
Journal of Modern Applied Statistical
Methods

Volume 16 | Issue 1 Article 46

5-1-2017

Vol. 16, No. 1 (Full Issue)
JMASM Editors

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Full Issue is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for
inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState.

Recommended Citation
Editors, JMASM (2017) "Vol. 16, No. 1 (Full Issue)," Journal of Modern Applied Statistical Methods: Vol. 16 : Iss. 1 , Article 46.
DOI: 10.22237/jmasm/1493599560
Available at: http://digitalcommons.wayne.edu/jmasm/vol16/iss1/46

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol16?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol16/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol16/iss1/46?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol16/iss1/46?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol16%2Fiss1%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages


Vol. 16, No. 1 (Full Issue)

Erratum
Montez-Rath, M. E., Kapphahn, K., Mathur, M. B., Mitani, A. A., Hendry, D. J., & Desai, M. (2017).
Guidelines for generating right-censored outcomes from a Cox model extended to accommodate time-varying
covariates. Journal of Modern Applied Statistical Methods, 16(1), 86-106. doi: 10.22237/jmasm/
1493597100

The initial publication indicated that "studies" was the subject of the first sentence of the abstract. The subject
is more properly "simulating," and the verb "is" is conjugated accordingly.

Beauducel, A. (2017). A Schmid-Leiman-based transformation resulting in perfect inter-correlations of three
types of factor score predictors. Journal of Modern Applied Statistical Methods, 16(1), 107-126. doi:
10.22237/jmasm/1493597160
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do i1 = 1,4
    j(1) = i1
        do i2 = 1,4
            j(2) = i2
                do i3 = 1,4
                    j(3) = i3
                        do i4 = 1,4                        do i4 = 1,4
                            j(4) = i4
                                if (j(1) .eq. j(2) .or. j(1) .eq. j(3) .or. j(1) .eq. j(4)) cycle
                                if (j(2) .eq. j(3) .or. j(2) .eq. j(4)) cycle
                                if (j(3) .eq. j(4)) cycle
                            print*.j(1).j(2).j(3).j(4)
                        end do
                end do                end do
        end do
end do
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Robust ANCOVA: Confidence Intervals 
That Have Some Specified Simultaneous 
Probability Coverage When There Is 
Curvature And Two Covariates

Rand Wilcox 
University of Southern California 

Los Angeles, California 

 

 

 

 

 
Consider the commonly occurring situation where the goal is to compare two 
independent groups and there are two covariates. Let Mj(X) be some conditional measure 
of location for the jth group associated with some random variable Y given X = (X1, X2). 
The goal is to H0: M1(X) = M2(X) for each X   Ω in a manner that controls the probability 

of one or more Type I errors. An extant technique (method M1 here) addresses this goal 
without making any parametric assumption about Mj(X). However, a practical concern is 
that it does not provide enough detail regarding where the regression surfaces differ, due 
to using a very small number of covariate points, which can result in relatively low power. 
Method M2 was proposed for testing the global hypothesis H0: M1(X) = M2(X) for all 
X  Ω, which offers a distinct power advantage over method M1. It uses the deepest half 
of the covariate points rather than small number of points used by method M1. However, 

method M2 does not provide any details about which covariate points yield a significant 
result. A multiple comparison procedure is proposed that deals with this shortcoming of 
method M2, and simultaneously it can provide higher power than method M1. 
 
Keywords: ANCOVA, trimmed mean, smoothers, Well Elderly 2 study 

 

Introduction 

Consider the common situation where the goal is to compare two independent 

groups based on two covariates. The classic ANCOVA (analysis of covariance) 

method assumes that 

 

 0 1 1 2 2j j j jY X X       , (1) 

https://doi.org/10.22237/jmasm/1493596800
mailto:rwilcox@usc.edu
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4 

where β0j, β1 and β2 are unknown parameters estimated via least squares 

regression and ε is a random variable having a normal distribution with mean zero 

and unknown variance σ2. So the regression planes are assumed to be parallel and 

the groups can be compared by testing 

 

 
0 01 02H :  , (2) 

 

the hypothesis that the intercepts are equal. It is well known, however, that least 

squares regression is not robust (e.g., Staudte and Sheather, 1990; Maronna et al., 

2006; Heritier et al., 2007; Hampel et al., 1986; Huber and Ronchetti, 2009; 

Wilcox, 2012). A practical consequence is that power can be relatively low even 

under a small departure from normality. Moreover, even a single outlier can yield 

a poor fit to the bulk of the points when using least squares regression. 

Another concern with the classic ANCOVA model is that two types of 

homoscedasticity are assumed. The first is that for each group, the variance of the 

error term does not depend on the value of the covariate. If this assumption is 

violated the wrong standard error is being used (e.g., Long & Ervin, 2000). A 

seemingly natural way of justifying a homoscedastic error term is to test the 

assumption that it is indeed homoscedastic. However, Ng and Wilcox (2011) 

found that this strategy is unsatisfactory. The problem is that methods for testing 

the homoscedasticity assumption do not have enough power to detect situations 

where heteroscedasticity is a practical concern. The second homoscedasticity 

assumption is that the variance of the error term is the same for both groups. 

Violating these assumptions can result in poor control over the Type I error 

probability. 

Yet another fundamental concern with (1) is that the true regression surfaces 

are assumed to be planes. Presumably this is a reasonable approximation in some 

situations, but experience with smoothers (e.g., Hastie & Tibsherani, 1990; 

Wilcox, 2012) made it clear that often this is not the case. When there is curvature, 

using some obvious parametric regression model might suffice. (For example, 

include a quadratic term.) It is known that this approach can be inadequate, which 

has led to a substantial collection of nonparametric regression methods, often 

called smoothers, for dealing with curvature in a more flexible manner (e.g., 

Härdle, 1990; Efromovich, 1999; Eubank, 1999; Fox, 2001; Györfi, et al., 2002). 

One more limitation of the classic model is the assumption that the 

regression surfaces are parallel. The assumption that the slope parameters are 

equal could be tested, but it is unclear when such a test has enough power to 
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detect situations where this assumption is violated to the point that it makes a 

practical difference. 

Let Mj(X) be some conditional measure of location associated with Y given 

X = (X1, X2), where Mj(X) is some unknown function. Here, the model given by 

(1) is replaced with the less restrictive model 

 

    j j jY M X X   , (3) 

 

where λ(X) is some unknown function used to model heteroscedasticity. The 

random variable εj has some unknown distribution with variance σj
2. So unlike the 

classic approach where it is assumed that 

 

   0 1 1 2 2j j j jM X X X     , 

 

no parametric model for Mj(X) is specified and σ1 = σ2 is not assumed. In 

particular it is not assumed that the regression surfaces are parallel. 

Let X1, …, XK be K covariate points that are chosen empirically in a manner 

to be described. The goal here is to test the K hypotheses 

 

    0 1 2H : k kM X M X   (4) 

 

for each k = 1, …, K such that the probability of one or more Type I errors is 

approximately equal to α. The focus is on situations where Mj(X) is a trimmed 

mean, but the basic strategy underlying the proposed approach (method M3 in the 

so-named section) can in principle be extended to other robust measures of 

location. 

Wilcox (2012) suggested a simple method for testing (4) for each 

k = 1, …, K when the covariate points are chosen based on how deeply they are 

nested within the cloud of covariate points (this is method M1 in the so-named 

section). The K points are chosen to include the point in the first group having the 

deepest half space depth plus the points on the .5 depth contour. This typically 

results in using a fairly small number of covariate points where the corresponding 

Y values are compared based on a robust measure of location. Among the K tests 

that are performed, the probability of one or more Type I errors can be controlled 

using some improvement on the Bonferroni method (e.g., Hommel, 1988; 

Hochberg, 1988). However, it is not clear when this relatively simple approach 

will choose covariate values that are likely to detect true differences between the 
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groups. Another concern is that important details about where the groups differ 

will be missed due to using a small number of covariate points. 

A way of dealing with this issue is to select a larger collection of covariate 

points. The strategy here is to use the deepest half of the covariate points in the 

first group. But as K increases, an obvious concern is the negative impact this will 

have on power when using the methods derived by Hommel (1988) and Hochberg 

(1988). A method that controls the false discovery rate when dealing with 

dependent test statistics (e.g., Benjamini &Yekutieli, 2001) suffers from the same 

concern. Wilcox (2016) derived a method for testing the global hypothesis that (4) 

is true for the deepest half of the covariate points in the first group (this is method 

M2 in the so-named section). However, when this method rejects, it provides 

virtually no information about which of the individual hypotheses can be rejected. 

The goal here is to suggest a method for controlling the probability of one or 

more Type I errors when testing the K hypotheses given by (4). Like method M2, 

the deepest half of the covariate points is used. But rather than use the methods 

derived by Hommel (1988) and Hochberg (1988), an alternative technique is 

suggested that has a certain similarity to using a Studentized maximum modulus 

distribution. 

Description of the Methods 

Let (Yij,Xij) (i = 1, ..., nj; j = 1, 2) be a random sample from the jth group. The 

methods compared here are based in part on a method derived by Yuen (1974) for 

comparing the population trimmed means of two independent groups. To describe 

it, momentarily ignore the covariates and consider the goal of testing 

 

 
0 1 2H : t t  , (5) 

 

the hypothesis that two independent groups have equal population trimmed means. 
For the jth group (j = 1, 2), let Y(1)j ≤ … ≤ Y(nj)j denote the Yij values written in 

ascending order. For some 0 ≤ γ < .5, the γ-trimmed mean for the jth group is 

 

 
    1

1

2 j j j
j g j n g j

j j

Y Y Y
n g  

  


 

 

where gj = [γnj] is the greatest integer less than or equal to γnj. Here the focus is 

on γ = .2, a 20% trimmed mean. Under normality, this choice has good efficiency 
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relative to the sample mean (Rosenberger & Gakso, 1983). Moreover, the sample 

20% trimmed mean enjoys certain theoretical advantages. First, it has a 

reasonably high breakdown point, which refers to the proportion of values that 

must be altered to destroy it. Asymptotic results and simulations indicate that it 

reduces substantially concerns about the impact of skewed distributions on the 

probability of a Type I error (e.g., Wilcox, 2012). This is not to suggest that 20% 

trimming is always the optimal choice: clearly this is not the case. The only 

suggestion is that it is a reasonable choice among the many robust estimators that 

might be used. 

Winsorizing the Yij values refers to setting 

 

 

   

   

   

1 1

1

,  if 

,  if 

,  if 

j j

j j j

j j j j

ij ijg g

ij ij ijg n g

ij ijn g n g

W Y Y Y

W Y Y Y Y

W Y Y Y

 

 

 

 

  

 

  

 

The Winsorized sample mean corresponding to group j is the mean based on the 

Winsorized values, and the Winsorized variance, 
2

wjs , is the usual sample variance, 

again based on the Winsorized values. 

Let hj = nj − 2gj. That is, hj is the number of observations left in the jth group 

after trimming. Let 

 

 
 

 

21

1

j wj

j

j j

n s
d

h h





. 

 

Yuen’s test statistic is 

 

 1 2

1 2

y

Y Y
T

d d





 

 

The null distribution is taken to be a Student’s t distribution with degrees of 

freedom  

 

 
 

2

1 2ˆ
d d

C



 , 
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where 

 

 
2 2

1 2

1 2

d d
C

h h
    

Method M1 

Method M1 was described in Wilcox (2012, section 11.11.3). A complete 

description of the many computational details is not provided here, but an outline 

of the method is provided with the goal of explaining how it differs from methods 

M2 and M3. 

Momentarily consider a single covariate point, X. For fixed j, method M1 

estimates Mj(X) using the Yij associated with the Xij points that are close to X. 

More precisely, for the jth group, compute a robust covariance matrix based on 

Xij(i = 1, …, nj). There are many ways of computing a robust covariance matrix 

with no single estimator dominating. Here a skipped covariance matrix is used, 

which is computed as follows. For fixed j, outliers among the Xij points are 

identified using a projection-type multivariate outlier detection technique (e.g., 

Wilcox, 2012, section 6.4.9). These outliers are removed and the usual covariance 

matrix is computed using the remaining data. 

Next, compute robust Mahalanobis distances for each covariate point based 

on the robust covariance matrix just described, with X taken to be the center of the 

data. The point Xij is said to be close to X if its robust Mahalanobis distance is 

small, say less than or equal to f, which is called the span. Generally, f = .8 

performs reasonably well when the goal is to approximate the regression surface. 

Of course exceptions are encountered, but henceforth f = .8 is assumed. Let Pj(X) 

be the subset of {1, 2, ..., nj} that indexes the Xij values such that the Mahalanobis 

distance associated with Xij is less than or equal to f. Let Nj(X) be the cardinality 

of the set Pj(X) and let Mj(X) denote the 20% trimmed mean based on the Yij 

values for which i   Pj(X). Then for the single point X, (4) can be tested by 

applying Yuen’s method with the Yij values for which i   Pj(X) provided both 

N1(X) and N2(X) are not too small. Following Wilcox (2012), this is taken to mean 

that Yuen’s method can be applied if simultaneously N1(X) ≥ 12 and N2(X) ≥ 12, 

in which case the two groups are said to be comparable at X. 

Consider the issue of choosing covariate points where the regression 

surfaces will be compared. For the first group, compute how deeply each Xi1 is 

nested within the cloud of covariate points (i = 1, …, nj). This is done with a 

projection-type method that is similar to an approach discussed by Donoho and 
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Gasko (1992). The many computational details are not described and are not 

particularly important for present purposes.  Here it is merely noted that an 

approximation of halfspace depth is used, which is described in Wilcox (2012, 

section 6.2.3) and labeled approximation A1. Consider the deepest point as well as 

those on the polygon containing the central half of the data. (Liu et al., 1999, call 

this polygon the .5 depth contour.) Method M1 applies Yuen’s method at each of 

these points provided the regression surfaces are comparable at these points as 

previously defined. The probability of one or more Type I errors is controlled 

using the method in Hochberg (1988). 

Method M2 

There are several positive features of method M1 but some negative features as 

well. First, Yuen’s method for comparing trimmed means has been studied 

extensively and appears to perform relatively well in terms of both Type I errors 

and power. The method for choosing the covariate values seems reasonable in the 

sense that it uses points that are nested deeply within the cloud of covariate points, 

which reflect situations where the regression surfaces are comparable. Roughly, 

deeply nested points correspond to situations where the regression surfaces can be 

estimated in a relatively accurate manner. If a point X is not deeply nested in the 

cloud of covariate values, finding a sufficiently large number of other points that 

are close to X might be impossible. 

But a concern with M1 is that perhaps true differences might be missed 

because typically a relatively small number of covariate points are used. In the 

Illustration to follow, only three covariate points are used by M1, with sample 

sizes 187 and 228. Method M2 deals with this concern in the following manner. 

First, it computes the projection depth for each Xi1 (the ith covariate vector in 

group 1) in the same manner as method M1. Let the set {X1, …, XK} indicate the 

deepest half of the points in the first group. Points where the regression surfaces 

are not comparable (i.e., N1(X) < 12 or N2(X) < 12) are discarded. Because K can 

be relatively large, it is approximately equal to n1/2, controlling the probability of 

one or more Type I errors via Hochberg’s method or Hommel’s method is likely 

to have relatively low power. 

The reason for choosing the deepest half of the covariate points, rather than 

some larger proportion, is that typically the regression surfaces are comparable at 

all K points when the sample sizes for both groups are greater than or equal to 50. 

For a larger proportion of points, this is often not the case. There are, of course, 
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many other variations. Some other measure of depth might be used or one could 

use all of the covariate points where the regression surfaces are comparable. 

Method M2 proceeds in the same manner as method M1 by testing 

H0: M1(X) = M2(X) for each X   {X1, …, XK}. Label the resulting p-values 

p1, …, pK. The idea is to test the global hypothesis that (4) is true for every 

k = 1, …, K using some function of these K p-values. Perhaps the best-known 

method for testing some global hypothesis based on p-values is a technique 

derived by Fisher (1932). But Zaykin et al. (2002) note that the ordinary Fisher 

product test loses power in cases where there are a few large p-values. They 

suggest using instead a truncated product method (TPM), which is based on the 

test statistic 

 

 
 kI p

kW p


  

 

where I is the indicator function (cf. Li & Siegmund, 2015). Setting τ = 1 yields 

Fisher’s method, but Zaykin et al. suggest using τ = .05. Zaykin et al. derive the 

null distribution of W when all K tests are independent. But the K tests performed 

here are not independent simply because Pj(Xk) Pj(Xl), k ≠ l, is not necessarily 

empty. If this dependence among the tests is ignored when computing a critical 

value for W, control over the Type I error probability is poor. For the dependent 

case, Zaykin et al. suggest using a bootstrap method, but this results in relatively 

high execution time for the situation at hand making this approach difficult to 

study via simulations. Consequently, an alternative approach was used: 

Momentarily assume normality and homoscedasticity with the goal of 

determining the α quantile of W, say w, in which case (4) is rejected at the α level 

if W ≤ w. Then study the impact of non-normality and heteroscedasticity via 

simulations. 

The critical value w is determined via simulations using (2) with Mj(X)   0 

and εj having a standard normal distribution. More precisely, for each j, (Yij,Xij) 

(i = 1, …, nj; j = 1,2) are generated from a trivariate normal distribution where all 

correlations are zero. Then W is computed and this process is repeated say B times 

yielding W1, ..., WB. Put these B values in ascending order yielding 

W(1) ≤ … ≤ W(B). Then w is estimated to be W(k), where k is αB rounded to the 

nearest integer. Here, B = 4000 is used. Increasing the correlation to .5 had almost 

no impact on the estimated critical value. 

One of many alternative methods is to use instead the test statistic  
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1

kQ p
K

   

 

Wilcox (2016) found that this alternative test statistic performed relatively well, in 

terms of power, under a shift in location model. Now reject the global hypothesis 

if q q , the α quantile of Q , which again is determined via simulations in the 

same manner as the critical value w. So rejecting indicates that one or more of the 

hypotheses given by (4) are false, but details about which ones are lacking. 

Method M3 

The following strategy, called method M3, is suggested for dealing with the 

limitation of method M2. First, choose covariate points as done by method M2. 

Based on this process for choosing covariate points, determine pα, the α quantile 

of the distribution of the minimum p-value returned by method M2. This is done 

via simulations in essentially the same manner used by method M2. The only 

difference from method M2 is that W and Q  are replaced by p  = min(p1, ..., pK). 

So for a simulation based on B replications yielding 
1, , Bp p , pα is estimated 

with p (k), where k is the same as in method M2 and    1 B
p p   are the p  

values written in ascending order. Then make a decision about whether M1(X) is 

larger than M2(X) for any covariate point for which the corresponding p-value is 

less than or equal to pα. Otherwise, no decision is made. So method M3 has the 

potential of providing more detail about where the regression surfaces differ. But 

of course there is the issue of how well it performs when dealing with non-

normality, heteroscedasticity and curvature, which is examined via simulations in 

the next section. And another issue is the impact on power compared to method 

M1. 
 
 
Table 1. Some estimates of pα, α = .05 

 

n pα 
 

n pα 
 

n pα 

50 0.00458 
 

80 0.00248 
 

400 0.00131 

55 0.00320 
 

100 0.00186 
 

500 0.00135 

60 0.00282 
 

200 0.00142 
 

600 0.00108 

70 0.00259   300 0.00142   800 0.00096 

 
 

Estimates of pα, when n1 = n2 = n are informative. Table 1 shows estimates 

for values of n ranging between 50 and 800 when α = .05. So the estimates appear 
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to be converging to zero, but at an extremely slow rate. Consider, for example 

n = 100, in which case fifty hypotheses are tested. As indicated by Table 1, pα is 

estimated to be .00186. Using the Bonferroni method instead, each hypothesis 

would be tested at the .0005 level, which is even less than the estimate of pα when 

using M3 with n = 800. 

Simulation Results 

As is evident, an issue is the impact on the Type I error probability when dealing 

with non-normal distributions as well as situations where there is an association 

with the covariate variables. Simulations were used to address this issue with 

n1 = n2 = 50. Smaller sample sizes, such as n1 = n2 = 30, routinely result in 

situations where no covariate values can be found where comparisons can be 

made. That is, N1(X) < 12 or N2(X) < 12 for all X   {X1, …, XK}. 

Estimated Type I error probabilities were based on 4000 replications. Four 

types of distributions were used: normal, symmetric and heavy-tailed, asymmetric 

and light-tailed, and asymmetric and heavy-tailed. More precisely, values for the 

error term εj in (3) were generated from one of four g-and-h distributions (Hoaglin, 

1985) that contain the standard normal distribution as a special case. If Z has a 

standard normal distribution, then by definition 

 

 

 
 

 

2

2

exp 1
exp / 2 , if 0

exp / 2 , if 0

gZ
V hZ g

g

V Z hZ g


 

 

  

 

has a g-and-h distribution where g and h are parameters that determine the first 

four moments. The four distributions used here were the standard normal 

(g = h = 0), a symmetric heavy-tailed distribution (h = 0.2, g = 0.0), an 

asymmetric distribution with relatively light tails (h = 0.0, g = 0.2), and an 

asymmetric distribution with heavy tails (g = h = 0.2). Table 2 shows the 

skewness (κ1) and kurtosis (κ2) for each distribution. Additional properties of the 

g-and-h distribution are summarized by Hoaglin (1985). The Xij values were 

generated from a bivariate normal distribution with correlation equal to zero. 

Increasing this correlation to .5 altered the estimates of the Type I error 

probability by only a few units in third decimal place, so for brevity they are not 

reported. 
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Table 2. Some properties of the g-and-h distribution.  

 

g h κ1 κ2 

0.00 0.00 0.00 3.00 

0.00 0.20 0.00 21.46 

0.20 0.00 0.61 3.68 

0.20 0.20 2.81 155.98 

 
 

Two types of regression surfaces were considered. The first deals with the 

situation where Y = λ(X)ε, which is labeled S1. The second, labeled S2, is 

Y = X2 + λ(X)ε. Three choices for λ(X) were considered: λ(Xi) ≡ 1 (VP1), 

λ(Xi) = |Xi1| + 1 (VP2) and λ(Xi) = 1/(|Xi1| + 1) (VP3). Estimated Type I error 

probabilities are reported in Table 3. Although the seriousness of a Type I error 

depends on the situation, Bradley (1978) suggested as a general guide, when 

testing at the .05 level, the actual level should be between .025 and .075. He goes 

on to suggest that ideally the actual level should be between .045 and .055. As can 

be seen, the estimates satisfy his first criterion, and nearly all of them satisfy his 

more stringent criterion. 
 
 
Table 3. Estimated Type I error probabilities when testing at the α = .05 level, 

n1 = n2 = 50 
 

g h S VP1 VP2 VP3 

0.000 0.000 1.000 0.050 0.052 0.050 

0.000 0.000 2.000 0.056 0.050 0.048 

0.000 0.200 1.000 0.046 0.039 0.049 

0.000 0.200 2.000 0.048 0.050 0.053 

0.200 0.000 1.000 0.052 0.050 0.044 

0.200 0.000 2.000 0.054 0.048 0.050 

0.200 0.200 1.000 0.051 0.048 0.048 

0.200 0.200 2.000 0.055 0.040 0.044 

 
 

In some situations, method M2 can have substantially higher power than 

method M3, where power is taken to be the probability of detecting one or more 

true differences. Consider, for example, the situation where for the first group 

Y = ε and for the second group Y = ε + .5, where ε has a standard normal 

distribution and both sample sizes are 50. Then method M2 has power 

approximately .41 compared to .26 using method M3. If instead Y = X2 + ε for the 

second group, now power is .79 for M2 and .65 using M3. That is, M2 might offer a 

substantial gain in power among the situations considered here at the expense of 
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providing virtually no details about where significant results are obtained. 

However, methods M2 and M3 are sensitive to different features among the p-

values. The next section illustrates that situations are encountered where M3 

rejects in contrast to M2. 

To provide some sense of how methods M3 and M1 compare in terms of 

power, again consider the situation where for the first group Y = ε and for the 

second group Y = ε + .5. With both sample sizes equal to 100, power was 

estimated to be .51 and .42 for M3 and M1, respectively. If instead Y = X2 + ε for 

the second group, now power is .52 for M3 and .51 using M1. If Y = X + ε for the 

second group, now the corresponding power estimates are .62 and .55. So, for at 

least some situations, method M3 has substantially higher power than method M1 

despite the substantially larger number of hypotheses that are tested. 

Illustrations 

Data from the Well Elderly 2 study (Clark et al., 2011; Jackson et al., 2009) are 

used to illustrate that the choice between M2 and M3 can make a practical 

difference. A general goal in the Well Elderly 2 study was to assess the efficacy 

of an intervention strategy aimed at improving the physical and emotional health 

of older adults. A portion of the study was aimed at understanding the impact of 

intervention on a measure of perceived physical health, which was measured with 

the RAND 36-item (SF36) Health Survey, a measure of self-perceived physical 

health and mental well-being (Hays et al., 1993; McHorney et al., 1993). Higher 

scores reflect greater perceived health and well-being. There were two covariates. 

The first is a measure of depressive symptoms based on the Center for 

Epidemiologic Studies Depressive Scale (CESD). The CESD (Radloff, 1977) is 

sensitive to change in depressive status over time and has been successfully used 

to assess ethnically diverse older people (Lewinsohn et al., 1988; Foley et al., 

2002). Higher scores indicate a higher level of depressive symptoms. The other 

covariate was the cortisol awakening response (CAR), which is defined as the 

change in cortisol concentration that occurs during the first hour after waking 

from sleep. Extant studies (e.g., Clow et al., 2004; Chida & Steptoe, 2009) 

indicated that measures of stress are associated with the CAR. (The CAR is taken 

to be the cortisol level upon awakening minus the level of cortisol after the 

participants were awake for about an hour.) The sample size for the control group 

was 187 and the sample size for the group that received intervention was 228. 

Based on both methods M1 and M2, no significant differences were found 

when testing at the .05 level. Method M1 used only three covariate points. In 
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contrast, method M3 finds nine significant results among the 74 covariate points 

that were used. They occur where the CAR is negative (cortisol increases after 

awakening) and CESD is relatively low. So despite the simulation results 

indicating that M2 can have higher power than M3, situations are encountered 

where M3 rejects and M2 does not. Figure 1 shows a plot of the difference in SF36 

scores (SF36 scores for the experimental group minus SF36 scores for the control 

group) as a function of the covariate points that were used. As can be seen, the 

largest differences occur when CESD scores are low and the CAR is negative. 

That is, intervention appears to be most beneficial, in terms of perceived health, 

for participants for whom cortisol increases after awakening. This is particularly 

true for participants who have low measures of depressive symptoms. 
 
 

 
 
Figure 1. Regression surface predicting the typical difference in SF36 scores as a 

function of the CAR and CESD. 

 

Conclusion 

There are many variations of method M3 that might have practical value. For 

example, some other measure of depth might be used or some alternative strategy 

for choosing the covariate points might offer an advantage. The main point is that 
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based on simulations, all indications are that method M3 controls the probability 

of one or more Type I errors very well. At least in some situations it offers a 

distinct power advantage over M1 and no situation has been found where the 

reverse is true. There are situations where M2 provides higher power than M3, but 

at the cost of providing almost no details about where a significant difference 

occurs among the covariate points that were used. 

In principle, methods M1, M2 and M3 can be used when there is more than 

two covariates. But a general concern is the curse of dimensionality: 

neighborhoods with a fixed number of points become less local as the dimensions 

increase (Bellman, 1961). In practical terms, the expectation is that as the number 

of covariates increases, it becomes increasingly difficult to get an accurate 

estimate of the true regression surface. 
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Introduction 

The McNemar chi-square test is the procedure of choice in studies assessing 

marginal homogeneity for repeated dichotomous classifications. Typical 

applications involve two independent raters or assays providing dichotomous 

judgments for the same set of stimuli, or a panel of independent judges 

responding on two occasions to the same dichotomous variable. The research 

question is whether or not it is reasonable to describe the two marginal 

classification rates for, say, a positive classification as equivalent (i.e., 

homogeneous). The chi-square significance test for this case is attributed to 

McNemar (1947) and the generalization to square tables larger than 2  × 2 is often 

referred to as the Stuart-Maxwell test (Stuart, 1955; Maxwell, 1970).  Although 

alternatives to the McNemar test have been proposed, the original procedure 

performs well in comparative simulations as shown by Fagerland, Lydersen, and 

Laake (2013). Also, methods for performing multiple comparisons involving 

several sets of 2 × 2 tables have been presented by Westfall, Troendle and 

Pennello (2010). 

https://doi.org/10.22237/jmasm/1493596860
mailto:cdayton@umd.edu


CHAUNCEY M. DAYTON 

21 

For dichotomous variables, A and B, let πij represent the theoretic proportion 

for level i of variable A and level j of variable B (Table 1). Marginal homogeneity 

implies that π1. = π.1 or 

 
 
Table 1. Theoretic Proportions for 2 × 2 Table 

 

 
B+ B− Row 

A+ π11 π12 π1. 

A− π21 π22 π2. 

Column π.1 π.2   

 
 

equivalently, that π2. = π.2. Assuming a sample of N cases and observed 

frequencies, nij, this implies symmetry because π1. = N(π11 + π12) and 

π.1 = N(π11 + π21) so that π12 must be equal to π21. Note, however, that marginal 

homogeneity does not imply symmetry for tables larger than 3 × 3.  

The test for symmetry and, per force, the test for marginal homogeneity, 

reduces to a two-celled goodness-of-fit test based on the observed frequencies n12 

and n21 with the null hypothesis π12 = π21, or equivalently, π12 = π21 = .5. Note that 

the expected frequencies are both equal to (n12 + n21)/2. In terms of observed 

frequencies, the McNemar statistic in the form of a Pearson chi-square, with one 

degree of freedom, can be written as: 
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An asymptotically equivalent test statistic can be based on a likelihood-ratio 

chi-square of the form 
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. Often a 

correction for continuity is applied to the Pearson chi-square statistic to improve 

accuracy (Fleiss, 1981) and there are recent modifications such as mid-p 

computations (Fagerland, Lydersen & Laake, 2013). Agresti and Klingenburg 

(2005), and Klingenberg and Agresti (2006), have presented multivariate 

extensions of the McNemar test. Also, Durkalski, Palesch, Lipsitz, and Rust 

(2003) have introduced adaptations to account for clustering of observations. 

The focus in the current study is on the issue of stratified homogeneity. 

Stratified homogeneity implies that marginal homogeneity for variables A and B, 

say, holds across the levels of a third variable (e.g., time, strata or groups). Feuer 

and Kessler (1989) considered a two-sample case, but the approach considered 

here is more general and based on latent variable modeling. Although stratified 

procedures can be conceptualized in log-linear terms (Bishop, Fienberg, & 
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Holland, 1975), the present approach exploits a result from Dayton and Macready 

(1983) who showed that the model underlying the McNemar test is equivalent to a 

restricted two-class latent class model for a 2 × 2 contingency table. 

Latent Class Analysis 

The mathematical model for latent class analysis (LCA) can be conceptualized as 

follows. Let Ys = {ysj} be the vector-valued response for observed variables 

j = 1, …, J, for the sth respondent. Let the response options for the variables be 

defined over a set of distinct, mutually-exclusive values r = 1, …, Rj for the jth 

variable (e.g., for dichotomous responses these values would be r = (1,2)). Then, 

for C distinct latent classes, an unrestricted latent class model is defined as: 
 

  
1 1 1
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The latent class (mixing) proportions are θc, c = 1, …, C, with the restriction 

that these non-negative proportions sum to one. The latent class proportions 

represent the sizes of the unobserved latent classes. The αcjr are conditional 

probabilities associated with the observed variables. That is, they represent the 

probability of response r to variable j given membership in the cth latent class. 

Thus, for each variable, there is a vector of Rj conditional probabilities and these 

conditional probabilities sum to one for each variable within each latent class.  

The δsjr terms are introduced in the manner of Kronecker deltas to include 

the appropriate conditional probabilities in the model based on the observed 

responses for the sth respondent. Thus, δsjr = 1 if ysj = r but δsjr = 0 otherwise. In 

effect, the latent class model is based on the assumption that, conditional on latent 

class membership, the responses to the variables are independent. To make the 

model explicit, consider three dichotomously-scored variables and two latent 

classes. Within latent class 1, the probabilities for a 1 response (e.g., positive, yes 

or agree) are α111, α121, and α131 and within latent class 2 these probabilities are 

α211, α221, and α231. The observed response {1,2,1}, for example, has conditional 

probability α111 (1 − α121) α131 within latent class 1 and conditional probability 

α211 (1 – α221) α231 within latent class 2, so that the unconditional probability for 

this response is θ1α111 (1 − α121) α131 + (1 – θ1) α211 (1 – α221) α231. From a 

psychological measurement perspective, each conditional probability can be 

viewed as an item difficulty (or easiness) that may vary across the unobserved 

latent classes. 
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The log-likelihood for a latent class model with observations, Ys = {ysj}, is 

 ss
LnP Y . To generate maximum-likelihood estimates (MLEs) for the 

parameters in the model, a set of normal equations must be solved 

simultaneously: 0
c

d

d


  for each latent class proportion and 0

cjr

d

d


  for each 

conditional probability. However, a specific model will involve restrictions that 

must be introduced into the solution for the estimates. For example, the latent 

class proportions must sum to 1 across the classes and the conditional 

probabilities may be constrained in various ways including, at least, summing to 1 

across the response options. Unfortunately, the presence of additive terms within 

the logarithmic operator means that the model is non-linear in the parameters and, 

except for special cases, cannot be solved by algebraic approaches.  

However, given suitable restrictions, maximum-likelihood estimation is 

usually possible using iterative procedures such as Newton-Raphson algorithms 

as in Haberman’s program LAT (1979) or by estimation-maximization (EM) 

algorithms as in Vermunt’s program LEM (1997). These procedures are regula 

falsi methods that are subject to various computing complications including local 

maxima, boundary conditions, etc. (Dayton, 1999). Based on the MLE’s, model 

fit can be assessed by Pearson or likelihood-ratio chi-square statistics computed 

from the cross-tabulation of the observed responses (e.g., the 2J table for J 

dichotomous variables). In general, the degrees of freedom for these tests are 

#Cells – 1 – #Pars where #Pars is the number of independent parameters 

estimated by MLE. However, it is possible that the parameters in a latent class 

model are not identified even though there are positive degrees of freedom. 

Programs such as LEM (Vermunt, 1997) provide some useful information on 

model identification although this can be a complex issue. These methods, as well 

as related descriptive approaches to assessing model fit, are summarized in 

Dayton (1999).  

Two Repeated Dichotomous Classifications 

The McNemar test is based on a 2 × 2 table with observed cell frequencies nij 

and cell proportions pij = nij / N where N is the total sample size. Assuming an 

unrestricted two-class latent class model, the expected cell proportions are: 
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Given the usual restrictions on probabilities, there are five independent 

parameters, θ1, α111, α121, α211, and α221, but only three independent observed 

proportions, p11, p12, and p21. Therefore, the model cannot be identified unless at 

least two more restrictions are imposed. Imposing two restrictions would not yield 

positive degrees of freedom for assessing fit, so, in order to assess fit of the model, 

a total of three additional restrictions is required. The first two restrictions can be: 

α111 = α121   α11 and α211 = α221   α21; i.e., equating conditional probabilities 

across the two variables. If we interpret the first class as favoring a “1” response 

and the second class as favoring a “2” response, then a third restriction of the 

form 1 − α11 = α21   αe allows a single conditional probability, αe, to be viewed as 

a response error. It should be noted that Proctor (1970) suggested the use of a 

restricted latent class model that involved response errors for the analysis of 

Guttman scales and that his approach was expanded by Dayton and Macready 

(1976). Given these restrictions, the equations above reduce to: 
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The two latent classes can be interpreted as comprised of respondents who 

consistently use the response category 1 or, alternately, consistently use the 

response category 2. Inconsistent responses such as {1,2} or {2,1} are assumed to 

occur as a result of response errors that represent lack of consistency. Note 

responses such as {1,1} and {2,2} require that respondents either do not make a 

response error or that they make two response errors (e.g., a respondent in the 

latent class associated with a {1,1} response makes two response errors and 

responds {2,2}). 

For this relatively simple model, the log-likelihood and normal equations 

can be set up and solved algebraically as shown in Dayton and Macready (1983). 
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However, an alternative approach is based on the realization that the expected and 

observed frequencies are equal for responses {1,1} and {2,2}; i.e., 

     
2 2

11 11 1 11 1e ep E p          and     
22

22 22 1 11 1e ep E p        . 

Thus, algebraically solving these two equations for values of the parameters 

yields, per force, the maximum likelihood estimators:  
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Note that ˆ
e  is undefined for p12 + p21 > .5 so that it is necessary to reverse 

the coding for one of the variables if this occurs in practice. The restricted latent 

class model yields expected frequencies that are consistent with the McNemar test 

in the sense that 
11 11p̂ p , 

22 22p̂ p , and  12 21 12 21
ˆ / 2p p p p   . Also, the 

resulting chi-square value for model fit is exactly the same as the uncorrected 

McNemar chi-square statistic with one degree of freedom. Thus, the McNemar 

may be viewed as testing the null the hypothesis α11 = 1 – α21 versus the 

alternative α11 ≠ 1 – α21. 

This conceptualization of the McNemar test focuses on response consistency 

rather than marginal homogeneity although the implications for observed 

responses are the same. However, estimates for the latent class parameters 

provide a measure of the agreement between classifications that is not available in 

a conventional McNemar analysis. For example, consider the exemplary 

before/after treatment results in Table 2. Positive responses occur at a rate of 

40.3% before treatment and at a rate of 47.6% after treatment. The 6.3% 

difference is significant based on an uncorrected McNemar chi-square value of 

4.55 (p = .033). Our latent class model yields estimated parametric values of .423 

for the latent class proportion, θ1, and .074 for the error rate, αe. The value .423, or 

42.3%, is an estimate for the proportion of respondents who have positive 

responses at both the before and after occasions of observation. Note that the 

conventional McNamar procedure does not provide a comparable statistic. Also, 

the value .074, or 7.4%, is an estimated error rate that applies to both the 

positive/positive and negative/negative latent response groups. Once again, this a 

value that has no direct analog in a McNemar analysis (although roughly similar 

to the before/after relative change in this example). 
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Table 2. Exemplary Pre/Post Data 

 

  

After 

 
 

Positive Negative Total 

Before 

Positive 59 6 65 

Negative 16 80 96 

Total 75 86 161 

 

Stratified McNemar Test 

Consider cross-tabulations similar to those in Table 1 for two or more strata 

within a population (or for the same population at different points in time or for 

samples from several populations). Letting the strata be represented by 

y = 1, …, Y, the expected cell proportions for a given stratum can be written as: 
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Maximum likelihood estimation for the stratified model follows the same 

approach as for any latent class model in general but requires that suitable 

restrictions be imposed on the estimated parameters. In addition, issues related to 

identification of the model must be considered (Dayton, 1999). Because the strata 

are independent, it is apparent that jointly estimating the parameters in the 

heterogeneous form of the stratified model is the same as fitting the model 

separately to each stratum but does provide an overall measure of fit in the form 

of a chi-square statistic with Y degrees of freedom. However, the major advantage 

of conceptualizing the model in this form is that it allows for imposing across-

strata restrictions on the error rates. The most highly restricted case results in a 

homogeneous model with 2Y − 1 degrees of freedom that is based on restrictions 

of the form ey e y   . However, a variety of part-heterogeneous models may be 

suggested by theory (or, the data) and tested accordingly. Closed-form estimates 

are not, in general, available for the stratified model. Fortunately, as illustrated 

below, available programs for latent class analysis allow for these restrictions and 

associated MLEs. 
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A similar conceptualization, known as the Hui-Walter model (Hui & Walter, 

1980), has been presented in the context of repeated assays for the purpose of 

estimating false-positive and false-negative rates. This model is saturated so that 

fit to data cannot be assessed by ordinary procedures and is based on a different 

set of restrictions. Biemer (2011) presents an extended discussion with examples 

of the Hui-Walter model. 

Application for Two Immunization Survey Items 

The CDC Behavioral Risk Factor Surveillance System (BRFSS) is a large-scale 

telephone survey that tracks health risks in the United States. The CDC web-

enabled analysis tool for BRFSS (http://nccd.cdc.gov/s_broker/WEATSQL.exe/ 

weat/index.hsql) was used to produce cross-tabulations of responses to two items, 

referred to as Flu and Pneumonia, for adults aged 65 and older: 

 

Flu:    Had a flu shoot within past 12 months. 

Pneumonia:  Ever had a pneumonia vaccination.  

 

The item responses were Yes/No and, for the year 2011, there were 

responses available for a total of 143,002 people across the United States.  A large 

variety of demographic variables is included in the data system and, using CDC 

labeling, we chose to compare race/ethnicity groups divided into the strata: (1) 

White, Non-Hispanic; (2) Black, Non-Hispanic; (3) Hispanic; and (4) Other 

which comprised multiracial and other races. Cross-tabulated frequency data for 

the four race/ethnicity groups are presented in Table 3. 
 
 
Table 3. Cross-Tabulation of Two Immunization Variables for Four Race/Ethnic Groups 

 
Flu: Yes Yes No No 

 
McNemar 

 
Pneumonia: Yes No Yes No Total G2   Prob. 

White, Non-Hispanic 64,446 12,729 23,792 21,279 122,246 3404.05 0.000 

Black, Non-Hispanic 3,367 1,107 1,728 2,575 8,777 137.14 0.000 

Hispanic 2,050 1,005 1,123 2,251 6,429 6.55 0.011 

Other 2,641 679 1,105 1,125 5,550 102.71 0.000 

Total 72,504 15,520 27,748 27,230 143,002 3503.30 0.000 

 
 

Our focus was on the relative rates of flu and pneumonia immunizations 

across the race/ethnic groups. As shown in Table 4, the marginal immunization 

http://nccd.cdc.gov/s_broker/WEATSQL.exe/weat/index.hsql
http://nccd.cdc.gov/s_broker/WEATSQL.exe/weat/index.hsql
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rates are moderately different for three of the four race/ethnic groups but very 

similar for Hispanics (i.e., .48 and .49 for flu and pneumonia, respectively).  
 
 
Table 4. Marginal Rates 

 

Race/Ethnic Group Flu Pneumonia 

White, Non-Hispanic 0.63 0.72 

Black, Non-Hispanic 0.51 0.58 

Hispanic 0.48 0.49 

Other 0.60 0.67 

Total 0.62 0.70 

 
 

 In Table 3, the column labeled McNemar G2 presents McNemar likelihood-

ratio chi-square fit statistics for each race/ethnic group as well as for the total 

sample. These tests are consistent with our observation concerning the marginal 

rates with only the Hispanic group failing to be significant beyond the .01 level.  

Homogeneous, heterogeneous and part-heterogeneous stratified McNemar 

models were fit to the cross-tabulations of the two immunization items for the 

four race/ethnic groups. The homogeneous model posits a single response error 

rate, αe, for the four strata whereas the heterogeneous model posits unique error 

rates, αe1, αe2, αe3, and αe4, for the four strata. In both cases, the size of the latent 

class, θ1, corresponding to a Yes response to both items, {1, 1}, is allowed to vary 

by group in order to fix the marginal distributions for the race/ethnic groups. The 

part-heterogeneous model, which equated error rates for all groups except White, 

Non-Hispanic, was suggested by the fact that the error rates for these three strata 

were quite similar for the heterogeneous model (i.e., .206, .209 and .201, 

respectively). MLE parameter estimation and model fit were conducted using the 

latent variable program, LEM (Vermunt, 1997). Although lacking a modern 

computer interface, LEM has the dual advantages of being (a) available free for 

download for Microsoft operating systems and (b) extremely flexible in terms of 

the latent class models that can be estimated. Sample LEM program set-ups for 

the homogeneous and heterogeneous models are included in the Appendix. Model 

fit statistics and parameter estimates are presented in Table 5. Given the large 

sample size, it was not unexpected that all three models result in rejection of the 

hypothesis of equal error rates across the four race/ethnic groups. 
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Table 5. Stratified McNemar Models Fit to Vaccination Variables 

 

Model DF Chi-Sq (G2) AIC 

Homogenous 

Groups Error Rates Class Size 

Homogeneous 7 3709.95* 513, 360.7 [1234] .186 .78, .57, .47, .72 

Part-Heterogeneous 6 3652.38* 513, 305.1 [1],[234] .183, .204 .78, .58, .47, .73 

Heterogeneous 4 3650.85* 513, 307.6 [1],[2],[3],[4] 
.183, .206,.209,

 .201 
.77, .58, .47, .73 

Collapsed 1 3503.30* N/A [1] .186 .75 
 

Note: *All p-values are less than .001 

 
 

Using the Akaike (1973) information measure as suggested by Dayton 

(1999) for comparing latent class models, a min(AIC) criterion indicates that the 

part-heterogeneous model is best among the models being compared. Because the 

three models are nested, it is appropriate to test differences among them using 

likelihood-ratio chi-square (G2) statistics. These comparisons are: 

 

Homogeneous vs. Part-Heterogeneous: Δ(G2) = 57.57, DF = 1, p < .01;  

Homogeneous vs. Heterogeneous: Δ(G2)  = 59.10, DF = 3, p < .01;  

Part-Heterogeneous v.s Heterogeneous: Δ(G2)  = 1.53, DF = 2, p < .05. 

 

The Part-Heterogeneous model fits the data no worse than the 

Heterogeneous model, whereas both of these models provide better fit than the 

Homogeneous model.   

As noted above, in order to fix the marginal distributions at observed values 

for the four race/ethic groups, it was necessary to posit separate latent class 

proportions for the strata. These proportions are quite consistent across the models 

that were evaluated with White, Non-Hispanic and Hispanic showing 

considerably larger latent class proportions than the other two groups. If 

race/ethnicity is ignored and a non-stratified latent class model is fitted to the 

(marginal) 2 × 2  table of immunization rates, a latent class proportion of .75 is 

estimated. An error rate of .186 was estimated for the homogeneous model which 

is essentially identical to that from the marginal 2 × 2  model although this is 

driven by the fact that about 85% of the total sample is comprised of White, Non-

Hispanic respondents,  

In order to allow for the observed lack of agreement in immunizations rates 

for flu and pneumonia vaccinations, the latent class models suggest a rate of 

inconsistencies (errors) of approximately 18% - 20%. That is, about one in five 

individuals in a latent class that represents consistently Yes (or consistently No) 

respondents would, in fact, fail to respond consistently. From Table 2 it is notable 
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that inconsistencies tend to be in the direction of failing to obtain a flu vaccination, 

which may suggest some educational strategy in this regard for the 65 and older 

age group.  

Capitalizing on the fact that the McNemar test can be conceptualized as a 

restricted latent class model, we have defined homogeneous, heterogeneous and 

part-heterogeneous models with parameter estimates that have interpretations that 

could be of interest in applied research settings such as immunization patterns for 

the 65-and-over population. Furthermore, estimation and significance testing are 

available using widely available latent-class programs. 
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Appendix 

LEM input file for Homogeneous model 

* CDC Behavioral Risk Factor Surveillance System 

* Elderly flu shot last 12 months 

* Elderly pneumonia vaccination ever 

* Four ethnic groups - white, black, Hispanic, other 

* Stratified McNemar test 

* Homogenous Model [1234] 

lat 1 

man 3 

dim 2 4 2 2 

lab X Y F P * X = latent variable; Y = Ethnic; 

              F = Flu, P = Pneumonia 

mod Y  

X|Y  

F|XY eq2 

P|XY eq2 

des [ 0 2 0 2 0 2 0 2  2 0 2 0 2 0 2 0 

      0 2 0 2 0 2 0 2   2 0 2 0 2 0 2 0 ] 

dat [64446 12729 23792 21279     3367 1107 1728 2575 

      2050  1005  1123  2251     2641  679 1105 1125] 

LEM input file for Heterogeneous model 

* CDC Behavioral Risk Factor Surveillance System 

* Elderly flu shot last 12 months 

* Elderly pneumonia vaccination ever 

* Four ethnic groups - white, black, Hispanic, other 

* Stratified McNemar test 

* Heterogeneous Model [1],[2],[3],[4] 

lat 1 

man 3 

dim 2 4 2 2 

lab X Y F P * X = latent variable; Y = Ethnic; 

              F = Flu, P = Pneumonia 

mod Y  

X|Y  
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F|XY eq2 

P|XY eq2 

des [ 0 2 0 4 0 6 0 8   2 0 4 0 6 0 8 0 

      0 2 0 4 0 6 0 8   2 0 4 0 6 0 8 0 ] 

dat [64446 12729 23792 21279     3367 1107 1728 2575 

      2050  1005  1123  2251     2641  679 1105 1125] 
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The robustness of parametric analyses is rarely questioned or qualified. Robustness, 
generally understood, means the exact and approximate p-values will lie on the same side 
of alpha for any reasonable data set; and 1) any data set would qualify as reasonable and 
2) robustness holds universally, for all alpha levels and approximations. For this to be 

true, the approximation would need to be perfect all of the time. Any discrepancy 
between the approximation and the exact p-value, for any combination of alpha level and 
data set, would constitute a violation. Clearly, this is not true, and when confronted with 
this reality, the “No True Scotsman” fallacy is often invoked with the declaration it must 
have been a pathological data set, as if this would obviate the responsibility to select an 
appropriate research method. Ideally, a method would be selected because it is optimal, 
or at least appropriate, without needing special pleading, but judging by how often 

approximations are used when the exact values they are trying to approximate are readily 
available, current trends do not come close to this ideal. One possible explanation might 
be that there is not much information available on data sets for which the approximations 
fail miserably. Examples are presented in an effort to clarify the need for exact analyses. 
 
