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Abstract 

Liver segmentation is relevant for several clinical applications. Automatic liver segmentation using 

convolutional neural networks (CNNs) has been recently investigated. In this paper, we propose a new approach 

of combining a largest connected component (LCC) algorithm, as a post-processing step, with CNN approaches 

to improve liver segmentation accuracy. Specifically, in this study, the algorithm is combined with three well-

known CNNs for liver segmentation: FCN-CRF, DRIU and V-net. We perform the experiment on a variety of liver 

CT images, ranging from non-contrast enhanced CT images to low-dose contrast enhanced CT images. The 

methods are evaluated using Dice score, Haudorff distance, mean surface distance, and false positive rate between 

the liver segmentation and the ground truth. The quantitative results demonstrate that the LCC algorithm 

statistically significantly improves results of the liver segmentation on non-contrast enhanced and low-dose images 

for all three CNNs. The combination with V-net shows the best performance in Dice score (higher than 90%), 

while the DRIU network achieves the smallest computation time (2 to 6 seconds) for a single segmentation on 

average. The source code of this study is publicly available at  https://github.com/kennyha85/Liver-segmentation. 

Keywords: Liver segmentations, CNNs, Connected Components, Post processing. 
 

   
1. Introduction* 

Liver cancer has one of the highest mortality 

rates for cancers worldwide [8], with a total of 

approximately 800,000 new cases annually. In 

general, the 5-year survival rate of liver cancer 

patient without treatment is less than 15% [13]. 

Liver cancer is more common in sub-Saharan 

Africa and Southeast Asia regions compared 

with Europe and United States. In some 

developing countries such as Vietnam, liver 

cancer is the most common type of cancer 

[12,20]. Liver radiofrequency ablation (RFA) 

________ 
* Corresponding author. E-mail.: halm@vnu.edu.vn, 

luumanhha85@gmail.com  

has become a popular treatment for liver cancer 

due to its several advantages. This type of 

treatment is appropriate in the early stage or in 

cases of multiple tumors. RFA is a relatively 

low-risk minimally invasive procedure without 

producing toxic side-effects such as 

radioembolization and chemoembolization  

[30,31].  Furthermore, the liver of patients 

treated with RFA recovers in only a few days 

after receiving the intervention [32].  

https://github.com/kennyha85/Liver-segmentation
mailto:halm@vnu.edu.vn
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The CT imaging modality is often used for 

diagnosing  liver cancer and planning the RFA 

treatment procedure for liver cancer. The 3D 

liver segmentation on the CT images of the liver 

is thus relevant for RFA treatment of liver 

cancer. In the planning stage, the liver 

segmentation acts as a region of interest, which 

contains the liver tumor and the liver vessels (see 

Figure 1). First, the visualization of the 3D liver 

segmentation provides adequate information to 

enable the radiologist to decide on the process of 

ablator insertion such that the trajectory of the 

insertion does not reach the critical parts such as 

bones, vessels and the kidneys. Second, the liver 

segmentation may also act as a mask region for 

liver registration using pre-operative, intra-

operative and post-operative CT images of the 

RFA liver intervention [27,28]. Typically, the 

liver segmentation can be performed manually 

by a radiologist as a slice-by-slice approach. 

Because this manual approach requires tedious 

work and a substantial amount of time, it does 

not match the clinical workflow well. Therefore, 

liver segmentation using computer-based 

automatic and semiautomatic strategies has 

recently become an active research field. 

However, the noise due to lowering radiation 

dose, the low contrast between the liver and 

nearby organs, liver movement due to breathing 

motion, and the differences in size, shape and 

voxel intensity inside the liver across different 

patients present as current challenges to the 

implementation of 3D liver segmentation in the 

clinical setting. Several liver segmentation 

methods have been proposed in the literature and  

have high potential to be applied in clinical 

practice. In general, those methods can be 

classified into two main groups. The first group 

contains classical statistical and image-

processing approaches such as region growing, 

active contour, deformable models, graph-cuts, 

statistical shape model [5,26]. These methods 

use hand-crafted features, and thus provide 

limited feature representation capability. The 

second group consists of Convolutional Neural 

Networks (CNNs), which have achieved 

remarkable success in many fields in the medical 

imaging domain such as object classification, 

object detection, and anatomical segmentation. 

