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PREFACE 

In this dissertation, I am reporting the technology for fabricating sub-micrometer dense 

patterns on hard transition metal nitride such as zirconium nitride using focused ion beam milling  

and enhancing the sensitivity of an optical miniature spectrometer using a real-time image-

processing algorithm.  

Chapter 1 gives an introduction reviewing the basic parameters of focused ion beam and 

how it is used for fabrication on different materials including hard metals and nitrides. It also 

explains the different platforms of development of optical miniature spectrometers and the need 

to enhance the sensitivity of such devices.  

In Chapter 2, an investigation to find appropriate focused ion beam parameters to 

fabricate successfully sub-micrometer dense patterns on transition metal nitrides is discussed in 

detail. Chapter 3 discusses the design of the miniature spectrometer. Chapter 4 explains the real-

time image-processing algorithm, which maps the pixel number scale of CMOS image sensor to 

wavelength spectrum and averages along the arc to collect the light from entire arc to enhance 

the sensitivity. Chapter 5 discusses various testing methods used to test the sensitivity of 

miniature spectrometer. Chapter 6 concludes the fabrication procedure as well as the image 

processing. 

Sincerely, 

Sabarish Chandramohan 
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CHAPTER 1: INTRODUCTION 

Dense periodical patterns such as gratings allow coupling the light in and out of the 

waveguide in photonic devices enabling them to be used in variety of applications. In this study, 

we are reporting the technology for fabricating such gratings on zirconium nitride and a real-time 

image-processing algorithm for enhancing the performance of a grating based photonic device.  

For the fabrication, focused ion beam milling parameters for successful fabrication of 

dense periodical patterns, such as gratings, on hard transition metal nitride, zirconium nitride are 

investigated. Focused ion beam (FIB) milling recently has a great deal of attention in 

nanofabrication because of its advantage of mask less fabrication technique. There are 

discussions on recent developments in FIB milling, and FIB deposition using different liquid 

metal ion species (LMIS) along with investigation of different parameters, such as scan method, 

ion dose, milling rate, ion beam current, dwell time, angle of incidence, beam diameter, beam 

overlapping etc for fabricating structures and complex patterns on various materials as well as 

various parameters influencing the milling process [1-2]. FIB milling using gallium (Ga
+
) as 

liquid metal ion source has been used for fabricating Bragg gratings with period 240 nm and 

length 330 µm on very high index silicon-on-insulator (SOI) optical waveguides with ion beam 

energy of 30 keV, and beam current of 12 pA [3], and Bragg gratings with period 576 nm, depth 

100 nm and length 550 µm on fiber for refractive index (RI) sensing applications with ion beam 

energy of 30 keV, and beam current of 70 pA [4]. Ga
+ 

ion FIB milling has been used for 

fabricating gratings for optical communication applications that includes fabrication of micro 

gratings of periods 200 nm - 2 µm on optical fiber and fiber mounted on silicon sample with ion 

beam energy of 30 keV, beam current varying from 30 pA - 1 nA, dwell time of 0.1 µs, beam 

overlapping 50% and variation of ion dose from 10
18

 - 10
20

 cm
-2 

for wavelength division 
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demultiplexing [5], fabrication of gratings on optical fiber using different beam limiting aperture 

sizes, beam current, ion spot sizes, milling sequence, beam overlapping and dwell time for 

transmitter and receiver modules [6], and fabrication of echelon grating (ion beam energy of 26 

keV, dwell time of 2s, 10 scans), crossed grating and circular aperture gratings (ion beam energy 

of 13 keV, dwell time of 0.66 µs, 2250 scans) on PMMA and fluorinated polyimide for 

wavelength division demultiplexing [7]. Li et al [8] proposed a detailed study by varying ion 

beam fluence and ion beam current for FIB milling of gratings on fused silica. There has been 

report of optimization of FIB milling parameters such as ion dose, dwell time and loop number 

for eliminating sidewall angles in the fabrication of sub-micrometer holes on bulk silicon and 

silicon-on-insulator (SOI) [9].  

FIB milling is widely used to fabricate dense periodical patterns such as gratings, 

photonic crystals, optical micro-cavities etc on silicon nitride (Si3N4) and gallium nitride (GaN) 

[11-20]. Chaganti et al [10] investigated fabrication of gratings on hafnium oxide using Ga
+
 ion 

FIB milling with varying ion beam current, magnification, and depths with dwell time of 1 µs, 

beam overlap of 50% and material setting for silicon and found good quality gratings for ion 

beam current of 0.3 nA, magnification 2000x and depth 200 nm along with the optical 

characterization of milled gratings in the visible spectrum. Zinoviev et al [11] reported Ga
+
 ion 

FIB milling of gratings with beam energy 30 keV, beam current 230 pA, different ion doses and 

varying dwell time to achieve different grating periods on sub-micrometer cantilevers on silicon 

nitride waveguides along with optical characterization of the milled gratings and the effect of 

gallium ion implantation on the device performance. Cabrini et al [12] reported 30keV Ga
+
 ion 

FIB milling with ion beam current of 100 pA, and ion dose of 0.69 mAs cm
-2

 to mill one 

dimensional photonic crystals on Si3N4/SiO2 channel waveguides, such as Bragg gratings, Fabry-
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Perot micro-cavity, and micro-cavity with optimized mirrors with width of 100 nm and depth of 

1 µm along with optical characterization using visible and near infrared ranges. Use of FIB 

milling for fabricating nanometer pore arrays on thin Si3N4 membrane for various applications 

such as high-throughput DNA sequencing [13-14], sensing and electrochemical studies [15], and 

fluid separation membranes [16] are reported. Yue et al [17] investigated FIB milling with 

varying dwell time to fabricate nanometer pore arrays on Si3N4 with, and without gas-assisted 

etching, and obtained individual pore diameter of 70 nm with high aspect ratio along with 

aluminum nitride deposition for narrowing the holes.   

Steckl et al [18] investigated Ga
+
 ion FIB milling with varying ion beam energy from 15 

keV - 70 keV, angle of incidence from 0
0
 - 30

0
, and number of scans from 10-50 with ion beam 

current of 170 pA, fixed ion dose of 1 x 10
18

 cm
-2

, and varying dwell time on gallium nitride 

(GaN) of 20 µm thickness, and on GaN thin films with substrates as sapphire, silicon(Si), silicon 

carbide (SiC) etc, and obtained highest milling rate of 0.6 µm
3
/(nA·s) for bulk GaN at beam 

energy of 50 keV, angle of incidence 30
0
 and number of scans 50 along with milling rate of thin 

films to be 2 - 5 times lower than the bulk and the fabrication of distributed Bragg reflection 

air/GaN gratings. Ren et al [19] reported Ga
+
 ion FIB milling with ion beam current varying 

from 1 pA to 2 nA on GaN for fabricating polishing mirror, tilt mirror and nitride/air distributed 

Bragg gratings (DBR) mirror with vertical side walls and found milling rate for GaN in the range 

of 0.6 µm
3
/nC - 0.43 µm

3
/nC along with study of effect of gallium ion implantation during the 

milling process. Zhang et al [20] reported Ga
+
 ion FIB milling with accelerated voltage of 30kV, 

and ion beam current of 10 pA to 500 pA on GaN-based light emitters for fabricating one-

dimensional nitride/air distributed Bragg gratings (DBR) stacks, and two-dimensional photonic 

octagonal quasi-crystals (8PQCs) with depths of 1.3 µm - 3µm and periods 283 nm and 500 nm. 
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Study of alternate materials for developing plasmonic devices using transition metal 

nitrides such as zirconium nitride (ZrN) and titanium nitride (TiN) has been reported recently 

[21-22]. These materials are harder and CMOS compatible as compared to the noble metals like 

gold, silver etc. and exhibit plasmonic resonance in the visible and near-infrared ranges [23]. TiN 

and ZrN have optical properties resembling gold which makes it suitable for applications 

replacing gold [24]. There have been reports of numerous uses of TiN such as forming epitaxial 

super lattices resulting in hyperbolic metamaterials [25-26], as plasmonic waveguides [27], as 

local heating antennas [28], as high temperature metamaterial absorbers and emitters for 

spectrally selective surfaces [29-30] and colloidal nanoparticles for plasmon enhanced photo 

catalysis [31]. 