Keywords: Chi-square test, normality, permutation tests, robustness, t-test 

 

Introduction 

Approximations are used rather often, in all sorts of contexts. Sometimes this is 

because the exact value is not available, or because it could be made available but 

only at a prohibitive cost. In no case is the approximation ever actually preferred 

to the exact value it is trying to approximate, for if this indeed is the case, then the 

approximation is not an approximation. Rather, it would then be calculated for its 

inherent interest. 

This raises the issue of whether parametric analyses are conducted because 

they are of interest in their own right, or merely as approximations to exact 

https://doi.org/10.22237/jmasm/1493596920
mailto:vb78c@nih.gov
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analyses. Though it is conceivable that in certain limited cases there is interest in 

a parametric analysis, it is clear, when one considers the pre-testing that generally 

occurs to ensure that the conditions are met to ensure the integrity of the 

approximation, that the parametric analyses are, in general, just approximations, 

nothing more. For example, if one were to test the data for normality by any 

method, even an informal one such as appeal to the fact that we have always just 

assumed normality, prior to conducting a t-test, then this undermines the notion 

that the t-test is conducted for inherent interest. There is interest only 

conditionally on the finding that the data are normal enough to merit such interest. 

Along these lines, Bradley (1968) noted that “A corresponding parametric test is 

valid only to the extent that it results in the same statistical decision [as the exact 

test]” (p. 85). 

We must distinguish two cases here. In one case, the choice is to 

approximate or not to approximate; but if one does, then one cannot know how 

well the approximation performed since the exact value cannot be computed. In 

the other case, the exact value is readily available, so here the choice is to use it or 

the approximation. Berger (2000) pointed out the folly, in this case, of ever using 

the approximation. After all, how compelling is a test of normality in allowing for 

the use of an approximation when one can instead simply compare the two values 

to see how close they actually are (as opposed to how close they should tend to be 

on average)? But for that matter, given that one already has the exact value, why 

even consider replacing it with the approximation? 

The lapse in logic that would allow a researcher to use an approximation 

when the very quantity it is trying to approximate is readily available is staggering, 

and yet this exact situation plays out in a huge number of randomized clinical 

trials, Bradley’s aforementioned sage wisdom notwithstanding. The 

randomization itself allows for exact comparisons of the treatment groups by way 

of permutation tests (see, e.g., Fisher, 1935; Rigdon & Hudgens, 2015; Lu, Ding, 

& Dasgupta, 2015), and yet it is the inexact parametric tests that are used far more 

often, generally after going through the motions of justifying this choice by first 

conducting a test of the assumptions that allegedly support the use of the 

parametric test in question. 

The only saving grace would be if it just didn’t matter. Sure, the exact 

analyses are preferable, but given how robust the parametric analyses are, there is 

very little to gain and much to lose in terms of computing time. This argument 

may have been compelling decades ago, when it actually would have been 

difficult to conduct a permutation test, but today this is no longer the case.  It is 

just as easy to do it right as it is to do it wrong. So this leaves us at the other 
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aspect of this argument, it just doesn’t matter (and all the variations of this theme, 

including the assertion that there are more important issues for statisticians to 

concern themselves with, as if the choice of an appropriate analysis is somehow 

beneath the dignity of the very party charged with doing so). Moreover, even if it 

did not matter (at least numerically), that still would not provide a compelling 

argument in favor of a theoretically unsound analysis. 

This much is clear, and should already suffice to eradicate parametric 

analyses from actual clinical trials, at least when comparing treatments. Sadly, it 

has not, and the widespread delinquency of researchers who simply cannot be 

bothered to concern themselves with the relative merits of various analyses is 

matched by a commensurate delinquency on the part of those authorities who 

could impose the need for rigor, yet somehow choose not to. And they do this 

while assuring patients and funding bodies that only the best research methods 

will be used. But at least we can fall back on robustness. 

Everybody knows that parametric analyses are robust, but how many can 

actually provide a precise formulation of what that means, operationally? How 

good is good enough? What does “good enough” even mean in this case?  What 

does convergence as the sample size increases without bound say about the 

discrepancy for this particular data set with its very finite sample size? These are 

uncomfortable questions for those who continue to embrace robustness as a 

justification for using approximations when in fact the exact values should be 

used instead. One theorem that would be useful in supporting this case would be 

along the lines of |p1 – p2| < k/n, where k is some universal constant, n is the 

sample size, and k/n bounds the absolute difference between the two p-values. 

Even if this statement were true, it would still be hard to see how that would 

justify the substitution of the one for the other. After all, enlightened researchers 

recognize that each party may apply his or her own personal alpha level to the 

results of any clinical trial (Berger, 2004). This being the case, how much error is 

acceptable when, with a different choice, we can attain the ideal of no error at all?  

Moreover, is such a bound of the discrepancy even true? The remainder of this 

paper will illustrate that in fact it is not true for any reasonable value of k. We will 

consider the chi-square approximation to Fisher’s exact test, the Smirnov test 

(both exact and approximate), and the t-test in the sections to follow. 

Examples of the Chi-Square Test Failing 

When dealing with a single 2 × 2 contingency table, the two most common tests 

seem to be Fisher’s exact test and the chi-square test. Of course, the chi-square 
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test is used in other situations as well, and sometimes the exact test to which it is 

compared is not Fisher’s exact test, and in some cases this test may not even have 

a name (but is easily defined in terms of a test statistic and a permutation mode of 

inference). Table 1 presents six data sets for which the chi-square p-value differs 

markedly from its exact counterpart. In Example C1, the comparison was the chi-

square test to Fisher’s exact test. Little (1989) pointed out that each expected cell 

count was over five, so the usual rule of thumb would have led one to use the chi-

square test and find significance at the 0.05 level (note that the p-values in the 

table are one-sided, so Fisher’s exact test is not significant). 
 
Table 1. Data sets for which the chi-square test fails badly 

 

N References Data Set* p-values** 

C1. Little (1989) {(170,2);(162,9)} 0.0299, 0.0162 

C2. Zelterman et al. (1995) 
 

0.0424, 0.119 

C3. Cytel Software (1995, p. 11) 
 

0.0013, 0.1342 

C4. Cytel Software (1995, p. 17) {(3,1);(1,3)} 0.243, 0.0786 

C5. Berger and Lachenbruch (1998) {(20,230);(35,225)} 0.063, 0.047 

C6. Hewett et al. (1999); Clancy (2000) {(10,453);(2,364)} NS***, 0.02 
 

Note: Citations abbreviated for space; see Reference section below for full reference 

 * Data set provided only for a single 2 × 2 contingency table 
** Exact p-value first, then chi-square p-value 
*** Actual p-value not reported, nor is the full data set available 

 
 
Table 2. Data from StatXact (Cytel Software, 1995) 

 
0 7 0 0 0 0 0 1 1 

 1 1 1 1 1 1 1 0 0 
 0 8 0 0 0 0 0 0 0 

 
 

Example C2 is from Table 1 of Zelterman, Chan, and Mielke (1995), which 

is hypothetical data in the form of two stratified 2 × 2 contingency tables. These 

were {(1, 0); (3, 9)} and {(0, 0); (9, 5)}. Not only do the p-values differ 

dramatically (the exact p-value is 0.0424 and the approximate chi-square p-value 

is 0.119), but in fact it is the exact one that is lower. This example flies in the face 

of the conventional wisdom that states that permutation tests are always 

conservative so therefore exact p-values are always larger than their approximate 

counterparts. Zelterman et al. (1995) note “The lesson we learn ... is that the 

behavior of test statistics, such as Pearson’s chi-square, may or may not agree 

with their asymptotic approximations. The only certain methods for accurate 

analysis of tables with small counts is to perform exact methods based on the 
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likelihood function” (p. 358) Example C3 is based on a sparse 3 × 9 contingency 

table presented in the StatXact manual (Cytel Software, 1995, p. 11), which is 

reproduced in Table 2. 

Pearson’s chi-square test of an interaction between rows and columns has a 

test statistic value of 22.29 with (3 – 1)(9 – 1) = 16 degrees of freedom, for a p-

value of 0.1342. Using the same test statistic, specifically the chi-square test 

statistic, but using its exact distribution instead of the distributional assumption 

results in an exact p-value of 0.0013. As in Example C2, not only are the p-values 

(and the interpretations one would arrive at) grossly different from each other, but 

in fact it is the exact one that would demonstrate a true treatment effect (assuming 

that rows are treatments), whereas the approximate one would miss it. The 

StatXact manual notes “the need to compute the exact p-value, rather than relying 

on asymptotic results, whenever the data set is small, sparse, unbalanced, or 

heavily tied. The trouble is that it is difficult to identify, a priori, that a given data 

set suffers from these obstacles to asymptotic inference” (Cytel Software, 1995, p. 

11). 

Example C4 is also from the StatXact manual (Cytel Software, 1995, p. 17), 

and is Fisher’s famous original tea-tasting experiment which led to the 

development of Fisher’s exact test. As is well known, the experiment involved 

testing the claim of a British woman that she was able to distinguish between the 

two possible orders, milk first and then tea, or tea first and then milk, being 

poured into a cup. This woman was presented with eight cups of tea, in which 

four were of each order (and she was told this key fact). The order in which the 

cups were given to her was randomized. Of the four cups with milk poured first, 

she guessed right three times. Likewise, of the four cups with tea poured first, she 

guessed right three times. The chi-square test yields a p-value of 0.1573 two-sided 

or 0.0786 one-sided. The Fisher exact p-value is 0.243, which is not even close. 

Example C5 regards data presented at the December 15, 1995 FDA Blood 

Products Advisory Committee meeting. Hospitalization due to a targeted 

respiratory disease was required by 20/250 (8.0%) patients on a biological 

treatment arm and 35/260 (13.5%) patients on the control arm. Pearson’s 

uncorrected chi-square test yielded p = 0.047 two-sided, and significance was 

declared at the prospectively specified 0.05 alpha level (two-sided). But the 

nominal 0.05 alpha level is preserved only if the true probability of a Type-I error 

is no greater than 0.05. A fair question, then, is how likely one would be to obtain 

data at least as significant (p < 0.047), by using this chi-square test, assuming 

nothing more than random allocation of patients to treatment groups. The answer, 

p = 0.063, is provided by Fisher’s exact test, which of course does not attain 
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statistical significance at the 0.05 alpha level. The StatXact manual points out that 

“The term ‘asymptotically’ means ‘given a sufficient sample size’, though it is not 

easy to describe the sample size needed for the chi-square distribution to 

approximate well the exact distribution of the Pearson statistic” (Cytel Software, 

1995, p. 12). 

Example C6 is based on Clancy’s (2000) letter to the editor regarding 

Hewett, Lindenfeld, Riccobene, and Noyes’ (1999) paper, in which the authors 

evaluated the effect of neuromuscular training on the incidence of knee injury in 

female athletes. There were ten injuries among 463 untrained athletes and two 

injuries among 366 trained athletes. The chi-square test was reported to yield 

p = 0.02. Clancy reported a non-significant p-value with Fisher’s exact test, and 

also pointed out that one cell had both an actual and an expected cell count under 

five, so that Fisher’s exact test would be the more reliable of the two, in keeping 

with conventional wisdom. Notably, Hewett, Levy, and Noyes (2000) responded 

to the letter by resorting to appeal to credentials, stating essentially that they used 

an “excellent” statistician, so therefore whatever he came up with must be correct 

by virtue of his coming up with it. A second “unbiased” statistician confirmed this.  

Even in the absence of a reason for suspicion, suspicion must still arise 

when an argument is defended by appeal to credentials. This is, after all, 

tantamount to an admission that there is no better defense for the argument than 

credentials. One has to wonder just how “unbiased” the second statistician truly 

was, and also how many competent statisticians (with the fortitude to refuse to 

sign off on an analysis so poorly planned) were also contacted. Competent 

statisticians know to use Fisher’s exact test when the expected cell counts, or any 

one of them, is less than five; even better statisticians would recognize the 

irrelevance of the expected cell counts and instead use Fisher’s exact test any time 

it differs substantially from the chi-square test. And still better statisticians would 

recognize that they are not in a position to determine how close an approximation 

needs to be in order that it be preferred to the quantity it is trying to approximate, 

so they would simply use Fisher’s exact test routinely. 

Examples of the Approximate Smirnov Test Failing 

When dealing with a single ordered 2 × J table, the best test that is offered as a 

routine option (no programming required) in commercially available software 

packages is the exact Smirnov test, a standard feature of StatXact. See Section 

10.1 of Hollander and Wolfe (1973) and Section 1.6 of Lehmann (1975). Note 

that while it is customary to speak of the Smirnov test as a two-sided approximate 
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test, we use this term to denote the exact one-sided version. Essentially, the only 

difference between the one-sided and the two-sided version is the absence or 

presence, respectively, of absolute values around the directed difference of CDFs 

to be maximized. Whether one-sided or two-sided, the approximate test that bears 

the same name often gives strikingly different p-values from the exact version for 

the same data set, as we will demonstrate in Table 3. Note that the exact Smirnov 

test p-values (but not the approximate ones) for these data sets appeared in Table 

2 of Berger (2002), and some of them seem to contradict what we are presenting 

now in our Table 3. The reason for this is the newfound ability of StatXact to 

compute exact Smirnov p-values immediately for such large data sets, whereas 

only a few years ago only Monte Carlo approximations were feasible. 
 
Table 3. Ordered 2 × J tables for which the approximate Smirnov test fails badly 

 

N References Data Set p-values* 

S1. Fentiman et al. (1983) {(6,8,4,2,3);(3,2,8,0,10)} 0.0138, 0.0296 

S2. Fox et al. (1993) {(1,5,16);(0,0,22)} 0.0106, 0.1947 

S3. Fox et al. (1993) {(12,3,7);(3,7,12)} 0.0108, 0.0252 

S4. Elwood (1998) {(33,5,545);(29,8,836)} 0.0258, 0.6823 

S5. TOAST (1998) {(291,168,176);(270,161,215)} 0.0379, 0.1376 

S6. Clark et al. (1999) {(207,19,80);(181,25,101)} 0.0209, 0.0988 

S7. Clark et al. (1999) {(187,15,104);(169,32,106)} 0.0938, 0.3242 

S8. Shelton et al. (2001) {(83,14,5);(72,12,14)} 0.0766, 0.4147 

S9. Staszewski et al. (2001) {(149,29,104);(144,15,121)} 0.1051, 0.3238 
 

Note: Citations abbreviated for space; see Reference section below for full reference 
 * Exact one-sided Smirnov p-value first, then the approximate one-sided Smirnov p-value 

 
 

Notice that in each case the approximate p-value is much larger than its 

exact counterpart. This refutes the common misunderstanding that exact p-values 

are always overly-conservative and therefore larger than the approximate p-values 

they would (and should) replace. Example S1 comes from a study of talc for 

malignant pleural effusions. There were 46 patients, and 23 were randomized to 

each group: talc and mustine. Some patients were considered to be “not assessable” 

because they died within a month of pleurodesis. Among the other patients (who 

were assessed), success or failure was defined in terms of radiologic criteria of 

effusion control. In addition to this binary success endpoint, patients were also 

classified as being alive or dead at the time the article was written, and as having 

had or not had evidence of recurrent effusion. So all in all we have four binary 

endpoints: 
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1. Died prior to assessment or not; 

2. Dead or alive at the end of the study; 

3. Success or not; 

4. Recurrence or not. 

 

This would appear to give 2 × 2 × 2 × 2 = 16 outcomes, but in fact the first 

two binary endpoints are fusible, because being alive at the end of the study 

necessarily entails also being alive long enough to be assessed. So instead of 

2 × 2 = 4 outcomes for the first two binary endpoints above, we recognize the 

structural zero (one cannot die prior to being assessed and also be alive at the end 

of the study), and remove it to create a trichotomous information preserving 

composite endpoint, or IPCE, (died prior to assessment, assessed but dead at 

study end, alive at study end). See Berger (2002) for more information on the 

construction of the IPCE. We also note that the two binary endpoints success 

(yes/no) and recurrence (yes/no) are fusible, because recurrence is possible only if 

success was achieved in the first place, so we again have a structural zero (one 

cannot recur without having succeeded in the first place). Removing it gives the 

IPCE (no success, success then recurrence, success without recurrence). We have 

gone from 2 × 2 × 2 × 2 = 16 possible outcomes to only 3 × 3 = 9. But in fact 

further savings is possible too, as becomes evident from inspection of Table 4. 

Dying before assessment precludes the possibility of a success, so the two 

lower left cells, labeled “SZ” in Table 4, are structural zeros. We make the 

simplifying assumption that death supersedes recurrence, and so we equate the 

two cells labeled “3" in Table 4. The upper right cell labeled “RZ” was a random 

zero; that is, there could have been patients surviving without success, but as it 

turned out, none did. This leaves only five active outcomes, labeled 1-5 in Table 

4: 

 

1. Died prior to being assessed; 

2. Died after being assessed but without success; 

3. Died after success; 

4. Alive at study end but recurred; 

5. Alive at study end without recurrence. 

 

These outcomes are, of course, in order of increasing clinical benefit, and the data, 

as presented in Table 3, were (6, 8, 4, 2, 3) in the mustine group and 

(3, 2, 8, 0, 10) in the talc group, and the one-sided (to show a benefit of talc in 

shifting to more favorable outcomes) Smirnov p-values were 0.0138 (exact) and 
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0.02955 (approximate). If one were to use the two-sided 0.05 alpha level and then 

cut it in half for a 0.025 one-sided alpha level (which seems to be lacking in any 

real basis, yet is still used quite often as a policy), then only the exact Smirnov 

test would show a statistically significant improvement in outcomes associated 

with talc. 
 
 
Table 4. The construction of the IPCE for example S1 

 

  
Died Before 

Assessment 
Assessed, 
then Died 

Alive at 
Study End 

No Success 1 2 RZ 

Success, then Recurrence SZ 3 4 

Success, no Recurrence SZ 3 5 

 
 

Examples S2 and S3 both represent the same patients, with the same 

endpoint, with the same treatments. All that varies is the timing of the 

measurement. Specifically, Example S2 is Day 2 and Example S3 is Days 1-5, 

and both come from a study of combination therapy for nausea (Fox, Einhorn, 

Cox, Powell, & Abdy, 1993). What is so amazing is the complete reversal in the 

direction of the shift. The endpoint we consider is response, which is scored as 

complete, major, or none. Note that this endpoint is the IPCE of two component 

binary response endpoints presented by Fox et al., specifically the response rate 

and the complete response rate. Clearly, the two endpoints are fusible, since a 

complete response implies also a response. 

At Day 2, the data were (1, 5, 16) in the ondansetron group and (0, 0, 22) in 

the combination (ondansetron plus dexamethasone plus chlorpromazine) group. In 

other words, there was absolutely no effect of the combination therapy for the 

response rate (22/22 vs. 21/22), but a fairly strong effect on the complete response 

rate (22/22 vs. 16/22). At the Days 1-5 assessment, the situation was reversed, 

with (12, 3, 7) in the ondansetron group and (3, 7, 12) in the combination group. 

Now there was not much of an effect of the combination therapy for the complete 

response rate (12/22 vs. 7/22), but a fairly strong effect on the overall response 

rate (19/22 vs. 10/22). Either binary endpoint would show significance at the 5% 

alpha level at one time point but not at the other, with one-sided Fisher’s exact 

test p-values of 0.5000 for the Day 2 overall response rate, 0.0106 for the Day 2 

complete response rate, 0.0049 for the Days 1-5 overall response rate, and 0.1116 

for the Days 1-5 complete response rate. The exact Smirnov test yields one-sided 

p-values of 0.0106 (Day 2) and 0.0108 (Days 1-5). The approximate test yields 
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one-sided p-values of 0.1947 and 0.02518. Once again, only the exact Smirnov 

test shows statistical significance at the customary 0.025 one-sided level of 

significance. 

Example S4 is reinfarction data, in which the reinfarction could be 

confirmed or not, or there could be no reinfarction at all. Each patient can be 

scored on an ordered categorical scale with three categories, (confirmed 

reinfarction, reinfarction not confirmed, no reinfarction). Note that once again this 

is the IPCE for two binary endpoints originally presented. The data for the two 

treatment groups (placebo, then sotalol) are presented in Table 3, and the Smirnov 

test was used to compare the groups. As can be seen, the asymptotic version of 

the test was way off, to the point of being almost unbelievable, relative to the 

exact Smirnov test. The exact and approximate one-sided p-values were 0.0258 

and 0.6823. Note that a one-sided p-value is not, in general, half the 

corresponding two-sided p-value, and also that a one-sided p-value can exceed 0.5 

if the trend is in the “wrong” direction. Of course, that is not the case with the 

data at hand, as we tested for the direction of sotalol being superior, and the data 

do trend in this direction. So it is unclear why the asymptotic test would behave 

this way. One must ask if the data themselves might suggest the need for the exact 

version of the test. Berger (2000) reports that “It is unclear how one would 

determine the advisability of the approximate test, but if one were to ‘think 

unconditionally’ then the small middle margin would not be a concern.  The large 

sample sizes (over 500 per group), coupled with expected cell counts that all 

exceed five, would certainly be reassuring” (p. 1322). 

Example S5 concerns danaparoid for acute ischemic stroke. The TOAST 

Investigators (The Publications Committee for the Trial of ORG 10172 in Acute 

Stroke Treatment Investigators [TOAST], 1998) presented two binary endpoints, 

favorable outcomes (yes or no) and very favorable outcomes (yes or no), but 

again these two binary endpoints are clearly fusible, since a very favorable 

outcome implies also a favorable outcome. The IPCE is an ordered categorical 

outcome variable with categories for (unfavorable, favorable, very favorable). The 

TOAST Investigators inexplicably and indefensibly excluded some randomized 

patients from the analysis they called “intent-to-treat”, but of course the correct 

intent-to-treat analysis would include all patients randomized. For now, we note 

that this set of patients can be classified by favorable outcomes at Day 7 as 

(291, 168, 176) in the placebo arm and (270, 161, 215) in the danaparoid group. 

The one-sided Smirnov p-values are 0.0379 (exact) and 0.1376 (approximate). 

Examples S6 and S7 both come from the study of Clark et al. (1999) 

comparing rt-PA to placebo for ischemic stroke. The primary endpoint was a 
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complete recovery, defined as an NIHSS score of 0 or 1, at Day 90. A second 

binary endpoint was clinical improvement, defined as either a complete recovery 

(inexplicably now defined as an NIHSS score of 0, in contrast to the earlier 

definition which included also an NIHSS score of 1) or a change from baseline of 

at least 11 points. If we ignore the inconsistency in how “complete recovery” is 

defined (first as an NIHSS score of 0 or 1, then as just 0), then clearly a complete 

recovery implies a clinical improvement, so the two endpoints are fusible, and we 

really have a single trichotomous endpoint, (no improvement, clinical 

improvement, complete recovery), where “no improvement” is short hand for 

either no improvement or improvement not reaching the threshold for clinical 

improvement. With this endpoint, the data appear to be (we cannot be sure, since 

only proportions, and not actual patient counts, were presented in the original 

report) (207, 19, 80) at Day 30 for the placebo arm and (181, 25, 101) at Day 30 

for the rt-PA arm. The one-sided Smirnov test yields p-values of 0.02094 (exact) 

and 0.09884 (approximate). At Day 90 the data were (187, 15, 104) in the placebo 

group and (169, 32, 106) in the rt-PA group, with corresponding one-sided p-

values of 0.0938 (exact) and 0.3242 (approximate). 

Example S8 comes from a study of St. John’s wort for major depression. 

Shelton et al. (2001) measured depression with two binary endpoints, specifically 

remission and response. Remission is defined as HAM-D ≤ 7 and CGI-I 1 or 2, 

whereas response is defined as HAM-D ≤ 12 and CGI-I 1 or 2. Clearly these two 

endpoints are fusible, because a remission implies a response, so the IPCE would 

be (no response, response without remission, remission), and the data were 

(83, 14, 5) in the placebo group (n = 102) and (72, 12, 14) in the St. John’s wort 

group (n = 98). The Smirnov p-values were 0.0766 (exact) and 0.4147 

(approximate). 

Example S9 comes from a study of combination therapy in adults with HIV. 

Staszewski et al. (2001) presented two binary outcomes, HIV RNA levels of 50 

copies per mL or less and HIV RNA levels of 400 copies per mL or less.  

Obviously, the former implies the latter, so we again have a trichotomous IPCE of 

fusible endpoints, copies (> 400, 50-400, < 50). What was called the intent-to-

treat population was certainly not that, as it excluded 35 of the 562 patients 

randomized. The true data set, as best as it can be reconstructed from the 

incomplete presentation published, is (149, 29, 104) in the abacavir arm and 

(144, 15, 121) in the indinavir arm, each in the presence of lamivudine and 

zidovudine (hence combination therapy). The Smirnov p-values were 0.1051 

(exact) and 0.3238 (approximate). 
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Several recurrent themes emerge from the examples in this section. First, 

and most obvious, notice that the exact Smirnov test always provides a lower p-

value than the approximate Smirnov test does, and notice also that in most cases, 

the approximate one is not even close. It seems reasonable, then, to suggest that 

the approximate Smirnov test never be used in practice, even if other 

approximations are accepted. 

Examples of the t-Test Failing 

The t-test is often used for continuous outcomes when the variance is not known. 

It is somewhat ironic that, while we are up front about not knowing the variance, 

we still wish to cling to this notion that we can somehow know that the data are 

normally distributed, despite Geary (1947) stating clearly that no data are 

normally distributed. Table 5 presents four examples in which the t-test gave 

results that differed markedly from corresponding exact results. 
 
 
 
Table 5. Data sets for which the t-test fails badly 

 

N References p-values* 

T1. Williams et al. (2000); Barber and Thompson (2000) 0.01, 0.79 

T2. Chaudhry et al. (2002); Jacobs (2003) 0.054, 0.004 

T3. Chaudhry et al. (2002); Jacobs (2003) 0.21, 0.016 

T4. Chaudhry et al. (2002); Jacobs (2003) 0.054, 0.006 
 

Note: Citations abbreviated for space; see Reference section below for full reference 

 
 

Example T1 bears some similarity to Example C6, in that one set of authors 

argued that an approximate test should be used after it was already established 

that an exact method was needed. In this case, the context was open access 

follow-up for inflammatory bowel disease, and its effect on costs. One particular 

endpoint was secondary care costs. Williams et al. (2000) correctly pointed out 

that: 

 

“Because data on use of resources tend to be highly skewed, routine 

parametric statistics are not appropriate. We therefore assessed 

significance by the Mann-Whitney U-test.” (p. 545) 
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Using this proper analysis, the between-group p-value for secondary care costs is 

presented in Table 4 of the original article as 0.01, based on a mean cost of 582 

(SD = 808) in the open access arm and 611 (SD = 475) in the routine care arm 

(the units are not provided in the table). Barber and Thompson (2000) argued that 

the means are most relevant, and: 

 

“[T]he most appropriate simple method for comparing mean costs is 

the ordinary t-test. By using the means and standard deviations in each 

group reported by the authors, we have calculated p-values from t-

tests ... one of the authors’ main conclusions – that open access follow-

up used fewer resources in secondary care – is not supported: The p-

value from the t-test is 0.79.” (p. 1730) 

 

Berger (2002) noted that there are two issues here, specifically the choice of 

test statistic (difference of means, difference of mean ranks, difference of Van der 

Waerden normal scores, or something entirely different) and the mode of 

generating a reference distribution. Differences in means can be accompanied by 

differences in shape and/or spread, so the t-test certainly is not always the most 

powerful test, even to detect the difference in means. But aside from this, even if 

we were to decide upon the difference of means as the test statistic, this certainly 

should not imply that we also use an approximation instead of an exact analysis.  

One can easily conduct an exact t-test, using the difference of means as the test 

statistic, and the permutation reference distribution to evaluate statistical 

significance. 

Examples T2-T4 all come from the same study. Specifically, Chaudhry, 

Schroter, Smith, and Morris (2002) used the approximate t-test for five measures 

of readers’ perceptions of papers with and without declarations of competing 

interests. These measures were interest, importance, relevance, validity, and 

believability, and the corresponding p-values for the five measures were 0.004, 

0.016, 0.006, 0.001, and < 0.001. Jacobs (2003) re-analyzed the data with exact 

methods, after pointing out the flaws in using approximate methods for the data at 

hand. Three of the p-values became non-significant, specifically interest 

(p = 0.054), importance (p = 0.21), and relevance (p = 0.054). Of course, 0.054 is 

close to 0.05, so one might be tempted to declare it close enough. This is bad 

policy, and bad statistics, and not to be confused with selecting an alpha level 

other than 0.05. While it is perfectly reasonable to select an alpha level other than 

0.05, maybe even 0.055, this selection needs to be made prior to viewing the data 

(and the p-value). Otherwise, one is left wondering just how broad this fuzzy 
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inclusion region actually is. Would 0.06 have been OK? What about 0.07? Where 

is the line drawn? In other words, what is alpha? And if alpha is not what we said 

it was up front, then we have a problem with the usage of alpha, and we are 

drawing the bull’s eye around where the dart happened to hit. 

Moreover, notice that the p-value for importance went from 0.016 to 0.21 

when the analysis went from approximate to exact. This, as well as some of the 

other examples in Table 1, may well surprise those who consider the choice of an 

exact or an approximate test to be a “fourth decimal problem” that hardly 

warrants the attention of today’s modern statistician. The StatXact manual states 

that “It is wise to never report an asymptotical p-value without first checking its 

accuracy against the corresponding exact or Monte Carlo p-value. One cannot 

easily predict a priori when the asymptotic p-value will be sufficiently accurate” 

(Cytel Software, 1995, p. 21). This is certainly excellent advice, but we can go a 

step further and ask why one would then discard the gold standard, the exact 

permutation p-value, once it is in hand, to use instead an approximation to it? 

Summary and Conclusions 

“Robustness procedures are generally considered to be statistical methods which 

are insensitive to small deviations from the underlying assumptions” (Prescott, 

1998, p. 3864), and often this vagueness regarding how insensitive and how small 

the deviations must be allows for excessive discretion in filling in the blanks. That 

is to say that many researchers operate as if this robustness is absolute, so that 

there is no sensitivity at all no matter the magnitude of the deviation or how it is 

quantified. In point of fact, there seems to be no reliable method for imputing an 

exact p-value based on only the combination of knowledge of the approximate p-

value and appeal to this alleged robustness. The fact that an exact p-value can fall 

anywhere on the unit interval even once we know the value of the approximate p-

value should serve as ample demonstration that any notion of robustness being 

absolute is an illusion. 

There might still be a value in computing approximate p-values anyway, if 

there were some added cost or difficulty involved in computing the exact p-value. 

In some applications this in fact is the case, but certainly not in all, and it is worth 

the effort to determine which case we are in. If an exact p-value can be computed 

relatively easily, with no prohibitive cost, then it is difficult to imagine any valid 

argument for not doing so. This remains the case even if one can put forth a 

compelling argument in favor of presenting an approximate p-value. For example, 

it may be the case that precedent favors the approximate p-value, which has 
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always been computed in the past. We want to see how the present data compare 

to past data sets, and those older ones were summarized, for example, with t-tests, 

and we do not have access to the complete data that would enable us to conduct 

exact analyses of those older data sets. In this case, it seems reasonable to 

compute the t-test on the new data set for the sake of comparing apples to apples 

and oranges to oranges, but this does not preclude the possibility of also 

computing an exact p-value in addition to the approximate one. Under no 

circumstances should we ever pretend to know the exact p-value without actually 

computing it. 
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When conducting a statistical test one of the initial risks that must be considered is a 
Type I error, also known as a false positive. The Type I error rate is set by nominal alpha, 
assuming all underlying conditions of the statistic are met. Experiment-wise Type I error 
inflation occurs when multiple tests are conducted overall for a single experiment. There 

is a growing trend in the social and behavioral sciences utilizing nested designs. A Monte 
Carlo study was conducted using a two-layer design. Five theoretical distributions and 
four real datasets taken from Micceri (1989) were used, each with five different sample 
sizes and conducted with nominal alpha set to 0.05 and 0.01. These were conducted both 
unconditionally and conditionally. All permutations were performed for 1,000,000 
repetitions. It was found that when conducted unconditionally, the experiment-wise Type 
I error rate increases from alpha = 0.05 to 0.10 and 0.01 increases to 0.02. Conditionally, 

it is extremely unlikely to ever find results for the factor, as it requires a statistically 
significant nest as a precursor, which leads to extremely reduced power. Hence, caution 
should be used when interpreting nested designs. 
 
Keywords: Experiment-wise Type I error inflation, nested testing, Monte Carlo 
simulation, hierarchical linear modeling, Bonferroni-Dunn 

 

Type I Error 

When conducting a statistical test one of the initial risks that must be considered 

is a Type I error, also known as a false positive. It occurs by “rejecting a null 

hypothesis when it is true” (Hinkle, Wiersma, & Jurs, 2003, p. 178). It is set by 

nominal alpha, assuming all underlying conditions of the statistic are met. For 

example, if nominal α = 0.05, then this indicates the threshold for what constitutes 

a rare event is set to a 5% probability of a false positive, or odds corresponding to 

less than or equal to 1 in 20. 

https://doi.org/10.22237/jmasm/1493596980
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The risk represented by the Type I error only applies if a single statistical 

test is conducted on the data set. If multiple analyses are conducted, the Type I 

error rate will increase above nominal alpha. This is known as experiment-wise 

Type I error inflation: the “Experimentwise error rate (αE) is the probability of 

making a Type I error rate for the set of all possible comparisons” (Hinkle et al., 

2003, p. 372). Statisticians have considered this problem since the second half of 

the 20th Century and have proposed a variety of solution strategies to handle 

Type I error inflation, particularly for statistical approaches that invoke multiple 

procedures. 

Type I error inflation can arise in many statistical procedures. In some 

circumstances, such as the one-way independent samples ANOVA layout, there is 

a storied history of the development of a priori and post-hoc corrections to the 

F test to ameliorate this problem. Unfortunately, the experiment-wise inflation 

problem does surface in certain seemingly innocuous layouts, and results are often 

presented without recognizing the need for adjustment. 

According to some viewpoints, there are also statistical layouts that permit a 

step-down analysis. An example is following a multivariate test (e.g., MANOVA 

or MANCOVA) with univariate tests. Consider a Hotellings’ T2 which 

conceptually is an extension of the test of difference in means in the Student’s t 

test to the multivariate case, which is the difference in group centroids. A question 

that frequently arises following a significant T2 is if one or the other dependent 

variable was the greater contributor. 

Suppose both a test of reading and mathematics achievement were given 

following an intervention, and the T2 test of differences in means between females 

and males was statistically significant. The step-down univariate test (i.e., 

Student’s t test) on reading by gender, and mathematics by gender, would then be 

conducted. The statistical literature is not settled on the appropriateness of this 

approach. The general consensus is if the multivariate test was conducted only to 

maximize power there is no reason why step-down tests shouldn’t be conducted 

(other than the inflation of Type I errors). However, if the T2 was conducted 

because of a multivariate hypothesis with intertwined dependent variables (e.g., 

self-esteem and self-worth), conducting step-down tests and the concern with 

experiment-wise Type I error inflation vanishes. 

There are, however, other layouts that according to all viewpoints require 

multiple statistical tests. The classical example of this is the one-way analysis of 

variance. The omnibus F test can be used to determine if there is a difference in 

means somewhere within the K ≥ 3 groups. Either a priori or post-hoc 

comparisons must be conducted in order to determine precisely where the 



EXPERIMENT-WISE TYPE I ERROR IN NESTED DESIGNS 

54 

difference(s) in means occurred. It is recognized that conducting multiple tests in 

this application increases the experiment-wise Type I error rate. 

Sequential (or Serial) Tests 

Sequential tests occur in separate phases. For example, there is the 

recommendation to test for underlying assumptions (e.g., homoscedasticity via 

Levine’s test and normality via Kolmogorov-Smirnov’s test), and only after 

failing to reject both proceeding to conduct a statistical test of effects (such as the 

t-test). This strategy was recommended in many statistical packages (e.g., 

Statistical Analysis Systems Institute, Inc., 1990, p. 25; Norušis, 1993, pp. 254-

255; Wilkinson, 1990, p. 487). However, Sawilowsky (2002) noted, “There is a 

serious problem with this approach that is universally overlooked. The sequential 

nature of testing for homogeneity of variance as a condition of conducting the 

independent samples t-test leads to an inflation of experiment-wise Type I errors” 

(p. 466). Sawilowsky (2002) conducted a Monte Carlo study that demonstrated 

the experiment-wise Type I error rate inflated to almost twice alpha. A possible 

solution to this is to avoid using a parametric test that requires testing for 

underlying assumptions when the data are not known to be normally distributed 

and homogeneous, and using a nonparametric alternative in its place. 

Parallel Tests 

Parallel tests occur when multiple tests are conducted at the same time. For 

example, in ANOVA, multiple main effects and interactions can all be of interest. 

There is debate whether to start with the main effects or interactions, and whether 

to stop or continue after finding significance (see, e.g., Sawilowsky, 2007a, ch. 

14). Regardless of the method chosen, all tests are conducted simultaneously. For 

example, with three main effects, the following seven combinations can be tested 

for significance: A × B × C, A × B, A × C, B × C, A, B, and C. 

There is a commonly held belief by researchers that ANOVA provides weak 

protection against the inflation of Type I error rates when conducting multiple 

tests. This is due to the researcher being genuinely interested in multiple 

hypotheses. It is believed that this interest adequately negates the effect of 

conducting repeated measures while utilizing the Frequentist approach. It is 

argued that ANOVA is in contrast to processes such as stepwise regression, in 

which the researcher does not have prior suspicion or even interest in the various 

hypotheses being tested. However, Kromrey and Dickenson (1995) stated: 
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In a two-factor ANOVA, three null hypotheses are tested (one for each 

main effect and one for the interaction effect), while in a three-factor 

analysis, seven null hypotheses are tested (three main effects, three 

first-order interactions, and one second-order interaction), and in a 

four-factor analysis, fifteen null hypotheses are tested. The effects of 

multiple testing… in factorial ANOVA has not been undertaken, 

despite the fact that the problem has been recognized for more than 30 

years. (pp. 51-52) 

 

They conducted a Monte Carlo simulation in which the number of factors (2-4), 

pattern of effects (null and/or non-null), effect size (small-large), and sample size 

(5, 10, and 20) were modeled. The simulation was conducted with 5,000 

repetitions per experimental condition. In order to safeguard against rival 

hypotheses affecting the results, the ANOVA F tests were conducted on data 

sampled from a theoretical normal distribution, thus ensuring internal validity. 

Conditioned on a significant omnibus F test, with the two-factor model, the 

experiment-wise Type I error rate for the null effects were 0.06. With the three-

factor model, it was as high as 0.16, and with four factors, it rose to 0.35 for the 

null effects. These results demonstrated that the issue of experiment-wise Type I 

error rate applies to the parallel scenario, even in the presence of a known 

significant non-null effect. In other words, the weak protection is ineffective in 

controlling experiment-wise Type I error rate inflation. 

Post-Hoc Tests: A Resolution to the Type I Error Inflation Problem 

Wilcox (1996) described the most extreme post hoc solution to experiment-wise 

Type I error inflation: 

 

The Bonferroni procedure, sometimes called Dunn’s Test, provides a 

simple method of performing two or more tests such that the 

experimentwise Type I error probability will not exceed α. If you want 

experimentwise Type I error probability to be at most α, you simply 

perform paired t-tests, each at the αb = α/C level of significance, where 

C is the total number of comparisons you plan to perform. (pp. 279-

280) 

 

The Bonferroni-Dunn procedure divides alpha by the number of tests to be 

conducted, to ensure that after all hypothesis tests are computed the total Type I 
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error rate does not exceed nominal alpha. This method is guaranteed to contain 

the Type I error rate, but it also guarantees loss of statistical power, because as α 

decreases, β increases; and as β increases, power decreases (Hinkle et al., 2003, p. 

300). All other multiple comparison procedures are a compromise between the 

Bonferroni and making no adjustments to control Type I error inflations. 

Nesting 

Hierarchical linear modeling (HLM), which is based on testing nested effects, is a 

popular statistical approach to school-based research. Kreft and De Leeuw (1998) 

stated, “Hierarchical data structures are very common in the social and behavioral 

sciences… Once you know that hierarchies exist, you see them everywhere” (p. 1).  

Kanji (1999) provided a definition of a nested or hierarchical classification as 

follows: 

 

In the case of a nested classification, the levels of factor B will be said 

to be nested with the levels of factor A if any level of B occurs with 

only a single level of A. This means that if A has p levels, then the q 

levels of B will be grouped into p mutually exclusive and exhaustive 

groups, such that the ith group of levels of A is qi, i.e. we consider the 

case where there are ii
q  levels of B. (p. 128) 

 

Winer (1971) explained, “Effects which are restricted to a single level of a 

factor are said to be nested within that factor” (p. 360). Winer emphasized the 

substantial limitation of nested designs in that they do not permit the testing of an 

interaction effect. 

As an example of a nested design, consider a teacher within school layout. 

Kanji (1999) decomposed the three components (A School factor, B Teacher 

factor, Residual) nested sums of squares as 
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Table 1. Nested design example data from Kanji (1999, p. 129) 

 

 
Schools 

 

I 

 

II 

 

III 

 

IV 

 
Teacher 

 
Teacher 

 
Teacher 

 
Teacher 

  1 2 3   1 2 3   1 2 3   1 2 3 

 
44 39 39 

 
51 48 44 

 
46 45 43 

 
42 45 39 

 
41 37 36 

 
49 43 43 

 
43 40 41 

 
39 40 38 

 
39 35 33 

 
45 42 42 

 
41 38 39 

 
38 37 35 

 
36 35 31 

 
44 40 39 

 
40 38 37 

 
36 37 35 

 
35 34 28 

 
40 37 37 

 
36 35 34 

 
34 32 35 

 
32 30 26 

 
40 34 36 

 
34 34 33 

 
31 32 29 

TT 227 210 193 
 

269 244 241 
 

240 230 227 
 

220 223 211 

X̅T 37.80 35.00 32.17 
 

44.83 40.67 40.16 
 

40.00 38.33 37.83 
 

36.67 37.17 35.17 

ST 630 
   

754 
   

679 
   

654 
  

X̅S 35       41.89       38.72       36.33     
 

Note: TT = Teacher total, ST = School total, X̅T = Teacher mean, X̅S = School mean, Grand mean School total = 2,735 
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Table 2. Kanji (1999, p. 130) ANOVA table 

 

 
df SS Mean Square F 

Schools 3 493.60 164.53 6.47 

Teachers within School 8 203.55 25.44 1.46 

Pupils within Teachers 60 1047.84 17.46 
 

Total 71 1744.99 
  

 
 

where S is the School, T is the Teacher, and E is the residual, where HA: αi = 0 for 

all i and HB: βij = 0 for all i, j. The data for the example are compiled in Table 1, 

and the traditional ANOVA table is presented in Table 2. 

Hierarchical Modeling 

Kreft and De Leeuw (1998) stated that hierarchical modeling tends to address 

research questions that lack independence and other experimental conditions, 

which makes it incompatible with ANCOVA (p. 5). Similarly, Kennedy and Bush 

(1985) noted “Interaction is not a meaningful consideration when one variable is 

nested within another” (p. 52). For an interaction effect to be measured, all factors 

in all levels would need to contain all factors of all other levels. However, nesting 

is advantageous in order to control for unique effects of a specific level of a nest 

on another level (e.g., schools on curriculum). 

There are also more sophisticated multi-level and longitudinal models based 

on these basic layouts (Heck, Thomas, & Tabata, 2010). However, there has been 

little discussion in the literature regarding the impact on the inflation of 

experiment-wise Type I error rates due to the hierarchical testing of treatment 

effects. For example, Kanji (1999) did not address the issue of conducting 

multiple F tests following the results obtained in Table 2 above. If each test is set 

at α = 0.05, then in reality there will be an approximate experiment-wise Type I 

error rate of 0.10. Similarly, Winer’s (1971) presentation of the different types of 

nested designs (2 Factors, Partial, and 3 or more Factors) was not accompanied by 

a discussion on the experiment-wise Type I error rate. 

Methodology 

Design 

A two-factor nested layout or hierarchical classification layout was used. This 

design assumed errors would be normally distributed, with the magnitudes of 
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those errors being independent from either of the two factors. Specifically, the 

hypothetical layout pertained to an analysis of difference of means between 

classes taught by different teachers, with teachers in turn being nested within 

different schools. In this layout, student test scores were simulated for three 

teachers (or classrooms) per each of four schools, as noted in the table below. 

Nested designs are almost always conducted through the use of multiple 

ANOVA tests. Others, such as the t test, are generally not found, because rarely 

are such studies conducted on two schools with two teachers per school (e.g., 

Kanji, 1999; Winer, 1971). Therefore, when a nested layout is found in the 

literature, generally the ANOVA test is required. 

Sampling Plan 

A pseudo-random number generator was used to simulate student test scores. The 

data were generated through Roguewave’s (2012) subroutine libraries for the 

theoretical distributions. Data were simulated to follow the Gaussian, uniform, 

exponential, t (df = 3), and Chi-squared (df = 2) distributions. Variates from the 

Gaussian (i.e., normal) distribution were used to demonstrate the veracity of the 

Fortran coding. Deviates from non-normal distributions are commonly used in 

Monte Carlo studies to illustrate robustness properties with respect to Type I 

errors for departure from population normality. 

Samples were also obtained from real data sets (Micceri, 1989) via the 

Realpops 2.0 subroutine library (Sawilowsky & Fahoome, 2003); Realpops 2.0 is 

a Fortran 90 updated version of the Fortran 77 subroutine library by Sawilowsky, 

Blair, and Micceri (1990). For details on the real data sets, see Micceri (1989) and 

Sawilowsky and Blair (1992). The real data sets to be sampled were the smooth 

symmetric (achievement scores), digit preference (achievement scores), multi-

modal lumpy (achievement scores), and extreme asymmetry (psychometric 

scores). 

Sample sizes were set to n = 2, 10, 30, 45, and 120. Samples of size n = 2 

and n = 120 were selected to represent the theoretical minimum and a reasonable 

maximum study parameter, as is customarily done in Monte Carlo studies. 

Samples of size n = 10, 30, and 45 were selected to represent small, medium and 

large classrooms, respectively. Under the truth of the null hypothesis (and 

homoscedasticity as modeled in this study), unbalanced layouts (i.e., unequal 

sample sizes per teacher or unequal teachers per school) have no impact on Type I 

errors and are therefore not modeled. One million repetitions were executed for 

each combination of study parameters. 
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Table 3. Expected Type I error rates for normal and selected non-normal data at α = 0.05 

and α = 0.01 
 

Distribution / Dataset Resulting alpha (0.05) Resulting alpha (0.01) 

Normal 0.050 0.010 

Exponential1 0.040 0.004 

Uniform1 0.051 0.010 

Digit preference2 0.050 0.012 

Extreme asymmetric2 0.047 0.009 

Multi-modal lumpy2 0.052 0.012 

Smooth symmetric2 0.050 0.010 
 

Note: 1Glass, Peckham, and Sanders (1972, p. 250); 2Sawilowsky and Blair (1992, pp. 356-358); these results 

are for different numbers of repetitions and are based generally on the balanced layout of samples sizes 
n1 = n2 = 20; increasing the number of repetitions and sample sizes will give Type I errors closer to nominal 

alpha 

Analysis 

The appropriate analysis for the nested design in Table 1 above is a series of two 

F tests. Initially, the F test was conducted to determine if there are teacher 

differences. Under ideal conditions, the intent is to fail to reject the null 

hypothesis. This is because it is assumed that the teachers have similar 

qualifications (e.g., certification, experience) in order to be named the instructor 

of record. 

