. The effect of concrete softening is taken into account (the model is based 

on the Kupfer-Gerstle biaxial tension-compression criterion) by adding a factor k which is 

determined from consideration of force and moment equilibrium.  The model was validated using 

the experimental results of 56 simply supported PC deep beams and found to be accurate, 

consistent, and conservative. 

Ning and Tan (2007) worked to develop a modified strut-and-tie model for determining the 

shear strength of reinforced concrete deep beams based on the Mohr Coulomb failure criterion. 

More recently, Tuchscherer, Birrcher, and Bayrak (2011) also proposed a modified strut-and-tie 

model based on experimental data from a database of 868 deep beam tests. The procedure was 

proposed for the strength design of deep-beam regions.  

Cladera and Mari (2006) provide a revision of a previously proposed tension-shear model 

(intended for the shear design of reinforced concrete beams) and applied it to the design of PC 

beams with or without web reinforcement.  For the beams with web reinforcement, the design 

procedure was based on a truss model with variable angle of inclination of the struts and a concrete 

strength contribution. The model was based on the MCFT method, where the angle of inclination 

is obtained by compatibility. The model includes the interaction of axial loads and bending 

moment. The procedure takes into account the influence of compressive strength on the size effect 

and limits the strength of beams without stirrups to 60 MPa.  It also accounts for the non-linear 

relationship between the amount of shear reinforcement and shear strength.  The procedure was 

found satisfactory for all tests done, and it appeared to correlate well with the ACI procedures.  

However, it provides only one formulation for both RC and PC beams. 
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Esfandiari and Adebar (2009) present a shear strength evaluation procedure similar to the 

AASHTO LRFD method (2008) without the need for iteration.  The approach considers the failure 

modes of stirrup yielding, diagonal concrete crushing, and longitudinal reinforcement yielding.   

The approach was compared to the traditional MCFT model of a beam under uniform shear as well 

as to numerical models of beams under combined shear and bending.  For validation, the shear 

strength predictions were compared to shear strength results from experimental results and 

provisions by ACI 318 and AASHTO LRFD.  

Laskar, Hsu, and Mo (2010) present a simple shear design equation that was experimentally 

developed. They tested five full scale PC beams and observed three variables: shear span-depth 

ratio (a/d), transverse steel ratio (ρt), and the presence of harped strands in the web and flexural 

shear capacity.  The expression is a function of shear span to depth ratio (a/d), concrete 

compressive strength √𝑓𝑐
′, the web area bwd, and the transverse steel ratio ρt.. It was also shown 

that the prestressing force and the angle of failure crack had no effect on shear strength.  The 

authors also derived a formula for the maximum shear strength to guarantee prevention of web 

crushing prior to reinforcement yielding. The proposed method was evaluated by comparing it to 

the provisions of the ACI 318 code and AASHTO LRFD 2007 Specifications. 

Most recently, Yang, Ashour, and Lee (2011) proposed a mechanism analysis based on the 

upper-bound theorem of concrete plasticity to predict the critical failure plane and corresponding 

shear capacity of reinforced concrete dapped-end beams. Failure modes observed in physical tests 

of reinforced concrete dapped-end beams were idealized as an assemblage of two moving blocks 

separated by a failure surface of displacement discontinuity. The developed mechanism analysis 

represented the effect of different parameters on failure modes, and the predicted shear capacity 

was in good agreement with test results.  Furthermore, it was observed that empirical equations 



38 
 

 
 

specified by PCI as well as strut-and-tie model based on ACI 318-05 highly underestimated test 

results.  

1.3.7 Experimental Results 

Early results include Mast (1964), who considered some of the most common girder shapes 

and analyzed them for shear and flexure according to the provisions of the ACI 318-63 code. The 

height-to-span ratio was found to be the crucial parameter in determining whether the member was 

controlled by shear or flexure. This provided a rapid way to determine whether shear analysis was 

even necessary.   

Nazir and Wilby (1964) tested the behavior and strength in shear of uniformly loaded, post-

tensioned prestressed concrete beams without web reinforcement. Comparisons were made with 

tests on similar beams under different load configurations and the results indicated that the shear 

strength was influenced by the type of loading. Beams with uniformly distributed loading failed at 

higher ultimate shears than similar beams tested under concentrated loadings.  

Gustafson and Bruce (1966) present the results from tests conducted on eight PC beams and 

five smaller RC beams simply supported and equally loaded at third points of the span. The main 

variable of the test was shear reinforcement (including vertical, inclined and prestressed 

reinforcement—bonded or unbonded). Seven of the beams failed in shear and one had a 

transitional failure. The results were compared with the AASHTO and ACI codes. The study 

determined that the shear strength of full size PC girders can be predicted with reasonable accuracy 

from tests on smaller laboratory specimens.  It was also observed that if failure occurred from 

flexure shear cracking, prestressing the web reinforcement did not add to the ultimate strength of 

the member. The inclination of the web stirrups also did not add to the ultimate shear strength, but 

it did better control the opening of inclined cracks than the vertical stirrups. 
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Bennett and Mlingwa (1980) conducted tests on twenty-eight PC beams with prestressed web 

reinforcement and stirrups of mild steel or high strength steel. The results served to derive a 

formula to calculate the width of inclined cracks and the ultimate shear capacity of beams with 

vertical prestress. It was observed that the prestressing part of the web reinforcement increased the 

inclined shear and ultimate shear. 

Fenwick and Paulay (1968) examined the nature of shear resistance of reinforced concrete 

beams.  It was observed that shear may be resisted by beam and arch action. At diagonal cracking 

load of shear span, the beam action breaks down. Unless beams contain prestressed reinforcement, 

arch action cannot develop to a significant extent prior to diagonal cracking.  It was also 

demonstrated that the shear strength of beam action strongly depends on the mechanism of shear 

transfer across crack; by interlocking of aggregate particles and to a lesser extent, by dowel action 

of the reinforcement. 

Hanson and Hulsbos (1969) conducted laboratory fatigue tests on six prestressed concrete I-

beams to determine their shear strength. Each beam was loaded statically to almost 80% of its 

ultimate flexural capacity and later subjected to repeated loads varying in magnitude between 20-

45% of its flexural capacity for about 2,000,000 cycles. The load range was increased and the 

beams continued to be subjected to it until failure was attained.   The tests demonstrated that the 

prestressed concrete beams have a remarkable shear fatigue resistance. In addition, shear fatigue 

failures do not occur suddenly, but gave considerable warning with increasing deflection and shear 

crack widths before failure. 

More recently, Pei, Martin, Sandburg, and Kang (2008), as reported in (FHWA OK-08-08), 

conducted analytical and experimental studies of shear capacities of prestressed concrete bridges 

in Oklahoma.   The concern was to determine if older structures were adequate in shear. The study 

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bFenwick%2C+R.C.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bPaulay%2C+T.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org.proxy.lib.wayne.edu/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bHanson%2C+J.+M.%7d&section1=AU&database=4&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org.proxy.lib.wayne.edu/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bHulsbos%2C+C.+L.%7d&section1=AU&database=4&yearselect=yearrange&sort=yr
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focused on precast pretensioned prestressed concrete girders, mainly AASHTO Type II girders, 

designed according to AASHTO Standard Specifications prior to the 1979 Interim provisions.   

In the study, actual girders removed from the I-244 Bridge and the Wild Horse Creek Bridge 

were tested.  Camber measurements were taken to estimate the prestressing stress as well as 

flexural stiffness, as according to Sandburg (2007), the prestressing stress has a significant 

influence on shear carrying capacity; as prestress increases, so does the shear capacity. 

The results obtained from the tests were then compared to the performance standards provided 

by different design codes. Three different code provisions were compared on the basis of minimum 

shear reinforcement; shear demand, nominal shear strength, and margin of safety.  The latter was 

defined as the ratio of the factored nominal shear capacity to design shear demand considering all 

loads and reduction factors.  It was found that the actual tested capacity of the bridge girders 

exceeded the nominal capacity of each code.   

A similar study as the one previously described was conducted by Runzell, Shield, and French 

(2007) for the Minnesota Department of Transportation.  The scope of the study was to determine 

whether bridge girders designed according to the 1979 Interim provisions were under designed for 

shear under the current code provisions (such as AASHTO LRFD code). Two shear capacity tests 

were performed on opposite ends of a bridge girder removed from a highway bridge in Minnesota, 

which was designed according to the 1979 Interim shear provisions. The results from the shear 

tests indicated the girder was capable of holding the required shear demand because the applied 

shear at failure for both tests was larger than the factored shear strength required by the 2004 LRFD 

HL-93 and 2002 Standard HS20-44 loads. The results of a parametric study, however, showed that 

some girders designed using the 1979 Interim Specifications would most likely be under designed 
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for shear near the support.  The girders most likely to be under designed in this region had smaller 

length to girder spacing ratios. 

Moreover, girders most likely to be under designed for shear between 0.1L (where L is the 

girder span length) and the support. In this region, the 
𝜙𝑉𝑛

𝑉𝑢
 ratio for the girders varied between 0.73 

and 1.09, and was proportional to the 
𝐿

𝑆𝑔
 ration where Sg is the girder spacing. Girders with a length-

to-spacing ratio of more than 10 we determined to be safe while those with ratios under 8.5 were 

determined to be under designed in shear. 

Ross, Ansley, and Hamilton (2011) evaluated the structural condition of prestressed concrete 

girders salved from a bridge in the Gulf of Mexico in Florida. The four salvaged girders were 

AASHTO type III from a bridge built in 1979.  The girders were originally designed using the 

1973 edition of the AASHTO Standard Specifications.  Girders were tested using a three-point 

loading scheme with five different a/d (shear span-to-depth) ratios ranging from 1.2 to 5.4. The 

results were presented according to the a/d used and the corresponding modes of failure: bond-

shear failure, shear-compression failure, or flexural failure. Experimental results were compared 

to code calculated strengths, as shown in Table 1.2. 

Table 1.2. Shear test results (Ross et al., 2011) 

Specimen # Design Code Vpred (kips) Vtest (kips) Vtest/Vpred 

Specimen I 

(with bridge 

deck) 

2004 LRFD 259  1.51 

2002 Standard 316 392 1.24 

1979 Interim 189  2.07 

 Strut and Tie 281  1.4 

Specimen II 

(with no bridge 

deck) 

2004 LRFD 204  1.61 

2002 Standard 238 392 1.38 

1979 Interim 157  2.09 

 Strut and Tie 146  1.34 
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Each of the three girders tested at an a/d of 3 or less (G1, G2, and G3) demonstrated bond-

shear failure. Bond-shear failure was identified by the formation of flexural cracks in the strand 

development length and by slipping of the strands.  Results of the tests indicate that capacity of 

the prestressing strands was limited by slipping and that additional capacity beyond this slip point 

might be possible with the use of vertical and horizontal mild steel reinforcement.  Two girders 

were tested with a (a/d) of 4.1 (G4-1 and G4-2). Girder G4-1 failed in a shear-compression mode, 

whereas girder G4-2 failed in a bond-shear mode.  Although the girders failed differently, their 

shear versus displacement behavior was similar.  One girder was tested with a (a/d) of 5, and the 

failure was categorized as flexural.  Overall, the 30-year-old girders performed well in the load 

tests. Comparison of calculated shear capacity with experimental results is shown in Table 1.3. 

The full-scale testing gave no indication of reduced capacity or performance as a result of exposure 

or use. Testing confirmed visual ratings made during inspections before demolition.     

Table 1.3. Comparison of calculated shear capacity with experimental results (Ross et al. 2011) 

a/d Test Vexp MCFT STM ACI detailed Modified end 

region 

   Vn Vexp/Vn Vn Vexp/Vn Vn Vexp/Vn Vner Vexp/Vn 

1.2 G1 344 211 1.63 159 2.16 268 1.28 252 1.37 

2.1 G2 255 231 1.10 108 2.36 243 1.05 255 1.00 

3.1 G3 207 193 1.07 n.a. n.a. 227 0.91 222 0.93 

4.2 G4-1 180 181 0.99 n.a. n.a. 181 0.99 n.a. n.a. 

4.2 G4-2 198 181 1.09 n.a. n.a. 181 1.09 n.a. n.a. 

5.4 G5 158 167 0.95 n.a. n.a. 160 0.99 n.a. n.a. 
Note: units in kips.  a/d=shear span-to-depth ratio; MCFT=modified compression field theory; STM=strut-and-tie 

method; Vexp = experimental shear capacity; Vn = nominal shear capacity; Vner = nominal shear capacity of the end 

region. 

Idriss and Liang (2010) measured in-service shear and moment girder distribution factors in 

simple-span prestressed concrete girders with a built-in optical fiber sensor system.  This system 

was built into the I-25 Bridge in New Mexico during construction.  The bridge is composed of six 

simple-span, high-performance prestressed concrete girders.  Sensors were installed along the top 
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and bottom flanges and at midspan and quarter spans. Pairs of crossed sensors in a rosette 

configuration were also embedded in the webs at the supports. The bridge was monitored for two 

years, from transfer of the prestressing force through service.   The sensor data were analyzed to 

evaluate shear and moment girder distribution factors, in situ material properties, prestress losses, 

camber, dynamic load allowance, and bridge performance under traffic loads.  Shear and moment 

girder distribution factors were obtained from a finite element model, sensor measurements under 

a live load test, as well as regular traffic loading and compared with the values specified by the 

AASHTO standard specifications (2002) and the AASHTO load and resistance factor design 

specifications (2007).  

Hartmann,  Breen, and  Kreger (1988) evaluated the adequacy of code provisions for shear 

capacity when applied to high strength prestressed concrete girders. The results of shear testing of 

ten pretensioned girders made from concrete with compressive strength ranging from 10,800 psi-

13,160 psi were summarized. Existing design approaches were found to be acceptable for concrete 

ranging to at least 12,000 psi. It was observed that three design methods studies showed little 

variation from conservatism as a function of concrete strength. It was also shown that the 

maximum shear reinforcement limits could be significantly increased. 

Cumming, French, and Shield (1998) performed four shear tests on high-strength concrete 

prestressed girders.  The shear test results were compared with predicted results from the ACI 318-

95 Simplified Method, the ACI 318-95 Detailed Method (AASHTO 1989), the Modified ACI 318-

95 Procedure, Modified Compression Field Theory (AASHTO LRFD 1994), the Modified Truss 

Theory, Truss Theory, Horizontal Shear Design (AASHTO 1989), and the Shear Friction approach 

(AASHTO LRFD 1994). The calculated shear capacities were in all cases conservative compared 

to the actual shear capacity. 

http://www.engineeringvillage2.org.proxy.lib.wayne.edu/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bHartmann%2C+D.+L.%7d&section1=AU&database=4&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org.proxy.lib.wayne.edu/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bBreen%2C+J.+E.%7d&section1=AU&database=4&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org.proxy.lib.wayne.edu/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bKreger%2C+M.+E.%7d&section1=AU&database=4&yearselect=yearrange&sort=yr
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Fagundo, Lybas, Basu, Shaw, and White (1995) studied the effects that the shear span-to-

depth ratio and moment-to-shear ratio have on the interaction between bond and shear forces in 

prestressed concrete girders. The study was also focused on identifying parameters that affect the 

transfer lengths of the prestressing strands and evaluating the current code provisions. 

Two sets of four simply supported beams were tested.  The beams tested at 2D tended to fail in a 

brittle manner. The failure was governed by strut and tie action due to the presence of the disturbed 

regions.  The beams tested at LD tended to fail in a more ductile manner. These beams had a shear 

span to depth ratios greater than 2.5. The modified compression field theory provided a reasonable 

method of analysis for prestressed concrete members with shear span to depth ratios greater than 

2.5.  It was found that the presence of shear cracks deteriorated the bond between the tendons and 

the surrounding concrete. As the shear cracks formed, there were sudden increases in tendon slip 

in every case. The shear and bond forces did appear to be related, but premature shear failures due 

to excessive loss of bond were not experienced. 

Llanos, Ross, Hamilton (2009) tested three types of concrete bridge girders: AASHTO Type 

IV, AASHTO Type III, and circa 1950's Post-Tensioned Girders. Testing generally focused on 

shear capacity and behavior under shear load.  For the AASHTO Type IV girders, it was found 

that capacity was not controlled by the typical shear failure mechanisms, but rather was due to 

cracking and separation of the bottom bulb flange of the girder. This was a result of the unusual 

debonding pattern that placed the fully bonded strands out in the bulb flange and the debonded 

strands under the web. A carbon fiber-reinforced plastic (CFRP) fabric strengthening possibility 

was tested to alleviate issues associated with the strand debonding pattern. The bonded CFRP 

reinforcement provided an increase in capacity of 9 and 21 percent for shear span-to-depth (a/d) 

ratios of one and three, respectively.  The AASHTO Type III girders were tested at a/d ratios 



45 
 

 
 

ranging from one to five. For a/d ratios of three or less, the failure mode was strand slip, which 

was precipitated by the formation of cracks in the strand development length zone. While these 

cracks resulted in strand slip, transverse and longitudinal mild steel reinforcement at the girder end 

was engaged, which improved the capacity and ductility beyond the first strand slip.  Post-

Tensioned test girders were constructed to replicate a circa 1950s bridge design. Unique features 

included a presence of both straight and parabolic post-tension bars, and lack of shear 

reinforcement away from the end block. The girder tested with direct bearing on concrete displayed 

a 7% larger capacity and nearly half the displacement of a similar girder tested on a neoprene 

bearing pad. 

Oh and Kim (2004) experimentally explored the shear behavior of post-tensioned prestressed 

concrete girders.  Large-scale post-tensioned prestressed concrete girders were fabricated using 

medium-high and high-strength concrete.  The girders were tested to failure while deflections, 

steel stirrup strains, cracking pattern, and average strains in the web were monitored.  The stirrup 

strains showed a sudden increase immediately after cracking and continued to grow as the load 

increases. It was found that the angle of principal strain direction decreased as the applied load 

increased and that it approached approximately 23 to 25 degrees at the ultimate load stage. The 

concept of average strains and the change of principal direction investigated in this study might be 

used for a more accurate shear analysis of post-tensioned prestressed concrete girders. 

Libby and Konzack (1985) discussed the shortcomings of using ACI code provisions for the 

shear design of PC beams. An issue that complicates the shear design of PC bridges is that, based 

on the results of NCHRP Report 322, The Design of Precast, Prestressed Bridge Girders Made 

Continuous (Oesterle et al. 1989), depending on the construction sequence and reinforcement 

detailing, some continuous PC bridges have been flexurally-designed as if they were simply 
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supported spans under some load conditions, potentially resulting in under-design in some 

instances. 

 Maruyama and Rizkalla (1988) studied the influence of slippage of prestressing strands on 

the beam behavior of pretensioned prestressed concrete T-beams, when tested to failure. The effect 

of various shear reinforcement configurations, crack behavior, overall deformation, and mode of 

failure are discussed. Based on the test results, a proposed mechanism is introduced to describe 

the overall behavior of such beams, and design recommendations are presented. 

Ranasinghe, Mutsuyoshi, and Ashraf (2001) described the effect of bond between the 

reinforcement and concrete on the shear behavior of reinforced and prestressed concrete beams. 

Seven beams with different bond conditions were tested up to failure, while stress-slip 

relationships for these specimens were obtained from a parallel series of simple pullout tests. A 

numerical analysis was also conducted to simulate the beams tested. It was found that the bond 

condition of steel bars and prestressing bars highly influences the shear strength and failure mode 

of RC and PC beams. A reasonably good correlation was observed between the experimental and 

analytical results.  

Hegger, Sherif, and Görtz (2004) used laser-interferometry and photogrammetry devices to 

attempt to gain insight to the shear resistance mechanism of PC beams by studying pre- and post-

cracking behavior.  For studying the precracking behavior, the laser-interferometry was applied. It 

was found that a nonlinear stress distribution was evident before the formation of visible cracks, 

thereby influencing the cracking angle. Photogrammetry was used to study the postcracking 

behavior.  Here, measured displacement components of the crack edges were used to estimate 

shear transferred across the cracks by shear friction. It was also shown that for beams with low or 
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high shear reinforcement ratios, the amount of shear force transferred across cracks by shear 

friction was negligible.  

De Silva, Mutsuyoshi, and Witchukreangkrai (2007) experimentally explored the shear 

cracking behavior of prestressed reinforced concrete girders. Tests were conducted on three I-

shaped RC beams and four I-shaped PC beams.  The variables of interest were the prestressing 

force, side concrete cover, stirrup spacing, bond characteristics of the stirrups, and amount of 

longitudinal reinforcement. The influence on shear crack width from each of these parameters was 

observed. The study determined that the prestressing force significantly reduced the shear crack 

width in PC beams compared to RC beams. Furthermore, an equation was proposed to calculate 

the shear crack width of PC beams. 

Aboutaha and Burns (1991) studied how the mode of failure of prestressed composite flexural 

member could be changed from a sudden shear failure to a ductile flexural failure by utilizing 

external prestressing bars.  This research studied the behavior of retrofitted prestressed composite 

beams that originally lacked shear reinforcement.   Before retrofitting, these beams experienced 

sudden horizontal shear failures. However, ductile flexural failures occurred after the sections were 

retrofitted with external prestressing bars.  

Cederwall (2006) summarized the results of experimental investigations of the shear capacity 

of composite prestressed concrete I-beams. On the basis of the test results, the relevance of the 

equation in the Swedish Code (BBK-79) for shear capacity of homogeneous prestressed concrete 

beams is discussed, if applied to composite beams. The test series indicate a slight overestimation 

of the beneficial influence of prestressing, which was greater for homogeneous beams than for 

composite beams. 
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Ma and Hu (2008) developed formulas that could determine the diagonal section strength of 

composite prestressed concrete beams (such as those where reaction powder concrete is applied in 

the unbonded prestressed composite beams without stirrups). The new formulas were found to be 

less conservative than the existing ones. 

Saqan, Frosch (2009) investigated the shear strength and behavior of partially prestressed 

reinforced concrete rectangular beams with prestressing strands and reinforcing bars, but without 

transverse reinforcement. Tests were conducted on nine large-scale beams, and the prestressing 

force was kept constant. The test variables were the amount of prestressing steel and the amount 

of mild steel. A strong correlation was found between the flexural reinforcement and shear strength 

of PC beams (increasing the cross sectional area of prestressing steel can increase the shear 

strength of the beam).  In general, the total amount of reinforcement controls the behavior and 

strength of the member until the first shear crack occurs. 

Similar work was done by Recupero, D’Aveni, and Ghersi (2005), who attempted to 

generalize a model for evaluating the shear strength of prestressed beams that was previously 

proposed for box and I-shaped reinforced concrete cross sections.  After being modified, the model 

included the effect of prestressing tendons, and took into consideration variable-depth stress fields 

applied to the cross section.  The reliability of the method was validated by comparing its 

numerical results to the strength provided by tests on reinforced concrete beams and on thin-

webbed prestressed concrete beams.  The method was used in the design of a pretensioned bridge 

beam to evaluate the additional reinforcement necessary in the flanges, as a function of the 

reinforcement provided to the web. 

Lee, Cho, and Oh (2010) investigated the shear deformation of large-scale reinforced I-shaped 

girders and post-tensioned prestressed concrete girders with a small shear span-depth ratio of 2.5. 
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The test variables were the compressive strength of the concrete, the stirrup ratio, and the 

prestressing force. This large-scale experimental study enabled the investigation of diagonal 

cracking behavior, crack patterns, principal strain direction, and crack width, as well as ultimate 

shear capacity.  From the experimental results, it was shown that the ultimate shear capacity of 

concrete girders increased with an increase in the concrete compressive strength, the stirrup ratio, 

and the prestressing force. The effect of concrete strength in the girders with stirrups and 

prestressing force, however, was not as much as in those without stirrups and prestress. It was also 

shown that the stirrup was highly effective for controlling diagonal crack width, whereas the 

prestressing force is only effective at delaying cracking load.  It was found that the presence of 

stirrups was the dominant factor contributing to the arching action of a beam member with a short 

shear span-depth ratio. 

Yoshitake et al. (2011) emphasized the difficulty of evaluating shear cracking load when many 

factors influence the behavior of RC and PC flexural members, when evaluating the shear strength 

of plain concrete through testing.  The results showed that reinforcement had little influence on 

the shear cracking strength. On the other hand, tensile strength and Poisson ratio were strongly 

related to shear cracking strength. 

1.3.8 Numerical Modeling 

Few studies in the technical literature are specifically focused on the numerical modeling of 

prestresssed concrete girder shear behavior.  However, some examples of numerical modeling-

focused research are given below.  

Laskar, Howser, Mo, and Hsu (2010) discussed the development of the Cyclic Softened 

Membrane Model (CSMM), which has been efficiently used to predict the behavior of RC and PC 

beams critical in shear.  CSMM has been implemented into the OpenSees (Open System for 
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Earthquake Engineering Simulation) finite element framework, and is being implemented in the 

finite element program Simulation of Concrete Structures (SCS).  To create SCS, five full scale 

prestressed girders were tested to study their behavior in web shear and flexure shear. The failure 

plane on each of the girders occurred at an angle of approximately 45 degrees, which was 

inconsistent with the provisions of AASHTO and ACI 318 codes (where angles of failure planes 

ranged from 22.3-35.7 degrees for AASHTO and 37.5 degrees for ACI code). To confirm the 

failure angle, the researchers used SCS. It was found that SCS was capable of well-predicting the 

shear behavior of beams under vertical loading.  

Mahesh and Surinder (2011) predicted the shear strength of RC and PC deep beams by using 

Support Vector Regression. Here, a back-propagation neural network and three empirical relations 

were used to model reinforced concrete deep beams. For prestressed deep beams, one empirical 

relation was used.  Results suggest an improved performance could be obtained by use of SVR in 

terms of prediction capabilities in comparison to the existing empirical relations and the back 

propagation neural network. Parametric studies with SVR suggest the importance of concrete 

cylinder strength and ratio of shear span to effective depth when predicting the strength of deep 

beams.  The SVR model was also used to perform parametric studies, which suggest that the shear 

strength of deep beams is in direct proportion with the concrete strength and inversely proportional 

to the shear span-to-depth ratio.  However, it was found that the shear strength of deep beams is 

not affected by the variation in horizontal web reinforcement for a span-to-depth ratio greater than 

1. The results of the parametric studies using SVR were in agreement with previous work. 

Liu, Wu, and Xu (2012) discussed a method that uses inner transverse prestressing bars to 

enhance the shear capacity of concrete beams.  Four transversely prestressed concrete beams and 

one ordinary reinforced concrete beam were modeled using a nonlinear finite element method. A 
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parametric study was carried out to analyze the behavior of the PC beams. It was found that the 

transverse prestressing bars can increase the shear capacity and failure load of the reinforced 

concrete beam, where the increase in prestressing force directly increases the shear capacity of 

reinforced beams. It was found that bars with smaller diameters and smaller spacing can be more 

efficient in enhancing the shear capacity of transversely prestressed concrete beams.  

1.3.9 NCHRP Reports 

The NCHRP Report findings most relevant to the shear design and behavior of PC beams of 

interest to this research were discussed earlier in this report (NCHRP 322; 368; and 549), when 

the literature review from technical journal papers was presented.  However, a summary of 

additional report information is provided below. 

The objective of NCHRP 368, Calibration of LRFD Bridge Design Code (Nowak 1999) was 

to develop the reliability-based calibration for the Load Resistance Factor Design bridge design 

code. Load and resistance factors were derived so that the reliability of bridges designed using the 

proposed provisions will be at the predefined target level. The report describes the calibration 

procedure and reviews proposed changes to load and resistance models.  It was found that the 

AASHTO Standard Specifications resulted in PC beam designs in shear that generally had 

reliability indices lower than the target proposed for the AASHTO LRFD Specification, with least-

reliable beams being in the longer span ranges. 

The code calibration procedure in the NCHRP 368 project was formulated including the 

following steps: 

1)  Selection of representative bridges: 

About 200 structures were selected from various geographical regions of the United States. 

The selection was based on structural type, material, and geographical location.  Bridges 
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were grouped by material (steel, reinforced concrete, prestressed concrete and wood), span 

(simple and continuous) and structural type (slab, beam, box, truss, arch). Current and 

future trends were considered. The selected set also included representative existing 

bridges. For each selected bridge, load effects (moments, shears, tensions and 

compressions) are calculated for various components. Load carrying capacities were also 

evaluated .State DOT's were requested to provide the drawings and other relevant 

information.  

2)  Establishing the statistical data base for load and resistance parameters: 

The available data on load components, including results of surveys and other 

measurements, was gathered. Truck survey and weigh-in-motion (WIM) data were used 

for modeling live load. There was little field data available for dynamic load therefore a 

numerical procedure was developed for simulation of the dynamic bridge behavior. 

Statistical data for resistance included material tests, component tests and field 

measurements. Numerical procedures were developed for simulation of behavior of large 

structural components and systems. 

3) Development of load and resistance models: 

Load and resistance parameters were treated as random variables. Their variation was 

described by cumulative distribution functions (CDF) and correlations. For loads, the 

CDFs were derived using the available statistical data base (Step 2). The live load model 

included the presence of multiple trucks in one lane and in adjacent lanes. Multilane 

reduction factors were calculated for wider bridges. Dynamic load was modeled for single 

trucks and two tucks side-by-side. Moreover, resistance models were developed for girder 

bridges. The variation of the ultimate strength was determined by simulations. In this study 
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the reliability analysis was performed using the Rackwitz and Fiessler procedure, Monte 

Carlo simulations and special sampling techniques.  

4)  Development of the reliability analysis procedure: 

Structural performance was measured in terms of reliability. Limit states were defined as 

mathematical formulas describing the state (safe or failure). Reliability was measured in 

terms of the reliability index, 𝛽. Reliability index is calculated the Rackwitz and Fiessler 

procedure. The developed load and resistance models (step 3) were part of the reliability 

analysis procedure. 

5)  Selection of the target reliability index: 

Reliability indices are calculated for a wide spectrum of bridges designed according to the 

1989 AASHTO Standard Specifications. The target reliability index, 𝛽𝑇, was selected to 

provide a consistent and uniform safety margin for all structures. 

6)  Calculation of load and resistance factors: 

Load (ϒ) and resistance (Q) factors were calculated so that the structural reliability of all 

bridges is close to the target value, 𝛽𝑇. 

NCHRP 454, Calibration of Load Factors for LRFR Bridge Evaluation (Moses 2001) 

presented the derivation of live load factors and associated checking criteria incorporated in the 

proposed Manual for Condition Evaluation and Load and Resistance Factor Rating of Highway 

Bridges prepared for NCHRP Project 12-46.  A major goal in the study was to unify the reliability 

analyses and corresponding database used in the load and resistance factor rating (LRFR) and the 

recommendations for the Evaluation Manual compatible with the AASHTO LRFD bridge design 

specifications.  Although the report considers all types of bridges, it provides no particular insight 

for the shear design or behavior of prestressed concrete bridges.  
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NCHRP 485, Bridge Software-Validation Guidelines and Examples (Baker et al. 2003) 

developed a process for bridge design and analysis software validation.  The study has resulted in 

a test-bed of bridges with well-defined parametric inputs and outputs. This test-bed (or portions 

thereof) is readily usable by developers, end users, and others, and is available on CD-ROM.  Using 

project 12-50 results, two or more software analysis packages and/or hand calculations with the 

same data set may be compared in tabular and/or graphical format.  Project 12-50 permits drilling-

down in the results to show how computations were performed and to clearly reveal differences 

between processes clearly.  Various prestressed concrete sections were considered in the test-bed, 

and errors in some existing software for computing the shear in prestressed concrete girders were 

identified.  

The objective of NCHRP 517, Extending Span Ranges of Precast Prestressed Concrete 

Girders (Castrodale and White 2004) was to address the limitations caused by the infrequent use 

of precast prestressed concrete girders for spans longer than 160 ft. The authors address this issue 

by extending the practical use of prestressed concrete girders to longer spans and to applications 

not normally associated with precast prestressed concrete girder construction.  The major goal of 

the research was to provide a design procedure for long span precast, prestressed girders.  

Suggested design details and examples are presented.  Particular attention was given to the effects 

of splicing long girders on shear and shear transfer through joints, with the interface shear at bent 

caps of interest.   

NCHRP 549, Simplified Shear Design of Structural Concrete Members (Hawkins et al. 2005) 

developed simplified shear design provisions for the AASHTO LRFD Bridge Design 

Specifications that attempted would overcome perceived difficulties with using the previous shear 
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design provisions, which were the provisions of the Sectional Design Model. The detailed 

provisions recommended by this project were described earlier in this report.  

NCHRP 579, Application of LRFD Bridge Design Specifications to High-Strength Structural 

Concrete: Shear Provisions (Hawkins and Kuchma 2007), proposed guidelines to allow the use of 

concrete strengths greater than 10 ksi, up to 18 ksi, for shear design.   It addressed the compression 

angle θ; the proper concrete strength contribution to shear strength; minimum shear reinforcement; 

and maximum shear limits.  It was found that the existing LRFD values for θ, β, and minimum 

shear reinforcement were safe to use for high strength concrete, but the maximum shear stress limit 

requires restriction.   

In report NCHRP 654, Evaluation and Repair Procedures for Precast/Prestressed Concrete 

Girders with Longitudinal Cracking in the Web (Tadros et al. 2010), a user’s manual was 

established for the acceptance, repair, or rejection of precast/ prestressed concrete girders with 

longitudinal web cracking. The cracks of concern occur in the end zone as a result of prestress 

transfer, and may result in debonding and increased corrosion.  Experimental tests determined that 

girder shear capacities were larger than estimated by code design procedures even with the 

longitudinal cracks present.  The report proposes revisions to the AASHTO LRFD Bridge Design 

Specifications and provides recommendations to develop improved crack control reinforcement 

details for use in new girders.  To achieve this objective, guidelines were  established for various 

cracking categories such as: cracks that are not required to be repaired, cracks that are required to 

be repaired, including the methods and materials of repair, and cracks that cause structural capacity 

to be compromised and thus may cause the girders to be rejected. 



56 
 

 
 

Additional objectives were to propose revisions to the AASHTO LRFD Bridge Design 

Specifications as warranted, and to develop improved crack control reinforcement details for use 

in new girders. 