Several CNN approaches have shown improved 

accuracy performance and are comparable to 

manual annotations by experts in oncology and 

radiology [1]. This success can be attributed to 

the ability of CNNs to learn a hierarchical 

representation of spatial information of CT 

images [7]. CNN approaches, how require large  

Figure 1. A typical contrast enhanced CT image of the liver (A) and the 3D segmentations of the liver, vessels 

and tumors (B). The volume rendering provides 3D visualization of the liver and the tumor in a RFA planning 

stage. 
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amount of data to train the models which is one 

of the main limitations in medical imaging  

research domain because medical image sharing 

is often limited due to privacy concerns.  

In current liver segmentation, CNN-based 

segmentation algorithms have considerably 

outperformed the classical statistical/image-

processing-based approaches [1,2,3,21]. U-net, 

one of the most well-known CNN architectures, 

introduced by Ronneberger et al. (2015), has 

received high rankings in several competitions in 

the field of medical image segmentation [1], and 

Christ et al. (2016) have successfully segmented 

the liver using a U-net architecture [3] (see 

Figure 2). Christ et al. (2017) further developed 

a fully convolutional neural network (FCN) 

based on the U-net architecture to segment the 

liver in both CT and MRI images, achieving a 

mean of Dice score of 94% with fewer than 100 

training images [2]. Lu et al. (2015) have 

proposed a 3D CNN-GC method that combines 

a 3D fully convoluted neural network and graph 

cuts to achieve automatic liver segmentation in 

CT images with an accuracy of VOE of 9.4% on 

average [33]. Li et al. (2018) have also 

introduced the H-dense U-net for automatic liver 

segmentation, coupling intra-slice information 

using 2D dense U-net and inter-slice information 

using a 3D counterpart, and obtained the mean 

of DICE of 96.1% [4]. Bellver et al. (2017) have 

further improvised the original OVOS neural 

network, called DRIU, to segment the liver in 

CT images and achieved comparative results [6]. 

The number of publications relating to liver 

segmentation using a CNN has been increasing 

dramatically and most of them participate in the 

MICCAI grand challenge for liver segmentation 

(LiTS). Those CNNs, in general, can be 

classified into two categories: 2D Fully 

Convolutional Networks (2D FCNs) [2], [3], [6] 

and 3D Fully Convolutional Networks (3D 

FCNs) [4], [7], [18]. While 3D CNNs require 

greater computational complexity and consume 

more VRAM memory, the segmentation 

performance of 3D FCN versus 2D FCN still 

remains under debate [21].  

As a machine learning classification family, 

CNNs perform convolutional filter image 

classification to segment the objects and as a 

result may contain several mis-classified voxels. 

Therefore, post-processing techniques may be 

applied to improve liver segmentation using 

CNNs. Conditional Random Forest (CRF) is a 

well-known method for post-processing of liver 

segmentation, but based on our previous study 

[29], CRF does not work well with CNN-based 

liver segmentation of low-dose/non-contrast CT 

images. Milletari et al. (2016) further states that 

“post-processing approaches such as connected 

components analysis normally yield no 

improvement” [7]. Considering the paucity of 

studies, it is necessary to elucidate how post-

processing impacts the liver segmentation on CT 

images.  

Given that the liver is the largest organ in the 

abdominal cavity, we hypothesize that the liver 

segmentation should be the largest connected 

component in the segmentations obtained from  

the CNNs. The main contribution of our study is 

that we propose a largest connected component 

Figure 2. Illustration of 2D U-net architecture for liver segmentation using CT images with the inputs as a 2D 

image and the output as a predicted map of the liver. The networks contain four levels of the hierarchical 

representation. The skip connections provide linear combinations of the feature maps at the same level of up 

sampling and down sampling paths. 
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(LCC) algorithm to improve the liver  

segmentation in CT images using CNNs. To do 

this, we perform a full search for the largest 

connected component based on the connected 

component algorithm [22], and then we apply 

the algorithm on the liver segmentations 

generated by three well-known CNN 

architectures: U-net + CRF [2], DRIU [6] and V-

net [7]. We evaluate the methods on three 

datasets: contrast enhanced CT images, low-

dose contrast enhanced CT image, and low-dose, 

non-contrast enhanced CT image. 