The more important test was then conducted. This is an F test for effects, 

which in this case is for the difference in means between schools. When the null 

hypothesis was false, it meant the new curriculum administered in at least one 

school statistically significantly changed student scores. The F test should reject 

this null hypothesis. 

In the current study, the truth of the null hypothesis is based on the 

generation of pseudo-random numbers. There was an expected Type I error rate 

for each of the component tests. The experiment-wise Type I error rate will be 

determined by the sum of those two Type I error rates. 

This will be accomplished in two ways. The first is unconditional; meaning 

the test for effects (i.e., between schools) will be conducted regardless of the 

results of the test for nesting (i.e., between teachers). The second is conditional; 

meaning the test for effects will only be conducted if and only if a nesting effect is 

non-null. 

Differentiating between unconditional and conditional testing is advisable if 

the general purpose for conducting an intervention study is to determine if there is 

a difference between schools where students did or did not receive an intervention. 
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The impact of teacher differences should be negligible. In other words, the school 

effect should only be tested when it can be first shown there was no teacher effect. 

In order to increase generality of results, the F tests invoked in the Monte 

Carlo simulation were conducted at both the nominal α = 0.05 and 0.01 levels. 

Error Isolation 

The Monte Carlo simulation was conducted using parametric or normal 

theory tests. However, data were also drawn from non-normal distributions. 

Therefore, the issue arises as to where potential results are originating. If the Type 

I error rates do inflate, it is important to determine whether these results are due to 

experiment-wise Type I error inflation or if they are caused by violating the 

assumption of normality. Typical Type I error rates are listed in Table 3. 

Results 

Unconditional 

The test for the nest and the treatment effect are both conducted in this model of 

analysis. Although it does not matter which test is conducted first, for consistency, 

the test for the nest was conducted prior to the test of the effect. A series of tabled 

results are presented, arranged by distribution or dataset type. The entries inside 

each table represent the Type I error rate for the study conditions. 

As predicted by theory (Marascuilo & Serlin, 1988), the results in Tables 4 

and 5 demonstrate that conducting a series of two statistical tests unconditionally, 

regardless of the nature of those tests, produces an experiment-wise Type I error 

rate of approximately twice nominal alpha. Tables 4 and 5 contain a compilation 

of those results. 

In Tables 6 and 7, the Type I error rates are averaged as in the previous two 

tables, except the test for the factor (i.e., School) is conducted conditionally 

subsequent to a significant test of the nesting effect. In order to understand these 

results, consider Bradley’s (1968) definition for two levels of robustness. The 

conservative definition is met when the Type I error rate is within the bounded 

interval [0.5α, 1.5α] inclusive, and the liberal definition is met when the Type I 

error rate is within the bounded interval [0.9α, 1.1α] inclusive. The results for the 

factor (School) are ultra-conservative, falling far below 0.025 when the test is 

conducted at the 0.05 nominal alpha level, and below 0.005 when the test is 

conducted at the 0.01 nominal alpha level. In addition, the impact of being ultra 

conservative means the test for the factor (School) greatly lacks statistical power. 
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Table 4. Summary of average Type I error rates for various distributions/datasets, 

unconditional, α = 0.05 
 

Distribution/Dataset Nest (Teacher) Factor (School) Experiment-wise 

Normal 0.050039 0.050070 0.100109 

Chi-square (df=3) 0.050073 0.049391 0.099464 

Exponential 0.050012 0.049008 0.099019 

t (df=3) 0.045460 0.045810 0.091269 

Uniform 0.051215 0.050653 0.101868 

Digit preference 0.050246 0.050201 0.100446 

Extreme asymmetric 0.052485 0.050207 0.102693 

Multi-modal lumpy 0.052758 0.050786 0.103544 

Smooth symmetric 0.050241 0.050236 0.100477 

 
Table 5. Summary of average Type I error rates for various distributions/datasets, 

unconditional, α = 0.01 
 

Distribution/Dataset Nest (Teacher) Factor (School) Experiment-wise 

Normal 0.010042 0.010006 0.020048 

Chi-square (df=3) 0.010618 0.010236 0.020854 

Exponential 0.011089 0.010254 0.021343 

t (df=3) 0.008624 0.008728 0.017353 

Uniform 0.010595 0.010286 0.020881 

Digit preference 0.010117 0.010093 0.020210 

Extreme asymmetric 0.012795 0.011150 0.023944 

Multi-modal lumpy 0.011357 0.010315 0.021672 

Smooth symmetric 0.010106 0.010142 0.020247 

 
 
Table 6. Summary of average Type I error rates for various distributions/datasets, 

conditional, α = 0.05 
 

Distribution/Dataset Nest (Teacher) Factor (School) Experiment-wise 

Normal 0.050039 0.000357 0.050397 

Chi-square (df=3) 0.050073 0.000472 0.050545 

Exponential 0.050012 0.000489 0.050500 

t (df=3) 0.045460 0.000304 0.045763 

Uniform 0.051215 0.000563 0.051777 

Digit preference 0.050246 0.000425 0.050671 

Extreme asymmetric 0.052485 0.000770 0.053256 

Multi-modal lumpy 0.052758 0.000609 0.053367 

Smooth symmetric 0.050241 0.000411 0.050652 
 

Note: Values in italics are nonrobust according to Bradley’s (1968) liberal definition 
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Table 7. Summary of average Type I error rates for various distributions/datasets, 

conditional, α = 0.01 
 

Distribution/Dataset Nest (Teacher) Factor (School) Experiment-wise 

Normal 0.010042 0.000020 0.010062 

Chi-square (df=3) 0.010618 0.000014 0.010632 

Exponential 0.011089 0.000012 0.011101 

t (df=3) 0.008624 0.000000 0.008624 

Uniform 0.010595 0.000016 0.010612 

Digit preference 0.010117 0.000000 0.010117 

Extreme asymmetric 0.012795 0.000050 0.012845 

Multi-modal lumpy 0.011357 0.000000 0.011357 

Smooth symmetric 0.010106 0.000000 0.010106 
 

Note: Values in italics are nonrobust according to Bradley’s (1968) liberal definition 

Statistical Power Projections 

As previously noted, conducting the test of the factor (i.e., School) conditionally 

will create a lack of statistical power due to the ultra-conservative nature of being 

the second in sequence in a series of two tests. Although it is beyond the scope of 

the current study to conduct a full-scale power spectrum analysis, in an attempt to 

explain the impact on statistical power, a treatment alternative of shift in location 

parameter was introduced. 

The study parameters for this brief power study included setting nominal 

α = 0.05. Data were sampled from the Gaussian distribution, the sample size was 

set at n = 2, and both unconditional and conditional testing were conducted. The 

treatment was modeled by the addition of a constant equal to 0.5σ, where σ = 1 

when the referent distribution is normal, to create an effect size of Cohen’s 

d = 0.5. The magnitude of this effect size is considered moderate (Cohen, 1988). 

The treatment conditions were set in two studies as follows. For Study 1, an 

effect size of 0.5 was added to a single teacher per school. This created a 

difference among the twelve teachers, while leaving the schools equal. For Study 

2, all teachers in a single school were simulated to receive the treatment, creating 

a difference between both the teachers and the schools. Due to the layout of 

nested designs, in this case with teachers contained within the school where they 

work, it is impossible to simulate a change between schools only. The results are 

compiled in Table 8. 

As noted, with the given study parameters, the unconditional and 

conditional power for the test of the nest effect (Teacher) was 0.194. In the 

unconditional layout, the expected Type I error rate of approximately 0.05 was 
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obtained; however, in the conditional, the Type I error rate was ultra-conservative 

at 0.011. The loss in power becomes apparent in Study 2. Although the power was 

approximately the same for the treatment effect (0.121 and 0.114, respectively) 

for the conditional layout, the power obtained for the effect (school) was reduced 

to from 0.141 to 0.089, which is a severe loss in power of approximately 22%. 

Restating and expanding on Kreft and De Leeuw (1998): 

 

Hierarchical data structures are very common in the social and 

behavioral sciences… Once you know that hierarchies exist, you see 

them everywhere… Examples include students nested within schools, 

employees nested within firms, or repeated measurements nested 

within persons. (p. 1) 

 

Similarly, Gonzales (2009) indicated when the “factors are not crossed… we 

cannot use the machinery of the factorial analysis of variance” (p. 313). The 

proposed solution is to turn to nested designs, which are “now a major area of 

research in social science statistics” (p. 314). Gonzales concluded: “Multilevel 

modeling techniques permit simultaneous modeling of all the levels that are 

accounted for in the design” (p. 315). 

Unfortunately, the observations of Kreft and De Leeuw and Gonzales 

overlooked the impact of conducting statistical tests in a hierarchical model in 

general and in nested designs in particular. Gonzales (2009) attempted to forestall 

the impact of multiple testing with the rhetorical question, “Aren’t we capitalizing 

on chance by making so many comparisons?” (p. 336). The first answer given 

was to make nested designs analogous to factorial ANOVA where there appears 

to be no concern in the statistical literature over the inflation of Type I error in 

testing main effects and interactions. However, as noted by Kromrey and 

Dickenson (1995), and discussed at length earlier in this article, this provides no 

safe haven from experiment-wise Type I error inflation. 
 
 
Table 8. Statistical power projections, normal distribution, α = 0.05, n = 2 

 

     
Power 

 
Study Parameters 

 
Unconditional 

 
Conditional 

Recipeint a ES Teacher ES School 
 

Teacher School   Teacher School 

Teacher 0.05 0.5 0.0 
 

0.194 0.054 
 

0.194 0.011 

Teacher and School 0.05 S1 = 0.5 S2-4 = 0.0   0.121 0.114   0.121 0.089 

 

Note: ES = effect size in standard deviations, S1 = School 1, S2-4 = Schools 2, 3, and 4 
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The second argument advanced by Gonzales (2009) to preclude issues of 

multiple testing in nested designs was, “Replication is the best way to deal with 

concerns about multiple tests and inflated Type I error rates” (p. 337). However, 

Sawilowsky (2007b) demonstrated in a Monte Carlo experiment that “replicating 

the same poor design has little chance of contributing accurate evidence for or 

against the effectiveness of a treatment, or for quantifying the magnitude of its 

effectiveness if it exists” (pp. 221-222). 

The third argument advanced by Gonzales (2009) was to apply a correction 

such as the Bonferroni-Dunn technique (p. 285). This is precisely the solution 

strategy previously proposed by Kromrey and Dickenson (1995). However, such 

methods always result in a reduction of statistical power and should be used as a 

last resort. 

Indeed, despite offering these three solution strategies, Gonzales (2009) 

concluded that experiment-wise Type I error rate inflation was something that 

researchers need not take seriously. However, to his credit, Gonzales’ final word 

on this issue was “We admit that we are in the minority among methodologists on 

this particular point” (p. 285). 

Hence, the purpose of this study was to explicate the impact of simple 

nesting designs on experiment-wise Type I error rates via a Monte Carlo exercise. 

Study parameters included popular population distributions and vetted large 

datasets to generate samples using common sample sizes and alpha levels for the 

single nested layout of three teachers per school for four schools. The tests for the 

nest and effect were conducted unconditionally and conditionally. 

Conclusion 

Prior to drawing a conclusion in resolving the issue of the impact of nesting on 

the inflation of experiment-wise Type I error rates, it should be mentioned that 

there are potentially other statistical techniques that could have been incorporated, 

such as the nonparametric Kruskal-Wallis and the rank transform tests. Neither 

test is a solution for the inflation of experiment-wise Type I errors, but it is not 

known if either would help recover some of the lost power. However, because 

neither the Kruskal-Wallis nor the rank transform tests have been developed 

specifically for nested layouts, they were not incorporated in the study. 

As Kromrey and Dickenson (1995) showed, the testing of multiple effects in 

a layout can be safely carried out via invoking a Bonferroni-Dunn or similar 

technique. However, as it stands, the statistical power available to the testing of 

the treatment effect conditional on a significant nested effect is already severely 
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reduced due to the procedure being ultra-conservative. The use of Bonferroni-

Dunn or related methods will only further reduce statistical power. When the 

same issue arose in analyzing the Solomon four-group design (Sawilowsky & 

Markman, 1990a, b; Sawilowsky, Kelley, Blair, & Markman, 1994), a solution 

based on an asymmetric Bonferroni-Dunn (i.e., disproportionate allocation of 

nominal alpha to constituent tests) was proposed by Sawilowsky (1996). 

Nevertheless, Heck et al. (2010) noted more sophisticated nested designs 

“are rapidly growing in their popularity and use” (p. 320), which will only 

exacerbate the issues outlined in this study. Hence, researchers should heavily 

weigh the trade-offs of experiment-wise Type I error inflation for unconditional 

and statistical power loss for conditional nested designs before utilizing them. 
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The purpose of this study was to evaluate the sensitivity of selected fit index statistics in 
determining model fit in structural equation modeling (SEM). The results indicated a 
large dependency on correlation magnitude of the input correlation matrix, with mixed 
results when the correlation magnitudes were low and a primary indication of good 

model fit. This was due to the default SEM method of Maximum Likelihood that assumes 
unstandardized correlation values. However, this warning is not well-known, and is only 
obscurely mentioned in some textbooks. Many SEM computer software programs do not 
give appropriate error indications that the results are unsubstantiated when standardized 
correlation values are provided. 
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Introduction 

Wright (1918) presented the foundational theory of Structural Equation Modeling 

(SEM) for social and behavioral science research based on a path analysis used to 

model the bone size of rabbits. The novelty of the methodology was more 

generally accepted a half century later (Matsueda, 2011), coinciding with 

increasing use of computers, allowing for the more practical use of complicated 

matrix models. The development of more complicated analytical procedures was 

inevitable. Hoyle (1995) indicated, “with the increasing complexity and 

specificity of research questions in the social and behavioral sciences…has come 

increasing interest in SEM as a standard approach to testing research hypotheses” 

(p. 1). 

https://doi.org/10.22237/jmasm/1493597040
mailto:ak1734@wayne.edu
mailto:barry.markman@wayne.edu
mailto:professorshlomo@gmail.com


LIMITATIONS IN THE SYSTEMATIC ANALYSIS OF SEM FIT INDICES 

70 

SEM is a powerful set of tools that can be used to explore data for the 

purpose of improving the understanding of the social, psychological, educational 

constructs and their interactions. It allows for a more complete and 

comprehensive analysis compared to other research methodologies, because it 

allows freedom in the evaluation of several model construct relationships 

simultaneously (Alavifar, Karimimalayer, & Anuar, 2012). The promise of this 

advantage should not be underestimated. The ability to take many variables and 

analyze them together using one test without the necessity for Bonferonni or 

similar corrections allows for considerable flexibility. 

SEM models are developed by determining relationships between observed 

and/or latent variables to specify an initial model. The model is first analyzed to 

determine whether it is an appropriate approximation of the data construct. If the 

model is concluded to be an appropriate approximation, it is further analyzed to 

ascertain the magnitude and direction of relationships between the different 

variables. 

As SEM was developed, it was designed primarily for the use of analysis of 

social and behavioral science data. Hence, the boundary conditions for performing 

SEM and determining model fit are steeped in the conditions typical of social and 

behavioral sciences, which includes multivariate normality (Gullen, 2000; Kline, 

2011; Reinartz, Echambadi, & Chin, 2002; Tomarken & Waller, 2005). However, 

due to the capability of improving quality of life by analyzing data for complex 

research studies, SEM is increasingly being used in physical science research (e.g. 

Kelly, 2011; Ewing, Hamidi, Gallivan, Nelson, & Grace, 2014). 

Problem Statement 

The purpose of this study is to evaluate the sensitivity of selected fit index 

statistics in determining model fit. There are similarities between social and 

behavioral science and physical science data that make this transfer of 

methodologies apparently appropriate. Both data sets are parametric, can be 

assigned descriptive statistic values, can be formulated to provide frequency 

diagrams, and can be used with nonparametric tests. However, physical science 

data differ from the social behavioral science in several ways. In particular, 

physical science data typically have different distributions than that of social and 

behavioral science (e.g., Bradley, 1977, 1982; Ito, 1980; Micceri, 1989; 

Sawilowsky, Blair, & Micceri, 1990; Tan, 1982). Hence, the question arises: how 

well would SEM perform using non-normally distributed data commonly found in 

physical science data? However, an important preliminary step, the purpose of 
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this study, is to compare how various SEM fit indices work under standard normal 

conditions. 

Model Fit 

As the model is created, or specified, a foundational aspect of the SEM is to 

determine how well the model specified represents the data. It is imperative to 

specify the best model for the data to gain meaningful results. Model fit indices 

were developed to quantitatively and objectively assess the model fit. The matter 

of how to develop the fit statistics and which are the best to use has been a topic 

of great discussion. Kline (2011) indicated, “For at least 30 years the literature has 

carried an ongoing discussion about the best ways to test hypotheses and assess 

model fit” (p. 190). 

There are dozens of fit indices measuring fit in a variety of ways. The 

plethora of indices presents two advantages: (1) They are useful for determining 

the performance of the model. SEM that is an improper fit to the data would 

provide inaccurate or erroneous results. (2) The complexity of variable matrices 

and sheer volume of analysis required point to a necessity for numerous fit index 

models. As the process is rigorous and complicated, so too the fit indices are 

difficult to simplify. It is therefore not surprising that currently no single fit index 

encompasses all the different indices in one comprehensive test (Gullen, 2000). 

The complexity of analyzing the fit indices and the plethora of index tests 

from which to form a model fit assumption make it necessary to determine when 

models are truly a good fit to the data. Hooper, Coughlan, and Mullen (2008) 

indicated: 

 

Given the plethora of fit indices, it becomes a temptation to choose 

those fit indices that indicate the best fit…This should be avoided at all 

costs as it is essentially sweeping important information under the 

carpet. (p. 56) 

 

Model fit indices have a short but rabid history. Initially, Chi-squared tests 

were used; however, the test was proved ineffectual due to the large sample sizes 

that are required for SEM analysis (Gullen, 2000). The Chi-squared test can be 

comparatively grossly underpowered for tiny data sets and fail to reach statistical 

significance. It can also be comparatively super-powered for huge data sets, 

reaching statistical significance in the presence of negligible differences (see, e.g., 

Kline, 2011, p. 201). 
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Various alternatives were therefore developed to supplement the model fit 

analysis (Bollen, 1989). Fit indices are classified into two categories: (1) Model 

Test Statistic, and (2) Approximate Fit Index (Kline, 2011). 

Model Test Statistics and Chi-Squared 

In the model test statistic, data are compared with a baseline model which is a 

covariance matrix of a sample from the data. If the covariance matrix of the 

overall data matches the covariance matrix of the sample, the model is considered 

a good fit. If the matrices differ, the discrepancies using the model need to be 

explained (Kline, 2011). 

Model test statistics are typically developed as a “badness-of-fit” (Kline, 

2011, p. 193) test. This means that failure to reject the null hypothesis indicates a 

good fit. Therefore, it is preferable for the resultant model test statistic to be as 

small as possible. The basic model test statistic is the model Chi-squared test. 

This test was developed by Karl Pearson (1900) and has withstood the test of time. 

It is probably the most well-known and accepted fit statistic. Its value lies in that 

it is nonparametric. The formula is (Neave & Worthington, 1988): 
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Therefore, the Chi-squared statistic is a percentage of the squared deviation from 

the expected over the expected score. A large Chi-squared statistic indicates a 

large deviation from the expected distribution. Indication of poor model fit occurs 

when the Chi-squared statistic value is greater than the critical value based on the 

nominal alpha. 

Although the Chi-squared statistic in this context is apparently 

nonparametric, there are several factors that can adversely impact it such as large 

correlations among variables, unique variance, and large sample size (Kline, 

2011). When observed variables are highly correlated, the Chi-squared value 

tends to increase. Unique variances among variables, being a product of score 

unreliability, result in a loss of statistical power. As the Chi-squared test is a 

badness-of-fit test, the loss of power reduces the probability of determining a poor 

model fit. As indicated above, the Chi-squared value tends to increase with 

sample size. 



ROSE ET AL 

73 

Approximate Fit Indices 

The second type of fit statistic is the approximate fit index. The difference 

between approximate fit indices and model test statistics is that fit statistics are 

based on continuous measures. There is not a dichotomous conclusion to either 

reject or accept a null hypothesis. The value of the fit statistic, as it compares to 

an ideal value in magnitude, provides a representation of the fit. For example, the 

ideal value for CFI fit index is 1.0. A model resulting in a CFI of 0.90 would be a 

better fit than a model resulting in a CFI value of 0.85. As the null hypothesis is 

not rejected at a decided alpha value, the magnitude of the value has meaning. 

Therefore, these fit indices can be considered as “rules-of-thumb” as opposed to 

“golden rules” (Kline, 2011, p. 197). 

Approximate fit indices do not “distinguish between what may be sampling 

error and what may be real covariance evidence against the model” (Kline, 2011, 

p. 195). Thus, they do not provide information in regards to specification error. 

These tests are typically goodness-of-fit tests, which mean the ideal index statistic 

occurs at a value of a specified magnitude (e.g., 1.0 as opposed to zero). The most 

common of the approximate fit indices are RMSEA, SRMR and the CFI. 

Root Mean Square Error Approximation (RMSEA) 

The RMSEA is a parsimony-adjusted index. It is not a measure of central 

tendency but follows a non-central Chi-squared distribution. It has a high and a 

low value that are provided by most SEM software. The RMSEA is a badness-of-

fit test. Therefore, a good fit indicator occurs when the RMSEA low value is less 

than 0.05 and the high value is less than 0.10. (Kline, 2011).  

As a parsimony-adjusted index, the RMSEA adjusts for parsimonious 

characteristics. It is obtained by dividing by degrees of freedom of the SEM 

model (Kline, 2011): 
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where dfM = degrees of freedom of the SEM, N = sample size, and 
2

M  = Chi-

squared statistic value. 

A small Chi-squared value indicates a good model fit. A model with a large 

degree of freedom, or a parsimonious model, results in a small RMSEA value. In 

other words, parsimonious models that have small deviations would indicate a 
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good model fit per this index. The equation is further divided by the sample size. 

Therefore, the parsimonious effect of the equation increases as sample size 

increases. 

The limitations of RMSEA are obvious. It contains inherent prejudices 

towards models that have large sample sizes and large degrees of freedom. A 

model with a moderate-to-large variation from the expected values, but with a 

large sample size, could pass the RMSEA criteria for model fit. 

Standardized Root Mean Square Residual (SRMR) 

Although the name is similar to the RMSEA, the two indices are quite different 

(Iacobucci, 2009). The SRMR is a measure of the standardized value of the 

square root of the mean absolute covariance squared residual. A good fit value 

would be close to zero. Hu and Bentler (1999) opined a maximum allowable 

value for a good fit is approximately 0.09. 

The formula, as given by Iacobucci (2009) and Schermelleh-Engel, 

Moosbrugger, & Muller (2003), is 
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where k = observed endogenous variables + observed exogenous variables, sij, sii, 

and sjj = values from the covariance matrix, and ˆ
ij  = value from the expected 

matrix covariance. 

Comparative Fit Index (CFI) 

The CFI is an incremental fit index and a parsimony-adjusted index, where the 

data set is compared to the Chi-squared values of a baseline model. It performs 

well even with small sample sizes. It is a goodness-of-fit test where a value of 1 

indicates the best fit. The CFI was developed with the assumption that latent 

variables are not correlated (Hooper, Coughlan, & Mullen, 2008). Therefore, 

models with highly correlated latent variables can result in an inaccurate 

assessment of model fit. 
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The CFI is a function of the Chi-squared value and degrees of freedom of 

the model. The formula is (Kline, 2011): 
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where dfX = degrees of freedom of the SEM/Baseline models, 2

X  = Chi-squared 

statistic value for the SEM/Baseline models, M = SEM model, and B = baseline 

model. This equation results in higher values for models with larger degrees of 

freedom, resulting in a more favorable fit statistic. Hu and Bentler (1999) opined 

a minimum CFI of 0.95 is necessary to indicate an acceptable fit. 

Model Fit Indices Overview 

Although multivariate normality is a baseline assumption of the model fit indices 

(Kline, 2011; Schermelleh-Engel et al., 2003), the formulas for calculating the 

model fit statistics are apparently nonparametric. It would therefore be reasonable 

to assume that the model fit index equations could be used to assess model fit for 

any distribution. However, the robustness of the formulas have not yet been 

assessed, and the capability of the indices to measure model fit for physical 

science data is of great interest. 

Methodology 

Monte Carlo simulation theory requires that baseline theories be tested prior to 

performance of Monte Carlo simulations on the problem statement. Therefore, it 

is required to verify model fit indices when normality is not violated as a 

prerequisite to any study on models that violate underlying assumptions. 

Monte Carlo simulations using correlation matrices of randomly selected 

values of an incrementally increasing correlation range was conducted. The 

correlation matrices were of randomly selected values, of no model, and no 

relationship. Model fit indices should indicate a poor model fit for all simulations, 

meaning they should not exceed the Type-I error rate dictated by nominal α. 

Therefore, assessment of legitimacy of the model fit index results was based on 

the percentage of times the results indicated a poor model fit. 

At first a Monte Carlo was performed using RStudio based on four variables 

and 10,000 repetitions of varying correlation matrices of randomly selected 

numbers between negative and positive 0.1. The results from this simulation 
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series were mixed in terms of model fit, indicating meaningless results. It was 

therefore a matter of interest to determine the minimum allowable correlation 

values under which the model fit indices would provide legitimate and 

meaningful results. 

Monte Carlo simulations based on four variables and correlation matrices of 

randomly selected values of incrementally-increasing correlation ranges were 

performed. Each Monte Carlo simulation contained 1,000 repetitions and was 

performed for sample size of n = 50, 100, 150, 200, 300, and 500. The correlation 

range was a base value ± 0.015. Base values were incrementally increased at 

every hundredths place, beginning from 0.04, 0.05,…, 0.26, and 0.27. As such, 24 

Monte Carlo Simulations were performed for six different sample sizes. 

Results 

Minimum Correlation Coefficient for SEM 

The first Monte Carlo simulation included a correlation matrix of random values 

from a range of 0.04 ± 0.015. All model fit indices results included in the 

analyses (Chi-squared, RMSEA Lower, RMSEA Upper, SRMR, and CFI) were 

an indication of a poor model fit 0% of the time. Refer to Table 1 below. 

As the correlation matrix values were increased in magnitude, the results of 

the model fit indices became meaningless. The percentages of greater than and 

less than critical values did not result in percentage numbers that added to 100%. 

The fit index results ceased to be meaningless as the correlation magnitudes were 

continuously increased, and instead were an indication of a poor model fit with 

increasing reliability. At a certain correlation magnitude (e.g. when correlation 

was equal to 0.08 ± 0.015 as in Table 2), the results of the model fit indices were 

an indication of a poor model fit for the conditions studied for all Monte Carlo 

repetitions. A summary of these results (select simulations) is provided in Table 3. 

Each model fit index resulted in legitimate results at different correlation 

magnitudes. The best model fit index, which resulted in legitimate model fit 

estimation at the lowest correlation magnitude, was RMSEA Upper at a 

correlation of 0.08 for all sample sizes. The next best model fit index was CFI, 

with valid estimation of model fit at a minimum correlation value of 0.16. The 

next best model fit index was SRMR, with valid model fit estimation at a 

minimum correlation value of 0.17 for large sample sizes and 0.18 for sample size 

of 50. The next best model fit index following SRMR was Chi-squared, with valid 

model fit estimation at a minimum correlation value of 0.24. The model fit index 
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that performed the poorest was RMSEA Lower, with valid model fit estimation at 

a minimum correlation of 0.27. Refer to Table 4 below. 
 
Table 1. Monte Carlo simulation percentage of model fit indices (indication of poor model 

fit); correlation matrix magnitudes range of 0.04 ± 0.015 
 

 

Sample Size 

Model Fit Index 50 100 150 200 300 500 

Chi-squared 0% 0% 0% 0% 0% 0% 

RMSEA Lower 0% 0% 0% 0% 0% 0% 

RMSEA Upper 0% 0% 0% 0% 0% 0% 

SRMR 0% 0% 0% 0% 0% 0% 

CFI 0% 0% 0% 0% 0% 0% 

 
 
Table 2. Monte Carlo simulation percentage of model fit indices (indication of poor model 

fit); correlation matrix magnitudes range of 0.08 ± 0.015 
 

 

Sample Size 

Model Fit Index 50 100 150 200 300 500 

Chi-squared 0% 0% 0% 0% N/A N/A 

RMSEA Lower 0% 0% 0% 0% 0% 0% 

RMSEA Upper 100% 100% 100% 100% 100% 100% 

SRMR 0% 0% 0% 0% 0% 0% 

CFI 0% 0% N/A N/A N/A N/A 

 
 
Table 3. Monte Carlo simulation percentage of model fit indices (indication of poor model 

fit); correlation matrix magnitudes range ± 0.015 
 

  

Sample Size 

Model Fit Index Correlation 50 100 150 200 300 500 

Chi-squared 0.04 0% 0% 0% 0% 0% 0% 

RMSEA Lower 

 

0% 0% 0% 0% 0% 0% 

RMSEA Upper 

 

0% 0% 0% 0% 0% 0% 

SRMR 

 

0% 0% 0% 0% 0% 0% 

CFI 

 

0% 0% 0% 0% 0% 0% 

        Chi-squared 0.06 0% 0% 0% 0% 0% N/A 

RMSEA Lower 

 

0% 0% 0% 0% 0% 0% 

RMSEA Upper 

 

35% N/A N/A N/A N/A N/A 

SRMR 

 

0% 0% 0% 0% 0% 0% 

CFI 

 

0% 0% 0% N/A N/A N/A 

        Chi-squared 0.08 0% 0% 0% 0% N/A N/A 

RMSEA Lower 

 

0% 0% 0% 0% 0% 0% 

RMSEA Upper 

 

100% 100% 100% 100% 100% 100% 

SRMR 

 

0% 0% 0% 0% 0% 0% 

CFI 

 

0% 0% N/A N/A N/A N/A 
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Table 3, continued. 

 

  

Sample Size 

Model Fit Index Correlation 50 100 150 200 300 500 

Chi-squared 0.16 0% N/A N/A N/A N/A N/A 

RMSEA Lower 

 

0% 0% N/A N/A N/A N/A 

SRMR 

 

54% N/A N/A N/A N/A N/A 

CFI 

 

100% 100% 100% 100% 100% 100% 

        Chi-squared 0.18 0% N/A N/A N/A N/A N/A 

RMSEA Lower 

 

0% N/A N/A N/A N/A N/A 

SRMR 

 

100% 100% 100% 100% 100% 100% 

        Chi-squared 0.24 100% 100% 100% 100% 100% 100% 

RMSEA Lower 

 

0% N/A N/A N/A N/A N/A 

        Chi-squared 0.27 100% 100% 100% 100% 100% 100% 

RMSEA Lower 

 

100% 100% 100% 100% 100% 100% 

RMSEA Upper 

 

100% 100% 100% 100% 100% 100% 

SRMR 

 

100% 100% 100% 100% 100% 100% 

CFI   100% 100% 100% 100% 100% 100% 

 
 
Table 4. Minimum correlation values for valid model fit index measurement 

 

 

Sample Size 

Model Fit Index 50 100 150 200 300 500 

Chi-squared 0.24 0.24 0.24 0.24 0.24 0.24 

RMSEA Lower 0.27 0.27 0.27 0.27 0.27 0.27 

RMSEA Upper 0.08 0.08 0.08 0.08 0.08 0.08 

SRMR 0.18 0.17 0.17 0.17 0.17 0.17 

CFI 0.16 0.16 0.16 0.16 0.16 0.16 

Conclusion 

Originally, a Monte Carlo simulation with randomly selected correlation values 

between - 0.1 and + 0.1 was performed. The results were meaningless, with mixed 

results in terms of fit. The output of the latest repetition of the Monte Carlo 

simulation was extracted and compared with the output from Amos Graphics to 

ensure that a programming error did not occur. The results were the same within 

rounding error. 

Fit index results should be consistent regardless of whether or not a 

meaningful model is produced. Examination of the model fit results should 

indicate a good or a poor model fit when a reasonable model is assessed. However, 

examination of the results should never indicate a good model fit on a poorly-

defined model. In this case, the correlation values between variables were small 

and the paths were not significant. Therefore the model, having no relationships, 
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should result in an indication of poor model fit when assessed using model fit 

index tests. This indication of poor model fit should occur uniformly for all model 

fit index tests and for all sample sizes, or at least within the Type I error rate set 

by nominal alpha. 

These findings were discussed with colleagues. One believed that, with 

caution (presumably ignoring fit results in the absence of a good model), there 

were some insights that could be garnered based on the results. This viewpoint 

was amplified by another colleague, who replicated the results via Mplus, and 

hence urged extreme caution, because of SEMs ability to produce a well-fitted 

model that is nevertheless bereft of significant covariances. 

As a beginning to approaching the model fit assessment with caution, 

additional research was conducted to determine what SEM conditions caused the 

model fit index results to be meaningless. The Monte Carlo simulation models 

were assessed to discover common characteristics. A consistent attribute was the 

low correlation values between the variables. It appeared when the correlation 

values between variables were low, the results of the model fit indices were 

meaningless. Additional research was therefore conducted to determine what 

constituted a low correlation, and whether there was a minimum allowable 

correlation value between variables that is a prerequisite for a SEM to be 

meaningful. 

Additional Monte Carlo simulations were conducted, with 1,000 repetitions 

and varying magnitudes of correlation matrices. The magnitudes of the correlation 

values were randomly selected from a base value ± 0.015. Twenty-four Monte 

Carlo simulations were performed, with the base value increasing from 0.04 to 

0.27 at every hundredths place value (i.e. 0.04, 0.05 ,0.06, etc.). The model fit 

indices would be legitimized by the percentage of times a poor model fit was 

indicated, as the variables had no relationship and correlation values were 

randomly selected. 

As the correlation matrix values were increased in magnitude, the results of 

the model fit indices became first illogical and then finally logical with an 

indication of a poor model fit occurring with increasing reliability. At a certain 

correlation magnitude range (e.g. when correlation was equal to 0.08 ± 0.015 as 

in Table 2), the results of the model fit indices were an indication of a poor model 

fit for all sample sizes studied for all Monte Carlo repetitions. 
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Table 5. Minimum correlation values 

 

Rank Model Fit Index Minimum Correlation Value 

1 RMSEA Upper 0.08 

2 CFI 0.16 

3 SRMR 0.18 

4 Chi-squared 0.24 

5 RMSEA Lower 0.27 

 
 
Table 6. Correlation matrix 
 

Variables z X1 X2 X3 

z 1.000 0.104 0.098 0.115 

X1 0.104 1.000 0.100 0.088 

X2 0.098 0.100 1.000 0.109 

X3 0.115 0.088 0.109 1.000 

 
 

Each model fit index resulted in legitimate results at different correlation 

magnitudes; refer to Table 3 above. Model fit indices can be ranked from best to 

worst based on the minimum correlation values required before legitimate results 

were acquired. The model fit indices, from best to worst, are listed in Table 5 

above with their respective minimum correlation values and ranks. 

The results from the last repetition of the Monte Carlo simulation with 

correlation range of 0.1 ± 0.015 and sample size of 500 were extracted (refer to 

Table 6 above and the Lavaan output below) to better understand the results of the 

Monte Carlo simulations and to verify the conclusions determined above. The 

results of the model fit index tests were mixed. The p-value for the Chi-squared 

test was 0.003, an indication of a poor model fit. The RMSEA Upper value was 

0.133, an indication of a poor model fit. The RMSEA Lower value was 0.044, an 

indication of a good model fit. The CFI value was 0.505, an indication of a poor 

model fit. The SRMR value was 0.055, an indication of a good model fit. 

The regression coefficients for the exogenous variables were 0.088 for X1, 

0.079 for X2, and 0.098 for X3. Although these values were low, the coefficients 

for X1 and X3 were statistically significant. This is illogical, as the correlation 

magnitudes in the correlation matrix were all low. Statistically significant paths 

between variables are therefore a contradictory conclusion. These results 

solidified the conclusion above that a SEM with a correlation matrix of low 

values would result in illogical outcomes. 
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Lavaan Output for Sample Size of 500 and Four Variables, 

Repetitions = 1,000 

Number of observations  500 

Estimator    ML 

Minimum Function Test Statistic 14.059 

Degrees of freedom   3 

P-value (Chi-square)  0.003 
 

User model versus baseline model: 

 Comparative Fit Index (CFI) 0.505 

 Tucker-Lewis Index (TLI)  0.010 

 Number of free parameters  7 

 RMSEA     0.086 

rmsea.ci.lower   0.044 

rmsea.ci.upper   0.133 

 90 Percent Confidence Interval 0.044 0.133 

 P-value RMSEA <= 0.05  0.075 

 SRMR     0.055 
 

Parameter estimates: 

 Information  Expected 

 Standard Errors Standard 
 

Regressions: 

z ~ Estimate Std.err Z-value P(>|z|) 

x1 0.088  0.044  1.990  0.047 

x2 0.079  0.044  1.786  0.074 

x3 0.098  0.044  2.232  0.026 
 

Covariances: 

 x1 ~~x2 0.000 

 x3  0.000 

 x2 ~~x3  0.000 
 

Variances: 

 z 0.970 0.061 

 x1 0.998 0.063 

 x2 0.998 0.063 

 x3 0.998 0.063 
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SEM is a collection of procedures that are assessed based on a plethora of fit 

or lack of fit statistics that could be subjectively chosen or ignored to support or 

eliminate a model. Dozens of caveats (such as those listed in Kline, 2011, e.g., at 

its core it relates to non-experimental data and hence there can never be causation 

(p. 8), a poor model can be preserved by modifying the hypotheses on which it is 

based (p. 8), alternative models may not be ruled out (p. 8), it is a large sample 

technique (p. 11), it eschews hypothesis testing and hence is veiled behind 

subjectivity (p. 13), the statistical significance of estimated parameters are 

dependent on the algorithm adopted (p. 13), a maximum likelihood estimate 

cannot tolerate even a single missing datum (p. 48), a nonpositive definite matrix 

cannot be analyzed (p. 49), ill-scaled covariance matrices cannot be handled (p. 

67)) severely limit SEM outside of textbook examples. 

Moreover, Kline (2011) noted, 

 

It may be problematic to submit for analysis just a correlation matrix 

without standard deviations or specify that all standard deviations are 

1.0, which standardizes everything. This is because the default method 

of ML estimation (and most other methods, too) assumes that the 

variables are unstandardized. This means that if a correlation matrix 

without standard deviations is analyzed, the results may not be 

correct…Some SEM computer programs give warning message or 

terminate the run if the researcher requests the analysis of a correlation 

matrix only with standard ML estimation. By the same token, it would 

also be problematic to convert raw scores to z scores and then submit 

for analysis the data file of standardized scores. (p. 49) 

 

These cautions from Kline (2011) appear to explain why a systematic Monte 

Carlo study conducted by inputting an incrementally increasing correlation 

matrices, such as was attempted in this study, cannot be successful. The standard 

procedure of starting the study with a null zero order correlation matrix to show 

the relevant fit indices reject, or fail to reject as appropriate to the index, is not 

possible, precluding a presentation of the power spectrum of the competitors 

based on systematically increasing (or decreasing based on the type of fit index) 

the matrix. The restrictions indicated by Kline (2011) were mentioned in an 

obscure section of the textbook, and were omitted by most other textbook authors. 

Thus, this limitation and the egregious results from the non-compliance are not 

well-publicized. 
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It appears it is necessary to start with a good model in order for the model fit 

indices to provide a proper assessment. This is circuitous, for how can a good 

model be assessed if the baseline condition for meaningful results is a good 

model? Analysts must consider this paradox, and decide if SEM outside of 

textbook examples is truly meaningful. 
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Introduction 

The development and evaluation of methods for data analysis are often facilitated 

through simulation studies, particularly when closed-form solutions are unknown 

(Burton, Altman, Royston, & Holder, 2006). Simulation studies can be especially 

useful for assessing the behavior of analytic techniques under various conditions 

that present complexities in practice. For example, Collins, Schafer, and Kam 

(2001) described the bias that resulted from multiple imputation methods that 

utilized varying degrees of auxiliary data by simulating data under conditions that 

varied the percentage missing, the reasons for missingness, and the strength and 

availability of auxiliary information. Desai, Bryson, and Robinson (2013) 

performed a simulation study to evaluate properties of robustly-estimated 

standard errors in the presence of clustering when clustering membership is mis-

specified. In research to evaluate and develop methods for handling missing data, 

https://doi.org/10.22237/jmasm/1493597100
mailto:mmrath@stanford.edu


MONTEZ-RATH ET AL 

87 

simulating studies with right-censored outcomes as functions of time-varying 

covariates is critical. There is particular interest in simulating studies with 

characteristics, including correlation structures over time and across features, that 

closely resemble a complicated motivating data set. 

A large body of research has been devoted to generating right-censored 

survival times from time-invariant covariates. For example, Leemis, Shih, and 

Reynertson (1990) demonstrated that survival times that followed a Cox 

proportional hazards model could be generated by inverting the cumulative hazard 

function. Independently, Bender, Augustin, and Blettner (2005) offered details on 

simulating survival times from such a model where the hazard function was 

assumed to follow exponential, Weibull or Gompertz distributions. 

However, generating right-censored outcomes as functions of time-varying 

covariates is more complicated; a subject’s outcome corresponds to multiple 

values of a covariate over time where the number of values for the covariate may 

vary across subjects. Using the approach described by Bender et al. (2005) for this 

purpose is challenging as it would require inversion of the 

expression -H0(t)exp(β'x(t)) which includes the cumulative hazard function. 

Sylvestre and Abrahamowicz (2008) argue that such inversion cannot be easily 

done since it is only possible if the baseline hazard can be represented by a 

parametric function. A possible solution is to express changes over time in the 

covariate, x(t), as a parametric function that is well-defined over the range of time 

studied. To that end, Austin (2012) extended the work of Bender et al. (2005) 

although the extension is limited in that it can only accommodate one time-

varying covariate. 

Alternatively, Sylvestre and Abrahamowicz (2008) evaluated extending an 

algorithm first introduced by Abrahamowicz, MacKenzie, and Esdaile (1996) for 

time-invariant covariates; this algorithm did not require inverting the cumulative 

hazard function. Instead, the algorithm matches, one-to-one, survival times and 

covariates that have been generated independently, based on a probability law 

derived from the partial likelihood of the Cox proportional hazards model. This 

method allows for any number of time-invariant as well as time-varying 

covariates without a need to specify a functional form for how they vary over time, 

but the proposed process of generating the survival times has no closed-form 

solution. Time-dependent effects, i.e., effects that would vary depending on the 

time interval, can be introduced directly in the vector of survival times provided 

to the algorithm but generating those survival times is challenging. Similarly, 

Crowther and Lambert (2013) proposed a method that relies on numerical 

integration and allows explicit modeling of the baseline and estimation of the 
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absolute hazard but it can be computationally expensive if the number of 

covariates is large. 

Independently, Zhou (2001) showed that right-censored outcomes can be 

generated by transforming a random variable that follows a piecewise exponential 

distribution, where the hazard is assumed to be constant within a time interval but 

can vary across time intervals that are defined by changes in the covariate. A 

closed-form solution for generating the data was also provided. Hendry (2014) 

developed a general algorithm (with code in R) that implements Zhou’s method to 

generate right-censored survival times under the Cox model with any number of 

both time-invariant and time-varying covariates that vary at integer-valued steps 

of the time scale. 

This study focuses on Zhou’s method for three important reasons. The first 

is that it is supported by readily accessible software developed by Hendry (2014), 

providing easy access to a wide audience of potential users. The second is that it 

can accommodate any number of time-invariant and/or time-varying covariates. 

Finally, although not highlighted in our study here, Zhou’s method provides the 

additional flexibility of enabling relaxation of the proportionality assumption by 

allowing the effects to vary between time-intervals (time-dependent effects). Note 

that the latter is not a feature shared by other methods. 

There are multiple user-supplied parameters involved in applying Hendry’s 

implementation of Zhou’s method, but properties of the distribution of the 

outcome may be sensitive to their specification. The primary purpose of this paper 

is to evaluate these sensitivities and provide guidelines on the use of the Hendry 

algorithm. To that end, based on an extensive simulation study, we suggest a 

flexible form for the baseline hazard and characterize the sensitivity of the method 

to other user inputs under a variety of conditions. Specifically, sensitivities of the 

algorithm to the censoring distribution are addressed, the shape of the hazard, the 

degree of correlation between covariates, and the type of covariates. The 

performance of the algorithm is evaluated through standardized bias and mean 

squared error of the fitted coefficients and use these statistics to inform guidelines 

on use of the algorithm. 

Cox Regression Models with Time-Varying Covariates via 
the Piecewise-Exponential Distribution 

Zhou (2001) showed that if Yj, j = 1,…, J are random variables that follow a 

piecewise exponential distribution, where J indicates the number of intervals, and 

g(.) is a monotone increasing function such that g(0) = 0 and g-1(t) is 
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differentiable, then g(Yj) follows a Cox model with a time-varying covariate and a 

baseline hazard h0(t) = d/dt[g-1(t)]. To incorporate covariates, one can specify the 

piecewise exponential variables with varying rates γj such that they depend on any 

number of time-invariant and/or time-varying covariates Zj = Zj1,…, ZjP and 

regression parameters β = β1,…, βP where γj = exp(βZ'j). In this form, effect sizes 

can easily be introduced as the components of the rates for the piecewise 

exponential variates where the hazard of g(Yj) is defined by h0(t)exp(βZ'j). Time-

dependent effects can be introduced by allowing the effects to vary between time 

intervals (βj = βj1,…, βjP) and so γj = exp(βjZ'j). 

Hendry (2014) demonstrated that piecewise exponential random variables 

with support [a, b] such that 0 < a < b (truncated piecewise exponential random 

variables), can be generated through an accept-reject algorithm where realizations 

outside of the support are discarded and those within are included. A full proof for 

how one can generate survival times that follow a Cox model with time-

dependent covariates using a truncated piecewise exponential distribution can be 

found in Hendry (2014). Key parameters of the algorithm that need to be defined 

are: the bounds of truncation (a, b), the parameters corresponding to the piecewise 

exponential random variables or rates γj, the transformation function g, and the 

censoring mechanism. 

The bounds of truncation relate to the limits of observed survival times, 

which can be informed by an empirical data set. For example, a lower bound a > 0 

can correspond to a lower bound on subject eligibility (e.g., it may be that only 

subjects who are considered “active” users of a health system – i.e., who exceed a 

minimum duration of observation – are eligible for study). Note this form of 

truncation is not to be confused with left truncated time-to-event data, where the 

latter would constrain observational times to begin at the lower bound. In contrast, 

here observational times begin at zero but are only included if they exceed the 

lower bound. The upper bound corresponds to the maximum allowable time 

observed for an individual. The larger the upper bound, the larger the number of 

records per individual. This has implications not only for the time needed to 

generate the data, but also for the run time of any application of the simulated data.  

The g function has an important role. It is defined such that g-1(t) = H0(t), the 

cumulative baseline hazard of some known function. It should be specified to best 

represent the disease or process of interest. Options described by Hendry are 

mostly power functions and tend to lead to large hazards such that events occur 

soon after the start of observation. Hendry suggests exploring a variety of 

functional forms to appropriately capture the process studied but does not offer 

much guidance on parameter choice. 
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It is recommended the g function be defined through the use of a Weibull 

distribution so that the variates generated in the process have a baseline hazard of 

a Weibull random variable. This distribution is a flexible choice defined by two 

parameters: 1) shape, ν, which determines whether the hazard is increasing over 

time (ν > 1), constant (ν = 1), or decreasing (ν < 1); and 2) scale, λ, which shifts 

the hazard distribution right or left, depending on the overall survival time. The 

Weibull distribution has a hazard function defined by h0(t) = λνtν – 1 and the 

cumulative hazard equal to H0(t) = λtν. By fixing ν, one can generate outcomes 

with a pre-determined median survival time informed by the empirical data 

(which we will call the target median). 