NCHRP 678, Design of FRP Systems for Strengthening Concrete Girders in Shear (Belarbi 

et al. 2011) develops recommendations for a design method that can be used to strengthening 

concrete girders in shear using externally bonded FRP systems.  It was found that beams with 

existing shear cracks displayed stirrup yield at a lower shear force than beams that did not have 

cracks, and limiting stirrup stress to the yield stress will avoid fatigue failures in the girder. 

NCHRP 700, A Comparison of AASHTO Bridge Load Rating Methods (Mlynarski et al. 2011) 

compared the load factor rating to load and resistance factor ratings for various design vehicles.   

It provides proposals for changes to the AASHTO Manual for Bridge Evaluation through the 

extensive data analysis of 1,500 bridges of varying material types and structure configurations. 

The bridges were analyzed using the AASHTO Ware Virtis software (Thompson, 1999).  It was 

found that a significant number of the girders analyzed achieved favorable LFR ratings but had 

LRFR ratings less than 1.0.  This occurred because LRFR included evaluation criteria not covered 

by LFR that in fact governed the rating, though these criteria did not include prestressed concrete 

girder shear strength checks.  However, for concrete structures, the suggested evaluation 

provisions include a check for shear capacity when the factored load effects from the permit load 

exceed the factored load effects from the design load, which was not previously included under 

LFR.  Concrete bridges that show no visible signs of shear problems need not be checked for shear 

when rating for design or legal loads, however.  Revisions to load factors for permit vehicles were 

suggested to increase the target reliability index to 3.5 
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CHAPTER 2: EXPERIMENTAL STUDY 

2.1 Lap Testing Setup 

Two full-scale AASHTO Type II girders were tested in controlled conditions under various 

load configurations.  The objective of this testing was to collect the experimental information 

necessary for development of a reliable numerical model (see Chapter 3). Each girder was 

approximately 36 ft long, and was tested three times at three different locations of the span by 

adjusting support locations, to generate data for different critical shear span-to-depth ratios and 

stirrup spacings.  For each girder, the portion of the span which was to be preserved for subsequent 

testing was externally clamped with vertical steel bars to prevent shear damage in this region 

during the prior tests as shown in Figure 2.1.  

 

Figure 2.1. Tested spans for each girder 

The tested Girders were instrumented with strain gages on transverse steel stirrups, an 

Optotrack marker grid for measuring displacements on the Girder exterior in the critical shear 
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region, as well as potentiometers at supports and near the load location at the bottom of the girder, 

as shown in Figure 2.2.  

 

Figure 2.2. Lab test instrumentation 

During the testing of each girder, a monotonic point load was applied using a hydraulic 

actuator resting on a 6 inch long steel plate centered at a distance “a“ from the support. Initially, 

load was applied at 20 kip increments until cracks were observed. After major cracks developed, 

the load was slowly increased until failure. A summary of the critical girders’ parameters is given 

in Table 2.1, where “a“ is the load location measured from the support, “d” is the effective strand 

depth, and “S” is the stirrups spacing.   

Table 2.1. Summary of the tested girders parameters 

  Test S (in) a/d 

Girder 1 1 8.0 2.8 

 2 8.0 3.4 

  3 21.0 3.4 

Girder 2 1 21.0 2.0 

 2 21.0 2.8 

 3 21.0 3.5 
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2.2 Girder 1  

The first Girder was cast at Stress-Con Industries (Kalamazoo, MI), and transported to the 

University of Michigan Civil and Environmental Engineering Structures Lab for testing.  The 

casting specification sheet is given in Appendix A.  The layout for Girder 1 is shown in Figure 2.3, 

where the load (P1, P2, P3) and support (A, B, C, D) positions for each test are summarized, as 

well as stirrup spacing and location of strain gages.   

 
Figure 2.3. Girder 1 layout and strain gage location (dimensions in inches) 

Reinforcement details, as well as cross section of Girder 1 are shown in Figure 2.4. Pre-

stressed steel reinforcement consisted of sixteen 1/2 in. dia., seven-wire, Grade 270, low-relaxation 

strands with a total area of 2.4 in2 (labeled as S4). Mild steel reinforcement consisted of two Grade 

60 bars (labeled as S3) with a total area of 0.4 in2 at the top flanges of Girder. Transverse 

reinforcement consisted of #3 double leg stirrups with an area of 0.22 in2 (labeled as S1). Concrete 

had an average compressive strength of approximately 8 ksi with a coarse aggregate having a 

maximum-size of 0.75 in.  

Strain Gages 

Girder 1 
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Figure 2.4. Girder 1 cross section (dimensions in inches) 

Girder 1-Test 1 

For test 1, the girder was supported and loaded as shown in Figure 2.5. 

 

Figure 2.5. Girder 1-Test 1 Configuration (dimensions in inches) 

Five concrete cylinders were tested on test day, with results shown in Table 2.2.  Note that the 

mean strength (7.6 ksi) is substantially higher than the 5.5 ksi as specified in the design. 

Table 2.2. Girder 1-Test 1 cylinder compressive strength tests 

Cylinder Failure 

Load 

(kips) 

Stress  (psi) % from Mean 

1 76.1 6057 -20.8 

2 115.9 9222 20.6 

3 88.9 7072 -7.5 

4 109.0 8670 13.4 

5 90.7 7219 -5.6 

Mean 96.1 7648 - 

The test results are summarized in Figures A1-A4 (Appendix A).  The first cracking load 

occurred at approximately 180 kips (Figure A1); flexural cracks appeared at approximately 280 

kips (Figure A2); and failure occurred at approximately 300 kips (Figures A3 and A4). 
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Girder 1-Test 2 

For test 2, the girder was supported and loaded as shown in Figure 2.6. 

 
Figure 2.6. Girder 1-Test 2 configuration (dimensions in inches) 

Concrete cylinder strength test results on the test date are given in Table 2.3. 

Table 2.3. Girder 1-Test 2 cylinder compressive strength tests 

Cylinder Failure 

Load 

(kips) 

Stress (psi) % from Mean 

1 81.5 6482 -17.7 

2 120.3 9572 21.6 

3 105.7 8414 6.9 

4 86.3 6863 -12.8 

5 101.0 8038 2.1 

Mean 99 7874 - 

The test results are summarized in Figures A5-A7 (Appendix A).  First cracking load occurred 

at approximately 200 kips (Figure A5). Figure A6 shows the Girder response before failure, while 

failure occurred at approximately 265 kips (Figure A7). 
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Girder 1-Test 3 

For test 3, the Girder was supported and loaded as shown in Figure 2.7. 

 

Figure 2.7. Girder 1-Test 3 configuration (dimensions in inches) 

Concrete cylinder strength test results on the test date are given in Table 2.4. 

Table 2.4. Girder 1-Test 3 cylinder compressive strength tests 

Cylinder Failure 

Load 

(kips) 

Stress (psi) % from Mean 

1 106.3 8455 -1.9 

2 112.3 8933 3.6 

3 94.4 7513 -12.9 

4 127.2 10125 17.4 

5 101.6 8081 -6.3 

Mean 108.3 8622 - 

The test results are summarized in Figures A8-A10 (Appendix A).  The first cracking load 

occurred at approximately 220 kips (Figure A8), while failure occurred at approximately 355 kips 

(Figures A9 and A10).  
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2.3 Girder 2  

Girder 2 was similarly cast at Stress-Con Industries.  The casting specification sheet is given 

in Appendix A. The layout, geometry, properties and instrumentation of Girder 2 are similar to 

those in Girder 1 as shown in Figure 2.8.   

 

Figure 2.8. Girder 2 layout and strain gage locations (dimensions in inches) 

Reinforcement details, as well as cross section of Girder 2 are shown in Figure 2.9. Pre-

stressed steel reinforcement consisted of sixteen 1/2 in. dia., seven-wire, Grade 270, low-relaxation 

strands with a total area of 2.4 in2 (labeled as S4). Mild steel reinforcement consisted of four #4 

Grade 60 bars (labeled as S3) with a total area of 0.8 in2 at the top flanges of Girder 2. Transverse 

reinforcement consisted of #3 double leg stirrups with an area of 0.22 in2 (labeled as S1). Concrete 

had an average compressive strength of approximately 9.2 ksi with a coarse aggregate having a 

maximum-size of 0.75 in.  

Strain Gages 

Girder 2 
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Figure 2.9. Girder 2 cross section details (dimensions in inches) 

 

Girder 2- Test 1 

For Test 2, the girder was supported and loaded as shown in Figure 2.10. 

 

Figure 2.10. Girder 2 Test 1 configuration (dimensions in inches) 
Five concrete cylinders were tested on test day, with result shown in Table 2.5. 

Table 2.5. Girder 2-Test 1 cylinder compressive strength tests 

Cylinder Failure Load 

(kips) 

Stress (psi) % from Mean 

1 120.4 9579.5 4.8 

2 110.0 8754.2 -4.2 

3 115.6 9196.0 0.8 

4 123.0 9788.7 6.8 

5 104.0 8274.5 -10.2 

Mean 114.6 9118.6 - 

The test results are summarized in Figures A11 and A12 (Appendix A).  Similar to Girder 1-

Test 1, first cracking load occurred at approximately 180 kips (Figure A11).  For safety concerns, 

72 

Hooks 
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the test was stopped at 294 kips, due to localized concrete crushing under the load point, indicating 

impending failure based on previous test results (Figure A12). 

Girder 2-Test 2 

For Test 2, the girder was supported and loaded as shown in Figure 2.11. 

 

Figure 2.11. Girder 2-Test 2 configuration (dimensions in inches) 

Concrete cylinder strength test results on the test date are given in Table 2.6. 

Table 2.6. Girder 2-Test 2 cylinder compressive strength tests 

Cylinder Failure 

Load 

(kips) 

Stress (psi) % from Mean 

1 126.5 10065 8.7 

2 119.1 9475 3.0 

3 101.2 8056 -14.0 

4 130.6 10388 11.6 

5 104.4 8307 -10.6 

6 111.0 8835 -4.0 

Mean 115 9188 - 

The test results are summarized in Figures A13-A16. The first cracking load occurred at 

approximately 175 kips (Figure A13); flexural cracks appeared at approximately 200 kips (Figure 

A14); and failure occurred at approximately 267 kips (Figures A15 and A16). 
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Girder 2-Test 3 

For Test 3, the girder was supported and loaded as shown in Figure 2.12, and three concrete 

cylinders were tested on test day, with results shown in Table 2.7. 

 

Figure 2.12. Girder 2-Test 3 configuration (dimensions in inches) 

 

Table 2.7. Girder 2-Test 3 cylinder compressive strength tests 

Cylinder Failure 

Load 

(kips) 

Stress (psi) % from Mean 

1 126.6 10074 8.6 

2 112.1 8921 -3.3 

3 108.6 8639 -6.6 

Mean 116.8 9211 - 

The test results are summarized in Figures A17 and A18.  The first cracking load occurred at 

approximately 220 kips.  For safety concerns, the test was stopped near impending failure at 273 

kips. A summary of all test results and the code-predicted capacity is given in Table 2.8.  Note for 

the LRFD Code computation, the test failure load is taken as Vu.  However, for comparison to the 

test girders, it was found that more accurate results can be obtained with the method by iterating 

until Vn=Vu. An example using this iterative method is provided in Appendix E. 

Table 2.8. Summary of test results 

 Test S (in) a/d f'c (ksi) Failure Load 

(kips) 

Standard 

Code 

1979 

Interim 

LRFD 

Code 
Girder 1 1 8.0 2.8 7.5 299 167 154 147 

 2 8.0 3.4 7.8 262 168 157 148 

 3 21.0 3.4 8.6 356 141 112 105 

Girder 2 1 21.0 2.0 9.2 294 143 117 108 

 2 21.0 2.8 9.2 271 143 117 108 

 3 21.0 3.5 9.2 273 143 117 108 

102 

Hooks 
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CHAPTER 3: FINITE ELEMENT MODELING OF SHEAR FAILURE 

3.1 Methodology 

In order to develop and test a tool that can accurately predict the shear capacity of pre-

stressed concrete beams, a numerical model that is constructed based on reliable and precise 

experimental parameters was required.  In this chapter, the development and validation of a FEA 

model to predict the shear capacity of prestressed concrete bridge girders are presented. Validation 

of the FEA model was achieved by comparing numerical results to the experimental results 

presented in Chapter 2, as well as a collection of independent beam tests documented in the 

technical literature. In this study, VecTor2 (Wong et al., 2013) FEA code was considered for 

modeling and computing the shear capacity of prestressed concrete girders presented in Chapter 

2. This FEA code has been developed at the University of Toronto by researchers studying 

reinforced concrete behavior and applications of the finite element method. VecTor2 is a program 

based on the Modified Compression Field Theory (MCFT) (Vecchio and Collins, 1986) and the 

Disturbed Stress Field Model (DSFM) (Vecchio, 2000) for nonlinear finite element analysis of 

two-dimensional reinforced concrete membrane structures.  Using VecTor2, finite element models 

with fine mesh can be constructed.  The cracked concrete behavior can be modeled by VecTor2 as 

an orthotropic material with smeared rotating cracks.  This methodology is applicable for 

reinforced and prestressed concrete structures that require a relatively fine mesh to model 

reinforcement details and local crack patterns. 

3.1.1 Modified Compression Field Theory and Disturbed Stress Field Model: 

The MCFT is an analytical model for predicting the load-deformation response of 

reinforced concrete membrane elements subjected to shear and normal stresses shown in Figure 

3.1. 
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Figure 3.1. Reinforced concrete membrane element subject to in-plane stresses (Wong et al., 

2013) 

Using the MCFT, average and local strains and stresses of concrete and reinforcement, and 

the widths and orientation of cracks throughout the load-deformation response of the element are 

determined.  Based on history of stresses, strains, and cracks, the failure mode of the element can 

be determined (Wong and Vecchio 2002). 

The DSFM is conceptually similar to the MCFT, but extends the MCFT in several respects. 

Most importantly, the DSFM addresses systematic deficiencies of the MCFT in predicting the 

response of certain structures and loading scenarios.  In lightly reinforced elements, where crack 

shear slip is significant, the rotation of the principal stress field tends to lag the greater rotation of 

the principal strain field.  For such elements, the shear stiffness and strength is generally 

overestimated by the MCFT, which assumes the rotations are equal.  Conversely, in elements that 

exhibit limited rotation of the principal stress and strain fields, the MCFT generally underestimates 

the shear stiffness and strength, partly because the concrete compression response calibrated for 

the MCFT is overly softened for the effect of principal tensile strains. The DSFM enhances the 

compatibility relationships of the MCFT to include crack shear slip deformations. The strains due 

to these deformations are distinguished from the strains of the concrete continuum due to stress. 
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As such, the DSFM unlocks the orientation of the principal stress field from that of the principal 

strain field, resulting in a smeared delayed rotating-crack model.  Moreover, by explicitly 

calculating crack slip deformations, the DSFM eliminates the crack shear check as required by the 

MCFT (Wong and Vecchio 2002). 

3.1.2 Material Models 

The concrete model uses Hognestad's parabola for compressive pre-peak behavior, and 

modified Park-Kent relationship for post-peak as shown in Figure 3.2.  Compression softening is 

governed by Vecchio's e1/e2-Form approach (Vecchio and Collins 1993) and a modified Bentz 

model for tension stiffening (Bentz 2000).  Linear tension softening is assumed, while confined 

strength is described by Kupfer/Richart (Kupfer et al. 1969) and dilation by the variable Kupfer 

model (Kupfer and Gerstle 1973).  Mohr-Coulomb failure criteria is used to determine cracking 

stress, with stress calculated from DSFM/MCFT.  The crack slip calculation is according to the 

Walraven (monotonic) approach (Walraven 1981), while the crack width check is the Agg/2.5 Max 

Crack Width method, which reduces average compressive stresses when crack widths exceed a 

specified limit, and is useful for beams with minimal shear reinforcement (Vecchio, 2000).  

Concrete bond is given by Eligenhausen et al. (1983).  Additional details can be found in Wong 

and Vecchio (2002). 

 

Figure 3.2. Hognestad parabolic pre-and post- peak concrete compression response (Wong et al., 

2013) 
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The reinforcement steel constitutive models are illustrated in Figures 3.3 and 3.4.  In the 

figures, ε
s 
is the reinforcement strain, ε

y 
is the yield strain, ε

sh 
is the strain at the onset of strain 

hardening, ε
u 
is the ultimate strain, E

s 
is the elastic modulus, E

sh 
is the strain hardening modulus, f

y 

is the yield strength, and f
u 

is the ultimate strength, where: 

 𝜀𝑢 = 𝜀𝑠ℎ +  
(𝑓𝑢−𝑓𝑦)

𝐸𝑠ℎ
                                                                                                                                           (3.1) 

 

Figure 3.3. Ductile steel reinforcement stress-strain response (Wong et al., 2013) 

 

Figure 3.4. Prestressing steel reinforcement stress-strain response (Wong et al., 2013) 
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3.2 Verification Cases 

The objective of these verification cases is to investigate the accuracy of VecTor2 in 

predicting the deformation and shear capacity of prestressed concrete beams. 

3.2.1 Verification Data Set 1: Saqan and Frosch Tests 

Very few prestressed beam shear tests were documented with sufficient detail that allows 

for model verification.  One of the suitable sources describes a series of tests on prestressed 

concrete beams conducted and documented by Saqan and Frosch (2009).  Three beam tests from 

the selected study were used for model verification; one beam included prestressed strands only, 

whereas the other two beams included prestressed strands and mild steel reinforcement. Beams, 

dimensions, and reinforcement details are summarized in Table 3.1 and Figure 3.5. Reinforcement 

consisted of ASTM A416, 1/2 in. (12 mm) dia., seven-wire, Grade 270, low-relaxation prestressing 

strands and ASTM A615, Grade 60 reinforcing bars, and with no transverse reinforcement.  

Concrete had compressive strength values of 7550-7750 psi (52.1-53.4 MPa).  Cement was 

specified as ASTM C150, Type I, with a coarse aggregate maximum-size of 3/4 in. (20 mm).  The 

effective prestress force applied to each beam was 480 kN (108 kips). 

Table 3.1. Specimens Details (Saqan and Frosch, 2009) 

  

Mild 

reinforcement    

Beam ID 

(#) Prestressed 

Strands (1/2 in.) Bars Area, 𝑖𝑛.2   

Width, 

in. 

Effective depth 

of strands, 

𝑑𝑝, 𝑖𝑛. 

Effective 

depth of bars, 

d, in. 

V-4-0 4 - 0 14.25 24 - 

V-4-0.93 4 3 No.5 0.93 14.5 24 26.4 

V-4-2.37 4 3 No.8 2.37 14.68 24 26.4 
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Figure 3.5. Beams cross section details (Saqan and Frosch, 2009) 

The experimental test consisted of a simply supported beam with a concentrated load 

applied at mid-span. The beam span, loading and boundary conditions are the same for the three 

tests, shown in Figure 3.6. 

 

Figure 3.6. Test setup (Saqan and Frosch, 2009) 

Since both, the beam loading and the boundary conditions, are symmetrical about mid-

span, only half of each beam was modeled using VecTor2. The node at the support (left side) was 

restrained against the displacement in the transverse direction (Y direction) while the nodes at the 

mid span (right side) were restrained against the displacement in the longitudinal direction (X 

direction) as shown in Figure 3.7. Additional information on the FEA model materials and mesh 

details used for this verification set are presented in Appendix B. 
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Figure 3.7. Boundary and loading conditions of the FEA model (beam V-4-0.93) 

A monotonic concentrated load of 2.25 kips (10 kN) was applied at the mid-span top node 

(Figure 3.7) in the negative Y direction.  The load was increased monotonically at a rate of 2.25 

kips/step until the failure point was reached, as shown in Figures 3.8-3.10.  

 

Figure 3.8. FEA model of beam V-4-0 at failure  
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Figure 3.9. FEA model of beam V-4-0.93 at failure  

 

Figure 3.10. FEA model of beam V-4-2.37 at failure  

Plots of the applied load vs. deflection at mid span of the experimental and the FEA models 

are presented in Figure 3.11, and a numerical summary is presented in Table 3.2.    
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Figure 3.11. FEA vs. experimental results (Saqan and Frosch, 2009) 

Table 3.2. Summary of FEA and Experimental Results 

Beam # FEA (kips) Exp. (kips) FEA/Exp. 

V-4-0 103 110 0.94 

V-4-0.93 126 150 0.84 

V-4-2.37 144 165 0.87 
 

As shown in the Figure 3.11, excellent results have been obtained for each of the three 

beam tests using the FEA models, with very close response throughout the load-deflection profile, 

as well as the ultimate capacity. The FEA model successfully predicted the ultimate capacity of 

the three tested beams with an average of 88% out of the actual capacity, with lowest accuracy of 

84% and 87% for Beams V-4-0.93 and V-4-2.37, respectively. Since no transverse reinforcement 

was considered, such differences in the results are expected. Hence, for the beams modeled for 

this study, VecTor2 proved to be a reliable tool in predicting the failure behavior and the ultimate 

shear capacity of the pre-stressed concrete beams tested by Saqan and Frosch. 
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3.2.2 Verification Data Set 2: Lin et al. Tests 

In the study conducted by Lin et al. (2012), 18 “T” shape prestressed concrete beams were 

tested in shear. Four beams out of the 18 were selected for FEA modeling using Vector2.  The four 

selected beams were 400 mm (31 in.) deep, and contained mild and prestressed steel reinforcement, 

as shown in Figure 3.12. Concrete strength, prestressed force, and stirrups spacing of the four 

selected beams are shown in Table 3.3. 

 

Figure 3.12. Beam cross section dimensions (mm); 1 in=25.4 mm (Lin et al., 2012) 

Table 3.3. Beam Properties 

   
 

For each beam, a clear span length of 3800 mm (12’-6”) was symmetrically loaded at two 

points as shown in Figure 3.13. The effective depth for all the beams was 275 mm (11 in.). 

 

 

Beam f'c Pe Concrete Stress a/d S

# (Mpa) (kN) (Mpa)  (mm)

NC6 41.9 206 2.15 3.5 -

NC7 42.8 206.2 2.15 2.5 200

NC8 41.3 201.8 2.10 2.5 250

NC9 41.1 205.3 2.14 2.5 300
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Figure 3.13. Test and FEA model setups (mm); 1 in=25.4 mm (Lin et al., 2012) 

The four FEA models had a concrete strength of 41.1- 42.8 MPa (6000-6200 ksi) and a 

maximum aggregate size of 19 mm (¾ in.). Longitudinal reinforcement consisted of two 15 mm 

(0.6 in.) prestressed strands and five 19 mm (0.75 in.) mild steel bars. An average prestress force 

of 102.4 kN (23 kips) was applied to each strand. Transverse reinforcement consisted of 10 mm 

(0.39 in.) double leg mild steel stirrups spaced at 200-300 mm (8-12 in.). In this group, only beam 

NC6 did not contain transverse reinforcement. The yield strength, ultimate strength, and modulus 

of elasticity are taken as 409 MPa (60 ksi), 620 MPa (90 ksi) and 2105 MPa (30500 ksi) for the 

mild steel and as 1230 MPa (178 ksi), 196500 MPa (28500 ksi), and 200000 MPa (29000 ksi) for 

the prestressed strands, respectively. The FEA modeling technique used in the first verification set 

was used for modeling the beams for this study. The four beam models failed mainly in shear, and 

the failure shapes are shown in Figure 3.14.  

 

 

FEA Model 

3800 mm (12.5 ft) 

Spreader beam 

Load 

LVDT 

 

200 mm 200 mm a a 
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Figure 3.14. FEA models at failure 

A comparison between the actual and FEA results of beam NC6 failure mode is shown if 

Figure 3.15. The comparison shows a very good agreement with regards to cracks propagation and 

failure mode. 

 

Figure 3.15. Comparison between experimental and FEA failure shapes for beam NC6 (Lin et 

al., 2012) 
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Overall, shear failure loads of the FEA and experimental results (FEA/Exp.) showed an 

excellent agreement with a mean value of 0.95 and a coefficient of variation (COV) of 0.036, as 

shown in Table 3.4. Based on results of this verification set, the developed FEA model showed to 

be consistent and conservative in predicting the shear capacity of T-shaped, prestressed concrete 

beams within an average of -5% of the actual tested capacity.  

Table 3.4. Comparisons between FEA and experimental results 

 

 

 

 

 

 

 

 

 

 

Beam Shear Failure Load (kN)

# FEA Exp. FEA/Exp.

NC6 165 180 0.92

NC7 340 368 0.92

NC8 320 324 0.99

NC9 295 307 0.96

Mean 0.95

COV 0.036



80 
 

 
 

3.2.3 Verification Data Set 3: Girder Lab Testing 

Finite element models were developed and compared to the results of the two girder tests 

discussed in Chapter 2.  For these FEA analyses two 36 feet long AASHTO Type II girders were 

considered for testing under various load configurations.  Three tests were performed on each 

girder considering three different loadings (P1, P2 and P3) and three different simple span lengths.  

The three test setups (similar for both beams) are shown in Figure 3.16 with an illustration of the 

FEA model for Girder 1-Test 1.  

 

Figure 3.16. Finite element model set up 
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In Test 1, only the left portion of the full girder (between supports A and C) was modeled. 

The boundary conditions were modeled as a roller at support A, and as a pin at support C.  No 

clamps were applied to the FEA model.  Instead, the transverse reinforcement at the clamped 

section (Figure 3.16) was increased (approximately 3 times) to prevent any cracking along that 

section.  Due to the elements limitation (6000 elements) in the current available version of Vector2 

preprocessor (FormWorks, version 3.5), a fine mesh (1 𝑖𝑛2) was considered only at the section of 

interest where the critical shear cracks are most likely to occur.  A monotonic concentrated load 

of 5 kN (1.1 kips) was applied along 6 inches at the P1 location (Figure 3.17) in the negative Y 

direction.  The 5 kN was divided along the 6 inch length over7 nodes.  The load was divided as 

follows: 2 kN (~0.5 kip) at the center node and 0.5 kN (~0.1 kip) at each of the other 6 nodes. The 

load was increased monotonically at a rate of 20 kN (5.5 kips)/step until the failure point was 

reached (the same loading scenario was used for the other two tests).   

After running the analysis for the first time, the left face of the girder cracked immediately 

at the beginning of the analysis as shown in Figure 3.17(a). These cracks occurred as a result of 

the prestrain of the longitudinal reinforcement at that location. Hence, the prestress force was 

applied as prestrain to the longitudinal reinforcement. In order to prevent the left face from 

cracking, a coarse mesh with a greater concrete strength was applied at that section (beyond 

support). Increasing the element size at the left side of the beam greatly reduced the cracking, and 

resolved this issue, as shown in Figure 3.17(b). 
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Figure 3.17. Girder 1-FEA 1 results: (a) fine mesh at the left face (b) coarse mesh at the left face 

(c) deformation shape at failure. 

In Test 2, only the right span of the full girder (between supports B and D) was modeled 

as shown in Figure 3.18. The boundary conditions consisted of a pin at support B (left) and a roller 

at support D (right). The transverse reinforcement at the clamped section (Figure 3.16) was 

increased (approximately 3 times) to prevent any cracking along that section.   

 

Figure 3.18. Girder 1-FEA 2 results: (a) Beam at rest (b) Deformation shape at failure 
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In Test 3, the portion of the girder between supports B and C was considered for analysis.  

After running the analysis and prior to failure, large horizontal cracks propagated around and above 

the right support location.  These cracks greatly reduced the capacity of the girder as shown in 

Figure 3.19.   

 

Figure 3.19. Girder 1-FEA 3 beam at failure at 279.9 kips 

Based on the failure mode in Test 3, a modified cross section for the Type II girder was 

modeled.  The purpose of this modification was to minimize the propagation of longitudinal cracks 

caused by the prestress force at the sloped areas of the girder.  In the modefied model, the sloped 

cross sectional area of the web was distributed along the height of the web, resulting in a wider 

web section compared to the original model, as shown in Figure 3.20.  The results of the new 

model showed a better agreement with the experimental results. 

 

Figure 3.20. Girder Type II dimensions modification 
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FEA results for the modified beam section produced a better shear failure capacity 

prediction compared to the experimental results.  Shear failure behaviors for the modified model 

for Girder 1 are shown in Figure 3.21. 

 

Figure 3.21. Girder 1 modified FEA models at failure 

Using the same FEA technique developed, three tests for Girder 2 were conducted. Model 

details and results of the FEA models for both girders are given in Appendix B, and the results of 

the 6 tests are summarized in Table 3.5 and Figures 3.22 and 3.23. 
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Table 3.5. Summary of FEA model/experimental results 

 
S=shear failure; S-C= shear-compression failure; Stopped=test was stopped once a significant crack occurred 

 

 

Figure 3.22. Comparison of load versus deflection results for Girder 1 

 

Failure Load (kips)

Girder ID Test f'c (ksi) Stress (ksi) Height (in) S (in) a/d Original FEA Modified FEA Exp. % (O/E) % (M/E) Failure Mode

1 1 7.5 1.39 36 8.0 2.8 265.3 266.4 298.9 -12.7 -12.2 S-C

1 1 9.2 1.39 36 8.0 2.8 277.6 278.8 298.9 -7.7 -7.2 S-C

1 2 7.8 1.39 36 8.0 3.4 239.4 239.4 262.4 -9.6 -9.6 S-C

1 2 9.5 1.39 36 8.0 3.4 245.1 243.9 262.4 -7.1 -7.6 S-C

1 3 8.6 1.39 36 21.0 3.4 279.9 337.2 355.7 -27.1 -5.5 S

1 3 10 1.39 36 21.0 3.4 299.0 352.9 355.7 -19.0 -0.8 S

2 1 9.2 1.01 36 21.0 2.0 223.7 260.8 294.0 -31.4 -12.7 S-C (stopped)

2 2 9.2 1.01 36 21.0 2.8 179.8 213.6 271.0 -50.7 -26.9 S

2 3 9.2 1.01 36 21.0 3.5 239.4 275.4 273.0 -14.0 0.9 S-C (stopped)

Mean -19.9 -9.1
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Figure 3.23. Comparison of load versus deflection results for Girder 2 
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3.3 Parametric Analysis 

 FEA Models Considered 

A large collection of girder models were analyzed using the developed FEA technique in Sec. 

3.2 to calculate the shear capacity ratio (VFEA/Vcode), where VFEA is the FEA ultimate load to cause 

shear failure and Vcode is the calculated shear capacity using the LRFD General Method. The 

analyses consisted of 324 prestressed concrete FEA models with different variables and loading 

locations. A simple span length of 20 ft under point load was considered for all the models. The 

selection of parameters considered is given in Table 3.6. 

Table 3.6. FEA Model Parameters 

Parameter Values 

Girder Type II, III, IV 

Load Position h/2, LRFD, Worst position 

Strand Geometry Straight, Harped 

Concrete Strength 5.5 ksi, 8.0 ksi 

Section Axial Stress 0.5 ksi, 1.5 ksi, 2.5 ksi 

Stirrup Spacing 3”, 12”, 24” 

Long. Steel Reinf. Ratio Tension control limit, 0.01 

In the table, Girder Type refers to AASHTO Types II, III, and IV, respectively.  Load position 

refers to the location from the support where a single point load was applied and increased until 

shear failure; “LRFD” refers to the critical section as specified by the AASHTO LRFD Sectional 

Method, while the “Worst position” is the position of the load which produces the smallest capacity 

from the FEA model, which was generally found to be near L/4 for the models considered (note 

that this position depends on the span/depth ratio of the girder, and is valid only for the girder 

depths and span length considered for this parametric analysis). The sectional axial stress is found 

by taking the total prestress force applied to the girder and dividing by the gross cross-sectional 
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area.  Moreover, it was found that the LFRD approach becomes generally less conservative as the 

(longitudinal) reinforcement ratio increases. Two cases of relatively large reinforcement ratios 

were analyzed. The first case used a reinforcement ratio equal to the tension controlled limit, which 

was thought to be a reasonable upper limit used for most designs.  The second case used a 

reinforcement ratio equal to 0.01, which is beyond the LRFD-specified tension controlled limit for 

the beams considered. The FEA models dimensions were modified from the original dimensions 

as shown in Figures 3.24-3.26. This modification was done by subtracting the triangular areas from 

the original cross section, and dividing them along the web height. A wider web resulted, but by 

keeping the same original cross sectional area. 

 

 

Figure 3.24. Girder Type II dimensions 

 

Beam Type II 

                  

  

3
’-
0
” 

1’-0” 

7.86” 

1’-6” 
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Dimensions 

Original Beam 

Dimensions 
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Figure 3.25. Girder Type III dimensions 

 

Figure 3.26. Girder Type IV dimensions 
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Specific parameter combinations considered are summarized in Appendix C, Tables C1 and 

C2, and results are presented in Tables C34-C180. FEA cases that produced the smallest shear 

capacities (L/4) were considered for regression analysis in Chapter 5. These results were the closest 

to the code predictions, and are considered to be the most conservative between all the cases. Thus, 

a total of 216 FEA model cases were used to develop the regression equations in chapter 5.  
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CHAPTER 4: RELIABILITY ANALYSIS 

4.1 Methodology 

In structural engineering, reliability analysis is necessary to establish accepted safety levels 

for various design cases covered by a code.  These safety levels are usually expressed in terms of 

target reliability indexes which serve as a basis for development of design criteria (load and 

resistance factors). Reliability methods such as the first and second order reliability methods 

(FORM, SORM) are common choices for reliability analysis. The selection of target indexes is a 

multidisciplinary task that involves structural safety and economic analyses. In general, reliability 

indexes below the target value,  𝛽𝑇, are not accepted, except for some special cases to maintain the 

simplicity of the format.  On the other hand, reliability indexes higher than 𝛽𝑇 are practically 

inevitable.  For example, a beam designed for flexure may have an index 𝛽 for shear much larger 

than the target reliability index for shear.  In the development of a new code, it is convenient to 

compare the new provisions to the old code.  Selection of target reliability indices can be based on 

the indices for current codes, evaluation of performance of existing structures, experimental 

testing, and engineering judgment as described in Nowak et al. (2000). 

One of the first steps in reliability analysis is to identify a limit state function which describes 

the boundaries between survival and failure. There are two major categories of limit states: 

ultimate limit states and serviceability limit states. Ultimate limit states (ULSs) are used to evaluate 

load carrying capacity, while serviceability limit state are mainly used to evaluate the serviceability 

of a structure, such as, deflection, deformation, cracking, etc.  