In this study, an experimental investigation of appropriate FIB milling parameters, such 

as ion beam current, magnification, beam overlapping, dwell time, and milling rate for 

fabricating sub-micrometer gratings on zirconium nitride (ZrN) is reported. ZrN is harder than 

noble metals for example gold, silver etc, and commonly used nitrides like silicon nitride, and 

gallium nitride. One of the advantages of using FIB milling is the fabrication of grating directly 

on the surface of the material without the need for mask and photo resist film. FIB milling in 

ZrN is rarely known as of now. 

For the device performance, a real-time image-processing algorithm is developed to 

enhance the sensitivity of a miniature spectrometer, which is an integrated grating based planar 

single mode waveguide device. Optical spectroscopy measures the absorption or emission of 

light based on light-matter interaction. The device which displays the corresponding absorption 

or emission spectra are generally referred to as spectrometers. Conventional desktop 

spectrometers use mechanical gratings and slits. Miniature and micro spectrometers are small 
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dimension devices which are mostly developed using planar waveguides with integrated gratings 

or other optical devices such as resonators, photonic crystals etc, making them suitable for 

integration and portability. The quality of an optical spectrometer is defined in terms of its 

resolving power i.e. resolution.  

There are reports of miniature and micro spectrometers developed using various 

combinations of planar waveguide with integrated gratings such as planar gratings with spherical 

optics [32-34] , planar imaging gratings [35-39], planar transmission gratings [40] and hybrid 

grating-Fresnel diffractive optical element [41] etc. These includes planar waveguide grating 

miniature spectrometer having spectral resolutions of 0.2 nm using f = 14 cm and f = 2 cm 

lenses, and spectral resolution of 0.3 nm using f = 1 cm lens [32], an aberration correcting planar 

grating micro spectrometer with high spectral resolutions of 0.7 nm [34], a 35 input optical 

channel micro-spectrometer with resolution of 0.5 nm in the visible spectrum [35], a planar 

integrated transmission grating waveguide for broadband spectroscopic analysis [40], an optical 

spectrometer with hybrid grating-Fresnel diffractive element with a resolution of approximately 

1 nm and eliminates the need for spherical and focusing optics for more compact design [41]. 

Miniature and micro spectrometers are also developed using photonic devices such as 

integrated filter arrays [42], interferometers [43-44], photonic crystals [45], Fabry-Perot optical 

resonators [46] etc. and broadband diffractive optics with sensor arrays and tapered hollow 

Bragg waveguides. There are reports of broadband diffractive optics spectrometer with a 

specially defined sensor array, which uses a nonlinear optimization method to reconstruct the 

unknown spectrum [47]. A micro-spectrometer using Bragg reflectors capable of omni-

directional collection of out of plane radiation in waveguide cladding, which is tapered and 

leaky, were reported [48]. Different technologies are implemented in the development of these 
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miniature and micro spectrometers including MEMS [49-51], and Fourier transforms [52-53]. 

These devices are developed in ultra-violet, visible, and infrared optical spectral ranges.  

The application of optical spectroscopy is extended to different fields of science 

including biosensors, microbiology, and chemical sensors [54-55]. These applications need high 

level of sensitivity especially when involving very small amount of analytes. Miniature and 

micro spectrometers can be used in these applications provided the sensitivity of these devices is 

appropriate for the application. Thus enhancing sensitivity of an integrated optical device for the 

spectroscopy of monolayer of molecules becomes critical.  

Biosensors and chemical sensors based on optical evanescent field detection utilizing 

different sensing mechanisms such as refractive index change, absorption, fluorescence etc on 

different optical platforms, such as waveguides (optical fiber and planar), interferometers etc are 

discussed  [56-62]. There are discussions on optical biosensors utilizing refractive index change 

as sensing mechanism using different technologies, such as surface plasmon resonance, 

interferometers, resonant mirror, resonant waveguide grating, planar waveguides, fiber gratings, 

ring resonators, photonic crystals etc along with comparison of sensitivity based on detection 

limits of these devices for various proteins, DNAs etc [56-57]. Refractive index sensors detect 

the resonance change due to change in the effective index of the system by binding of 

biomoelcules on the sensor surface where as the sensors based on fluorescence measures the 

photoluminescence intensity [56-62]. Sensors based on absorption measures change in the 

evanescent field intensity (attenuation of evanescent field) due to absorption by the adsorbed 

biological or chemical molecules on the sensor surface [56-62]. There are discussions on direct 

spectroscopic sensors based on fluorescence, absorption, and Raman spectroscopy etc, which 

utilize the absorption of evanescent field intensity [59, 61]. Bradshaw et al [63] reported such a 
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direct spectroscopic sensor for optical biosensing and chemical sensing for thin films and sub-

monolayer for thin film sensing using attenuated total reflectance (ATR) spectroscopy. In this 

study, a miniature spectrometer that can be categorized as direct spectroscopic absorption sensor 

that measures the attenuation of evanescent field is proposed. Concept of such a high sensitive 

device is shown in Figure-1.1.  

 

Figure-1.1: An integrated optical device for the spectroscopy of a monolayer of molecules. After 

Chandramohan et al Appl. Spectrosc. 70, 756-765 (© 2016). 

High sensitive spectroscopy involves low signal to noise ratio (SNR) signals or images. 

This emphasizes the need to use data processing algorithms to process these signals or images to 

display the spectrum. These data processing algorithms includes least-mean square (LMS) 

algorithms [64-65], Kalman filtering [66] etc. There are discussions of various methods of 

deconvolution to reconstruct and optimize the low SNR output signals [67-70]. An algorithm for 

efficient peak detection in low SNR signals was reported [71]. There are reports of dedicated 

digital signal processors (DSP) for efficient running of these complex algorithms in real-time 

[72-73]. The raw data and the spectrum reconstructed using the above-mentioned algorithms are 

mostly one-dimensional arrays. However, in some optical instruments such as miniature and 

micro spectrometers, which use image sensors for detection, the raw output is a two-dimensional 

image. However, the spectrum measured by these devices will still be one-dimensional. Thus, 
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specialized image processing algorithm has to be developed for the images produced at the 

image sensor, which takes into account specific features of light intensity patterns of these 

images. These algorithms will also help to reconstruct the spectra to be measured using these 

devices.  