The next sections are organized as follows: 

the methods section briefly describes the three 

CNNs architectures and LCC method; next, the 

experiments section presents in detail the 

implementation of the CNNs architectures, the 

data used in the study, and the criteria to evaluate 

the performance of the proposed method. The 

results are illustrated in section 4, which is 

followed by a discussion of the results in section 

5. The conclusion section summarizes the 

findings in this study.  

 

2. Method 

2.1 Convolution Neural network architectures 

 Fully Convolutional Network (FCN) 

combined with conditional random fields 

(CRF) 

The Fully Convolutional Network (FCN) 

combined with conditional random fields (CRF), 

proposed by Christ et al. (2017), contains two 2D 

U-net networks in a cascaded structure to 

sequentially segment both the liver and liver 

tumors [3]. U-net architecture is a well-known 

FCN that is able to learn a hierarchical 

representation of the image in the training stage 

[2]. In this study, we re-implement the first U-

net network for the task of liver segmentation 

using CT images. The U-net architecture 

contains 19 layers in 4 levels and is divided into 

two parts: the encoder (also called “contracting 

path”) and the decoder (also called “expanding 

path”). The encoder classifies the contextual 

information of all of the pixels in the input image 

via a process of hierarchical extractions, while 

the decoder provides the spatial information of 

the classified pixels to their corresponding 

location in the original image. Furthermore, the 

U-net skips several connections at different 

levels to provide information of the feature maps 

from the encoder section to the decoder section 

at the same levels. Embedding the skipped 

connections allows compensation of information 

about the objects that can be lost after each layer 

in the main path of U-net architecture. 

The U-net input is 2D images and the output 

is a 2D probability map as the result of a soft 

prediction classifier for each pixel in the original 

images. 

For the optimization process, weighted 

binary cross entropy CE is used as the objective 

loss function: 

𝐶𝐸 =  −
1

𝑁
∑ 𝑤𝑖𝑡𝑖 log(𝑠𝑖)𝑁

𝑖  , (1) 

where N is the number of pixels involved in the 

training stage; ti is the ground truth value, which 

is either 0 or 1 when the pixel i is either 

background or foreground; Si is the soft 

prediction score at the location pixel; i and wi are 

the weights defining the degree of importance of 

the liver pixels. wi is chosen as 1 over the 

foreground region size.  

Subsequently, a 3D-dense conditional 

random field (CRF) is applied on the 2D 

probability maps, enabling the combination of 

both 3D spatial coherence and 2D appearance 

information from the slice-wise U-net 

segmentation [3]. 

 V-Net: Fully CNNs for Volumetric Medical 

Image Segmentation 

While most CNNs utilize 2D convolution 

kernels to segment objects in 2D images, the V-

net segments a 3D liver volume using 3D 

convolution kernels embedded in a fully 

convolutional neural network [4,7]. The V-net is 

more or less a 3D version of U-net and also 

contains two parts: the down-sampling path and 

the up-sampling path.  The down-sampling path 

compresses the original 3D images into feature 

maps, while the up-sampling path extracts the 

feature maps until the final output reaches the 

original size of the input 3D image. Similar to U-

net, the skipped connections from the encoding 
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to the decoding path at the same deep levels to 

provide spatial information of each layer and 

thus further improve the accuracy of the final 

segmentation prediction. 

In this study, we utilize Dice loss as the 

objective function in the optimization process as 

suggested in the original work [7]: 

𝐷 =
2 ∑ 𝑝𝑖 𝑔𝑖

𝑁
𝑖

∑ 𝑝𝑖
2𝑁

𝑖 +∑ 𝑔𝑖
2𝑁

𝑖

 , (2) 

where 𝑝𝑖 and 𝑔𝑖 are voxel values, either being 1 

or 0, of the predicted liver segmentation and the 

ground truth, respectively, and N is the number 

of voxels of the two images in the same size.  

 DRIU: Deep retinal image 

understanding 

DRIU was introduced by Bellver et al. 