When considering ULS, for example, a beam fails if the shear due to loads exceeds the shear 

capacity of the beam. Let R represent the resistance (shear capacity) and 𝑄 represent the load 

effect (total shear applied to the considered beam). Then the corresponding limit state function 
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(𝑔) can be written as:  

𝑔 = 𝑅 − 𝑄.  If 𝑔 > 0, the structure is safe, otherwise it fails. The probability of failure (𝑃𝐹) is 

equal to: 

𝑃𝐹 = 𝑃(𝑅 − 𝑄 < 0) = 𝑃(𝑔 < 0)                                                                                                          (4.1) 

Let the probability density function (PDF) of R be 𝑓𝑅 and PDF of Q be 𝑓𝑄, then let 𝑍 = 𝑅 −

𝑄, where Z is a random variable that represents the safety margin, as shown in Figure 4.1. 

 

Figure 4.1. PDFs of resistance, load and safety margin (NCHRP 368) 

4.2 Code Calibration 

Code calibration is a process used to develop reliability-based design codes in the civil 

engineering field.  The major steps in calibrating a code are as follows: 

1- A variety of hypothetical structures based on the existing code procedures are designed, and 

reliability indices of these structures are calculated. 

2- After the range of reliability is identified, an “average” reliability index is chosen within the 

range that is assumed to be adequate.  This “average” is often taken as the reliability index of 

the most typical design.  Here it is assumed that the most typical structure designed by current 

code procedures has a level of safety that is adequate. 
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3- By adjusting safety factors for the various kinds of loads (load factors), materials and failure 

mode types (resistance factors), as well as potential other aspects of the design procedure, the 

standard is adjusted such that a uniform level of reliability is provided for all designs.   

An example of a previous code calibration is presented in Figure 4.2. 

 

Figure 4.2. Reliability indices for LRFD code, simple span shears in prestressed concrete girders 

(NCHRP 368) 

4.3 Reliability Analysis Methods 

4.3.1 First Order Second Moment Methods (FOSM) 

Such methods consider only linear limit state functions or linear approximations of them, 

where the first two moments of a random variable, the mean and the standard deviation, are 

considered. The third and fourth moments, skewness and kurtosis, are often unavailable and thus 

rarely used.  

4.3.2 Rackwitz-Fiessler Procedure 

The Rackwitz-Fiessler (RF) Procedure (Rackwitz and Fiessler 1978) is an iterative procedure 

used to calculate a reliability index that can account for the distributions of random variables by 

computing “equivalent normal” random variables from non-normal distributions evaluated at the 
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design point. Linear formulations of the limit state function can be computed using the following 

steps: 

1- A design point 𝑅∗ = 𝑄∗ that is between the mean values of R and Q is first assumed. 

2- A cumulative distribution function (𝐹𝑥(𝑋
∗)) and a PDF (𝑓𝑥  (𝑋

∗ )) of X is calculated at 𝑋∗, 

where 𝑋∗ is 𝑄∗  or 𝑅∗. 

3- The mean (�̅�) and standard deviation (𝜎𝑥) values of the approximating normal distributions of 

Q and R are calculated as follows: 

�̅� = 𝑋∗ − 𝜎𝑥[𝛷
−1(𝐹𝑥(𝑋

∗))]                                                                                                      (4.2)                         

𝜎𝑥 =
𝜙[𝛷−1 (𝐹𝑥 (𝑋

∗ ))]

𝑓𝑥  (𝑋∗ )
                                                                                                            (4.3) 

4- Reliability index is computed: 

𝛽 =
�̅� − �̅�

√𝜎𝑅
2 + 𝜎𝑄

2
                                                                                                                         (4.4) 

5- A new design point 𝑋∗ = 𝑅∗ = 𝑄∗ is calculated: 

 𝑋∗ = �̅� −
𝛽 𝜎𝑥

2

√𝜎𝑅
2 + 𝜎𝑄

2
                                                                                                              (4.5) 

6- Steps 2-5 are repeated until the reliability index converges. 

 

4.4 Design Loads 

In this research, the procedure used to determine girder reliability in shear is as follows: 

1- Girders are designed for shear in accordance to the LRFD Code Sectional Method (AASHTO 

LRFD 2014), considering the ultimate shear capacity limit state. Since the focus of this study is 

on the shear limit state only, other design limit states are ignored. Note, however, that neither 
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moment nor deflection will govern design at the shear critical section considered in this study 

(between 3 ft to 5 ft from the left support). The 2014 LRFD AASHTO Code strength I limit state 

is defined by the following expression: 

𝜙𝑅𝑛 ≥ 1.25(𝐷𝐶) + 1.5(𝐷𝑊) + 1.75(𝐷𝐹)(𝐿𝐿 + 𝐼𝑀)                                                                 (4.6)  

Here, DC and DW are the dead load of structural components and nonstructural attachments, 

and the dead load of wearing surfaces and utilities, respectively. LL and IM are the vehicular live 

load and vehicular dynamic load allowance, respectively, while DF is the girder distribution factor. 

Details of the dead and live loads considered for design in this study are shown in Appendix G. 

For shear, the resistance factor for prestressed concrete girders (𝜙) is taken as 0.9. Live load is 

taken as the HL-93 Design Load, which is equivalent to the HS20 Design truck as shown in Figure 

4.3, with an additional 0.64 kip/ft uniformly distributed load along the span of the bridge. Axle 

loads of the design truck are multiplied by an impact factor of 1.33 to account for the dynamic 

(impact) load.  

 

Figure 4.3. Characteristics of the HS20 design truck (AASHTO LRFD 2014) 

 

The girder distribution factors for shear force (DFV) are taken as:  

For one design lane loaded: 

𝐷𝐹𝑉 = 0.36 +
𝑆

25
                                                                                                                       (4.7) 
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For two or more lanes loaded: 

𝐷𝐹𝑉 = 0.2 + (
𝑆

12
) − (

𝑆

35
)
2

                                                                                                    (4.8) 

While the girder distribution factors for moment force (DFM) are taken as: 

For one design lane loaded: 

𝐷𝐹𝑀 = 0.06 + (
𝑆

14
)
0.4

(
𝑆

𝐿
)

0.3

(
𝐾𝑔

12𝐿𝑡𝑠
3)

0.1                                                                            (4.9) 

For two or more lanes loaded: 

𝐷𝐹𝑀 = 0.075 + (
𝑆

9.5
)
0.6

(
𝑆

𝐿
)
0.2

(
𝐾𝑔

12𝐿𝑡𝑠
3)

0.1                                                                      (4.10) 

Where, 

DFM= distribution factor for moment for interior beam 

S= girder spacing, ft 

L= girder span, ft 

𝑡𝑠 = depth of concrete slab, in.  

𝐾𝑔 = longitudinal stiffness parameter = 𝑛(𝐼 + 𝐴 𝑒𝑔
2) , in.4 

𝐴 = cross sectional area of the girder (noncomposite section) , in.2 

I = moment of inertia of the girder (noncomposite section) , in.4 

𝑛 =
𝐸𝑐𝑖(𝑏𝑒𝑎𝑚)

𝐸𝑐𝑖(𝑠𝑙𝑎𝑏)
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𝑒𝑔 = distance between the centers of gravity of the girder and slab (in)  

In all the design cases considered for this study, it was found that the GDFs for two or more 

lanes governed for both shear and moment.         

2- Mean girder shear resistance (R) is calculated using Eq. 13 (Sec. 4.5), considering 13 different 

random variables. The random resistance parameters are given in Table 4.2. 

3- Total shear load effect (Q) is determined by summing the individual load effects: 

𝑄 = 𝑄𝐷𝐿 + 𝑄𝐿𝐿 = (𝑄𝑔 + 𝑄𝑠 + 𝑄𝑏 + 𝑄𝑤𝑠) + 𝑄𝐻𝐿93 + 𝑄𝐼𝐿                                                                     (4.11)  

Where dead loads (𝑄𝐷𝐿):  𝑄𝑔, 𝑄𝑠, 𝑄𝑏 , 𝑄𝑤𝑠 are due to girder, slab, barrier and wearing surface, 

respectively. While live loads (𝑄𝐿𝐿), are due to the HL-93 design load (𝑄𝐻𝐿93) and impact live 

load (𝑄𝐼𝐿). The mean value of the total (nominal) load effect is determined by multiplying each 

load component by the appropriate bias factor as follows: 

𝑚𝑄𝐷𝐿 + 𝑚𝑄𝐿𝐿 = [(𝑄𝑔)( 𝜆1) + (𝑄𝑠 + 𝑄𝑏)( 𝜆2) + 𝑄𝑤𝑠( 𝜆3)] + [(𝑄𝐻𝐿93 + 𝑄𝐼𝐿)( 𝜆4)]      (4.4.7) 

Here, the bias factors  𝜆1, 𝜆2,  𝜆3, 𝜆4 are the appropriate bias factors, shown in Table 4.3. 

4- Standard deviation (𝜎𝑥) of each load effect is determined by simply multiplying the mean value 

by the appropriate coefficient of variation (COV). COVs for load effect are shown in Table 4.3. 

5- Reliability index is calculated using the Rackwitz-Fiessler Procedure described above, where 

resistance parameters and total load effect are taken as normal variables. 

4.5 Design Cases 

75 prestressed concrete AASHTO bridge girders were considered for shear design in 

accordance to the current LRFD General Method. AASHTO girder Types II, III and IV were 
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considered for design with five different span lengths of 30, 60, 90, 120 and 200 ft, and five 

different beam spacings of 4, 6, 8, 10 and 12 ft per span length. Span length and girder spacing 

combinations presented in the NCHRP 368 report are considered for design and reliability analysis 

in this study, as shown in Table 4.1.   

Table 4.1. Bridge girder cases considered 

Comb. # Span (ft) Spacing (ft) 

1 30 4 
2 30 6 

3 30 8 

4 30 10 

5 30 12 

6 60 4 
7 60 6 

8 60 8 

9 60 10 

10 60 12 

11 90 4 
12 90 6 

13 90 8 

14 90 10 

15 90 12 

16 120 4 
17 120 6 

18 120 8 

19 120 10 

20 120 12 

21 200 4 
22 200 6 

23 200 8 

24 200 10 

25 200 12 

In this study, reliability indices for the cases presented in the NCHRP 368 report (discussed 

in sec. 1.3.9) were computed using the RF procedure. This practically resulted in different bias 

factors and COVs for resistance parameters used in calculating the design shear capacity. This 

approach was not considered in the NCHRP 368, where the resistance model had one constant bias 

factor and one COV for all cases. Such simplification does not capture the differences in resistance 

parameters from one beam design to another. Where no clear steps are provided in the NCHRP 
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368 report on how the mean load and mean resistance values were computed, an example with 

calculations for a 90 ft span girder is presented in Appendix F. Resistance random variables 

considered in this study are shown in Table 4.2. 

Table 4.2. Parameters of resistance model 

RV Bias Factor COV 

𝑓′𝑐 1.38 0.120 

𝑏𝑣 1.01 0.040 

𝑑𝑒 1.00 0.025 

𝐴𝑣 1.00 0.015 

𝑓𝑦 1.145 0.050 

𝑠 1.00 0.040 

𝑓𝑝𝑢 1.04 0.025 

𝐸𝑝𝑠 1.00 0.010 

𝐴𝑝𝑠 1.00 0.015 

𝑏𝑒 1.00 0.040 

ℎ 1.00 0.030 

𝑡𝑠 1.01 0.120 

𝑓′𝑐𝑠 1.38 0.120 

In Table 4.2, 𝑓′𝑐 is the concrete compressive strength at 28 days, 𝑏𝑣  is the web thickness, 𝑑𝑒 

is the effective depth, 𝐴𝑣 is the area of stirrups, 𝑓𝑦 is the yield strength of transverse steel, 𝑠 is the 

stirrup spacing, 𝑓𝑝𝑢 is the ultimate strength of the prestressed strands, 𝐸𝑝𝑠 is the modulus of 

elasticity of the prestressed strands, 𝐴𝑝𝑠 is the area of the prestressed strands, 𝑏𝑒 is the effective 

flange width, ℎ is the height of the composite section, 𝑡𝑠 is the slab thickness, and 𝑓′𝑐𝑠 is the 

concrete compressive strength of the slab. The statistical parameters for these RVs are taken as 

those used to calibrate the ACI 318 code for pre-tensioned, plant-cast PC beams, where 

distributions are reported as normal (Nowak, and Szerszen, 2003). In addition, a professional factor 

with a COV of 0.1 was applied to the resistance component in the reliability analysis (NCHRP 

368). The professional factor is used to account for uncertainties in the ordinarily conservative 
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analysis models used to establish member strength. For example, assumptions that concrete 

crushes at a strain of 0.003, and that steel is elasto-plastic, etc (ACI 318-11). 

For the load model, the same bias factors and COVs presented in NCHRP 368 were used in 

analysis, except for the shear live load (𝑉𝐿𝐿) bias factor (ratio of actual shear to AASHTO LRFD 

HL-93 design shear), which was taken as 1.0 (1.1 in the NCHRP 368). This bias factor was taken 

as 1.0 based on the recommended value for code calibration presented in the RC-1601 report 

(Eamon et al. 2014). Load bias factors and COVs considered in this study are shown in Table 4.3, 

where 𝑉𝑔, 𝑉𝑠, 𝑉𝑏, 𝑉𝑤𝑠, 𝑉𝐿𝐿 are loads due to girder self-weight, slab, barrier, wearing surface, and 

total live load effect (including impact), respectively.  

Table 4.3. Parameters of load model 

RV Bias Factor COV 

 𝑉𝑔 ( 𝑄𝑔 ) 1.03 0.08 

 𝑉𝑠 (𝑄𝑠) 1.05 0.10 

 𝑉𝑏 (𝑄𝑠) 1.05 0.10 

 𝑉𝑤𝑠 (𝑄𝑠) 1.00 0.25 

 𝑉𝐿𝐿 (𝑄𝑠) 1.00 0.18 

Reliability indices (𝛽) of the shear capacity of AASHTO bridge girder Types II, III, and IV 

were determined from the General LRFD Method and computed using the Rackwitz-Fiessler 

Procedure described above. A RF algorithm implemented in FORTRAN was used to conduct that 

reliability analysis in this study. The algorithm used is provided in Appendix I, and a design 

example using the LRFD General Method for a typical PC bridge girder is presented in Appendix 

D. 

Reliability indices were computed using two versions of Resistance calculation, the Original 

Resistance and Iterative Resistance. In the Original Resistance, the mean shear load value (𝑉𝑢) 
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used in design was considered for reliability analysis, while in the Iterative Resistance, 𝑉𝑢 was 

iteratively changed until 𝑉𝑢 = 𝑉𝑛, where 𝑉𝑛 is the nominal shear capacity of the PC girder at the 

critical section. This proposed change in computing the nominal resistance was found to produce 

closer values to actual capacity, based on the FEA and experimental results presented in Chapter 

3. 

This change in  𝑉𝑢 mainly affected the calculation of ℇ𝑠 , as shown in the design process below: 

𝑉𝑢 = [1.25(𝑉𝑔 + 𝑉𝑠 + 𝑉𝑏) + 1.5(𝑉𝑤𝑠) + 1.75(𝑉𝐻𝐿93 + 𝑉𝐼𝐿)] = 0.9 𝑉𝑛                                     (4.12) 

𝑉𝑛 = 𝑉𝑐 + 𝑉𝑠 + 𝑉𝑝 = 𝑉𝑢;  𝑉𝑝 = 0                                                                                                         (4.13)      

𝑉𝑐 = 0.0316 𝛽√𝑓𝑐′𝑏𝑣𝑑𝑣                                                                                                                       (4.14)            

𝑉𝑠 =
𝐴𝑣𝑓𝑦𝑑𝑣(cot 𝜃 + cot 𝛼) sin 𝛼

𝑠
                                                                                                     (4.15) 

Where 𝛼 = 90°, 𝑉𝑠 reduces to: 

𝑉𝑠 =
𝐴𝑣𝑓𝑦𝑑𝑣(𝑐𝑜𝑡 𝜃)

𝑠
                                                                                                                               (4.16) 

𝛽 =
(4.8) (51)

(1 + 750ℇ𝑠)(39 + 𝑆𝑥𝑒) 
;  𝑆𝑥𝑒 = 12                                                                                          (4.17) 

𝜃 = 29 + 3500ℇ𝑠                                                                                                                                   (4.18) 

𝑀𝑢 = [1.25(𝑀𝑔 + 𝑀𝑠 + 𝑀𝑏) + 1.5(𝑀𝑤𝑠) + 1.75(𝑀𝐻𝐿93 + 𝑀𝐼𝐿)]                                            (4.19)  

ℇ𝑠 =
|𝑀𝑢/𝑑𝑣| + 0.5𝑁𝑢 + |(𝑉𝑢 − 𝑉𝑝)| − 𝐴𝑝𝑠𝑓𝑝𝑜

(𝐸𝑠𝐴𝑠 + 𝐸𝑝𝐴𝑝𝑠)
                                                                             (4.20) 

When ℇ𝑥 is negative, it is taken as either zero or recalculated as the following: 

ℇ𝑠 =
|𝑀𝑢/𝑑𝑣| + 0.5𝑁𝑢 + |(𝑉𝑢 − 𝑉𝑝)| − 𝐴𝑝𝑠𝑓𝑝𝑜

(𝐸𝑠𝐴𝑠 + 𝐸𝑝𝐴𝑝𝑠 + 𝐸𝑐𝐴𝑐𝑡)
                                                                             (4.21) 
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Where 𝑉𝑐 is the concrete shear capacity (kip); 𝑉𝑠 is the shear capacity of steel web 

reinforcement (kip); 𝑉𝑝 is the vertical component of pre-stressing force (kip); 𝑓′𝑐 is the 

compressive strength in concrete (ksi); 𝑏𝑣 is the effective web width (in.); 𝑑𝑣 is the effective shear 

depth (in.); 𝑠 is the spacing of transverse reinforcement (in.); 𝐴𝑣 is the area of shear reinforcement 

(in2) within a distance 𝑠; 𝑓𝑦  is the yield stress of the transverse reinforcement (ksi); and 𝛼 is the 

angle of stirrups inclination (𝛼=90º); 𝛽 is a factor indicating the ability of diagonally cracked 

concrete to transmit tension and shear; 𝜃 is the angle of inclination of diagonal compressive 

stresses; ℇ𝑠 is the net longitudinal tensile strain in concrete at the centroid of the tension 

reinforcement; 𝑀𝑢 is the total factored moment (kip-in.), not to be taken less than |(𝑉𝑢 − 𝑉𝑝)|𝑑𝑣. 

In design, only when the initial calculated ℇ𝑠 value is negative, the LRFD code permits taking 

ℇ𝑠 as zero or it may be recomputed (more accurate approach and less conservative) using an 

alternative equation. To compare the difference in the reliability index 𝛽 when each approach was 

used (zero value or the equation), two sets of results for Type II girder were computed and 

compared. The first set of results was computed based on the alternative design equation of ℇ𝑠, 

while the second set is based on ℇ𝑠 = 0. Results showed no significant difference in 𝛽 when the 

equation or zero value for ℇ𝑠 were used to compute 𝑉𝑛. The more accurate design approach 

(alternative  ℇ𝑠 equation) was considered for design and analysis in this study. This approach is 

more accurate as it evaluates ℇ𝑠 based on the applied shear and moment forces at the critical section 

rather than assuming a constant level of stresses when the zero value is taken. Even though, the 

difference is small between the two approaches, it is more accurate to compute reliability indices 

based on the less conservative design approach (alternative  ℇ𝑠 equation). 

Two sets of results were computed and compared to identify the best approach that would 

produce a consistence reliability index of the design cases considered. The first set was computed 
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using the Original Resistance Procedure (no Iteration) and showed discrepancies between the 

NCHRP 368 and the LRFD computed 𝛽 values. As a beginning, a comparison was made to 

confirm that discrepancies between reliability indices presented in the NCHRP 368 report and 

those designed using the current LRFD General Method, and computed using the Original 

Resistance Procedure were not as a result of variances in mean load to mean resistance ratios. In 

this comparison, ratios of the mean shear load to the mean shear capacity were computed and 

plotted as shown in Figures 4.4-4.6. Plotted results showed a very close match between the ratios 

used in the NCHRP 368 and ratios used for design cases considered for reliability analysis, and 

therefore, discrepancies in reliability indices are not because of variances in mean load to mean 

resistance ratios. Note that over designed cases in the figures are plotted as hollow symbols. 

 

Figure 4.4. Ratios of mean shear load to mean shear capacity (Type II girder) 
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Figure 4.5. Ratios of mean shear load to mean shear capacity (Type III girder) 

 

Figure 4.6. Ratios of mean shear load to mean shear capacity (Type IV girder) 

By analyzing the data in Table 4.5, 𝛽 values show consistency when the design values of 

ℇ𝑠 are negative, but start to increase for the positive design values of ℇ𝑠. This increase in 𝛽 is 

because all the computed ℇ𝑠 values in reliability were negative compared to those in design 

(negative and positive), and thus the obtained value for Vn in analysis was greater than the 

calculated value for Vn in design. This is mainly due to the difference in the shear and moment 

forces used to compute ℇ𝑠 in design and analysis, where factored values were used in design and 

mean values were used in analysis. 
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 In design, as the increase in the applied shear and moment forces increases the stresses that 

can be transmitted across diagonally cracked concrete, the cracks become wider and the stress that 

can be transmitted decreases. The evaluation of 𝛽 and 𝜃 from equations 4.17 and 4.18, respectively, 

is based on these transmitted stresses, and correspondingly, the calculation of  𝑉𝑐 and 𝑉𝑠 from 

equations 4.14 and 4.15, respectively. Since the same design procedure and parameters are used 

in both design and reliability analysis, 𝛽 is expected to be consistent for all of the presented cases. 

This would be true if the shear load value (𝑉𝑢) and the corresponding moment value (𝑀𝑢) used to 

compute ℇ𝑠 was the same in both design and analysis.  Since the LRFD factored shear loads were 

used in design and the mean values in analysis, the calculated ℇ𝑠 in design would be different from 

the corresponding ℇ𝑠 in analysis. As shown in equation 4.20, the change in 𝑉𝑢 and  𝑀𝑢 (where 

𝑀𝑢=𝑉𝑢. 𝑑𝑣) would significantly affect the calculated value of ℇ𝑠. Such variation in the shear load 

values between design and analysis (higher in design) resulted in switching the sign of ℇ𝑠 from 

positive to negative in analysis for the cases when 𝛽 started to increase.  And since either the 

original equation (for positive ℇ𝑠) or alternative equation (for negative ℇ𝑠) are used to compute ℇ𝑠, 

the switch in sign from positive to negative changed the computed value of  ℇ𝑠 in analysis, and as 

a result, the computed shear capacity. 

In the second set of results, reliability indices showed more consistency when the Iterative 

Resistance Procedure was used for analysis and the LRFD code procedure for design (non-

iterative), with a decrease when  ℇ𝑠 became positive as shown in Table 4.4. This iterative procedure 

was found to correspond more accurately to the experimental/FEA data than the original code 

method, as previously discussed in Chapter 2. Therefore, this procedure was considered for the 

remaining analysis in this study. 
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The Iterative Resistance Procedure produced reliability indices closer to the NCHRP values 

than using the non-iterative (General LRFD Procedure). The reason behind this alteration is that 

prior to the 2008 interim revisions, the General LRFD Procedure for shear design was iterative. It 

was derived from the Modified Compression Field Theory (MCFT, Vecchio and Collins, 1986), 

and required the use of tables for evaluation of 𝛽 and 𝜃. In the 2008 revisions and later, this design 

procedure was modified to be non-iterative, and equations 4.17 and 4.18 were introduced for the 

evaluation of 𝛽 and 𝜃. These two equations were also derived from the MCFT (Bentz et al. 2006), 

and were considered as appropriate for use in the AASHTO LRFD Bridge Design Specifications 

(Hawkins et al., 2005, 2007). 

 

Table 4.4. Reliability indices using the Original Resistance Procedure* 

 
*Orange cells= over-designed cases using f’c=4 ksi and stirrups spacing of 24 in; Green cells= design cases with positive ℇ𝑠 

 

 

 

# Span (ft) Spacing (ft) Beta-NCHRP Beta-II Beta-III Beta-IV

1 30 4 4.16 6.71 7.73 8.27

2 30 6 4.19 5.68 7.05 7.81

3 30 8 4.12 4.75 6.37 7.32

4 30 10 4.25 4.50 5.68 6.81

5 30 12 4.21 4.49 5.02 6.32

6 60 4 4.09 4.48 5.80 6.65

7 60 6 4.10 4.46 4.66 5.76

8 60 8 4.14 4.45 4.46 4.90

9 60 10 4.10 4.43 4.43 4.41

10 60 12 4.12 5.15 4.43 4.43

11 90 4 3.74 4.44 4.44 5.34

12 90 6 3.77 4.42 4.43 4.39

13 90 8 3.81 4.84 4.40 4.40

14 90 10 3.83 5.72 4.39 4.40

15 90 12 3.85 6.24 4.38 4.39

16 120 4 3.78 4.41 4.40 4.35

17 120 6 3.81 4.70 4.37 4.36

18 120 8 3.88 5.79 4.36 4.36

19 120 10 3.89 6.40 4.54 4.35

20 120 12 3.83 - 5.38 4.35

21 200 4 3.70 5.30 4.31 4.27

22 200 6 3.79 6.34 4.72 4.26

23 200 8 3.82 - 5.70 4.24

24 200 10 3.79 - - 4.99

25 200 12 3.82 - - 5.64
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Table 4.5. Reliability indices using the Iterative Resistance Procedure* 

 
*Orange cells= over-designed cases using f’c=4 ksi and stirrups spacing of 24 in; Green cells= design cases with positive ℇ𝑠 

Reliability indices as a function of span and girder spacing using the Iterative Resistance 

Procedure are compared with the corresponding NCHRP 368 values as shown in Figures 4.7-4.9.  

Note that hollow symbols without connecting lines represent over designed cases (most of the 30 

ft and some of the 60 ft span cases). Those cases have high reliability indices compared to the 

cases designed in accordance to the LRFD code, and show that the corresponding values presented 

in NCHRP 368 report are significantly under estimating the level of safety in shear. 

 

 

# Span (ft) Spacing (ft) Beta-NCHRP Beta-II Beta-III Beta-IV

1 30 4 4.16 6.29 7.39 8.00

2 30 6 4.19 5.24 6.66 7.47

3 30 8 4.12 4.34 5.94 6.95

4 30 10 4.25 4.10 5.25 6.41

5 30 12 4.21 4.13 4.61 5.90

6 60 4 4.09 4.09 5.38 6.24

7 60 6 4.10 4.08 4.25 5.33

8 60 8 4.14 4.09 4.07 4.47

9 60 10 4.10 3.85 4.06 4.04

10 60 12 4.12 3.62 4.07 4.05

11 90 4 3.74 4.09 4.05 4.92

12 90 6 3.77 4.08 4.06 4.01

13 90 8 3.81 3.57 4.05 4.03

14 90 10 3.83 3.58 4.04 4.04

15 90 12 3.85 3.57 3.69 4.04

16 120 4 3.78 4.07 4.04 3.98

17 120 6 3.81 3.54 4.03 4.01

18 120 8 3.88 3.56 4.08 4.01

19 120 10 3.89 3.53 3.48 4.02

20 120 12 3.83 - 3.52 4.03

21 200 4 3.70 3.51 3.96 3.93

22 200 6 3.79 3.46 3.44 3.92

23 200 8 3.82 - 3.46 3.60

24 200 10 3.79 - - 3.41

25 200 12 3.82 - - 3.42
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Figure 4.7. Comparison of Reliability Indices between NCHRP 368 and using the Iterative 

Resistance 

 

 

 

Figure 4.8. Reliability indices as a function of span length and girder spacing 
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Figure 4.9. Reliability indices as a function of girder spacing and span length 

In order to clarify how the change in 𝑉𝑢 and 𝑀𝑢 affects the calculation of  ℇ𝑠 and the 

computation of 𝛽, a detailed analyses for Type II girder using both methods (original and iterative 

RF) are shown in Figures 4.10-4.14. These analyses were conducted for 90 ft and 120 ft span cases, 

and compared the change in ℇ𝑠 as a function of  𝑉𝑢 and 𝑀𝑢, where: 

ℇ𝑠 =
|𝑀𝑢/𝑑𝑣| + 0.5𝑁𝑢 + |(𝑉𝑢 − 𝑉𝑝)| − 𝐴𝑝𝑠𝑓𝑝𝑜

(𝐸𝑠𝐴𝑠 + 𝐸𝑝𝐴𝑝𝑠)
                                                                          (4.22) 

Here, three different  𝑉𝑢 and 𝑀𝑢 values were compared: LRFD factored values, mean values 

used in the Original RF Procedure, and mean values at convergence used the Iterative Resistance 
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Procedure. The comparisons between the reliability indices for the three cases is also shown in 

Tables 4.6-4.8. By observing the comparisons in the tables, it is clearly shown that as shear and 

moment forces increased the corresponding reliability indices decreased. Moreover, the resulted 

ℇ𝑠 values based on the mean shear and moment used in the Original Resistance Procedure were 

negative for all of the cases, but positive for the majority of the cases when design or converged 

values (Iterative Resistance) were used, as shown in Table 4.7. This switch from negative to 

positive is mainly due to the increase in  𝑉𝑢 and 𝑀𝑢 used to calculate ℇ𝑠 in the design and  the 

Iterative Resistance, which as a result, affected the computation of  𝑉𝑛 and 𝛽. The evaluated value 

of  ℇ𝑠 is compared between the Original Resistance, design, and Iterative Resistance approaches, 

respectively, as shown Table 8.   

For example, in Table 4.6, column 4 (Original Resistance), notice that when resistance is 

calculated using the original (non-iterative) resistance method as assumed in design, reliability 

indices increased as girder spacing increased.  This is because Vu and Mu increased as girder 

spacing increased (Tables 4.7 and 4.8).  This in turn caused ℇ𝑠 to decrease and become negative 

compared to those computed in design.  This decrease caused the mean resistance to increase 

relative to nominal resistance, and hence the 𝛽 value to increase. 

In column 5 (NCHRP), all reliability indices are nearly the same since a constant bias factor 

for resistance was used rather than actually calculating resistance for each different case. Note that 

these values were computed based on mean resistance and mean load values provided in the 

NCHRP 368 report, rather than computed for Type II girder with separate resistance parameters.  

In column 6 (Iterative Resistance), reliability indices are more consistent than the original case 

and closer to those presented in NCHRP 368. The reason behind this consistency, is because the 

Iterative Resistance method used to compute 𝛽 is similar to that presented in the old LRFD 
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(AASHTO LRFD 1994) code method for shear design (iterative), which required the use of tables 

for evaluation of 𝛽 and 𝜃, where 𝛽 is the longitudinal strain in the concrete. 

Table 4.6. Effect of ℇ𝑠 on the computation of reliability index 

 

Table 4.7. Effect of shear force magnitude on reliability index 

 

Table 4.8. Effect of moment force magnitude on reliability index 

 

 

Reliability Index Longitudinal Strain (Ɛs)

# Span (ft) Spacing (ft) Original Resistance NCHRP Iterative Resistance Original Resistance Design Iterative Resistance

11 90 4 4.44 3.74 4.09 -0.00020 -0.00013 -0.00008

12 90 6 4.42 3.77 4.08 -0.00014 -0.00005 -0.00001

13 90 8 4.84 3.81 3.57 -0.00010 0.00031 0.00078

14 90 10 5.72 3.83 3.58 -0.00007 0.00152 0.00210

15 90 12 6.24 3.85 3.57 -0.00003 0.00271 0.00334

16 120 4 4.41 3.78 4.07 -0.00016 -0.00007 -0.00003

17 120 6 4.70 3.81 3.54 -0.00011 0.00022 0.00068

18 120 8 5.79 3.88 3.56 -0.00006 0.00173 0.00232

19 120 10 6.40 3.89 3.53 -0.00001 0.00321 0.00386

20 120 12 - 3.83 - - - -

Reliability Index Vu (kip)

# Span (ft) Spacing (ft) Original Resistance NCHRP Iterative Resistance Original Resistance Design Iterative Resistance

11 90 4 4.44 3.74 4.09 100 153 181

12 90 6 4.42 3.77 4.08 130 198 232

13 90 8 4.84 3.81 3.57 159 242 254

14 90 10 5.72 3.83 3.58 187 285 296

15 90 12 6.24 3.85 3.57 214 326 339

16 120 4 4.41 3.78 4.07 123 185 218

17 120 6 4.70 3.81 3.54 159 239 252

18 120 8 5.79 3.88 3.56 195 292 303

19 120 10 6.40 3.89 3.53 229 343 354

20 120 12 - 3.83 - - - -

Reliability Index Mu (kips-ft)

# Span (ft) Spacing (ft) Original Resistance NCHRP Iterative Resistance Original Resistance Design Iterative Resistance

11 90 4 4.44 3.74 4.09 333 508 603

12 90 6 4.42 3.77 4.08 438 668 789

13 90 8 4.84 3.81 3.57 539 822 880

14 90 10 5.72 3.83 3.58 637 970 1044

15 90 12 6.24 3.85 3.57 730 1110 1191

16 120 4 4.41 3.78 4.07 408 612 730

17 120 6 4.70 3.81 3.54 536 805 862

18 120 8 5.79 3.88 3.56 661 991 1067

19 120 10 6.40 3.89 3.53 781 1170 1252

20 120 12 - 3.83 - - - -
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Figure 4.10. Effect of shear and moment on the computation of ℇ𝑠 (90 ft span-Type II Girder) 

 

Figure 4.11. Reliability indices as a function of ℇ𝑠 (90 ft span-Type II Girder) 

 

Figure 4.12. Effect of shear and moment on the computation of ℇ𝑠 (120 ft span-Type II Girder) 
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Figure 4.13. Reliability indices as a function of ℇ𝑠 (120 ft span-Type II girder) 

 

Figure 4.14. Reliability indices as a function of ℇ𝑠 and span/girder spacing (Type II girder) 
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4.6 New Shear Capacity Design Method 

In the new proposed design procedure, a larger 𝑉𝑢 value (𝑉𝑢∗) was used for design, and resulted 

in a more consistent reliability indices compared to those computed using the 𝑉𝑢 value specified 

in the General LRFD Method, especially for cases where the resulted ℇ𝑠 was positive. Using the 

new method, increasing the value of 𝑉𝑢 by a factor 
𝑣

= 1.06 reduced the computed 𝑉𝑛 value, 

which as a result required increasing the beam shear capacity. This increase in 𝑉𝑢 increased the 

consistency of the reliability indices for cases when ℇ𝑠 was positive (cases with long span and 

large beam spacing), and produced reliability indices with a lower limit of 3.5 for the girder cases 

considered in this study. This lower limit was chosen based on the target reliability index presented 

in the NCHRP 368 report. However, the presented reliability indices in the NCHRP 368 had an 

average of 3.94 with the lowest 𝛽 as 3.7 for a live load factor of 1.75 and a resistance factor of 0.9. 