Here, we report the design of a planar single-mode waveguide miniature spectrometer 

with a real time image-processing algorithm to enhance the sensitivity in visible spectrum. The 

image-processing algorithm in this design utilizes a novel approach of averaging the intensity 

distributions of the monochromatic inputs along the arcs registered on the image sensor. Thus 

enhancing the sensitivity by collecting more light and retaining the spectral resolution of the 

miniature spectrometer defined by a single row of pixels. Standard built-in Matlab functions such 

as 'findpeaks' [74] for finding the laser peaks as well as its central pixel numbers and 'lsqcurvefit' 

[75] for curve fitting are used for demonstrating the concept. The proposed algorithm is 

illustrated using a SiTiO2 planar waveguide miniature spectrometer with core index of 1.77 and 

the sensitivity of the device is demonstrated using a tantalum pentoxide (Ta2O5) planar 

waveguide with higher core index of 2.16, providing stronger light confinement, thus stronger 

light-matter interaction at the waveguide surface. Properties of Ta2O5 films and their applications 

for evanescent field based sensors are discussed in [76]. The proposed algorithm can also be used 

along with various deconvolution and digital filtering methods reported elsewhere. Comparison 

of sensitivity with the known devices is discussed in chapter 5.   
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CHAPTER 2: INVESTIGATION OF FIB PARAMETERS FOR SUCCESSFUL 

FABRICATION OF DENSE PATTERNS 

FIB parameters for successful fabrication of dense patterns on transition metal nitride 

such as ZrN are investigated using 30 keV Ga
+
 ion Tescan GAIA 3 dual beam FIB/SEM. Using 

dual beam FIB/SEM allows for real-time monitoring of FIB milling. Successful fabrication of 

dense patterns on this novel transition metal nitride such as zirconium nitride requires milling 

parameters to be set appropriately. Ion beam current, magnification, dwell time and the milling 

rate are the few of the important parameters investigated in this study. The patterns used in this 

study are gratings. Design of dense patterns to be milled are achieved using Drawbeam, which is 

the lithography software provided by the manufacturer Tescan. The milling rates for common 

materials such as silicon, copper, iron, silver etc. are available in Drawbeam. 

The procedure for investigation of FIB parameters is as follows. Gratings are fabricated 

on ZrN using the milling rates for the common materials already given by the manufacturer in 

the software and some manually inputted rates. The gratings are then characterized using AFM 

to determine the depth of the milled grating. The actual milled depths of the fabricated grating 

for the set milling rates are thus obtained. Using this data, the actual milling rate is then 

calculated.  

The design of the gratings to be fabricated on ZrN is described below. The grating period 

is set at 540 nm, the width of the grating's groove to be milled is set at 200 nm, the length of each 

grating's groove is set at 50 µm, and the depth to be milled is set at 50 nm. Since the purpose of 

fabricating these gratings is to find the appropriate parameters, few grooves of grating are only 

needed and so the number of grooves of grating is set to 10. The grating profile is chosen to be 

rectangular in this design.   
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The parameters beam spacing and object order also plays vital role in the milling 

procedure. The successful fabrication of grating depends on the appropriate setting of these 

parameters. The beam spacing determines the degree of overlapping of FIB beam and the object 

order provides the order of milling each object in the design. The degree of redeposition of 

materials during milling process depends on the object order used. In this study, the beam 

spacing is set to 0.1, which provides 90% overlap of the ion beam. The object order is set to 

parallel which helps to reduce the redeposition. Even though rectangular profile is chosen in this 

design, the grating profile after milling looks more smooth like sinusoidal. This may be due to 

the Gaussian nature of the ion beam used for milling. 

 2.1 Ion beam current  

Ion beam current is an important parameter governing the successful milling of dense 

patterns especially in the sub-micrometer dimension. The size of the aperture in the FIB ion 

column is adjusted in order to obtain different ion beam currents. Large current requirement 

leads to larger aperture size which results in the large spot size of the ion beam on the sample 

surface.  

In the case of dense periodical patterns such as gratings in sub-micrometer dimension, 

large beam current will result in the overlapping of grating's grooves. Different ion beam 

currents are chosen ranging from the minimum beam current of 4 pA to larger currents. The 

grating fabricated with ion beam current of 153 pA resulted in overlapping of grating's grooves 

as shown in Figure-2.1. Thus, the appropriate ion beam current for fabricating gratings of 540 

nm dimension on ZrN is found to be about 50 pA or less. The ion beam current needs to be 

decreased in the case of smaller dimension patterns to avoid overlapping. 



11 
 

 

               (a)                                 (b)  

Figure-2.1: SEM image of gratings milled on ZrN using FIB currents (a) 50 pA (b) 153 pA.  

2.2 Magnification 

Magnification of FIB view field is another important factor governing the quality of 

milled dense patterns. Appropriate magnification needs to be set depending on the actual 

dimensions of the patterns to be milled. The rule of thumb is to set a magnification so that the 

pattern to be milled is quite magnified within the view field. In this study, since the length of the 

grating is chosen to be 50 µm, FIB magnification is set at 2000 x (2 kx), which provides a view 

field of about 63 µm. Smaller dimension patterns require the magnification to be increased 

appropriately.    

2.3 Dwell time 

The time for which the ion beam remains at a given pixel is generally referred to as dwell 

time. Dwell time plays a vital role in the FIB milling process as this factor determines the 

exposure of a particular location of the sample area to be milled and the scanning speed of the 

ion beam. Increase in dwell time can result in increased exposure and could result in higher 
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milled depth than desired. In this study, the gratings are fabricated using dwell times of 1 µs, 5 

µs, 10 µs, and 15 µs.  

2.4 Milling rate 

The volume of material sputtered per nA of ion beam current for a given time of exposure 

is commonly referred to as milling rate. The unit of milling rate is µm
3
/ (nA·s). The general 

expression for milling rate is given in Eq. (1). 

                      

.

. 

d A
R

I t
                               (1) 

Here d is the set depth i.e. the depth to be milled in µm, A is the area of the designed pattern to 

be milled in µm
2
, I is the ion beam current in nA and t is the time of exposure in seconds. 

The amount of material milled from a particular area is determined by Ion dose. Ion dose 

is generally defined as the amount of ions hitting per µm
2 

of sample area for the given time of 

exposure. The unit of Ion dose is (nA·s)/µm
2
. The general expression for Ion dose is given in Eq. 

(2). 

                      

 
 

.
D

A

I t
                                (2) 

We can infer from Eq. (2) that the increase in the time of exposure results in increased 

ion dose. The milling rate is related to ion dose given in Eq. (3). Since the ion dose is inversely 

proportional to the milling rate and assuming the milling depth is constant, increasing ion dose 

will result in decreased rate of milling. 

                   

d
R

D
                                  (3) 
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In FIB, the milling rate has to be set correctly in order to reach the desired set depth. 

Since milling rate for zirconium nitride is unknown, the values we set as milling rate to fabricate 

the gratings can be called manual milling rate, denoted by S. Here S represents the milling rate of 

common materials and some manually set milling rate used to fabricate the gratings on ZrN to 

find the actual milling rate. Therefore, the milling rate R in Eq. (1) is replaced by S. By setting S, 

we are actually controlling the time of exposure of milling. Thus, the time of exposure can be 

defined in terms of S and Eq. (1) can be rewritten as given in Eq. (4). Setting the defined manual 

rate, S to too high or too low value would result in brief or excessive exposure of the milling 

pattern and results in too shallow or too deep structure.  

                        

.

.

d A
t

S I


                           (4) 

Gratings are fabricated on ZrN by setting S to 0.24 µm
3
/ (nA·s) (rate for silicon), 0.36 

µm
3
/ (nA·s) (rate for copper), 0.608 µm

3
/ (nA·s) (rate for iron), 1.105 µm

3
/ (nA·s) (rate for 

silver) etc. An arbitrary value of 0.1 µm
3
/ (nA·s) is also chosen along with the above mentioned 

milling rates. From Eq. (4), the time of exposure is calculated for these set values of S for the set 

depth of 50 nm. This calculated time of exposure is then substituted in Eq. (2) to calculate the ion 

dose, which provides the ion dose for different values of S. This calculated ion dose along with 

the milled depth from AFM profiles is substituted in Eq. (3) to calculate the actual milling rate 

for ZrN as explained below. The actual milled depth of the gratings fabricated on ZrN is 

determined using AFM. AFM profiles are obtained for the gratings fabricated using all the S 

values. AFM profiles of gratings fabricated on ZrN for milling rates of 0.1 µm
3
/(nA·s), 0.24 

µm
3
/(nA·s) and 0.36 µm

3
/(nA·s) are shown in Figure-2.2. 
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Figure-2.2: AFM topography and cross section profile of grating fabricated using manual 

milling rates, S (a) 0.1 µm
3
/(nA·s), (b) 0.24 µm

3
/(nA·s) and (c) 0.36 µm

3
/(nA·s) for the dwell 

time of 1 µs.  