(2017) to segment the liver in abdominal contrast 

enhanced CT images [6]. The network 

architecture utilizes VGG-16 as the back-bone 

network, removing the last classification layers, 

i.e. the fully-connected layers, while maintaining 

other layers such as the fully convolutional 

layers, ReLU active function, and max-pooling 

layers. Similar to U-net, the DRIU architecture 

includes a contracting part and an expanding part 

containing several paired convolutional layers 

with the same size of feature map. The main 

difference from U-net is that the feature map at 

each level of the expanding part is achieved by 

up-sampling the feature map in the lower layer 

from the contracting part. In addition, in the 

expanding path, the output of DRIU is a 

combination of all feature maps at multiple 

scales by rescaling them to the original image 

size and then integrating them up into a single 

image. Thus, the segmentation contains 

information of the liver as a multiscale 

representation of the image. We also use 

weighted Binary Cross Entropy loss function for 

the optimization process. 

 

2.2. Largest connected component (LCC) 

In order to remove isolated regions of false 

segmentations of the liver generated by the 

CNNs, we propose to apply a connected 

component algorithm in the post-processing 

stage. We first apply a 3D connected 

component-labeling algorithm [22] and then 

perform a full searching for the largest connected 

component. Note that there should be a few 

connected components with the liver 

segmentation component as the largest one, 

given that the liver is the largest organ in the 

abdominal cavity. In the case that the largest 

component is not the liver, the neural network 

would not perform well and the segmentation 

should be treated as a failed case.  

3. Data and Experiment setup  

3.1. Clinical Data 

In this study, we perform experiments using 

four datasets of CT images as in our previous 

study [29], which contains several variants of 

liver CT images: contrast enhanced, low-dose 

contrast enhanced, and low-dose non-contrast 

enhanced CT images. All of the confidential 

information in the datasets were anonymized by 

their own medical centers before taking part in 

this study. The parameters of the datasets are 

summarized in the Table 2.  

The first dataset contains 115 contrast 

enhanced CT images from the Liver Tumour 

Segmentation (LiTS) challenge in the MICCAI 

grand challenge [34]. The images were acquired 

on a variety of CT scanners and protocols from 

multiple medical centers. We used LiTS dataset  

Table 1. The pseudocode of the largest connected 

component algorithm. 

 

algorithm LCC(segmentation) 

 

labels = list of connected 

component of segmentation 

LCC_label = 0 

Largest_CC_size = 0 

for label in labels: 

if volume of label is larger 

than largest_CC_size 

largest_CC_label = label 

largest_CC_size = volume of label 

Largest_LCC_segmentation = 

segmentation labeled by LCC_label 

return Largest_LCC_segmentation 
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for training the three CNN models, like as 

previous done in Bellver et al. (2017) [6].  

The second dataset consists of 10 CT images 

from the Mayo Clinic (Mayo), which were 

acquired by a Siemens CT scanner under a 

typical scanning protocol. The images are 

contrast enhanced portal-venous phase, and 

include several primary liver tumors. In order to 

reduce the redundant slices, the images were 

manually cropped in the z dimension such that 

the liver region is preserved.   

The third and the fourth dataset are 15 

contrast enhanced (EMC_LD) and 15 non-

contrast enhanced CT images (EMC_NC_LD), 

respectively, which were randomly selected 

from Erasmus MC PACS in 2014 [27]. The 

images were acquired during radio frequency 

ablation intervention under low-dose protocol, 

resulting in noisy images due to the low radiation 

dose (see Figure 4).  

The datasets from Erasmus MC and Mayo 

were manually annotated by two experts for 

ground truth, which is used in the evaluation 

section in this study, while the dataset from LiTS 

challenge already is publicly available with the 

liver segmentation ground truth segmented by 

several experts. 

 

3.2. Implementation 

We implement the algorithms in Python 3 

using Tensorflow 1.18 and CUDA 9.1.  The 

original source code for the FCN-CRF network, 

and the trained model from [2] are reused and 

modified to obtain a complete process of 3D 

liver segmentation. V-net and its trained model 

on the same LiTS dataset are re-implemented 

and based on the source code and introduction 

from Chen’s website 

https://github.com/junqiangchen/LiTS—

LiverTumor-Segmentation-Challenge. The 

DRIU network model is fine-tuned using the pre-

trained model from Bellver et al [6]. The 

parameter settings are the same as suggested in 

the original work, including the batch size of 1; 

15000 to 50000 iterations for a single channel; 

the initial learning rate of 10-8; and SGD 

optimizer with momentum.  