Although a live load factor of 1.75 was not considered in the calculations presented in the NCHRP 

368 but used in the 2014 LRFD AASHTO Code strength I limit state, 𝛽 values for all of the cases 

presented in NCHRP 368 were recomputed based on a live load factor of 1.70. Using the higher 

live load factor (1.75) resulted in slightly higher 𝛽 values (increase average of 0.12) compared to 

those computed using a factor of 1.70. This new set of 𝛽 values is based on the current LRFD 

Code design load factors, and thus considered for comparison with 𝛽 values computed in this 

study. 

In general, reliability indices showed discrepancy with a significant drop as span length and 

beam spacing increased, when the original factored LRFD loads (𝑉𝑢) were used. On the other hand, 

using the new proposed load ( 𝑉𝑢∗) for design, significant improvements resulted in terms of 

consistency and level of safety. Thus, more consistent 𝛽 values with a minimum of 3.5, especially 

for cases where ℇ𝑠 is positive, were resulted. The lower limit of 3.5 was achieved by adding a new 
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factor of 1.05. Thus, 0.9 ∗ 1.05 𝑉𝑛 = 0.95 𝑉𝑛 = 𝑉𝑢 , and the new shear and moment values used 

for design are 𝑉𝑢∗ =
𝑉𝑢

0.9∗1.05
= 1.06 𝑉𝑢 =  

𝑣
𝑉

𝑢
 and  𝑀𝑢 = 𝑉𝑢∗ 𝑑𝑣, respectively. Note that 𝑉𝑢 is the 

same factored shear load specified in the LRFD code = 1.25(𝑉𝑔 + 𝑉𝑠 + 𝑉𝑏) + 1.5(𝑉𝑤𝑠) +

1.75(𝑉𝐿𝑇 + 𝑉𝐿𝐿). 

Using the new design procedure, 𝛽 is computed as follows: 

1- Design the beam based on the General LRFD Method, but using 𝑉𝑢∗ instead of 𝑉𝑢 where, 𝑉𝑢∗ =

𝑉𝑢

0.9∗1.05
= 1.06 𝑉𝑢 as follows:                                   

𝑉𝑢∗ = [
1.25(𝑉𝑔 + 𝑉𝑠 + 𝑉𝑏) + 1.5(𝑉𝑤𝑠) + 1.75(𝑉𝐿𝑇 + 𝑉𝐿𝐿)

(0.9 ∗ 1.05)
] = 𝑉𝑛                                               (4.23) 

When ℇ𝑠 > 0: 

(𝑎)  𝑉𝑝 = 0 

If  |𝑀𝑢| < 𝑉𝑢∗𝑑𝑣, take 𝑀𝑢 = 𝑉𝑢∗𝑑𝑣 and: 

ℇ𝑠 =
|
𝑀𝑢

𝑑𝑣
| + 0.5𝑁𝑢 + |(𝑉𝑢∗ − 𝑉𝑝)| − 𝐴𝑝𝑠𝑓𝑝𝑜

(𝐸𝑠𝐴𝑠 + 𝐸𝑝𝐴𝑝𝑠)
 =

2 𝑉𝑢∗ − 𝐴𝑝𝑠𝑓𝑝𝑜

(𝐸𝑠𝐴𝑠 + 𝐸𝑝𝐴𝑝𝑠)
=

2 (
𝑉𝑢

0.9 ∗ 1.05
) − 𝐴𝑝𝑠𝑓𝑝𝑜

(𝐸𝑠𝐴𝑠 + 𝐸𝑝𝐴𝑝𝑠)

=
2.116 𝑉𝑢 − 𝐴𝑝𝑠𝑓𝑝𝑜

(𝐸𝑠𝐴𝑠 + 𝐸𝑝𝐴𝑝𝑠)
                                                                                                                            (4.24) 

Otherwise, 

ℇ𝑠 =
|𝑀𝑢/𝑑𝑣| +  1.06 𝑉𝑢 − 𝐴𝑝𝑠𝑓𝑝𝑜

(𝐸𝑠𝐴𝑠 + 𝐸𝑝𝐴𝑝𝑠)
                                                                                                    (4.25) 

Where,  

𝑀𝑢 = 1.25(𝑀𝑔 + 𝑀𝑠 + 𝑀𝑏) + 1.5(𝑀𝑤𝑠) + 1.75(𝑀𝐿𝑇 + 𝑀𝐿𝐿); 𝑁𝑢 = 0                               (4.26) 

 𝑉𝑢∗ =
𝑉𝑢

0.9 ∗ 1.05
= 1.06 𝑉𝑢 
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(𝑏)  𝑉𝑝 > 0 

 If |𝑀𝑢| < |(𝑉𝑢∗ − 𝑉𝑝) 𝑑𝑣|, take 𝑀𝑢 = |( 𝑉𝑢∗ − 𝑉𝑝) 𝑑𝑣| and: 

ℇ𝑠 =
|(2.116 𝑉𝑢 − 2𝑉𝑝) |  −  𝐴𝑝𝑠𝑓𝑝𝑜

(𝐸𝑠𝐴𝑠 + 𝐸𝑝𝐴𝑝𝑠)
                                                                                                 (4.27) 

Otherwise, 

ℇ𝑠 =
|𝑀𝑢/𝑑𝑣| + |(1.06 𝑉𝑢 − 𝑉𝑝) |  − 𝐴𝑝𝑠𝑓𝑝𝑜

(𝐸𝑠𝐴𝑠 + 𝐸𝑝𝐴𝑝𝑠)
                                                                                (4.28) 

When ℇ𝑠 < 0 : 

Replace the denominator by (𝐸𝑠𝐴𝑠 + 𝐸𝑝𝐴𝑝𝑠+𝐸𝑐𝐴𝑐𝑡) 

2- Compute 𝛽 based on the new designed 𝑉𝑛 (= 𝑉𝑢∗) using the Iterative Resistance Procedure. 

Design cases for three different span lengths were considered for design using the new 

proposed method. As described above, a new resistance factor of  𝜙𝑟 = 0.95 was considered (in 

place of 0.9) to produce a reliability index with a lower limit of 3.5. Another shear load factor 

 
𝑣

= 1.06  was added to produce more consistent 𝛽 values compared to those computed based on 

the current LRFD design procedure. Reliability indices computed based on the original and the 

new design methods for the three girder types (straight and harped strand profile) are summarized 

in Tables 4.9 and 4.10. More detailed comparisons as a function of span length and girder spacing 

are presented in Figures 4.15-4.24.  
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Table 4.9. Comparison between reliability indices using the original and new design method 

(straight strands) 

 
LRFD= design cases using the General LRFD Method; LRFD*= design cases using the new method 

Table 4.10. Comparison between reliability indices using the original and new design method 

(harped strands) 

 
LRFD= design cases using the General LRFD Method; LRFD*= design cases using the new method 

 

 

 

 

 

 

 

 

 

Type II Type II* Type III Type III* Type IV Type IV*

# Span (ft) Girder Spacing (ft) LRFD LRFD* LRFD LRFD* LRFD LRFD*

11 90 4 4.09 3.88 4.05 3.85 4.92 4.92

12 90 6 4.08 3.88 4.06 3.86 4.01 3.80

13 90 8 3.57 3.71 4.05 3.86 4.03 3.83

14 90 10 3.58 3.65 4.04 3.86 4.04 3.84

15 90 12 3.57 3.64 3.69 3.91 4.04 3.84

16 120 4 4.07 3.87 4.04 3.84 3.98 3.76

17 120 6 3.54 3.69 4.03 3.83 4.01 3.80

18 120 8 3.56 3.64 4.08 3.82 4.01 3.79

19 120 10 3.53 3.60 3.48 3.62 4.02 3.80

20 120 12 - - 3.52 3.60 4.03 3.80

21 200 4 3.51 3.60 3.96 3.77 3.93 3.73

22 200 6 3.46 3.56 3.44 3.56 3.92 3.72

23 200 8 - - 3.46 3.52 3.60 3.53

24 200 10 - - - - 3.41 3.51

25 200 12 - - - - 3.42 3.50

Type II Type II* Type III Type III* Type IV Type IV*

# Span (ft) Girder Spacing (ft) LRFD LRFD* LRFD LRFD* LRFD LRFD*

11 90 4 4.03 3.81 4.53 4.54 5.34 5.34

12 90 6 4.04 3.82 4.00 3.79 3.98 3.72

13 90 8 3.72 3.71 4.02 3.82 4.02 3.77

14 90 10 3.54 3.64 4.03 3.83 4.03 3.80

15 90 12 3.56 3.62 3.97 3.92 4.04 3.82

16 120 4 4.02 3.82 3.98 3.78 3.95 3.69

17 120 6 3.68 3.69 3.99 3.80 4.00 3.76

18 120 8 3.53 3.61 3.98 3.80 4.01 3.78

19 120 10 3.53 3.59 3.58 3.65 4.02 3.78

20 120 12 - - 3.53 3.61 4.02 3.79

21 200 4 3.48 3.59 3.97 3.75 3.94 3.71

22 200 6 3.48 3.55 3.39 3.53 3.93 3.70

23 200 8 - - 3.45 3.52 3.71 3.62

24 200 10 - - - - 3.44 3.50

25 200 12 - - - - 3.46 3.50
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Figure 4.15. Reliability indices for Type II girder using the original and the new LRFD design 

methods  

 

Figure 4.16. Reliability indices for Type III girder using the original and the new LRFD design 

methods 

 

Figure 4.17. Reliability indices for Type IV girder using the original and the new LRFD design 

methods 
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Figure 4.18. Reliability indices for Type II girder using the original and the new LRFD design 

methods  

 

Figure 4.19. Reliability indices for Type III girder using the original and the new LRFD design 

methods 

 

Figure 4.20. Reliability indices for Type IV girder using the original and the new LRFD design 

methods 
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Figure 4.21. Reliability indices comparison between the original and the new LRFD design 

methods as a function of span length and girder spacing 
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Figure 4.22. Reliability indices comparison between the original and the new LRFD design 

methods as a function of girder spacing and span length 
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Figure 4.23. Reliability indices comparison between the original and the new LRFD design 

methods as a function of girder spacing and span length (harped strands) 
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Figure 4.24. Average reliability indices comparison between the original and the new design 

methods 
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CHAPTER 5: REGRESSION ANALYSIS AND LOAD RATING  

5.1 Development of Regression Equation 

Regression analysis based on the computed ratios (FEA/LRFD) for AASHTO girder types II, 

III and IV was performed.  In this regression analysis, the computed ratios (FEA/LRFD) were 

considered as dependent variables while concrete compressive strength (𝑓𝑐
′), average stress due to 

prestress force (𝜎), stirrups spacing (𝑠), and beam height (ℎ) were considered as independent 

variables.  Linear and nonlinear regression analyses were performed on 216 data samples, and two 

initial regression models were developed, linear and nonlinear. It was found that the linear 

regression model produced more consistent results than the nonlinear model, and therefore, was 

considered for this study.  Based on the described regression analysis, one regression equation is 

proposed, as shown below:                           

(
𝐹𝐸𝐴

𝐿𝑅𝐹𝐷
)
𝑅𝑒𝑔.

= 𝑟𝑑 = (0.009𝑓𝑐
′ + 0.2𝜎 + 0.035𝑠 (

0.22

𝐴𝑣
) + 0.018ℎ + 0.01)                            (5.1) 

 

Figure 5.1. Comparison between linear regression model and FEA/LRFD ratios 
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A comparison between the proposed regression model and the FEA/LRFD ratios is shown in 

Figure 5.1, and data used to develop this regression model are presented in Appendix C.  

As shown in Table 5.1, the developed equation (5.1) provided the lowest deviation (mean ratio 

of estimation to FEA model predicted capacity = 1.36; COV 0.11) from the expected beam 

capacities, as determined from the FEA models, with no case unconservatively estimated.  Note 

that if rd is computed outside of the limit provided (i.e. 1.0 ≤ 𝑟𝑑≤ 3.49), then rd should be limited 

to that value; it does not mean that the adjustment is invalid. The upper limit represents the 

maximum FEA/LRFD ratio found from all of the cases studied, and is imposed for safety. 

Table 5.1. Comparisons between the two regression models and the FEA/LRFD ratios 

  

To best estimate shear capacity Vn of MDOT PC girders, it is recommended that the regression 

equation (eq. 5.1) is used in conjunction with the modified AASHTO LRFD procedure described 

in Chapter 2; this procedure is summarized by Eq. 5.2.  Specifically, Vn is first computed from the 

LRFD Sectional Method then an iteration is conducted until Vn=Vu, as described in Appendix E, 

to produce Vn-est.  This result is then multiplied by the outcome of eq. 5.2, as a function of concrete 

compressive strength (f’c, ksi), average stress due to prestress force (σ = gross area of concrete 

beam / total prestress force, ksi), stirrups spacing (s, inches), and beam height (h, inches), to 

provide the best estimate for Vn.       

𝑉𝑛 = 𝑉𝑛−𝑒𝑠𝑡 𝑟𝑑                                                                                                                                            (5.2)      

(FEA/LRFD) Reg. FEA/(Reg. x LRFD)

Mean 2.22 1.64 1.36

STDEV. 0.56 0.37 0.16

COV 0.25 0.23 0.11
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5.2 Development of Regression Equation for Reliability Analysis 

In order to compute reliability analysis for the girder design cases presented in Chapter 4, a 

second regression equation was developed with a mean ratio of estimation ( 
FEA

Reg.  x LRFD
) = 1. The 

developed regression model for reliability is defined in equation 5.3 and shown in Figure 5.2.                                 

𝑟𝑟 = (0.075𝑓𝑐
′ + 0.2𝜎 + 0.038𝑠 (

0.22

𝐴𝑣
) + 0.02ℎ + 0.01)                                                           (5.3) 

 

Figure 5.2. Linear regression model for reliability analysis 

A second regression model for reliability was developed based a reduced number of 

FEA/LRFD data, by excluding the cases with highest stress in concrete (2.5 ksi). This modification 

was made because all the bridge design cases considered for reliability analysis were assumed to 

have an average stress in concrete of 1 ksi. While the stress level is not included in the calculations 

of the nominal shear capacity, it is an important parameter for moment design. An average stress 

level of 1 ksi was considered based on a survey of 31 PC spans in the state of Michigan. The 31 

cases had stress levels ranged from 0.24 to 2.11 ksi and 1.09 ksi on average, with the majority of 
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the cases designed with stress level less than 1.5 ksi. Therefore an average stress in concrete of 1 

ksi was assumed for the reliability analysis regression model. The modified regression equation 

for reliability produced factors lower on average compared to the initial model, and produced more 

conservative  values. The regression model used for reliability analysis in this study in presented 

eq. 5.4 and Figure 5.3. 

𝑟𝑟 = (0.088𝑓𝑐
′ + 0.2𝜎 + 0.01𝑠 (

0.22

𝐴𝑣
) + 0.024ℎ + 0.01)                                                           (5.4) 

 

Figure 5.3. Improved linear regression model for reliability analysis 

Reliability indices for girder cases designed in accordance to the current LRFD code (HL-93 

LL) were computed based on live load data from the state of Michigan (see Appendix H-Table 

H2). Moreover, the same cases were considered for a second reliability analysis by including the 

regression factor calculated from equation 5.4. Comparisons between the two sets of results, and 

the NCHRP 368  values are shown in Table 5.2 and Figures 5.4-5.8. 
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Table 5.2. Reliability indices based on live loads from the state on Michigan 

 

 

Figure 5.4. Reliability indices based on Michigan live loads compared to NCHRP 368 

 

MI LL MI LL (Regression Factor)

# Span (ft) Spacing (ft) Beta-NCHRP Beta-II Beta-III Beta-IV Beta-II Beta-III Beta-IV

1 30 4 4.16 4.41 5.85 6.75 7.04 8.14 8.71

2 30 6 4.19 3.61 5.20 6.25 6.51 7.82 8.51

3 30 8 4.12 2.90 4.56 5.72 6.04 7.46 8.28

4 30 10 4.25 2.89 3.94 5.20 6.03 7.11 8.04

5 30 12 4.21 3.04 3.35 4.69 6.21 6.75 7.79

6 60 4 4.09 1.83 3.32 4.48 5.30 6.73 7.69

7 60 6 4.10 2.33 2.48 3.72 5.62 6.21 7.30

8 60 8 4.14 2.64 2.58 3.01 5.99 6.23 6.90

9 60 10 4.10 2.35 2.76 2.71 6.26 6.41 6.88

10 60 12 4.12 2.35 2.90 2.83 6.17 6.60 6.75

11 90 4 3.74 1.66 1.70 2.78 5.19 5.71 6.78

12 90 6 3.77 2.15 2.14 2.14 5.81 5.96 6.49

13 90 8 3.81 1.75 2.42 2.42 5.67 6.22 6.58

14 90 10 3.83 2.02 2.59 2.60 5.70 6.27 6.66

15 90 12 3.85 2.13 2.23 2.71 5.81 6.30 6.83

16 120 4 3.78 1.63 1.70 1.77 5.26 5.69 6.27

17 120 6 3.81 1.36 2.11 2.16 5.25 6.01 6.39

18 120 8 3.88 1.74 2.26 2.58 5.40 6.12 6.61

19 120 10 3.89 1.91 1.87 2.57 5.54 5.98 6.81

20 120 12 3.83 - 2.06 2.71 - 6.04 6.98

21 200 4 3.70 0.83 1.64 1.78 4.73 5.63 6.23

22 200 6 3.79 1.26 1.29 2.10 5.06 5.59 6.37

23 200 8 3.82 - 1.61 1.81 - 5.76 6.45

24 200 10 3.79 - - 1.80 - - 6.55

25 200 12 3.82 - - 1.92 - - 6.76
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Figure 5.5. Reliability indices based on Michigan live loads and using the regression model 

 

Figure 5.6. Comparison of reliability indices based on Michigan live loads for Type II girder 
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Figure 5.7. Comparison of reliability indices based on Michigan live loads for Type III girder 

 

Figure 5.8. Comparison of reliability indices based on Michigan live loads for Type IV girder 

By analyzing the results, it is clearly shown that applying the regression factor resulted in 

significantly higher reliability index values than those computed without the regression factor and 

values from NCHRP 368. However, low reliability indices resulted (≤3) under MI live loads when 

the Original LRFD Procedure was used for design. To show an estimation of the actual reliability 
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indices for the cases considered, the average of the two sets of results (with and without regression 

factor) was computed and plotted, as shown in Figure 5.9. Moreover, the average of the three 

girder results is plotted in Figure 5.10 for a simpler comparison with NCHRP 368 values. This 

estimation does not accurately capture the actual reliability index, since linearity is assumed, but 

it shows a reasonable approximation based on methods used to compute each set of the results.  

 

Figure 5.9. Average reliability indices for girders Type II, III and IV based on Michigan live 

loads 

 
Figure 5.10. Comparison of average reliability indices based on Michigan live loads 
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Reliability indices based on the mean values of the initial two sets of results showed to have 

an adequate level of safety on average (>4), and thus the MI live load traffic used for analysis are 

acceptable for PC bridges designed in accordance to the General LRFD Procedure. 

5.3 Load Rating  

The procedure of load rating is used to identify the need for bridge strengthening, load 

postings, and issuing overweight vehicle permits. The focus of this section is on the load rating for 

prestressed concrete bridges under traffic live loads in the state of Michigan.  

In design, a conservative reliability index may be imposed to insure serviceability and 

durability requirements without adding a significant cost. However, the cost of increasing the 

strength of existing structures, or to restrict traffic on these structures (to the user) can be 

substantial. Therefore, a lower target reliability index is chosen for load rating at the strength limit 

state. In the NCHRP 368 report, a target reliability index of 3.5 was adopted based on a severe 

traffic loading (5000 ADTT), while the LRFR procedures reduced the target reliability index to 

approximately 2.5, calibrated to past AASHTO operating level load rating (AASHTO 2011). 

The procedure for the load and resistance factor rating (LRFR) of bridges is consisted of three 

different procedures: 1) Design load rating, 2) legal load rating, and 3) permit load rating. In this 

study, the design load rating is considered for analysis. As a first level assessment and a measure 

of the performance of PC bridges, design load rating is based on the HL-93 and LRFD design 

specifications. Bridges that pass the design load check at the Inventory level, have satisfactory 

load rating for all legal loads that comply with the LRFD limits, and have a rating factor (RF) ≥ 1. 

Otherwise, bridges that do not pass the load check at the inventory level have a RF ≤ 1. The 

determination of the rating factor for each component subjected to a single force effect is 

represented in the general expression below: 
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𝑅𝐹 =
𝐶 − (𝛾𝐷𝐶)(𝐷𝐶) − (𝛾𝐷𝑊)(𝐷𝑊) ± (𝛾𝑃)(𝑃)

(𝛾𝐿𝐿)(𝐿𝐿 + 𝐼𝑀)
                                                                             (5.5) 

Where 𝐶 = 𝜑𝑐𝜑𝑠𝜑𝑅𝑛;   𝜑𝑐𝜑𝑠 ≥ 0.85 

Where RF is the rating factor, C is the capacity, 𝑅𝑛 is the nominal resistance, 𝜑𝑐 is the 

condition factor, 𝜑𝑠 is the system factor, 𝜑 is the LRFD resistance factor, DC is the dead load 

effect due to structural components and attachments, DW is the dead load effect due to wearing 

surface and utilities, P represents permanent loads other than dead loads, LL is the live load effect, 

IM is the dynamic load allowance, 𝛾𝐷𝐶 , 𝛾𝐷𝑊, 𝛾𝑃 are LRFD load factors for structural components, 

wearing surfaces and permanent loads, respectively, and 𝛾𝐿𝐿 is the evaluation live load factor. 

Using the appropriate factors for the PC girders considered in this study, the resulted RF 

equations for inventory and operating are presented below: 

𝑅𝐹 =
(0.9)𝑅𝑛 − (1.25)(𝐷𝐶) − (1.5)(𝐷𝑊)

(1.75)(𝐿𝐿 + 𝐼𝑀)
 ; 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦                                                              (5.6) 

𝑅𝐹 =
(0.9)𝑅𝑛 − (1.25)(𝐷𝐶) − (1.5)(𝐷𝑊)

(1.35)(𝐿𝐿 + 𝐼𝑀)
 ; 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔                                                             (5.7) 

Projected live load data for traffic in the state of Michigan (Eamon et al., 2014) were computed 

and considered for load rating (see Appendix H-Table H2). PC girder Types II, III, and IV designed 

in accordance to the LRFD General Method were considered for evaluation under the MDOT live 

loads, and compared to the ideal load rating factors. Rating factors were conducted for both 

inventory and operating levels using equations 5.6 and 5.7, respectively.  The regression factor 

resulted from equation 5.4 was also applied for rating, and comparisons of the resulted rating 

factors are presented in Figures 5.11-5.16.  
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Figure 5.11. Rating factors for Type II girder  

 

Figure 5.12. Rating factors for Type II girder based on Michigan LL 
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Figure 5.13. Rating factors for Type III girder  

 

 

Figure 5.14. Rating factors for Type III girder based on Michigan LL 
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Figure 5.15. Rating factors for Type IV girder  

 

 

Figure 5.16. Rating factors for Type IV girder based on Michigan LL 

In general, the resulted RF for all the design cases was ≥1 when the HL-93 live load was used 

for evaluation. Conversely, rating factors < 1 resulted when the MI live loads were considered for 

evaluation, while all RFs evaluated based on the regression factor were > 1.   
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CHAPTER 6: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary 

The main research objectives of this study were to assess the adequacy of the current 

AASHTO PC shear design methods; determine the reliability of PC bridge girders in shear based 

on the current LRFD General Procedure; determine the most accurate and consistent method for 

predicting shear capacity of AASHTO “I” shape PC bridge girders; recalibrate the AASHTO 

LRFD code for shear as necessary, such that PC bridge girders will have more consistent and a 

minimum target of reliability for shear; and compute load rating analysis based on the HL-93 and 

MI live loads for PC bridges designed in accordance to the General LRFD Procedure for shear. 

These objectives were achieved through: 

1) Detailed literature review of the existing methods for design and rating of PC girders.  In 

particular, the AASHTO Standard Code, the AASHTO LRFD Code, and the 1979 

AASHTO Interim Specifications, as well as the supporting technical literature, were 

reviewed as summarized in Chapter 1. 

2) Experimental study on two 36 feet long AASHTO Type II PC girders, tested under various 

point load and span configurations. Each girder was tested three times in different regions 

of the span by adjusting support locations to generate data for different critical shear span-

to-depth (a/d) ratios and stirrup spacings. Stirrup spacings ranged from 8 to 12 in and shear 

span/depth ratios from 2.0 to 3.5. The purpose of the testing was to gather reliable 

experimental data that could be used to validate numerical (FEA) models.  

3) Development of a reliable FEA model based on the experimental testing results was 

performed. The developed FEA model could well-match the majority of the experimental 

results, as well as the seven PC beam shear tests found in the technical literature that were 
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chosen for validation.  The developed numerical model, in combination with the design 

code predictions, were used to generate necessary data for parametric analysis. 

4) Parametric analysis on three PC bridge girder configurations (Types II, III, and IV) was 

conducted using the developed FEA model. Three code procedures (AASHTO LRFD, 

1979 Interim, and AASHTO Standard) were considered for comparison with the FEA 

results. The AASHTO Standard code could best predict the shear capacity of the FEA cases 

considered in terms of accuracy as well as consistency. Parameters considered for the 

parametric analysis included beam type, load position, strand profile, concrete strength, 

prestress level, stirrup spacing, and longitudinal prestressed steel reinforcement ratio, for a 

total of 324 analyses.  

5) Formulation of a linear regression equation to modify the LRFD calculated shear capacity 

to best fit the FEA results was performed and shown in equation 6.1 below.  

(
𝐹𝐸𝐴

𝐿𝑅𝐹𝐷
)
𝑅𝑒𝑔.

= 𝑟𝑑 = (0.009𝑓𝑐
′ + 0.2𝜎 + 0.035𝑠 (

0.22

𝐴𝑣
) + 0.018ℎ + 0.01)           (6.1)         

The proposed regression equation produced a better estimate of shear capacity, compared 

to those computed using the General LRFD Procedure.  

6) A second regression equation for reliability analysis was developed with a mean ratio of 

estimation =( 
FEA

Reg.  x LRFD
) = 1. The developed regression model (𝑟𝑟) for reliability is 

defined in equation 6.2 below. 

 𝑟𝑟 = (0.088𝑓𝑐
′ + 0.2𝜎 + 0.01𝑠 (

0.22

𝐴𝑣
) + 0.024ℎ + 0.01)                                             (6.2) 

7) Reliability indices of 175 different PC bridge girders were computed using the RF 

procedure. Girder cases were designed in accordance to the LRFD General Procedure. 
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8) Modification to the current LRFD General Procedure was proposed. Where the original 

code method produced reliability indices less than 3.5 for several cases, the proposed 

modification produced more consistent reliability indices with a minimum value of 3.5 for 

the design cases considered. The lower limit of 3.5 was achieved by adding a new design 

factor of 1.05. Thus, 0.9 ∗ 1.05 𝑉𝑛 = 0.95 𝑉𝑛 = 𝑉𝑢 , and the new shear and moment values 

used for design are 𝑉𝑢∗ =
𝑉𝑢

0.9∗1.05
= 1.06 𝑉𝑢 =  

𝑣
𝑉𝑢 and  𝑀𝑢 = 𝑉𝑢∗ 𝑑𝑣, respectively. In the 

proposed design procedure, a larger 𝑉𝑢 value (𝑉𝑢∗) was used for design. Increasing the value 

of 𝑉𝑢 (used to compute ℇ𝑠) by a factor of 1.06, or (
1

0.95
), reduced the computed 𝑉𝑛 value 

which, as a result, required increasing the design shear capacity. In total, two factors are 

proposed, one factor ( 
𝑣

= 1.06) for the design shear load and the other (𝜙𝑟 = 0.95) for 

the nominal shear resistance in place of the original resistance factor (𝜙 = 0.9) specified 

by the current LRFD code. Thus, 𝜙𝑟  𝑉𝑛 = 𝑉𝑢 and 𝑉𝑢∗ = 
𝑣
 𝑉𝑢 , where 𝑉𝑛 is the nominal 

shear capacity, 𝑉𝑢  is the factored shear load specified by the LRFD code, and 𝑉𝑢∗ is the 

new shear load value used to compute ℇ𝑠. 

9) Reliability indices for girder cases designed in accordance to the current LRFD code (HL-

93 LL) were computed based on live load data from the state of Michigan. This reliability 

analysis was based on the original code method for calculating Vn, and considered the 

regression factor (𝑟𝑟) resulted from the proposed equation 6.2. Applying the regression 

factor resulted in significantly higher reliability indices than those for the original cases 

(without the regression factor) and from those reported in NCHRP 368. In contrast, low 

reliability indices resulted (≤3) under MI live loads when the Original LRFD Procedure 

was used for design. 
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10) Rating factors (RF) at inventory and operating levels were computed for ASSHTO Types 

II, III, and IV bridge girders under both HL-93 and MI live loads. The rating was based on 

the original code method for calculating Vn, and on the regression factor resulted from the 

proposed equation 6.1. When the regression factor was included, the resulted RFs for all 

the design cases were ≥1 when the HL-93 or MI live loads were used for evaluation. 

Conversely, when no regression factor was used, rating factors less than 1 resulted only 

when the MI live loads were considered for evaluation.   

6.2 Conclusions 

1) The developed FEA model proved to be a reliable and slightly conservative tool in 

predicting the shear capacity of PC concrete girders. 

2) Reliability indices tend to increase as the girder size increases, and to decrease as the 

span length and girder spacing increase. 

3) The current LRFD General Procedure for shear design produced inconsistent reliability 

indices with several values less than 3.5. 

4) Low reliability indices (≤3) resulted using the Original LRFD Procedure for design when 

MI live loads were considered for analysis. 

5) The proposed modification to the current LRFD General Procedure produced more 

consistent reliability indices. In particular, the proposed increase in shear and moment 

values used to compute the longitudinal strain. 

6) The application of the proposed design factor resulted in a lower design capacity in 

general, but with a minimum reliability index of 3.5, which does not fall below the target 

reliability index of 3.5 specified in the NCHRP 368 report. 
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6.3 Recommendations 

For evaluation, to best estimate the shear capacity of MDOT PC girders within the range of 

beam parameters considered in this study, it is recommended that the developed linear regression 

function is used in conjunction with the modified AASHTO LRFD procedure as described in 

Chapter 2 and Appendix E. 

For design, it is recommended to use the modified LRFD method described in Chapter 5 which 

produced more consistent reliability indices with a lower limit of 3.5 compared to those computed 

based on current General LRFD Procedure for shear design. 

For further verification of PC girder shear capacity, it is recommended that a field load test, 

in the form of monitoring, is considered.  Several existing MDOT reports include details on the 

load testing of bridges.     

Finally, for MDOT PC bridges, it is recommended to evaluate and load rate the existing 

bridges in the state of Michigan based on the MI live loads used in this study (Eamon et al., 2014). 
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APPENDIX A: GIRDER TEST RESULTS AND CASTING DATA 

 

Figure A1. Girder 1-Test 1 first cracking load 

 

 

Figure A2. Girder 1-Test 1 flexural cracks 
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Figure A3. Girder 1-Test 1 peak load prior to failure 

 

 

Figure A4. Girder 1-Test 1 failure 
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Figure A5. Girder 1-Test 2 first cracking load 

 

 

Figure A6. Girder 1-Test 2 at 260 kips 
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Figure A7. Girder 1-Test 2 failure 

 

 

Figure A8. Girder 1-Test 3 first cracking load 
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Figure A9. Girder 1-Test 3 peak load prior to failure 

 

 

Figure A10. Girder 1-Test 3 failure 
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Figure A11. Girder 2-Test 1 first cracking load 

 

 
Figure A12. Girder 2-Test 1 peak load prior to failure 

180 kips

L1L2

294 kips

L1L2
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Figure A13. Girder 2-Test 2 first cracking load 

 

 

Figure A14. Girder 2-Test 2 flexural cracks 
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Figure A15. Girder 2-Test 2 peak load prior to failure 

 

 

Figure A16. Girder 2-Test 2 failure 

 

R1 R2 R3
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Figure A17. Girder 2-Test 3 first cracking load 

 

 

Figure A18. Girder 2-Test 3 peak load prior to failure 
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Girder 1 Casting Specification Sheet  
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Girder 2 Casting Specification Sheet 
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APPENDIX B: FEA MODEL VERIFICATION DATA  

Verification Data Set 1: Saqan and Frosch Tests 

The following dimensions and reinforcement details were used in the FEA models. 

 

Figure B1. Beam V-4-0 cross section; 1 in=25.4 mm 

 

 

Figure B2. Beam V-4-0.93 cross section; 1 in=25.4 mm 
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Figure B3. Beam V-4-2.37 cross section; 1 in=25.4 mm 

The truss reinforcement is perfectly bonded over the entire beam length and a prestress force 

of 480 kN was applied as a prestrain to the prestressing truss elements. 