From Figure-2.2 (c), grating's grooves can be barely observed on the AFM profile of 

grating fabricated using the S value of 0.36 µm
3
/ (nA·s). Therefore, it can be concluded that the 
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higher milling rates for iron and silver will not be sufficient to produce an observable grating in 

this hard transition metal nitride. The surface roughness in Figure-2.2 (b) and (c) is not as smooth 

compared to Figure-2.2 (a). This is because of the difference in the substrate on which the ZrN 

film is deposited. The surface roughness is observed to be high for silicon substrate and almost 

negligible for magnesium oxide (MgO) substrate.  

The actual milling rate is determined by substituting the milled depth obtained from AFM 

profiles and the calculated ion dose, D in Eq. (3). The milled depth obtained from AFM is plotted 

against the ion dose calculated for the S values of 0.1 µm
3
/ (nA·s), 0.24 µm

3
/(nA·s) and 0.36 

µm
3
/(nA·s) for all dwell times as shown in Figure-2.3. 

 Figure-2.3: Milled depth versus calculated ion dose 

Since from Eq. (4), the time of exposure decreases as the S values increases, the highest 

calculated ion dose in the Figure-2.3, corresponds to the lowest S value. From Figure-2.3, the 

actual milled depths for the S value of 0.1 µm
3
/ (nA·s) is 38 nm for dwell time of 1 µs and 35 nm 
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for dwell times of 5 µs, 10 µs and 15 µs. The milled depths for S values of 0.24 µm
3
/ (nA·s) and 

0.36 µm
3
/(nA·s) are observed to be smaller in the range about 10 nm.  

Substituting these values of milled depths and the corresponding calculated ion dose from 

Figure-2.3 in Eq. (3), the actual milling rate, R for ZrN is found to be 0.076 µm
3
/(nA·s) for dwell 

times of 1 µs and 0.07 µm
3
/(nA·s) for dwell times of 5 µs, 10 µs and 15 µs. 

2.5 Testing the accuracy of the found milling rate  

The accuracy of the milling rate found is verified by fabricating rectangular gratings on 

ZrN using 0.07 µm
3
/ (nA·s) for dwell time of 5 µs. The period of grating used is 500 nm. The 

milling depth is set to 50 nm. SEM image and AFM profile of the fabricated grating is shown in 

Figure-2.4. 

             (a)                                  (b) 

Figure-2.4: (a) SEM image of grating fabricated on ZrN using milling rate of 0.07 µm
3
/(nA·s), 

(b) AFM profile of grating fabricated on ZrN using milling rate of 0.07 µm
3
/(nA·s).  

From Figure-2.4, the milled depth obtained from AFM profile is found to be 50 nm, 

which was the set depth. Thus verifying the accuracy of the actual milling rate for ZrN. 
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CHAPTER 3: DESIGN OF MINIATURE SPECTROMETER  

The basic design of planar single-mode waveguide miniature spectrometer consists of 

SiTi02 planar single-mode waveguide with integrated diffraction gratings on a BK7 substrate 

(waveguide sample) from MicroVaccum [77], a lens to focus the diffracted wavelengths and a 

CMOS sensor from Aptina to capture the diffracted light. Two known visible wavelengths, green 

(532 nm) and red (632.8 nm) are used as input to the miniature spectrometer. 

3.1 SiTi02 planar single-mode waveguide on BK7 substrate 

 The SiTi02 planar single-mode waveguide has dispersive diffraction gratings integrated 

on the waveguide film. The refractive index of the SiTi02 waveguide film dependents on the 

wavelength and polarization of the guided light. According to the data provided by manufacturer 

[78], modal index at the wavelength of 633 nm is 1.778 for TE polarization and 1.775 for TM 

polarization. The modal index at the wavelength of 514 nm is 1.808 for TE polarization and 

1.801 for TM polarization. The BK7 glass substrate [79] has refractive index of 1.5195 at 532 

nm and 1.5151 at 633 nm. The thickness of the SiTi02 film is 200 nm. The grooves of diffraction 

grating have surface relief structure of 20nm. The periodicity of the grating is 2400 lines/mm, 

which corresponds to a period of 416.6 nm. The total width of grating is 2 mm. The grating 

grooves are parallel to the width of the sample.  

3.2 CMOS image sensor  

 The CMOS image sensor used in this design is Aptina MT9M032 monochromatic 

sensor. The sensor area is 3.24 mm x 2.41 mm. The pixel size is 2.2 µm x 2.2 µm. It is a 1.6 Mp 

image sensor with maximum image size of 1440 x 1080 with optical format of 1/4.5 inch (4:3). 

The output of the sensor is set to maximum bit-size of 12-bit and the filter array format used is 

Bayer pattern (Bayer-12). The sensor board is attached to a Demo Board from Aptina, which can 

be connected to the PC through USB port.  
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3.3 Lens 

The choice of the lens in the miniature spectrometer depends on the period of the 

integrated grating in the waveguide used and the CMOS sensor area. Since the CMOS sensor 

area is small in this design, if the period of the grating is close to half of the input wavelengths, 

the divergence of the light will be more requiring lens with smaller focal length for the diffracted 

wavelengths to be captured by the CMOS sensor. However, if the period of grating is three by 

fourth of the input wavelengths, lens with larger focal length can be used. Since the period of 

grating of the SiTi02 planar single-mode waveguide is 416.6 nm, which is close to three by 

fourth of input wavelengths used, lens with focal length of 1cm is chosen.  

3.4 Optical miniature spectrometer 

 

Figure-3.1: Setup of optical miniature spectrometer in the optical table. After Chandramohan et 

al Appl. Spectrosc. 70, 756-765 (© 2016). 

Planar single-mode waveguide optical miniature spectrometer assembled in optical table 

is shown in Figure-3.1. The light is delivered to the miniature spectrometer using a single-mode 

fiber. The light path design is described below. Two visible monochromatic lasers with 

wavelengths, green (532 nm) and red (632.8 nm) are combined using a beam splitter and 

SiTi02 Single-mode Waveguide 

on a BK7 Substrate (waveguide 

sample) 

Lens to focus the diffracted 

monochromatic lights 

 Image Sensor  

Microscope Objective to focus the 

collimated Green and Red laser beams. 
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delivered to a single-mode fiber with collimator. The same collimator is used at the other end of 

the single-mode fiber to deliver the light to the miniature spectrometer setup. The use of single-

mode fiber in the design provides spatial filtering for the input monochromatic lights. The 

collimated monochromatic light out coupled from the single-mode fiber is passed through a 

quarter-wave plate before the miniature spectrometer to compensate for any polarization effects 

introduced by the fiber. The monochromatic light after the quarter wave plate is focused by a 

microscope objective onto the edge of the SiTi02 planar single-mode waveguide of the 

waveguide sample. The waveguide sample is mounted on a three-way translational stage, 

providing the waveguide movement in X, Y and Z directions to the input monochromatic 

wavelengths focused by the microscope objective, thereby allowing for optimized coupling. 