The LCC method is implemented in Python 

3, using SITK library for connected components 

extraction. For further studies, the source code 

for the LCC method is publicly available at 

https://github.com/kennyha85/Liver-

segmentation. 

The study utilizes a Linux PC, Ubuntu 

16.04, with Intel Core i9 9900K CPU, 8 cores, 

3.6-5 GHz; NVIDIA Titan V GPU (11 GB RAM 

version), 64 GB DDR4, 2133 MHz Bus. 

4. Evaluation and result 

4.1. Evaluation metrics 

In this study, we assess the performance of 

the combination of the CNNs with connected 

components using several criteria introduced in 

the MICCAI grand challenge. The algorithms 

yield binary liver segmentations, which are 

compared to the ground truth using Dice Score 

(DSC), Mean Surface Distance (MSD), 

Hausdoff Distance (HD), and False Positive  

Rate (FPR). We also evaluate the processing 

time of the methods. The evaluation metrics are 

described in more detail below. 

4.1.1 Dice score (DSC) 

Dice score is the overlap of the liver 

segmentation and the ground truth. Given a liver  

Table 2. Parameters of the datasets in the study. 

Dataset Number of 

data 
Resolution 

(mm) 
Spacing 

(mm) 
Number of 

slices 
Voltage 

(kVP) 

LiTS 115 0.55 - 1.0 0.45 - 6.0 74 - 986 - 
Mayo 10 0.64 - 0.84 3.0 46 - 112 100 

EMC_LD 15 0.56 - 0.89 2 - 5 27 -68 80 - 120 
EMC_NC_LD 15 0.56 - 0.89 5 21 - 89 80 - 120 

      

https://github.com/junqiangchen/LiTS—LiverTumor-Segmentation-Challenge
https://github.com/junqiangchen/LiTS—LiverTumor-Segmentation-Challenge
https://github.com/kennyha85/Liver-segmentation
https://github.com/kennyha85/Liver-segmentation
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segmentation X and the ground truth Y, DSC can 

be computed as: 

𝑫𝑺𝑪 =  
2|𝑿∩𝒀|

|𝑿∪𝒀|
 ,  (3) 

The maximum value of DSC is 1 when the 

segmentation X is perfectly matched the ground 

truth Y. The DSC is 0 when X and Y do not have 

any voxel in common. 

4.1.2 Mean Surface Distance (MSD) 

Let S(X) denotes the set of surface voxels of 

the segmentation X. The shortest distance of a 

voxel y to S(X) is defined as: 
 

𝑑(𝑦, 𝑺(𝑿)) = 𝑚𝑖𝑛𝑥∈𝑆(𝑋)‖𝑦 − 𝑥‖ , (4) 

      

where ‖. ‖ denotes the Euclidean distance. 

MSD is then computed by: 

 
𝑑𝑴𝑺𝑫(𝑿, 𝒀) = 

1

|𝑆(𝑋)|+|𝑆(𝑌)|
(∑ 𝑑(𝑥, 𝑺(𝒀))𝑥∈𝑆(𝑋) + ∑ 𝑑(𝑦, 𝑺(𝑿))𝑦∈𝑆(𝑌) ) ,

                               (5) 

4.1.3 Hausdorff Distance (HD) 

Let S(X) and S(Y) be two boundaries of liver 

segmentation and ground truth, respectively. The 

Hausdorff distance dHD(S(X),S(Y)) is the 

maximum distance between S(X) and S(Y), and 

is computed as follows:  

d𝑯𝑫(𝑺(𝑿), 𝑺(𝒀)) =

max{supx∈S(X) infy∈S(Y) d(x, y), supy∈S(Y)infx∈S(X) d(x, y)},

                                               (6) 

where sup represents 

the supremum and inf  denotes the infimum. 