 Reinforcement material properties: 

o Prestressing steel: 

 Yield Strength, 𝐹𝑦 = 1517 𝑀𝑃𝑎 

 Ultimate Strength, 𝐹𝑢 = 1862 𝑀𝑃𝑎 

 Elastic modulus, 𝐸𝑠 = 193000 𝑀𝑃𝑎 

 Strain hardening Strain, 𝑒𝑠ℎ = 10 𝑚𝑒 

 Prestrain, 𝐷𝑒𝑝 = 4.7 𝑚𝑒 

o Mild steel: 

 Yield Strength, 𝐹𝑦 = 413 𝑀𝑃𝑎 

 Ultimate Strength, 𝐹𝑢 = 620 𝑀𝑃𝑎 

 Elastic modulus, 𝐸𝑠 = 200000 𝑀𝑃𝑎 
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 Strain hardening Strain, 𝑒𝑠ℎ = 10 𝑚𝑒 

 Concrete model properties: 

o Cylinder compressive strength, 𝑓𝑐
′ = 41.8 𝑀𝑃𝑎  

o Tensile strength, 𝑓𝑡
′ = 2950 𝑀𝑃𝑎 

o Cylinder strain at 𝑓𝑐
′, 𝑒𝑜 = 2.1 𝑚𝑒 

o Poisson’s ratio, 𝑀𝑢 = 0.15 

o Thermal expansion coefficient, 𝐶𝑐 = 1𝑒 − 5 /∁° 

o Maximum aggregate size, 𝑎 = 20 𝑚𝑚 

o Density= 2400 
𝑘𝑔

𝑚3⁄  

o Thermal diffusivity, = 𝐾𝑐 = 1.2 𝑚𝑚2

𝑠⁄  

 

Table B1. FEA model mesh details 

Beam ID Beam V-4-0 Beam V-4-0.93 Beam V-4-2.37 

Number of  concrete materials 1 1 1 

Number of steel materials 1 1 1 

Structure type Plane 

membrane 

Plane membrane Plane membrane 

Rectangular elements 2800 2604 2604 

Truss elements 25 186 186 

Nodes 2929 2726 2726 

Restrained nodes 30 30 30 

Total number of elements  2825 2790 2790 

Mesh density 

(𝑚𝑚2  𝑒𝑙𝑒𝑚𝑒𝑛𝑡)⁄  

581.25 625 625 
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Verification Data Set 3: Girder Lab Testing  

Beam 1 Dimensions and Materials Properties 

The following dimensions and reinforcement details were used for modeling Girder 1 in 

VecTor2 (Original Model). 

 

Figure B4. Type II girder initial cross section model; 1 in=25.4 mm 

The truss reinforcement is perfectly bonded over the entire beam length and a prestress force 

of 32.15 kips (143 KN) was applied as a prestrain (7.52 me) to each strand. Mesh and element 

information for each test are summarized in Table B2. 

 Reinforcement material properties: 

o Prestressing Steel: 

 Yield Strength, 𝐹𝑦 = 1676 𝑀𝑃𝑎 (243 𝑘𝑠𝑖) 

 Ultimate Strength, 𝐹𝑢 = 1862 𝑀𝑃𝑎 (270 𝑘𝑠𝑖) 

 Elastic modulus, 𝐸𝑠 = 196500 𝑀𝑃𝑎 (28500 𝑘𝑠𝑖) 

 Strain hardening Strain, 𝑒𝑠ℎ = 10 𝑚𝑒 

 Prestrain, 𝐷𝑒𝑝 = 7.52 𝑚𝑒 
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o Mild steel: 

 Yield Strength, 𝐹𝑦 = 413 𝑀𝑃𝑎 (60 ksi) 

 Ultimate Strength, 𝐹𝑢 = 620 𝑀𝑃𝑎 (90 ksi) 

 Elastic modulus, 𝐸𝑠 = 200000 𝑀𝑃𝑎 (29000 ksi) 

 Strain hardening Strain, 𝑒𝑠ℎ = 10 𝑚𝑒 

 Concrete model properties: 

o Cylinder compressive strength, 𝑓𝑐
′ = 42 − 63 𝑀𝑃𝑎 (6100 − 9200 𝑝𝑠𝑖)  

o Tensile strength, 𝑓𝑡
′ = 2.3 − 2.7 𝑀𝑃𝑎 (310 − 392 𝑝𝑠𝑖)  

o Cylinder strain at 𝑓𝑐
′, 𝑒𝑜 = 2.55 𝑚𝑒 

o Poisson’s ratio, 𝑀𝑢 = 0.15 

o Thermal expansion coefficient, 𝐶𝑐 = 1𝑒 − 5 /∁° 

o Maximum aggregate size, 𝑎 = 25 𝑚𝑚 (1 𝑖𝑛) 

o Concrete Density= 2400 
𝑘𝑔

𝑚3⁄  (150 𝑙𝑏
𝑓𝑡3⁄ ) 

o Thermal diffusivity, = 𝐾𝑐 = 1.2 𝑚𝑚2

𝑠⁄  (0.00186 𝑖𝑛
2

𝑠⁄  )  
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Table B2. FEA models details for Girder 1 

Test ID Test 1 Test 2 Test 3 

Number of  concrete materials 1 1 2 

Number of steel materials 2 2 2 

Element type Plane membrane Plane membrane Plane membrane 

Rectangular elements 4328 4608 3816 

Triangular elements 144 156 126 

Truss elements 685 730 530 

Nodes 4574 4869 3959 

Restrained nodes 5 5 5 

Total number of elements  5157 5494 4472 

Mesh density 

(𝑚𝑚2  𝑒𝑙𝑒𝑚𝑒𝑛𝑡)⁄  625 625 625 

 

Table B2. Summary of Girder 1 test parameters 

Design Stirrups spacing (in) a/d  ratio 

Test 1 8 2.8 

Test 2 8 3.4 

Test 3 21 3.4 
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Girder 1 Original FEA Model Results Summary 

Girder 1- Test 1 

 

Figure B5. Girder 1-Test 1 model results (f’c=7.5 ksi) 

Table B3. Girder 1-Test 1 model results 

f’c (ksi) Shear cracking load (kips) Ultimate failure load (kips) 

Test 180 299 

6.1 147 248 

7.5 156 265 

9.2 166 278 
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Figure B6. Load versus deflection results (Girder 1-Test 1) 
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Girder 1- Test 2 

 

Figure B7. Girder 1-Test 2 model results (f’c=7.8 ksi) 

Table B4. Girder 1-Test 2 model results 

f’c (ksi) Shear cracking load (kips) Ultimate failure load (kips) 

Test 190 262 

6.5 157 232 

7.8 167 239 

9.5 175 245 
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Figure B8. Load versus deflection results (Girder 1-Test 2) 
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Girder 1- Test 3 

 

Figure B9. Girder 1-Test 3 model results (f’c=8.6 ksi) 

Table B5. Girder 1-Test 3 model results 

f’c (ksi) Shear cracking load (kips)* Ultimate failure load (kips) 

Test 227 356 

7.5 225 264 

8.6 226 280 

8.6 Modified Model 245 337 

10.0 242 299 

*Shear cracking load in Test 3 was less than the FEA model results due to the existing cracks in the beam from Test 

1 and Test 2. 
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Figure B10. Load versus deflection results (Girder 1-Test 3) 
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Load vs. Deflection (Girder 1- Modified Model) 

 

Figure B11. Load versus deflection results (Girder 1-Test 1) 

 

Table B6. Modified model results for Girder 1-Test 1 

 

 

Ultimate failure load (Kips) 

Test 1 299 

f’c = 7.5 ksi 266 

f’c = 9.2 ksi 279 
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Figure B12. Load versus deflection results (Girder 1 -Test 2) 

Table B7. Modified model results for Girder 1-Test 2 

 

 

Ultimate failure load (Kips) 

Test 2 262 

f’c = 7.8 ksi 239 

f’c = 9.5 ksi 244 
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Figure B13. Load versus deflection results (Girder 1-Test 3) 

Table B8. Modified model results for Girder 1-Test 3 

 

 

Ultimate failure load (Kips) 

Test 3 356 

f’c = 8.6 ksi 337 

f’c = 10.0 ksi 353 
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Stirrups Strain Data (Girder 1) 

 

Figure B14. Girder 1- Test 1 stirrups strain gauges locations 

 

Figure B15. Girder 1- Test 1 (7.5 ksi) stirrups strains comparison with FEA results 
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Figure B16. Girder 1- Test 2 stirrups strain gauges locations 

 

Figure B17. Girder 1- Test 2 (7.8 ksi) stirrups strains comparison with FEA results 
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Figure B18. Girder 1- Test 3 stirrups strain gauges locations 

 

 

Figure B19. Girder 1- Test 3 (8.6 ksi) stirrups strains comparison with FEA results 
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Girder 2 Dimensions and Materials Properties 

Similarly to Girder 1 testing, three tested were performed on Girder 2 considering three 

different loading (P1, P2 and P3) and three different sets of boundary conditions.  The layout for 

Girder 2 is shown in Figure B20. The modeling technique, mesh density and loading type for 

Girder 1 FEA model were used in modeling Girder 2. 

 Reinforcement material properties: 

o Prestressing Steel: same as Girder 1 (except that Prestrain, 𝐷𝑒𝑝 = 5.43 𝑚𝑒) 

o Mild Steel: same as Girder 1 

 Concrete Model Properties: 

o Cylinder compressive strength, 𝑓𝑐
′ = 63 𝑀𝑃𝑎 (9200 𝑝𝑠𝑖)  

o Tensile strength, 𝑓𝑡
′ = 2.6 𝑀𝑃𝑎 (381 𝑝𝑠𝑖)  

o Cylinder strain at 𝑓𝑐
′, 𝑒𝑜 = 2.70 𝑚𝑒 

o Poisson’s ratio, 𝑀𝑢 = 0.15 

o Thermal expansion coefficient, 𝐶𝑐 = 1𝑒 − 5 /∁° 

o Maximum aggregate size, 𝑎 = 25 𝑚𝑚 (1 𝑖𝑛) 

o Concrete Density= 2400 
𝑘𝑔

𝑚3⁄  (150 𝑙𝑏
𝑓𝑡3⁄ ) 

o Thermal diffusivity, = 𝐾𝑐 = 1.2 𝑚𝑚2

𝑠⁄  (0.00186 𝑖𝑛
2

𝑠⁄  )  
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Figure B20. Girder 2 test setup and cross section details 

 

 

 

 

 

 

 

 

 

 



173 
 

 
 

Girder 2 FEA Model (Modified) Results Summary 

Girder 2-Test 1 

 

Figure 2. Girder 2-Test 1 model set up 

 

 

Figure B20. Girder 2-Test 1 model results (f’c=9.2 ksi) 
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Figure B21. Load versus deflection results (Girder 2-Test 1) 

Girder 2-Test 2 

 

Figure B22. Girder 2-Test 2 model set up 
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Figure B23. Girder 2-Test 2 model results (f’c=9.2 ksi) 

 

 

Figure B24. Load versus deflection results (Girder 2-Test 2) 
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Girder 2-Test 3 

 

Figure B25. Girder 2-Test 3 model set up 

 

Figure B26. Girder 2-Test 3 model results (f’c=9.2 ksi) 
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Figure B27. Load versus deflection results (Girder 2-Test 3) 
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APPENDIX C: PARAMETRIC ANALYSIS RESULTS 

 

Figure C1. Example of girder Type II failure at different load locations (parametric analysis) 
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Figure F6. Example of girder Type III failure (parametric analysis) 

 

Figure C2. Example of girder Type IV failure (parametric analysis) 

 

Table C1. FEA models parameters 

 

Variable Avg. Stress (ksi) Concrete  f'c (psi) Strands Profile Load Location Stirrups Spacing (in)

1 0.5 5500 Straight/Harped h/2 (Standard) 3 (min)

2 1.5 8000 Straight/Harped LRFD 24 (max)

3 2.5 - - L/4 (1979) 12 (avg)
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Table C2. Models combinations for girder Types II, III, and IV 

 

Combination # Girder Type Avg. Stress Concrete f'c Load Location Stirrups Spacing Strands Profile

1 II, III, IV 1 1 1 1 S, H

2 II, III, IV 2 1 1 1 S, H

3 II, III, IV 1 2 1 1 S, H

4 II, III, IV 1 1 1 2 S, H

5 II, III, IV 2 2 1 2 S, H

6 II, III, IV 2 2 1 1 S, H

7 II, III, IV 2 1 1 2 S, H

8 II, III, IV 1 2 1 2 S, H

9 II, III, IV 3 1 1 1 S, H

10 II, III, IV 3 2 1 2 S, H

11 II, III, IV 3 2 1 1 S, H

12 II, III, IV 3 1 1 2 S, H

13 II, III, IV 1 1 1 3 S, H

14 II, III, IV 2 2 1 3 S, H

15 II, III, IV 2 1 1 3 S, H

16 II, III, IV 1 2 1 3 S, H

17 II, III, IV 3 1 1 3 S, H

18 II, III, IV 3 2 1 3 S, H

19 II, III, IV 1 1 2 1 S, H

20 II, III, IV 2 1 2 1 S, H

21 II, III, IV 1 2 2 1 S, H

22 II, III, IV 1 1 2 2 S, H

23 II, III, IV 2 2 2 2 S, H

24 II, III, IV 2 2 2 1 S, H

25 II, III, IV 2 1 2 2 S, H

26 II, III, IV 1 2 2 2 S, H

27 II, III, IV 3 1 2 1 S, H

28 II, III, IV 3 2 2 2 S, H

29 II, III, IV 3 2 2 1 S, H

30 II, III, IV 3 1 2 2 S, H

31 II, III, IV 1 1 2 3 S, H

32 II, III, IV 2 2 2 3 S, H

33 II, III, IV 2 1 2 3 S, H

34 II, III, IV 1 2 2 3 S, H

35 II, III, IV 3 1 2 3 S, H

36 II, III, IV 3 2 2 3 S, H

37 II, III, IV 1 1 3 1 S, H

38 II, III, IV 2 1 3 1 S, H

39 II, III, IV 1 2 3 1 S, H

40 II, III, IV 1 1 3 2 S, H

41 II, III, IV 2 2 3 2 S, H

42 II, III, IV 2 2 3 1 S, H

43 II, III, IV 2 1 3 2 S, H

44 II, III, IV 1 2 3 2 S, H

45 II, III, IV 3 1 3 1 S, H

46 II, III, IV 3 2 3 2 S, H

47 II, III, IV 3 2 3 1 S, H

48 II, III, IV 3 1 3 2 S, H

49 II, III, IV 1 1 3 3 S, H

50 II, III, IV 2 2 3 3 S, H

51 II, III, IV 2 1 3 3 S, H

52 II, III, IV 1 2 3 3 S, H

53 II, III, IV 3 1 3 3 S, H

54 II, III, IV 3 2 3 3 S, H
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Table C3. Results for Girder Type II, Straight Strands, Aps at Tension Controlled Limit 

 

 

 

 

 

 

 

 

 

 

 

 

FEA, kips Code (Vn), kips

Type II 1 2 3 4 5 6 7 8

Combination # h/2 LRFD L/4 Standard LRFD Interim 1979 LRFD (Ɛx_max) LRFD (HL-93)

1 346.2 323.7 310.2 243.3 260.1 282.2 106.8 270.9

2 404.7 427.1 337.2 243.3 260.1 282.2 106.8 270.9

3 431.6 400.2 328.2 252.6 235.0 305.7 108.9 281.8

4 314.7 274.3 170.9 131.3 88.6 80.5 24.3 86.4

5 490.1 445.1 274.3 140.6 99.3 104.0 24.3 86.4

6 508.1 517.1 364.2 252.6 235.0 305.7 108.9 281.8

7 391.2 364.2 233.8 131.3 88.6 80.5 24.3 86.4

8 355.2 305.7 193.3 140.6 99.3 104.0 24.3 86.4

9 463.1 458.6 346.2 243.3 260.1 282.2 106.8 270.9

10 521.6 454.1 292.3 140.6 99.3 104.0 24.3 86.4

11 526.1 530.5 368.7 252.6 235.0 305.7 108.9 281.8

12 418.1 386.7 256.3 131.3 88.6 80.5 24.3 86.4

13 319.2 287.8 193.3 147.3 113.6 109.3 34.3 112.7

14 517.1 445.1 310.2 156.6 124.2 132.8 36.4 124.1

15 404.7 382.2 274.3 147.3 113.6 109.3 34.3 112.7

16 355.2 332.7 220.3 156.6 124.2 132.8 36.4 124.1

17 436.1 395.7 296.7 147.3 113.6 109.3 34.3 112.7

18 521.6 467.6 328.2 156.6 124.2 132.8 36.4 124.1

Comparison # (1/4) (2/5) (3/6) (3/4) (3/5) (3/7) (2/8) (3/8)

1 1.42 1.24 1.10 1.27 1.19 2.90 1.20 1.15

2 1.66 1.64 1.20 1.39 1.30 3.16 1.58 1.24

3 1.71 1.70 1.07 1.30 1.40 3.01 1.42 1.16

4 2.40 3.09 2.12 1.30 1.93 7.03 3.17 1.98

5 3.49 4.48 2.64 1.95 2.76 11.29 5.15 3.17

6 2.01 2.20 1.19 1.44 1.55 3.34 1.83 1.29

7 2.98 4.11 2.90 1.78 2.64 9.62 4.22 2.71

8 2.53 3.08 1.86 1.38 1.95 7.96 3.54 2.24

9 1.90 1.76 1.23 1.42 1.33 3.24 1.69 1.28

10 3.71 4.57 2.81 2.08 2.94 12.03 5.26 3.38

11 2.08 2.26 1.21 1.46 1.57 3.38 1.88 1.31

12 3.18 4.36 3.18 1.95 2.89 10.55 4.48 2.97

13 2.17 2.53 1.77 1.31 1.70 5.64 2.55 1.71

14 3.30 3.58 2.34 1.98 2.50 8.53 3.59 2.50

15 2.75 3.37 2.51 1.86 2.42 8.00 3.39 2.43

16 2.27 2.68 1.66 1.41 1.77 6.05 2.68 1.78

17 2.96 3.48 2.71 2.01 2.61 8.65 3.51 2.63

18 3.33 3.76 2.47 2.10 2.64 9.02 3.77 2.65

Mean 2.55 3.00 2.00 1.63 2.06 6.85 3.05 2.09

STDEV. 0.69 1.05 0.72 0.32 0.61 3.11 1.27 0.75

COV 0.27 0.35 0.36 0.19 0.30 0.45 0.42 0.36
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Table C4. Results for girder Type III, Straight Strands, Aps at Tension Controlled Limit 

 

 

 

 

 

 

 

 

 

 

FEA, kips Code (Vn), kips

Type III 1 2 3 4 5 6 7

Combination # h/2 LRFD L/4 Standard LRFD Interim 1979 LRFD (Ɛx_max)

1 499.1 499.1 458.6 334.8 327.7 381.9 142.5

2 589.0 616.0 580.0 334.8 327.7 381.9 142.5

3 589.0 593.5 526.1 349.0 332.8 417.9 145.7

4 422.6 373.2 296.7 187.6 134.5 117.0 31.4

5 660.9 607.0 467.6 201.9 159.2 153.0 34.6

6 737.4 714.9 643.0 349.0 332.8 417.9 145.7

7 562.0 499.1 395.7 187.6 134.5 117.0 31.4

8 512.6 422.6 319.2 201.9 159.2 153.0 34.6

9 625.0 629.5 602.5 334.8 327.7 381.9 142.5

10 705.9 602.5 472.1 201.9 159.2 153.0 34.6

11 714.9 737.4 660.9 349.0 332.8 417.9 145.7

12 589.0 539.5 391.2 187.6 134.5 117.0 31.4

13 440.6 391.2 328.2 208.6 170.9 154.9 47.3

14 674.4 616.0 499.1 222.9 186.9 190.9 50.5

15 566.5 508.1 440.6 208.6 170.9 154.9 47.3

16 481.1 449.6 350.7 222.9 186.9 190.9 50.5

17 580.0 539.5 458.6 208.6 170.9 154.9 47.3

18 687.9 620.5 517.1 222.9 186.9 190.9 50.5

Comparison # (1/4) (2/5) (3/6) (3/4) (3/5) (3/7)

1 1.49 1.52 1.20 1.37 1.40 3.22

2 1.76 1.88 1.52 1.73 1.77 4.07

3 1.69 1.78 1.26 1.51 1.58 3.61

4 2.25 2.78 2.54 1.58 2.21 9.45

5 3.27 3.81 3.06 2.32 2.94 13.52

6 2.11 2.15 1.54 1.84 1.93 4.41

7 3.00 3.71 3.38 2.11 2.94 12.60

8 2.54 2.66 2.09 1.58 2.01 9.23

9 1.87 1.92 1.58 1.80 1.84 4.23

10 3.50 3.79 3.08 2.34 2.97 13.65

11 2.05 2.22 1.58 1.89 1.99 4.54

12 3.14 4.01 3.34 2.09 2.91 12.46

13 2.11 2.29 2.12 1.57 1.92 6.94

14 3.03 3.29 2.61 2.24 2.67 9.89

15 2.72 2.97 2.84 2.11 2.58 9.32

16 2.16 2.41 1.84 1.57 1.88 6.95

17 2.78 3.16 2.96 2.20 2.68 9.70

18 3.09 3.32 2.71 2.32 2.77 10.24

Mean 2.47 2.76 2.29 1.90 2.28 8.22

STDEV. 0.61 0.78 0.74 0.32 0.52 3.58

COV 0.25 0.28 0.32 0.17 0.23 0.44



183 
 

 
 

Table C5. Results for girder Type IV, Straight Strands, Aps at Tension Controlled Limit 

 

 

 

 

 

 

 

 

 

FEA, kips Code (Vn), kips

Type IV 1 2 3 4 5 6 7

Combination # h/2 LRFD L/4 Standard LRFD Interim 1979 LRFD (Ɛx_max)

1 634.0 638.5 634.0 418.2 405.4 482.9 177.7

2 728.4 800.3 813.8 418.2 405.4 482.9 177.7

3 737.4 741.9 714.9 438.2 412.0 533.4 182.2

4 535.0 445.1 418.1 237.5 172.5 157.6 41.3

5 827.3 723.9 625.0 257.5 195.7 208.1 45.8

6 908.2 926.2 912.7 438.2 412.0 533.4 182.2

7 683.4 643.0 557.5 237.5 172.5 157.6 41.3

8 607.0 535.0 463.1 257.5 195.7 208.1 45.8

9 782.3 791.3 822.8 418.2 405.4 482.9 177.7

10 867.8 741.9 683.4 257.5 195.7 208.1 45.8

11 939.7 935.2 930.7 438.2 412.0 533.4 182.2

12 741.9 651.9 598.0 237.5 172.5 157.6 41.3

13 526.1 508.1 449.6 263.3 212.7 204.1 60.8

14 863.3 750.9 710.4 283.4 235.8 254.6 65.3

15 687.9 643.0 598.0 263.3 212.7 204.1 60.8

16 616.0 580.0 481.1 283.4 235.8 254.6 65.3

17 741.9 669.9 634.0 263.3 212.7 204.1 60.8

18 876.8 800.3 723.9 283.4 235.8 254.6 65.3

Comparison # (1/4) (2/5) (3/6) (3/4) (3/5) (3/7)

1 1.52 1.57 1.31 1.52 1.56 3.57

2 1.74 1.97 1.69 1.95 2.01 4.58

3 1.68 1.80 1.34 1.63 1.74 3.92

4 2.25 2.58 2.65 1.76 2.42 10.13

5 3.21 3.70 3.00 2.43 3.19 13.66

6 2.07 2.25 1.71 2.08 2.22 5.01

7 2.88 3.73 3.54 2.35 3.23 13.51

8 2.36 2.73 2.23 1.80 2.37 10.12

9 1.87 1.95 1.70 1.97 2.03 4.63

10 3.37 3.79 3.28 2.65 3.49 14.93

11 2.14 2.27 1.74 2.12 2.26 5.11

12 3.12 3.78 3.79 2.52 3.47 14.49

13 2.00 2.39 2.20 1.71 2.11 7.40

14 3.05 3.18 2.79 2.51 3.01 10.89

15 2.61 3.02 2.93 2.27 2.81 9.84

16 2.17 2.46 1.89 1.70 2.04 7.37

17 2.82 3.15 3.11 2.41 2.98 10.43

18 3.09 3.39 2.84 2.55 3.07 11.09

Mean 2.44 2.76 2.43 2.11 2.56 8.93

STDEV. 0.59 0.73 0.77 0.37 0.61 3.84

COV 0.24 0.26 0.32 0.17 0.24 0.43
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Table C6. Summary of results for girder Types II-IV, straight strands, Aps at tension controlled 

limit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean

Comparison (1/4) (2/5) (3/6) (3/4) (3/5) (3/7)

II 2.55 3.00 2.00 1.63 2.06 6.85

III 2.47 2.76 2.29 1.90 2.28 8.22

IV 2.44 2.76 2.43 2.11 2.56 8.93

Mean 2.49 2.84 2.24 1.88 2.30 8.00

COV

Comparison (1/4) (2/5) (3/6) (3/4) (3/5) (3/7)

II 0.27 0.35 0.36 0.19 0.30 0.45

III 0.25 0.28 0.32 0.17 0.23 0.44

IV 0.24 0.26 0.32 0.17 0.24 0.43

Mean 0.25 0.30 0.33 0.18 0.25 0.44

STDEV. 0.02 0.04 0.02 0.01 0.04 0.01

COV 0.07 0.15 0.07 0.07 0.14 0.03
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Table C7. Results for girder Type II, harped strands, Aps at tension controlled limit 

 

 

 

 

 

 

 

 

 

 

FEA, kips Code (Vn), kips

Type II (Harped) 1 2 3 4 5 6 7

Combination # h/2 LRFD L/4 Standard LRFD Interim 1979 LRFD (Ɛx_max)

1 368.7 - 314.7 255.1 236.1 288.0 112.7

2 463.1 - 355.2 278.5 236.1 299.7 124.4

3 431.6 - 368.7 264.4 239.0 311.5 114.8

4 332.7 - 197.8 143.0 94.3 86.3 28.1

5 512.6 - 296.7 175.7 116.4 121.5 41.9

6 553.0 - 386.7 287.8 247.5 323.2 126.5

7 436.1 - 265.3 166.4 105.7 98.1 39.8

8 386.7 - 220.3 152.3 105.0 109.8 30.2

9 467.6 - 368.7 301.9 253.0 311.5 136.1

10 539.5 - 337.2 199.2 127.9 133.3 53.6

11 566.5 - 395.7 311.2 270.8 334.9 138.2

12 445.1 - 283.3 189.9 117.1 109.8 51.5

13 373.2 - 220.3 159.0 119.2 115.2 40.2

14 526.1 - 337.2 191.7 141.3 150.4 54.0

15 454.1 - 305.7 182.4 130.6 126.9 51.9

16 368.7 - 247.3 168.3 129.9 138.6 42.2

17 476.6 - 328.2 205.9 142.0 138.6 63.6

18 548.5 - 364.2 215.2 152.7 162.1 65.7

Comparison # (1/4) (3/6) (3/4) (3/5) (3/7)

1 1.45 1.09 1.23 1.33 2.79

2 1.66 1.19 1.28 1.50 2.86

3 1.63 1.18 1.39 1.54 3.21

4 2.33 2.29 1.38 2.10 7.05

5 2.92 2.44 1.69 2.55 7.09

6 1.92 1.20 1.34 1.56 3.06

7 2.62 2.71 1.59 2.51 6.67

8 2.54 2.01 1.45 2.10 7.31

9 1.55 1.18 1.22 1.46 2.71

10 2.71 2.53 1.69 2.64 6.29

11 1.82 1.18 1.27 1.46 2.86

12 2.34 2.58 1.49 2.42 5.50

13 2.35 1.91 1.39 1.85 5.49

14 2.74 2.24 1.76 2.39 6.25

15 2.49 2.41 1.68 2.34 5.89

16 2.19 1.78 1.47 1.90 5.85

17 2.32 2.37 1.59 2.31 5.16

18 2.55 2.25 1.69 2.38 5.55

Mean 2.23 1.92 1.48 2.02 5.09

STDEV. 0.45 0.59 0.18 0.45 1.69

COV 0.20 0.31 0.12 0.22 0.33
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Table C8. Results for girder Type III, harped strands, Aps at tension controlled limit 

 

 

 

 

 

 

 

 

 

 

FEA, kips Code (Vn), kips

Type III (Harped) 1 2 3 4 5 6 7

Combination # h/2 LRFD L/4 Standard LRFD Interim 1979 LRFD (Ɛx_max)

1 517.1 - 485.6 343.7 334.1 390.9 151.5

2 629.5 - 620.5 361.6 346.8 408.8 169.4

3 616.0 - 548.5 358.0 339.2 426.9 154.7

4 449.6 - 346.2 196.5 143.0 126.0 40.3

5 696.9 - 517.1 228.7 176.0 179.8 61.4

6 755.4 - 678.9 375.8 395.8 444.8 172.6

7 607.0 - 445.1 214.4 160.2 143.8 58.2

8 512.6 - 377.7 210.8 158.7 162.0 43.5

9 634.0 - 643.0 379.5 359.8 426.6 187.2

10 746.4 - 517.1 246.5 193.2 197.7 79.3

11 777.8 - 701.4 393.7 364.7 462.6 190.4

12 625.0 - 472.1 232.3 177.3 161.7 76.1

13 445.1 - 364.2 217.6 174.9 163.8 56.2

14 705.9 - 566.5 249.7 207.9 217.7 77.3

15 593.5 - 494.6 235.4 192.1 181.7 74.1

16 526.1 - 404.7 217.6 190.7 163.8 59.4

17 584.5 - 512.6 253.3 215.8 199.6 92.0

18 741.9 - 584.5 267.6 230.6 235.6 95.2

Comparison # (1/4) (3/6) (3/4) (3/5) (3/7)

1 1.50 1.24 1.41 1.45 3.21

2 1.74 1.52 1.72 1.79 3.66

3 1.72 1.28 1.53 1.62 3.55

4 2.29 2.75 1.76 2.42 8.58

5 3.05 2.88 2.26 2.94 8.42

6 2.01 1.53 1.81 1.72 3.93

7 2.83 3.09 2.08 2.78 7.65

8 2.43 2.33 1.79 2.38 8.68

9 1.67 1.51 1.69 1.79 3.43

10 3.03 2.62 2.10 2.68 6.52

11 1.98 1.52 1.78 1.92 3.68

12 2.69 2.92 2.03 2.66 6.20

13 2.05 2.22 1.67 2.08 6.48

14 2.83 2.60 2.27 2.73 7.33

15 2.52 2.72 2.10 2.58 6.68

16 2.42 2.47 1.86 2.12 6.81

17 2.31 2.57 2.02 2.37 5.57

18 2.77 2.48 2.18 2.53 6.14

Mean 2.32 2.24 1.89 2.25 5.92

STDEV. 0.49 0.62 0.25 0.45 1.90

COV 0.21 0.28 0.13 0.20 0.32
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Table C9. Results for girder Type IV, harped strands, Aps at tension controlled limit 

 

 

 

 

 

 

 

 

 

FEA, kips Code (Vn), kips

Type IV (Harped) 1 2 3 4 5 6 7

Combination # h/2 LRFD L/4 Standard LRFD Interim 1979 LRFD (Ɛx_max)

1 669.9 - 660.9 432.3 418.5 497.0 191.8

2 719.4 - 858.8 460.6 439.0 525.2 220.1

3 782.3 - 750.9 452.3 425.1 547.5 196.3

4 557.5 - 485.6 251.6 187.2 171.7 55.4

5 858.8 - 732.9 299.9 238.0 250.4 88.1

6 867.8 - 953.2 480.6 445.5 575.7 224.5

7 701.4 - 660.9 279.8 214.8 199.9 83.6

8 710.4 - 548.5 271.6 210.5 222.2 59.9

9 791.3 - 876.8 488.8 459.7 553.4 248.3

10 881.3 - 777.8 328.1 265.6 278.6 116.3

11 944.2 - 980.2 508.8 466.1 603.9 252.8

12 741.9 - 665.4 308.1 242.3 228.1 111.8

13 602.5 - 508.1 277.5 228.4 218.2 74.9

14 890.2 - 746.4 325.7 279.2 296.9 107.6

15 773.3 - 696.9 305.7 255.9 246.4 103.1

16 705.9 - 557.5 297.5 251.6 268.7 79.4

17 795.8 - 701.4 333.9 283.5 274.6 131.3

18 894.7 - 791.3 353.9 306.7 325.1 135.8

Comparison # (1/4) (3/6) (3/4) (3/5) (3/7)

1 1.55 1.33 1.53 1.58 3.45

2 1.56 1.64 1.86 1.96 3.90

3 1.73 1.37 1.66 1.77 3.82

4 2.22 2.83 1.93 2.59 8.77

5 2.86 2.93 2.44 3.08 8.32

6 1.81 1.66 1.98 2.14 4.25

7 2.51 3.31 2.36 3.08 7.91

8 2.62 2.47 2.02 2.61 9.16

9 1.62 1.58 1.79 1.91 3.53

10 2.69 2.79 2.37 2.93 6.69

11 1.86 1.62 1.93 2.10 3.88

12 2.41 2.92 2.16 2.75 5.95

13 2.17 2.33 1.83 2.22 6.79

14 2.73 2.51 2.29 2.67 6.94

15 2.53 2.83 2.28 2.72 6.76

16 2.37 2.08 1.87 2.22 7.03

17 2.38 2.55 2.10 2.47 5.34

18 2.53 2.43 2.24 2.58 5.83

Mean 2.23 2.29 2.04 2.41 6.02

STDEV. 0.43 0.61 0.26 0.44 1.88

COV 0.19 0.27 0.13 0.18 0.31
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Table C10. Summary of results for girder Types II-IV, harped Strands, Aps at tension controlled 

limit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean

Comparison (1/4) (3/6) (3/4) (3/5) (3/7)

II 2.23 1.92 1.48 2.02 5.09

III 2.32 2.24 1.89 2.25 5.92

IV 2.23 2.29 2.04 2.41 6.02

Mean 2.26 2.15 1.80 2.23 5.67

COV

Comparison (1/4) (3/6) (3/4) (3/5) (3/7)