Additional adjustment is possible with the microscope objective in X, Y and angular directions 

that allows the movement of the input light focus as well. 

Since we are developing an algorithm to make this device highly sensitive and the CMOS 

image sensor used in this design are very sensitive, laser beams needs to be attenuated before 

they are coupled to the fiber. Separate attenuation is needed for the green and red laser beams as 

they have different levels of output power. The collimated green and red monochromatic laser 

beams after guided through the planar waveguide film are diffracted at different angles by the 

integrated gratings and are focused by the lens onto the CMOS image sensor. The larger 

wavelength of red monochromatic light accounts for smaller diffraction angle and thus is 

registered to the lower x-pixel number region of the CMOS image sensor. The green 

monochromatic light on the other hand having smaller wavelength than red monochromatic light 

diffracts at a larger angle and is registered to the higher x-pixel number region of the CMOS 

image sensor. Figure-3.2 shows the diffracted green and red monochromatic lights registered on 
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the CMOS image sensor. The horizontal direction in the figure corresponds to the x-pixel 

number and the vertical direction corresponds to the y-pixel number of the CMOS image sensor.  

Figure-3.2: Diffracted green and red monochromatic lights registered on CMOS image sensor 

(the image shows different aspect ratio as it is rescaled in the vertical direction). 

From Figure-3.2, the registered diffracted images are discontinuous arcs rather than 

straight lines. This can be mainly due to the monochromatic light being diverged in the plane of 

the waveguide film. Other factors such as barrel distortion, introduced by the use of spherical 

lens with small diameter can also be contributing to the arc shaped images. The image-

processing algorithm developed does not rely on particular factor contributing to the arc shaped 

images and quantifies for the curvature of these arcs.  

We used a polarizer to verify that the light reaching the image sensor is in fact the 

diffracted images due to the guided mode and not the stray light scattered from the glass 

substrate. The polarizer was placed before the microscope objective. Only TE or TM modes, or 

mixture of both can be excited by setting the polarizer at different angles as shown in Figure-3.3 

(a), (b) and (c). As the modal index in a planar waveguide depends on polarization, so does the 

location of image on the sensor. From this, we can conclude that the image registered on the 

CMOS image sensor is evidently the diffracted light and not the scattered stray light. In Figure-

3.3 (c), the image sensor is shifted towards left to capture the TM component of red 
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monochromatic input. In this study of miniature spectrometer, we chose to work with TE-

polarized mode. 

 
 

Figure-3.3: (a) TE-polarized images of green and red monochromatic inputs, (b) TE&TM 

polarized mixed images of both monochromatic inputs, (c) TM-polarized images of green and 

red monochromatic inputs (physical shifting of image sensor towards left direction was needed 

for capturing signals produced by TM-polarized inputs). 



22 
 

 

Chapter 4: REAL-TIME IMAGE-PROCESSING TO ENHANCE THE SENSITIVITY OF 

MINIATURE SPECTROMETER 

The sensitivity of the miniature spectrometer is enhanced in this design using a real-time 

image-processing algorithm. We have chosen Matlab to implement the algorithm. The sensitivity 

enhancement is achieved by averaging along the arc shaped images registered on the CMOS 

image sensor. This helps to collect the light from the entire arc to display the spectra. Averaged 

intensity displayed with respect to the wavelength spectra is the final output of the algorithm, 

which is the desired spectrum displayed by the miniature spectrometer.  

The CMOS image sensor used in this design produces an output of two-dimensional 

array of data. This data represents the registered light intensity with respect to the x- and y-pixel 

numbers of the image sensor. The algorithm developed in this design works in two modes, the 

calibration mode, and the measurement mode. The main function of algorithm in calibration 

mode is to map the two-dimensional pixel array of CMOS image sensor to the wavelength 

spectra using the two known monochromatic sources of light inputs. The algorithm in 

measurement mode uses the already calibrated data and does the averaging along the arcs in real-

time to display the output of the miniature spectrometer. So in order to use the measurement 

mode of the algorithm, calibration mode needs to be executed first.  

Due to the divergence of light in the plane of the waveguide, the diffracted images of 

green and red monochromatic inputs as well as for any other monochromatic inputs registered on 

the CMOS image sensor are shaped as arcs. Therefore, an appropriate mapping scheme needs to 

be implemented which can assign all the pixels along a given arc to the corresponding 

wavelength. A curved coordinate system is used in this algorithm to achieve the averaging along 

the arcs. This novel approach helps to enhance the sensitivity of the miniature spectrometer by 

collecting light from the entire arc.  
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The interfacing of CMOS image sensor software, DevWare [80] to Matlab is achieved 

using actxserver [81] in Matlab. Real-time raw images from DevWare are taken using actxserver 

and the averaging along the arcs is done using the algorithm to display the output of the 

miniature spectrometer. The real-time processing helps to observe the instantaneous changes in 

the CMOS sensor output.  

4.1 Calibration mode  

The x- and y-pixel numbers of CMOS image sensor are mapped to the wavelength spectra 

using the calibration mode. Two monochromatic sources with known wavelengths are used as 

inputs to the miniature spectrometer during the calibration procedure. The mapping can be 

subdivided into three phases that are image acquisition phase, curve fitting phase and mapping 

phase.  

  4.1.1 Image acquisition phase 

Raw images from CMOS image sensor is captured in real-time during this phase of the 

calibration mode. Invoke function in actxserver is used to get the raw images from Devware, the 

CMOS image sensor software. 

  4.1.2 Curve fitting phase 

The curve fitting helps to determine the accuracy of the central x-pixel numbers found by 

the 'findpeaks' function and correct the data if needed. The least square curve fitting method is 

used in this algorithm to fit the original data with a non-linear Gaussian curve function. Error is 

minimized in this least square method by determining the square of the difference between the 

fitting data and the original data.  

In the curve-fitting phase, the algorithm scans the incoming raw images to find the bright 

y-pixels for both green and red discontinuous arcs. The intensity versus x-pixel numbers data are 
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generated for these bright y-pixels by selecting a single y-pixel (represented by the red line) from 

the diffracted images registered on the CMOS image sensor as shown in inset of Figure-4.1(a). 

The 'findpeaks' function in Matlab is then used on this intensity versus x-pixel numbers data to 

find the maximum intensity peaks for green and red monochromatic inputs as well as central x-

pixel numbers for these maximum intensities.  

The 'lsqcurvefit' function in Matlab is used in this phase for curve fitting. The inputs to 

'lsqcurvefit' function are a non-linear Gaussian function saved as matlab function file, the 

intensity profile of bright y-pixel numbers and x-pixel numbers of CMOS image sensor. The 

inputs to the Gaussian function generated using Matlab are the central x-pixel numbers for both 

green and red arcs, curve widths and x-pixel numbers of CMOS image sensor. Two Gaussian 

curves are added together and used to fit the original data since two monochromatic sources are 

used as inputs in the calibration mode. Corrected central x-pixel numbers are obtained from the 

output of the lsqcurvefit function. The parameters a and b defined in Eq. (1) in the mapping 

phase, needed to find the relation between wavelength spectrum and x-pixel numbers is 

evaluated using this corrected central x-pixel numbers. Figure-4.1 shows curve fitted intensity 

peaks for both green and red monochromatic inputs versus x-pixel numbers. From Figure-4.1 (b) 

and (c), one can notice that the red monochromatic input is diffracted at smaller angle with 

respect to the normal of the grating and gets registered on lower x-pixel number region of CMOS 

image sensor and green with higher diffraction angle, gets registered on higher x-pixel number 

region of CMOS image sensor. 
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Figure-4.1: (a) Curve fitting using 'lsqcurvefit' for a single bright y-pixel line (inset: diffracted 

green and red monochromatic lights registered on CMOS image sensor (image is rescaled) and 

red line indicates a single y-pixel line), (b) Close view of red monochromatic input curve fitting, 

(c)  Close view of green monochromatic input curve fitting. After Chandramohan et al Appl. 