Assume g-1(t) to be the cumulative baseline hazard from the Weibull 

distribution with shape parameter ν and scale parameter λ. The estimated median 

survival time,  ˆ 50t , for an individual whose vector of explanatory variables is 

Z = (Z1,…, Zp) with estimated effects  1
ˆ ˆ ˆ, , p β , is defined by 
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(Collett, 2003, p. 177). This formula can be used to compute a value for λ, given ν 

and a target median. This is done for a hypothetical individual whose covariate 

values are at the mean  1 1
ˆ ˆ ˆ

p pZ Z    βZ . 

There are a variety of options that the user can consider for incorporating 

censoring into the data generation process. Often studies impose administrative 

censoring where subjects are no longer observed beyond the study end date. This 

is fairly straightforward to define once times to the event have been generated. 

However, censoring may arise for other reasons, like when subjects drop out of or 

withdraw from a study and are lost to follow-up. 

There are two main ways to implement this type of censoring. One is 

referred to as traditional censoring, in which both a survival time and a censoring 

time are generated and then the minimum value of the two is chosen as the time 

the subject was observed. If the minimum value was the survival time, an 

indicator for whether the subject was observed to have the event will equal 1. 

Otherwise, if the subject’s time was censored, the indicator will equal 0. Hendry’s 

algorithm can also be used to impose traditional censoring. To obtain the intended 

percent of observations being censored, though, additional parameters need to be 

specified and refined by iteration. The second alternative, referred to as random 
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censoring, is easier to implement and computationally more efficient. In this 

approach, each patient’s observation is simply censored at random with a 

probability determined by the percentage of censored observations desired. An 

indicator for whether the time was censored follows a Bernoulli distribution with 

a pre-specified probability. For more on incorporating censoring into simulations, 

see Crowther and Lambert (2013), Burton et al. (2006), and Bakoyannis and 

Touloumi (2012). 

Consider the impact of these parameters on generating data that closely 

mimic a motivating data set. Specifically, the investigation in this study is on the 

impact of the parameters for the Weibull distribution, censoring mechanism, 

correlation among variables, and variable type on properties of estimates obtained 

from fitting an extended Cox model to data generated using this approach, as well 

as a generated survival time distributions and variation in computation time. 

Methodology 

Design of Simulation Study 

The parameters of the simulation study follow a full factorial design of the 

following parameters: 

 

Bounds of truncation (a-b): (20-300), (20-150), (20-50) 

Covariate combinations: 2 Normal, Z1 ~ N(50, 102) and Z2 ~ N(30, 52); 1 

Normal + 1 Binary, Z1 ~ N(50, 102) and Z2 ~ Bern(0.5) 

Weibull shape parameter (ν): 2, 1, 0.5 

Target median: 35; 75; 150 

Censoring distribution: None; Random; Traditional; Administrative 

Percent censored patients (if censoring applied): 20%; 50%; 80% 

 

Data were generated using all possible combinations of the parameters listed with 

the exception of the percent of patients censored, which is relevant only when an 

actual censoring distribution is being applied. Details on the choice of parameters 

are described here. 

Data Generated 

Using Hendry’s algorithm, survival times were generated to fall within 2 bounds 

of truncation defining the range of possible survival times. The lower bound, a, 

was fixed at 20 and the upper bound, b, was allowed to vary (50, 150, and 300). 
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Survival times depended on two independent time-varying covariates (Z1, Z2) in 

two possible combinations: one in which both covariates are normally distributed 

random variables and a second in which one covariate is normally distributed and 

the other is a Bernoulli random variable. Specifically, Z1 is always assumed to be 

N(50, 102) and Z2 could either be N(30, 52) or Bernoulli(0.5). 

The transformation function g was specified to be derived from a Weibull 

distribution with shape parameter corresponding to an increasing (ν = 2), constant 

(ν = 1), or decreasing (ν = 0.5) hazard. The scale parameter is computed after 

providing the shape parameter and the target median survival time, which vary 

(35, 75, and 150). Note that some target medians fell outside the bounds, 

demonstrating the impact of parameter choice. For a given shape parameter (ν), 

target median (M), and vector of regression parameters β = (β1, β2), the scale 

parameter λ and the g function are defined as follows: 

 

      
1

1 1log 2
, g , and gM t t t t       

βZ
  

 

where  1 2,Z ZZ  is the vector of means of the covariates. Under the scenario 

where Z1 ~ N(50, 102) and Z2 ~ N(30, 52) then 
1 250 30   βZ . However, if 

Z2 ~ Bernoulli(0.5), then  1 250 0.5   βZ . 

The algorithm computes survival times within the defined limits, which 

might be considered the “true” event times and may or may not be observed 

depending on the censoring method applied. For administrative and traditional 

censoring, these are the uncensored times. We then imposed 3 types of censoring 

(administrative, traditional, and random) with various percentages of patients 

being censored (20%, 50%, or 80%). In administrative censoring, patients are 

observed until a fixed time (end of study). In traditional censoring, censoring 

times were generated in parallel with the uncensored survival times using an 

independent implementation of the Hendry algorithm. The parameters of the 

censoring distribution are chosen by iteration to yield the correct amount of 

censored observations and are different than the parameters used in the creation of 

the uncensored times, thus reflecting non-informative censoring. The final 

observed time is defined as the minimum of the two survival times. The event 

indicator is set to 0 if the censoring time is smaller than the uncensored time. In 

random censoring, each subject has a probability pc, set to 0.2, 0.5, or 0.8 

(depending on the percentage of censoring desired), of being censored at the end 
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of the subject’s generated survival time. Event indicators were thus distributed as 

Bernoulli random variables with p = 1 – pc. 

The influence of the correlation between the covariates on properties of 

estimates obtained from fitting the Cox model is examined. The covariates, as 

defined above, were allowed to be correlated, with correlations ranging from -0.8 

to 0.8, using the mvrnorm function in R when generating two Normal random 

variables and the binnor package in R when generating one Normal and one 

Bernoulli variable (Demirtas & Doganay, 2012). In this scenario, survival times 

were set to be bounded between 20 and 300, the shape parameter, ν, was fixed at 

2, and the target median was fixed at 150. 

Number of Replications 

For each scenario or combination of the simulation parameters, we drew 1000 

simulated data sets (replicates) each with 1000 individuals with varying number 

of observations per individual depending on the scenario being simulated and the 

data generated. 

Parameters to Be Estimated 

We fit the true model (an extended Cox model) to the data generated and obtained 

estimates for the regression coefficients corresponding to the two covariates. 

Parameters were set to β1 = 0.02 and β2 = 0.04 when covariates were two Normal 

variables and β1 = 0.02 and β2 = -0.5 when covariates were one Normal and one 

Bernoulli. 

Evaluation Criteria 

The performance of the algorithm was assessed by three statistics, which were 

computed for each parameter estimate  1 2
ˆ ˆ,  : the standardized bias (difference 

between the average estimate and the true value as a percentage of the estimate’s 

empirical standard error), the mean squared error (MSE, squared difference 

between the true and estimated parameter averaged over the number of 

simulations), and the coverage percentage (percentage of time the 95% 

confidence interval contains the true parameter). As suggested by Collins et al. 

(2001), standardized bias larger than 40% (in absolute value) is considered to 

indicate poor performance. Although nominal coverage percentage is 95%, 

Collins and others defined acceptable coverage as 90% or higher. In order to 
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assess how close the distribution of the generated survival times is to the 

distribution of times in the empirical data  

 
 
Figure 1. Standardized bias in fitted coefficients when survival times are generated with 

target median of 35, random censoring, and using mixed covariates 

 

 

set, we graphically assess the median survival times generated. Finally, we 

compare algorithm run times across different combinations of simulation 

parameters. 

Results 

Impact of Limits on the Survival Times Generated 

Data generated under the most restrictive bound (20-50) with a median goal equal 

to 35, independent of the types of covariates, yielded large standardized bias 

relative to the other two bounds (e.g., the range of standardized bias for Normal 

covariates was -48.4 to -14.2, -11.6 to -0.7, and -15.0 to 4.0 for the 20-50, 20-150, 

and 20-300 bounds, respectively) (Figure 1, left column). For both traditional and 

administrative censoring, under the most restrictive bound, the standardized bias 
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decreased as the percent of censored observations increased (e.g., the range of 

standardized bias for two Normal covariates assuming traditional censoring 

was -40.9 to -14.2 and -6.3 to -3.2 for 0% and 80% censored, respectively). This 

was not the case for random censoring, however. For example, the range of 

standardized bias when the two covariates are normally distributed was -40.9 

to -14.2 and -33.9 to -22.0 for 0% and 80% censored observations, respectively 

(Figure 2, left column). Results are not shown for administrative censoring. 
 
 

 
 
Figure 2. Standardized bias in fitted coefficients when survival times are generated 

bounded between 20 and 50, target median of 35, and using mixed covariates 
contrasting random versus traditional censoring 

 

 
 

Coverage percentages were close to 95% for most combinations of the 

parameters simulated (0.89-0.97). Somewhat lower coverage – although still over 

90% – was obtained when generating times using smaller limits with random 

censoring (e.g., coverage percentages for 2 Normal covariates assuming a target 

median of 35 were 0.92 to 0.95, 0.94 to 0.97, and 0.94 to 0.96 for bounds of 20-50, 

20-150 and 20-300, respectively) (Figure S1A, middle columns, rows 4-6). 
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Independent of the bounds and censoring type assumed, when the percent of 

censored observations increased from 0% to 80% censored for the binary 

covariate, the MSE increased from 0.004 to 0.027 (Figure S2C, columns 2, 4 and 

6, rows 1-3). In contrast, the MSE remained close to zero when covariates 

followed a Normal distribution (Figure S2C). 
 
 

 
 
Figure 3. Median survival times for data generated bounded between 20 and 300; 

straight lines indicate the relevant target median 
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Impact of g Function Definition 

Overall, under data generated with the least restrictive bound (20-300), when the 

shape parameter for the Weibull distribution was 2 (compared to 1 or 0.5), the 

median of the generated survival times came closer to the target (Figure 3). 

More specifically, under random censoring, a shape parameter of 2 yielded 

survival time distributions with medians closer to the target median relative to the 

other shape parameter choices (e.g., for a target median equal to 150, under 

random censoring with 2 Normal covariates, median survival times ranged from 

131.0 to 156.5 and 77 to 113.0 when ν = 2 and 0.5, respectively). The value was 

almost on target when covariates were both generated from the Normal 

distribution but fell short when covariates were of mixed type (e.g., for a target 

median equal to 150 with ν = 2, under random censoring, median survival times 

ranged from 131.0 to 156.5 and 93.0 to 114.0 when the two covariates were both 

normally distributed and mixed, respectively) (Figure 3, middle row). 

Computational efficiency was affected by the choice of target median. The 

median run time increased as the target median increased (Figure 4). For random, 

administrative, and traditional censoring, respectively, run times ranged from 10.7 

to 132.9 seconds, from 20.9 to 163.2 seconds, and from 49.7 to 213.2 seconds. 
 
 

 
 
Figure 4. Median run times for censoring type when survival times are generated 

bounded between 20 and 300 and using mixed covariates 
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Figure 5. Example of density plots of generated survival times with random censoring for 

the various shape parameters when covariates are (a), above, two Normal random 
variables and (b), below, one Normal and one Bernoulli random variable 
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Overall, using a shape parameter equal to 2 provided distributions of 

survival times that have a median closer to the target value (Figure 5). We 

observed no differences in bias, MSE, or coverage probabilities between the 

choices of target median when the range of survival times is large (Figure S2). 

Impact of Censoring Type 

There was no difference in overall statistical performance of the algorithm by 

censoring type. No differences were found in standardized bias and coverage. For 

all censoring types, as the percent of censored observations increased, the MSE 

increased, ranging from 0.004 to 0.027 for the binary covariate and remaining low 

(on the order of 10-5) for Normal covariates (Figure S2). 

However, it was found that computational run times were strongly affected 

by censoring type. Beyond the first step in the algorithm of generating uncensored 

survival times, random censoring took no additional time whereas traditional 

censoring more than doubled the run time (Figure 4). For example, for data 

generated with limits of 20 and 300, a target median of 75, and ν = 2, median run 

times were 26.4, 26.6, and 89.2 seconds for uncensored, random and traditional 

censoring, respectively. 

Impact of Type of Covariates and of Correlation 

Negligible differences were found in performance by type of covariates or 

assumed correlation. In general, positive bias was found in the fitted coefficients 

corresponding to the binary covariate (e.g., for a target median equal to 35 and 

under random censoring, bias ranged from -4.0 to 9.7, -2.2 to 16.5, and 14.2 to 

45.1 for bounds 20-300, 20-150, and 20-50, respectively) and negative bias for 

coefficients of the Normal covariates (e.g., for a target median equal to 35 and 

under random censoring, bias ranged from -12.3 to 2.1, -9.7 to -0.7, and -48.4 to -

26.2 for bounds 20-300, 20-150, and 20-50, respectively). However, bias was 

negligible when the range of survival times generated (bounds) is large (Figure 1, 

left vs. right columns). 

Median survival times generated were lower when using 1 Normal and 1 

binary covariate compared to when both covariates were normally distributed 

(Figure 3). For example, for data generated between limits of 20 and 300 with a 

target median of 75 and ν = 2, median survival times ranged from 36.0 to 60.0 and 

from 48.0 to 85.0 when the covariates were of mixed type and normally 

distributed, respectively (Figure 3, middle column). 
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In the subset of simulations performed to allow for varying correlation 

between the 2 covariates, we found a slight increase in the absolute MSE (e.g., 

from 2.0 × 10-5 to 4 × 10-5 for a Normal covariate with effect size equal to 0.02) 

as correlation increased. This is true for both combinations of the covariates 

(Figure 6). The MSE increased as the effect size increased, an effect that was 

more pronounced for the binary covariate (Figure 6b). For example, for data 

generated between 20 and 300, assuming a target median of 150, ν = 2, and 50% 

observations randomly censored, when the two covariates were independently 

generated from a Normal distribution, the MSE for the covariate with effect size 

equal to 0.02 was 2.0 × 10-5. When the effect size was instead 0.04, the MSE was 

8.2 × 10-5. The MSE for the coefficient of the uncorrelated binary covariate with 

an effect size of -0.5 equaled to 9.5 × 10-3. 
 

 
 

 
 
Figure 6. MSE of fitted coefficients by correlation amount between covariates when 

survival times are generated bounded between 20 and 300 with random censoring and 
50% of observations censored when covariates are (a), above, two Normal random 
variables and (b), below, one Normal and one Bernoulli variable 
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Additional results in the Supplemental materials are shown with 

stratification on either censoring type or statistical performance metric to aid 

visual interpretation. Figures 1 and 2 are subsets of supplemental Figures S1 and 

S2. Tables with the information contained in Figures 1 to 4 are included in the 

supplemental material (Tables S1 to S4, respectively). 

Discussion 

Zhou’s method (Zhou, 2001) of generating right-censored outcomes has been 

implemented by Hendry (2014) using the piecewise exponential framework and 

allows for an arbitrary number and functional form of the covariates. The main 

point of this study was to provide concrete recommendations for researchers 

interested in generating survival data with a specific structure in mind, as in 

mimicking a motivating data set from a real study. The algorithm proposed by 

Hendry offers flexibility, but the author did not provide guidance on how to 

choose parameters that will lead to data with desired features. In particular, one 

step of the algorithm requires the practitioner to choose an arbitrary monotone 

increasing function, g, such that g(0) = 0, and g-1(t) is differentiable. It was 

demonstrated that choosing a Weibull distribution for g(.) leads to a simple 

calculation that allows the practitioner to specify a target median survival time. 

This recommendation has important implications for practical use because it 

allows researchers to have much greater control over the generated data. 

The simulation results show that, to minimize bias in fitted coefficients and 

achieve a realistic distribution of survival times, generating data with wider limits 

are better than keeping the range small even if the target median survival time is 

low. When generating data to achieve a target median survival time of 35, the 

standardized bias was high when survival times were generated between 20 and 

50, but no meaningful bias was found if the range was expanded to 20-150 or 20-

300. It was found, unexpectedly, that when using an overly-restrictive survival 

time interval with traditional censoring, bias was reduced as the amount of 

censoring increased (Figure 2). It is generally expected that higher percentages of 

censoring observations will either increase or have no effect on bias. Here, 

because the specified range of survival times was too restrictive, when applying 

traditional censoring we get an inverse relationship between the percentage of 

observations censored and bias. 

This counterintuitive relationship is caused by the survival time generation 

algorithm’s use of resampling to produce only survival times that fall within a 

specified interval. Consider the set of lower-risk individuals whose covariates 
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compel them to have an event later than the upper bound of the specified interval. 

The algorithm will use their data to repeatedly generate survival times until a time 

is produced that falls within the interval. From a modeling perspective, these 

lower-risk individuals are indistinguishable from the higher-risk individuals 

whose covariates compel them to have an event near the boundary of the specified 

time interval. The lower risk represented by these people’s covariates is not 

reflected in their survival times, and the result is the bias we see with the 20-50 

interval. 

Traditional censoring affects the lower-risk subjects in a sample; subjects 

with survival times closer to the upper bound are more likely to be censored under 

traditional censoring than under random censoring. Subjects with an event near 

the upper bound of the pre-specified limits can be divided into two groups: 1) 

subjects with risk consistent with having an event near the boundary, or 2) 

subjects forced by the algorithm to have an event near the boundary despite their 

lower-risk covariates. Group 2’s survival times are not indicative of the actual risk 

present in the covariates. Consequently, their inclusion in models estimating 

associations between covariates and risk results in bias. Traditional censoring 

removes members of group 2 at a proportionally higher rate than that of subjects 

whose survival times better reflect actual risk (group 1). The reduction in bias 

with increased percentages of subjects censored when using traditional censoring 

is caused by traditional censoring disproportionately removing the bias-causing 

portion of our sample. This bias in the observed sample produces the observed 

bias in the fitted coefficients when the range of possible survival times (bounds) is 

too restrictive. Random censoring targets all subjects equally, thus leaving the 

bias-producing component of our subjects proportionally intact, and so has a 

much less pronounced effect on bias. 

Given these results, it is recommended that the range be wide enough to 

generate a distribution with the correct shape, but that it should not be too large to 

preserve reasonable computational efficiency. Because the algorithm generates 

survival times as a function of time-varying covariates that vary at integer-valued 

steps of the time scale, each subject will have as many records as the survival time 

generated. Thus, a large range means that some subjects will have many records. 

This is an important computational consideration, especially if generating data is 

just a first step in a much larger simulation. 

There is a fine balance between the survival function, exp(βZ'j), and the 

baseline hazard, h0(t), that will influence the final survival times generated and the 

computational run times. Some of it can be controlled while defining the g 

function, which is a key component of the algorithm. It is suggested defining the g 
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function via a Weibull distribution with parameters informed by an empirical data 

set. One can look at the distribution of survival times to decide whether the g 

function should reflect an increasing, decreasing or constant baseline hazard, 

imposing a value for the shape parameter (ν). 

Also, the empirical median survival time can be used as the target median in 

the generated times and use this target median in a formula to compute the scale 

parameter (λ). It was found that the choice of g function worked well. Statistical 

performance did not vary by ν or target median. However, we did find increased 

run times with increased target medians. Of note, this approach to generating 

survival times is still useful even if the observed survival data does not follow a 

Weibull distribution but the goal of the simulation study is to evaluate the 

performance of the Cox model. However, it might not be appropriate if, for 

example, the researcher’s aim is to performance a power analysis. 

The algorithm performed similarly for both combinations of covariates, but 

we found lower median survival times in the case of covariates of mixed type 

compared to the case of two Normal covariates. So, in order to achieve the target 

median when using covariates of mixed type, the values of the parameters needed 

to compute the scale parameter might need to be changed iteratively, mainly by 

inflating the target median, until the distribution of generated times adequately 

resembles the empirical target distribution. 

There were no major issues when covariates were correlated. An increase 

was noted in the MSE, which was likely associated with an increase in the effect 

size and not necessarily with the type of covariates being used. Effect sizes play 

an important role as they have a direct impact on the distribution of the survival 

times. Further investigation is needed as well as exploring the performance of the 

algorithm in a scenario where correlations are observed within an individual. 

Given the results shown by the simulation study, the following is suggested: 

 

1. The use of the Weibull distribution to define the g function: 

g = (λ-1t)1/ν and g-1 = λtν 

2. Parameters for the Weibull distribution can be informed from an empirical 

dataset: 

a. Use the distribution of survival times to decide if the g function 

should reflect an increasing, decreasing or constant baseline hazard 

to define the shape parameter (ν); 

b. Use the observed median survival times to define a target median 

(M); 



GENERATING SURVIVAL DATA WITH TIME-VARYING COVARIATES 

104 

c. For a vector of effect estimates β = (β1,…, βp) and a vector of 

means of the covariates  1, , pZ ZZ , the scale parameter λ can 

be defined as follows: 

 

 
log 2

M  
βZ

  

 

3. Iterate until appropriate values can be found for the survival times. A 

wider range will yield a higher number of records per subject increasing 

the computational time. In contrast, a more limited range may introduce 

bias; 

4. Utilize random censoring. 

 

In conclusion, Hendry’s algorithm for computing survival times that follow 

an extended Cox model with time-varying covariates were found to be a 

reasonable and practical solution when generating studies intended to closely 

resemble a motivating data set. Guidelines, substantiated by the simulation study, 

are provided to make this process easier. 

Disclaimer 

The views expressed in this article are those of the authors and do not necessarily 

reflect the position or policy of the Patient-Centered Outcomes Research Institute 

or the United States government. 

Supplemental Material 

Supplemental tables and figures are available in the Supplemental Material file, 

available at https://doi.org/10.22237/jmasm/1493597100. 
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Factor score predictors are computed when individual factor scores are of interest. 
Conditions for a perfect inter-correlation of the best linear factor score predictor, the best 
linear conditionally unbiased predictor, and the determinant best linear correlation-
preserving predictor are presented. A transformation resulting in perfect correlations of 
the three predictors is proposed. 
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Introduction 

Because factor scores are not determinate (Guttman, 1955), they cannot be 

unambiguously computed. However, factor score predictors can be computed as 

linear combinations of the observed variables in order to represent the individual 

scores of a latent variable. This might be useful when decisions have to be 

justified on the individual score level. Several different factor score predictors 

have meanwhile been proposed (Mulaik, 2010). The properties of different factor 

score predictors have been investigated by means of simulation studies (Fava & 

Velicer, 1992) and by means of algebraic considerations (e.g. Beauducel & Hilger, 

2015; Krijnen, 2006; Krijnen, Wansbeek & Ten Berge, 1996; McDonald & Burr, 

1967; Schneeweiss & Mathes, 1995).  

According to Grice (2001) and according to Krijnen et al. (1996) there are 

three main types of factor score predictors: The best linear predictor that is also 

known as Thurstone’s (1935) regression predictor, the conditionally unbiased 

predictor (Krijnen et al., 1996; Bartlett, 1937), and the correlation-preserving 

predictor (McDonald, 1981; Ten Berge, Krijnen, Wansbeek, & Shapiro, 1999). 

https://doi.org/10.22237/jmasm/1493597160
mailto:beauducel@uni-bonn.de
mailto:beauducel@uni-bonn.de
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These three types of factor score predictors represent three desired properties: (a) 

The best linear predictor has a maximal correlation with the corresponding factor, 

(b) the conditionally unbiased predictor has zero correlations with non-

corresponding factors, and (c) the correlation-preserving predictor has the 

advantage of preserving the correlations between the factors in the factor score 

predictor. The terms ‘best linear predictor’, ‘conditionally unbiased predictor’, 

and ‘correlation-preserving predictor’ are used as in Krijnen (2006). 

McDonald and Burr (1967) explored the conditions for high correlations 

between factor score predictors for corresponding factors. They investigated the 

best linear predictor, a conditionally unbiased predictor, and a correlation 

preserving predictor. Since the determinant best linear correlation-preserving 

predictor (Ten Berge, Krijnen, Wansbeek, & Shapiro, 1999) was not available at 

that time, they explored the Anderson-Rubin’s (1956) orthogonal (orthogonality 

preserving) factor score predictor. They found that the three factor score 

predictors are perfectly correlated for the one-factor model (the Spearman case). 

The investigated factor score predictors are perfectly correlated in the case of 

unrotated canonical factor analysis (Rao, 1955). McDonald and Burr (1967) 

acknowledged the preference to use rotated factor loadings, because they can 

often be interpreted more easily. However, for the rotated factors the correlations 

between the factor score predictors would generally not be perfect, leading to the 

problem of choosing the optimal factor score predictor. 

There are at least three types of factor score predictors corresponding to 

three different desired properties (Grice, 2001). Moreover, there are conditions for 

which the correlations between the factor score predictors are one for 

corresponding factors, so that no choice has to be made (McDonald & Burr, 1967). 

It can be regarded as a substantial advantage of factor score predictors when they 

are simultaneously the best linear predictor, conditionally unbiased, as well as 

correlation preserving. Therefore, the aim of the present paper is (1) to explore 

further the conditions for perfect correlations between the factor score predictors 

of corresponding factors and (2) to propose a transformation method based on 

Schmid-Leiman (1957) that allows to find interpretable factors with perfect 

correlations between the three different types of factor score predictors.  

Methodology 

In order to present the equations defining the three factor score predictors, the 

definition of the population common factor model is given. The common factor 
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model assumes that x, the random vector of observations of order p, is generated 

by 

 

 x = Λf + e (1) 

 

where f is the random vector of factor scores of order q, e the random error 

vector of order p, and Λ the factor pattern matrix of order p by q. The 

observations x, the factor scores f, and the error vectors e are assumed to have an 

expectation zero (ε[x] = 0, ε[f] = 0, ε[e] = 0). The covariance between the factor 

scores and the error scores is assumed to be zero (Cov[f,e] = 0). The standard 

deviation of f is one, the covariance of the observed variables is xx´ = Σ. The 

covariance matrix Σ can be decomposed by 

 

 Σ = ΛΦΛ´ + Ψ2, (2) 

 

where Φ represents the q by q factor correlation matrix and Ψ2 the p by p 

covariance matrix of the error scores e (Cov[e,e] = Ψ2). Ψ2 is assumed to be a 

diagonal matrix and it will be assumed in this paper that the matrix is positive 

definite. 

The regression predictor or best linear (BL) predictor is given by 

BLf̂  = ΦΛ´Σ−1x. The condition B´Λ = I holds for the class of conditionally 

unbiased predictors, where B are the weights for the factor score predictor 

(Bartlett, 1937). According to Krijnen et al. (1996), the best linear conditionally 

unbiased (BLCU) predictor is BCLUf̂  = (Λ´Σ−1Λ)−1Λ´Σ−1x. Ten Berge et al. (1999) 

defined a determinant best linear correlation-preserving (DBLCP) predictor, given 

by DBLCPf̂  = Φ½(Φ½Λ´Σ−1ΛΦ½)−½Φ½Λ´Σ−1x. For this predictor symmetric 

positive (semi) definite matrices are raised to a certain power (e.g. square-root) by 

raising its eigenvalues to that power. When the power of the eigenvalues is ½, this 

procedure is sometimes called the symmetric square-root (Harman, 1976). 

Results 

Conditions for a perfect correlation between f̂BL , f̂BLCU , and f̂DBLCP  

The following Theorem 1 to 3 describe the conditions for perfect correlations 

between the factor score predictors for corresponding orthogonal factors. As will 
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be shown in Theorem 4, a perfect correlation between the factor score predictors 

can only be found under unrealistic conditions when the factors are correlated. 

This is, of course, a limitation. However, the following Theorem 1 to 3 can 

nevertheless be applied to correlated factor solutions because correlated factor 

models can be transformed into corresponding orthogonal Schmid-Leiman (1957) 

models, as will be soon discussed. 

Theorem 1 provides a condition for a perfect correlation between 
BCLUf̂  and 

BLf̂  for corresponding orthogonal factors. 

 

 

Theorem 1. If Φ = I and Λ´Σ−1Λ = diag(Λ´Σ−1Λ) then 

  ε[
BCLUf̂ BL

ˆf ]diag(ε[
BCLUf̂ BLCU

ˆf ])−½ diag(ε[
BLf̂ BL

ˆf ])−½ = BLCU,BLR = I. 

 

Proof.  The covariance between 
BCLUf̂  and 

BLf̂  is 

 

  
1

1 1 1

BLCU,BL .


     C xx         (3) 

 

The correlation between BCLUf̂  and 
BLf̂  is therefore 

 

     
1

1 1
½

½

BLCU,BL diag diag .


 
  R         (4) 

 

The element-wise square-root is calculated for the diagonal elements in Equation 

4. 

For Φ = I and Λ´Σ−1Λ = diag(Λ´Σ−1Λ), Equation 4 can be transformed into 

 

    1 1

BLCU,B

½

L

½

diag diag .
 

   R I        (5) 

 

This completes the proof. ☐ 

 

 

The condition expressed in Theorem 1 is also a basis for a perfect 

correlation between DBLCPf̂  and BLf̂ . 
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Theorem 2. If Φ = I and Λ´Σ−1Λ = diag(Λ´Σ−1Λ) then 

 ε[
DBLCPf̂ BL

ˆf ]diag(ε[
DBLCPf̂ DBLCP

ˆf ])−½ diag(ε[
BLf̂ BL

ˆf ])−½ = DBLCP,BLR = I. 

 

Proof.  The covariance between 
DBLCPf̂  and 

BLf̂  is 

 

 
 

 

½
½ ½ ½ ½

½
½

1 1 1

DBLCP B

½ ½

, L

1½ .


  



  



C xx         

     

  (6) 

 

The corresponding correlation is 

 

    
½ ½

½ ½ ½1 1

DBLCP,BL

½diag .


  R            (7) 

 

For Φ = I and Λ´Σ−1Λ = diag(Λ´Σ−1Λ) Equation 7 can be transformed into 

 

    1 1

DBLCP,BL

½ ½

,


   R I        (8) 

 

because the symmetric square-root and the conventional square-root are identical 

for diagonal matrices. This completes the proof. ☐ 

 

 

Finally, the condition presented in Theorem 1 and 2 is also the basis for a 

perfect correlation between BCLUf̂  and DBLCPf̂  for corresponding orthogonal factors. 

 

 

Theorem 3. If Φ = I and Λ´Σ−1Λ = diag(Λ´Σ−1Λ) then 

ε[ BCLUf̂ DBLCP
ˆf ]diag(ε[ BCLUf̂ BLCU

ˆf ])−½ diag(ε[ DBLCPf̂ DBLCP
ˆf ])−½ = BLCU,DBLCPR = I. 

 

Proof.  The covariance between BCLUf̂  and DBLCPf̂  is 

 

 
   

 

½
½

1
½ ½ ½

½
½ ½ ½

1 1 1 1

BLCU,D

½

BLCP

1 .

 
   




   

 

C xx           

    

  (9) 
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The corresponding correlation is 

 

     
½

½
½

1
1 1

BLC

½

U,DBLCP

½ ½diag .


 
  R            (10) 

 

If Φ = I and Λ´Σ−1Λ = diag(Λ´Σ−1Λ) Equation 10 can be transformed into 

 

    1 1

BLCU,DBL P

½ ½

C .


   R I        (11) 

 

This completes the proof. ☐ 

 

 

Thus, the correlations between 
BLf̂ , 

BCLUf̂  and 
DBLCPf̂ , for corresponding 

orthogonal factors have been investigated for Φ = I and Λ´Σ−1Λ = diag(Λ´Σ−1Λ). 

It turned out 
BLf̂ , 

BCLUf̂  and 
DBLCPf̂  are perfectly correlated for corresponding 

orthogonal factors with Λ´Σ−1Λ = diag(Λ´Σ−1Λ). Therefore, the interesting 

properties of these three types of factor score predictors can be obtained by a 

single set of factor score predictors under the conditions expressed in Theorems 1, 

2, and 3. 

Theorem 4 shows that it is possible to get a perfect correlation 
BLf̂  and BCLUf̂ , 

for the correlated factors model, if at least some observed variables are measured 

without error. 

 

 

Theorem 4. If Φ ≠ diag(Φ) then diag(RBLCU,BL) = I if (Λ´Ψ−2Λ)−1 = 0.  

 

Proof.  From Jöreskog (1969; Equation 10) we get 

Ψ−2Λ(I + ΦΛ´Ψ−2Λ)−1 = Σ−1Λ. Entering Ψ−2Λ(I + ΦΛ´Ψ−2Λ)−1 for Σ−1Λ into 

Equation 4 and some transformation yields 

 

  
  

  

½

½

1
2

BLCU,BL 1
1

2

 diag  

diag diag .

diag












 
  

 
  

   
  

R

   

    

  (12) 
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For (Λ´Ψ−2Λ)−1 = 0, Equation 12 yields 

 

       BLCU,BL

½ ½
diag diag  diag diag .

 
 R I     (13) 

 

This completes the proof. ☐ 

 

 

The condition (Λ´Ψ−2Λ)−1 = 0 can only be true if at least one observed 

variable of each factor is measured without error (Beauducel & Hilger, 2015). 

This is, however, not realistic and it was therefore excluded in the definition of 

the factor model that Ψ contains zero elements. Although it cannot be excluded 

that some transformation methods might be found that allow to find correlated 

factor models with perfect correlations between 
BLf̂  and 

BCLUf̂ , Theorem 4 

demonstrates that this is impossible with conventional properties of (Λ´Ψ−2Λ)−1, 

which implies that the current approach is limited to orthogonal factor models. In 

order to overcome the limitation to orthogonal factor models Schmid-Leiman 

(1957) transformations of correlated factor models will be considered in the 

following. 

Transformation resulting in perfect correlations between f̂BL , f̂BLCU , 

and f̂DBLCP  

In the following, a transformation comprising four steps will be proposed that 

allows for orthogonal and correlated factors to be transformed into orthogonal 

(Schmid-Leiman) factors with perfect correlations between BLf̂ , BCLUf̂  and DBLCPf̂ . 

The transformation comprises four steps. 

First, transform the factor loadings into 

 

    * 1
½

1
½

diag .


          (14) 

 

It follows that 
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* 1 * 1 1 1 1 1

1

½ ½ ½ ½

diag diag

diag ,

 
     



 



                

  

 (15) 

 

which implies that Λ*´Σ−1Λ* = diag(Λ*´Σ−1Λ*) holds for Λ*. 

Second, calculate the factor inter-correlations Φ* for the corresponding 

loadings, because the transformation by means of Equation 14 modifies the factor 

inter-correlations as long as Λ´Σ−1Λ ≠ I, as follows from 

 

 

           

          
 

    

*

1 1
1 12 * * * 2 * * *

1
1 12 1 1

2

½ ½

½ ½
1

1 1

diag

diag

 
 


   




 



      

       

 

  

 

               

              

   

       

  (16) 

 

Thus, even when the initial factor model was orthogonal (Φ = I), the 

transformed factor model will not necessarily be orthogonal (Φ* ≠ I). As already 

noted, the transformation of the loadings according to Equation 14 can also be 

performed for correlated factors. It is, however, possible that diag(Φ*) ≠ I as 

should be because Φ* is a correlation matrix (see definition of the factor model). 

In order to make sure that diag(Φ*) = I it is necessary to rescale Λ* by means of 

Λ* diag(Φ*)−½ and to recalculate Φ* according to Equation 16. According to 

Theorems 1 to 4 it is, moreover, necessary to have orthogonal factors in order to 

get perfect correlations between BLf̂ , BCLUf̂  and DBLCPf̂  for corresponding factors.  

Third, perform a second order factor analysis so that 

 

 * * * *2

2 2 2 ,       (17) 

 

where the subscript denotes the parameters of the second order factor model.  

Fourth, perform a Schmid-Leiman (1957) transformation in order to 

compute orthogonal primary factors. It is possible to perform a Schmid-Leiman 

transformation of more complex hierarchical models. However, in purpose of 
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brevity it is assumed here that Φ* can be decomposed into a single general 

(second order) factor and the corresponding uniqueness of the primary factors, 

that is 

 

 

*

* * * *2 * *2 2

2 2 2 2 2 *2

2

.
 

       
 

PP


     


  (18) 

 

The Schmid-Leiman transformation of the oblique first order factor model is 

 

 * *

SL . P    (19) 

 

It follows from Equations 2, 18, and 19 that 

 

 * * * 2 * * 2

SL SL ,             (20) 

 

which implies that ΛSL represents the loadings of orthogonal factors. In the 

simplest Schmid-Leiman solution, the first column in ΛSL contains the loadings of 

the observed variables on a general (second order) factor that is orthogonal to the 

remaining orthogonalized primary factors.  

However, the interest here is into the orthogonalized primary factors, which 

can be found in the columns 2 to q, 

 

 

* *

,1,2 ,1,

* *

, ,2 , ,

q

p p q

 
 

  
 
 

SL SL

*

SLP

SL SL

 



 

  (21) 

 

The subset of orthogonalized primary factors can also be calculated by means of 

 

 2

2 2.* *

SLP     (22) 

 

According to Equation 14 this implies 

 

 
   

1 *2 * 1 * *2

2 2

*2 1 *2 1

2 2diag diag ,

 

 

 

 

* *

SLP SLP

* *

SLP SLP

       

       
  (23) 
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so that the conditions for perfect correlations of 
BLf̂ , 

BCLUf̂  and 
DBLCPf̂  are met for 

the corresponding orthogonalized primary factors. 

Example 

A correlation matrix presented by Rimoldi (1948) based on 19 ability tests 

assessed in 138 participants was used in order to illustrate the transformation 

described above. As an initial factor model, principal axis factoring of the 

correlation matrix with subsequent oblique rotation (Promax, kappa = 4) was 

performed with IBM SPSS Version 22 (see Table 1). The factor loading pattern 

and the factor inter-correlations were entered into the SPSS syntax presented in 

Appendix A in order to calculate the correlations between 
BLf̂ , 

BCLUf̂  and 
DBLCPf̂

for the corresponding factors of the initial factor model. Appendix A also contains 

the four steps of the procedure described before and can be adapted for other data 

sets when the corresponding loading pattern and factor inter-correlations as well 

as the number of second order factors for the Schmid-Leiman solution is entered. 

As can be seen from Table 2 the correlations between 
BLf̂ , BCLUf̂  and DBLCPf̂  

were already very high for the corresponding factors of the initial factor model. It 

should, however, be noted that the factor score predictors were based on exactly 

the same sample, the same observed variables and are thought to represent exactly 

the same factors. From this perspective especially some of the correlations 

between 
BLf̂  and BCLUf̂  indicate that the factor score predictors introduce a notable 

difference in the measurement of the same factors with the same participants. 

Therefore, a transformation of these factors according to the procedure described 

before was performed. 
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Table 1. Promax-rotated loading pattern and factor inter-correlations for 19 ability 

variables from Rimoldi (1948) 
 
Variable F1 F2 F3 F4 F5 F6 F7 

1 -.02 .56 -.08 .01 .00 .12 .12 

2 -.11 .38 .33 -.03 .06 .06 -.04 

3 .03 .03 -.03 .67 .00 -.06 -.22 

4 -.04 .18 .54 -.08 .11 -.25 .24 

5 -.02 .35 .01 .20 .13 -.13 .06 

6 -.01 .06 .16 .14 .74 -.07 -.34 

7 .04 .02 .02 -.24 .37 .25 .29 

8 .10 .15 .25 .25 -.05 -.11 .24 

9 .06 .04 .00 -.09 -.19 -.06 .47 

10 -.01 .18 -.08 .03 -.02 .67 -.09 

11 -.03 -.13 -.02 .59 .16 .25 .15 

12 .06 .45 .07 -.21 .17 .09 -.19 

13 -.01 .37 .29 .03 -.07 .26 -.10 

14 .31 -.10 .65 .01 .14 .02 -.17 

15 .65 -.14 .28 .05 -.09 .10 .00 

16 .72 -.12 .15 -.10 .08 -.07 .15 

17 .88 .14 .00 .04 -.12 .02 -.01 

18 .59 .17 -.26 .05 .19 -.05 .01 

19 .08 .43 .13 .07 -.18 .05 .16 

        factor inter-correlations 

F2 .37 
      

F3 .52 .22 
     

F4 .37 .18 .39 
    

F5 .28 .17 .25 .19 
   

F6 .02 -.12 .17 .02 .19 
  

F7 .29 .04 .35 .35 .52 .45   
 

Note. Loadings with an absolute size ≥ .30 are given in bold face. 

 
 

Table 2. Correlations between f̂BL , f̂BLCU , and f̂DBLCP  for the corresponding factors of 

the initial factor model 
 

 
F1 F2 F3 F4 F5 F6 F7 

f̂BL  with f̂BLCU  .993 .986 .968 .983 .979 .984 .947 

f̂BL  with f̂DBLCP  .999 .996 .992 .995 .995 .996 .987 

f̂BLCU  with f̂DBLCP  .998 .997 .992 .996 .995 .996 .986 

 
 

In the first step of the transformation described above, the factor loading pattern 

was transformed according to Equation 14 (see Appendix A). In the second step, 

the factor inter-correlations were calculated for the transformed loading pattern 
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(Equation 16). The loading pattern and the factor inter-correlations were rescaled. 

Third, an unrotated second order principal axis factoring of the inter-correlations 

of the factors was performed. A single second order factor was extracted. Fourth, 

a Schmid-Leiman solution was computed from the second order factor and the 

transformed primary factors (Equation 19; see Table 3). It turned out that the 

loading pattern of the initial primary factors and the loading pattern of the 

transformed Schmid-Leiman primaries were similar, which implies that the 

interpretation of the factors was not substantially altered by the transformations. 

The correlations between 
BLf̂ , 

BCLUf̂  and 
DBLCPf̂  for the corresponding primary 

factors presented in Table 3 were all perfect (= 1.000) so that an additional table 

was not necessary. 
 
 
Table 3. Schmid-Leiman model of the primary factors transformed according to (14) 

 

 

2nd 
order 
factor 

 
Primary Factors 

Variable F1   F1 F2 F3 F4 F5 F6 F7 

1 .15 
 

.05 .52 -.03 .04 .06 .09 .10 

2 .16 
 

.01 .37 .29 .02 .06 .05 .00 

3 .06 
 

.09 .07 .03 .60 -.02 -.10 -.12 

4 .30 
 

.11 .22 .48 .03 .15 -.17 .21 

5 .14 
 

.07 .36 .04 .21 .14 -.14 .07 

6 .18 
 

.10 .12 .14 .13 .61 -.08 -.13 

7 .33 
 

.08 .01 .05 -.17 .40 .29 .30 

8 .30 
 

.20 .19 .28 .31 .03 -.08 .21 

9 .16 
 

.07 .03 .03 -.02 -.08 -.01 .33 

10 .15 
 

-.01 .12 -.02 .00 .00 .59 -.01 

11 .36 
 

.05 -.11 .07 .55 .19 .25 .22 

12 .03 
 

.10 .43 .06 -.18 .14 .04 -.13 

13 .17 
 

.07 .35 .28 .06 -.05 .22 -.04 

14 .31 
 

.39 -.01 .60 .09 .14 .05 -.04 

15 .30 
 

.61 -.06 .34 .13 -.02 .11 .06 

16 .33 
 

.67 -.02 .23 .02 .16 -.03 .17 

17 .26 
 

.80 .23 .14 .13 -.02 .00 .02 

18 .18 
 

.53 .23 -.13 .09 .23 -.07 .05 

19 .19   .15 .42 .17 .12 -.10 .04 .12 
 

Note. Loadings with an absolute size ≥ .30 are given in bold face. 
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Conclusion 

Conditions were explored for a perfect correlation between three types of factor 

score predictors: The regression predictor or best linear predictor, the 

conditionally unbiased best linear predictor, and the determinant best linear 

correlation-preserving predictor. A perfect correlation between these factor score 

predictors for corresponding factors implies that the choice between these factor 

score predictors does not matter and that each type of factor score predictor will 

have the virtues of the other. That is, the conditionally unbiased best linear 

predictor will also be the best linear predictor, the determinant best linear 

correlation-preserving predictor, will have the virtue to be conditionally unbiased 

predictor, etc. Thus, the conditions of a perfect correlation between the three types 

of factor score predictors for corresponding factors might be of interest for 

applied researchers, who want to calculate score predictors combining the 

different advantages. 

McDonald and Burr (1967) found three types of factor score predictors 

similar to the predictors investigated here are perfectly correlated for one-factor 

models and for the unrotated canonical factor model. In addition to these 

conditions, it was shown here that for orthogonal factors with 

Λ´Σ−1Λ = diag(Λ´Σ−1Λ) the three factor score predictors are perfectly correlated. 

A method for transforming a loading matrix according to this condition was 

proposed. The transformation can also be applied to models with correlated 

factors.  Moreover, the factors resulting from this transformation are not 

necessarily orthogonal. Since it has been shown that the factors corresponding to 

Λ´Σ−1Λ = diag(Λ´Σ−1Λ) should be orthogonal in order to provide perfect 

correlations between the three types of factor score predictors for corresponding 

factors a hierarchical Schmid-Leiman solution was computed. Thereby the 

correlated factor models are transformed into a combined solution of orthogonal 

second order factors and orthogonal primary factors. Since the Schmid-Leiman 

transformation can be applied to any hierarchical pattern of loading matrices, the 

transformation method proposed here can also be applied to confirmatory factor 

models. 

The results of the current study show that it is possible to obtain a single set 

of factor score predictors that combine the virtues of the best linear predictor, of 

the conditionally unbiased predictor, and of the correlation-preserving predictor. 

This may be of interest for research and applications, where a high quality of the 

factors score predictors is of special importance.  
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As an example, the transformation was applied to the data set of Rimoldi 

(1948), who published the correlation matrix of 19 ability measures. The 

corresponding SPSS syntax (Appendix A) can be adapted in order to be used for 

other data sets. 
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Appendix A 

set MXLOOPS=1000 workspace=400000. 

 

 

MATRIX. 

 

* ENTER INITIAL LOADING PATTERN INTO L:. 

compute L={ 

-0.019, 0.555,-0.083, 0.012, 0.005, 0.122, 0.123; 

-0.108, 0.384, 0.334,-0.028, 0.064, 0.060,-0.042; 

 0.033, 0.027,-0.033, 0.671, 0.002,-0.059,-0.220; 

-0.035, 0.183, 0.541,-0.079, 0.105,-0.246, 0.244; 

-0.024, 0.353, 0.007, 0.196, 0.129,-0.140, 0.063; 

-0.014, 0.059, 0.164, 0.141, 0.744,-0.074,-0.343; 

 0.044, 0.020, 0.021,-0.236, 0.371, 0.251, 0.291; 

 0.098, 0.154, 0.250, 0.254,-0.046,-0.112, 0.236; 

 0.064, 0.039,-0.005,-0.086,-0.192,-0.065, 0.470; 

-0.008, 0.176,-0.079, 0.030,-0.022, 0.667,-0.089; 

-0.030,-0.128,-0.021, 0.593, 0.163, 0.252, 0.146; 

 0.058, 0.447, 0.067,-0.214, 0.170, 0.088,-0.190; 

-0.012, 0.366, 0.290, 0.027,-0.073, 0.264,-0.100; 

 0.315,-0.095, 0.647, 0.007, 0.146, 0.024,-0.170; 

 0.648,-0.146, 0.280, 0.049,-0.087, 0.101, 0.001; 

 0.719,-0.121, 0.152,-0.095, 0.075,-0.074, 0.153; 

 0.879, 0.141, 0.002, 0.039,-0.117, 0.016,-0.012; 

 0.586, 0.170,-0.265, 0.050, 0.186,-0.053, 0.011; 

 0.076, 0.434, 0.128, 0.069,-0.176, 0.050, 0.164}. 