4.1.4 False Positive Rate (FPR) 

FPR is used to quantify the false positive 

segmentation i.e. the segmentation outside the 

ground truth. Given the segmentation X and the 

ground truth Y, FPR of the segmentation can be 

computed as the following: 

𝑭𝑷𝑹(𝑿, 𝒀)  =  
|𝑿\𝒀|

|𝒀|
 ,  (7) 

where |X\Y| denotes number of voxels in X 

which do not overlap with Y. 

 
4.2. Quantitative Results 

 
The median values of the evaluation scores 

of the liver segmentation predicted by using the 

three CNNs architecture combined with the LCC 

algorithm are summarized in the Table 3. All 

three of the CNNs successfully segment the liver 

in the Mayo and the EMC_LD dataset with Dice 

scores higher than 80% for every dataset. For the 

EMC_NC_LD dataset, each of the CNNs fails to  

segment one of the images, achieving Dice 

scores less than 50%. We use 50% to decide the 

threshold for failed cases. Based on Table 3, we 

Table 3. Median values of evaluation scores of LCC combined with the three CNN architectures. The 

numbers in brackets are quality of improvement compared to without using LCC. The last column are the 

minimum and maximum processing times. The bold number  that they are the best scores. 

Dataset Methods DSC (%) HD (mm) MSD (mm) FPR (%) 
Processing 

time (s) 

Mayo 

FCN+CRF+LCC 92.3 (2.1) 63.4 (172) 4.4 (0.6) 3.1 (0.8) 7 - 8.2 

DRIU+LCC 92.6 (2.4) 34.6 (21) 2.2 (2.3) 8.1 (0.1) 5.6 – 6.1 

Vnet+LCC 93.8 (3.4) 25.3 (91) 1.6 (1.2) 6.7 (3.9) 6.6 - 9.8 

EMC_LD 

FCN+CRF+LCC 86.0 (8.3) 35.1 (114) 2.5 (15.7) 13.5 (12) 3.1 – 6.4 

DRIU+LCC 84.7 (3.2) 42.0 (106) 2.4 (12.2) 14.9 (4.7) 2.6 – 5.3 

Vnet+LCC 90.4 (1.9) 38.2 (105) 2.0 (8.2) 14.2 (3.2) 4.2 - 8.6 

EMC_NC_LD 

FCN+CRF+LCC 81.9 (2.4) 51.5 (62) 3.6 (12.1) 23.3 (3.5) 3.6 – 7.7 

DRIU+LCC 87.2 (1.6) 66.1 (66) 4.9 (4.9) 8.8 (2.4) 2.6 – 6.8 

Vnet+LCC 90.3 (4.1) 51.7 (60) 2.2 (1.9) 7.8 (6.6) 2.9 - 8.4 
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can conclude that V-net + LCC perform the best  

with the medians of the Dice scores larger than 

90%. Note that 90% Dice score is also the 

threshold for success used in other applications 

[14]. The minimum and maximum processing 

times, corresponding to the image size, are also 

reported in the last column of Table 3. Based on 

the statistics, we can conclude that the 

DRIU+LCC runs faster than V-net + LCC. 

Furthermore, the LCC takes less than a second 

for refining segmentations by the three CNNs on 

average. The maximum total processing time 

suggests the largest adding time that radiology 

technicians may have to take into account when 

they combine the methods to other processes. 

Note that the CT images are cropped to reduce 

the redundancy in a data preparation step (See 

section 3.1 Clincal Data).  