Spectrosc. 70, 756-765 (© 2016). 
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  4.1.3 Mapping phase  

Overview of the entire mapping scheme is described here. The relation between 

wavelength, λ and x-pixel number of the CMOS image sensor is assumed a linear function 

defined by two parameters a(y) and b(y) for each bright y-pixels selected. Second-order curves 

are then used to approximate the y-dependence of a and b. This approximation requires sets of 

three constants (c, d, g) for parameter a and (p, q, r) for parameter b. These six constants are then 

used to calculate the values of a(y) and b(y) for entire array of y-pixels. Wavelength grid, λi is 

chosen independently. The set of x-pixels is then calculated for each wavelength in the 

wavelength grid, λi. Implementation of a curved coordinate system that transforms (x, y) 

coordinates of pixels into (λi, y) coordinates are achieved using this mapping scheme. Since the 

arcs in the diffracted image represents a single wavelength, the arcs become straight lines in the 

(λi, y) coordinate system. Detailed implementation of the mapping scheme is described below. 

Two-point form of line equation is used to define the linear relation between λ and x-

pixels shown in Eq. (5).  
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The linear relation between wavelength and x-pixel numbers is justified by calculating 

the dispersion along the x-pixel numbers of the image sensor for which, we have chosen a simple 

design without lens. The image sensor pixel coordinates X for the corresponding values of 

wavelength λ is calculated using Eq. (6). 
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Here h is the distance between grating and the image sensor, neff is the effective index for TE 

polarization, λ is the wavelength, Λ is the period of the grating.  

From Eq. (6), wavelength versus x-pixel numbers for the entire visible spectra is plotted. 

It is observed to be linear. The slope of the line, which gives the dispersion along the x-pixel 

numbers of the image sensor, was calculated for both green and red monochromatic inputs. The 

slope at green monochromatic input, 532 nm is found to be -0.079 nm per pixel and slope at red 

monochromatic input, 632.8 nm is found to be -0.092 nm per pixel. Thus linear approximation 

for  x(λ) is justified as the change in slope is small enough. 

The accuracy of mapping from x-pixel numbers of the image sensor to the wavelength 

scale of the miniature spectrometer will be affected by the nonlinearity of x(λ) dependence. 

However, the nonlinearity is negligible within about 100 nm wide wavelength range of interest 

as observed from the dispersion calculation. Better accuracy can be achieved in the calibration 

procedure by involving more than two monochromatic sources. Then higher order polynomial 

approximation is needed for x(λ) dependence.  

A polynomial relation is formulated between a and y, b and y, and are given by Eq. (7) 

and Eq. (8). 

                  2a = a y = cy +dy+ g                     (7) 

                
  2b = b y = py +qy+r                    (8) 

The parameters a and b defined in Eq. (5) are calculated using the two known input 

wavelengths and the corrected central x-pixel numbers for those wavelengths for each selected 
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bright y-pixels from the curve fitting phase. Using the values of a and b for these known 

wavelengths and the 'polyfit' [82] function of Matlab, the values of the coefficients (c, d, g) and 

(p, q, r) is found. Then values of a and b for entire 1080 y-pixels are found from these 

coefficients by substituting them in the same polynomial relation given in Eq. (7) and Eq. (8). By 

knowing the values of a and b for entire 1080 y-pixels, Eq. (5) can be rewritten as: 

                    λ x, y = a y +b y x                        (9) 

To improve the accuracy of the mapping, the number of divisions in the wavelength 

spectrum is intentionally chosen to be higher than the number of x-pixels of the CMOS image 

sensor. The wavelength spectrum is chosen to have 2330 equal divisions starting from λmin, 527.4 

nm found by putting 1 for xmin and λmax, 644.4 nm by putting 1440 for xmax (where 1440 is the 

highest x-pixel number of the CMOS image sensor) in Eq. (9). There is no improvement in the 

spectral resolution of the miniature spectrometer by setting higher number of divisions in the 

wavelength spectrum than the number of x-pixels of the image sensor; rather it helps to produce 

a smoother output spectrum.  

Since the diffracted images of the green and red monochromatic inputs are shaped as 

arcs, each wavelength is represented by a set of x-pixel numbers rather than a single x-pixel 

number. The set of x-pixel numbers for each wavelength for the chosen wavelength spectrum is 

found from Eq. (10). 
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                (10) 

Thus, x-pixels of CMOS image sensor are mapped to the wavelength spectrum as shown 

in Figure-4.2.   



29 
 

 

Figure-4.2: Mapping of x-pixels of the image sensor to the wavelength spectrum, (a) the pixel 

locations corresponding to the diffracted images of green and red monochromatic inputs, (b) 

shows the values of a(y) for entire 1080 y-pixels, (c) shows the values of b(y) for entire 1080 y-

pixels, (d) wavelength versus x-pixels showing linear relation, (e) y-pixels versus wavelength 

which is the desired output after mapping. After Chandramohan et al Appl. Spectrosc. 70, 756-

765 (© 2016). 
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Figure-4.2 (a) shows the pixel locations corresponding to the diffracted images of green 

and red monochromatic inputs as the graphical representation of the intensity distributions shown 

in Figure-3.2. Second-order curves such as parabolas can be used to approximate these arcs. 

Nevertheless, some misalignment contributes to the parabolas’ vertexes not properly located at 

the same y-pixel number. Implementation of the above-described mapping scheme appropriately 

rescales each y-pixel, which transforms the curved lines shown in Figure-4.2 (a) into the vertical 

straight lines shown in Figure-4.2 (e). Then the registered intensity is averaged along this 

transformed vertical line, which is a trivial task.  

4.2 Measurement mode  

The measurement mode of algorithm is used to display the output of the miniature 

spectrometer, once the calibration procedure is executed after the initial assembly. The calibrated 

data is used by measurement mode and the registered light intensity is averaged in real-time to 

display the output of the miniature spectrometer.   

4.3 Averaging phase 

Averaging phase is used in both calibration mode and measurement mode of the 

algorithm. As mentioned earlier, since the light is diverged in the plane of the waveguide, the 

light hits the entire length of the grating in the waveguide film rather than a single particular 

location. Therefore, the diffracted images of green and red monochromatic inputs registered on 

the CMOS image sensor are shaped as arcs and have discontinuous high and low intensities. So 

selecting a single y-pixel from this diffracted image to display the output of the miniature 

spectrometer will result in discarding most of the registered intensities. Therefore, the averaging 

needs to be done to collect all the registered intensity along the entire arc. This helps to enhance 

the sensitivity of the miniature spectrometer. The averaged signal is plotted against the already 
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mapped wavelength spectrum to display the output of the miniature spectrometer as shown in 

Figure-4.3. 

Figure-4.3: Output of miniature spectrometer (Averaged-intensity versus Wavelength) showing 

spectral resolution of 0.5 nm. 

The spectral resolution is given by the full width at half maximum (FWHM). From 

Figure-4.3, FWHM for both green and red monochromatic inputs are found to be 0.5 nm. This 

concludes that the resolving power of the miniature spectrometer in a 117 nm wide visible 

spectrum, from 527.4 nm to 644.4 nm is 0.5 nm. Compared to the conventional desktop 

spectrometers, this is not a high resolving power but still can be considered a decent value. This 

indicates a tradeoff that comes at the cost of compact optical design and enhanced sensitivity.  
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CHAPTER 5: TESTING THE ACCURACY OF THE MAPPING AND SENSITIVITY OF 

MINIATURE SPECTROMETER 

5.1 Testing the accuracy of the mapping scheme using a LED  

The mapping scheme implemented in the algorithm is tested for accuracy and reliability. 