II 0.20 0.31 0.12 0.22 0.33

III 0.21 0.28 0.13 0.20 0.32

IV 0.19 0.27 0.13 0.18 0.31

Mean 0.20 0.28 0.13 0.20 0.32

STDEV. 0.01 0.02 0.01 0.02 0.01

COV 0.04 0.07 0.04 0.09 0.03
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Table C11. Results for girder Type II, straight strands, high Aps 

 

 

 

 

 

 

 

 

FEA, kips Code (Vn), kips

Type II 3 4 5 6 7 8

Combination # L/4 Standard LRFD Interim 1979 LRFD (Ɛx_max) LRFD (HL-93)

1 328.2 286.5 278.3 289.9 109.7 285.1

2 382.2 286.5 278.3 289.9 109.7 285.1

3 382.2 296.0 288.8 314.0 111.9 295.8

4 197.8 171.4 100.8 82.7 22.8 93.3

5 274.3 180.9 111.1 106.8 25.0 104.9

6 454.1 296.0 288.8 314.0 111.9 295.8

7 238.3 171.4 100.8 82.7 22.8 93.3

8 202.3 180.9 111.1 106.8 25.0 104.9

9 422.6 286.5 278.3 289.9 109.7 285.1

10 305.7 180.9 111.1 106.8 25.0 104.9

11 508.1 296.0 288.8 314.0 111.9 295.8

12 278.8 171.4 100.8 82.7 22.8 93.3

13 211.3 187.8 126.5 112.3 35.2 120.7

14 323.7 197.4 136.8 136.4 37.4 132.2

15 278.8 187.8 126.5 112.3 35.2 120.7

16 233.8 197.4 136.8 136.4 37.4 132.2

17 305.7 187.8 126.5 112.3 35.2 120.7

18 373.2 197.4 136.8 136.4 37.4 132.2

Comparison # (3/6) (3/4) (3/5) (3/7) (3/8)

1 1.13 1.15 1.18 2.99 1.15

2 1.32 1.33 1.37 3.48 1.34

3 1.22 1.29 1.32 3.42 1.29

4 2.39 1.15 1.96 8.67 2.12

5 2.57 1.52 2.47 10.99 2.61

6 1.45 1.53 1.57 4.06 1.54

7 2.88 1.39 2.36 10.44 2.55

8 1.89 1.12 1.82 8.10 1.93

9 1.46 1.48 1.52 3.85 1.48

10 2.86 1.69 2.75 12.25 2.91

11 1.62 1.72 1.76 4.54 1.72

12 3.37 1.63 2.77 12.22 2.99

13 1.88 1.13 1.67 6.00 1.75

14 2.37 1.64 2.37 8.66 2.45

15 2.48 1.48 2.20 7.91 2.31

16 1.71 1.18 1.71 6.25 1.77

17 2.72 1.63 2.42 8.68 2.53

18 2.74 1.89 2.73 9.98 2.82

Mean 2.12 1.44 2.00 7.36 2.07

STDEV. 0.68 0.24 0.52 3.13 0.59

COV 0.32 0.16 0.26 0.43 0.29
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Table C12. Results for girder Type III, straight strands, high Aps 

 

 

 

 

FEA, kips Code (Vn), kips

Type III 3 4 5 6 7

Combination # L/4 Standard LRFD Interim 1979 LRFD (Ɛx_max)

1 490.1 419.9 386.7 388.2 144.9

2 607.0 419.9 386.7 388.2 144.9

3 571.0 434.4 401.4 424.8 148.1

4 296.7 270.3 163.5 119.0 31.9

5 467.6 284.8 177.1 155.5 35.2

6 705.9 434.4 401.4 424.8 148.1

7 395.7 270.3 163.5 119.0 31.9

8 332.7 284.8 177.1 155.5 35.2

9 634.0 419.9 386.7 388.2 144.9

10 548.5 284.8 177.1 155.5 35.2

11 777.8 434.4 401.4 424.8 148.1

12 472.1 270.3 163.5 119.0 31.9

13 332.7 291.7 195.6 157.4 48.0

14 512.6 306.2 209.4 194.0 51.3

15 440.6 291.7 195.6 157.4 48.0

16 377.7 306.2 209.4 194.0 51.3

17 494.6 291.7 195.6 157.4 48.0

18 616.0 306.2 209.4 194.0 51.3

Comparison # (3/6) (3/4) (3/5) (3/7)

1 1.26 1.17 1.27 3.38

2 1.56 1.45 1.57 4.19

3 1.34 1.31 1.42 3.86

4 2.49 1.10 1.82 9.30

5 3.01 1.64 2.64 13.30

6 1.66 1.62 1.76 4.77

7 3.33 1.46 2.42 12.40

8 2.14 1.17 1.88 9.46

9 1.63 1.51 1.64 4.38

10 3.53 1.93 3.10 15.60

11 1.83 1.79 1.94 5.25

12 3.97 1.75 2.89 14.79

13 2.11 1.14 1.70 6.92

14 2.64 1.67 2.45 9.99

15 2.80 1.51 2.25 9.17

16 1.95 1.23 1.80 7.36

17 3.14 1.70 2.53 10.29

18 3.18 2.01 2.94 12.01

Mean 2.42 1.51 2.11 8.69

STDEV. 0.81 0.28 0.55 3.90

COV 0.34 0.18 0.26 0.45
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Table C13. Results for girder Type IV, straight strands, high Aps 

 

 

 

 

FEA, kips Code (Vn), kips

Type IV 3 4 5 6 7

Combination # L/4 Standard LRFD Interim 1979 LRFD (Ɛx_max)

1 687.9 553.0 489.0 493.4 181.6

2 840.8 553.0 489.0 493.4 181.6

3 813.8 573.4 511.1 545.0 186.2

4 418.1 368.4 201.8 161.0 42.2

5 701.4 388.8 223.9 212.6 46.8

6 998.2 573.4 511.1 545.0 186.2

7 625.0 368.4 201.8 161.0 42.2

8 467.6 388.8 223.9 212.6 46.8

9 822.8 553.0 489.0 493.4 181.6

10 778.6 388.8 223.9 212.6 46.8

11 1043.1 573.4 511.1 545.0 186.2

12 700.5 368.4 201.8 161.0 42.2

13 449.6 394.7 243.2 208.5 62.1

14 750.9 415.2 265.3 260.1 66.7

15 665.4 394.7 243.2 208.5 62.1

16 499.1 415.2 265.3 260.1 66.7

17 680.1 394.7 243.2 208.5 62.1

18 840.1 415.2 265.3 260.1 66.7

Comparison # (3/6) (3/4) (3/5) (3/7)

1 1.39 1.24 1.41 3.79

2 1.70 1.52 1.72 4.63

3 1.49 1.42 1.59 4.37

4 2.60 1.14 2.07 9.91

5 3.30 1.80 3.13 15.00

6 1.83 1.74 1.95 5.36

7 3.88 1.70 3.10 14.82

8 2.20 1.20 2.09 10.00

9 1.67 1.49 1.68 4.53

10 3.66 2.00 3.48 16.65

11 1.91 1.82 2.04 5.60

12 4.35 1.90 3.47 16.61

13 2.16 1.14 1.85 7.24

14 2.89 1.81 2.83 11.26

15 3.19 1.69 2.74 10.72

16 1.92 1.20 1.88 7.48

17 3.26 1.72 2.80 10.95

18 3.23 2.02 3.17 12.60

Mean 2.59 1.59 2.39 9.53

STDEV. 0.90 0.30 0.69 4.38

COV 0.35 0.19 0.29 0.46
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Table C14. Summary of results for girder Types II-IV, straight strands, high Aps 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean

Comparison (3/6) (3/4) (3/5) (3/7)

II 2.12 1.44 2.00 7.36

III 2.42 1.51 2.11 8.69

IV 2.59 1.59 2.39 9.53

Mean 2.38 1.51 2.17 8.53

COV

Comparison (3/6) (3/4) (3/5) (3/7)

II 0.32 0.16 0.26 0.43

III 0.34 0.18 0.26 0.45

IV 0.35 0.19 0.29 0.46

Mean 0.33 0.18 0.27 0.44

STDEV 0.01 0.01 0.02 0.02

COV 0.04 0.08 0.06 0.04
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Table C15. Results for girder Type II, harped strands, high Aps 

 

 

 

 

FEA, kips Code (Vn), kips

Type II (Harped) 3 4 5 6 7

Combination # L/4 Standard LRFD Interim 1979 LRFD (Ɛx_max)

1 332.7 309.1 283.1 294.8 114.7

2 400.2 328.8 292.6 304.6 124.5

3 400.2 318.7 293.5 318.9 116.8

4 202.3 194.0 105.5 87.6 27.8

5 328.2 223.3 125.4 121.6 39.8

6 481.1 338.4 303.1 328.8 126.7

7 278.8 213.7 115.1 97.5 37.6

8 233.8 203.6 115.9 111.7 29.9

9 454.1 348.6 302.1 314.5 134.4

10 341.7 243.0 135.0 131.5 49.6

11 539.5 358.1 312.6 338.6 136.5

12 314.7 233.5 124.6 107.3 47.5

13 233.8 210.5 131.3 117.2 40.2

14 359.7 239.7 151.1 151.2 52.2

15 314.7 230.2 140.8 127.1 50.0

16 269.8 220.0 141.6 141.3 42.3

17 346.2 249.9 150.3 136.9 59.9

18 413.6 259.5 160.7 161.1 62.0

Comparison # (3/6) (3/4) (3/5) (3/7)

1 1.13 1.08 1.18 2.90

2 1.31 1.22 1.37 3.21

3 1.25 1.26 1.36 3.43

4 2.31 1.04 1.92 7.29

5 2.70 1.47 2.62 8.26

6 1.46 1.42 1.59 3.80

7 2.86 1.30 2.42 7.41

8 2.09 1.15 2.02 7.82

9 1.44 1.30 1.50 3.38

10 2.60 1.41 2.53 6.89

11 1.59 1.51 1.73 3.95

12 2.93 1.35 2.53 6.63

13 1.99 1.11 1.78 5.82

14 2.38 1.50 2.38 6.89

15 2.48 1.37 2.24 6.29

16 1.91 1.23 1.91 6.38

17 2.53 1.39 2.30 5.78

18 2.57 1.59 2.57 6.67

Mean 2.09 1.32 2.00 5.71

STDEV. 0.59 0.16 0.47 1.77

COV 0.28 0.12 0.24 0.31
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Table C16. Results for girder Type III, harped strands, high Aps 

 

 

 

 

FEA, kips Code (Vn), kips

Type III (Harped) 3 4 5 6 7

Combination # L/4 Standard LRFD Interim 1979 LRFD (Ɛx_max)

1 512.6 426.9 393.4 395.2 151.9

2 651.9 441.0 406.6 409.3 165.9

3 616.0 441.4 408.1 431.8 155.1

4 346.2 277.4 170.1 126.0 38.9

5 566.5 305.9 197.1 176.6 56.2

6 768.8 455.5 421.4 445.8 169.2

7 454.1 291.4 183.3 140.0 53.0

8 391.2 291.9 183.8 162.6 42.2

9 683.4 455.0 420.0 423.3 180.0

10 611.5 319.9 210.4 190.6 70.3

11 845.3 469.5 434.8 459.9 183.2

12 553.0 305.4 196.5 154.1 67.0

13 386.7 298.7 202.2 164.4 55.1

14 589.0 327.3 229.4 215.1 72.4

15 499.1 312.8 215.5 178.5 69.1

16 440.6 313.2 216.1 201.0 58.3

17 549.8 326.8 228.7 192.5 83.2

18 683.4 341.3 242.8 229.1 86.4

Comparison # (3/6) (3/4) (3/5) (3/7)

1 1.30 1.20 1.30 3.37

2 1.59 1.48 1.60 3.93

3 1.43 1.40 1.51 3.97

4 2.75 1.25 2.04 8.89

5 3.21 1.85 2.87 10.08

6 1.72 1.69 1.82 4.54

7 3.24 1.56 2.48 8.57

8 2.41 1.34 2.13 9.27

9 1.61 1.50 1.63 3.80

10 3.21 1.91 2.91 8.70

11 1.84 1.80 1.94 4.61

12 3.59 1.81 2.81 8.25

13 2.35 1.29 1.91 7.02

14 2.74 1.80 2.57 8.14

15 2.80 1.60 2.32 7.22

16 2.19 1.41 2.04 7.56

17 2.86 1.68 2.40 6.61

18 2.98 2.00 2.81 7.91

Mean 2.43 1.59 2.17 6.80

STDEV. 0.71 0.24 0.50 2.18

COV 0.29 0.15 0.23 0.32
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Table C17. Results for girder Type IV, harped strands, high Aps 

 

 

 

 

 

FEA, kips Code (Vn), kips

Type IV (Harped) 3 4 5 6 7

Combination # L/4 Standard LRFD Interim 1979 LRFD (Ɛx_max)

1 723.9 562.6 498.3 503.0 191.3

2 912.7 581.9 517.0 522.3 210.6

3 858.8 583.1 520.4 554.6 195.9

4 503.6 378.0 211.1 170.7 51.8

5 876.8 417.8 252.0 241.6 75.7

6 1043.1 602.4 539.1 574.0 215.2

7 710.4 397.3 229.8 190.0 71.1

8 571.0 398.4 233.3 222.3 56.4

9 912.7 601.2 535.6 541.6 229.9

10 863.3 437.1 270.8 260.9 95.0

11 1065.6 621.7 557.8 593.3 234.5

12 683.4 416.6 248.5 209.3 90.4

13 530.5 404.4 252.6 218.2 71.7

14 890.2 444.1 293.4 289.1 95.6

15 728.4 423.7 271.3 237.5 91.0

16 602.5 424.8 274.7 269.8 76.3

17 749.0 443.0 289.9 256.8 110.4

18 908.2 463.4 312.2 308.4 114.9

Comparison # (3/6) (3/4) (3/5) (3/7)

1 1.44 1.29 1.45 3.78

2 1.75 1.57 1.77 4.33

3 1.55 1.47 1.65 4.38

4 2.95 1.33 2.39 9.72

5 3.63 2.10 3.48 11.58

6 1.82 1.73 1.93 4.85

7 3.74 1.79 3.09 9.99

8 2.57 1.43 2.45 10.12

9 1.69 1.52 1.70 3.97

10 3.31 1.98 3.19 9.09

11 1.80 1.71 1.91 4.54

12 3.27 1.64 2.75 7.56

13 2.43 1.31 2.10 7.39

14 3.08 2.00 3.03 9.31

15 3.07 1.72 2.69 8.00

16 2.23 1.42 2.19 7.89

17 2.92 1.69 2.58 6.79

18 2.95 1.96 2.91 7.90

Mean 2.56 1.65 2.40 7.29

STDEV. 0.75 0.25 0.60 2.45

COV 0.29 0.15 0.25 0.34
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Table C18. Summary of results for girder Types II-IV, harped strands, high Aps 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean

Comparison (3/6) (3/4) (3/5) (3/7)

II 2.09 1.32 2.00 5.71

III 2.43 1.59 2.17 6.80

IV 2.56 1.65 2.40 7.29

Mean 2.36 1.52 2.19 6.60

COV

Comparison # (3/6) (3/4) (3/5) (3/7)

II 0.28 0.12 0.24 0.31

III 0.29 0.15 0.23 0.32

IV 0.29 0.15 0.25 0.34

Mean 0.29 0.14 0.24 0.32

STDEV 0.00 0.02 0.01 0.01

COV 0.02 0.13 0.04 0.04
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APPENDIX D: LRFD CALCULATIONS EXAMPLE 

This design example demonstrates the calculations of the nominal shear capacity using the 

General LRFD Procedure (AASHTO LRFD 2014) for one of the existing simple span AASHTO 

Type IV PC bridge girders in the state of Michigan (I-696 and Coolidge Road-7933). The bridge 

has two 77' simple spans with a total width of 82'-8''. Bridge configurations are shown in Figures 

D1 and D2. 

 

 

Figure D1. Bridge Dimensions 

 
Figure D2. Span cross section details and girder spacings 
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1- Materials: 

 Slab:  

o Slab thickness= 9 in  

o Concrete strength at 28 days, fc
′ = 4 ksi 

 AASHTO Type IV girder:  

o Concrete strength at release, fci
′ = 3.5 ksi 

o Concrete strength at 28 days, fc
′ = 5 ksi 

o Concrete unit weight, wc = 150 pcf 

o Overall girder length (spans 1&2) = 78.167 ft 

o Girder clear length = 77 ft 

 Pre-tensioning strands (1/2 in dia.): 

o Area of one tendon, Aps= 0.153 in2 

o Ultimate stress, fpu = 270 ksi 

o Yield strength, fpy= 0.9 fpu = 243 ksi 

o Initial pre-tensioning, fpi = 0.75fpu = 202.5 ksi 

o At service limit state,  fpe = 0.8fpy = 194.4 ksi 

o Modulus of elasticity, Ep = 28500 ksi 

 Transverse reinforcement bars: 

o Yield strength, fy = 60 ksi 

o Modulus of elasticity, Es = 29000 ksi 
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2- AASHTO- Type IV girder construction specifications: 

 

 

Figure D3. AASHTO Type IV girder dimensions and reinforcement details 

 

A = area of cross section of precast girder= 789 in2 

h = overall depth of precast girder = 54 in2 

I = moment of inertia about the centroid of non-composite precast girder 

= 261000 in2 

yb = distance from centroid to the extreme bottom fiber of the non-composite 

precast girder = 24.73 in 

yt = distance from centroid to the extreme top fiber of the non-composite precast 

girder = 29.27 in 

Ybs= distance from the center of gravity of strands to the bottom fiber of the girder 

=  
(2) (2") + (3) (4") + (11)(6") + (8) (8") + (2) (10")

26
 = 6.38 in 

Sb = section modulus for the extreme bottom fiber of the non-composite precast 

girder = 
I

yb
= 10550 in3 
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St = section modulus for the extreme top fiber of the non-composite precast girder 

= 
I

yt
= 8910 in3 

Wt = 0.822 k ft⁄  

Ec = modulus of elasticity of concrete = (wc)
1.5  (33)√fc′ 1000⁄       

o Cast-in-place slab fc
′ = 4000 psi: 

 Ec= (150)1.5  (33)√4000 1000⁄ = 3834.2 ksi 

 

o Girder at release, fci
′ = 3500 psi 

Eci= (150)1.5  (33)√3500 1000⁄ = 3586.6 ksi 

 

o Girder at service loads, fc
′ = 5000 psi: 

Eci= (150)1.5  (33)√5000 1000⁄ = 4286.8 ksi 

 

3- Composite section properties: 

 

 

Figure 4: Composite section dimensions 
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Table D1. Properties of the Composite Section 

  

Transformed 

Area (𝑨) , 𝒊𝒏𝟐 

 

𝒚𝒃, 𝒊𝒏 

 

𝑨𝒚𝒃, 𝒊𝒏
𝟑 

 

𝑨(𝒚𝒃𝒄 − 𝒚𝒃)
𝟐 

 

I, 𝒊𝒏𝟒 

 

I + 𝑨(𝒀𝒃 − 𝒚𝒃)
𝟐 

, 𝒊𝒏𝟒 

 

Girder 

 

789.00 

 

24.73 

 

19511.97 

 

238054.63 

 

26100.00 

 

499054.63 

 

Haunch 

 

17.89 

 

54.50 

 

975.0 

 

2750.77 

 

1.49 

 

2752.26 

 

Slab 

 

775.78 

 

59.50 

 

46158.91 

 

234875.15 

 

5236.68 

 

240111.83 

 

Σ 

 

1582.67 

 

- 

 

66646.00 

 

- 

 

- 

 

𝐼𝑐 = 741925.5 

 

Ybc= distance from the centroid of composite section to extreme bottom fiber of girder = 

 
ΣAyb

ΣA
=

66646

1582.67
 = 42.10 in  

hc= total height of the composite section = 64 in 

Sbc= composite section modulus for extreme bottom fiber of the girder  

      =
Ic

Ybc
=

741926

42.1
 = 17618.7 in3

 

 Effective Flange Width: 

The effective flange width is the lesser of: 

o ¼ span length= 
77(12)

4
= 231” 

o Distance center-to-center of girders= 96.375" …………………Controls 

o 12 * effective slab thickness + greater of web thickness or ½ girder top flange 

width= (12) (9) + (
20

2
) = 118" 

 Modular Ratio:  

o  n =
Ec(slab)

Ec(beam)
=

3834.2

4286.8
= 0.894 
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 Transformed Section Properties: 

 

o Transformed flange width = n(effective flange width) 

= (0.894)(96.375) = 86.20 in 

o Transformed flange area = n(effective flange width) (ts) 

= (86.2)(9) = 775.78 in2 

o Transformed haunch width = n(top flange width) 

= (0.894)(20) = 17.89 in 

o Transformed haunch area  = n(top flange width)(haunch height) 

 = (17.89)(1") = 17.89 in 

 

4- Shear forces and bending moments: 

 Critical Section Location: 

o The critical section is located at the larger of  dv or 0.5 dvcotθ from the face of 

the support (LRFD 3rd edition).  

*note: in the revised LRFD specifications (4th edition) only dv is considered. 

o The effective shear depth 𝐝𝐯 is calculated as de − a/2 when strands are straight 

and compression stays in the top flange. 

o dv should not be less than the greater of  0.9de or 0.72h 

o de= effective depth from the extreme compression fiber to the centroid of the 

tensile force in the tension reinforcement = hc − Ybs = 64 − 6.846 = 57.615" 

o a = depth of the equivalent rectangular stress block = β1c 

o C = 
Apsfpu+Asfy−As

′ fy
′

0.85fc
′β1b+kAps(

fpu

dp
)
 

o Where: 

C = distance between the neutral axis and the compressive face, in 

Aps = area of prestresing steel = 26X0.153 = 3.98 in2 

fpu = tensile strength of prestressing steel = 270 ksi 

As = area of mild steel tension reinforcement = 0 

As
′ = area of compression reinforcement = 0 
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fc
′ = 28 − day compressive stress of slab concrete = 4 ksi 

fy = yield strength of tension reinforcemen, ksi 

fy
′ = yield strength of compresion reinforcemeny, ksi 

dp = distance from extreme compression fiber to the strands centroid

= hc − ybs = 57.615 in 

b = effective width of compression flange = 96.375 in 

k = factor related to type of strand = 0.28 (for low relaxation strands) 

β1 = stress factor of compression block = 0.85 for fc
′ ≤ 4.0 ksi  

o C =
(3.98)(270)

(0.85)(4)(0.85)(9.375)+(0.28)(398)(
270

57.615)

= 3.785 in 

o a = β1C = (0.85)(3.785) = 3.218 in 

o dv= de −
a

2
= 57.615 − (

3.218

2
) = 56.01 in = 4.67 ft ……..…….Controls 

o 0.9de = (0.9)(57.615) = 51.85 in < dv 

o 0.72h = (0.72)(64) = 46.08 in < dv 

 

 Dead Loads: 

o Girder self-weight = 0.822 k ft⁄  

o 9” slab weight = (0.15) (
9"

12
) (8.03125) = 0.9035 k/ft 

o 1” haunch weight = (0.15)(1"/12) (20"/12) =  0.0208 k/ft  

o Barriers weight* = (2 barriers) (
0.3

k

ft

11 beams
) = 0.0545 

k

ft
/beam 

*New Jersey- type barrier: Unit weight = 0.30 k/ft 

o 2” Future wearing surface unit weight = (2"/12)(0.15) = 0.025 ksf 

o Future wearing surface weight/girder* =
(82.66)(0.025)

11 beams
= 0.188

k

ft
/beam 

*Ignore the side walk distributed weight since the wearing surface   

width was taken as the total bridge width. 

 

 Un-factored Shear Forces and Bending Moments: 

o Vx = w(0.5L − X) 

o Mx = 0.5wX(L − X) 
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o Due to girder self-weight:  

 Vg = 0.822(0.5(77) − 4.67) = (0822)(33.83) = 27.81 kip 

 Mg = 0.5(0.822)(4.67)(77 − 4.67) = 138.75 kip. ft 

o Due to slab and haunch weight:  

 Vs = (0.9243)(33.83) = 31.27 kip 

 Ms = 0.5(0.9243)(4.67)(77 − 4.67) = 156.02 kip. ft 

o Due to barrier and future wearing surface weight: 

 Vb = 0.0545(33.83) = 1.84 kip 

 Vws = 0.188(33.83) = 6.36 kip 

 Mb = 0.5(0.0545)(4.67)(77 − 4.67) = 9.20 kip. ft 

 Mws = 0.5(0.188)(4.67)(77 − 4.67) = 31.73 kip. ft 

 

 Distribution Factor for Bending Moment (DFM): 

For two or more lanes loaded: 

o DFM = 0.075 + (
S

9.5
)
0.6

(
S

L
)
0.2

(
Kg

12Lts
3)

0.1           

o where, 

DFM= distribution factor for moment for interior beam 

S= beam spacing = 8.0125 ft 

L= beam span,= 77ft 

ts = depth of concrete slab = 9 in 

Kg = longitodinal stiffness parameter, in4 = n(I + A eg
2) 

n =
Eci(beam)

Eci(slab)
=

4286.8

3834.2
= 1.118 

eg = distance between the centers of gravity of the beam and slab, in  

eg = (
9

2
) + 1 + (54 − 24.73) = 34.77 in 

Kg = 1.118(26100 + 789(34.77)2 = 1,358,259.0 in4 

 Check limits: 

3.5 ≤ S ≤ 16                                   O.K. 

4.5 ≤ ts ≤ 12                                   O.K. 
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20≤ L ≤ 240                                    O.K. 

Nb ≥ 4                                              O.K. 

10,000≤ Kg ≤ 7,000,000                O.K. 

DFM = 0.075 + (
8.03125

9.5
)
0.6

(
8.03125

77
)
0.2

(
1358259

(12)(77)(9)3
)0.1 = 0.692 lane/beam 

 

For one design lane loaded: 

o DFM = 0.06 + (
S

14
)
0.4

(
S

L
)
0.3

(
Kg

12Lts
3)

0.1         

DFM = 0.06 + (
8.03125

14
)
0.4

(
8.03125

77
)
0.3

(
1358259

(12)(77)(9)3
)0.1 = 0.496  lane/beam 

 

= DFM ؞ 0.692 lane/beam………………………...………………Controls 

 

 Distribution Factor for Shear Force (DFV): 

For two or more lanes loaded: 

o DFV= 0.2 + (
S

12
) − (

S

35
)2 

DFV= 0.2 + (
8.03125

12
) − (

8.03125

35
)
2

= 0.817 lane/beam…………….Controls 

For one design lane loaded: 

o DFV= 0.36 +
S

25
= 0.36 +

8.03125

25
= 0.681 lane/beam 

 

 Dynamic Allowance: IM= 33% 

 Un-factored Shear Forces and Bending Moments Due To Truck load: 

o VLT = (maximum shear force per lane)(DFV)(1 + IM) 

o MLT = (maximum bending moment per lane)(DFM)(1 + IM) 

o Where: (at Xmin = 0) 

o Vx =
72[(L−X)−9.33]

L
 , maximum shear force per lane    

o Mx =
72(X)[(L−X)−9.33]

L
  , maximum bending moment per lane 
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o VLT = (
72[(77−4.67)−9.33]

77
)(0.817)(1 + 0.33) = 63.98 kip 

o MLT = (
72(4.67)[(77−4.67)−9.33]

77
) (0.692)(1 + 0.33) = 253.09 kip. ft 

 

 Un-factored Shear Forces and Bending Moments Due To Design Lane Loading: 

o VLL =
0.32(L−X)2

L
(DFV)       for (X ≤ 0.5L) 

o VLL =
0.32(77−4.67)2

77
(0.817) = 17.76 kip 

o MLL = 0.32(X)(L − X)(DFM)  

o MLL = 0.32(4.67)(77 − 4.67)(0.692) = 74.77 kip. ft 

 

 Total Factored Shear Force and Bending Moment at Critical Section: 

 

o Vu = 1.25(Vg + Vs + Vb) + 1.5(Vws) + 1.75(VLT + VLL) 

= 1.25(2.81 + 31.27 + 1.84) + 1.5(6.36) + 1.75(63.98 + 17.76) 

= 228.74 kip 

 

o Mu = 1.25(Mg + Ms + Mb) + 1.5(Mws) + 1.75(MLT + MLL) 

= 1.25(138.75 + 156.02 + 9.2) + 1.5(31.73) + 1.75(253.09 + 74.77) 

= 1001.31 kip. ft 

 

5- Nominal Shear resistance: 

 Contribution of Concrete to Nominal Shear Resistance: 

o Vc = 0.0316 β√fc′bvdv 

where β is a factor indicating the ability of diagonally cracked concrete to 

transmit tension. 

o ℇs =
|Mu/dv|+0.5Nu+|(Vu−Vp)|−Apsfpo

(EsAs+EpAps)
 

 fpo = 0.7fpu = 0.7(270) = 189 ksi 

 Nu = 0 (no axial force is applied) 

 Vp = 0 (no harped strands) 
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o ℇs =
|1001.31/4.67 |+(0)+|(228.74 −0)|−(3.978)(189)

(0+(28500)(3.978))
= −0.0015976 

o ℇs < 0, use ℇs = 0 

 

 Values of β and θ: 

o β =
4.8

(1+750ℇs) 
=

4.8

1+0
= 4.8 

o θ = 29 + 3500ℇs = 29 + 3500(0) = 290 

 

o Vc = 0.0316 (4.8)
√5000

1000
(8)(56.01) = 173.65 kip 

 

 Contribution of Reinforcement to Nominal Shear Resistance: 

o Vs =
Avfydv(cotθ+cotα) sinα

S
=

(0.6136)(60)(cot 29)

9
= 423.41 kip 

o Vn = Vc + Vs + Vp = 173.65 + 423.41 + 0 = 597.06 kip 

o ϕVn = 0.9(597.06) = 537.36 kip 

 

 

 

 

 

 

 

 

 

 

Figure 5: Stirrups Spacing 

 

 Nominal Shear Resistance 𝑽𝒏: 

Figure D5. Stirrups layout 
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6- Prestress Losses: 

 Total Prestress Loss: ∆fpT = ∆fpES + ∆fpSR + ∆fpCR + ∆fpR2 

o ∆fpES =
Ep

Eci
fcgp (loss due to elastic shortening) 

where, 

 fcgp = sum of concrete stresses at the center of gravity of 

prestressing tendons due to prestressing force at transfer and self 

weight of the member at sections of maximum moment. 

 fcgp =
pi

A
+

piec
2

I
−

Mgec

I
 

 pi = (26 strands)(0.153)(202.5)(0.95) = 765.27 kip (assuming 5% 

initial loss) 

 Mg at midspan = 609.2 kip. ft 

 ec = Yb − Ybs = 18.345 in 

 fcgp =
765.27

789
+

(765.27)(18.345)2

261000
−

(609.2)((18.345)(12)

261000
= 1.44 ksi 

 ∆fpES =
28500

3586.616
(1.44) = 11.47 ksi 

 Percent of actual loss due to elastic shortening =
11.47

202.5
(100%) =

5.66%  (very close to the assumed 5%) O.K. 

 

o ∆fpSR = (17 − 0.15H)   (loss due to shrinkage) 

   H = 75% (relative humidity) 

 ∆fpSR = (17 − 0.15(75)) = 5.75 ksi 

 

o ∆fpCR = 12fcgp − 7∆fcdp    (loss due to creep) 

 ∆fcdp =
Msec

I
+

(Mws+Mb)(Ybc−Ybs)

Ic
 

 ∆fcdp =
(685.06)(12)(18.345)

261000
+

(217.12)(12)(42.1−6.385)

741995.5
= 0.703 

 ∆fpCR = 12(1.44) − 7(0.703) = 12.39 ksi 

 

o ∆fpR2 = 0.3[20 − 0.4∆fpES − 0.2(∆fpSR + ∆fpCR)] (loss due to relaxation) 
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 ∆fpR2 = 0.3[20 − 0.4(11.47) − 0.2(5.75 + 12.39)] = 3.54 ksi 

 

o Total Losses ∆fpT:  

 ∆fpT = 11.74 + 5.75 + 12.39 + 3.54 = 33.1 ksi 

 

o Total prestressing force after all losses Ppe: 

 fpe = fpi − ∆fpT = 202.5 − 33.1 = 169.4 ksi 

 Ppe = (169.4)(26 strands)(0.153) = 673.8 kip 
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APPENDIX E: ITERATIVE LRFD METHOD EXAMPLE 

This example demonstrates the calculations of the nominal shear capacity (Vn) of AASHTO 

Type II Girder (Girder 1- Test 2 in Chapter 2) using the general LRFD Procedure based on the 

assumption that Vu =Vn, where Vu is the service load applied at the LRFD critical section.  The 

span and girder details are shown in Figure E1. 

 

 
Figure E1. Type II girder design and span configuration 

 

 

 

 

 

 

 

 



211 
 

 
 

Properties of the girder used to evaluate the shear capacity are shown in Table E1. 

Table E1. Girder details 

 

 

 

 

 

 

 

 

 

Variable Value Unit(s) Variable Value Unit(s)

Beam type AASHTO II - Total # of strands 16 -

Area (Ac) 369  in^2 Ybs 7.000 in

Clear span 25.8 ft # of rows 4 -

Weight 384 lb/ft row 1 6 -

Flange width (be) 12 in row 2 4 -

Web Thicknes (bv) 6 in row 3 4 -

Yt 20.17 in row 4 2 -

Yb 15.83 in row 1 2 in

St 2530 in^3 row 2 4 in

Sb 3220 in^3 row 3 6 in

I 51000 in^4 row 4 30 in

Height (in) 36 in Harped strands 0 -

f'c (28) 8.6 ksi k 0.28 -

Ec beam 5814.93 ksi dp 29.00 in

f's (ksi) 270 ksi c 8.53 in

# of Strands 16 # Aps 2.10  in^2

Diameter 0.5 in fpu 270 ksi

Nominal area 0.15  in^2 fpo 189 ksi

fpe 23.25 kips/strand f'c slab 8.6 ksi

fpc 1.01 ksi beta β1 0.65 f'c>8 ksi

Bar size 3 # be 12 in

# beams 1 # a 5.54 in

Ep 28500 ksi de 29.00 in

Av 0.221  in^2 de-a/2 26.23 in

fy 60 ksi 0.9de 26.10 in

Stirrups spacing 21 in 0.72h 25.92 in

vu 0.756 ksi theta 0.50 radians

vu/f'c 0.008 <0.125 dv 26.23 in

S_max 21.0 in (<24 in) Crt section (dv) 2.19 ft
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Iterative LRFD Procedure: 

1- Start the iteration process by assuming a random value for  Vu.  