Figure 3 is a box plot of the segmentation 

Dice scores of all of three CNNs on the three 

datasets with and without applying the LCC 

algorithm. The brief notations are descried as the 

following: FM (FCN+CRF on Mayo dataset), 

FM_LC (FCN+CRF with LCC on Mayo dataset), 

DM (DRIU on Mayo dataset), DM_LC (DRIU with 

LCC on Mayo dataset), VM (Vnet on Mayo dataset), 

VM_LC (Vnet with LCC on Mayo dataset), FEL 

(FCN+CRF on EMC Lowdose dataset), FEL_LC 

(FCN+CRF with LCC on EMC Lowdose dataset), 

DEL ( DRIU on EMC Lowdose dataset), DEL_LC 

(DRIU with LCC on EMC Lowdose dataset), VEL 

(Vnet on EMC Lowdose dataset), VEL_LC (Vnet 

with LCC on EMC Lowdose dataset), FEN 

(FCN+CRF on EMC Lowdose Non-contrast 

enhanced dataset), FEN_LC (FCN+CRF with LCC 

on EMC Lowdose Non-contrast enhanced dataset ), 

DEN (DRIU on EMC Lowdose Non-contrast 

enhanced dataset), DEN_LC (DRIU with LCC on 

EMC Lowdose Non-contrast enhanced dataset), VEN 

(Vnet on EMC Lowdose Non-contrast enhanced 

dataset), VEN_LC (Vnet with LCC on EMC 

Lowdose Non-contrast enhanced dataset). We also 

perform paired T-tests to assess the statistical 

significance of the difference between the results 

of the CNNs with and without the connected 

components method. The p-values of the t-tests 

for the evaluations scores of the pairs 

FM/FM_LC, DM/DM_LC, VM/VM_LV, 

FEL/FEL_LC, DEL/DEL_LC, VEL/VEL_LC, 

PEN/PEN_LC, DEN/DEN_LC and 

VEN/VEN_LC are summarized in Table 4. 

From Table 4, we can conclude that the LCC 

algorithm statistically significantly improves the 

segmentation results of all three CNNs in 

general.  

The Figure 4 is an example of 3D liver 

segmentations on a low-dose contrast enhanced 

CT image. In the second column, the liver 

segmentations by three CNNs include some false 

positive segmentations (in blue), which are 

eliminated by the LCC algorithm. Obviously, the 

difference in segmentation from three networks 

is not visible in the 2D view (right column). The 

3D view in the first column visualizes the 

difference between the liver segmentations and 

the ground truth. 

 
5. Discussion 

Figure 3. Scores of the three CNNs with and without LCC on the three datasets. The brief notations are 

described in the text. 
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In this study, we investigate the 

improvement in liver segmentation using CNNs 

approaches on CT images when they are 

combined with a connected component 

algorithm and the largest component in a post-

processing step.  We either re-implement or 

reuse the CNNs model trained with the LiTS 

dataset, testing them with other three datasets 

from two different medical centers with both 

standard and low dose protocols with and 

without contrast enhancement. Next, we apply 

the LCC algorithm on the liver segmentations by 

the CNNs approaches and quantitatively 

evaluate the results using well-known criteria for 

liver segmentation. Combination of the CNN 

approaches with the LCC algorithm statistically 

significantly improves the liver segmentation. 

The 3D visualization in the Figure 4 shows the 

improvements in a segmentation example. We 

also conclude that the FCN combined with 

conditional random forest method does not fully 

eliminate the isolated false positive 

segmentation. This can be explained by the fact 

that the CRF only examines inter-slice 

correlation of the segmentations, while the liver 

segmentation should be connected in 3D as one 

organ. From Figure 3, we can also conclude that 

the CNNs work better with the regular dose 

contrast enhanced CT images while most 

improvements by the LCC occur with the low-

dose CT image. This may improve when more 

low dose images are included in the training 

stage. We refrained from adding more data in the 

training stage. In our opinion, while retraining 

CNNs network is a very “expensive” way of 

research, reusing the shared works and 

improving the result using “inexpensive” 

techniques is a reasonable approach to promote 

research results to practical application. 
We also can see from Table 3 and Figure 3 

that V-net combined with the LCC generally 

perform better than other methods. This 

confirms findings from Milletari et al. (2016) 

[7], which show that 3D segmentation 

approaches use inter-slice information and thus 

may improve segmentation accuracy. However, 

Table 3 also demonstrates that the 3D nature of 

the V-net leads to more computation time and 

requires more memory. These factors may limit 

its potential to be used in clinical practices that 

require very fast processing such as intra 

operation of liver RFA. Note that in our 

experiment, we already manually cropped the 

liver volume to avoid the redundancy while 

current CT scans in clinical practice may have 

hundreds of slices. A fast, automatic liver 

detection method may be beneficial for those 

cases to extract the region of interest while 

reducing the processing time. Although the LCC 

shows to be effective for liver segmentation, it 

still presents challenges. The LCC can only 

remove false positive segmentations, which are 

isolated from the main liver segmentation, and 

thus cannot get rid of false positive 

segmentations connected with the main part, or 

fill in missing parts. More advanced 

Table 4. P-values of  the  T-tests for the proposed method with the corresponding original CNNs: 

The numbers are smaller than 0.05 indicating that the improvements are statistically significance. 