A LED of wavelength 597 nm is used for testing, which falls in between the wavelengths of 

green (532 nm) and red (632.8 nm) monochromatic inputs in the calibration procedure. First, a 

conventional spectrometer, Digikrom DK 240 is used to measure the spectrum of LED, which 

shows the LED peak at 597 nm as shown in Figure-5.1 (a). Then the LED is combined with the 

green and red monochromatic sources and inputted to the miniature spectrometer to measure the 

spectrum. The LED peak is found at 597 nm in the output of the miniature spectrometer as 

shown in Figure-5.1 (b), which is evidently matching with the measurements of the conventional 

spectrometer. From Figure-5.1 (a) and (b), the spectral resolutions calculated for the spectrums 

measured by the conventional spectrometer as well as the miniature spectrometer, is found to be 

15.1 nm, which is also matching. This confirms the accuracy of the mapping scheme 

implemented. 

 

  (a) 
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(b) 

Figure-5.1: (a) LED spectrum measured by conventional spectrometer (b) LED spectrum 

measured by miniature spectrometer. After Chandramohan et al Appl. Spectrosc. 70, 756-765 (© 

2016). 

5.2 Testing the sensitivity of miniature spectrometer  

Two different methods are used to test the sensitivity of miniature spectrometer. First 

method is by lowering the power of green and red monochromatic inputs to 0.1nW using 

attenuators. In the second method, semiconductor quantum dots are used as test material and 

quantitative analysis is done to find the number of monolayer of quantum dots participating in 

the absorption by these quantum dots and predicts the attenuation introduced by a monolayer of 

these quantum dots, which gives the measure of sensitivity of the device. 

  5.2.1 Lowering the input power  

The sensitivity of the miniature spectrometer is tested in this method by lowering the 

power of input monochromatic laser sources. The power of each monochromatic input are first 

measured separately using a power meter, Thorlabs PM100D before the microscope objective. 

Then the power is lowered to 0.1 nW using attenuators for each monochromatic inputs. To test 

the sensitivity, the output of miniature spectrometer is displayed by selecting a single y-pixel and 

using the real-time image-processing algorithm as shown in Figure-5.2. 
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(a) 

(b) 

Figure-5.2: (a) Output of miniature spectrometer for a selected single y-pixel for input power of 

0.1 nW, (b) Output of miniature spectrometer for input power of 0.1 nW using the real-time 

image processing algorithm. After Chandramohan et al Appl. Spectrosc. 70, 756-765 (© 2016). 

In Figure-5.2 (a), for the selected y-pixel, x-pixel numbers for the monochromatic inputs 

532 nm and 632.8 nm are 155 and 1380 respectively. However, no peaks are observed for x-pixel 

numbers 155 and 1380 due to the noise in the data. However, the peaks of green and red 

monochromatic inputs are clearly visible well above the noise level in Figure-5.2 (b). This is 

made possible by the novel approach of averaging along the arcs in the real-time image-

processing algorithm. The image-processing algorithm helps to resolve the peaks of green and 
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red monochromatic inputs above the noise level even at low input power of 0.1 nW. Thus 

confirming the high sensitivity of the miniature spectrometer. 

  5.2.2 Using quantum dots 

The sensitivity of the miniature spectrometer is tested in this method by drop casting 

CdSeS/ZnS quantum dots between the gratings of a tantalum pentoxide (Ta2O5) planar single-

mode waveguide on schott desag D263 substrate, from Optics Balzers [83]. The tantalum 

pentoxide (Ta2O5) waveguide film used here contains two sets of integrated gratings. The 

refractive index of the tantalum pentoxide (Ta2O5) waveguide film is 2.16, and the substrate is 

1.5195. The in-coupling and out-coupling gratings have a period of 318 nm. CdSeS/ZnS 

quantum dots used is a colloidal solution diluted in toluene from Cytodiagnostics [84], which can 

be pumped using wavelength of 532 nm and emits at a wavelength of 575±5 nm. The diameter of 

the drop casted quantum dots is made to be 0.7 mm. The experimental setup to test the sensitivity 

is shown in Figure-5.3. 

Figure-5.3: Experimental setup for testing the sensitivity using quantum dots. After 

Chandramohan et al Appl. Spectrosc. 70, 756-765 (© 2016). 

The experimental procedure for testing the sensitivity is as follows. The green laser beam 

is moved in 0.1 mm succession along the entire length of in-coupling grating in y-axis direction. 
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The beam moves through the drop casted 0.7 mm diameter quantum dots. The spectrum is 

measured for the whole procedure and the registered intensities are compared with and without 

the presence of quantum dots. This quantitatively measures the degree of absorption introduced 

by drop casted quantum dots. 

Assuming the quantum dots are stacked as monolayer while drop casting, the number of 

monolayer of quantum dots participating in the absorption is determined. To determine the 

number of monolayer of quantum dots participating in the absorption, the effective index of 

refraction for TE0 component of electric field (fundamental TE component) is needed to be 

determined first using the known refractive indices for film, nf =2.16, substrate, ns = 1.5195 and 

cover, nc = 1.5019 (which is the drop casted quantum dots) [85]. From Figure-5.4, the effective 

index of refraction for TE0 component of electric field for the excitation wavelength of 532 nm is 

found to be 1.902. 

Figure-5.4: Effective index for TE0 component of electric field.  
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The next step is to find the penetration depth of evanescent field of the electric field from 

the equation of electric field given by |E|
2
 = |E0|

2
 e

-2qy
. Here 

eff c

2π
q n n

λ

2 2-  is the attenuation 

factor of evanescent field . The penetration depth of the evanescent field is then calculated from 

the attenuation factor, given by Eq. (11).     

                    2
E 2 2

eff c

1 λ
d = =

2q 4π n -n
                 (11) 

 The electric field equation mentioned above is then plotted to verify the penetration 

depth of the evanescent field calculated using Eq. (11) as shown in Figure-5.5 and is found to be 

36.2 nm. 

Figure-5.5: Evanescent field of electric field showing penetration depth of 36.2 nm. 

Absorption measurement to test the sensitivity of the miniature spectrometer is achieved 

using the experimental setup shown in Figure-5.3 and the result obtained is shown in Figure-5.6. 

From Figure-5.6, the average intensities for regions without quantum dot absorption is found to 

be I0=3326.  
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Figure-5.6: Absorption measured by miniature spectrometer. After Chandramohan et al Appl. 

Spectrosc. 70, 756-765 (© 2016). 

The attenuation factor is then calculated using the equation given in Eq. (12) and the 

result is shown in Figure-5.7. 

                       
0

1 I
α - ln

D  I

 
  

 
                      (12) 

 Here, D is the diameter of the drop casted quantum dots, I is the intensity measured by the 

miniature spectrometer and I0 is the average intensities for regions without quantum dots. 

From Figure-5.7, the attenuation due to absorption by the quantum dots for three 

measured points in the middle of the drop casted quantum dots is found to be 62.4 cm
-1

. Since 

the size of a single quantum dot is six nm, the penetration depth of evanescent field found from 

Figure-5.5 gives the number of monolayer of quantum dots participating in the absorption, which 

is 36.2 / 6 = 6 monolayer of quantum dots approximately. Thus, the average attenuation level of 

62.4 cm
-1

 found for the three measured points in the middle of the drop casted quantum dots 

indicates the absorption by six layers of quantum dots. Then the attenuation expected to be 



39 
 

 

produced by monolayer of quantum dots is calculated as 62.4 / 6 = 10.4 cm
-1

. Since the highest 

noise level found from Figure-5.7 is 0.9398 cm
-1

, the attenuation produced by monolayer of 

quantum dots is approximately10.4 / 0.9398=11 times above this noise level.  