2- Calculate  Mu based on the assumed Vu ( Mu =  Vu𝑑𝑣). 

3- Calculate ℇ𝑠 using equation E1 

4- If ℇ𝑠 is negative, recalculate ℇ𝑠 using equation E2. 

5- Calculate θ using equation E5. 

6- Calculate β using equation E6. 

7- Calculate Vc using equation E7. 

8- Calculate Vs using equation E8. 

9- Calculate Vn using equation E9. 

10-  If the resulted Vn is less than the assumed Vu value, repeat steps 1-9 by assuming a 

smaller value of  Vu. 

11-  If the resulted Vn is larger than the assumed Vu value, assume a larger or an equal value 

of  Vu in the next iteration. 

12- Repeat steps 1-11 until convergence is achieved. 

Calculations:  

1- For this girder example, start the iteration process by assuming that Vu=200 kips. 

2- Since the calculated Vn (100.0 kips) at the first iteration is smaller than the assumed Vu 

(200 kips), a smaller Vu value (150 kips) is assumed in the second iteration.   

3- In the second iteration,  the resulted Vn (102.7 kips) is still smaller than the assumed Vu 

(150 kips). Thus, a third iteration is required.  

4- In the third iteration, using a smaller Vu value of 100 kips resulted in a Vn value of 105.5 

kips. 
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5- The previous prosses was repeated until convergrence has been achieved after the fifth 

iteration (Vu = Vn = 105.2 𝑘𝑖𝑝𝑠), as shown in Table E2.  

Calculations for the first iteration: 

o ℇ𝑠 =
|𝑀𝑢|+0.5𝑁𝑢+|(𝑉𝑢−𝑉𝑝)|−𝐴𝑝𝑠𝑓𝑝𝑜

(𝐸𝑠𝐴𝑠+𝐸𝑝𝐴𝑝𝑠)
                                                                                            (E1) 

o When ℇ𝑥 is negative, it is taken as either zero or recalculated as the following: 

o ℇ𝑠 =
|𝑀𝑢|+0.5𝑁𝑢+|(𝑉𝑢−𝑉𝑝)|−𝐴𝑝𝑠𝑓𝑝𝑜

(𝐸𝑠𝐴𝑠+𝐸𝑝𝐴𝑝𝑠+𝐸𝑐𝐴𝑐𝑡)
                                                                                            (E2)  

o 𝑆𝑥𝑒 =
1.38 𝑆𝑥

0.63+𝑎𝑔
    (for members having less than the minimum shear reinforcement)            (E3) 

o 𝑆𝑥𝑒 = 𝑆𝑧𝑒 = 12  (for members having at least the minimum shear reinforcement)            (E4) 

o θ = 29 + 3500ℇs = 29 + 3500(−0.0000115) = 29.00                                                        (E5) 

o β =
4.8

(1+750ℇs) 
=

4.8

1+750(−0.0000115)
= 4.8                                                                     (E6) 

o Vc = 0.0316 β√fc′bvdv = 0.0316 (4.8)(6)(√8.6)(26.23) = 70.3 kips                               (E7) 

o Vs =
Avfydv(cotθ+cotα) sinα

S
=

(0.221)(60)(26.23)(cot28.96)

21
= 29.8 kips                                       (E8) 

o Vn = Vc + Vs + Vp = 70.26 + 29.75 + 0 = 100.0 kips                                                           (E9) 

 

Table E2. LRFD iteration process  

 

Iteraion # 1 2 3 4 5

Vu (kips) 200 150 100 105 105.2

Mu (ft-kips) 376.5 283.7 190.89 200.17 200.55

Ɛs (original) -0.0003976 -0.0019459 -0.0034943 -0.0033394 -0.0033332

Ɛs (alternative) -0.0000115 -0.0000561 -0.0001008 -0.0000963 -0.0000962

θ (degrees) 29.0 28.8 28.7 28.7 28.7

 β 4.8 5.0 5.2 5.2 5.2

Vc (kips) 70.3 72.7 75.4 75.1 75.1

Vs (kips) 29.8 29.9 30.1 30.1 30.1

Vn (kips) 100.0 102.7 105.5 105.2 105.2
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APPENDIX F: NCHRP 368 CALCULATIONS EXAMPLE 

In this example, the calculations of the mean load and mean resistance for a 90 ft simple span 

PC bridge with 6 ft girder spacing is presented. The purpose of this example is to clarify the 

calculations of the mean load and mean resistance values presented in the NCHRP 368 report that 

were used in computing reliability analysis. These calculations are based on load data and factors 

given in the NCHRP 368 report, as presented in Tables F1-F4. 

Table F1. Parameters of bridge load components (Table F1-NCHRP 368) 

Load Component Bias Factor COV 

Dead Load (D1) 1.03 0.08 

Dead Load (D2) 1.05 0.10 

Dead Load (D3) 1.00 0.25 

Live Load + Impact 1.1-1.2 0.18 

 

Table F2. Mean maximum shears for simple spans due to multiple trucks in one lane divided by 

corresponding HS20 shear (Table B7-NCHRP 368) 

Span 

(ft) 

1 

Day 

2 

Weeks 

1 

Month 

2 

Months 

6 

Months 

1 

Year 

5 

Years 

50 

Years 

75 

Years 

90 1.48 1.58 1.62 1.64 1.69 1.72 1.76 1.84 1.85 

 

Table F3. Representative load components and resistance for PC girder bridges, shears (Table E9-

NCHRP 368) 

Span (ft) 

Spacing 

(ft) 

D1 

(kips) 

D2 

(kips) 

D3 

(kips) 

LL 

(kips)  I (%) mQ sQ R(min) 

90 4 37 25 5 26 23 129 12 155 

90 6 37 34 7 37 23 158 15 200 

90 8 37 41 10 49 23 185 18 246 

90 10 37 52 12 60 23 215 21 292 

90 12 37 64 15 72 23 245 24 342 
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Table F4. Reliability indices and resistance ratios for LRFD Code simple span shears in PC girder 

bridges (Table F10-NCHRP 368) 

Span (ft) Spacing (ft) mQ (kips) Std. (kips) RHS20 (k-ft) r Beta 

90 4 129 12 155 1.33 3.69 

90 6 158 15 200 1.27 3.71 

90 8 185 18 246 1.22 3.72 

90 10 215 21 292 1.20 3.73 

90 12 245 24 342 1.17 3.72 

 

Mean load calculations: 

mQ = (λ1 x D1) + (λ2 x D2) + (λ3 x D3) + (LL x (Vmax/VHS20) x λLL) 

mQ = (1.03 x 37) + (1.05 x 34) + (1.0 x 7) + (37 x 1.85 x 1.1) = 156.1 kips 

where, 

mQ = Total mean load 

D1= Dead load due to factory made elements, kips (Table F3) 

D2= Dead load due to cast in place concrete members, kips (Table F3) 

D3= Dead load due to wearing surface (asphalt), kips (Table F3) 

LL= Live load due to HS20 load, kips (Table F3) 

λ1= Bias factor for D1 

λ2= Bias factor for D2 

λ3= Bias factor for D3 

Vmax/VHS20= maximum shears for simple spans due to multiple trucks in one lane divided 

by corresponding HS20 shear (Table F2) 

λLL= Bias factor for LL (Table F1) 
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Mean resistance calculations: 

RHS20 = 1.3 x (D1 + D2+D3) + 2.17 x (LL x (1+I)) 

RHS20 = 1.3 x (37 + 34 + 7) + 2.17 x (37 x (1+0.23)) = 200.2 kips 

mR= RHS20 x λR x r 

mR= 200.2 x 1.15 x 1.27 = 292.4 kips 

where, 

mR = Mean shear resistance, kips 

I= Impact load magnitude (Table F3) 

λR= Resistance bias factor=1.15 

RHS20 = Shear resistance based on HS20 load, kips 

r = RLRFD/RHS20 (Table F4) 

After computing the mean load and mean resistance, compute the standard deviation for each 

component simply by multiplying the mean value by the appropriate coefficient of variation (0.14 

for R). Next, use the mean and standard deviation values to compute the reliability index using the 

Rackwitz-Fiessler Procedure. 
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APPENDIX G: DESIGN CASES PARAMETERS 

Table G1. Design parameters for Type II girder using the Original LRFD Procedure (30 ft span) 

 

Table G2. Design parameters for Type II girder using the Modified LRFD Procedure (30 ft span) 

 

Type II- 30 ft Span

Comb. # 1 2 3 4 5

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 4 4 4 5 6

bv (in) 6 6 6 6 6

de (in) 42 42 42 42 42

Av (in ^2) 0.22 0.22 0.22 0.22 0.22

fy (ksi) 60 60 60 60 60

s (in) 24 24 24 19 14

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 2.45 2.45 2.45 2.45 2.45

be (in) 48 72 90 90 90

h (in) 36 36 36 36 36

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 4 4 4 4 4

Vs (kips) 5 8 11 13 16

Vb (kips) 1 1 1 1 1

Vws (kips) 1 2 3 3 4

Vll-HL93 (kips) 33 42 51 60 68

Vu (kips) 72 93 114 133 152

Vn (kips) 136 134 133 148 169

φVn (kips) 123 121 120 133 152

Type II- 30 ft Span

Comb. # 1 2 3 4 5

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 4 4 4 4 4

bv (in) 6 6 6 6 6

de (in) 42 42 42 42 42

Av (in ^2) 0.22 0.22 0.22 0.22 0.22

fy (ksi) 60 60 60 60 60

s (in) 24 24 24 18 13

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 2.45 2.45 2.45 2.45 2.45

be (in) 48 72 90 90 90

h (in) 36 36 36 36 36

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 4 4 4 4 4

Vs (kips) 5 8 11 13 16

Vb (kips) 1 1 1 1 1

Vws (kips) 1 2 3 3 4

Vll-HL93 (kips) 33 42 51 60 68

Vu (kips) 72 93 114 133 152

Vn (kips) 142 140 137 148 169

φVn* (kips) 128 126 123 133 152
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Table G3. Design parameters for Type II girder using the Original LRFD Procedure (60 ft span) 

 

Table G4. Design parameters for Type II girder using the Modified LRFD Procedure (60 ft span) 

 

 

Type II- 60 ft Span

Comb. # 6 7 8 9 10

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 5 6 7 8 8

bv (in) 6 6 6 6 6

de (in) 42 42 42 42 42

Av (in ^2) 0.22 0.39 0.39 0.39 0.39

fy (ksi) 60 60 60 60 60

s (in) 24 24 17 13 8

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 2.45 2.45 2.45 2.45 2.45

be (in) 48 72 96 114 114

h (in) 36 36 36 36 36

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 10 10 10 10 10

Vs (kips) 12 18 24 30 36

Vb (kips) 1 2 2 3 3

Vws (kips) 3 5 6 8 10

Vll-HL93 (kips) 48 62 75 88 100

Vu (kips) 119 154 187 220 252

Vn (kips) 132 171 208 245 280

φVn (kips) 119 154 187 220 252

Type II- 60 ft Span

Comb. # 6 7 8 9 10

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 4 5 7 8 8

bv (in) 6 6 6 6 6

de (in) 42 42 42 42 42

Av (in ^2) 0.22 0.39 0.39 0.39 0.39

fy (ksi) 60 60 60 60 60

s (in) 24 24 18 13 7

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 2.45 2.45 2.45 2.45 2.45

be (in) 48 72 96 114 114

h (in) 36 36 36 36 36

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 10 10 10 10 10

Vs (kips) 12 18 24 30 36

Vb (kips) 1 2 2 3 3

Vws (kips) 3 5 6 8 10

Vll-HL93 (kips) 48 62 75 88 100

Vu (kips) 119 154 187 220 252

Vn (kips) 133 171 208 245 280

φVn* (kips) 120 154 187 220 252
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Table G5. Design parameters for Type II girder using the Original LRFD Procedure (90 ft span) 

 

Table G6. Design parameters for Type II girder using the Modified LRFD Procedure (90 ft span) 

 

 

Type II- 90 ft Span

Comb. # 11 12 13 14 15

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 6 8 8 8 8

bv (in) 6 6 6 6 6

de (in) 42 42 42 42 42

Av (in ^2) 0.39 0.39 0.39 0.39 0.39

fy (ksi) 60 60 60 60 60

s (in) 24 15 9 5 4

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 2.45 2.45 2.45 2.45 2.45

be (in) 48 72 96 114 114

h (in) 36 36 36 36 36

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 16 16 16 16 16

Vs (kips) 19 29 38 47 57

Vb (kips) 2 3 4 4 5

Vws (kips) 5 7 10 12 15

Vll-HL93 (kips) 57 73 89 104 118

Vu (kips) 153 198 242 285 326

Vn (kips) 170 220 269 316 362

φVn (kips) 153 198 242 284 326

Type II- 90 ft Span

Comb. # 11 12 13 14 15

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 5 8 8 8 8

bv (in) 6 6 6 6 6

de (in) 42 42 42 42 42

Av (in ^2) 0.39 0.39 0.39 0.39 0.39

fy (ksi) 60 60 60 60 60

s (in) 24 16 8 5 4

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 2.45 2.45 2.45 2.45 2.45

be (in) 48 72 96 114 114

h (in) 36 36 36 36 36

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 16 16 16 16 16

Vs (kips) 19 29 38 47 57

Vb (kips) 2 3 4 4 5

Vws (kips) 5 7 10 12 15

Vll-HL93 (kips) 57 73 89 104 118

Vu (kips) 153 198 242 285 326

Vn (kips) 170 220 269 316 362

φVn* (kips) 153 198 242 285 326
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Table G7. Design parameters for Type II girder using the Original LRFD Procedure (120 ft span) 

 

Table G8. Design parameters for Type II girder using the Modified LRFD Procedure (120 ft 

span) 

 

 

Type II- 120 ft Span

Comb. # 16 17 18 19

Girder Spacing (ft) 4 6 8 10

f'c (ksi) 7 7 7 7

bv (in) 6 6 6 6

de (in) 42 42 42 42

Av (in ^2) 0.39 0.39 0.39 0.39

fy (ksi) 60 60 60 60

s (in) 16 9 5 3

fpu (ksi) 270 270 270 270

Eps (ksi) 28500 28500 28500 28500

Aps (in^2) 2.45 2.45 2.45 2.45

be (in) 48 72 96 114

h (in) 36 36 36 36

ts (in) 9 9 9 9

f'cs (in) 4 4 4 4

Vg (kips) 22 22 22 22

Vs (kips) 26 39 52 64

Vb (kips) 3 4 5 6

Vws (kips) 7 10 14 17

Vll-HL93 (kips) 63 82 99 116

Vu (kips) 185 239 292 343

Vn (kips) 205 265 324 381

φVn (kips) 185 239 292 343

Type II- 120 ft Span

Comb. # 16 17 18 19

Girder Spacing (ft) 4 6 8 10

f'c (ksi) 7 7 7 9

bv (in) 6 6 6 6

de (in) 42 42 42 42

Av (in ^2) 0.39 0.39 0.39 0.39

fy (ksi) 60 60 60 60

s (in) 18 8 5 3

fpu (ksi) 270 270 270 270

Eps (ksi) 28500 28500 28500 28500

Aps (in^2) 2.45 2.45 2.45 2.45

be (in) 48 72 96 114

h (in) 36 36 36 36

ts (in) 9 9 9 9

f'cs (in) 4 4 4 4

Vg (kips) 22 22 22 22

Vs (kips) 26 39 52 64

Vb (kips) 3 4 5 6

Vws (kips) 7 10 14 17

Vll-HL93 (kips) 63 82 99 116

Vu (kips) 185 239 292 343

Vn (kips) 205 266 325 382

φVn* (kips) 185 239 292 344
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Table G9. Design parameters for Type II girder using the Original LRFD Procedure (200 ft span) 

 

Table G10. Design parameters for Type II girder using the Modified LRFD Procedure (200 ft 

span) 

 

 

Type II- 200 ft Span

Comb. # 21 22

Girder Spacing (ft) 4 6

f'c (ksi) 7 7

bv (in) 6 6

de (in) 42 42

Av (in ^2) 0.39 0.39

fy (ksi) 60 60

s (in) 6 3

fpu (ksi) 270 270

Eps (ksi) 28500 28500

Aps (in^2) 2.45 2.45

be (in) 48 72

h (in) 36 36

ts (in) 9 9

f'cs (in) 4 4

Vg (kips) 37 37

Vs (kips) 45 66

Vb (kips) 4 6

Vws (kips) 12 17

Vll-HL93 (kips) 79 102

Vu (kips) 263 341

Vn (kips) 293 379

φVn (kips) 263 341

Type II- 200 ft Span

Comb. # 21 22

Girder Spacing (ft) 4 6

f'c (ksi) 8 9

bv (in) 6 6

de (in) 42 42

Av (in ^2) 0.39 0.39

fy (ksi) 60 60

s (in) 6 3

fpu (ksi) 270 270

Eps (ksi) 28500 28500

Aps (in^2) 2.45 2.45

be (in) 48 72

h (in) 36 36

ts (in) 9 9

f'cs (in) 4 4

Vg (kips) 37 37

Vs (kips) 45 66

Vb (kips) 4 6

Vws (kips) 12 17

Vll-HL93 (kips) 79 102

Vu (kips) 263 341

Vn (kips) 293 380

φVn* (kips) 263 342
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Table G11. Design parameters for Type III girder using the Original LRFD Procedure (30 ft 

span) 

 

Table G12. Design parameters for Type III girder using the Modified LRFD Procedure (30 ft 

span) 

 

Type III- 30 ft Span

Comb. # 1 2 3 4 5

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 4 4 4 4 4

bv (in) 7 7 7 7 7

de (in) 51 51 51 51 51

Av (in ^2) 0.22 0.22 0.22 0.22 0.22

fy (ksi) 60 60 60 60 60

s (in) 24 24 24 24 24

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 3.67 3.67 3.67 3.67 3.67

be (in) 48 72 90 90 90

h (in) 45 45 45 45 45

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 6 6 6 6 6

Vs (kips) 5 8 10 12 15

Vb (kips) 1 1 1 1 1

Vws (kips) 1 2 3 3 4

Vll-HL93 (kips) 31 40 49 57 65

Vu (kips) 72 92 111 130 148

Vn (kips) 193 193 190 186 183

φVn (kips) 174 173 171 168 164

Type III- 30 ft Span

Comb. # 1 2 3 4 5

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 4 4 4 4 4

bv (in) 7 7 7 7 7

de (in) 51 51 51 51 51

Av (in ^2) 0.22 0.22 0.22 0.22 0.22

fy (ksi) 60 60 60 60 60

s (in) 24 24 24 24 24

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 3.67 3.67 3.67 3.67 3.67

be (in) 48 72 90 90 90

h (in) 45 45 45 45 45

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 6 6 6 6 6

Vs (kips) 5 8 10 12 15

Vb (kips) 1 1 1 1 1

Vws (kips) 1 2 3 3 4

Vll-HL93 (kips) 31 40 49 57 65

Vu (kips) 72 92 111 130 148

Vn (kips) 202 202 199 195 191

φVn* (kips) 182 181 179 176 172
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Table G13. Design parameters for Type III girder using the Original LRFD Procedure (60 ft 

span) 

 

Table G14. Design parameters for Type III girder using the Modified LRFD Procedure (60 ft 

span) 

 

Type III- 60 ft Span

Comb. # 6 7 8 9 10

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 4 4 5 6 7

bv (in) 7 7 7 7 7

de (in) 51 51 51 51 51

Av (in ^2) 0.22 0.22 0.22 0.22 0.22

fy (ksi) 60 60 60 60 60

s (in) 24 24 17 12 9

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 3.67 3.67 3.67 3.67 3.67

be (in) 48 72 96 116 116

h (in) 45 45 45 45 45

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 15 15 15 15 15

Vs (kips) 12 18 24 29 35

Vb (kips) 1 2 2 3 3

Vws (kips) 3 5 6 8 9

Vll-HL93 (kips) 47 61 74 86 98

Vu (kips) 123 157 190 222 253

Vn (kips) 183 182 211 246 280

φVn (kips) 165 164 190 221 252

Type III- 60 ft Span

Comb. # 6 7 8 9 10

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 4 5 6 6 7

bv (in) 7 7 7 7 7

de (in) 51 51 51 51 51

Av (in ^2) 0.22 0.22 0.22 0.22 0.22

fy (ksi) 60 60 60 60 60

s (in) 24 24 21 14 10

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 3.67 3.67 3.67 3.67 3.67

be (in) 48 72 96 116 116

h (in) 45 45 45 45 45

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 15 15 15 15 15

Vs (kips) 12 18 24 29 35

Vb (kips) 1 2 2 3 3

Vws (kips) 3 5 6 8 9

Vll-HL93 (kips) 47 61 74 86 98

Vu (kips) 123 157 190 222 253

Vn (kips) 191 188 211 247 281

φVn* (kips) 172 169 190 222 253
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Table G15. Design parameters for Type III girder using the Original LRFD Procedure (90 ft 

span) 

 

Table G16. Design parameters for Type III girder using the Modified LRFD Procedure (90 ft 

span) 

 

Type III- 90 ft Span

Comb. # 11 12 13 14 15

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 4 6 7 7 7

bv (in) 7 7 7 7 7

de (in) 51 51 51 51 51

Av (in ^2) 0.22 0.22 0.39 0.39 0.39

fy (ksi) 60 60 60 60 60

s (in) 24 14 16 12 9

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 3.67 3.67 3.67 3.67 3.67

be (in) 48 72 96 116 116

h (in) 45 45 45 45 45

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 24 24 24 24 24

Vs (kips) 19 28 37 47 56

Vb (kips) 2 3 4 4 5

Vws (kips) 5 7 10 12 15

Vll-HL93 (kips) 56 72 88 102 116

Vu (kips) 162 206 249 291 332

Vn (kips) 180 229 277 323 368

φVn (kips) 162 206 249 291 332

Type III- 90 ft Span

Comb. # 11 12 13 14 15

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 4 7 8 9 10

bv (in) 7 7 7 7 7

de (in) 51 51 51 51 51

Av (in ^2) 0.22 0.22 0.39 0.39 0.39

fy (ksi) 60 60 60 60 60

s (in) 24 17 20 14 11

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 3.67 3.67 3.67 3.67 3.67

be (in) 48 72 96 116 116

h (in) 45 45 45 45 45

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 24 24 24 24 24

Vs (kips) 19 28 37 47 56

Vb (kips) 2 3 4 4 5

Vws (kips) 5 7 10 12 15

Vll-HL93 (kips) 56 72 88 102 116

Vu (kips) 162 206 249 291 332

Vn (kips) 180 229 277 323 368

φVn* (kips) 162 206 249 291 332
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Table G17. Design parameters for Type III girder using the Original LRFD Procedure (120 ft 

span) 

 

Table G18. Design parameters for Type III girder using the Modified LRFD Procedure (120 ft 

span) 

 

Type III- 120 ft Span

Comb. # 16 17 18 19 20

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 6 7 7 7 7

bv (in) 7 7 7 7 7

de (in) 51 51 51 51 51

Av (in ^2) 0.22 0.39 0.39 0.39 0.39

fy (ksi) 60 60 60 60 60

s (in) 15 16 11 8 5

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 3.67 3.67 3.67 3.67 3.67

be (in) 48 72 96 116 116

h (in) 45 45 45 45 45

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 33 33 33 33 33

Vs (kips) 26 39 51 64 76

Vb (kips) 3 4 5 6 7

Vws (kips) 7 10 13 17 20

Vll-HL93 (kips) 63 81 98 115 131

Vu (kips) 197 251 303 354 403

Vn (kips) 219 279 337 393 448

φVn (kips) 197 251 303 354 403

Type III- 120 ft Span

Comb. # 16 17 18 19 20

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 6 8 8 8 9

bv (in) 7 7 7 7 7

de (in) 51 51 51 51 51

Av (in ^2) 0.22 0.39 0.39 0.39 0.39

fy (ksi) 60 60 60 60 60

s (in) 18 20 13 7 5

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 3.67 3.67 3.67 3.67 3.67

be (in) 48 72 96 116 116

h (in) 45 45 45 45 45

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 33 33 33 33 33

Vs (kips) 26 39 51 64 76

Vb (kips) 3 4 5 6 7

Vws (kips) 7 10 13 17 20

Vll-HL93 (kips) 63 81 98 115 131

Vu (kips) 197 251 303 354 403

Vn (kips) 219 279 337 393 448

φVn* (kips) 197 251 303 354 404
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Table G19. Design parameters for Type III girder using the Original LRFD Procedure (200 ft 

span) 

 

Table G20. Design parameters for Type III girder using the Modified LRFD Procedure (200 ft 

span) 

 

Type III- 200 ft Span

Comb. # 21 22 23

Girder Spacing (ft) 4 6 8

f'c (ksi) 7 7 7

bv (in) 7 7 7

de (in) 51 51 51

Av (in ^2) 0.39 0.39 0.39

fy (ksi) 60 60 60

s (in) 11 7 4

fpu (ksi) 270 270 270

Eps (ksi) 28500 28500 28500

Aps (in^2) 3.67 3.67 3.67

be (in) 48 72 96

h (in) 45 45 45

ts (in) 9 9 9

f'cs (in) 4 4 4

Vg (kips) 56 56 56

Vs (kips) 45 66 88

Vb (kips) 4 6 8

Vws (kips) 12 17 23

Vll-HL93 (kips) 78 101 123

Vu (kips) 286 364 439

Vn (kips) 318 404 488

φVn (kips) 286 364 439

Type III- 200 ft Span

Comb. # 21 22 23

Girder Spacing (ft) 4 6 8

f'c (ksi) 7 8 9

bv (in) 7 7 7

de (in) 51 51 51

Av (in ^2) 0.39 0.39 0.39

fy (ksi) 60 60 60

s (in) 13 7 4

fpu (ksi) 270 270 270

Eps (ksi) 28500 28500 28500

Aps (in^2) 3.67 3.67 3.67

be (in) 48 72 96

h (in) 45 45 45

ts (in) 9 9 9

f'cs (in) 4 4 4

Vg (kips) 56 56 56

Vs (kips) 45 66 88

Vb (kips) 4 6 8

Vws (kips) 12 17 23

Vll-HL93 (kips) 78 101 123

Vu (kips) 286 364 439

Vn (kips) 318 404 488

φVn* (kips) 286 364 440
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Table G21. Design parameters for Type IV girder using the Original LRFD Procedure (30 ft 

span) 

 

Table G22. Design parameters for Type IV girder using the Modified LRFD Procedure (30 ft 

span) 

 

Type IV- 30 ft Span

Comb. # 1 2 3 4 5

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 4 4 4 4 4

bv (in) 8 8 8 8 8

de (in) 59 59 59 59 59

Av (in ^2) 0.22 0.22 0.22 0.22 0.22

fy (ksi) 60 60 60 60 60

s (in) 24 24 24 24 24

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 5.20 5.20 5.20 5.20 5.20

be (in) 48 72 90 90 90

h (in) 54 54 54 54 54

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 9 8 8 8 8

Vs (kips) 5 7 9 12 14

Vb (kips) 0 1 1 1 1

Vws (kips) 1 2 2 3 4

Vll-HL93 (kips) 30 39 47 55 62

Vu (kips) 72 91 109 127 144

Vn (kips) 252 254 252 248 244

φVn (kips) 227 228 227 223 220

Type IV- 30 ft Span

Comb. # 1 2 3 4 5

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 4 4 4 4 4

bv (in) 8 8 8 8 8

de (in) 59 59 59 59 59

Av (in ^2) 0.22 0.22 0.22 0.22 0.22

fy (ksi) 60 60 60 60 60

s (in) 24 24 24 24 24

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 5.20 5.20 5.20 5.20 5.20

be (in) 48 72 90 90 90

h (in) 54 54 54 54 54

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 9 8 8 8 8

Vs (kips) 5 7 9 12 14

Vb (kips) 0 1 1 1 1

Vws (kips) 1 2 2 3 4

Vll-HL93 (kips) 30 39 47 55 62

Vu (kips) 72 91 109 127 144

Vn (kips) 265 267 265 261 257

φVn* (kips) 238 240 238 235 231
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Table G23. Design parameters for Type IV girder using the Original LRFD Procedure (60 ft 

span) 

 

Table G24. Design parameters for Type IV girder using the Modified LRFD Procedure (60 ft 

span) 

 

Type IV- 60 ft Span

Comb. # 6 7 8 9 10

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 4 4 4 5 5

bv (in) 8 8 8 8 8

de (in) 59 59 59 59 59

Av (in ^2) 0.22 0.22 0.22 0.22 0.22

fy (ksi) 60 60 60 60 60

s (in) 24 24 24 24 15

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 5.20 5.20 5.20 5.20 5.20

be (in) 48 72 96 118 118

h (in) 54 54 54 54 54

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 21 21 21 21 21

Vs (kips) 12 18 23 29 35

Vb (kips) 1 2 2 3 3

Vws (kips) 3 5 6 8 9

Vll-HL93 (kips) 47 60 73 85 97

Vu (kips) 129 162 194 226 256

Vn (kips) 241 240 237 250 284

φVn (kips) 217 216 214 225 256

Type IV- 60 ft Span

Comb. # 6 7 8 9 10

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 4 4 4 5 6

bv (in) 8 8 8 8 8

de (in) 59 59 59 59 59

Av (in ^2) 0.22 0.22 0.22 0.22 0.22

fy (ksi) 60 60 60 60 60

s (in) 24 24 24 24 17

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 5.20 5.20 5.20 5.20 5.20

be (in) 48 72 96 118 118

h (in) 54 54 54 54 54

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 21 21 21 21 21

Vs (kips) 12 18 23 29 35

Vb (kips) 1 2 2 3 3

Vws (kips) 3 5 6 8 9

Vll-HL93 (kips) 47 60 73 85 97

Vu (kips) 129 162 194 226 256

Vn (kips) 252 251 250 251 285

φVn* (kips) 227 226 225 226 256
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Table G25. Design parameters for Type IV girder using the Original LRFD Procedure (90 ft 

span) 

 

Table G26. Design parameters for Type IV girder using the Modified LRFD Procedure (90 ft 

span) 

 

Type IV- 90 ft Span

Comb. # 11 12 13 14 15

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 4 5 6 6 7

bv (in) 8 8 8 8 8

de (in) 59 59 59 59 59

Av (in ^2) 0.22 0.22 0.22 0.22 0.22

fy (ksi) 60 60 60 60 60

s (in) 24 24 15 10 8

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 5.20 5.20 5.20 5.20 5.20

be (in) 48 72 96 118 118

h (in) 54 54 54 54 54

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 33 33 33 33 33

Vs (kips) 19 28 37 46 55

Vb (kips) 2 3 3 4 5

Vws (kips) 5 7 10 12 14

Vll-HL93 (kips) 56 72 87 101 115

Vu (kips) 172 216 258 300 340

Vn (kips) 233 240 287 333 377

φVn (kips) 210 216 258 300 340

Type IV- 90 ft Span

Comb. # 11 12 13 14 15

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 4 4 6 7 8

bv (in) 8 8 8 8 8

de (in) 59 59 59 59 59

Av (in ^2) 0.22 0.22 0.22 0.22 0.22

fy (ksi) 60 60 60 60 60

s (in) 24 24 17 12 9

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 5.20 5.20 5.20 5.20 5.20

be (in) 48 72 96 118 118

h (in) 54 54 54 54 54

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 33 33 33 33 33

Vs (kips) 19 28 37 46 55

Vb (kips) 2 3 3 4 5

Vws (kips) 5 7 10 12 14

Vll-HL93 (kips) 56 72 87 101 115

Vu (kips) 172 216 258 300 340

Vn (kips) 243 240 287 333 378

φVn* (kips) 218 216 258 300 340
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Table G27. Design parameters for Type IV girder using the Original LRFD Procedure (120 ft 

span) 

 

Table G28. Design parameters for Type IV girder using the Modified LRFD Procedure (120 ft 

span) 

 

Type IV- 120 ft Span

Comb. # 16 17 18 19 20

Girder Spacing (ft) 4 6 8 10

f'c (ksi) 5 6 7 8 9

bv (in) 8 8 8 8 8

de (in) 59 59 59 59 59

Av (in ^2) 0.22 0.22 0.22 0.22 0.22

fy (ksi) 60 60 60 60 60

s (in) 24 13 9 7 5

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 5.20 5.20 5.20 5.20 5.20

be (in) 48 72 96 118 118

h (in) 54 54 54 54 54

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 46 45 45 45 45

Vs (kips) 26 38 51 63 76

Vb (kips) 3 4 5 6 7

Vws (kips) 7 10 13 17 20

Vll-HL93 (kips) 63 80 98 114 130

Vu (kips) 212 265 317 368 417

Vn (kips) 236 295 352 408 463

φVn (kips) 212 265 317 368 417

Type IV- 120 ft Span

Comb. # 16 17 18 19 20

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 4 6 7 8 8

bv (in) 8 8 8 8 8

de (in) 59 59 59 59 59

Av (in ^2) 0.22 0.22 0.39 0.39 0.39

fy (ksi) 60 60 60 60 60

s (in) 24 16 18 14 10

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 5.20 5.20 5.20 5.20 5.20

be (in) 48 72 96 118 118

h (in) 54 54 54 54 54

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 46 45 45 45 45

Vs (kips) 26 38 51 63 76

Vb (kips) 3 4 5 6 7

Vws (kips) 7 10 13 17 20

Vll-HL93 (kips) 63 80 98 114 130

Vu (kips) 212 265 317 368 417

Vn (kips) 236 295 352 409 463

φVn* (kips) 212 265 317 368 417



231 
 

 
 

Table G29. Design parameters for Type IV girder using the Original LRFD Procedure (200 ft 

span) 

 

Table G30. Design parameters for Type IV girder using the Modified LRFD Procedure (200 ft 

span) 

 