 

* ENTER INITIAL FACTOR INTER-CORRELATIONS INTO PHI:. 

compute Phi={ 

1.000, 0.366, 0.518, 0.372, 0.279, 0.017, 0.285; 

0.366, 1.000, 0.219, 0.180, 0.170,-0.118, 0.035; 

0.518, 0.219, 1.000, 0.385, 0.246, 0.173, 0.348; 

0.372, 0.180, 0.385, 1.000, 0.192, 0.019, 0.353; 

0.279, 0.170, 0.246, 0.192, 1.000, 0.186, 0.521; 

0.017,-0.118, 0.173, 0.019, 0.186, 1.000, 0.449; 

0.285, 0.035, 0.348, 0.353, 0.521, 0.449, 1.000}. 
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* ENTER NUMBER OF SECOND ORDER FACTORS. 

compute nF_2nd=1. 

 

compute Psi2=Mdiag(diag( ident(nrow(L),nrow(L)) - L*Phi*T(L)  )). 

compute Sig=L*Phi*T(L) + Psi2. 

 

 

Print /Title "Initial factor loading pattern:". 

print {L}/format=F5.2. 

Print /Title "Initial factor inter-correlations:". 

print {Phi}/format=F5.2. 

Print /Title "Number of factors for second order factor analysis:". 

print nf_2nd/format=F2.0. 

 

 

Print /Title "Initial correlation between BLCU and BL factor score predictor 

(Equation 4):". 

compute EQ4=Phi*INV(Mdiag(diag(INV(T(L)*INV(Sig)*L))))&**(0.5) *  

                INV(Mdiag(diag(Phi*T(L)*INV(Sig)*L*Phi)))&**(0.5). 

print EQ4/format=F6.3. 

 

Print /Title "Initial correlation between DBLCP and BL factor score predictor 

(Equation 7):". 

CALL SVD(Phi, q, eig, qq). 

compute Phi12=q*(eig&**0.5)*T(q). 

compute H=Phi12*T(L)*INV(Sig)*L*Phi12. 

CALL SVD(H, q, eig, qq). 

compute H12=q*(eig&**0.5)*T(q). 

compute EQ7=Phi12*H12*Phi12*INV(Mdiag(diag(Phi*T(L)*INV(Sig)*L*Phi)))&**(0.5). 

print EQ7/format=F6.3. 

 

Print /Title "Initial correlation between BLCU and DBLCP factor score predictor 

(Equation 10):". 

compute EQ10=Phi12*INV(H12)*Phi12*INV(Mdiag(diag(INV(T(L)*INV(Sig)*L))))&**(0.5). 

print EQ10/format=F6.3. 
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* TRANSFORMATION OF PRIMARY FACTORS:. 

 

* STEP 1 - Compute transformed loadings according to Equation 14. 

compute help=  T(L)*INV(Sig)*L  . 

CALL SVD(help, V, Eig, TV). 

compute help12=V*(Eig&**0.5)*T(V). 

compute L14= L  * INV(help12)*Mdiag(diag( T(L)*INV(Sig)*L ))&**0.5. 

 

 

* STEP 2 - Compute factor intercorrelations and rescale transformed loadings. 

compute Phi14=INV(T(L14)*L14)*T(L14)*L*Phi*T(L) *L14*INV(T(L14)*L14). 

compute L14=L14*(Mdiag(diag(Phi14)))&**0.5. 

Print /Title "STEP 1 + 2 - Loading pattern of rescaled transformed primary 

factors:". 

Print L14/format=F5.2. 

compute Phi14=INV(T(L14)*L14)*T(L14)*L*Phi*T(L) *L14*INV(T(L14)*L14). 

Print /Title "STEP 1 + 2 - Inter-correlations of transformed primary factors:". 

Print Phi14/format=F5.2. 

 

 

* STEP 3 - Principal Axis Factoring of the intercorrelations of the transformed 

primary factors 

  (second order factor analysis). 

compute R=Phi14. 

* Initial PCA. 

CALL EIGEN(R, PC, PC_eig). 

compute PC_eig=Mdiag(PC_eig). 

compute PC=PC*(PC_eig&**0.5). 

compute A=PC(:,1). 

LOOP i=2 to nF_2nd. 

compute A={A,PC(:,i)}. 

END LOOP. 

* EFA. 

compute F=A. 

LOOP ii=1 to 50. 

compute Rrep=R - ident(nrow(A),nrow(A)) + Mdiag(diag(F*T(F)))  . 

CALL EIGEN(Rrep, FF, F_eig). 

compute F_eig=ABS(Mdiag(F_eig)). 
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compute FF=FF*(F_eig&**0.5). 

compute F=FF(:,1). 

LOOP i=2 to nF_2nd. 

compute F={F,FF(:,i)}. 

END LOOP. 

END LOOP. 

compute F=-1*F. 

 

compute Psi=Mdiag(diag(Phi14-F*T(F)))&**0.5. 

compute P={F,Psi}. 

Print /Title "STEP 3 - 2nd order factor loadings with (diagonal) error factor 

loadings:". 

print {P} /format=F5.2. 

 

* STEP 4 - Compute Schmid-Leiman solution. 

compute SL14=L14*P. 

Print /Title "STEP 4 - Schmid-Leiman Solution:". 

print {SL14} /format=F5.2. 

 

 

 

* CHECK: Compute the inter-correlations between factor score predictors for the 

primaries. 

* SELECT PRIMARIES OF SCHMID-LEIMAN SOLUTION:. 

compute SL_p=SL14(:,2). 

LOOP i=nF_2nd+2 to nF_2nd+ncol(L). 

compute SL_p={SL_p,SL14(:,i)}. 

END LOOP. 

 

Print /Title "Correlation between BLCU and BL factor score predictor (Equation 

4) for transformed primaries:". 

compute EQ4_14=   INV(Mdiag(diag(GINV(T(SL_p)*INV(Sig)*SL_p))))&**(0.5) *  

                 INV(Mdiag(diag(T(SL_p)*INV(Sig)*SL_p)))&**(0.5). 

print EQ4_14/format=F6.3. 

 

Print /Title "Correlation between DBLCP and BL factor score predictor (Equation 

7) for transformed primaries:". 

compute H=T(SL_p)*INV(Sig)*SL_p. 
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CALL SVD(H, q, eig, qq). 

compute H12=q*(eig&**0.5)*T(q). 

compute EQ7_14=H12*INV(Mdiag(diag(T(SL_p)*INV(Sig)*SL_p)))&**(0.5). 

print EQ7_14/format=F6.3. 

 

Print /Title "Correlation between BLCU and DBLCP factor score predictor 

(Equation 10) for transformed primaries:". 

compute EQ10_14=INV(H12)*INV(Mdiag(diag(INV(T(SL_p)*INV(Sig)*SL_p))))&**(0.5). 

print EQ10_14/format=F6.3. 

 

Print /Title  

"Weights (B) for computation of factor scores as fscore=T(B)*Z, with Z "  

+ "containing z-standardized variables with rows=variables, columns=cases". 

compute B=INV(Sig)*SL_p. 

print B/format=F6.3. 

 

* For calculating the factor scores delete the first "*" in the three lines 

starting with “get”. 

* Enter the number of z-standardized variables in "##" and the file handle in 

"...". 

*get Z / variables= Z1 to Z## /file="C:\...\zscores.sav". 

*compute Fscores=Z*B. 

*save { Fscores } /outfile="C:\...\Fscores.sav". 

 

 

END MATRIX. 
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For continuous data, various statistical hypotheses testing methods have been extensively 
discussed in the literature. In this article a review is provided of the multiple-sample 
continuous-data testing methods. It includes traditional methods, such as the two-sample 
t-test, Welch ANOVA test, etc., as well as newly-developed ones, such as the various 

Multiple Comparison Procedure (MCP). A roadmap is provided in a figure or diagram 
format as to which methods are available in the literature. Additionally, the 
implementation of these methods in popular statistical software packages such as SAS is 
also presented. This review will be helpful to determine which continuous-data testing 
method (along with the corresponding SAS code) are available to use in various fields of 
study, both for the design phase of a study in prospective study, cross-sectional, or 
retrospective study analysis and the analysis phase. 

 
Keywords: Two-sample t-test, one-way ANOVA, Satterthwaite, degrees of freedom, 
Welch ANOVA, Wilcoxon rank-sum test, Kruskal-Wallis test, paired t-test, multiple 
comparison procedure (MCP) 

 

Introduction 

In many real-world applications, such as data in clinical trials, financial data, 

epidemiology, sociology, etc., we often encounter data with outcome (or 

response) variables that are continuous in nature. If a random variable can take 

any value within an interval or continuum, it is called a continuous random 

variable. For example, diastolic blood pressure, amount of dollar expenses, height, 

weight, cholesterol level, air pollutant level, etc. are usually considered 

continuous random variables because they can take any value within certain 

intervals, even though the observed measurement is limited by the accuracy of the 

measuring device. Due to the nice asymptotic math/stat properties, the Normal 

distribution is the most commonly-used continuous distribution in the fields of 

clinical research, finance, epidemiology, sociology, along with many others. 

https://doi.org/10.22237/jmasm/1493597220
mailto:rahardja@gmail.com
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Without loss of generality (WLOG), the standard (classical or frequentist) large 

sample (asymptotic) theory is derived using the underlying assumptions of 

independent, normally-distributed random variables with homogeneous (i.e., 

equal) variance. 

A frequent task in data analysis is to check these three assumptions (in the 

order of: independent, normal, equal variance) for the outcome measure or 

response variable, and then to determine what test is suitable/appropriate for a 

dataset. 

Such continuous-data outcome measure or response variables (or dependent 

variables) can occur both in randomized controlled trials and in observational 

studies. The predictor or covariate (or independent variable) is the terminology 

used for both continuous and categorical variable. However specifically, the 

predictor is called a grouping variable (or factor) for a discrete/categorical 

predictor. Typically, this grouping variable can have one, two, or multiple levels. 

The common (or generic) statistical terms used are one-, two-, and multiple-

sample testing methods for one, two, and multiple levels of this one factor (or 

grouping variable). 

To date, there is no literature that comprehensively presents and summarizes 

the review of the various one-sample, two-sample, and multiple-sample tests for 

the continuous-data type of response variable (or outcome measure) with one 

grouping variable (factor) of multiple levels. Hence in our line of (statistical) 

practice, we often find both statistician and non-statistician practitioners, 

investigators, and researchers get confused/mixed-up about the method, model, 

and hypothesis to use. To close this confusion gap, this article will be a very 

useful basic guidance/roadmap to both statisticians and non-statisticians in 

various fields of study. 

For the categorical-data type (of outcome measure or response variable), 

Rahardja, Yang, and Zhang (2016) have provided a comprehensive review, also in 

a roadmap format, along with the corresponding translation/implementation of 

those methods in popular and professional statistical software packages, such as 

SAS and/or R. 

Hypothesis Testing 

First, we begin with the popular one-sample mean test (for a normal population): 

the one-sample z-test and the one-sample t-test (not listed on Table 1 nor Figure 

1). WLOG, consider the simplest case: a continuous response variable (or 

outcome measure), Y, with one grouping variable (or factor), X, as the discrete 
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covariate or factor (or predictor). This single factor has only one level (i.e., X = 1). 

For this very basic/simplest model, the objective is to model the expected value of 

a continuous random variable, Y, as a linear function of the discrete predictor or 

factor, X, and hence E(Yi) = µX. This basic/simplest model has only one factor 

with one level (i.e., X = 1); therefore E(Yi) = µ. Hence, this (generic) model 

structure can be written as Yi = µX + ϵi, where ϵi ~ N(0, σ2), for i = 1, 2,…, n 

observations (which is a statistical linear model which is linear in the parameter, 

µ). Essentially, this model structure can be simplified as the mean model (for one 

factor), Yi = µ + ϵi where i = 1, 2,…, n observations. For this (generic) basic 

model the assumptions are that Y is normally distributed, errors are normally 

distributed and independent with constant/homogeneous variance σ2, i.e. 

ϵi ~ N(0, σ2), while X is fixed (i.e., X = 1); see Casella (2008). 

Theoretically, with a known standard deviation (σ), the standard one-sample 

z-test can be used to test the null hypothesis, H0: µ = 0, versus the alternative 

hypothesis, H1: µ ≠ 0. However, practically, the standard deviation (σ) is 

unknown, and hence the one-sample t-test can be used to test the same 

aforementioned hypothesis. 

Second, consider the two-sample (and subsequently, multiple-sample) mean 

test (see Figure 1), depending on the assumptions of the response variable (or 

outcome measure). Consider the case: a continuous response variable (or outcome 

measure), Y, with one grouping variable (or factor), X, as the discrete covariate or 

factor (or predictor). This single factor has two (or more) levels (e.g., X = 0 for the 

placebo group, or for X = 1 the drug A group, or X = 2 for the drug B group, etc.), 

and can be written as an indicator function/variable. This model structure can be 

written as the so-called cell means model (for one factor), Yij = µi + ϵij, where i = 1, 

2,…, k groups (i.e., the ith level of that one factor), and j = 1, 2,…, n observations; 

see Casella (2008). The model assumptions are that Yij is normally distributed, 

errors are normally distributed and independent with constant/homogeneous 

variance σ2, i.e. ϵij ~ N(0, σ2); X is a fixed indicator function/variable (i.e., X = 0, 1, 

etc.); and µi is the unknown theoretical/population mean for all of the 

observations at level i. 

The generic hypothesis testing for two means can be written as H0: µ1 = µ2 

versus H1: µ1 ≠ µ2, and for multiple means it can be generalized as 

H0: µ1 = µ2 = … = µk versus H1: at least one mean is different than the rest. 

Next, consider how to implement these methods (in Figure 1) in popular 

statistical software packages, such as SAS (see Table 1). The SAS PROC TTEST, 

or the TTEST procedure, performs t-tests for one-sample, two-sample, and paired 

observations (see Table 1 and Figure 1). The one-sample t-test compares the mean 
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of the sample to a given number (which you supply, and typically is zero). The 

dependent-sample or paired t-test compares the difference in the means from the 

two variables to a given number (usually 0) while taking into account the fact that 

the scores are not independent (i.e., paired scores or data); see David and Gunnink 

(1997). The independent samples t-test (or two-sample t-test) compares the 

difference in the means from the two groups to a given value (usually 0). In other 

words, it tests whether the difference in the means is 0. 

When there are multiple levels within that one factor (or one way) model (of 

the cell means model), alternatively the model can be written as the effect model 

to test the effect of the multiple levels (i.e., multiple-sample test); similarly for the 

two levels (i.e., two-sample test). The effect model is used to separate the baseline 

mean effect from the groups’ or levels’ effect: Yij = µ + αi + ϵij, where i = 1, 2,…, 

k groups (i.e., the ith level of that one factor), and j = 1, 2,…, n observations; and 

to test the multiple-level effect, H0: α1 = α2 = … = αk. The SAS procedure PROC 

ANOVA can be used for such multiple-sample test. 

When the response variable (or outcome measure) holds the assumptions of 

independent, normally distributed with homogeneous (equal variance), then the 

One-Way ANOVA method can be implemented via the SAS procedure, PROC 

ANOVA with means statement, using the option /hovtest. See Zimmerman (2004), 

who discussed preliminary tests of equality of variances. 

Similarly, when the response variable (or outcome measure) holds the 

assumptions of independent and normally distributed with non-homogeneous (or 

heterogeneous or unequal) variances, then the Welch (1947) ANOVA method can 

be implemented via the SAS procedure, PROC ANOVA with means statement, 

using the option /welch. 

Wilcoxon (1945) and Mann and Whitney (1947) proposed a distribution-

free model (i.e., nonparametric statistical methods) where the null hypothesis can 

be written as H0: F1(X) = F2(X) where Fi(X) is the distribution function for sample 

i = 1, 2. This null hypothesis is to test whether the two population distributions are 

identical by using the sum of the ranks in sample 1 and sample 2. The test statistic 

is called the Wilcoxon rank-sum test (Mann-Whitney test). Alternatively, Zhao, 

Rahardja, and Qu (2008) considered quantifying the difference between the two 

groups, and defined the hypothesis in terms of the competing probability, 

π = Pr(X > Y) + 0.5 Pr(X = Y), where X and Y are random variables with 

cumulative distribution functions (CDFs) FX and FY, respectively. Then the 

following null hypothesis indicates there is no difference between the two groups: 

H0: π = 0.5. Here the SAS procedure used is the PROC NPAR1WAY with 

Wilcoxon statement. For the distribution-free model (i.e., nonparametric statistical 
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methods) with multiple levels (multiple samples) within that one factor (or the 

grouping variable), the Kruskal-Wallis test of H0: F1(X) = F2(X) = … = Fk(X) can 

be used (Kruskal & Wallis, 1952). Here the SAS PROC NPAR1WAY can be 

used. 

Cao and Zhang (2014) reviewed various multiple comparison procedures 

(MCPs). Typically these MCPs are a part of an omnibus test (a series of 

sequential tests). For example, if using PROC GLM yields a statistically 

significant result for a main effect (or for an interaction, in the case of a two-

factor or more scenarios), then one could use PROC MULTTEST to conduct the 

(pairwise) multiple comparisons. This PROC MULTTEST gives the raw p-values 

adjusted by Holm, Hochberg, or false discovery rate (FDR) methods. Note that 

under the LSMEANS statement of the PROC GLM, the “Adjust = BON;” option 

indicates the Bonferroni method. Among many of the above MCPs, the most 

commonly-used ones are Tukey’s pairwise comparison, Bonferroni’s method, 

Duncan, etc., depending on the specific needs, assumptions, or objective of the 

practitioners/researchers. For example, Tukey’s method controls the Type I 

experiment-wise error rate and Bonferroni, Tukey’s Least Significant Difference 

(LSD), and Duncan control the Type I comparison-wise error rate. Bonferroni has 

a very conservative (very wide) interval, i.e., is very slow to reject the null 

hypothesis. Table 1 summarizes the above discussion. 

Roadmap 

Provided in Figure 1 is the (two-sample and multiple-sample) roadmap for 

practitioners and researchers to choose a suitable testing method for their 

continuous (outcome measure or response variable) data analysis. In Figure 1, the 

roadmap method is provided by whether or not the response variable (outcome 

measure) is independent, then by whether or not the outcome is normally-

distributed data, and then, finally, by whether or not the outcome variable has 

homogeneous variance. Then either yes/no response variable (in each of the 3 

aforementioned questions) will lead to whether the grouping variable (or factor) is 

two-sample for a two-level factor or is multiple-sample or k-sample (where k is 

greater than 2) for a multiple-level factor. Next, the corresponding SAS 

procedures to the suitable statistical method directed from Figure 1 can be found 

in the Table 1 prescription. 
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Conclusion 

Continuous data response or outcome is very common in real-data applications 

such as clinical trials, financial data, epidemiology, sociology, etc. The analysis of 

such continuous outcome measure (or response variable) has a long history, 

beginning with the one-sample t-test, two-sample t-test, up to the MCP. A review 

of the hypothesis testing procedures that are available for various types of 

continuous data outcome measure (or response variable) with one grouping 

variable (factor) of multiple levels are reviewed, along with the corresponding 

statistical computing translations/implementation in SAS, the most commonly 

used professional statistical software for data analysis. 

Disclaimer 

This research represents the author's own work and opinion. It does not reflect 

any policy nor represent the official position of the U.S. Department of Defense 

nor any other U.S. Federal agency. 
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Appendix A: Tables and Figures 

Table 1. Listing of response variable (outcome measure) type with the appropriate hypothesis testing, test statistic, and SAS 

command 
 

Response (Outcome) 
Type/Assumptions Null Hypothesis (H0) Test statistics 

SAS command or 
other option 

Independent, normal, 
homogeneous variance 

Yij = µi + ϵij (cell means model) 
Yij = µ + αi + ϵij (effect model) 

where i = 1, 2,…, k group, j = 1, 2,…, ni observation 

  

Grouping variable: 
two-sample 

H0: µ1 = µ2 (cell means model) 
H0: α1 = α2 (effect model) 

Two-sample t-test 
(S-pooled) 

PROC TTEST with 
class statement 

Grouping variable: 
k-sample 

H0: µ1 = µ2 =…= µk (cell means model) 
H0: α1 = α2 =…= αk (effect model) 

One-Way ANOVA PROC ANOVA with 
means statement, using 

/hovtest option 

    
Independent, normal, 

non-homogeneous variance 

Yij = µi + ϵij (cell means model) 
Yij = µ + αi + ϵij (effect model) 

where i = 1, 2,…, k group, j = 1, 2,…, ni observation 

  

Grouping variable: 
two-sample 

H0: µ1 = µ2 (cell means model) 
H0: α1 = α2 (effect model) 

2-sample t-test 

(Satterthwaite exact d.f.) 
PROC TTEST using 

/cochran option 

Grouping variable: 
k-sample 

H0: µ1 = µ2 =…= µk (cell means model) 
H0: α1 = α2 =…= αk (effect model) 

Welch ANOVA PROC ANOVA using 
/welch option, under the 

means statement 
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Table 1, continued 

 
Response (Outcome) 

Type/Assumptions Null Hypothesis (H0) Test statistics 
SAS command or 

other option 

Independent, 
non-normal 

Distribution shapes are the same but unspecified 
(distribution-free model) 

  

Grouping variable: 
2-sample 

2 Identical Distributions: 
H0: F1(X) = F2(X) 

Difference between 2 groups using competing probability: 
H0: π = 0.5, where π = P(X1 > X2) + 0.5 P(X1 = X2) 

with random variables X1, X2 with CDFs F1, F2, respectively 

Wilcoxon rank-sum test 
(Mann-Whitney test) 

PROC NPAR1WAY 
with wilcoxon 

statement 

Grouping variable: 
k-sample 

H0: F1(X) = F2(X) =…= Fk(X) Kruskal-Wallis Test PROC NPAR1WAY 

    
Not independent    

Grouping variable: 
two-sample 

H0: δ = 0  
δ = (µ1 – µ2) 

Paired t-test PROC TTEST with 
paired statement 

Grouping variable: 
k-sample 

H0: δ1 = δ2 =…= δk 
where δi = (µi,1 – µi,2) i = 1,…, k 

Various MCPs such as 
Bonferroni, Tukey’s LSD, 

Duncan, etc. See Cao 
and Zhang (2014) 

Omnibus Test: 
PROC GLM using 

/Adjust=BON; option, 
under the LSMEANS 

statement 
PROC MULTTEST 
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Figure 1. Continuous-data roadmap for two-sample and multiple-sample testing 
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Standard approaches for analyzing the difference in two means, where partially 
overlapping samples are present, are less than desirable. Here are introduced two test 
statistics, making reference to the t-distribution. It is shown that these test statistics are 
Type I error robust, and more powerful than standard tests. 
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Introduction 

Hypothesis tests for the comparison of two population means, μ1 and μ2, with two 

samples of either independent observations or paired observations are well 

established. When the assumptions of the test are met, the independent samples   

t-test is the most powerful test for comparing means between two independent 

samples (Sawilowsky and Blair, 1992). Similarly, when the assumptions of the 

test are met, the paired samples t-test is the most powerful test for the comparison 

of means between two dependent samples (Zimmerman, 1997). If a paired design 
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can avoid extraneous systematic bias, then paired designs are generally 

considered to be advantageous when contrasted with independent designs. 

There are scenarios where, in a paired design, some observations may be 

missing. In the literature, this scenario is referred to as paired samples that are 

either “incomplete” (Ekbohm, 1976) or with “missing observations” (Bhoj, 1978). 

There are designs that do not have completely balanced pairings. Occasions where 

there may be two samples with both paired observations and independent 

observations include: 

 

i) Two groups with some common element between both groups. For 

example, in education when comparing the average exam marks for 

two optional subjects, where some students take one of the two 

subjects and some students take both. 

 

ii) Observations taken at two points in time, where the population 

membership changes over time but retains some common members. 

For example, an annual survey of employee satisfaction may include 

new employees that were unable to respond at time point one, 

employees that left after time point one, and employees that 

remained in employment throughout. 

 

iii) When some natural pairing occurs. For example, in a survey taken 

comparing views of males and females, there will be some matched 

pairs (couples) and some independent individuals (single). 

 

The examples given above can be seen as part of the wider missing data 

framework. There is much literature on methods for dealing with missing data and 

the proposals in this paper do not detract from extensive research into the area. 

The simulations and discussion in this paper are done in the context of data 

missing completely at random (MCAR). 

Two samples that include both paired and independent observations is 

referred to using varied terminology in the literature. The example scenarios 

outlined can be referred to as “partially paired data” (Samawi and Vogel, 2011). 

However, this terminology has connotations suggesting that the pairs themselves 

are not directly matched. Derrick et al. (2015) suggest that appropriate 

terminology for the scenarios outlined gives reference to “partially overlapping 

samples.” For work that has previously been done on a comparison of means 

when partially overlapping samples are present, “the partially overlapping 
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samples framework… has been treated poorly in the literature” (Martínez-

Camblor, Corral, and María de la Hera, 2012, p.77). In this paper, the term 

partially overlapping samples will be used to refer to scenarios where there are 

two samples with both paired and independent observations.  

When partially overlapping samples exist, the goal remains to test the null 

hypothesis H0 : μ1 = μ2. Standard approaches when faced with such a situation, are 

to perform the paired samples t-test, discarding the unpaired data, or alternatively 

perform the independent samples t-test, discarding the paired data (Looney and 

Jones, 2003). These approaches are wasteful and can result in a loss of power. 

The bias created with these approaches may be of concern. Other solutions 

proposed in a similar context are to perform the independent samples t-test on all 

observations ignoring the fact that there may be some pairs, or alternatively 

randomly pairing unpaired observations and performing the paired samples t-test 

(Bedeian and Feild, 2002). These methods distort Type I error rates (Zumbo, 

2002) and fail to adequately reflect the design. This emphasizes the need for 

research into a statistically valid approach. A method of analysis that takes into 

account any pairing but does not lose the unpaired information would be 

beneficial.  

One analytical approach is to separately perform both the paired samples t-

test on the paired observations and the independent samples t-test on the 

independent observations. The results are then combined using Fisher’s (1925) 

Chi-square method, or Stouffer’s (Stouffer, et al., 1949) weighted z-test. These 

methods have issues with respect to the interpretation of the results. Other 

procedures weighting the paired and independent samples t-tests, for the partially 

overlapping samples scenario, have been proposed by Bhoj, (1978), Kim et al. 

(2005), Martínez-Camblor, Corral, and María de la Hera (2012), and Samawi and 

Vogel (2011).  

Looney and Jones (2003) proposed a statistic making reference to the              

z-distribution that uses all of the available data, without a complex weighting 

structure. Their corrected z-statistic is simple to compute and it directly tests the 

hypothesis H0 : μ1 = μ2. They suggest that their test statistic is generally Type I 

error robust across the scenarios that they simulated. However, they only consider 

normally distributed data with a common variance of 1 and a total sample size of 

50 observations. Therefore their simulation results are relatively limited, 

simulations across a wider range of parameters would help provide stronger 

conclusions. Mehrotra (2004) indicates that the solution provided by Looney and 

Jones (2003) may not be Type I error robust for small sample sizes.  
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Early literature for the partially overlapping samples framework focused on 

maximum likelihood estimates, when data are missing by accident rather than by 

design. Lin (1973) use maximum likelihood estimates for the specific case where 

data is missing from one of the two groups. Lin (1973) uses assumptions such as 

the variance ratio is known. Lin and Strivers (1974) apply maximum likelihood 

solutions to the more general case, but find that no single solution is applicable.  

For normally distributed data, Ekbohm (1976) compared Lin and Strivers 

(1974) tests with similar proposals based on maximum likelihood estimators. 

Ekbohm (1976) found that maximum likelihood solutions do not always maintain 

Bradley’s liberal Type I error robustness criteria. The results suggest that the 

maximum likelihood approaches are of little added value compared to standard 

methods. Furthermore the proposals by Ekbohm (1976) are complex 

mathematical procedures and are unlikely to be considered as a first choice 

solution in a practical environment.  

A solution available in most standard software is to perform a mixed model 

using all of the available data. In a mixed model, effects are assessed using 

Restricted Maximum Likelihood estimators (REML). Mehrotra (2004) indicates 

that for positive correlation, REML is Type I error robust and more powerful 

approach than that proposed by Looney and Jones (2003).  

For small sample sizes, an intuitive solution to the comparison of means 

with partially overlapping samples, would be a test statistic derived using 

concepts similar to that of Zumbo (2002) so that all available data are used 

making reference to the t-distribution.  

Here, two test statistics are proposed. The proposed solution for equal 

variances acts as a linear interpolation between the paired samples t-test and the 

independent samples t-test. The consensus in the literature is that Welch’s test is 

more Type I error robust than the independent samples t-test, particularly with 

unequal variances and unequal samples sizes (Derrick, Toher and White, 2016; 

Fay and Proschan, 2010; Zimmerman and Zumbo, 2009). The proposed solution 

for unequal variances is a test that acts as a linear interpolation between the paired 

samples t-test and Welch’s test.  

Standard tests and the proposal by Looney and Jones (2003) are given below. 

This is followed by the definition of the presently proposed test statistics. A 

worked example using each of these test statistics and REML is provided. The 

Type I error rate and power for the test statistics and REML is then explored 

using simulation, for partially overlapping samples simulated from a Normal 

distribution. 
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Notation 

Notation used in the definition of the test statistics is given in Table 1. 
 
 
Table 1. Notation used in this paper. 

 

an  = number of observations exclusive to Sample 1 

bn  = number of observations exclusive to Sample 2 

cn  = number of pairs 

n1  = total number of observations in Sample 1 (i.e. n1 = na + nc) 

n2  = total number of observations in Sample 2 (i.e. n2 = nb + nc) 

X1
 = mean of all observations in Sample 1 

X2
 = mean of all observations in Sample 2 

aX  = mean of the independent observations in Sample 1 

bX  = mean of the independent observations in Sample 2 

cX1
 = mean of the paired observations in Sample 1 

cX2
 = mean of the paired observations in Sample 2 

S2

1
 = variance of all observations in Sample 1 

S2

2
 = variance of all observations in Sample 2 

aS2
 = variance of the independent observations in Sample 1 

bS2
 = variance of the independent observations in Sample 2 

cS2

1  = variance of the paired observations in Sample 1 

cS2

2  = variance of the paired observations in Sample 2 

S12  = covariance between the paired observations 

r  = Pearson’s correlation coefficient for the paired observations 

 

 
 

All variances above are calculated using Bessel’s correction, i.e. the sample 

variance with ni − 1 degrees of freedom (see Kenney and Keeping, 1951, p.161). 
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As standard notation, random variables are shown in upper case, and derived 

sample values are shown are in lower case.  

Definition of Existing Test Statistics 

Standard approaches for comparing two means making reference to the t-

distribution are given below. These definitions follow the structural form given by 

Fradette et al. (2003), adapted to the context of partially overlapping samples. 

To perform the paired samples t-test, the independent observations are 

discarded so that 

 

 1 2
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2 2

1 2 1 22
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The statistic T1 is referenced against the t-distribution with v1 = nc − 1 

degrees of freedom. 

To perform the independent samples t-test, the paired observations are 

discarded so that 
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The statistic T2 is referenced against the t-distribution with v2 = na + nb − 2 

degrees of freedom.  

To perform Welch’s test, the paired observations are discarded so that 
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2 2
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a b

X X
T

S S

n n






  

 

The statistic T3 is referenced against the t-distribution with degrees of 

freedom approximated by  
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For large sample sizes, the test statistic for partially overlapping samples 

proposed by Looney and Jones (2003) is  
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The statistic Zcorrected is referenced against the standard Normal distribution. 

In the extremes of na = nb = 0, or nc = 0, Zcorrected defaults to the paired samples     

z-statistic and the independent samples z-statistic respectively. 

Definition of Proposed Test Statistics 

Two new t-statistics are proposed; Tnew1, assuming equal variances, and Tnew2, 

when equal variances cannot be assumed. The test statistics are constructed as the 

difference between two means taking into account the covariance structure. The 

numerator is the difference between the means of the two samples and the 

denominator is a measure of the standard error of this difference. Thus the test 

statistics proposed here are directly testing the hypothesis H0 : μ1 = μ2. 

The test statistic Tnew1 is derived so that in the extremes of na = nb = 0, or 

nc = 0, Tnew1 defaults to T1 or T2 respectively, thus  

 

 1 2
new1

1 2 1 2
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The test statistic Tnew1 is referenced against the t-distribution with degrees of 

freedom derived by linear interpolation between v1 and v2 so that 
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    new1
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In the extremes, when na = nb = 0, vnew1 defaults to v1; or when nc = 0, vnew1 

defaults to v2. 

Given the superior Type I error robustness of Welch’s test when variances 

are not equal, a test statistic is derived making reference to Welch’s approximate 

degrees of freedom. This test statistic makes use of the sample variances, 2

1S  and 

2

2S . The test statistic Tnew2 is derived so that in the extremes of na = nb = 0, or 

nc = 0, Tnew2 defaults to T1 or T3 respectively, thus 
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The test statistic Tnew2 is referenced against the t-distribution with degrees of 

freedom derived as a linear interpolation between v1 and v3 so that 
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In the extremes, when na = nb = 0, vnew2 defaults to v1; or when nc = 0, vnew2 

defaults to v3. 

Note that the proposed statistics, Tnew1 and Tnew2, use all available 

observations in the respective variance calculations. The statistic Zcorrected only 

uses the paired observations in the calculation of covariance. 
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Worked Example 

An applied example is given to demonstrate the calculation of each of the test 

statistics defined. In education, for credit towards an undergraduate Statistics 

course, students may take optional modules in either Mathematical Statistics, or 

Operational Research, or both. The program leader is interested whether the exam 

marks for the two optional modules differ. The exam marks attained for a single 

semester are given in Table 2. 
 
 
Table 2. Exam marks for students studying on an undergraduate Statistics course. 

 
Student 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Mathematical Statistics 73 82 74 59 49 - 42 71 - 39 - - - - 59 85 

Operational Research 72 - 89 78 64 83 42 76 79 89 67 82 85 92 63 - 

 
 

As per standard notion, the derived sample values are given in lower case. In 

the calculation of the test statistics, 1x  = 63.300, 2x  = 75.786, 2

1s  = 263.789, 
2

2s  = 179.874, na = 2, nb = 6, nc = 8, n1 = 10, n2 = 14, v1 = 7, v2 = 6, v3 = 6, 

γ = 17.095, vnew1 = 12, vnew2 = 10.365, r = 0.366, s12 = 78.679. 

For the REML analysis, a mixed model is performed with “Module” as a 

repeated measures fixed effect and “Student” as a random effect. Table 3 gives 

the calculated test statistics, degrees of freedom and corresponding p-values. 
 
 
Table 3. Test statistic values and resulting p-values (two-sided test). 

 

 
T1 T2 T3 Zcorrected REML Tnew1 Tnew2 

estimate of mean difference -13.375 2.167 2.167 -12.486 -12.517 -12.486 -12.486 

t-value -2.283 0.350 0.582 -2.271 -2.520 -2.370 -2.276 

degrees of freedom 7.000 6.000 6.000 
 

11.765 12.000 10.365 

p-value 0.056 0.739 0.579 0.023 0.027 0.035 0.045 

 
 

With the exception of REML, the estimates of the mean difference are 

simply the difference in the means of the two samples, based on the observations 

used in the calculation. It can quickly be seen that the conclusions differ 

depending on the test used. It is of note that only the tests using all of the 

available data result in the rejection of the null hypothesis at αnominal = 0.05. Also 

note that the results of the paired samples t-test and the independent samples t-test 

have sample effects in different directions. This is only one specific example 
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given for illustrative purposes, investigation is required into the power of the test 

statistics over a wide range of scenarios. Conclusions based on the proposed tests 

cannot be made without a thorough investigation into their Type I error robustness.  

Simulation Design 

Under normality, Monte-Carlo methods are used to investigate the Type I error 

robustness of the defined test statistics and REML. Power should only be used to 

compare tests when their Type I error rates are equal (Zimmerman and Zumbo, 

1993). Monte-Carlo methods are used to explore the power for the tests that are 

Type I error robust under normality. 

Unbalanced designs are frequent in psychology (Sawilowsky and Hillman, 

1992), thus a comprehensive range of values for na, nb and nc are simulated. These 

values offer an extension to the work done by Looney and Jones (2003). Given 

the identification of separate test statistics for equal and unequal variances, 

multiple population variance parameters { 2 2

1 2,  } are considered. Correlation has 

an impact on Type I error and power for the paired samples t-test (Fradette et al., 

2003), hence a range of correlations {ρ} between two normal populations are 

considered. Correlated normal variates are obtained as per Kenney and Keeping 

(1951). A total of 10,000 replicates of each of the scenarios in Table 4 are 

performed in a factorial design. 

All simulations are performed in R version 3.1.2. For the mixed model 

approach utilizing REML, the R package lme4 is used. Corresponding p-values 

are calculated using the R package lmerTest, which uses the Satterthwaite 

approximation adopted by SAS (Goodnight, 1976). 

For each set of 10,000 p-values, the proportion of times the null hypothesis 

is rejected, for a two sided test with αnominal = 0.05 is calculated.  
 
 
Table 4. Summary of simulation parameters 

 

Parameter Values 

μ1 0 

μ2 0 (under H0); 0.5 (under H1) 

σ1
2 1, 2, 4, 8 

σ2
2 1, 2, 4, 8 

na 5, 10, 30, 50, 100, 500 

nb 5, 10, 30, 50, 100, 500 

nc 5, 10, 30, 50, 100, 500 

ρ -0.75, -0.50, -0.25, 0.00, 0.25, 0.50, 0.75 
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Type I Error Robustness 

For each of the test statistics, Type I error robustness is assessed against Bradley’s 

(1978) liberal criteria. This criteria is widely used in many studies analyzing the 

validity of t-tests and their adaptions. Bradley’s (1978) liberal criteria states that 

the Type I error rate α should be within αnominal ± 0.5 αnominal. For αnominal = 0.05, 

Bradley’s liberal interval is [0.025, 0.075]. 

Type I error robustness is firstly assessed under the condition of equal 

variances. Under the null hypothesis, 10,000 replicates are obtained for the 

4 × 6 × 6 × 6 × 7 = 6,048 scenarios where 2 2

1 2  . Figure 1 shows the Type I 

error rates for each of the test statistics under equal variances for normally 

distributed data. 
 
 

 
 
Figure 1. Type I error rates where σ1

2 = σ2
2, reference lines show Bradley’s (1978) liberal 

criteria. 

 

 
 

Figure 1 indicates that when variances are equal, the statistics T1, T2, T3, 

Tnew1 and Tnew2 remain within Bradley’s liberal Type I error robustness criteria 

throughout the entire simulation design. The statistic Zcorrected is not Type I error 

robust, thus confirming the smaller simulation findings of Mehrotra (2004). 

Figure 1 also shows that REML is not Type I error robust throughout the entire 
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simulation design. A review of our results shows that for REML the scenarios that 

are outside the range of liberal Type I error robustness are predominantly those 

that have negative correlation, and some where zero correlation is specified. 

Given that negative correlation is rare in a practical environment, the REML 

procedure is not necessarily unjustified. 

Type I error robustness is assessed under the condition of unequal variances. 

Under the null hypothesis, 10,000 replicates were obtained for the 

4 × 3 × 6 × 6 × 6 × 7 = 18,144 scenarios where 2 2

1 2  . For assessment against 

Bradley’s (1978) liberal criteria, Figure 2 shows the Type I error rates for unequal 

variances for normally distributed data. 
 
 

 
 
Figure 2. Type I error rates when σ1

2 ≠ σ2
2, reference lines show Bradley’s (1978) liberal 

criteria. 

 

 
 

Figure 2 illustrates that that the statistics defined using a pooled standard 

deviation, T2 and Tnew1, do not provide Type I error robust solutions when equal 

variances cannot be assumed. The statistics T1, T3 and Tnew2 retain their Type I 

error robustness under unequal variances throughout all conditions simulated. 

The statistic Zcorrected maintains similar Type I error rates under equal and 

unequal variances. The statistic Zcorrected was designed to be used only in the case 
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of equal variances. For unequal variances, we observe that the statistic Zcorrected 

results in an unacceptable amount of false positives when ρ ≤ 0.25 or 

max{na, nb, nc} − min{na, nb, nc} is large. In addition, the statistic Zcorrected is 

conservative when ρ is large and positive. The largest observed deviations from 

Type I error robustness for REML are when ρ ≤ 0 or 

max{na, nb, nc} − min{na, nb, nc} is large. Further insight to the Type I error rates 

for REML can be seen in Figure 3 showing observed p-values against expected p-

values from a uniform distribution. 
 
 

 
 
Figure 3. P-P plots for simulated p-values using REML procedure. Selected parameter 

combinations (na, nb, nc, σ1
2, σ2

2, ρ) are as follows; A = (5,5,5,1,1,-0.75), 
B = (5,10,5,8,1,0), C = (5,10,5,8,1,0.5), D = (10,5,5,8,1,0.5). 

 

 
 

If the null hypothesis is true, for any given set of parameters the p-values 

should be uniformly distributed. Figure 3 gives indicative parameter combinations 

where the p-values are not uniformly distributed when applying a mixed model 

assessed using REML. It can be seen that REML is not Type I error robust when 

the correlation is negative. In addition, caution should be exercised if using 

REML when the larger variance is associated with the smaller sample size. 
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REML maintains Type I error robustness for positive correlation and equal 

variances or when the larger sample size is associated with the larger variance.  

Power of Type I Error Robust Tests under Equal Variances 

The test statistics that do not fail to maintain Bradley’s Type I error liberal 

robustness criteria are assessed under H1. REML is included in the comparisons 

for ρ ≥ 0. The power of the test statistics are assessed where σ1
2 = σ2

2 = 1, 

followed by an assessment of the power of the test statistics where σ1
2 > 1 and 

σ2
2 = 1. 

Table 5 shows the power of T1, T2, T3, Tnew1, Tnew2 and REML, averaged 

over all sample size combinations where σ1
2 = σ2

2 = 1. 
 
 
Table 5. Power of Type I error robust test statistics σ1

2 = σ2
2 = 1, α = 0.05, μ2 − μ1 = 0.5. 

 

  ρ T1 T2 T3 Tnew1 Tnew2 REML 

na = nb 

0.75 0.785 0.567 0.565 0.887 0.886 0.922 

0.50 0.687 0.567 0.565 0.865 0.864 0.880 

0.25 0.614 0.567 0.565 0.842 0.841 0.851 

0 0.558 0.567 0.565 0.818 0.818 0.829 

<0 0.481 0.567 0.565 0.778 0.778 - 

na ≠ nb 

0.75 0.784 0.455 0.433 0.855 0.847 0.907 

0.5 0.687 0.455 0.433 0.84 0.832 0.861 

0.25 0.615 0.455 0.433 0.823 0.816 0.832 

0 0.559 0.455 0.433 0.806 0.799 0.816 

<0 0.482 0.455 0.433 0.774 0.766 - 

 
 

Table 5 shows that REML and the test statistics proposed in this paper, Tnew1 

and Tnew2, are more powerful than standard approaches, T1, T2 and T3, when 

variances are equal. Consistent with the paired samples t-test, T1, the power of 

Tnew1 and Tnew2 is relatively lower when there is zero or negative correlation 

between the two populations. Similar to contrasts of the independent samples t-

test, T2, with Welch’s test, T3, for equal variances but unequal sample sizes, Tnew1 

is marginally more powerful than Tnew2, but not to any practical extent. For each 

of the tests statistics making use of paired data, as the correlation between the 

paired samples increases, the power increases. 

As the correlation between the paired samples increases, the power 

advantage of the proposed test statistics relative to the paired samples t-test 

becomes smaller. Therefore the proposed statistics Tnew1 and Tnew2 may be 

especially useful when the correlation between the two populations is small. 
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To show the relative increase in power for varying sample sizes, Figure 4 

shows the power for selected test statistics for small-medium sample sizes, 

averaged across the simulation design for equal variances. 
 
 

 
 
Figure 4. Power for Type I error robust test statistics, averaged across all values of ρ 

where σ1
2 = σ2

2 and μ2 − μ1 = 0.5. The sample sizes (na, nb, nc) are as follows: 
A = (10,10,10), B = (10,30,10), C = (10,10,30), D = (10,30,30),  E = (30,30,30). 

 

 
 

From Figure 4 it can be seen that for small-medium sample sizes, the power 

of the proposed test statistics Tnew1 and Tnew2 is superior to standard test statistics.  

Power of Type I Error Robust Rests under Unequal 
Variances 

For the Type I error robust test statistics under unequal variances, Table 6 

describes the power of T1, T3, Tnew2 and REML, averaged over the simulation 

design where μ2 − μ1 = 0.5. Table 6 shows that Tnew2 has superior power properties 

to both T1 and T3 when variances are not equal. In common with the performance 

of Welch’s test for independent samples, T3, the power of Tnew2 is higher when the 

larger variance is associated with the larger sample size. In common with the 

performance of the paired samples t-test, T1, the power of Tnew2 is relatively lower 

when there is zero or negative correlation between the two populations.  
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Table 6. Power of Type I error robust test statistics where σ1

2 > 1, σ2
2 = 1, α = 0.05, 

μ2 − μ1 = 0.5. Within this table, na > nb represents the larger variance associated with the 
larger sample size, and na < nb represents the larger variance associated with the smaller 
sample size. 
 

  ρ T1 T3 Tnew2 REML 

na = nb 

0.75 0.555 0.393 0.692 0.645 

0.50 0.481 0.393 0.665 0.588 

0.25 0.429 0.393 0.640 0.545 

0 0.391 0.393 0.619 0.515 

<0 0.341 0.393 0.582 - 

na > nb 

0.75 0.555 0.351 0.715 0.589 

0.50 0.481 0.351 0.688 0.508 

0.25 0.429 0.351 0.665 0.459 

0 0.391 0.351 0.642 0.422 

<0 0.341 0.351 0.604 - 

na < nb 

0.75 0.555 0.213 0.559 0.693 

0.50 0.481 0.213 0.539 0.649 

0.25 0.429 0.213 0.522 0.62 

0 0.391 0.213 0.507 0.603 

<0 0.341 0.213 0.480 - 

 
 

The apparent power gain for REML when the larger variance is associated 

with the larger sample size, can be explained by the pattern in the Type I error 

rates. REML follows a similar pattern to the independent samples t-test, which is 

liberal when the larger variance is associated with the larger sample size, thus 

giving the perception of higher power.   

To show the relative increase in power for varying sample sizes, Figure 5 

shows the power for selected test statistics for small-medium sample sizes, 

averaged across the simulation design for unequal variances. 
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Figure 5. Power for Type I error robust test statistics σ1

2 > σ2
2 and μ2 − μ1 = 0.5. The 

sample sizes (na, nb, nc) are as follows: A = (10,10,10), B1 = (10,30,10), B2 = (30,10,10), 
C = (10,10,30), D1 = (10,30,30), D2 = (30,10,30),  E = (30,30,30). 

 

 
 

Figure 5 shows a relative power advantage when the larger variance is 

associated with the larger sample size, as per B2 and D2. A comparison of Figure 4 

and Figure 5 shows that for small-medium sample sizes, power is adversely 

affected for all test statistics when variances are not equal.  

Discussion 

The statistic Tnew2 is Type I error robust across all conditions simulated under 

normality. The greater power observed for Tnew1, compared to Tnew2, under equal 

variances, is likely to be of negligible consequence in a practical environment. 

This is in line with empirical evidence for the performance of Welch’s test, when 

only independent samples are present, which leads to many observers 

recommending the routine use of Welch’s test under normality (e.g. Ruxton, 

2006).   

The Type I error rates and power of Tnew2 follow the properties of its 

counterparts, T1 and T3. Thus Tnew2 can be seen as a trade-off between the paired 

samples t-test and Welch’s test, with the advantage of increased power across all 

conditions, due to using all available data.  
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The partially overlapping samples scenarios identified in this paper could be 

considered as part of the missing data framework and all simulations have been 

performed under the assumption of MCAR.  

The statistics proposed in this paper form less computationally intensive 

competitors to REML. The REML procedure does not directly calculate the 

difference between the two sample means, in a practical environment this makes 

its results hard to interpret. The statistics proposed in this paper also lend 

themselves far more easily to the development of non-parametric tests.  

Conclusion 

A commonly occurring scenario when comparing two means is a combination of 

paired observations and independent observations in both samples, this scenario is 

referred to as partially overlapping samples. Standard procedures for analyzing 

partially overlapping samples involve discarding observations and performing 

either the paired samples t-test, or the independent samples t-test, or Welch’s test. 

These approaches are less than desirable. In this paper, two new test statistics 

making reference to the t-distribution are introduced and explored under a 

comprehensive set of parameters, for normally distributed data. Under equal 

variances, Tnew1 and Tnew2 are Type I error robust. In addition they are more 

powerful than standard Type I error robust approaches considered in this paper.  