Figure-5.7: Attenuation calculated from the absorption measured by miniature spectrometer. 

After Chandramohan et al Appl. Spectrosc. 70, 756-765 (© 2016). 

5.3 Comparison of sensitivity with known devices 

The measure of sensitivity i.e. detection limit of biosensors and chemical sensors reported 

in [56-62] is based on the minimum refractive index change that can be measured using the 

device in refractive index units. Since the miniature spectrometer in this study is a direct 

spectroscopic absorption sensor based on ATR, the sensitivity comparison with ATR 

spectrometers for thin film characterization is done with the detection limit as the detection of 

minimum film thickness possible with these devices. Mendes et al [86] reported planar 

waveguide attenuated total reflectance (ATR) spectrometer with spectral resolution of 0.7 nm 

and characterization of molecular monolayer of protein of thickness approximately 3 nm. 

Mukundan et al [59] reported a waveguide-based biosensor with biological detection target (50 
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kDa protein) of approximately 5 nm in size. The monolayer of quantum dots used for sensitivity 

analysis in miniature spectrometer can be assumed as 6 nm thin layer on the surface of the 

waveguide. The attenuation of evanescent field by this 6 nm thin layer is found to be 11 times 

above the noise level of the system. Hence, the miniature spectrometer will be capable of 

measuring the monolayer of thickness 3 nm. Thus, the sensitivity of this device is comparable to 

the devices reported in [59, 86]. 
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CHAPTER 6: CONCLUSION 

For the fabrication, investigation of focused ion beam (FIB) parameters for the successful 

fabrication of sub-micrometer dense patterns on hard transition metal nitride such as zirconium 

nitride (ZrN) is demonstrated. Appropriate values for ion beam current, magnification, dwell 

time, milling rate etc are investigated. Gratings are used as dense pattern on ZrN. The milled 

patterns are characterized using scanning electron microscope (SEM) and atomic force 

microscope (AFM).  

The actual milling rate is found by fabricating gratings with period of 540 nm and depth 

of grooves, 50 nm. The gratings are fabricated with different dwell times for already known 

milling rates of common materials in the manufacturer software as well as manually setting some 

milling rates. These set manual milling rates are used to calculate the time of exposure of ion 

beam for milling the gratings. These values of calculated time of exposure are then used to 

calculate the ion dose involved in the milling process. The ion dose thus calculated along with 

the milled depth obtained from AFM for these fabricated gratings are used to find the actual 

milling rate. 

Concluding, the appropriate FIB parameters for pattern of dimension 500 nm on ZrN are 

as follows. The ion beam current is found to be 50 pA or less. The magnification is 2 kx. The 

actual milling rate is found to be 0.076 µm
3
/ (nA·s) for dwell time of 1 µs and 0.07 µm

3
/ (nA·s) 

for dwell times of 5 µs, 10 µs and 15 µs.  

For device performance, a real-time image-processing algorithm is developed to enhance 

the sensitivity of an optical miniature spectrometer. The novel approach in this design is the use 

of real-time image processing algorithm to average the image intensity along the arc shaped 

images registered by the monochromatic inputs on the CMOS image sensor, which helps to 
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collect the light from the entire arc and thus enhancing the sensitivity of the device. The 

algorithm is developed using SiTiO2 planar waveguide on a BK7 substrate. The accuracy of the 

mapping from x-pixel number scale of the CMOS image sensor to the wavelength spectra is 

demonstrated by measuring the spectrum of an LED with wavelength of 597 nm, (which falls in 

between the green and red laser beam wavelengths) using a conventional desktop spectrometer 

and compared it with the spectrum measured by the miniature spectrometer.  

The sensitivity of miniature spectrometer is demonstrated by attenuating the laser power 

to 0.1 nW as well as doing a quantitative analysis by measuring the absorption of CdSeS/ZnS 

quantum dots drop casted between the gratings of Ta2O5 planar single-mode waveguide on a 

Schott Desag D263 substrate. The absorption is measured along the y-axis direction of the 

grating. The number of layers of quantum dots participating in the absorption measured is 

determined and found to be approximately six layers of quantum dots. These six layers of 

quantum dots produce an average attenuation of 62.4 cm
-1

 for three measured points in the 

middle of the drop casting. Thus, estimated attenuation for monolayer of quantum dots can be 

found from the absorption by six layers, which is 10.4 cm
-1

. This value is approximately 11 times 

higher than the highest noise level of 0.9398 cm
-1

.  
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APPENDIX: LIST OF PUBLICATIONS 

 Sabarish Chandramohan, and Ivan Avrutsky. "Enhancing Sensitivity of a Miniature 

Spectrometer Using a Real-Time Image Processing Algorithm." Applied spectroscopy 70, 

no. 5 (2016): 756-765. 

 Sabarish Chandramohan. "Real-Time High Resolution Integrated Optical Micro-

Spectrometer." (2014). 
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 For the fabrication, focused ion beam parameters are investigated to successfully 

fabricate dense periodical patterns, such as gratings, on hard transition metal nitride such as 

zirconium nitride. Transition metal nitrides such as titanium nitride and zirconium nitride have 

recently been studied as alternative materials for plasmonic devices because of its plasmonic 

resonance in the visible and near-infrared ranges, material strength, CMOS compatibility, and 

optical properties resembling gold. Coupling of light on the surface of these materials using sub-

micrometer gratings gives additional capabilities for wider applications. Here we report the 

fabrication of gratings on the surface of zirconium nitride using gallium ion 30keV dual beam 

focused ion beam. Scanning electron microscope imaging and atomic force microscope profiling 

is used to characterize the fabricated gratings. Appropriate values for FIB parameters such as ion 

beam current, magnification, dwell time, and milling rate are found for successful milling of 

dense patterns on zirconium nitride.  

For the device performance, a real-time image-processing algorithm is developed to 

enhance the sensitivity of an optical miniature spectrometer. The novel approach in this design is 
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the use of real-time image-processing algorithm to average the image intensity along the arc 

shaped images registered by the monochromatic inputs on the CMOS image sensor. This 

approach helps to collect light from the entire arc and thus enhances the sensitivity of the device. 

The algorithm is developed using SiTiO2 planar waveguide. The accuracy of the mapping from  

x-pixel number scale of the CMOS image sensor to the wavelength spectra of the miniature 

spectrometer is demonstrated by measuring the spectrum of a known LED source using a 

conventional desktop spectrometer and comparing it with the spectrum measured by the 

miniature spectrometer. The sensitivity of miniature spectrometer is demonstrated using two 

methods. In the first method, the input laser power is attenuated to 0.1 nW and the spectra is 

measured using the miniature spectrometer. Even at low input power of 0.1nW, the spectrum of 

monochromatic inputs is observed well above the noise level. Second method is by quantitative 

analysis, which measures the absorption of CdSeS/ZnS quantum dots drop casted between the 

gratings of Ta2O5 planar single-mode waveguide. The expected guided mode attenuation 

introduced by monolayer of quantum dots is found to be approximately 11 times above the 

highest noise level from the absorption measurements. Thus, the miniature spectrometer is 

capable of detecting the signal from the noise level even with the absorption introduced by 

monolayer of quantum dots.  
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