Type IV- 200 ft Span

Comb. # 21 22 23 24 25

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 7 7 7 8 9

bv (in) 8 8 8 8 8

de (in) 59 59 59 59 59

Av (in ^2) 0.39 0.39 0.39 0.39 0.39

fy (ksi) 60 60 60 60 60

s (in) 15 10 7 5 3

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 5.20 5.20 5.20 5.20 5.20

be (in) 48 72 96 118 118

h (in) 54 54 54 54 54

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 78 78 78 78 78

Vs (kips) 45 66 88 109 131

Vb (kips) 4 6 8 10 11

Vws (kips) 11 17 23 29 34

Vll-HL93 (kips) 78 101 122 143 162

Vu (kips) 314 391 466 539 611

Vn (kips) 349 434 518 599 679

φVn (kips) 314 391 466 539 611

Type IV- 200 ft Span

Comb. # 21 22 23 24 25

Girder Spacing (ft) 4 6 8 10 12

f'c (ksi) 7 7 8 9 9

bv (in) 8 8 8 8 8

de (in) 59 59 59 59 59

Av (in ^2) 0.39 0.39 0.39 0.39 0.39

fy (ksi) 60 60 60 60 60

s (in) 17 11 8 5 3

fpu (ksi) 270 270 270 270 270

Eps (ksi) 28500 28500 28500 28500 28500

Aps (in^2) 5.20 5.20 5.20 5.20 5.20

be (in) 48 72 96 118 118

h (in) 54 54 54 54 54

ts (in) 9 9 9 9 9

f'cs (in) 4 4 4 4 4

Vg (kips) 78 78 78 78 78

Vs (kips) 45 66 88 109 131

Vb (kips) 4 6 8 10 11

Vws (kips) 11 17 23 29 34

Vll-HL93 (kips) 78 101 122 143 162

Vu (kips) 314 391 466 539 611

Vn (kips) 349 434 518 599 679

φVn* (kips) 314 391 466 539 611
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APPENDIX H: REGRESSION ANALYSIS DATA 

Table H1. LRFD regression analysis results for 216 data samples 

 

 

 

# f'c (ksi) Stress (ksi) Stirrups Spacing (in) h (in) (FEA/LRFD) Reg. FEA/(Reg. x LRFD)

1 5.5 0.5 3 36 1.19 0.91 1.31

2 5.5 1.5 3 36 1.30 1.11 1.17

3 8 0.5 3 36 1.40 0.94 1.49

4 5.5 0.5 24 36 1.93 1.65 1.17

5 8 1.5 24 36 2.76 1.87 1.48

6 8 1.5 3 36 1.55 1.14 1.37

7 5.5 1.5 24 36 2.64 1.85 1.43

8 8 0.5 24 36 1.95 1.67 1.17

9 5.5 2.5 3 36 1.33 1.31 1.01

10 8 2.5 24 36 2.94 2.07 1.42

11 8 2.5 3 36 1.57 1.34 1.18

12 5.5 2.5 24 36 2.89 2.05 1.41

13 5.5 0.5 12 36 1.70 1.23 1.39

14 8 1.5 12 36 2.50 1.45 1.72

15 5.5 1.5 12 36 2.42 1.43 1.69

16 8 0.5 12 36 1.77 1.25 1.42

17 5.5 2.5 12 36 2.61 1.63 1.61

18 8 2.5 12 36 2.64 1.65 1.60

19 5.5 0.5 3 36 1.33 0.91 1.46

20 5.5 1.5 3 36 1.50 1.11 1.35

21 8 0.5 3 36 1.54 0.94 1.65

22 5.5 0.5 24 36 2.10 1.65 1.27

23 8 1.5 24 36 2.55 1.87 1.36

24 8 1.5 3 36 1.56 1.14 1.38

25 5.5 1.5 24 36 2.51 1.85 1.36

26 8 0.5 24 36 2.10 1.67 1.26

27 5.5 2.5 3 36 1.46 1.31 1.11

28 8 2.5 24 36 2.64 2.07 1.27

29 8 2.5 3 36 1.46 1.34 1.09

30 5.5 2.5 24 36 2.42 2.05 1.18

31 5.5 0.5 12 36 1.85 1.23 1.51

32 8 1.5 12 36 2.39 1.45 1.65

33 5.5 1.5 12 36 2.34 1.43 1.64

34 8 0.5 12 36 1.90 1.25 1.52

35 5.5 2.5 12 36 2.31 1.63 1.42

36 8 2.5 12 36 2.38 1.65 1.45

37 5.5 0.5 3 36 1.18 0.91 1.29

38 5.5 1.5 3 36 1.37 1.11 1.23

39 8 0.5 3 36 1.32 0.94 1.42

40 5.5 0.5 24 36 1.96 1.65 1.19

41 8 1.5 24 36 2.47 1.87 1.32

42 8 1.5 3 36 1.57 1.14 1.39

43 5.5 1.5 24 36 2.36 1.85 1.28

44 8 0.5 24 36 1.82 1.67 1.09

45 5.5 2.5 3 36 1.52 1.31 1.16

46 8 2.5 24 36 2.75 2.07 1.33

47 8 2.5 3 36 1.76 1.34 1.32

48 5.5 2.5 24 36 2.77 2.05 1.35

49 5.5 0.5 12 36 1.67 1.23 1.36

50 8 1.5 12 36 2.37 1.45 1.63
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Table H1 (cont.). LRFD regression analysis results for 216 data samples 

 

 

 

 

# f'c (ksi) Stress (ksi) Stirrups Spacing (in) h (in) (FEA/LRFD) Reg. FEA/(Reg. x LRFD)

51 5.5 1.5 12 36 2.20 1.43 1.54

52 8 0.5 12 36 1.71 1.25 1.37

53 5.5 2.5 12 36 2.42 1.63 1.48

54 8 2.5 12 36 2.73 1.65 1.65

55 5.5 0.5 3 36 1.18 0.91 1.29

56 5.5 1.5 3 36 1.37 1.11 1.23

57 8 0.5 3 36 1.36 0.94 1.46

58 5.5 0.5 24 36 1.92 1.65 1.16

59 8 1.5 24 36 2.62 1.87 1.40

60 8 1.5 3 36 1.59 1.14 1.40

61 5.5 1.5 24 36 2.42 1.85 1.31

62 8 0.5 24 36 2.02 1.67 1.21

63 5.5 2.5 3 36 1.50 1.31 1.15

64 8 2.5 24 36 2.53 2.07 1.22

65 8 2.5 3 36 1.73 1.34 1.29

66 5.5 2.5 24 36 2.53 2.05 1.23

67 5.5 0.5 12 36 1.78 1.23 1.45

68 8 1.5 12 36 2.38 1.45 1.64

69 5.5 1.5 12 36 2.24 1.43 1.57

70 8 0.5 12 36 1.91 1.25 1.52

71 5.5 2.5 12 36 2.30 1.63 1.42

72 8 2.5 12 36 2.57 1.65 1.56

73 5.5 0.5 3 45 1.40 1.07 1.30

74 5.5 1.5 3 45 1.77 1.27 1.39

75 8 0.5 3 45 1.58 1.10 1.44

76 5.5 0.5 24 45 2.21 1.81 1.22

77 8 1.5 24 45 2.94 2.03 1.45

78 8 1.5 3 45 1.93 1.30 1.49

79 5.5 1.5 24 45 2.94 2.01 1.46

80 8 0.5 24 45 2.01 1.83 1.09

81 5.5 2.5 3 45 1.84 1.47 1.25

82 8 2.5 24 45 2.97 2.23 1.33

83 8 2.5 3 45 1.99 1.50 1.33

84 5.5 2.5 24 45 2.91 2.21 1.32

85 5.5 0.5 12 45 1.92 1.39 1.38

86 8 1.5 12 45 2.67 1.61 1.66

87 5.5 1.5 12 45 2.58 1.59 1.62

88 8 0.5 12 45 1.88 1.41 1.33

89 5.5 2.5 12 45 2.68 1.79 1.50

90 8 2.5 12 45 2.77 1.81 1.53

91 5.5 0.5 3 45 1.45 1.07 1.35

92 5.5 1.5 3 45 1.79 1.27 1.40

93 8 0.5 3 45 1.62 1.10 1.47

94 5.5 0.5 24 45 2.42 1.81 1.34

95 8 1.5 24 45 2.94 2.03 1.45

96 8 1.5 3 45 1.72 1.30 1.32

97 5.5 1.5 24 45 2.78 2.01 1.38

98 8 0.5 24 45 2.38 1.83 1.30

99 5.5 2.5 3 45 1.79 1.47 1.21

100 8 2.5 24 45 2.68 2.23 1.20
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Table H1 (cont.). LRFD regression analysis results for 216 data samples 

 

 

 

 

# f'c (ksi) Stress (ksi) Stirrups Spacing (in) h (in) (FEA/LRFD) Reg. FEA/(Reg. x LRFD)

101 8 2.5 3 45 1.92 1.50 1.28

102 5.5 2.5 24 45 2.66 2.21 1.20

103 5.5 0.5 12 45 2.08 1.39 1.50

104 8 1.5 12 45 2.73 1.61 1.69

105 5.5 1.5 12 45 2.58 1.59 1.62

106 8 0.5 12 45 2.12 1.41 1.50

107 5.5 2.5 12 45 2.37 1.79 1.33

108 8 2.5 12 45 2.53 1.81 1.40

109 5.5 0.5 3 45 1.27 1.07 1.18

110 5.5 1.5 3 45 1.57 1.27 1.23

111 8 0.5 3 45 1.42 1.10 1.30

112 5.5 0.5 24 45 1.82 1.81 1.00

113 8 1.5 24 45 2.64 2.03 1.30

114 8 1.5 3 45 1.76 1.30 1.36

115 5.5 1.5 24 45 2.42 2.01 1.20

116 8 0.5 24 45 1.88 1.83 1.03

117 5.5 2.5 3 45 1.64 1.47 1.11

118 8 2.5 24 45 3.10 2.23 1.39

119 8 2.5 3 45 1.94 1.50 1.29

120 5.5 2.5 24 45 2.89 2.21 1.31

121 5.5 0.5 12 45 1.70 1.39 1.22

122 8 1.5 12 45 2.45 1.61 1.52

123 5.5 1.5 12 45 2.25 1.59 1.42

124 8 0.5 12 45 1.80 1.41 1.28

125 5.5 2.5 12 45 2.53 1.79 1.41

126 8 2.5 12 45 2.94 1.81 1.62

127 5.5 0.5 3 45 1.30 1.07 1.21

128 5.5 1.5 3 45 1.60 1.27 1.26

129 8 0.5 3 45 1.51 1.10 1.38

130 5.5 0.5 24 45 2.04 1.81 1.13

131 8 1.5 24 45 2.87 2.03 1.41

132 8 1.5 3 45 1.82 1.30 1.41

133 5.5 1.5 24 45 2.48 2.01 1.23

134 8 0.5 24 45 2.13 1.83 1.16

135 5.5 2.5 3 45 1.63 1.47 1.10

136 8 2.5 24 45 2.91 2.23 1.30

137 8 2.5 3 45 1.94 1.50 1.30

138 5.5 2.5 24 45 2.81 2.21 1.27

139 5.5 0.5 12 45 1.91 1.39 1.38

140 8 1.5 12 45 2.57 1.61 1.59

141 5.5 1.5 12 45 2.32 1.59 1.46

142 8 0.5 12 45 2.04 1.41 1.44

143 5.5 2.5 12 45 2.40 1.79 1.34

144 8 2.5 12 45 2.81 1.81 1.55

145 5.5 0.5 3 54 1.56 1.24 1.26

146 5.5 1.5 3 54 2.01 1.44 1.40

147 8 0.5 3 54 1.74 1.26 1.38

148 5.5 0.5 24 54 2.42 1.97 1.23

149 8 1.5 24 54 3.19 2.19 1.46

150 8 1.5 3 54 2.22 1.46 1.52
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Table H1 (cont.). LRFD regression analysis results for 216 data samples 

 
 

 

 

 

 

# f'c (ksi) Stress (ksi) Stirrups Spacing (in) h (in) (FEA/LRFD) Reg. FEA/(Reg. x LRFD)

151 5.5 1.5 24 54 3.23 2.17 1.49

152 8 0.5 24 54 2.37 1.99 1.19

153 5.5 2.5 3 54 2.03 1.64 1.24

154 8 2.5 24 54 3.49 2.39 1.46

155 8 2.5 3 54 2.26 1.66 1.36

156 5.5 2.5 24 54 3.47 2.37 1.46

157 5.5 0.5 12 54 2.11 1.55 1.36

158 8 1.5 12 54 3.01 1.77 1.70

159 5.5 1.5 12 54 2.81 1.75 1.61

160 8 0.5 12 54 2.04 1.57 1.30

161 5.5 2.5 12 54 2.98 1.95 1.53

162 8 2.5 12 54 3.07 1.97 1.55

163 5.5 0.5 3 54 1.58 1.24 1.28

164 5.5 1.5 3 54 1.96 1.44 1.36

165 8 0.5 3 54 1.77 1.26 1.40

166 5.5 0.5 24 54 2.59 1.97 1.32

167 8 1.5 24 54 3.08 2.19 1.40

168 8 1.5 3 54 2.14 1.46 1.47

169 5.5 1.5 24 54 3.08 2.17 1.42

170 8 0.5 24 54 2.61 1.99 1.31

171 5.5 2.5 3 54 1.91 1.64 1.17

172 8 2.5 24 54 2.93 2.39 1.22

173 8 2.5 3 54 2.10 1.66 1.27

174 5.5 2.5 24 54 2.75 2.37 1.16

175 5.5 0.5 12 54 2.22 1.55 1.43

176 8 1.5 12 54 2.67 1.77 1.51

177 5.5 1.5 12 54 2.72 1.75 1.55

178 8 0.5 12 54 2.22 1.57 1.41

179 5.5 2.5 12 54 2.47 1.95 1.27

180 8 2.5 12 54 2.58 1.97 1.31

181 5.5 0.5 3 54 1.41 1.24 1.14

182 5.5 1.5 3 54 1.72 1.44 1.20

183 8 0.5 3 54 1.59 1.26 1.26

184 5.5 0.5 24 54 2.07 1.97 1.05

185 8 1.5 24 54 3.13 2.19 1.43

186 8 1.5 3 54 1.95 1.46 1.34

187 5.5 1.5 24 54 3.10 2.17 1.43

188 8 0.5 24 54 2.09 1.99 1.05

189 5.5 2.5 3 54 1.68 1.64 1.03

190 8 2.5 24 54 3.48 2.39 1.45

191 8 2.5 3 54 2.04 1.66 1.23

192 5.5 2.5 24 54 3.47 2.37 1.46

193 5.5 0.5 12 54 1.85 1.55 1.19

194 8 1.5 12 54 2.83 1.77 1.60

195 5.5 1.5 12 54 2.74 1.75 1.56

196 8 0.5 12 54 1.88 1.57 1.19

197 5.5 2.5 12 54 2.80 1.95 1.43

198 8 2.5 12 54 3.17 1.97 1.60

199 5.5 0.5 3 54 1.45 1.24 1.17

200 5.5 1.5 3 54 1.77 1.44 1.23
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Table H1 (cont.). LRFD regression analysis results for 216 data samples 

 
 

Table H2. Mean live load data from the state of Michigan based on one lane loading (Eamon et 

al., 2014) 

 

# f'c (ksi) Stress (ksi) Stirrups Spacing (in) h (in) (FEA/LRFD) Reg. FEA/(Reg. x LRFD)

201 8 0.5 3 54 1.65 1.26 1.31

202 5.5 0.5 24 54 2.39 1.97 1.21

203 8 1.5 24 54 3.48 2.19 1.59

204 8 1.5 3 54 1.93 1.46 1.33

205 5.5 1.5 24 54 3.09 2.17 1.42

206 8 0.5 24 54 2.45 1.99 1.23

207 5.5 2.5 3 54 1.70 1.64 1.04

208 8 2.5 24 54 3.19 2.39 1.33

209 8 2.5 3 54 1.91 1.66 1.15

210 5.5 2.5 24 54 2.75 2.37 1.16

211 5.5 0.5 12 54 2.10 1.55 1.35

212 8 1.5 12 54 3.03 1.77 1.71

213 5.5 1.5 12 54 2.69 1.75 1.53

214 8 0.5 12 54 2.19 1.57 1.39

215 5.5 2.5 12 54 2.58 1.95 1.32

216 8 2.5 12 54 2.91 1.97 1.47

Mean 2.22 1.64 1.36

STDEV. 0.56 0.37 0.16

COV 0.25 0.23 0.11

Span (ft) Spacing (ft) mLL (kips) COV

30 4 53 0.176

30 6 61 0.176

30 8 70 0.176

30 10 78 0.176

30 12 86 0.176

60 4 81 0.187

60 6 94 0.187

60 8 106 0.187

60 10 118 0.187

60 12 131 0.187

90 4 103 0.191

90 6 118 0.191

90 8 134 0.191

90 10 150 0.191

90 12 166 0.191

120 4 119 0.194

120 6 137 0.194

120 8 156 0.194

120 10 174 0.194

120 12 192 0.194

200 4 160 0.198

200 6 184 0.198

200 8 209 0.198

200 10 233 0.198

200 12 258 0.198
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APPENDIX I: FORTRAN CODE 

The following FORTRAN algorithm was used to compute reliability indices for Type II 

girder using Rackwitz-Fiessler Procedure and based on the iterative approach discussed in 

Chapter 4. 

PROGRAM RFstep 

 

 !Rackwitz-Fiessler for nonlinear limit states 

   

!! Note although gives good B convergence, MPP does not 

!! completely satisfy g(linearized)=0 

 

REAL g, gm, linsum, grad, xn, dgn, V, snpU, toterror 

REAL Beta, BetaLast, exIalp, exIu, EIP, EIC, pv, PHI, UPDF, UPCF 

INTEGER nrv, d, interlimit, l 

  

REAL, DIMENSION (:), ALLOCATABLE :: x 

REAL, DIMENSION (:), ALLOCATABLE :: xm 

REAL, DIMENSION (:), ALLOCATABLE :: xb 

REAL, DIMENSION (:), ALLOCATABLE :: sd 

REAL, DIMENSION (:), ALLOCATABLE :: dg 

REAL, DIMENSION (:), ALLOCATABLE :: xpert 

REAL, DIMENSION (:), ALLOCATABLE :: gpert 

REAL, DIMENSION (:), ALLOCATABLE :: lin 

REAL, DIMENSION (:), ALLOCATABLE :: sdlin 

INTEGER, DIMENSION (:), ALLOCATABLE :: lrv 

INTEGER, DIMENSION (:), ALLOCATABLE :: xd 

REAL, DIMENSION (:), ALLOCATABLE :: xurl 

REAL, DIMENSION (:), ALLOCATABLE :: xurh 

REAL, DIMENSION (:), ALLOCATABLE :: xmb 

REAL, DIMENSION (:), ALLOCATABLE :: sdb 

REAL, DIMENSION (:), ALLOCATABLE :: xold 

REAL, DIMENSION (:), ALLOCATABLE :: totalerror 

  

REAL Mu, Vu, Vinc, balerror, errtol, vdfrac 

INTEGER iterlim, iters 

 

!!!!!!!!! ENTER DATA HERE ((5) steps)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

! (1) ENTER #RVs:  

nrv = 19 !15 

 

ALLOCATE(x(nrv)) 

ALLOCATE(sd(nrv)) 

ALLOCATE(xm(nrv)) 

ALLOCATE(dg(nrv)) 
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ALLOCATE(xb(nrv)) 

ALLOCATE(xpert(nrv)) 

ALLOCATE(gpert(nrv)) 

ALLOCATE(lrv(nrv)) 

ALLOCATE(lin(nrv)) 

ALLOCATE(sdlin(nrv)) 

ALLOCATE(xd(nrv)) 

ALLOCATE(xurl(nrv)) 

ALLOCATE(xurh(nrv)) 

ALLOCATE(xmb(nrv)) 

ALLOCATE(sdb(nrv)) 

ALLOCATE(xold(nrv)) 

ALLOCATE(totalerror(nrv)) 

 

! (2) ENTER RV means (xm(i)), std. dev's (sd(i)), anf distribution types xd(i), 

! For distributions, enter 1=normal, 2=lognormal, 3=extreme I/Gumbel, 4 = Uniform 

! If Uniform, must enter RV range: xurl(i) (low), xurh(i) (high) 

 

!Mu=663.56 

 

Vinc = 1.0 !Enter increment step up for Vu 

errtol = 0.04  !Vu & Rrn error tolerance (fraction; i.e. 1% = 0.01) 

iterlim = 5000 ! max. number of balance iterations to allow Vu=Rrn 

vdfrac = 0.1 !fraction to reduce Vinc if over/undershoots. 

 

Vu=       150.8 

Sp=       720 

xm(1)= 9.66 

xm(2)= 6.06 

xm(3)= 41.75 

xm(4)= 0.39 

xm(5)= 68.70 

xm(6)= 16.66 

xm(7)= 280.80 

xm(8)= 28500.00 

xm(9)= 2.45 

xm(10)= 96.00 

xm(11)= 36.00 

xm(12)= 9.09 

xm(13)= 5.52 

xm(14)= 10.52 

xm(15)= 25.49 

xm(16)= 2.39 

xm(17)= 6.38 

xm(18)= 105.97 

xm(19)= 1 
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sd(1)= 1.16 

sd(2)= 0.24 

sd(3)= 1.04 

sd(4)= 0.01 

sd(5)= 3.44 

sd(6)= 0.67 

sd(7)= 7.02 

sd(8)= 285.00 

sd(9)= 0.04 

sd(10)= 3.84 

sd(11)= 1.08 

sd(12)= 1.09 

sd(13)= 0.66 

sd(14)= 0.84 

sd(15)= 2.55 

sd(16)= 0.24 

sd(17)= 1.60 

sd(18)= 19.82 

sd(19)= 0.1 

 

xd(1)=1 

xd(2)=1 

xd(3)=1 

xd(4)=1 

xd(5)=1 

xd(6)=1 

xd(7)=1 

xd(8)=1 

xd(9)=1 

xd(10)=1 

xd(11)=1 

xd(12)=1 

xd(13)=1 

xd(14)=1 

xd(15)=1 

xd(16)=1 

xd(17)=1 

xd(18)=1 

xd(19)=1 

! (3) ENTER which RVs are LOAD RVs by: lrv(i) = 1. Do not input anything for  

!resistance RVs 

  

lrv(14)=1 

lrv(15)=1 

lrv(16)=1 
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lrv(17)=1 

lrv(18)=1 

 

! (4) ENTER step size for gradient difference (+/- fraction) 

 

grad = 0.01   

converge = 0.01 !error fraction for MPP convergence criteria 

iterlimit = 20 

 

! (5) NTER G at subroutine  Limitstate below: 

 

open (1,file="RFoutput.txt") 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

!Save the base means and std. devs: 

do i=1,nrv 

xmb(i) = xm(i) 

sdb(i) = sd(i) 

end do 

 

!First assume initial RV values are means 

 

do i=1,nrv 

x(i) = xm(i) 

end do 

 

!begin Beta Loop 

 

do   

 

d=d+1 

!print*, "d=", d 

 

  if (d == iterlimit+1) then 

  goto 700 

  else 

  end if 

 

!!1.5) Determine Equivalent Normal RV parameters at design point 

 

do i=1,nrv 

 if (xd(i)==1) then 

 goto 90 

 else if (xd(i)==2) then 

 call Lognormal 
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 else if (xd(i)==3) then 

 call ExtremeI 

 else if (xd(i)==4) then 

 call Uniform 

 else 

 end if 

 

90 rt=0 !dummy 

end do 

 

 

!2nd get derivatives of g: 

 

!gradients dg/dx 

 

 ! g base value 

 

 !save base values 

 do i=1,nrv 

 xb(i) = x(i) 

 end do 

 

 call Limitstate 

 gm = g 

 

 print*,"g =",g 

 

 !g perturbed values 

 do i=1,nrv 

 

  do l=1,nrv 

  x(l)=xb(l) 

  end do 

 

  x(i) = xb(i)*(grad+1) 

  xpert(i) = x(i) 

 

  call Limitstate 

  gpert(i) = g 

 

 !print*,"gpert (i)=",gpert(i) 

 print*,"gm =",gm 

    print*,"------------- ",gm-g 

  

 end do 
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 !set x(i) back to unperturbed values 

 

 do i=1,nrv 

 x(i) = xb(i) 

 end do 

 

 !calc dg/dx  

 

 do i=1,nrv 

 dg(i) = ((gm - gpert(i))/(x(i)-xpert(i))) 

! print*, "dg(i)=", dg(i) 

 end do 

 

  

 

!end gradient calculation 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

!3rd create linearized limit state 

 

 linsum = 0 

 do i=1,nrv 

 lin(i) = (xm(i)-x(i))*dg(i) 

 linsum= lin(i) + linsum 

    print*,"dg(i) =",dg(i) 

 end do 

 

  

 glin = gm + linsum 

 

    print*,"linsum =",linsum 

 print*,"glin =",glin 

    print*, " Vu=", Vu 

    

 

!4th creat linearized std. deviation 

 

 sdsum = 0 

 do i=1,nrv 

 sdlin(i) = (sd(i)*dg(i))**2 

 sdsum = sdlin(i) + sdsum 

 end do 

 

 sdsum = sdsum**0.5 
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!5th approximate Beta 

 

Beta = glin/sdsum 

 

print*, "glin, sdsum=", glin, sdsum 

print*, "beta=", Beta 

 

!6th calculate new design point 

 

print*, "New Design Point (basic coords):" 

 

 do i=1,nrv 

 

 !For Load RVs: 

 

 if(lrv(i) == 1 ) then 

 

 x(i) = xm(i) + (dg(i)*Beta*sd(i)**2)/sdsum 

 

 print*, "x(i)=", i, x(i) 

 

 else 

 !For Resistance RVs: 

 

 x(i) = xm(i) - (dg(i)*Beta*sd(i)**2)/sdsum 

 

 print*, "x(i)=", i, x(i) 

 

 end if 

 

 end do 

 

!Convergence Criteria 

 

! by beta 

! if (abs(BetaLast - Beta) <= converge) then 

!  goto 500 

!  else 

! end if 

 

!Convergence by design point 

 

do i=1,nrv 

 if (xold(i) == 0) then 

 xold(i) = 2*x(i) 

 else  
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 end if 

 totalerror(i) = (abs(x(i)-xold(i)))/xold(i) 

end do 

 

toterror=0 

do i=1,nrv 

toterror = toterror + totalerror(i)  

end do 

!print*, "toterror=", toterror 

 

if (toterror < converge) then 

goto 500 

else 

end if 

 

!save current x(i) values for convergence check 

do i=1,nrv 

xold(i) = x(i) 

end do 

 

BetaLast= Beta 

end do 

 

400 goto 800 

500 print*, "MPP Converged, Beta =", Beta 

505 print*, "Total limit state calls, total calls=", lsc, totalcalls 

600 goto 800 

620 goto 800 

700 print*, "MPP not converged after max. iteration ", iterlimit 

710 print*, "Total limit state calls, total calls=", lsc, totalcalls 

800 w=0 !dummy 

 

CONTAINS 

 

=====================================================================

=== 

SUBROUTINE Limitstate 

 

ENTER FORM OF G HERE (4) 

lsc=lsc+1  !total #of limit state calls 

iters = 0  

pic = 0 

pde = 0 

 

Do  
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totalcalls = totalcalls +1 

iters = iters +1 

 

!print*, "Iteration, Vu=", iters, Vu 

write (1,20000) iters, Vu 

 

20000 format ("Iteration, Vu=", I3, "  ", F8.4) 

 

if (iters .GT. iterlim) then 

print*, "Vu=Rrn balance not converged after max. iteration ", iterlim 

stop 

end if 

 

 

Beta1=0.85-0.05*((abs(x(13)*1000)-4000)/10000) 

c=(x(9)*x(7))/(0.85*abs(x(13))*Beta1*x(10)+0.28*x(9)*(x(7)/x(3))) 

a=Beta1*c 

dv=x(3)-(a/2) 

 

Mu=Vu*dv 

 

es=((Mu/dv)+Vu-x(9)*0.7*x(7))/(x(8)*x(9)) 

 

if (es .LT. 0) then  

es=((Mu/dv)+Vu-x(9)*0.7*x(7))/(x(8)*x(9)+(144+x(2)*(((x(11)+x(12)+1)/2)-

6))*((150**1.5)*33*(abs(x(1)*1000)*(1/(abs(x(1)*1000)**0.5)))/1000)) 

else 

dummy=0 

end if 

 

Bb=4.8/(1+750*es) 

Theta=(29+3500*es)*(3.14/180) 

 

 

Vc=0.0316*Bb*(abs(x(1))*(1/(abs(x(1))**0.5)))*x(2)*dv 

 

Vs=(x(4)*x(5)*dv*(1/tan(Theta)))/x(6) 

 

Vp=0 

 

Rrn=Vc+Vs+Vp 

 

 

 !exit if error tolerance satisfied 

 

 balerror = (Vu - Rrn)/Rrn 
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 if (abs(balerror) .LE. errtol) then 

 print*, "balanced; Vu, Rrn, #iters=", Vu, Rrn, iters 

    Print*, "balerror" , balerror 

  goto 500 !exit; error tolerance satisfied 

 end if 

 

10000 dummy=0 

 

if (Vu .LE. Rrn) then 

 

 pic = pic +1 !# of increase processes 

 

 Vu = Vu + Vinc 

 

 

else if (Vu .GT. Rrn) then 

 

 pde = pde + 1  !#of decrease processes 

 

 if (pic == 1.0) then  

 

  !process was increasing, now decreasing; means overshot 

   

  print*, "Vu overshot target of Rrn=", Rrn, ". Reduce to Vu=", Vu-Vinc 

  print*, "    and restart with new increment of Vinc=", Vinc*Vdfrac 

  

  Vu = Vu - Vinc 

  Vinc = Vinc*Vdfrac 

 

  goto 10000 

 

 end if 

 Vu = Vu - Vinc 

 

end if 

 

End do 

 

500 Qqn=x(14)+x(15)+x(16)+x(17)+x(18) 

 

!print*, "Qqn=", Qqn 

g=Rrn*x(19)-Qqn 

 

print*, "es=", es 

print*, "Vu=", Vu 
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print*, "Mu=", Mu 

print*, "g=", g 

 

 

END SUBROUTINE 

!====================================================================

==== 

SUBROUTINE Lognormal 

 

!change xm(i) and sd(i) 

 

 

 V = sdb(i) / xmb(i) 

 

!print*, "i, sdb(i), xmb(i), V(i) =", i, sdb(i), xmb(i), V 

 

 sd(i) = x(i)*(LOG(V**2+1))**.5    !equiv. norm s.d. 

 

 

!print*, "equiv. norm sd", i, sd(i) 

 

!equiv norm mean 

 xm(i) = x(i)*(1-LOG(x(i)) + LOG(xmb(i)) - 0.5*LOG(V**2+1)) 

  

!print*, "equiv. norm mean", i, xm(i) 

 

END SUBROUTINE 

!------------------------------------------------------------------------------- 

 

SUBROUTINE ExtremeI 

 

 

exIalp = 1.28254983/sdb(i) 

 

exIu = xmb(i) - 0.5772/exIalp 

 

!pdf: 

EIP = exIalp*EXP(-EXP(-exIalp*(x(i)-exIu)))*EXP(-exIalp*(x(i)-exIu)) 

!cdf: 

EIC = EXP(-EXP(-exIalp*(x(i)-exIu))) 

 

 

!Equiv. s.d. calcluation: 

 

 !computation of inverse standard normal distribution 
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 IF (EIC > 0.5) THEN 

 EIC = 1-EIC 

 condition = 1 

 ELSE 

 condition = 0 

 END IF 

  

 pv = (-LOG(EIC**2))**.5 

 PHI = -pv + (2.515517 + 0.802853*pv + 0.010328*pv**2)/(1 + 1.432788*pv + 

0.189269*pv**2 + 0.001308*pv**3) 

  

 IF (condition == 1) THEN 

 PHI = -PHI 

 ELSE 

 END IF 

 

!Std Norm PDF(i)= 

 

snpEI = 0.3989422804*EXP(-0.5*(PHI)**2) 

 

!equivalent sd: 

 

sd(i) = (1/EIP)*snpEI 

 

!equivalent mean: 

 

xm(i) = x(i) - sd(i)*(PHI) 

 

  

END SUBROUTINE 

!------------------------------------------------------------------------------- 

 

SUBROUTINE Uniform 

 

!change xm(i) and sd(i) 

 

!pdf: 

UPDF = 1/(xurh(i)-xurl(i)) 

!cdf: 

UCDF = UPDF*(x(i) -xurl(i)) 

 

!Equiv. s.d. calcluation: 

 

 !computation of inverse standard normal distribution 

 

 IF (UCDF > 0.5) THEN 
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 UCDF = 1-UCDF 

 condition = 1 

 ELSE 

 condition = 0 

 END IF 

  

 pv = (-LOG(UCDF**2))**.5 

 PHI = -pv + (2.515517 + 0.802853*pv + 0.010328*pv**2)/(1 + 1.432788*pv + 

0.189269*pv**2 + 0.001308*pv**3) 

  

 IF (condition == 1) THEN 

 PHI = -PHI 

 ELSE 

 END IF 

 

!Std Norm PDF(i)= 

 

snpU = 0.3989422804*EXP(-0.5*(PHI)**2) 

 

!equivalent sd: 

 

sd(i) = (1/UPDF)*snpU 

 

!equivalent mean: 

 

xm(i) = x(i) - sd(i)*(PHI) 

 

 

END SUBROUTINE 

------------------------------------------------------------------------- 

 

 

END PROGRAM 
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The main objectives of this study are to evaluate the adequacy of the current AASHTO 

methods for shear design of prestressed concrete (PC) bridge girders, determine the reliability of 

PC bridge girders in shear based on the current LRFD General Procedure, determine the most 

accurate and consistent method for predicting the shear capacity of AASHTO “I” shape PC bridge 

girders, and recalibrate the AASHTO LRFD code for shear as necessary. These objectives were 

achieved through lab testing of two full scale Type II girders, finite element modeling for more 

than 330 PC girders, parametric analysis, regression analysis, and structural reliability analysis for 

more than 200 PC bridge cases. As a result of this study, a regression equation and a modification 

to the current LRFD General Procedure were proposed, and rating factors based on MI live load 

traffic data were computed and discussed. 
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