When variances are equal, there is a slight power advantage of using Tnew1 over 

Tnew2, particularly when sample sizes are not equal. Under unequal variances, 

Tnew2 is the most powerful Type I error robust statistic considered in this paper. 

We recommend that when faced with a research problem involving partially 

overlapping samples and MCAR can be reasonably assumed, the statistic Tnew1 

could be used when it is known that variances are equal. Otherwise under the 

same conditions when equal variances cannot be assumed the statistic Tnew2 could 

be used.  

A mixed model procedure using REML is not fully Type I error robust. In 

those scenarios in which this procedure is Type I error robust, the power is similar 

to that of Tnew1 and Tnew2. 

The proposed test statistics for partially overlapping samples provide a real 

alternative method for analysis for normally distributed data, which could also be 

used for the formation of confidence intervals for the true difference in two means.  
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Estimation of population variance in two-phase (double) sampling is considered using 

information on multiple auxiliary variables. An unbiased estimator is proposed and its 
properties are studied under two different structures. The superiority of the suggested 
estimator over some contemporary estimators of population variance was established 
through empirical studies from a natural and an artificially generated dataset. 
 
Keywords: Double sampling, study variable, auxiliary variable, chain-type, 
regression, bias, variance, efficiency 

 

Introduction 

Auxiliary information plays a role in the planning, selection, and estimation 

stages of a sample survey. Sometimes information on several auxiliary variables 

may be readily available. For instance, to study the case of public health and 

welfare of a state or a country, the number of beds in different hospitals, doctors, 

and supporting staffs may be known, as well as the amount of funds available for 

medicine. When such information is lacking, it may be possible to obtain a large 

preliminary sample in which the auxiliary variable is measured, which is the 

premise of two-phase sampling, also known as double sampling. It is a powerful 

and cost-effective technique for obtaining reliable estimates in the first phase 

sample for the unknown parameters of the auxiliary variables. 

Variation is an inherent phenomenon of nature. The use of auxiliary 

information in the estimation of population variance was considered by Das and 

Tripathi (1978), and extended by Isaki (1983), R. K. Singh (1983), Srivastava and 

https://doi.org/10.22237/jmasm/1493597340
mailto:rebamaji09@gmail.com
mailto:gnsingh_ism@yahoo.com
mailto:arnabbandyopadhyay4@gmail.com
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Jhaji (1980), Upadhyaya and Singh (1983), Tripathi, Singh, and Upadhyaya 

(1988), Prasad and Singh (1990, 1992), S. Singh and Joarder (1998), R. Singh, 

Chauhan, Sawan, and Smarandache (2011), and Tailor and Sharma (2012), among 

others. However, most of these estimators of population variance are biased and 

based on the assumptions that the population mean or variance of the auxiliary 

variables are known, which may become a serious drawback in estimating 

population parameters in sample surveys. 

Motivated with the above arguments, the objective of the present work is to 

propose an efficient and unbiased estimator of the population variance. The 

properties of the proposed estimator have been studied under two different 

structures of double sampling and results are supported with suitable simulation 

studies carried over six real datasets and an artificially generated data set. 

Formulation of the Proposed Estimator 

Consider a finite population  1 2U , , , NU U U . Let y be the character under 

study and xi, i = 1, 2,…, p, be p (non-negative integer constant) auxiliary variables, 

taking values yh and 
hi

x , respectively, for the hth unit. We define 
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are the population means of y and xi, respectively. For large N, 
2 2

y yS   and 

2 2

i ix xS   ∀i = 1, 2,…, p. 

Estimate the population variance 
2

yS  of y when the population variances 
2

ixS  

of xi (i = 1, 2,…, p) are unknown. When the variables y and the xi are closely 

related but no information is available on the population variances 
2

ixS  of xi, we 

seek to estimate 
2

yS  from a sample S, obtained through a two-phase (or double) 
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selection. In this sampling scheme, a first phase sample S' (S' ⊂ U) of size n' is 

drawn by a simple random sampling without replacement (SRSWOR) scheme 

from the entire population U and the auxiliary variables xi are observed to furnish 

the estimates of 
2

ixS  (i = 1, 2,…, p). A second phase sample S of size n (n ≤ n') is 

drawn according to one of the following rules by the method of SRSWOR to 

observe the study variable y: 

 

Case I:  The second phase sample is drawn as a subsample of the first 

phase sample (i.e. S ⊂ S'). 

Case II: The second phase sample is drawn independently of the first phase 

sample. 

Using one auxiliary variable x, Isaki (1983) suggested a ratio estimator for 
2

yS  whose two-phase sampling version may be defined as 
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The two-phase sampling version of the exponential estimator for 
2

yS  

proposed by R. Singh et al. (2011) is 
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Additional auxiliary variables which are highly correlated to the study 

variable y can be used to enhance the precision of the estimator. Motivated by 
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Chand (1975), consider a chain ratio-type estimator using information on two 

auxiliary variables x and z for estimating 
2

yS  as 
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A modified chain ratio-type estimator for 
2

yS  suggested by H. P. Singh, 

Mathur, and Chandra (2009) is 
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and β2(z) is the known population coefficient of kurtosis of the variable z. There 

may be several auxiliary information, which if efficiently utilized can improve the 

precision of the estimates. 

Motivated by the above, consider an unbiased estimator for the population 

variance 
2

yS  of the study variable y using p (non-negative integer constant) 

auxiliary variables xi (i = 1, 2,…, p) as 
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and the Ki (i = 1, 2, 3) are real scalars suitably chosen such that 

 

 
1 2 3 1K pK pK     (6) 

 

Remark 1: The estimator TRK(p) is proposed under the following conditions: 

 

i. The sum (K1 + pK2 + pK3) is one. 

ii. The weights of the linear form are chose such that the approximate bias is 

zero. 

iii. The approximate variance of TRK(p) attains minimum. 

Properties of the Estimator TRK(p) 

Noted from equation (5), the proposed estimator TRK(p) is biased for 
2

yS . 

Following Remark 1, it may be made unbiased for up to the first order of 

approximations. The variance V(.) up to the first order of approximations are 

derived under large sample approximations using the following transformations: 
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Under the above transformations, the estimator TRK(p) takes the following 

form: 
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Hence, the bias and mean square error of the estimator TRK(p) must be derived 

separately for Cases I and II of the two-phase sampling structure. 

Case I 

The second phase sample S is drawn as a subsample of the first phase sample S'. 

In this case, the expected values of the sample statistics are 

 

 

     
     

     

2 2 2 2 2 2
0 1 0 1 1 2 2

2
0 1 1 0 0 0 2 2 0 0 1 2 2

1 1 1 2 2 2 1 2 2

E , E , E

E , E , E

E , E , E

i i i i

i i i i i i i i i

i j ij i j i j ij i j i j ij i j

e f C e f C e f C

e e f C C e e f C C e e f C

e e f C C e e f C C e e f C C

 

  

  



   


   


  (8) 

 

where, for integers s, t ≥ 0, 
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Expanding the right-hand side of equation (7) in terms of the e and using the 

results from equation (8), the expression of bias and mean square error of the 

estimator TRK(p) using large sample approximations is 
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where 

 

 
2 3K K     (11) 

 

Minimization of the mean square error in equation (10) with respect to α 

yields its optimum value as 
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Substituting the optimum value of α in equation (10) we obtain the minimum 

mean square error of TRK(p) as 
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Further, from equations (11) and (12), 
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From equations (6) and (14), note that only two equations in three unknowns 

are not sufficient to find the unique values of the Ki (i = 1, 2, 3). In order to get 

unique values of the Ki, impose a linear restriction as 

 

  RKB T 0p      (15) 

 

Thus from equation (9), 
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Equations (6), (14), and (16) can be written in matrix form as 
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Solving (17), we get the unique values of the Ki as 
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From equation (18), substituting the values of (K1)opt, (K2)opt, and (K3)opt in 

equation (5) yields the optimum unbiased estimator for 
2

yS  as 
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whose optimum variance up to the first degree of approximations is given by 
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Case II 

When the second-phase sample S is drawn independently of the first-phase 

sample S'. In this case, the following expected values of the sample statistics are 
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Proceeding as in Case I, the optimum unbiased estimator for 
2

yS  is obtained as 
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with optimum variance up-to first order of approximations as 
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Remark 2: It is to be noted from equation (18) that the unique value of the 

scalars Ki (i = 1, 2, 3) involved in estimator depend on unknown population 

parameters C0, Ci, ρ0i, and ρij (i, j = 1, 2,…, p). Thus, to make the estimator 

practicable, one has to use the guessed or estimated values of these unknown 

population parameters. Guessed values of population parameters can be obtained 

either from past data or experience gathered over time; see Murthy (1967), Reddy 

(1978), and Tracy, Singh, and Singh (1996). If the guessed values are not known 

then it is advisable to use their respective sample estimates as suggested by 

Upadhyaya and Singh (1999), H. P. Singh, Chandra, Joarder, and Singh (2007), 

and Gupta and Shabbir (2008). The minimum variance of the proposed class of 

estimators remains the same up to the first order of approximations, even if 

population parameters are replaced by their respective sample estimates. 
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Empirical Investigations 

As p, the number of auxiliary variables, is a non-negative integer, therefore it is 

not practically possible to deal with the suggested estimator TRK(p) in its general 

form to carry out the numerical illustrations. Thus, for empirical investigations, 

consider TRK(p) with p = 1 and 2, where the suggested estimator TRK(p) is 

superior to t1 and t2 for TRK(1) (i.e. p = 1) and dominates t3 and t4 for p = 2. The 

performance of TRK(1) is examined under two different cases of double sampling. 

The MSEs of the estimators t1, t2, t3, and t4 and the variance of TRK(p) (for 

p = 1, 2) up to first order of approximations under both the Cases I and II of two-

phase sampling set up are presented below. 
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4 2 2
1 1 0 3 1 01

4 2 2
2 1 0 3 1 01

4 2 2 2
3 1 0 3 1 01 2 2 02

4 2 2 2
4 1 0 3 1 01 2 2 02

4 2 2 2
RK 1 0 3 01 1

4 2
RK 1 0

M( ) 1 2

1
M( ) 1 4

4

M( ) 1 2 1 2

M( ) 1 2 2

V T 1

V T 2

y

y

y

y

y

y

t S f C f C A

t S f C f C A

t S f C f C A f C A

t S f C f C A f C A

S f C f A C

S f C

 

   
 

 
   

 

     
 

     
 

       

    
 

2
2 2

01 1 02 2

3 2 2 2 2
1 2 12 2 21 1

A C A C
f

C C A C A C

 


 
   
  

  

 

where 

 

 
 

2

2
2β

z

z

S

S z
 


  

 

 

 



MAJI ET AL 

169 

Case II 
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with θ as described above. 

Numerical Illustration using Known Natural Populations 

Six natural datasets were chosen to elucidate the efficacious performance of the 

proposed estimator TRK(p) (for p = 1, 2) over the estimators stated above. The 

source of the variables y, x, and z and the values of the various parameters are 

given below. 

 

Population I:  Source: Murthy (1967, p. 288). 

y: Output. 

x: Fixed capital. 

z: Number of workers. 
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Population II:  Source: Cochran (1977, p. 182). 

y: Food cost. 

x: Size of the family. 

z: Income. 

 

Population III: Source: Anderson (1958). 

y: Head length of second son. 

x: Head length of first son. 

z: Head breadth of first son. 

 

Population IV: Source: Wang and Chen (2012, p. 39). 

y: Volume. 

x: Diameter. 

z: Height. 

 

Population V:  Source: Dobson (1990, p. 192). 

y: Survival time. 

x: White blood cell count. 

z: White blood cell count at page number 74. 

 

Population VI: Source: Sukhatme and Sukhatme (1970, p. 185). 

 

y: Area (acres) under wheat in 1937. 

x: Area (acres) under wheat in 1936. 

z: Total cultivated area (acres) in 1931. 
 
 
Table 1. Parametric values of different populations 
 

Population N θ C0 C1 C2 ρ01 ρ02 ρ12 

I 80 0.999996 1.1255 1.6065 1.3662 0.7319 0.7940 0.9716 

II 33 0.981200 1.0104 1.1780 1.0691 0.1341 0.4630 0.3905 

III 25 0.953485 1.3512 1.4295 1.2853 0.5057 0.5683 0.4213 

IV 31 0.943500 1.2634 1.2018 1.1962 0.7448 0.0547 0.3256 

V 17 0.152800 0.8351 1.4049 1.0818 -0.0144 0.4468 0.5790 

VI 34 1.000000 1.5959 1.5105 1.3200 0.6251 0.8007 0.5342 
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The values of various parameters obtained from above populations are 

presented in Table 1. 

To obtain a tangible idea about the performance of the proposed estimator 

TRK(p) (for p = 1, 2), the percent relative efficiencies (PREs) of TRK(p) (for p = 1, 

2) and other estimators were computed with respect to the sample variance  2

ys n , 

the natural estimator for 
2

yS , for both the cases of two-phase sampling set up. The 

results are demonstrated in Tables 2 and 3. 

The PRE of an estimator TRK(p) with respect to sample variance estimator 
2

ys  is defined as 
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Numerical Example using Artificially Generated Population 

Three sets of independent random numbers were generated of size N (N = 100), 

kx , ky , and 
kz  (k = 1, 2, 3,…, N) from a standard normal distribution via R. 

Motivated by the artificial data set generation techniques adopted by S. Singh and 

Deo (2003) and S. Singh, Joarder, and Tracy (2001), the following transformed 

variables of U were generated with the values of 
2 100y  , μy = 40, 2 225x  , 

μx = 50, 2 25z  , and μz = 30 as 
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PREs of different estimators for fixed and varying values of ρxy and ρxz are 

presented in Tables 3 and 4, respectively. 
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Table 2. PREs of different estimators 

 

Population Percent Relative Efficiency 

Pop. I Case I  Case II 

N n' n t1 t2 TRK(1) t3 t4 TRK(2)  t1 t2 TRK(1) t3 t4 TRK(2) 

80 65 45 103.796 160.387 160.447 120.674 120.675 170.217  * 162.396 170.389 100.937 100.937 182.593 

  

40 104.167 170.012 170.085 116.933 116.933 182.212  * 171.764 177.066 101.913 101.913 191.046 

  

30 104.691 185.605 185.703 112.068 112.068 202.155  * 186.854 188.867 103.313 103.313 206.274 

 
50 35 102.853 139.961 139.996 131.523 131.523 145.523  * 142.380 157.539 * * 166.643 

  

25 103.931 163.758 163.823 119.287 119.287 174.391  * 165.682 172.679 101.290 101.290 185.479 

  

20 104.341 174.910 174.991 115.265 115.265 188.407  * 176.515 180.635 102.376 102.376 195.613 

         

 

      Pop. II Case I  Case II 

N n' n t1 t2 TRK(1) t3 t4 TRK(2)  t1 t2 TRK(1) t3 t4 TRK(2) 

33 25 12 * * 101.492 * * 111.007  * * 101.545 * * 111.432 

  

10 * * 101.574 * * 111.665  * * 101.605 * * 111.923 

  

8 * * 101.642 * * 112.224  * * 101.66 * * 112.369 

 
15 8 * * 101.121 * * 108.079  * * 101.317 * * 109.611 

  

6 * * 101.337 * * 109.768  * * 101.441 * * 110.595 

  

4 * * 101.525 * * 111.267  * * 101.568 * * 111.622 

         

 

      Pop. III Case I  Case II 

N n' n t1 t2 TRK(1) t3 t4 TRK(2)  t1 t2 TRK(1) t3 t4 TRK(2) 

25 20 12 * 124.425 124.489 100.282 101.028 144.897  * 123.551 126.228 * * 148.651 

  

10 * 127.01 127.083 * * 150.529  * 126.351 128.074 * * 152.734 

  

7 * 129.934 130.017 * * 157.146  * 129.531 130.39 * * 158.008 

 

15 8 * 121.231 121.286 102.2 103.257 138.205  * 120.107 124.172 * * 144.22 

  

6 * 125.23 125.297 * 100.499 146.629  * 124.422 126.78 * * 149.87 

  

4 * 128.665 128.743 * * 154.24  * 128.149 129.352 * * 155.623 
 

Note: “*” indicates no gain, i.e., PRE is less than 100 
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Table 2, continued. 

 

Population Percent Relative Efficiency 

Pop. IV Case I  Case II 

N n' n t1 t2 TRK(1) t3 t4 TRK(2)  t1 t2 TRK(1) t3 t4 TRK(2) 

31 17 12 132.59 130.114 136.282 * * 113.144  104.343 157.393 157.471 * * 118.941 

  

10 145.21 141.475 150.88 100.041 103.811 117.253  118.68 164.905 166.253 103.718 106.548 121.049 

  

8 157.601 152.472 165.527 116.059 119.744 120.88  133.876 171.675 175.826 119.654 122.393 123.179 

 
12 8 129.891 127.662 133.2 * * 112.203  110.422 160.73 161.166 * * 119.847 

  

6 146.535 142.658 152.432 101.654 105.424 117.659  120.25 165.656 167.229 105.331 108.158 121.274 

  

5 155.339 150.476 162.83 112.972 116.688 120.245  131.013 170.48 174.001 116.597 119.363 122.786 

         

 

      Pop. V Case I  Case II 

N n' n t1 t2 TRK(1) t3 t4 TRK(2)  t1 t2 TRK(1) t3 t4 TRK(2) 

17 12 8 * * 100.013 * * 102.832  * * 104.438 * * 100.098 

  

7 * * 100.015 * * 103.197  * * 104.721 * * 100.104 

  

6 * * 100.016 * * 103.498  * * 104.981 * * 100.11 

 
10 7 * * 100.011 * * 102.281  * * 104.067 * * 100.09 

  

6 * * 100.013 * * 102.779  * * 104.399 * * 100.097 

  

5 * * 100.015 * * 103.197  * * 104.721 * * 100.104 

         

 

      Pop. VI Case I  Case II 

N n' n t1 t2 TRK(1) t3 t4 TRK(2)  t1 t2 TRK(1) t3 t4 TRK(2) 

34 25 12 130.044 141.943 145.778 155.47 155.47 209.612  103.4 143.687 143.736 108.245 108.245 202.714 

  

10 132.338 145.463 149.733 151.613 151.613 223.762  112.559 147.867 148.505 116.48 116.48 219.25 

  

8 134.343 148.581 153.251 148.495 148.495 237.318  120.683 151.21 152.888 123.628 123.628 235.875 

 

15 7 123.927 132.792 135.581 167.614 167.614 177.625  * 138.968 139.116 * * 188.047 

  

6 126.494 136.592 139.801 162.149 162.149 190.144  104.639 144.281 144.371 109.37 109.37 204.829 

    4 131.394 144.008 148.096 153.161 153.161 217.773  115.766 149.225 150.218 119.319 119.319 225.573 
 

Note: “*” indicates no gain, i.e., PRE is less than 100 
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Table 3. PREs of different estimators under artificially generated populations for ρxy = 0.7 

and ρxz = 0.5 
 

Artificial 
Population  Estimators 

Case I 

N n' n  
 2

y
s n  

t1 t2 TRK(1) t3 t4 TRK(2) 

100 80 55  100 * 108.8652 109.8181 * * 108.0435 

  
45  100 * 110.2873 111.4091 * * 109.3225 

  
40  100 * 110.8303 112.0177 * * 109.8100 

 
70 50  100 * 107.1820 107.9408 * * 106.5256 

  
40  100 * 109.1417 110.1271 * * 108.2923 

  
30  100 * 110.5859 111.7437 * * 109.5906 

  
Case II 

N n' n  
 2

y
s n  

t1 t2 TRK(1) t3 t4 TRK(2) 

100 80 55  100 * 105.3662 110.9395 * * 108.9443 

  
45  100 * 107.8582 111.9666 * * 109.7676 

  
40  100 * 108.8234 112.4033 * * 110.1168 

 
70 50  100 * 102.4825 109.9041 * * 108.1116 

  
40  100 * 105.8466 111.1271 * * 109.0948 

    30  100 * 108.3879 112.2033 * * 109.9569 
 

Note: “*” indicates no gain, i.e., PRE is less than 100 

 
 
Table 4. PREs of Different estimators for varying values of ρxy and ρxz 

 

  
Case I Estimators 

ρxy ρxz t1 t2 TRK(1) t3 t4 TRK(2) 

0.8 0.8 101.983 116.671 116.696 * 101.536 117.440 

 
0.6 126.096 121.277 127.007 109.818 115.747 118.407 

 
0.4 115.223 117.736 119.551 * * 109.180 

 
0.2 * 119.547 119.551 * * 111.733 

        
0.5 0.8 * * 100.349 * * 100.390 

 
0.6 * 102.123 103.171 * * 101.590 

 
0.4 * * 100.159 * * 100.227 

 
0.2 * * 102.017 * * 100.300 

        
0.2 0.8 * * 100.188 * * 100.573 

 
0.6 * * 100.033 * * 100.025 

 
0.4 * * 100.035 * * 100.351 

  0.2 * * 100.289 * * 101.920 
 

Note: “*” indicates no gain, i.e., PRE is less than 100 
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Table 4, continued. 

 

  
Case II Estimators 

ρxy ρxz t1 t2 TRK(1) t3 t4 TRK(2) 

0.8 0.8 * 119.103 132.247 * * 133.885 

 
0.6 106.535 156.666 156.841 * 101.806 136.045 

 
0.4 * 136.901 138.644 * * 116.728 

 
0.2 * 118.359 138.644 * * 121.799 

        
0.5 0.8 * * 100.596 * * 100.666 

 
0.6 * * 105.528 * * 102.740 

 
0.4 * * 100.272 * * 100.387 

 
0.2 * * 103.488 * * 100.511 

        
0.2 0.8 * * 100.321 * * 100.981 

 
0.6 * * 100.057 * * 100.044 

 
0.4 * * 100.059 * * 100.600 

  0.2 * * 100.493 * * 103.318 
 

Note: “*” indicates no gain, i.e., PRE is less than 100 

Conclusion 

For natural population datasets, Table 2 exhibits that, under different structures of 

two-phase sampling set up, our suggested estimator TRK(p) (for p = 1 and 2) is 

superior to the existing one under its respective optimality condition and also 

preferable in general situations. For fixed n' (first-phase sample size), the PRE of 

the proposed estimator is increasing with decreasing values of n (second-phase 

sample size), i.e. the smaller the second phase sample, the more efficiency in 

TRK(p) will be achieved, which reduces the cost of the survey. 

For the artificially generated data set, the results compiled in Table 3 

indicate the proposed methodology yielded impressive gains in efficiency over the 

existing methods, and same behavior in efficiency of TRK(p) was reflected, 

indicating the proposed methodology is cost-effective. 

It can also be observed from Table 4 that if several populations are 

generated artificially for various combinations of values of ρxy and ρxz, our 

proposed methodology is always preferable over the existing one. The proposition 

of the estimator in the present study is justified as it unifies several desirable 

results including unbiased and efficient estimation strategy, and may be 

recommended for practical applications. 
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The analysis of robust parameter design is discussed via a model incorporating mean-
variance relationship which, when ignored as in the classical regression approach, can be 
problematic. The model is also capable of alleviating the difficulties of the regression 
approach in the search of the minimum variance occurring region. 
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Introduction 

As part of their efforts in quality improvement, manufacturers strive to design 

products that are capable of functioning optimally under a wide range of 

environmental conditions. Instead of using more expensive parts or components, a 

more cost-effective means is to look for settings of design factors that would 

achieve this quality robustness. Specifically, this involves finding design settings 

that would minimize variance while being on target. In this regard, robust 

parameter designs have been widely used in the industry to determine the optimal 

settings of these design factors (Khuri & Mukhopadhyay, 2010; Robinson, Borror, 

& Myers, 2004). In robust parameter designs, design of experiment techniques are 

used to obtain data that are subsequently analyzed to explore the relationship 

between the quality characteristics and the levels of the design factors (Choi & 

Allen, 2009). 

Taguchi advocated the use of crossed array designs and suggested a 

convenient analysis using signal to noise ratio. However, the limitations of an 

analysis based on the “signal to noise” ratio have been pointed out by many 

researchers (Box, 1988; Barreau, Chassagnon, Kobi, & Seibilia, 1999). Various 

methods of analysis have been proposed in robust parameter designs. Vining and 

Myers (1990) suggested a dual response surface methodology in which the 

https://doi.org/10.22237/jmasm/1493597400
mailto:tak.mak@concordia.ca
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(primary) response surface of standard deviation is minimized subject to a target 

constraint based on a (secondary) response surface of the mean (see also Chan & 

Mak, 1995). 

Another common approach exploits the possible existence of mean-variance 

relationship to achieve simpler variance minimization computationally. With this 

method, the variance is assumed to be a product of a function of the mean and a 

“Performance Measure Independent of Adjustment” (PerMIA) (Box, 1988, p. 2). 

The PerMIA is a function of a proper subset of design factors (control factors) and 

the complement of this subset constitutes the subset of adjustment factors which 

influence variance only through its presence in the mean. Because of this variance 

factorization it is possible to minimize variance through the unconstrained 

minimization of the PerMIA, which is then followed by the searching of the levels 

of the adjustment variables to attain the desired target value. 

Both the dual response surface methodology and the PerMIA approach 

conduct an analysis based on the sample variance or standard deviation calculated 

from replicates at each treatment combination. For the crossed array design, the 

sample variances are calculated from observations in the outer arrays that are 

crossed with the treatment combinations or inner arrays in the experiment. The 

sample variances calculated from the outer arrays do not constitute estimates of 

variances obtained from random samples. In crossed array or combined array 

designs, the noise factors which occur randomly during the lifetime usage of the 

product are controlled and have known values in the experiment (Welch, Yu, 

Kang, & Sacks, 1990; Shoemaker, Tsui, & Wu, 1991; Mak & Nebebe, 2005). 

Thus in the design stage, roles of the design and noise factors are 

indistinguishable. In the analysis of such designs, a regression function is first 

fitted, from which the variance function is derived with respect to the randomness 

of the noise factors. Variance minimization can then be conducted based on the 

inherent variance function from this regression modeling approach. This 

regression analysis is conceptually simple and exploits the quality characteristic 

and noise factor relationships to achieve possibly greater efficiency. However, 

this regression approach has two issues to be properly addressed: First, it does not 

accommodate the possible dependency of the variance on the mean. Mak and 

Nebebe (2004) demonstrated with an example that settings determined by the 

regression approach can yield a variance that is substantially higher than the 

actual attainable optimal variance. They also proposed a new model that 

incorporates the mean-variance relation and includes the regression model as a 

special case. Second, the form of the variance function is not flexible and 

completely determined by the formulated regression model based on the 
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interactions between the control and noise variables (O’Donnell & Vining, 1997). 

It does not permit the formulation of a simple linear relationship between the 

variance and the design factors and the variance model has to be at least of the 

second order. Unfortunately, as seen in the simulation studies in this paper, this 

second order variance model in the regression approach is usually inadequate. The 

aforementioned issues in the regression approach are addressed in this study, and 

some practical recommendations are made in the light of the simulation result. 

Methodology 

Modeling Mean-Variance Relationship 

Denote by y the quality characteristic of interest. Let X1,…, Xp be p design factors 

influencing y. Suppose that there are q noise factors Z1,…, Zq, the levels of which 

are controlled in the experimenting stage. Mak and Nebebe (2004) proposed the 

following model for analyzing robust parameter designs: 

 

         1
, V , h , ,y yy e   x β x β x z θ   (1) 

 

where x = (X1,…, Xp)', z = (Z1,…, Zq)', e is the error term with variance 2

e , 

μy(x, β) is the conditional mean of y given x (with respect to the distribution of z 

and e), and β is the vector of regression parameters. Furthermore, x(1) ⊆ x is a 

subset of “control factors”, and Vλ(μy) is a scalar function with parameter λ 

specifying the dependence of the variance on the mean. It is required that 

Vλ(μy) ≡ 1 for a certain λ, say λ = 0. Because E(y) = μy(x, β), it follows that 

E(h(x(1), z, θ)) = 0, where the expectation E(∙) is taken with respect to the 

distribution of z. It follows from (1) that 

 

         2

1
Var V Var h , ,y ey    x z θ   

 

where Var is the variance operator taken with respect to the distribution of z and e, 

μy is written in place of μy(x, β) when there is no possibility of ambiguity. Because 

Vλ(μy) ≡ 1 when λ = 0, Mak and Nebebe’s model includes the situation where 

there is no mean-variance relation as a special case. It is clear that the PerMIA is 

given by 
2Var(h( )) e(1)

x ,z,θ , and x(2) = x \ x(1) is the vector of adjustment 

factors that influence the variance through its presence in the mean. Thus to 
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minimize variance around a target, one can choose levels of x(1) to minimize the 

PerMIA and then adjust the levels of x(2) to attain the desired target mean. With 

the use of PerMIA, only unconstrained minimization is needed and a change in 

the target value requires only readjustment of the levels of the adjustment factors 

(Box, 1988). In the next section, we give an algorithm for computing iteratively 

estimates of β and θ given λ. 

Box (1988) proposed a transformation approach for designs with replicates 

which can be easily extended to crossed array or combined array designs. 

Specifically, it is assumed that there exists a transformation Tλ such that 

Tλ(y) = m(x, β) + h(x(1), z, θ) + e, eliminating the dependency of the variance on 

the mean on the transformed scale. Thus      1

1
T m , h , ,y e

  x β x z θ  and to 

terms of the linear order, we have approximately, 
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1

m ,
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y e
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x β

x β x z θ   

 

which is in the form of (1). Thus we have seen that Mak and Nebebe’s model is 

approximately equivalent to Box’s (1988) transformation approach. The analysis 

conducted on the transformed scale using Box’s approach has to be followed by 

an “aim-off” analysis in order that variance be minimized on the original metric. 

Determining λ and the identification of x(1) 

From (1), if 
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1
x z θ   (2) 

 

then there is an ordinary regression model with homogeneous errors. However, if 

the λ used on the left is different from the true value of λ, say λ0, then 
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Table 1. Simulated data and mean, variance calculations 

 

    
z1 -1 1 1 -1 

  

 

  

    
z2 -1 1 -1 1 True  Sample 

x1 x2 x3 x4 z3 -1 -1 1 1 mean var  mean var 

-1 0 0 0 
 

22.2 25.1 22.5 28.0 26.2 2.5  24.5 5.5 

-1 1 1 1 
 

26.0 28.4 25.6 26.9 29.8 4.3  26.7 1.1 

-1 -1 -1 -1 
 

19.1 20.1 17.2 24.9 20.8 1.0  20.3 8.1 

0 -1 0 1 
 

9.0 10.5 10.5 10.1 9.8 0.7  10.0 0.4 

0 0 1 -1 
 

24.5 36.9 40.0 22.9 30.2 62.7  31.1 56.0 

0 1 -1 0 
 

20.4 31.0 28.7 21.1 26.0 34.7  25.3 21.6 

1 -1 1 0 
 

25.8 26.9 24.7 28.7 28.2 3.4  26.6 2.2 

1 0 -1 1 
 

19.5 18.9 19.5 20.3 19.5 0.8  19.5 0.2 

1 1 0 -1 
 

23.6 25.0 22.6 28.5 26.1 2.5  24.9 4.9 

 
 

Because μy = E(y) = μy(x, β) is a function of possibly all the design factors, the 

adjustment factors would also appear to have some influences on the variable 
*y . 

Thus the relationship between *y  and the adjustment variables will be zero only 

when the true λ is used in (2) so that the explained variation by each of these 

adjustment variables should attain its minimum at a value around the true λ. This 

fact could be exploited to determine the value of λ approximately. To illustrate 

this, consider a set of simulated data from a crossed array design involving four 

design factors and three noise factors. The inner and outer arrays are, respectively, 

L9 and L4 arrays so that the experiment consists of (9)(4) = 36 experimental runs 

crossed between the inner and outer arrays. For each experimental run, the quality 

characteristic y is simulated using the model 

 

    2

2 1 1 2 30.0024 0.003 0.001 0.002y yy u X Z Z Z e         

 

where u2(X) is the quadratic orthogonal polynomial 2 – 3X, u1(X) = X is the linear 

orthogonal polynomial, and σe = 0.003. The levels of the design and noise factors 

in the design and the simulated data are given in Table 1, along with the true 

mean μy of y for each inner array used to simulate the data. 

The mean of y for each of the nine inner arrays is simply estimated by the 

mean of the y values from the corresponding crossed outer array.  V y



    

and the true λ is equal to 4. Note the h function can be approximated by a 

quadratic function in z but the second order terms vanish since E(h(x(1), z, θ) = 0. 

If we also retain only up to the quadratic effects of the Xi on the variance, then the 

h function is approximately a linear combination 
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Figure 1. The proportion of sum of squares plot 
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of the terms. Zj, u1(Xi)Zj, u2(Xi)Zj, i = 1,…, 4, j = 1, 2, 3. Thus, even if the 

functional form of the h function is not exactly known, the suggested method can 

still be used to determine λ, though the value is only approximately unbiased. 

Also, as with any estimation procedure, the suggested method will not yield the 

true value of λ due to the randomness of the error term e. In the present example, 

the linear combination of effects described above is used as the h function in 

fitting the regression model (2) in order to determine λ. For any given λ, the linear 

regression model (2) can therefore also be fitted to the data yielding the total sum 

of squares SS(Xi) corresponding to each design factor Xi (i.e. total of the sum of 

squares for u1(Xi)Zj, u2(Xi)Zj, j = 1, 2, 3), for i = 1,…, 4. A graphical plot is 

presented in Figure 1 of P(Xi) = SS(Xi)/SST against λ for i = 1,…, 4. 

It is clear that X1 is the only control variable affecting variance and X2, X3, 

and X4 are adjustment variables. Furthermore, the value of P(Xi) is smallest when 

λ is equal to 4.7, 4.3, and 3.6 for X2, X3, and X4, respectively. The proportion of 

sum of squares 
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corresponding to all the adjustment variables X2, X3, and X4 is also plotted against 

λ in Figure 1. The value of P attains a minimum at λ = 4.2, which indicates that, 

collectively, the observed relationship between 
*y  and the variables X2, X3, and X4 

are lowest when λ is close to 4. Thus in the present example, the suggested 

method determines quite accurately the true value of λ. 

Estimation of Parameters 

Consider the iterative estimation of β and θ for given λ. Suppose there are n 

experimental runs in the experiment. Let X1i,…, Xpi and Z1i,…, Zqi be the levels of 

the design and noise factors, respectively, in the ith run. Let yi be the observed 

quality characteristic and μyi = E(yi) = μy(xi, β), where now xi = (X1i,…, Xpi)'. The 

computing of the estimates calls an external algorithm denoted, say, by 

WLS(y, X, r(∙), w, p). The input arguments y, X, r, and w of WLS represent, 

respectively, the array of values of the dependent variable, the design matrix, the 

regression function, and the array of weights. The array p holds the output 

weighted least squares estimates of the regression parameters. The algorithm for 

computing the estimates β̂  and θ̂  of β and θ is given below. 

 

Step 0. Initialize and save the starting values of β̂  and θ̂  in the arrays b0 and 

f0. 

Step 1. For i = 1 to n 

i. Read the values of xi, x(1)i, zi into the ith row of two-dimensional 

arrays XA, XA1, ZA 

ii. Next 

iii. Read the values of y into a one-dimensional array y 

Step 2. For i = 1 to n 

i. Let m = μ(xi, b0). Here xi is from the ith row of XA 

ii. Let      Vys i y i m m     

iii. Let w(i) = 1 

iv. Read x(1)i, zi into the ith row of a two-dimensional array XZA 

v. Next 

Step 3. Call WLS(ys, XZA, h(∙), w, f1). Here the regression function h is 

h(x(1)i, zi, θ) 

Step 4. For i = 1 to n 

i. Let m = μ(xi, b0). Here xi is from the ith row of XA 
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ii. Let         11
V h , ,iu i y i m  x z f . Here x(1), zi are from the ith 

row of XA1, ZA 

iii. Let w(i) = 1/Vλ(m) 

iv. Next  

Step 5. Call WLS(u, XA, µ(∙), w, b1). Here the regression function µ is 

µ(xi, β) 

Step 6. If b1 and f1 differ from respectively b0 and f0 by less than certain 

prescribed small values 

i. Then 

 Stop the program 

ii. Else 

 Let b0 = b1 

 Let f0 = f1 

 Go to Step 2 

iii. End if 

 

Let β̂  and θ̂  be the final values of b1 and f1 obtained from the iterative 

procedure. The estimate  ˆ ˆ,β θ  is a solution of the system of equations in β and θ: 
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Because the left sides of this system of equations have zero expected values, the 

estimator  ˆ ˆ,β θ  is consistent for (β, θ). 

Another method of estimation is the familiar maximum likelihood approach 

in which the error term is assumed to be normally distributed. The maximum 

likelihood estimators do not have a closed form and must be obtained numerically. 

One possibility is to use a generic search optimization algorithm, such as the 

simplex search, that does not require first or second order derivatives. It is 

however quite well-known in the regression literature that the estimation of the 

mean could be more adversely affected when the variance function is mis-

specified. In this regard, the dual response surface methodology in which separate 
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regression models are fitted with the sample means and standard deviations 

calculated from the replicates (or observations from the outer arrays) may be more 

robust in the estimation of the mean to the misspecification of the variance 

component. However, for experiments with few experimental runs and a large 

number of factors, a quadratic response surface for the variance may not be 

feasible. The estimation procedure proposed in this paper may also be adversely 

affected by the mis-specification of the h function as it also appears in the second 

estimation equation for estimating the β. 

Results: Extensions of the Classical Regression Approach 

To simplify the notation and the discussion of the classical regression (CR) 

approach and its possible ramification, assume the variance is functionally not 

dependent on the mean. In the presence of a variance-mean relationship, the 

analyses proposed here can be readily generalized to incorporate such a 

relationship using the method above. In the classical regression approach, the 

mean function μy(x, β) is usually assumed to be quadratic in form (without cross-

product terms between factors in some designs). The dependence of the variance 

on the control factors is typically introduced into the model by incorporating in 

the function h(x(1), z, θ) cross-product terms between the terms in the quadratic 

mean model and the noise factors. For example, for the orthogonal inner array L9 

used in Vandenbrande’s (1998) experiment, the mean function involves the 

saturated model: 

 

          11 1 1 12 2 1 41 1 4 42 2 4,y u X u X u X u X          x β   
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Consequently, 
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2 2

1 1 2 2

1 1

Var
je j ij i ij i z

j i

y u X u X    
 

 
    

 
    

 

where, without loss of generality, the variances of Z1, Z2, and Z3 can be taken to 

be unity. Thus under the classical regression model the fourth order of a control 

factor may be involved. If this interaction model is approximately valid and the 

variance function can be reasonably approximated by a quadratic function, then 

θij2 = 0 for all i and j and the following reduced model can be considered: 
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The variance function for this reduced model becomes: 
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3 4
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1

1 1

Var e j ij i

j i
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because u1(x) = x and 
2 1

jz  . It is clear that a major drawback of the interaction 

model is that the variance can never assume the form of a linear function of the 

control factors and is therefore not appropriate for designs used in the steepest 

descent stage for locating the region containing the optimal variance solutions. 

Proposed here is a generalization of the classical model to attain greater 

efficiency and flexibility in handling a wider range of applications. Consider the 

following functional form of the function h: 

 

 
    h , , sign ψ | ψ |j j j

j

Z1
x z θ   (3) 

 

indexed by γ, where ψj is a function of x(1) with a vector parameter θ(j). In most 

applications, we could choose ψj to be a quadratic function of x(1). When γ = 1 and 

ψj is a quadratic function, the model clearly becomes the classical regression 

model. The case γ = 0.5 is also of special interest since it yields a linear or 

quadratic approximation to the variance function depending on whether the 

functional forms chosen for ψj are linear or quadratic. 

For the analysis of crossed array designs, the dual response surface method 

(Vining & Myers, 1990) is a serious competitor to the classical regression 
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approach. In the dual response surface approach, a quadratic response surface is 

additionally postulated with the sample variance (or standard deviation) as the 

response variable. It is argued that the calculation of the sample variance for each 

inner array using the observations from the crossed outer array is not entirely 

appropriate, because they do not constitute a random sample. If 

 

     , h , ,yy e  
1

x β x z θ   

 

for any functional form of h, it is not difficult to show that an unbiased estimator 

of the variance for each inner array is indeed given by 

 

  
21 1 2a y y a 

     

 

where a is the dimension of the outer arrays (number of observations in the outer 

array). Note that the divisor in the first term is a not a – 1. Thus if σε is small, an 

approximately unbiased estimator of the variance for each inner array is given by 

the simple estimator  
21

i a y y   . 

Simulation 

Simulation studies were conducted to compare the performances of the following 

four variance estimators discussed above: 

 

1. Response surface method (RSM). The value νi is used as the response 

value of the ith inner array. A quadratic model is then fitted to this variance 

response surface. 

2. The classical regression approach (CR). 

3. The classical regression approach leading to a quadratic variance 

function (CRQV). This model includes only the cross-product terms 

between the linear effects of the design factors and the noise factors in the 

function h, which gives rise to a quadratic variance function as explained 

in the previous section. 

4. The generalized regression approach (GR) with γ = 0.5 in (3). 
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Again, the design studied in Mak and Nebebe (2004) and Vandenbrande (1998) 

were used. The means and variances used to simulate the data are given in Table 2. 

The true model used to generate the y observations is: 
 
 
Table 2. True means and variance of the model used to simulate the data 

 

x1 x2 x3 x4 True mean True variance 

-1 0 0 0 41.15 18 

-1 1 1 1 44.80 18 

-1 -1 -1 -1 35.83 18 

0 -1 0 1 24.83 7 

0 0 1 -1 45.18 7 

0 1 -1 0 41.03 7 

1 -1 1 0 43.20 8 

1 0 -1 1 34.47 8 

1 1 0 -1 41.05 8 

 
 

     , h , ,yy e  
1

x β x z θ   

 

where h is given by (3) with γ = 0.5. Here, for the simplicity of comparisons, the 

factor x1 is the only control factor appearing in the functions ψj: 

 

  1 1 2 1 2 1 3 1ψ 5 3 2 , ψ 1 , ψ 1X u X X X           

 

The standard deviation of the normally distributed error term is 2. Two hundred 

samples were simulated from the true model in the Monte Carlo studies. For each 

simulated sample, the four methods RSM, CR, CRQV, and GR are each used to 

fit a variance function. Table 3 summarizes the results for estimating the 

variances of y for X1 = -1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5. In reporting the simulation 

results, we calculate both an estimate’s relative bias (RB, defined as (mean of 

variance estimate – true variance)/true variance) and the coefficient of variation 

(CV, defined as SD of variance estimate/Mean of variance estimate). 

It is seen that in most cases, the CR and the CRQV approaches can be 

heavily biased (with RB greater than 15%) even for X1 within the boundary of the 

experimental region. The bias is particularly severe if the two approaches are used 

for extrapolating variances (X1 = -1.5 and 1.5). The two approaches have in 

general about the same CV in estimating variances. These CV of variance 

estimates are also comparable to those of the GR approaches (with the exception 
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of the case X1 = 1.5 where the GR approach has a considerably smaller CV) which 

in general has smaller biases. The RSM approach has about the same biases as 

GR and far smaller biases than CRQV in most cases. These observations suggest 

that the classical approach can be very inadequate even if the true model is 

reasonably approximated by a quadratic function. 
 
 
Table 3. Expected values and standard deviations of variance estimates obtained by 

simulations 
 

  
RSM  GR  CRQV  CR 

True 
variance 

Mean SD 
 

Mean SD 
 

Mean SD 
 

Mean SD 

x1 RB CV  RB CV  RB CV  RB CV 

-1.5 28 26.08 8.74  26.88 6.25  19.25 4.90  41.47 13.02 

  
-0.069 0.335  -0.040 0.233  -0.313 0.254  0.481 0.314 

-1.0 18 16.69 3.94  16.86 3.49  15.00 3.23  17.51 3.64 

  
-0.073 0.236  -0.064 0.207  -0.167 0.215  -0.027 0.208 

-0.5 11 10.25 2.80  10.15 2.32  11.80 2.51  8.55 2.16 

  
-0.068 0.273  -0.077 0.228  0.073 0.213  -0.223 0.253 

0.0 7 5.96 2.10  5.99 1.59  8.77 1.96  5.33 1.45 

  
-0.148 0.351  -0.145 0.265  0.253 0.224  -0.239 0.271 

0.5 6 4.84 1.93  5.02 1.61  6.88 1.81  4.63 1.36 

  
-0.194 0.398  -0.164 0.321  0.146 0.263  -0.229 0.294 

1.0 8 7.03 3.28  7.19 3.03  5.97 2.29  7.09 2.90 

  
-0.122 0.466  -0.101 0.421  -0.253 0.383  -0.114 0.409 

1.5 15 12.14 6.91  13.57 5.27  5.86 3.05  16.63 8.61 

    -0.190 0.569  -0.096 0.388  -0.609 0.521  0.109 0.518 

 
 

The simulation studies shed some light on the performance of the different 

methods in practice. Of the four approaches, the RSM is the only one that does 

not rely on the knowledge of the functional form of the function h. In fact, it does 

not even model variance involving the noise variables Z controlled in the 

experiment. It simply approximates the variance function directly with a linear or 

quadratic function of the design variables. Consequently, it does not suffer from 

the same potential model misspecification (of the variance) experienced by the 

other methods. This is consistent with the simulation results as the bias of RSM is 

seen to be generally smaller than those based on the regression approach. 

However, since the fitting relies on the sample standard deviations based on 

repeated observations, which in general have greater sampling variability, this 

robustness is achieved at the expense of an inflated variance of variance estimates 

– of the four approaches, it has substantially higher CV. For the regression 

approaches (GR, CR, CRQV), the variance parameters in θ are more efficiently 
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estimated as the regression coefficients of a mean regression model and therefore, 

as observed in the simulation studies, have smaller variances than RSM. Thus in 

practice, the regression approaches may be preferred, but caution must be taken to 

ensure the validity of the model, especially the functional form of the function h. 

The quadratic variance function of the CRQV approach is actually in the form of 

the square of a linear function and therefore does not have the same effectiveness 

in approximating h as a general quadratic function. In this regard, the extension 

suggested in the previous section, provides a more flexible and effective means of 

approximating the true h function, as demonstrated in the simulation studies 

where GR has considerably smaller biases than CR and CRQV in most cases. 

Conclusion 

Mak and Nebebe (2004) demonstrated the importance of the incorporation of the 

mean-variance relationship, if it exists, in analyzing crossed or combined array 

designs. They also proposed a model generalizing the traditional method of 

analysis. In this paper, we proposed a simple method of determining an 

appropriate mean-variance relation to be used in the model. An estimation 

procedure is also proposed for the model. With a numerical example, the 

advantages of Mak and Nebebe’s model is demonstrated in terms of variance 

minimization. In terms of robustness of mean estimation to mis-specification of 

the variance function, the dual response surface methodology is also appealing, 

though it has other limitations. It might also be interesting to modify the proposed 

estimation by modifying the second estimating equation so that the estimation of 

the regression parameter is still consistent but less adversely affected by model 

misspecification. 

The model proposed by Mak and Nebebe (2004) assumed an error term with 

homogeneous variances. In analyzing combined array designs, Engel and Huele 

(1996) considered a model in which the error terms have heterogeneous error 

variances which are functions of some of the design factors (they however assume 

Vλ(μy) ≡ 1). This generalization may also be incorporated in Mak and Nebebe’s 

model and the iterative estimation method suggested will then have to be 

modified accordingly, using traditional methods of regression analysis with 

heterogeneous variances. However, when the noise factors have already 

accounted for the majority of the unconditional variance of the quality 

characteristic so that the error term is in general small, this modification may not 

yield substantial practical differences. 
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The Mood-Westenberg and Siegel-Tukey tests were examined to determine their 
robustness with respect to Type-I error for detecting variance changes when their 
assumptions of equal means were slightly violated, a condition that approaches the 
Behrens-Fisher problem. Monte Carlo methods were used via 34,606 variations of 

sample sizes, α levels, distributions/data sets, treatments modeled as a change in scale, 
and treatments modeled as a shift in means. The Siegel-Tukey was the more robust, and 
was able to handle a more diverse set of conditions. 
 