Dataset Methods DSC HD  MSD  FPR  

Mayo 

FM/FM_LC 0.021 0.019 0.002 0.001 

DM/DM_LC 0.002 < 10-3 < 10-3 < 10-3 

VM/VM_LC 0.040 0.001 0.014 0.019 

EMC_LD 

FEL/FEL_LC 0.010 < 10-3 < 10-3 < 10-3 

DEL/DEL_LC 0.016 < 10-3 < 10-3 0.118 

VEL/VEL_LC 0.027 < 10-3 < 10-3 < 10-3 

EMC_NC_LD 

FEN/FEN_LC 0.034 < 10-3 < 10-3 < 10-3 

DEN/DEN_LC 0.055 < 10-3 < 10-3 < 10-3 

VEN/VEN_LC 0.019 < 10-3 < 10-3 < 10-3 
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segmentation methods, such as level set and 

graph-cuts, may further improve the smoothing 

on the surface of the liver, since they can embed 

and model liver shape and curvature 

information. Thus, the precise liver surface 

segmentation needs to be further investigated. 

Perhaps, subsequent studies may use data 

sharing to utilize more data in the training stage. 

While data sharing is currently challenging due 

to administrative procedures and privacy 

concerns, data-augmentation research directions 

could help enrich the training data pools. 

There are some limitations in our study. 

First, we only use 10 contrast enhanced CT, 15 

low-dose contrast enhanced CT, and 15 low-

dose non-contrast enhanced CT from two 

medical centers for evaluating the methods. 

Nevertheless, we assume that the images from 

other medical centers will yield similar results as 

those in this study. Second, the training dataset 

for the CNNs does not include low-dose CT 

Figure 4. Example of 3D liver segmentations by the three CNNs on a low-dose contrast enhanced CT image. 

The first raw is segmentations by FCN, the second one is by DRIU and the last one is by V-net. The first 

column contains the liver segmentations using with LCC (green) and the ground truth (red), the second column 

illustrates the raw liver segmentation from the CNNs (blue) overlapped by the segmentation after post 

processing, and the last column is the final 2D liver segmentations on 2D CT slice of the liver. 
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images, resulting in poor performance with the 

EMC dataset. However, while investigating to 

improve the CNNs with more dataset in the 

training stage is not the main purpose of our 

research, we believe that adding low-dose CT 

images may improve the segmentation results. 

The improvement may be limited due to effects 

of the low-dose noise on the image quality. A 

noise removal CNN network combined with the 

current CNNs may be a more effective approach 

to improve the liver segmentation. Third, there 

have been several other variants of CNNs for 

liver segmentation that have achieved adequate 

results [4,18,19,23,24,25]. However, as pixel 

classification based methods, these CNNs may 

contain mis-classification parts and may likely 

benefit as well from post-processing methods 

such as the LCC. 

 
6. Conclusion 

In this paper, we present our work on 

improving liver segmentation for CNN based 

approaches using LCC algorithm. Experiments 

are performed with three well-known CNN 

architectures and with retrained or reused trained 

models. We evaluate three datasets from two 

different medical centers with regular contrast 

enhanced CT image and both contrast and non-

contrast enhancement of low-dose image. The 

quantitative evaluation results show that LCC 

statistically significantly improves the liver 

segmentation accuracy of the CNNs, while 

maintaining the processing time of less than 10 

seconds in total for all of the networks, including 

the LCC processing time of less than a second. 

In our study, we find that V-net combined with 

the LCC achieves a Dice score of approximately 

94%, which is comparable to other state of the 

art methods. We believe that with the current 

development of CNN-based approach research, 

the liver segmentation using CNNs has a high 

potential to be applied in the clinical practice 

soon. 
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