Keywords: Behrens-Fisher, Mood-Westenberg, Siegel-Tukey 

 

Introduction 

“Heteroscedasticity, refers to situations where two or more of the variances are 

unequal” (Wilcox, 1996, p. 174). The applied statistical literature is vast on how 

poorly the t and F tests perform under this condition. For instance, it has been 

demonstrated that small sample sizes, unequal sample sizes, and one-tailed tests 

can be problematic for the t-test with respect to heteroscedasticity and non-normal 

data (Sawilowsky & Blair, 1992; Wilcox, 1996; Sawilowsky, 2002). With respect 

to the Analysis of Variance (ANOVA) F test, the problem is even worse (Brown 

& Forsythe, 1974; Rogan & Keselman, 1977; Tomarken & Serlin, 1986). Wilcox 

(1996) stated “our hope is that any problem associated with unequal variances 

might diminish when there are more than two groups, but the reverse seems to be 

true” (p. 180). Referring to the ratio (R) of standard deviation between groups in a 

survey of educational studies, Wilcox (1996) “found that that estimates of R are 

https://doi.org/10.22237/jmasm/1493597460
mailto:lclowenstein@gmail.com
mailto:professorshlomo@gmail.com
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often higher than 4” (p. 180; see Wilcox, 1989), noting R’s as large as 11 were 

observed in real world data applications. 

Keppel and Wickens (2004) noted “the actual significance level could 

appreciably exceed the nominal α level when the group variances were unequal. 

Under these circumstances, we need a way to adjust or modify our analysis” (p. 

152). Hence, inflated Type-I errors lead to pronouncements of the statistical 

significance of nonsense treatments. 

Under the truth of the null hypothesis, the counter-argument is having equal 

means with unequal variance is unrealistic (see, e.g., Sawilowsky, 2002). “That is, 

this situation will never arise in practice because if the variances are unequal, 

surely the means are unequal, in which case a Type-I error is not an issue” 

(Wilcox, 1996, p. 180). The condition of unequal variances between groups is 

known as the Behrens-Fisher problem, named after the work of W. V. Behrens 

(1929) and Sir Ronald A. Fisher (1935, 1939) who developed the first expression 

and approximate solution. Sawilowsky (2002) noted the Behrens-Fisher problem 

“arises in testing the difference between two means with a t test when the ratio of 

variances of the two populations from which the data were sampled is not equal to 

one” (p. 461), and of course expands to layouts with more than two groups. 

When the null hypothesis is false, another problem with heteroscedasticity is 

the t, F, and other parametric tests’ concomitant lack of comparative statistical 

power. Wilcox (1996) mentioned “there is evidence that problems with Type-I 

errors with unequal variances reflect undesirable power properties even under 

normality (Wilcox, Charlin, & Thompson, 1986; Wilcox, 1995)” (p. 180), noting 

“the power curve might be unusually flat in a region near the null hypothesis 

(Wilcox, 1995)” especially when the data are skewed (Wilcox, 1996, p. 181). 

There are situations where the null hypothesis is false, yet the probability of 

rejecting the null hypothesis is less than α. In this case, small but possibly 

important treatment effects might be missed. 

Sawilowsky and Fahoome (2003) noted non-homogeneity renders most 

rank-based non-parametric tests even more so ineffective. For example, the 

Wilcoxon Rank Sum test (Wilcoxon, 1945), which is three to four times more 

powerful than the t test under common conditions of non-normality due to skew, 

fares even worse when the treatment impacts scale. Similarly, Sawilowsky (2002) 

noted “for the case of K ˃ 2, Feir-Walsh and Toothaker (1974) and Keselman, 

Rogan, and Feir-Walsh (1977) found the Kruskal-Wallis test (Kruskal & Wallis, 

1952) and expected normal scores test (McSweeney & Penfield, 1969) to be 

‘substantially affected by inhomogeneity of variance’” (p. 463). 
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Change in Scale 

There are no exact solutions to the Behrens-Fisher problem. According to Wilcox 

(1996) and Sawilowsky (2002), the non-parametric Yuen solution (Yuen, 1974), 

with various modifications, is considered as one of the best approximate solutions. 

Moreover, methods designed for the purpose of detecting scale or variance 

changes between sample groups with regard to the level of heteroscedasticity 

necessary to invoke the Behrens-Fisher problem have been generally overlooked 

in the applied statistical literature. With respect to the often-cited classical 

Hartley’s (1950) F-statistic for determining dispersion (variance) differences as a 

preliminary test, for example, Sawilowsky (2002) noted the deleterious nature of 

sequential testing that increases the Type-I error rate. Keppel and Wickens (2004) 

noted the additional problem of non-normality can greatly impact that F-statistic 

for variance difference detection: 

 

Unfortunately, in spite of its simplicity and of the fact that it is 

provided by many packaged computer programs, the F max statistic is 

unsatisfactory. Its sampling distribution, as reflected in the Pearson-

Hartley tables, is extremely sensitive to the assumption that the scores 

have a normal distribution. (p. 150) 

 

According to Neave and Worthington (1988), there were no satisfactory 

nonparametric tests that could determine the potential of unequal variances 

irrespective of whether there was also a shift in location. They noted the Mood-

Westenberg dispersion test (Westenberg, 1948; Mood, 1950), a non-parametric 

test based on quartile location and Fisher exact probabilities, determined 

differences in variances under the assumption that the means of two samples are 

equal, but stopped short of recommending it as a preliminary test for detecting the 

Behrens-Fisher condition. 

Similarly, Neave and Worthington (1988) noted the Siegel-Tukey test 

(Siegel & Tukey, 1960), another ordinal non-parametric test based on rankings 

and Mann-Whitney-U probabilities, assumes roughly equal means/medians for 

detecting variance differences between groups. They bemoaned the absence of 

detection methods for this condition: 

 

Several attempts have been made to solve the problem, but all 

resulting tests suffer from being rather un-powerful or not truly 

distribution-free or both….It is particularly unfortunate that there 

appears to be no good distribution-free solution to this problem since 
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several researchers have shown that non-normality can upset the 

behavior of the F-statistic to a very considerable extent. (p.135) 

 

The question arises, therefore, if there are no tests that can detect the 

occurrence of different variances irrespective of means, then how can it be known 

if heteroscedasticity or the Behrens-Fisher problem arises so as to be alerted to the 

need to subsequently apply any of the myriad approximate solutions? 

Purpose of the Study 

There are no early warning or detection systems indicating the Behrens-Fisher 

condition exists. The Mood-Westenberg and Siegel-Tukey tests appear promising 

to fill that need in the statistical repertoire in applied data analysis. In the two 

group layout, both tests assume equal means (or medians) and µ1 = µ2 (or θ1 = θ2). 

The null hypothesis (H0) is the variances are equal. The alternative hypothesis 

(HA) is that the variances are not equal. The purpose of this study, therefore, is to 

examine via Monte Carlo methods their Type-I error rates and comparative 

statistical power properties as the treatment condition approaches the Behrens-

Fisher problem, in order to determine if either test can be used as an early warning.  

Methodology 

Monte Carlo Methods 

An Absoft Pro Fortran (version 14.0.4) program with the IMSL Fortran 

Numerical Library (version 7.0) was coded to randomly select and assign values 

to simulated control and treatment groups through sampling with replacement. 

Rangen 2.0 subroutine (Fahoome, 2002), a 90/95 update to the Fortran 77 version 

(Blair, 1987), was used to generate pseudo-random numbers from the normal and 

theoretical distributions. Realpops subroutine 2.0 (Sawilowsky, Blair, & Micceri, 

1990) was used to generate pseudo-random samples obtained from real education 

and psychology populations. 

For the Mood-Westenberg code, duplicates found in the control (A) and 

treatment groups (B) were coded to layout the groups as ABABABAB until all 

duplicates were accounted for; this method was selected as reasonable because 

this pattern appears to be unbiased for both groups (the pattern could favor either 

A or B in the extreme quarters depending upon the random variates sampled). 

Algorithm AS 62 (Dinneen & Blakesley, 1973) was used to calculate the Mann-
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Whitney exact probabilities for the Siegel-Tukey test.1 When sorting was required, 

the Recursive Fortran 95 quicksort routine that sorts real numbers into ascending 

numerical order was used.2 

There were 34,606 combinations of study parameter conditions employed, 

based on 11 sample sizes, two α levels (0.05, 0.01) (four levels, including 0.025 

and 0.005 were calculated and reviewed in preliminary testing), 11 mathematical 

distributions and real world data sets, 11 variance changes and 13 small means 

shifts. Independent sample sizes included (n1, n2) = (5, 5); (5, 15); (10, 10); 

(10, 30); (15, 45); (20, 20); (30, 30); (30, 90); (45, 45); (65, 65); (90, 90). They 

were generated from three theoretical distributions (normal, exponential, uniform), 

and eight real world education and psychology data sets identified by Micceri 

(1986, 1989). The data sets were described as smooth symmetric, extreme 

asymmetric (growth), extreme asymmetric (decline), extreme bimodality, 

multimodality and lumpy, discrete mass at zero, discrete mass at zero with gap, 

and digit preference (see Sawilowsky & Blair, 1992). The use of real data sets in 

addition to data generated from mathematical models was deemed important in 

rigorous systematic studies by Bradley (1978) and many others. 

Next, the means and variances were modified, beginning with no treatment 

effect via equal means to establish baseline results. Then, treatment effects of 

location shifts were gradually increased in small magnitudes, thus increasingly 

violating the statistical assumption of both tests. Type-I (identifying a variance 

change when none occurred) and Type-II (not finding a true variance change) 

error rates under the violations were compared to the counterfactual conditions of 

equal means. 

Type-I and -II Errors 

In order to determine robustness measures with respect to Type-I and -II errors, 

the long-run average rejection rates were calculated after executing 100,000 

iterations for each study condition. A counter was incremented for statistically 

significant iterations. The counter totals were reported as rejection percentages 

(counter total/100,000). Thus, the long-run averages for the p rejection rate, β 

rejection rate, and power levels (1 – β) were determined. 

                                                           
1 Additional code was provided by Miller, retrieved from http://lib.stat.cmu.edu/apstat/62 
2 Quicksort routine algorithm provided by Rew with additions from Brainard, retrieved from 

http://www.fortran.com/qsort_c.f95 

http://lib.stat.cmu.edu/apstat/62
http://www.fortran.com/qsort_c.f95
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Robustness Results 

A robust test maintains Type-I and -II error rates in light of assumption violations. 

Bradley’s (1978) liberal limits for Type-I errors of 0.5α ≤ Type-I error ≤ 1.5α was 

adopted. 

Asymptotic and exact probabilities were invoked for each test during 

preliminary testing. For the Mood-Westenberg test, the Chi-squared (asymptotic) 

and Fisher exact probabilities were selected. For the Siegel-Tukey test, Z-scores 

(asymptotic) and Mann-Whitney (exact) probabilities were selected. Based on the 

results for the primary testing, only the asymptotic probabilities were reported 

because the two probabilities for each statistic were found to track closely to each 

other. Two α levels, 0.05 and 0.01, were reported during the primary testing (four 

levels, including 0.025 and 0.005, were calculated and reviewed in preliminary 

testing). 

Simulating Location Shifts and Scale Changes 

A treatment was modeled as a shift in location, by multiplying a constant 

c = 0.01-0.12 (0.01) by the distribution’s σ. For example, the standard deviation of 

the smooth symmetric data set was 4.91. Therefore, a treatment effect of 

0.1σ = 0.491 was added to the treatment variates. Cohen (1988) suggested 0.2(σ) 

represents a small treatment effect, 0.5(σ) a moderate treatment effect, and 0.8(σ) 

a large treatment effect. On the basis of personal communications with Cohen, 

Sawilowsky (2009) updated Cohen’s de facto standards to also define 

d(0.01) = very small, d(1.2) = very large, and d(2.0) = huge. The focus of this 

study, based on Sawilowsky’s (2009) standard, was to review only small shifts 

(c << 0.2), and therefore the effect sizes of shift in location selected were 0-

0.12σ (0.01), d = 0 representing the baseline. 

A treatment was modeled as a change in scale by multiplying a constant 

scale shift of K = 1 – 3.5 (0.25) by the random variates of the treatment group 

after they were centered around zero for both groups by subtracting the 

distribution mean from the variates; this sets the standard deviation of the control 

group, over the long run, to approach a normal curve having a variance of 1. 

Heteroscedasticity is simulated when R, representing the variance ratio difference 

between the treatment group and the control group, is not equal to 1. K2, the new 

simulated variance of the treatment group, is the ratio difference, R, between the 

post-test treatment and control groups. 

It was expected that with ratio variance differences from 1.56 (K = 1.25) to 

12.25 (K = 3.5) (with K increments of 0.25 for K), the alternative hypothesis (H1) 
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would be accepted. When the ratio of the variances between the treatment and 

control groups was equal to 1 (K = 1), the condition of equal variances, then the 

null hypothesis (H0) was expected to be retained (i.e., fail to reject). These 

variance ratio differences are consistent with Brown and Forsythe (1974), who 

reported standard deviation ratio differences of 3 and found concomitant 

unacceptably high Type-I error rates, and Wilcox (1989), who surveyed the 

literature and found estimates of standard deviation ratio differences are often 

higher than 4, and sometimes even as large as 11. 

Results 

Simulating No Research Treatment Effects with Equal Means 

Assumption in Place 

Demonstration of Adequacy of Algorithms used in this Simulation: Type-I error 

for Normal Distribution, Means and Variances are Equal 

To demonstrate the adequacy of the algorithms used in this simulation, 

preliminary testing with data sampled from the Gaussian distribution, with equal 

mean and variances, was performed for all of sample sizes (Table 1). The 

minimum and maximum asymptotic upper tail rejection rates for α set at 0.05, 

0.025, 0.01, and 0.005 for Mood-Westenberg (Chi-squared) were 0.022-0.080, 

0.008-0.033, 0.004-0.033, and 0.000-0.016 respectively. For the Siegel-Tukey (Z-

scores) they were 0.044-0.058, 0.016-0.027, 0.004-0.010, and 0.000-0.005, 

respectively. The exact rates tracked close to the associated asymptotic 

probabilities for both statistics. Exact rates for Mood-Westenberg (Fisher exact) 

were 0.016-0.072; 0.008-0.033; 0.000-0.020; and 0.000-0.008, and for Siegel-

Tukey (Mann-Whitney-U) were 0.044-0.050; 0.016-0.025; 0.008-0.010; and 

0.004-0.005. The rejection range was larger for Mood-Westenberg. Additional 

testing for all equal sample sizes (n1, n2) = (5, 5) to (200, 200) yielded robust rates 

for both statistics (Table 2). 

For all sample sizes and α levels, Siegel-Tukey’s rejection rates for 

asymptotic and exact probabilities tracked closer to nominal α as compared with 

the performance of the Mood-Westenberg Chi-squared and Fisher exact 

probabilities. It appeared that the latter test’s Type-I error rates were dependent on 

the sample size, and it tracked in an unusual and repeating saw-tooth-like pattern 

as equal sample sizes were increased by 1 from (5, 5) to (200, 200) at 10,000 

iterations (Figures 1 and 2). 
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The Mood-Westenberg Type-I Fisher exact error rates were occasionally 

nearly as high as 10% when nominal α was 5%, and 2.4% when nominal α was 

1%. Thus, the Mood-Westenberg was observed as an inconsistent test because it 

did not fit the expected pattern for the Type-I rejection rates to approach nominal 

α level and remain steadfast as the sample size increased. Instead, it moved in and 

out of threshold defining robustness as the sample sizes increased. This may be 

due to the instability of the sampling distribution of the median. See Figures 3 and 

4 for Siegel-Tukey results. 

 

Type-I Error: All Distributions/Data Sets, Means and Variances are Equal 

At large and equal sample sizes ((45, 45) and above), both statistical tests 

generally demonstrated robust Type-I rates for the distributions and data sets. 

Conservative non-robust rate exceptions were noted for discrete mass zero with 

gap, extreme asymmetric decay, and extreme bimodal data sets (Table 3). 

However, these conservative non-robust rates suggested unlikely pronouncements 

of false positives when determining variance change in research settings; hence, at 

this initial stage, each statistic remained viable candidates to provide robust and 

powerful heteroscedasticity detection with large and equal sample sizes. 

With respect to smaller and unequal sample sizes, Mood-Westenberg 

demonstrated both liberal and conservative non-robust rates for the 

distributions/data sets while Siegel-Tukey maintained the same robust rates (and 

conservatively non-robust for the three data sets mentioned above in Table 3) at 

all sample sizes except for the smallest sample size of (5, 5) where a few more 

non-robust conservative rates surfaced for other distributions/data sets at α below 

5%. At this point, Siegel-Tukey appeared a more consistent statistic for small and 

unequal sample sizes with respect to Type-I rates. 

 

Type-II Error: All Distributions/Data Sets, Means are Equal and Variances 

Change (Classical Behrens-Fisher) 

For this phase of testing, in order to provide more stability for Mood-Westenberg, 

the testing occurred only with the large sample size (90, 90) to observe effects of 

variance changes simulated with the constant K = 1.25-3.5 (0.25). Both statistics 

were powerful (73-100%) for data sampled from the conservatively non-robust 

data sets discrete mass zero/gap, extreme asymptotic decay, and extreme bimodal, 

starting with the smallest variance change when K = 1.25 (Table 4; grey shaded 

area = 100% power). As to be expected, each statistic demonstrated increases in 

power as the α levels and variance ratio increased. Strong power for these data 

sets, with conservative Type-I rates, continued to affirm both statistics as potential 
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detection tools; these statistics did not lack for power with these data sets. Siegel-

Tukey demonstrated consistent power for these data sets at or above 99% while 

Mood-Westenberg recorded the same and lower power rates for extreme bimodal 

(73-90%) when K = 1.25. 

For the other data sets and distribution at sample size (90, 90) (previously all 

shown to demonstrate robust Type-I error rates), power was lower as compared to 

the conservatively non-robust data sets mentioned above, yet still good, for both 

test statistics, particularly for K = 1.5 and above. For Mood-Westenberg, power 

increased dramatically and quickly, doubling or tripling as variance changed from 

K = 1.25-1.5 (Table 5) for these other data sets/distributions. For Siegel-Tukey, 

the power also increased quickly, but not as dramatically as Mood-Westenberg 

because the Siegel-Tukey power rates started off higher at lower K constants. 

In general, both statistics demonstrated power approaching 40% or higher 

early on (K = 1.25-1.5, larger α). Siegel-Tukey demonstrated power levels equal 

to or greater than Mood-Westenberg, sometimes 20-40% higher than Mood-

Westenberg with smaller variance changes, as demonstrated in Table 4. For 

instance, at the smallest change of K = 1.25, α = 0.05, Siegel-Tukey’s power rate 

for smooth symmetric asymptotic was 0.550 compared to Mood-Westenberg 

at .165. When α equaled 0.01, Siegel-Tukey’s rate was 0.288 as compared to 

Mood-Westenberg’s rate at 0.061. When the variance change level was K = 1.5 

(Table 5), most α levels yielded power of 40-100%, generally, for all distributions 

and data sets, for both statistics. 

The Siegel Tukey asymptotic and exact probabilities (at α = 0.05, 0.025, 

0.01, and 0.005) consistently demonstrated equal or greater power rates than the 

Mood-Westenberg probabilities at every comparison point (α and K’s) with all 

distributions/data sets. Both probability measures for Siegel-Tukey quickly 

approached 100% power, generally arriving with K = 2-2.25 (Table 6); Mood-

Westenberg arrived at near 100% with K = 2.75-3.0. Siegel-Tukey reached power 

of nearly 90% and above at all α levels at K = 1.75, whereas Mood-Westenberg 

did not reach these levels until K = 2.25 (Table 6). As to be expected, power 

increased for both statistics as variance change and α levels increased, and 

therefore these preliminary tests demonstrated that each statistic is robust and 

powerful, in general, when their mutual assumptions of equal means/medians in 

place. However, Siegel-Tukey generally appeared more powerful than Mood-

Westenberg after this testing phase. 
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Simulating Research Treatment Effects by Violating the Assumption 

of Equal Means 

At this point, attention was turned to the primary focus of the study: would the 

Mood-Westenberg and the Siegel-Tukey tests remain robust with respect to Type-

I and Type-II rejection rates under conditions of simulated treatment effects (i.e., 

the means began to shift slightly, violating the statistical assumptions). 

Preliminary testing results of 10,000 means shifts from 0.00001 to 0.1 (0.00001) 

suggested an appropriate mean shift range, useful for testing, would be 0.01-

0.12 (0.01). 

To determine the properties for each statistic after sampling from the 

thousands of combination of populations, sample sizes, means shifts, variance 

change, and α levels, it would be necessary to review all output, particularly with 

respect to the smaller and unequal sample sizes. However, general conclusions are 

made and presented here for both statistics, with respect to whether the 

mathematical distributions and real-world data sets could be characterized as a 

normal type distribution (e.g., unimodal shape, asymptotic light tails, symmetric 

about the means) or not. Normal type distributions are discussed as a group and 

include: normal, digit preference, discrete mass zero, smooth symmetric, and 

uniform. Non-normal type distributions, discussed as a group, include: extreme 

asymmetric growth, extreme asymmetric decay, extreme bimodal, and discrete 

mass zero with gap. Having demonstrated unique outcomes, exponential and 

multi-modal lumpy are discussed separately. 

With minor exceptions for the exponential and multi-modal lumpy, general 

conclusions for the distributions and data sets were not greatly affected by the 

range of the tested means shift levels 0.01-0.12 (0.01); therefore, conclusions for 

particular distributions and data sets will generally hold for all of the tested means 

shift levels, especially for larger sample sizes and α levels of 0.05. When 

robustness was present, larger α levels (0.05), larger and equal sample sizes and 

larger variance change levels rendered testing measurements more robust and 

powerful for each distribution and data set. 

 

Type-I Rejection Rates: For All Distributions/Data Sets, Variances are Equal 

The statistics were first tested with slight means shifts, 0.01(σ)-0.12(σ) (0.01), 

when simulating post-test equal variance outcomes. Typical results are noted in 

Table 7 for sample size (90, 90) and mean shift at c = 0.06. The expectation was 

that nominal α rejection rates would hold when the means began to shift. Mood-

Westenberg, for most normal type distributions (e.g., digit preference, normal, 

smooth symmetric, uni), particularly for large sample sizes (i.e., (20, 20); 
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(30, 30); (30, 90)), maintained generally robust (and conservative non-robust) 

rejection rates at all of the tested means shifts with some slightly liberal rate 

exceptions at some small and small/unequal sample sizes or sometimes at 1% α. 

As noted with sample size (90, 90), in Table 7, the normal type discrete mass zero, 

sometimes demonstrated small liberal, non-robust rates but robust rejection rates 

were noted for many other sample sizes, particularly when nominal α was 5%. 

However, analyzing non-normal distributions (asymmetric growth, discrete mass 

zero with gap, extreme asymmetric decay, extreme bimodal), Mood-Westenberg, 

for both asymptotic and exact probabilities at the large sample size (90, 90), 

calculated many extremely liberally non-robust rejection rates even at the smallest 

incremental level of 0.01. The test results from data sampled from multi-modal 

lumpy demonstrated liberal non-robust rejection rates generally at and above 

means shift c = 0.09 for some sample sizes, such as (90, 90), and was robust for 

many other sample sizes. Results from data sampled from the exponential 

distribution demonstrated robust rates up to means shifts of 0.06 when, for 

instance, for sample size (65, 65) or (90, 90) (Table 7), for nominal α below 2.5%, 

the rejection rates started to trend above nominal α levels in the liberal direction, 

increasing in slight liberalness with each increase in means shift. Starting with 

mean shift c = 0.07 and above, under Mood-Westenberg, the test results 

demonstrated that the exponential distribution was liberally non-robust at all α 

levels for sample size (90, 90). Other sample sizes for exponential also reflected 

this pattern. Generally, the non-robust Mood-Westenberg results for the 

exponential distribution were in the liberal direction. 

With respect to the Siegel-Tukey statistic, at sample size (90, 90) and mean 

shift c = 0.06, (Table 7), for both asymptotic and exact probability measures and 

for all other means shifts, testing revealed robust rates for the data sampled from 

all of the normal type distributions (digit preference, discrete mass zero, normal, 

smooth symmetric, and uniform). This robust rejection rate pattern was also 

demonstrated at most small and small/unequal sample sizes, unlike Mood-

Westenberg. Similar to the Mood-Westenberg, as the means shifted, non-robust 

results were detected for the data sampled from most non-normal type 

distributions (including asymmetric growth, discrete mass zero with gap, extreme 

asymmetric decay); however, unlike Mood-Westenberg, all indicators of these 

non-robust measures were in the conservative direction except the liberal rates 

found with the test results from asymmetric growth. 

A particularly strong and unique outcome for Siegel-Tukey was noted for 

the non-normal extreme bimodal data set. At sample size (90, 90), Siegel-Tukey, 

unlike Mood-Westenberg, demonstrated robust measures at virtually all means 



MOOD-WESTENBERG AND SIEGEL-TUKEY TESTS 

206 

shifts for extreme bimodal (slight liberal exceptions were noted at 0.5% α level 

when means shift was at c = 0.02, 0.03, and 0.1). This strong robust rejection 

pattern for all means shifts was also noted in the data sampled from the extreme 

bimodal data for all equal sample sizes and for unequal sample sizes when α was 

0.05. 

Results demonstrated that the data sampled from the multi-modal lumpy 

data set was robust at lower means shifts but began to show conservative non-

robust measures at means shifts generally at and above 0.09 for sample size 

(90, 90). However, many other sample sizes were robust at all means shifts. 

Results for data sampled from the exponential distribution became conservatively 

non-robust at means shift of c = 0.03 at sample size (90, 90). This was a general 

pattern for other large and equal sample sizes, although some smaller and unequal 

sample sizes maintained robust rates at higher mean shifts. 

Siegel-Tukey’s conservative non-robust rate exceptions, for non-normal 

distributions, multi-modal lumpy, and exponential, were deemed positive 

outcomes because this condition would obviate large pronouncements of 

nonsense variance changes. It did not demonstrate sample size instability that 

seemed pervasive throughout the study for Mood-Westenberg. At this point, after 

demonstrating large liberal rejection rates as the means shifted slightly with the 

non-normal type distributions, the Mood-Westenberg necessarily dropped out of 

consideration as a method to detect variance changes with respect to these 

distributions/data sets (though it maintained viability for exponential distributions 

and multi-modal lumpy data sets at lower means shift levels); however with the 

exception of the asymmetric growth data set, which measured liberal rejection 

rates, Siegel-Tukey demonstrated robust and conservatively robust rejection rates 

and thus continued as a viable instrument to detect heteroscedasticity for all other 

distributions/data sets provided power could be demonstrated next as the variance 

began to change. 

 

Type-II Rejection Rates: For All Distributions/Data Sets, Variances are 

Unequal 

During the final phase of the primary study, as assumptions were violated and 

variance changes simulated, the investigation focused upon reporting Mood-

Westenberg and Siegel-Tukey asymptotic probabilities (Chi-squared and Z-scores, 

respectively) with nominal α of 0.05 and 0.01. The expectation was that power 

levels of at least 40% would be generally demonstrated. 

With respect to the normal type distributions, both statistics generally 

demonstrated at least 40% power for all means shifts and variance changes for 
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large samples sizes (i.e., (30, 30) and (30, 90)), especially for α = 0.05. Power (at 

sample size (30, 30) and above) approached 40% generally around variance 

change with K = 1.75-2 for α 0.05 and 0.01. For these normal type distributions, 

Siegel-Tukey typically demonstrated 40% power starting at smaller sample sizes 

(sample size (20, 20); Table 8) and often at lower levels of K changes (K = 1.5; 

Table 9) as compared to Mood-Westenberg (see also sample size (20, 20), 

uniform, for Siegel-Tukey’s superior power; Table 10). Power for each statistic 

was shown to increase as α, variance, and sample size increased as demonstrated 

when the uniform sample size increased from (20, 20) (Table 10) to (45, 45) 

(Table 11) to (65, 65) (Table 12). While there were power improvements for both 

statistics as these parameters increased, Siegel-Tukey always demonstrated 

greater (or equal) power as compared to Mood-Westenberg at each point of 

comparison, sometimes yielding 20-40% more power at lower variance change 

levels. 

For data sampled from non-normal distributions, both statistics reported 

much larger rejection rates as compared to the normal types when the variance 

changed and means shifted. This high rejection rate, starting from the smallest 

constant K = 1.25-3.5 (0.25), is reported for the representative data set, discrete 

mass zero with gap at sample sizes (45, 45) (Table 13). However, these large 

power rate results for the data sampled from non-normal distributions under 

Mood-Westenberg were meaningless due to the large liberal rejection rates noted 

for these when the variances were equal at K = 1 (see also large rate rejections 

0.991-1 for discrete mass zero with gap and asymmetric decay in Table 7, at 

sample size (90, 90) when variances were equal). 

However, given the conservative Type-I rejection rates (0.000) 

demonstrated when variances were equal for Siegel-Tukey, the large power it 

reported as variances changed is meaningful and impressive. For both small (e.g., 

(10, 10); Table 14) and large (e.g., (45, 45); Table 13) sample sizes, the Siegel-

Tukey results for non-normal distributions, with the exception of asymmetric 

growth with many liberal Type-I rejection rates, had significant power that 

quickly approaching 99% at even the lowest levels of variance change (see also 

extreme bimodal; Table 15). For these non-normal power rates, a desired more 

gradual increase in power for Siegel-Tukey might have been demonstrated at 

lower levels of variance change between K = 1 and 1.25, but these levels were not 

tested. An impressive power finding was noted for the extreme bimodal data set 

under the Siegel-Tukey statistic, wherein the Type-I rejection rates were generally 

robust (instead of conservatively non-robust as Siegel-Tukey demonstrated with 

other non-normal distributions), particularly when sample sizes were equal (Table 



MOOD-WESTENBERG AND SIEGEL-TUKEY TESTS 

208 

7) and for unequal samples sizes when α = 0.05. These robust findings, together 

with the high power noted in Table 15, renders the Siegel-Tukey test particularly 

useful in research settings where extreme bimodal data sets are common. 

Finally, the results for both statistics with the data sampled from multi-

modal lumpy and exponential demonstrated at least 40% power with large sample 

sizes (generally (30, 30), and above, including (30, 90)), especially when α = 0.05. 

For Mood-Westenberg these results were attained typically at K = 1.5; for Siegel-

Tukey at the lower K = 1.25. For the multi-modal lumpy data set with α = 0.05 

and the smallest variance change K = 1.25, 40% power was generally attained 

when sample size was (65, 65) for Mood-Westenberg and (30, 30) for Siegel-

Tukey (Table 16, 17). For the exponential distribution (Table 18, 19), when 

α = 0.05, 40% power was generally attained when K = 1.5 at sample size (30, 30) 

and (20, 20), respectively. Once again, Siegel-Tukey demonstrated greater or 

equal power at all comparison points than Mood-Westenberg for both of these 

distributions/data sets. For Mood-Westenberg, stable power was generally best 

when means shifts were below c = 0.09 for multi-modal lumpy and c = 0.06 for 

exponential due to some liberal non-robust Type-I rates at larger means shift 

levels. Siegel-Tukey was most powerful for these with lower means shifts 

(c = 0.01-0.08 for multi-modal lumpy and c = 0.01-0.03 for exponential) due to 

some conservative non-robust null rejections at larger mean shift levels. 

Conclusion 

Methods for Behrens-Fisher detection have been overlooked in statistical 

literature and, up to now, there have been no early warning or detective systems 

indicating the Behrens-Fisher condition exists. Siegel-Tukey appears promising as 

a method that might fill this void. Invoking the Siegel-Tukey statistic for the 

purpose of detecting variance changes could provide an effective precursor to the 

discovery of small yet important treatment effects in many research settings 

approaching Behrens-Fisher. 

The Mood-Westenberg statistic also identified variance changes 

accompanied by slight mean shifts for normal type distributions, particularly with 

large sample sizes at or above n = 30, 30 (and at some smaller mean shifts for the 

multi-modal lumpy data set and the exponential distribution). However, Mood-

Westenberg could not approach the levels of superior power demonstrated by 

Siegel-Tukey with these data sets/distributions and could not consistently 

demonstrate Siegel-Tukey’s robust Type-I rejection rates at small sample sizes, 

especially when α was at 0.01. 
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Another significant comparative advantage demonstrated by the Siegel-

Tukey statistic was its robust (or conservatively non-robust) and powerful results 

for non-normal distributions while Mood-Westenberg could not withstand the 

same means shift assumption violations for these types, demonstrating large 

liberal Type-I rejection rates. Therefore, as a detection tool for determining 

outcomes approaching Behrens-Fisher, the Mood-Westenberg statistic would be 

limited to research settings utilizing only normal type data distributions (best with 

larger sample sizes), the multi-modal lumpy data set, and the exponential 

distribution. Additionally, it is believed that the inability to stabilize Type-I 

rejection rates to approach nominal α level as sample sizes increased would 

render the Mood-Westenberg statistic generally less reliable in research settings. 

Therefore, the Siegel-Tukey statistic might reasonably be promoted as the 

current statistic of choice in many scientific, educational and psychological 

research environments to detect heteroscedasticity whenever conditions 

approaching Behrens-Fisher arise with the concomitant problem of determining 

the existence of small means shift around zero. Siegel-Tukey demonstrated 

particularly strong measures for the extreme bimodal data set, often found within 

educational settings, when samples sizes were equal (or unequal at α = 0.05). 

Siegel-Tukey’s robust and powerful measures in detecting variance changes with 

all but one (asymmetric growth) of the 11 tested distributions/data sets 

demonstrated that it could be an important new instrument in the researcher’s 

repertoire for data analysis. It has the potential to operate within a broad range of 

testing conditions to alert the researcher to the necessity of choosing an 

appropriate test statistic which could ultimately lead to the discovery of small 

treatments that might otherwise go unnoticed. The Siegel-Tukey statistic 

demonstrated its ability to be an effective precursor that would make known the 

need to replace testing statistics dependent on the equal variance assumptions, 

such as Student’s-t, and to choose instead to apply any of the myriad of 

approximate Behrens-Fisher solutions, such as the Yuen’s solution. 
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Appendix A: Figures 

 
 
Figure 1. Mood-Westenberg Type-I error rate, comparisons between Chi Squared (blue) 

and Fisher Exact (red) for all equal sample sizes from (5, 5) to (200, 200), for Normal 
distribution, 0.05 α, 10,000 repetitions 

 

 
 

 
 
Figure 2. Mood-Westenberg Type-I error rate, comparisons between Chi Squared (blue) 

and Fisher Exact (red) for all equal sample sizes from (5, 5) to (200, 200), for Normal 
distribution, 0.01 α, 10,000 repetitions 
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Figure 3. Siegel-Tukey Type-I error rate, comparisons between Z Scores (blue) and 

Mann-Whitney (red) for all equal sample sizes from (5, 5) to (200, 200), for Normal 
distribution, 0.05 α, 10,000 repetitions 
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Appendix B: Tables 

Table 1. Type-I error rates for Mood-Westenberg and Siegel-Tukey, one-tailed directional 

rest, for various sample sizes and α levels when sampling is from the normal distribution, 
100,000 repetitions, variances are equal and means are equal 
 

Mood-Westenberg 

 α 

 
0.050 

 
0.025 

 
0.010 

 
0.005 

Sample Size A E   A E   A E   A E 

5, 5 0.080 0.016 
 

0.016 0.016 
 

0.016 0.000 
 

0.016 0.000 

5, 15 0.033 0.033 
 

0.033 0.033 
 

0.033 0.000 
 

0.000 0.000 

10, 10 0.022 0.022 
 

0.022 0.022 
 

0.022 0.001 
 

0.001 0.001 

10, 30 0.066 0.066 
 

0.008 0.008 
 

0.008 0.008 
 

0.008 0.008 

15, 45 0.072 0.072 
 

0.016 0.016 
 

0.016 0.016 
 

0.002 0.002 

20, 20 0.026 0.026 
 

0.026 0.026 
 

0.004 0.004 
 

0.004 0.004 

30, 30 0.068 0.068 
 

0.019 0.019 
 

0.019 0.019 
 

0.004 0.004 

30, 90 0.056 0.056 
 

0.020 0.020 
 

0.006 0.020 
 

0.006 0.006 

45, 45 0.043 0.070 
 

0.025 0.025 
 

0.007 0.014 
 

0.004 0.004 

65, 65 0.041 0.063 
 

0.026 0.026 
 

0.010 0.010 
 

0.006 0.006 

90, 90 0.052 0.052   0.025 0.025   0.011 0.011   0.004 0.004 

            

Siegel-Tukey 

5, 5 0.047 0.047 
 

0.016 0.016 
 

0.004 0.008 
 

0.000 0.004 

5, 15 0.058 0.048 
 

0.025 0.021 
 

0.010 0.010 
 

0.004 0.004 

10, 10 0.044 0.044 
 

0.021 0.021 
 

0.007 0.009 
 

0.003 0.004 

10, 30 0.051 0.047 
 

0.024 0.024 
 

0.010 0.010 
 

0.004 0.004 

15, 45 0.051 0.050 
 

0.027 0.025 
 

0.010 0.010 
 

0.005 0.005 

20, 20 0.048 0.048 
 

0.025 0.025 
 

0.010 0.010 
 

0.004 0.005 

30, 30 0.050 0.050 
 

0.023 0.024 
 

0.009 0.010 
 

0.005 0.005 

30, 90 0.050 0.049 
 

0.025 0.024 
 

0.009 0.010 
 

0.005 0.005 

45, 45 0.049 0.049 
 

0.024 0.024 
 

0.010 0.010 
 

0.005 0.005 

65, 65 0.049 0.049 
 

0.024 0.024 
 

0.010 0.010 
 

0.005 0.005 

90, 90 0.050 0.050   0.025 0.025   0.010 0.010   0.005 0.005 
 

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability 

 
 
Table 2. Type-I error rate averages for all sample sizes (5, 5) to (200, 200) for 10,000 

repetitions, Normal distribution 
 

Mood-Westenberg 

α 

0.050 
 

0.025 
 

0.010 
 

0.005 

A E   A E   A E   A E 

0.048 0.067   0.024 0.031   0.009 0.012   0.005 0.005 
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Table 2, continued. 

 

Siegel-Tukey 

α 

0.050 
 

0.025 
 

0.010 
 

0.005 

A E   A E   A E   A E 

0.049 0.049   0.024 0.025   0.010 0.010   0.005 0.005 
 

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability 

 
 
Table 3. Type-I error rates for Mood-Westenberg and Siegel-Tukey, one-tailed directional 

test, for sample size (45, 45) and α levels when sampling is from all distributions/data 
sets, 100,000 repetitions, variances are equal, and means are equal 
 

Mood-Westenberg 

 α 

 
0.050 

 
0.025 

 
0.010 

 
0.005 

Distribution A E   A E   A E   A E 

Asym Growth 0.040 0.067 
 

0.024 0.024 
 

0.007 0.013   0.003 0.003 

Digit pref 0.042 0.069 
 

0.024 0.024 
 

0.007 0.014 
 

0.004 0.004 

Disc mass zero 0.040 0.066 
 

0.023 0.023 
 

0.007 0.012 
 

0.003 0.003 

Disc mass zero gap 0.004 0.008 
 

0.002 0.002 
 

0.000 0.001 
 

0.000 0.000 

Exponential 0.043 0.071 
 

0.025 0.025 
 

0.007 0.014 
 

0.004 0.004 

Extrm asym decay 0.021 0.039 
 

0.011 0.011 
 

0.002 0.005 
 

0.001 0.001 

Extrm bimodal 0.022 0.041 
 

0.011 0.011 
 

0.002 0.005 
 

0.001 0.001 

Multi-modal lumpy 0.042 0.069 
 

0.024 0.024 
 

0.007 0.014 
 

0.004 0.004 

Normal 0.043 0.070 
 

0.025 0.025 
 

0.007 0.014 
 

0.004 0.004 

Smooth sym 0.040 0.066 
 

0.023 0.023 
 

0.007 0.013 
 

0.003 0.003 

Uni 0.043 0.070   0.025 0.025   0.008 0.015   0.004 0.004 

            

Siegel-Tukey 

Asym Growth 0.046 0.047 
 

0.022 0.022 
 

0.008 0.009   0.004 0.004 

Digit pref 0.049 0.050 
 

0.024 0.025 
 

0.009 0.010 
 

0.005 0.005 

Disc mass zero 0.047 0.048 
 

0.023 0.024 
 

0.009 0.009 
 

0.004 0.005 

Disc mass zero gap 0.001 0.001 
 

0.000 0.000 
 

0.000 0.000 
 

0.000 0.000 

Exponential 0.050 0.050 
 

0.026 0.026 
 

0.010 0.010 
 

0.005 0.005 

Extrm asym decay 0.011 0.011 
 

0.003 0.003 
 

0.001 0.001 
 

0.000 0.000 

Extrm bimodal 0.023 0.024 
 

0.009 0.009 
 

0.003 0.003 
 

0.001 0.001 

Multi-modal lumpy 0.049 0.050 
 

0.024 0.025 
 

0.009 0.010 
 

0.005 0.005 

Normal 0.049 0.049 
 

0.024 0.024 
 

0.010 0.010 
 

0.005 0.005 

Smooth sym 0.048 0.048 
 

0.023 0.024 
 

0.009 0.009 
 

0.004 0.004 

Uni 0.049 0.049   0.025 0.025   0.009 0.009   0.005 0.005 

 

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability 
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Table 4. Type-II errors/power rates for Mood-Westenberg and Siegel-Tukey, one-tailed 

directional test, for various α levels and sample size of (90, 90) when sampling is from all 
distributions/data sets, 100,000 repetitions, means are equal, and variance change is 
1.25 
 

Mood-Westenberg 

 α 

 
0.050 

 
0.025 

 
0.010 

 
0.005 

Distribution A E   A E   A E   A E 

Asym Growth 0.457 0.457 

 

0.369 0.369 

 

0.289 0.289   0.219 0.219 

Digit pref 0.265 0.265 

 

0.179 0.179 

 

0.114 0.114 

 

0.068 0.068 

Disc mass zero 0.197 0.197 
 

0.128 0.128 
 

0.078 0.078 
 

0.044 0.044 

Disc mass zero gap     

 

0.999 0.999 

 

0.996 0.996 

 

0.991 0.991 

Exponential 0.478 0.478 

 

0.360 0.360 

 

0.256 0.256 

 

0.170 0.170 

Extrm asym decay     
 

    
 

0.999 0.999 
 

0.999 0.999 

Extrm bimodal 0.897 0.897 

 

0.852 0.852 

 

0.795 0.795 

 

0.726 0.726 

Multi-modal lumpy 0.668 0.668 

 

0.559 0.559 

 

0.446 0.446 

 

0.334 0.334 

Normal 0.257 0.257 
 

0.169 0.169 
 

0.102 0.102 
 

0.058 0.058 

Smooth sym 0.165 0.165 

 

0.104 0.104 

 

0.061 0.061 

 

0.034 0.034 

Uni 0.330 0.330   0.230 0.230   0.150 0.150   0.090 0.090 

            

Siegel-Tukey 

Asym Growth 0.886 0.886 

 

0.815 0.816 

 

0.703 0.706   0.614 0.616 

Digit pref 0.512 0.513 
 

0.389 0.389 
 

0.258 0.261 
 

0.184 0.186 

Disc mass zero 0.568 0.569 
 

0.446 0.447 
 

0.308 0.310 
 

0.225 0.227 

Disc mass zero gap     

 

    

 

    

 

  

Exponential 0.830 0.830 
 

0.735 0.735 
 

0.603 0.605 
 

0.502 0.504 

Extrm asym decay     
 

    
 

0.999 0.999 
 

0.999 0.999 

Extrm bimodal     

 

    

 

    

 

0.999 0.999 

Multi-modal lumpy 0.846 0.846 
 

0.758 0.758 
 

0.630 0.632 
 

0.531 0.533 

Normal 0.495 0.495 
 

0.370 0.370 
 

0.240 0.242 
 

0.169 0.170 

Smooth sym 0.550 0.550 

 

0.425 0.426 

 

0.288 0.290 

 

0.210 0.212 

Uni 0.750 0.750   0.639 0.639   0.494 0.496   0.394 0.397 
 

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability 
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Table 5. Type-II errors/power rates for Mood-Westenberg and Siegel-Tukey, one-tailed 

directional test, for various α levels and sample size of (90, 90) when sampling is from all 
distributions/data sets, 100,000 repetitions, means are equal, and variance change is 1.5 
 

Mood-Westenberg 

 α 

 
0.050 

 
0.025 

 
0.010 

 
0.005 

Distribution A E   A E   A E   A E 

Asym Growth 0.888 0.888 

 

0.827 0.827 

 

0.746 0.746   0.651 0.651 

Digit pref 0.570 0.570 

 

0.458 0.458 

 

0.349 0.349 

 

0.250 0.250 

Disc mass zero 0.615 0.615 
 

0.515 0.515 
 

0.416 0.416 
 

0.322 0.322 

Disc mass zero gap     

 

0.999 0.999 

 

0.997 0.997 

 

0.991 0.991 

Exponential 0.916 0.916 

 

0.861 0.861 

 

0.787 0.787 

 

0.692 0.692 

Extrm asym decay     
 

    
 

    
 

    

Extrm bimodal 0.897 0.897 

 

0.851 0.851 

 

0.794 0.794 

 

0.726 0.726 

Multi-modal lumpy 0.971 0.971 

 

0.946 0.946 

 

0.906 0.906 

 

0.849 0.849 

Normal 0.643 0.643 
 

0.527 0.527 
 

0.407 0.407 
 

0.293 0.293 

Smooth sym 0.651 0.651 

 

0.543 0.543 

 

0.433 0.433 

 

0.328 0.328 

Uni 0.776 0.776   0.678 0.678   0.567 0.567   0.449 0.449 

            

Siegel-Tukey 

Asym Growth 0.997 0.997 

 

0.994 0.994 

 

0.983 0.983   0.969 0.970 

Digit pref 0.896 0.896 
 

0.829 0.830 
 

0.720 0.722 
 

0.630 0.633 

Disc mass zero 0.894 0.894 
 

0.826 0.826 
 

0.715 0.717 
 

0.625 0.628 

Disc mass zero gap     

 

    

 

    

 

    

Exponential 0.995 0.995 
 

0.988 0.988 
 

0.970 0.970 
 

0.948 0.949 

Extrm asym decay     
 

    
 

    
 

    

Extrm bimodal     

 

    

 

    

 

0.999 0.999 

Multi-modal lumpy 0.998 0.998 
 

0.996 0.996 
 

0.987 0.988 
 

0.977 0.978 

Normal 0.899 0.899 
 

0.831 0.831 
 

0.721 0.722 
 

0.629 0.631 

Smooth sym 0.902 0.902 

 

0.835 0.836 

 

0.729 0.732 

 

0.641 0.644 

Uni 0.988 0.988   0.974 0.974   0.942 0.943   0.907 0.908 
 

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability 
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Table 6. Type-II errors/power rates for Mood-Westenberg and Siegel-Tukey, one-tailed 

directional test, for various α levels and sample size of (90, 90) when sampling is from all 
distributions/data sets, 100,000 repetitions, means are equal, and variance change is 
2.25 
 

Mood-Westenberg 

 α 

 
0.050 

 
0.025 

 
0.010 

 
0.005 

Distribution A E   A E   A E   A E 

Asym Growth     

 

    

 

          

Digit pref 0.985 0.985 

 

0.971 0.971 

 

0.948 0.948 

 

0.913 0.913 

Disc mass zero 0.990 0.990 
 

0.981 0.981 
 

0.965 0.965 
 

0.940 0.940 

Disc mass zero gap     

 

0.999 0.999 

 

0.996 0.996 

 

0.990 0.990 

Exponential     

 

    

 

    

 

0.999 0.999 

Extrm asym decay     
 

    
 

    
 

    

Extrm bimodal     

 

    

 

    

 

    

Multi-modal lumpy     

 

    

 

    

 

    

Normal 0.995 0.995 
 

0.988 0.988 
 

0.976 0.976 
 

0.953 0.953 

Smooth sym 0.985 0.985 

 

0.970 0.970 

 

0.946 0.946 

 

0.909 0.909 

Uni 0.999 0.999   0.998 0.998   0.996 0.996   0.990 0.990 

            

Siegel-Tukey 

Asym Growth     

 

    

 

          

Digit pref     
 

    
 

0.999 0.999 
 

0.997 0.997 

Disc mass zero     
 

    
 

0.999 0.999 
 

0.999 0.999 

Disc mass zero gap     

 

    

 

    

 

    

Exponential     
 

    
 

    
 

    

Extrm asym decay     
 

    
 

    
 

    

Extrm bimodal     

 

    

 

    

 

    

Multi-modal lumpy     
 

    
 

    
 

    

Normal     
 

    
 

0.999 0.999 
 

0.999 0.999 

Smooth sym     

 

    

 

    

 

0.999 0.999 

Uni                       
 

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability 
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Table 7. Type-II errors/power rates for Mood-Westenberg and Siegel-Tukey, one-tailed 

directional test, for various α levels and sample size of (90, 90) when sampling is from all 
distributions/data sets, 100,000 repetitions, variances are equal, and means shift is 0.06 
 

Mood-Westenberg 

 α 

 
0.050 

 
0.025 

 
0.010 

 
0.005 

Distribution A E   A E   A E   A E 

Asym Growth 0.240 0.240 

 

0.163 0.163 

 

0.105 0.105   0.063 0.063 

Digit pref 0.063 0.063 

 

0.031 0.031 

 

0.014 0.014 

 

0.006 0.006 

Disc mass zero 0.073 0.073 

 

0.039 0.039 

 

0.019 0.019 

 

0.009 0.009 

Disc mass zero gap     

 

0.999 0.999 

 

0.996 0.996 

 

0.991 0.991 

Exponential 0.071 0.071 

 

0.037 0.037 

 

0.018 0.018 

 

0.008 0.008 

Extrm asym decay     

 

0.999 0.999 

 

0.998 0.998 

 

0.997 0.997 

Extrm bimodal 0.537 0.537 

 

0.459 0.459 

 

0.383 0.383 

 

0.310 0.310 

Multi-modal lumpy 0.060 0.060 

 

0.030 0.030 

 

0.014 0.014 

 

0.006 0.006 

Normal 0.053 0.053 

 

0.025 0.025 

 

0.011 0.011 

 

0.005 0.005 

Smooth sym 0.065 0.065 

 

0.033 0.033 

 

0.015 0.015 

 

0.007 0.007 

Uni 0.052 0.052   0.025 0.025   0.010 0.010   0.004 0.004 

            

Siegel-Tukey 

Asym Growth 0.298 0.298 

 

0.198 0.198 

 

0.111 0.112   0.071 0.072 

Digit pref 0.050 0.050 

 

0.025 0.026 

 

0.010 0.011 

 

0.005 0.005 

Disc mass zero 0.040 0.040 

 

0.020 0.020 

 

0.008 0.008 

 

0.004 0.004 

Disc mass zero gap 0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

Exponential 0.011 0.011 

 

0.005 0.005 

 

0.001 0.001 

 

0.001 0.001 

Extrm asym decay 0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

 

0.000 0.000 

Extrm bimodal 0.056 0.056 

 

0.031 0.031 

 

0.014 0.014 

 

0.007 0.007 

Multi-modal lumpy 0.038 0.038 

 

0.018 0.018 

 

0.007 0.007 

 

0.003 0.003 

Normal 0.050 0.050 

 

0.025 0.025 

 

0.010 0.010 

 

0.005 0.005 

Smooth sym 0.050 0.050 

 

0.025 0.025 

 

0.010 0.010 

 

0.005 0.005 

Uni 0.048 0.048   0.024 0.024   0.010 0.010   0.005 0.005 

 

Note: For Mood-Westenberg, A = asymptotic Chi-squared probability, E = Fisher exact probability; for Siegel-
Tukey, A = asymptotic Z-score probability, E = Mann-Whitney-U exact probability 
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Table 8. Power rates for one-tailed directional test for digit preference data set, various 

means shifts and variance changes for sample size (20, 20), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.024 0.053 0.119 0.195 0.307 0.416 0.495 0.578 0.676 0.728 0.768 

0.01 0.028 0.054 0.117 0.205 0.307 0.414 0.495 0.579 0.675 0.727 0.766 

0.02 0.027 0.049 0.119 0.203 0.305 0.413 0.499 0.578 0.676 0.731 0.766 

0.03 0.027 0.051 0.113 0.205 0.307 0.415 0.501 0.570 0.675 0.732 0.768 

0.04 0.026 0.051 0.114 0.202 0.307 0.408 0.504 0.569 0.676 0.727 0.769 

0.05 0.027 0.055 0.112 0.201 0.306 0.408 0.505 0.568 0.675 0.728 0.769 

0.06 0.027 0.055 0.112 0.199 0.302 0.409 0.503 0.620 0.676 0.722 0.766 

0.07 0.026 0.055 0.112 0.200 0.301 0.402 0.501 0.620 0.674 0.726 0.773 

0.08 0.027 0.057 0.113 0.196 0.302 0.401 0.499 0.620 0.674 0.724 0.773 

0.09 0.027 0.057 0.115 0.197 0.301 0.404 0.499 0.621 0.674 0.720 0.771 

0.10 0.027 0.057 0.117 0.198 0.301 0.427 0.500 0.622 0.675 0.723 0.771 

0.11 0.027 0.058 0.119 0.200 0.302 0.429 0.498 0.623 0.678 0.721 0.774 

0.12 0.026 0.057 0.119 0.199 0.303 0.429 0.498 0.622 0.679 0.717 0.773 

            Siegel-Tukey Z-score 

0.00 0.048 0.177 0.366 0.535 0.687 0.789 0.849 0.897 0.933 0.954 0.963 

0.01 0.050 0.179 0.362 0.543 0.687 0.788 0.849 0.897 0.932 0.953 0.963 

0.02 0.050 0.168 0.363 0.540 0.686 0.788 0.853 0.896 0.933 0.948 0.963 

0.03 0.050 0.168 0.354 0.543 0.688 0.789 0.853 0.897 0.933 0.949 0.964 

0.04 0.049 0.169 0.355 0.524 0.690 0.794 0.853 0.897 0.934 0.947 0.964 

0.05 0.049 0.179 0.352 0.527 0.685 0.792 0.855 0.897 0.932 0.947 0.964 

0.06 0.049 0.177 0.352 0.525 0.673 0.793 0.855 0.906 0.933 0.947 0.964 

0.07 0.049 0.178 0.351 0.521 0.671 0.774 0.855 0.904 0.932 0.949 0.966 

0.08 0.050 0.185 0.354 0.525 0.669 0.774 0.843 0.907 0.932 0.948 0.965 

0.09 0.050 0.186 0.356 0.526 0.672 0.773 0.842 0.906 0.931 0.954 0.965 

0.10 0.050 0.185 0.357 0.528 0.670 0.779 0.843 0.895 0.933 0.954 0.964 

0.11 0.050 0.186 0.361 0.535 0.671 0.780 0.844 0.893 0.929 0.954 0.965 

0.12 0.050 0.184 0.362 0.534 0.670 0.782 0.841 0.896 0.931 0.948 0.965 
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Table 9. Power rates for one-tailed directional test for digit preference data set, various 

means shifts and variance changes for sample size (30, 30), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.065 0.145 0.292 0.441 0.613 0.743 0.817 0.874 0.930 0.951 0.965 

0.01 0.073 0.142 0.291 0.457 0.611 0.744 0.813 0.873 0.930 0.951 0.965 

0.02 0.073 0.135 0.291 0.458 0.615 0.742 0.821 0.875 0.930 0.952 0.964 

0.03 0.073 0.134 0.279 0.456 0.612 0.743 0.820 0.867 0.931 0.953 0.965 

0.04 0.072 0.133 0.281 0.454 0.612 0.730 0.821 0.866 0.929 0.953 0.965 

0.05 0.072 0.141 0.276 0.452 0.614 0.730 0.820 0.866 0.927 0.954 0.965 

0.06 0.073 0.143 0.278 0.451 0.611 0.730 0.821 0.904 0.931 0.949 0.964 

0.07 0.073 0.142 0.278 0.454 0.607 0.727 0.819 0.905 0.930 0.950 0.966 

0.08 0.073 0.151 0.281 0.445 0.611 0.727 0.818 0.902 0.930 0.949 0.967 

0.09 0.075 0.150 0.280 0.444 0.613 0.727 0.819 0.903 0.931 0.948 0.967 

0.10 0.074 0.150 0.292 0.443 0.610 0.761 0.819 0.908 0.930 0.948 0.967 

0.11 0.073 0.148 0.292 0.447 0.611 0.760 0.818 0.907 0.933 0.948 0.967 

0.12 0.073 0.153 0.292 0.443 0.610 0.762 0.818 0.908 0.932 0.948 0.967 

            Siegel-Tukey Z-score 

0.00 0.047 0.237 0.498 0.706 0.849 0.922 0.957 0.977 0.989 0.994 0.996 

0.01 0.051 0.234 0.498 0.711 0.849 0.922 0.957 0.978 0.989 0.994 0.996 

0.02 0.051 0.219 0.498 0.714 0.849 0.922 0.958 0.976 0.988 0.992 0.996 

0.03 0.053 0.217 0.482 0.710 0.849 0.922 0.960 0.978 0.989 0.993 0.996 

0.04 0.051 0.218 0.482 0.690 0.849 0.926 0.959 0.976 0.989 0.992 0.996 

0.05 0.051 0.230 0.479 0.690 0.849 0.925 0.958 0.977 0.988 0.993 0.996 

0.06 0.050 0.229 0.482 0.692 0.835 0.926 0.959 0.980 0.989 0.993 0.996 

0.07 0.052 0.232 0.479 0.691 0.832 0.913 0.959 0.980 0.988 0.992 0.997 

0.08 0.052 0.247 0.483 0.694 0.834 0.912 0.952 0.980 0.988 0.992 0.996 

0.09 0.051 0.244 0.481 0.695 0.835 0.912 0.952 0.980 0.988 0.994 0.997 

0.10 0.052 0.246 0.489 0.691 0.835 0.915 0.951 0.975 0.989 0.994 0.996 

0.11 0.053 0.245 0.488 0.703 0.834 0.915 0.951 0.975 0.989 0.994 0.997 

0.12 0.051 0.242 0.490 0.699 0.833 0.915 0.951 0.976 0.988 0.992 0.996 
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Table 10. Power rates for one-tailed directional test for uniform distribution, various 

means shifts and variance changes for sample size (20, 20), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.026 0.067 0.179 0.331 0.480 0.610 0.714 0.791 0.846 0.885 0.914 

0.01 0.024 0.068 0.182 0.330 0.484 0.610 0.715 0.790 0.845 0.887 0.915 

0.02 0.025 0.069 0.180 0.333 0.484 0.610 0.712 0.789 0.846 0.884 0.914 

0.03 0.025 0.067 0.181 0.330 0.485 0.613 0.714 0.790 0.845 0.884 0.913 

0.04 0.026 0.068 0.180 0.331 0.484 0.612 0.715 0.791 0.846 0.885 0.913 

0.05 0.026 0.068 0.180 0.331 0.481 0.609 0.712 0.791 0.845 0.885 0.915 

0.06 0.026 0.067 0.182 0.330 0.482 0.613 0.712 0.791 0.843 0.886 0.914 

0.07 0.025 0.069 0.179 0.331 0.481 0.612 0.717 0.791 0.845 0.885 0.914 

0.08 0.026 0.068 0.182 0.330 0.483 0.611 0.714 0.790 0.846 0.886 0.914 

0.09 0.026 0.069 0.179 0.329 0.482 0.611 0.713 0.790 0.844 0.883 0.914 

0.10 0.026 0.069 0.178 0.332 0.482 0.612 0.711 0.789 0.844 0.885 0.914 

0.11 0.026 0.068 0.182 0.332 0.484 0.613 0.714 0.789 0.844 0.887 0.914 

0.12 0.025 0.068 0.179 0.332 0.481 0.611 0.715 0.788 0.844 0.884 0.916 

            Siegel-Tukey Z-score 

0.00 0.048 0.272 0.548 0.745 0.859 0.922 0.955 0.973 0.984 0.989 0.994 

0.01 0.046 0.272 0.548 0.744 0.860 0.922 0.955 0.973 0.984 0.990 0.994 

0.02 0.048 0.273 0.548 0.746 0.861 0.921 0.955 0.974 0.984 0.989 0.993 

0.03 0.047 0.269 0.549 0.745 0.861 0.922 0.955 0.974 0.985 0.990 0.993 

0.04 0.048 0.272 0.547 0.746 0.860 0.921 0.956 0.974 0.984 0.990 0.993 

0.05 0.048 0.272 0.549 0.745 0.859 0.922 0.955 0.973 0.984 0.990 0.994 

0.06 0.049 0.270 0.547 0.743 0.858 0.922 0.956 0.974 0.984 0.990 0.993 

0.07 0.048 0.269 0.545 0.745 0.860 0.923 0.955 0.974 0.985 0.990 0.993 

0.08 0.047 0.273 0.547 0.745 0.859 0.920 0.955 0.974 0.983 0.990 0.993 

0.09 0.048 0.271 0.546 0.743 0.859 0.921 0.955 0.973 0.983 0.990 0.994 

0.10 0.046 0.269 0.545 0.745 0.859 0.922 0.954 0.973 0.983 0.990 0.993 

0.11 0.047 0.266 0.545 0.743 0.859 0.922 0.956 0.974 0.984 0.990 0.993 

0.12 0.047 0.267 0.545 0.744 0.857 0.923 0.955 0.973 0.983 0.990 0.994 
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Table 11. Power rates for one-tailed directional test for uniform distribution, various 

means shifts and variance changes for sample size (45, 45), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.043 0.174 0.468 0.730 0.882 0.952 0.982 0.993 0.997 0.999  

0.01 0.044 0.176 0.468 0.730 0.882 0.953 0.983 0.993 0.997 0.999 0.999 

0.02 0.044 0.175 0.468 0.731 0.884 0.952 0.981 0.993 0.997 0.999 0.999 

0.03 0.044 0.174 0.465 0.731 0.883 0.953 0.981 0.993 0.997 0.999  

0.04 0.043 0.174 0.470 0.733 0.881 0.952 0.981 0.993 0.997 0.999 0.999 

0.05 0.044 0.172 0.469 0.731 0.882 0.952 0.981 0.993 0.997 0.999 0.999 

0.06 0.044 0.173 0.468 0.731 0.883 0.953 0.981 0.993 0.997 0.999  

0.07 0.043 0.175 0.465 0.731 0.883 0.953 0.981 0.993 0.997 0.999  

0.08 0.044 0.176 0.467 0.732 0.883 0.953 0.982 0.993 0.997 0.999  

0.09 0.042 0.174 0.469 0.730 0.883 0.952 0.981 0.992 0.997 0.999  

0.10 0.044 0.174 0.467 0.732 0.883 0.952 0.981 0.993 0.997 0.999 0.999 

0.11 0.044 0.175 0.468 0.730 0.882 0.953 0.981 0.993 0.997 0.999 0.999 

0.12 0.045 0.171 0.466 0.729 0.881 0.953 0.982 0.993 0.997 0.999  

            Siegel-Tukey Z-score 

0.00 0.049 0.493 0.865 0.972 0.995 0.999      

0.01 0.050 0.493 0.863 0.973 0.995 0.999      

0.02 0.050 0.492 0.865 0.972 0.995 0.999      

0.03 0.050 0.492 0.862 0.973 0.995 0.999      

0.04 0.050 0.493 0.864 0.973 0.994 0.999      

0.05 0.050 0.491 0.866 0.972 0.995 0.999      

0.06 0.050 0.491 0.862 0.972 0.995 0.999      

0.07 0.049 0.491 0.862 0.972 0.994 0.999      

0.08 0.050 0.491 0.863 0.972 0.995 0.999      

0.09 0.048 0.489 0.863 0.973 0.995 0.999      

0.10 0.050 0.488 0.862 0.971 0.995 0.999      

0.11 0.049 0.491 0.862 0.973 0.995 0.999      

0.12 0.049 0.486 0.861 0.972 0.995 0.999      
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Table 12. Power rates for one-tailed directional test for uniform distribution, various 

means shifts and variance changes for sample size (65, 65), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.043 0.230 0.609 0.867 0.964 0.992 0.998     

0.01 0.042 0.229 0.611 0.868 0.964 0.991 0.998 0.999    

0.02 0.043 0.230 0.612 0.865 0.964 0.991 0.998 0.999    

0.03 0.044 0.232 0.610 0.867 0.963 0.991 0.998 0.999    

0.04 0.042 0.230 0.612 0.869 0.964 0.991 0.998     

0.05 0.043 0.232 0.611 0.867 0.965 0.991 0.998     

0.06 0.042 0.232 0.610 0.867 0.964 0.991 0.998     

0.07 0.041 0.229 0.611 0.867 0.965 0.992 0.998 0.999    

0.08 0.043 0.229 0.613 0.868 0.965 0.991 0.998     

0.09 0.043 0.230 0.613 0.867 0.965 0.991 0.998     

0.10 0.042 0.232 0.613 0.866 0.964 0.992 0.998     

0.11 0.043 0.228 0.612 0.867 0.964 0.991 0.998     

0.12 0.041 0.229 0.611 0.867 0.965 0.992 0.998 0.999    

            Siegel-Tukey Z-score 

0.00 0.050 0.623 0.951 0.996        

0.01 0.048 0.623 0.952 0.996        

0.02 0.050 0.626 0.952 0.996        

0.03 0.050 0.627 0.951 0.996        

0.04 0.049 0.626 0.953 0.996        

0.05 0.049 0.625 0.952 0.996        

0.06 0.050 0.623 0.951 0.996        

0.07 0.048 0.622 0.951 0.996        

0.08 0.049 0.625 0.951 0.996        

0.09 0.049 0.623 0.952 0.996        

0.10 0.049 0.623 0.951 0.996        

0.11 0.049 0.620 0.951 0.996        

0.12 0.050 0.620 0.950 0.996        
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Table 13. Power rates for one-tailed directional test for discrete mass zero with gap data 

set, various means shifts and variance changes for sample size (45, 45), 100,000 
repetitions, α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.004 0.959 0.960 0.960 0.961 0.957 0.957 0.956 0.955 0.955 0.957 

0.01 0.960 0.960 0.961 0.960 0.961 0.956 0.956 0.957 0.956 0.956 0.957 

0.02 0.961 0.960 0.961 0.959 0.961 0.961 0.956 0.956 0.957 0.957 0.955 

0.03 0.961 0.961 0.960 0.961 0.960 0.960 0.957 0.956 0.957 0.957 0.956 

0.04 0.960 0.961 0.960 0.960 0.959 0.960 0.957 0.955 0.955 0.956 0.957 

0.05 0.961 0.960 0.960 0.961 0.960 0.959 0.956 0.957 0.956 0.956 0.957 

0.06 0.960 0.960 0.961 0.961 0.961 0.960 0.956 0.956 0.957 0.955 0.956 

0.07 0.960 0.960 0.960 0.961 0.961 0.960 0.956 0.956 0.956 0.956 0.956 

0.08 0.961 0.961 0.960 0.960 0.961 0.959 0.961 0.955 0.957 0.955 0.956 

0.09 0.960 0.961 0.960 0.959 0.960 0.961 0.961 0.956 0.955 0.957 0.956 

0.10 0.961 0.960 0.960 0.961 0.961 0.961 0.960 0.956 0.955 0.956 0.956 

0.11 0.960 0.961 0.960 0.960 0.960 0.960 0.961 0.955 0.957 0.957 0.956 

0.12 0.961 0.961 0.961 0.960 0.961 0.960 0.960 0.957 0.957 0.957 0.956 

            Siegel-Tukey Z-score 

0.00 0.001 0.997 0.996 0.996 0.997 0.996 0.996 0.996 0.996 0.996 0.996 

0.01 0.000 0.997 0.997 0.997 0.997 0.996 0.996 0.996 0.996 0.996 0.996 

0.02 0.000 0.997 0.996 0.996 0.997 0.997 0.996 0.996 0.996 0.996 0.996 

0.03 0.000 0.997 0.996 0.997 0.996 0.996 0.996 0.996 0.996 0.996 0.996 

0.04 0.000 0.997 0.997 0.997 0.997 0.996 0.996 0.996 0.996 0.996 0.996 

0.05 0.000 0.997 0.997 0.997 0.997 0.996 0.996 0.996 0.996 0.996 0.996 

0.06 0.000 0.997 0.997 0.997 0.997 0.997 0.996 0.996 0.997 0.996 0.996 

0.07 0.000 0.996 0.997 0.997 0.997 0.997 0.996 0.996 0.996 0.996 0.996 

0.08 0.000 0.997 0.997 0.997 0.997 0.997 0.996 0.996 0.996 0.996 0.996 

0.09 0.000 0.996 0.997 0.996 0.997 0.997 0.997 0.996 0.996 0.996 0.996 

0.10 0.000 0.996 0.997 0.997 0.997 0.996 0.997 0.996 0.996 0.996 0.996 

0.11 0.000 0.997 0.996 0.997 0.997 0.996 0.997 0.996 0.996 0.996 0.996 

0.12 0.000 0.997 0.997 0.997 0.997 0.996 0.996 0.996 0.996 0.996 0.996 
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Table 14. Power rates for one-tailed directional test for discrete mass zero with gap data 

set, various means shifts and variance changes for sample size (10, 10), 100,000 
repetitions, α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.005 0.310 0.316 0.314 0.315 0.308 0.307 0.309 0.308 0.307 0.308 

0.01 0.248 0.308 0.314 0.315 0.314 0.310 0.309 0.308 0.308 0.310 0.305 

0.02 0.247 0.310 0.316 0.318 0.314 0.313 0.307 0.308 0.308 0.308 0.309 

0.03 0.249 0.309 0.313 0.315 0.316 0.315 0.309 0.311 0.311 0.311 0.310 

0.04 0.246 0.310 0.316 0.316 0.315 0.316 0.309 0.309 0.309 0.311 0.310 

0.05 0.246 0.310 0.317 0.312 0.314 0.315 0.308 0.310 0.308 0.309 0.307 

0.06 0.248 0.311 0.315 0.317 0.312 0.316 0.310 0.308 0.306 0.306 0.309 

0.07 0.246 0.313 0.316 0.317 0.315 0.313 0.308 0.309 0.305 0.309 0.309 

0.08 0.245 0.311 0.314 0.314 0.317 0.314 0.315 0.309 0.306 0.306 0.308 

0.09 0.249 0.312 0.315 0.314 0.315 0.312 0.315 0.308 0.309 0.309 0.311 

0.10 0.244 0.313 0.316 0.315 0.316 0.315 0.315 0.310 0.308 0.311 0.309 

0.11 0.247 0.311 0.315 0.314 0.314 0.317 0.313 0.307 0.311 0.310 0.311 

0.12 0.247 0.308 0.314 0.315 0.314 0.315 0.314 0.310 0.312 0.310 0.308 

            Siegel-Tukey Z-score 

0.00 0.000 0.619 0.620 0.619 0.619 0.612 0.610 0.611 0.612 0.610 0.611 

0.01 0.000 0.617 0.620 0.624 0.621 0.614 0.612 0.613 0.611 0.612 0.609 

0.02 0.000 0.617 0.623 0.622 0.621 0.623 0.612 0.610 0.611 0.610 0.611 

0.03 0.000 0.619 0.621 0.624 0.623 0.620 0.612 0.613 0.613 0.615 0.615 

0.04 0.000 0.619 0.623 0.621 0.620 0.622 0.613 0.613 0.611 0.611 0.610 

0.05 0.000 0.619 0.623 0.621 0.619 0.620 0.610 0.612 0.612 0.613 0.612 

0.06 0.000 0.621 0.622 0.623 0.621 0.624 0.613 0.611 0.612 0.610 0.611 

0.07 0.000 0.622 0.622 0.623 0.620 0.620 0.613 0.612 0.609 0.610 0.612 

0.08 0.000 0.619 0.623 0.622 0.622 0.620 0.620 0.613 0.612 0.610 0.609 

0.09 0.000 0.620 0.620 0.622 0.619 0.621 0.623 0.612 0.615 0.613 0.614 

0.10 0.000 0.623 0.621 0.621 0.622 0.624 0.623 0.612 0.613 0.614 0.612 

0.11 0.000 0.621 0.622 0.621 0.622 0.621 0.618 0.608 0.614 0.615 0.613 

0.12 0.000 0.618 0.622 0.620 0.621 0.621 0.622 0.613 0.614 0.614 0.613 
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Table 15. Power rates for one-tailed directional test for discrete mass zero with gap data 

set, various means shifts and variance changes for sample size (10, 10), 100,000 
repetitions, α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.022 0.701 0.705 0.700        

0.01 0.347 0.699 0.701 0.701        

0.02 0.347 0.699 0.702 0.701        

0.03 0.349 0.703 0.701 0.704        

0.04 0.349 0.701 0.701 0.699        

0.05 0.349 0.700 0.701 0.701        

0.06 0.345 0.700 0.701 0.702        

0.07 0.346 0.701 0.703 0.703        

0.08 0.348 0.700 0.703 0.701        

0.09 0.347 0.702 0.702 0.700        

0.10 0.349 0.699 0.701 0.702        

0.11 0.350 0.702 0.702 0.702        

0.12 0.346 0.702 0.702 0.702        

            Siegel-Tukey Z-score 

0.00 0.023 0.991 0.991 0.992        

0.01 0.055 0.991 0.991 0.992        

0.02 0.054 0.991 0.992 0.992        

0.03 0.055 0.991 0.992 0.992        

0.04 0.054 0.991 0.991 0.992        

0.05 0.054 0.991 0.991 0.992        

0.06 0.055 0.991 0.991 0.992        

0.07 0.054 0.991 0.991 0.992        

0.08 0.054 0.991 0.991 0.992        

0.09 0.054 0.992 0.991 0.992        

0.10 0.053 0.992 0.991 0.992        

0.11 0.053 0.991 0.991 0.992        

0.12 0.052 0.992 0.991 0.992        
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Table 16. Power rates for one-tailed directional test for multi-modal lumpy data set, 

various means shifts and variance changes for sample size (30, 30), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.068 0.303 0.652 0.846 0.936 0.971 0.988 0.995 0.998 0.999 0.999 

0.01 0.074 0.272 0.624 0.840 0.935 0.971 0.988 0.995 0.998 0.999  

0.02 0.072 0.273 0.623 0.841 0.924 0.969 0.988 0.995 0.998 0.999 0.999 

0.03 0.072 0.266 0.623 0.840 0.923 0.970 0.988 0.995 0.998 0.999 0.999 

0.04 0.073 0.266 0.625 0.823 0.922 0.969 0.988 0.995 0.998 0.999 0.999 

0.05 0.073 0.261 0.590 0.823 0.925 0.968 0.988 0.994 0.998 0.999 0.999 

0.06 0.074 0.263 0.591 0.817 0.923 0.967 0.987 0.994 0.998 0.999 0.999 

0.07 0.071 0.258 0.590 0.818 0.925 0.968 0.985 0.994 0.997 0.999 0.999 

0.08 0.074 0.258 0.590 0.817 0.924 0.968 0.985 0.994 0.997 0.998 0.999 

0.09 0.080 0.247 0.592 0.814 0.923 0.968 0.985 0.994 0.998 0.999 0.999 

0.10 0.078 0.249 0.587 0.805 0.914 0.966 0.985 0.994 0.998 0.999 0.999 

0.11 0.079 0.221 0.589 0.804 0.915 0.966 0.984 0.993 0.997 0.999 0.999 

0.12 0.077 0.221 0.586 0.798 0.914 0.965 0.984 0.994 0.997 0.999 0.999 

            Siegel-Tukey Z-score 

0.00 0.049 0.444 0.831 0.961 0.992 0.998 0.999     

0.01 0.043 0.430 0.812 0.956 0.992 0.998      

0.02 0.043 0.431 0.811 0.958 0.989 0.998 0.999     

0.03 0.043 0.418 0.812 0.957 0.989 0.998 0.999     

0.04 0.043 0.417 0.814 0.952 0.989 0.997 0.999     

0.05 0.044 0.399 0.788 0.953 0.989 0.997 0.999     

0.06 0.043 0.399 0.790 0.948 0.989 0.997 0.999     

0.07 0.042 0.388 0.789 0.949 0.989 0.997 0.999     

0.08 0.044 0.388 0.788 0.945 0.989 0.997 0.999     

0.09 0.031 0.376 0.792 0.943 0.989 0.997 0.999     

0.10 0.032 0.378 0.773 0.939 0.985 0.997 0.999     

0.11 0.032 0.357 0.774 0.940 0.985 0.997 0.999     

0.12 0.032 0.357 0.772 0.940 0.985 0.997 0.999     
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Table 17. Power rates for one-tailed directional test for multi-modal lumpy data set, 

various means shifts and variance changes for sample size (65, 65), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.041 0.486 0.894 0.985 0.998       

0.01 0.047 0.408 0.866 0.985 0.998       

0.02 0.047 0.406 0.866 0.983 0.997       

0.03 0.047 0.389 0.865 0.983 0.997       

0.04 0.047 0.392 0.868 0.975 0.997       

0.05 0.047 0.404 0.839 0.975 0.997       

0.06 0.047 0.404 0.838 0.975 0.997       

0.07 0.048 0.409 0.839 0.975 0.997 0.999      

0.08 0.046 0.413 0.839 0.976 0.997       

0.09 0.058 0.376 0.836 0.977 0.997       

0.10 0.057 0.375 0.833 0.971 0.996       

0.11 0.057 0.302 0.833 0.971 0.996       

0.12 0.058 0.302 0.831 0.966 0.996       

            Siegel-Tukey Z-score 

0.00 0.050 0.727 0.988         

0.01 0.039 0.712 0.984         

0.02 0.039 0.711 0.984         

0.03 0.039 0.698 0.984         

0.04 0.040 0.695 0.983         

0.05 0.040 0.663 0.979 0.999        

0.06 0.040 0.664 0.978 0.999        

0.07 0.040 0.649 0.978 0.999        

0.08 0.038 0.651 0.978 0.999        

0.09 0.024 0.634 0.978 0.999        

0.10 0.024 0.634 0.973 0.999        

0.11 0.025 0.602 0.974 0.999        

0.12 0.024 0.600 0.973 0.999        
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Table 18. Power rates for one-tailed directional test for exponential distribution, various 

means shifts and variance changes for sample size (20, 20), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.026 0.094 0.273 0.464 0.617 0.725 0.794 0.845 0.879 0.899 0.916 

0.01 0.026 0.092 0.264 0.458 0.609 0.721 0.794 0.844 0.879 0.899 0.916 

0.02 0.026 0.085 0.258 0.448 0.606 0.716 0.793 0.843 0.875 0.901 0.914 

0.03 0.027 0.081 0.248 0.439 0.602 0.713 0.791 0.841 0.875 0.902 0.915 

0.04 0.025 0.077 0.240 0.435 0.596 0.710 0.789 0.840 0.876 0.899 0.916 

0.05 0.028 0.072 0.234 0.426 0.592 0.707 0.786 0.842 0.874 0.901 0.917 

0.06 0.029 0.069 0.226 0.421 0.584 0.704 0.783 0.839 0.873 0.899 0.916 

0.07 0.029 0.066 0.220 0.411 0.578 0.698 0.781 0.835 0.874 0.900 0.918 

0.08 0.030 0.063 0.212 0.404 0.569 0.693 0.779 0.835 0.873 0.899 0.915 

0.09 0.032 0.059 0.204 0.400 0.565 0.693 0.778 0.835 0.873 0.897 0.917 

0.10 0.034 0.055 0.197 0.392 0.562 0.685 0.774 0.831 0.871 0.899 0.915 

0.11 0.035 0.053 0.191 0.382 0.555 0.683 0.771 0.830 0.869 0.897 0.914 

0.12 0.037 0.051 0.186 0.375 0.550 0.677 0.769 0.828 0.869 0.900 0.915 

            Siegel-Tukey Z-score 

0.00 0.049 0.312 0.601 0.777 0.875 0.929 0.956 0.974 0.983 0.988 0.991 

0.01 0.042 0.305 0.591 0.774 0.872 0.925 0.957 0.973 0.983 0.988 0.991 

0.02 0.040 0.294 0.581 0.768 0.872 0.927 0.955 0.972 0.982 0.987 0.991 

0.03 0.035 0.283 0.573 0.763 0.871 0.924 0.957 0.972 0.981 0.988 0.991 

0.04 0.030 0.270 0.568 0.761 0.866 0.924 0.956 0.972 0.982 0.988 0.991 

0.05 0.029 0.257 0.559 0.754 0.868 0.923 0.955 0.973 0.982 0.988 0.991 

0.06 0.025 0.249 0.549 0.749 0.863 0.922 0.953 0.971 0.981 0.987 0.991 

0.07 0.022 0.238 0.542 0.746 0.860 0.921 0.953 0.972 0.983 0.987 0.991 

0.08 0.020 0.226 0.531 0.741 0.855 0.921 0.953 0.971 0.981 0.987 0.991 

0.09 0.018 0.217 0.520 0.735 0.853 0.919 0.952 0.971 0.980 0.987 0.991 

0.10 0.016 0.207 0.512 0.730 0.853 0.915 0.951 0.970 0.982 0.988 0.991 

0.11 0.014 0.198 0.504 0.727 0.847 0.914 0.950 0.969 0.981 0.987 0.991 

0.12 0.013 0.189 0.494 0.718 0.847 0.913 0.949 0.969 0.981 0.987 0.991 
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Table 19. Power rates for one-tailed directional test for exponential distribution, various 

means shifts and variance changes for sample size (30, 30), 100,000 repetitions, 
α = 0.05 
 

Mood-Westenberg Chi-squared 

Means 

shift 

Variance change 

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 

0.00 0.069 0.241 0.553 0.782 0.899 0.951 0.976 0.988 0.994 0.996 0.997 

0.01 0.069 0.232 0.543 0.772 0.896 0.951 0.975 0.988 0.993 0.996 0.997 

0.02 0.071 0.222 0.532 0.765 0.890 0.949 0.975 0.987 0.993 0.996 0.997 

0.03 0.071 0.212 0.518 0.760 0.887 0.947 0.974 0.987 0.993 0.996 0.997 

0.04 0.073 0.204 0.506 0.752 0.885 0.944 0.973 0.986 0.993 0.996 0.997 

0.05 0.075 0.195 0.496 0.745 0.879 0.944 0.972 0.986 0.992 0.996 0.997 

0.06 0.078 0.183 0.484 0.736 0.876 0.941 0.972 0.986 0.992 0.996 0.997 

0.07 0.081 0.176 0.475 0.729 0.872 0.938 0.970 0.985 0.992 0.996 0.997 

0.08 0.084 0.166 0.459 0.720 0.866 0.938 0.969 0.984 0.992 0.996 0.997 

0.09 0.087 0.158 0.451 0.713 0.865 0.935 0.969 0.984 0.991 0.995 0.997 

0.10 0.092 0.150 0.440 0.705 0.858 0.932 0.967 0.985 0.991 0.995 0.997 

0.11 0.097 0.143 0.428 0.697 0.852 0.933 0.968 0.983 0.991 0.995 0.997 

0.12 0.102 0.137 0.417 0.687 0.850 0.929 0.965 0.983 0.991 0.995 0.997 

            Siegel-Tukey Z-score 

0.00 0.049 0.428 0.768 0.917 0.970 0.989 0.995 0.998 0.999 0.999  

0.01 0.043 0.415 0.761 0.914 0.970 0.988 0.995 0.998 0.999   

0.02 0.038 0.398 0.755 0.910 0.968 0.988 0.995 0.998 0.999   

0.03 0.032 0.382 0.743 0.909 0.968 0.988 0.995 0.998 0.999   

0.04 0.029 0.369 0.734 0.904 0.966 0.987 0.995 0.998 0.999 0.999  

0.05 0.024 0.356 0.724 0.902 0.964 0.988 0.994 0.998 0.999   

0.06 0.021 0.336 0.720 0.897 0.963 0.986 0.995 0.997 0.999 0.999  

0.07 0.018 0.324 0.710 0.893 0.963 0.986 0.995 0.998 0.999   

0.08 0.016 0.306 0.700 0.891 0.961 0.986 0.995 0.998 0.999   

0.09 0.014 0.291 0.690 0.887 0.961 0.985 0.994 0.998 0.999 0.999  

0.10 0.012 0.275 0.678 0.882 0.958 0.985 0.994 0.998 0.999 0.999  

0.11 0.011 0.262 0.667 0.879 0.956 0.985 0.994 0.997 0.999   

0.12 0.009 0.249 0.658 0.875 0.955 0.984 0.994 0.998 0.999 0.999  
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Factor Analysis (FA) and Principal Component Analysis (PCA) are well-known main 
tools of the multivariate statistics for data analysis, reduction, and visualization. 
Commonly, the analysis and interpretation of their solutions is performed for each of 
several main eigenvectors with variances explaining a big part of the total variability in 

data. The recommendation is to determine if all the main vectors are really needed in the 
analysis, or some of them should be skipped if they correspond to the absence of the 
analyzing features. A simple criterion for identifying redundant vectors of loadings is 
their negative correlation with the vector of mean values of the original variables. 
Limited Likert scales of measurements are considered, and it is shown variables 
correlations and variances are connected to the mean values. FA and PCA structures 
defined by subsets of highly related variables can correspond to the lower levels of Likert 

scales meaning the absence of the measured features, so these loading vectors could be 
senseless for interpretation. Numerical examples are discussed on marketing research 
data. 
 
Keywords: FA, PCA, loadings, eigenvectors, interpretation 

 

Introduction 

Factor Analysis (FA), Principal Component Analysis (PCA), and also Singular 

Value Decomposition (SVD) are well-known main tools of the multivariate 

statistics for data analysis, reduction, and visualization, widely used already for 

many dozen years (for instance, Lawley & Maxwell, 1971; Timm, 1975; Harman, 

1976; Dillon & Goldstein, 1984) and continuing to be described and developed in 

numerous works (Bartholomew & Knott, 1999; Skrondal & Rabe-Hesketh, 2004; 

Lipovetsky & Conklin 2005; Elden, 2007; Härdle & Hlávka, 2007; Motoda & Liu, 

2008; Izenman, 2008; Härdle & Simar, 2012; Lipovetsky, 2009, 2012, 2015). The 

analysis and interpretation of their solutions is usually performed for several first 

https://doi.org/10.22237/jmasm/1493597520
mailto:stan.lipovetsky@gfk.com
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retained eigenvectors with bigger variances explaining a main part of the total 

variability in data. 

Variables defined in Likert scales often applied in marketing research and 

other social measurements are considered. It is a limited scale of, for instance, 

four, five, seven, or ten levels for measuring characteristics of interest. The paper 

shows that the variables’ mean values can influence their variances, correlations, 

and the loadings of FA or PCA. In some cases the FA and PCA loading structures 

defined by subsets of highly related variables can correspond to the levels of 

Likert scales which actually indicate the absence of the measured features, so 

such loading vectors could be redundant for analysis and interpretation. The paper 

suggests checking correlations of the main eigenvectors with the vector of means, 

and when some of these correlations are negative the related factors may be 

skipped from consideration if they correspond not to presence but to absence of 

the analyzing features. 

Relation of Means, Standard Deviations, and Correlations 
for Limited Scales 

Consider data from a real marketing research project on features and qualities of 

protein snacks and shakes, where 1034 respondents evaluated thirty-five attributes 

by four-point Likert scales with levels 

 

 

4 - definitely applies to me

3 - applies to me somewhat

2 - does not really apply to me

1 - does not apply to me at all








  (1) 

 

Table 1 presents descriptive statistics on these attributes: means and standard 

deviations (std). 

The graph of std versus mean values is presented in Figure 1 and shows that 

standard deviations are smaller if mean values are closer to the margins 1 and 4 of 

this Likert scale. Note that there are less observations on the lower levels of the 

scale because respondents in marketing research mostly answer at the “better” 

side of scales. It is intuitively clear that it should be so, because there is simply no 

space for volatility when most of observations gravitate to one or another margin 

of a limited scale. Quadratic regression of standard deviation by mean values 

yields the model: 
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2std 0.52 1.40mean 0.30mean      (2) 

 

where the coefficient of multiple determination R2 =0.88 and the F-statistic of 

4264 are big, so the model is of a very high quality. 

Finding Pearson’s pair correlations between all the attributes and stacking 

them into one matrix together with the corresponding mean values we can 

consider how correlations depend on mean values. To make such a consideration 

more clear, we can find 5% quantiles of the means and correlations and present 

them on one graph – see Figure 2. It shows that there evidently are two areas of 

higher correlations related to bigger and to smaller mean values. 

Fourth-degree polynomial regression corresponding to the plot in Figure 2 

yields the model: 

 

 
2 3 4cor 73.30 114.60mean 66.35mean 16.97mean 1.625mean        (3) 

 

with coefficient of multiple determination R2 = 0.58 and F-statistic 5.1, so the 

model is of a good quality as well. The smaller std at the margins of the limited 

scale presented in Figure 1 are translated onto the bigger correlation (as 

covariance divided by standard deviations of the correlated variables) in Figure 2. 
 
 
Table 1. Means and std for 35 attributes measure by 4-point Likert scale 

 

attribute mean std 
 

attribute mean std 

1 2.77 1.06 
 

19 2.94 1.03 

2 2.86 1.06 
 

20 2.94 1.00 

3 2.54 1.08 
 

21 2.06 1.06 

4 2.85 1.03 
 

22 2.84 1.03 

5 2.81 1.05 
 

23 2.47 1.12 

6 2.92 0.99 
 

24 3.08 0.91 

7 2.81 1.04 
 

25 2.99 0.98 

8 2.91 1.04 
 

26 2.77 1.03 

9 2.39 1.08 
 

27 2.27 1.11 

10 2.34 1.07 
 

28 3.19 0.90 

11 3.07 0.90 
 

29 2.96 0.98 

12 3.00 0.98 
 

30 2.99 0.94 

13 3.07 0.92 
 

31 2.84 0.97 

14 2.97 0.98 
 

32 3.14 0.91 

15 2.60 1.08 
 

33 3.03 0.91 

16 2.68 1.09 
 

34 2.45 1.11 

17 2.78 1.03 
 

35 2.46 1.11 

18 1.91 1.08 
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Figure 1. Standard deviation versus mean for attributes measured by Likert 4-point scale 

 

 
 

 
 
Figure 2. Correlations vs. means for attributes by Likert 4-point scale 
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Factor Loadings and Their Correlations with Mean Values 

Big and approximately equal correlations correspond to the block-diagonal 

structure of the entire correlation matrix of all variables, where the inter-block 

correlations are bigger than the outer-block correlations (by absolute value). All 

pair correlations of the items in this example are positive and varying in the range 

from 0.35 to 0.55. If some big correlations would be negative, it is always 

possible to change the variables to the opposite direction by flipping the scale, so 

all correlations become positive. Let us first briefly describe some results from 

positive matrix theory. 

Due to the Perron-Frobenius theory for a positive matrix’s eigenvectors 

(Salton, 1988; Lipovetsky, 2009; Horn & Johnson, 2013), the first eigenvector of 

a positive correlation matrix has positive elements and the larger ones identify the 

variables more related among themselves than with others identified by smaller 

loadings. Absence of zero elements shows that the matrix is irreducible, or by 

permutation of variables the matrix cannot be presented in a block-diagonal form 

when each diagonal block consists of highly correlated subsets of the variables, 

and the non-diagonal blocks contain zeros. However, higher loadings define a 

subset of closely-related variables, and the rest of variables with lower loadings 

could belong to another subset of closely-related variables. In practice, a matrix of 

correlation can only be approximately presented in a block-diagonal form with 

higher correlations within the diagonal blocks and with lower correlations in the 

non-diagonal blocks. If the first eigenvector identifies by the highest elements one 

of the diagonal blocks, the second eigenvector should correspond to another 

diagonal block and, due to the Perron-Frobenius theory, it can have positive 

elements of the variables belonging to this block. The next main eigenvectors can 

relate to other diagonal blocks and, again, each of them can be flipped by sign. 

Let us consider how the results of factor analysis can correspond to different 

ranges of the mean values shown in Figure 2. FA loadings for 3, 4, and 5-factor 

solutions obtained in a maximum likelihood approach with additional varimax 

rotation are presented in Table 2. 

The main loadings in Table 2 are colored by dark green. Table 2 also shows 

the item means, and correlations between them and FA loadings. We see that in 

each FA solution there is a strong negative correlation of the loadings with mean 

values of attributes. It can be interpreted as follows. 
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Table 2. Attribute means, FA loadings, and correlations 

 

  
FA-3 

 
FA-4 

 
FA-5 

item mean F1 F2 F3   F1 F2 F3 F4   F1 F2 F3 F4 F5 

1 2.77 0.12 0.59 0.38 
 

0.60 0.07 0.33 0.22 
 

0.52 0.09 0.33 0.19 0.51 

2 2.86 0.13 0.56 0.51 
 

0.55 0.12 0.49 0.18 
 

0.46 0.14 0.51 0.14 0.40 

3 2.54 0.20 0.64 0.41 
 

0.64 0.18 0.38 0.19 
 

0.58 0.18 0.43 0.18 0.16 

4 2.85 0.32 0.41 0.62 
 

0.41 0.27 0.56 0.31 
 

0.34 0.28 0.59 0.29 0.16 

5 2.81 0.24 0.50 0.64 
 

0.49 0.22 0.62 0.24 
 

0.44 0.22 0.65 0.24 0.10 

6 2.92 0.73 0.16 0.10 
 

0.14 0.79 0.15 0.04 
 

0.16 0.78 0.15 0.04 -0.03 

7 2.81 0.66 0.20 0.01 
 

0.19 0.64 0.00 0.15 
 

0.20 0.64 0.01 0.13 0.05 

8 2.91 0.24 0.42 0.68 
 

0.40 0.23 0.69 0.20 
 

0.36 0.22 0.71 0.20 0.06 

9 2.39 0.32 0.67 0.34 
 

0.66 0.29 0.32 0.19 
 

0.67 0.26 0.37 0.22 -0.06 

10 2.34 0.30 0.67 0.29 
 

0.67 0.26 0.25 0.22 
 

0.65 0.24 0.30 0.23 0.04 

11 3.07 0.56 0.21 0.42 
 

0.22 0.44 0.28 0.50 
 

0.18 0.46 0.28 0.48 0.15 

12 3.00 0.52 0.27 0.45 
 

0.29 0.35 0.24 0.64 
 

0.27 0.35 0.26 0.64 0.09 

13 3.07 0.70 0.11 0.23 
 

0.10 0.65 0.19 0.27 
 

0.10 0.66 0.19 0.25 0.02 

14 2.97 0.72 0.14 0.16 
 

0.12 0.77 0.20 0.08 
 

0.12 0.77 0.20 0.06 0.02 

15 2.60 0.44 0.52 0.34 
 

0.54 0.34 0.24 0.39 
 

0.53 0.33 0.27 0.40 0.03 

16 2.68 0.57 0.18 0.09 
 

0.18 0.56 0.08 0.16 
 

0.20 0.54 0.09 0.17 -0.08 

17 2.78 0.46 0.34 0.29 
 

0.35 0.39 0.20 0.34 
 

0.33 0.38 0.22 0.33 0.07 

18 1.91 0.09 0.62 0.06 
 

0.63 0.06 0.03 0.10 
 

0.62 0.05 0.07 0.11 0.12 

19 2.94 0.24 0.38 0.69 
 

0.35 0.24 0.72 0.18 
 

0.31 0.23 0.74 0.18 0.05 

20 2.94 0.26 0.40 0.63 
 

0.39 0.24 0.61 0.23 
 

0.31 0.26 0.63 0.21 0.20 

21 2.06 0.35 0.52 0.01 
 

0.52 0.34 0.02 0.06 
 

0.53 0.32 0.06 0.08 -0.02 

22 2.84 0.34 0.45 0.60 
 

0.44 0.29 0.56 0.29 
 

0.41 0.28 0.59 0.30 0.00 

23 2.47 0.06 0.68 0.27 
 

0.69 0.03 0.23 0.15 
 

0.63 0.04 0.24 0.11 0.45 

24 3.08 0.53 0.20 0.48 
 

0.22 0.36 0.28 0.66 
 

0.20 0.36 0.29 0.65 0.06 

25 2.99 0.48 0.28 0.52 
 

0.29 0.37 0.40 0.47 
 

0.27 0.37 0.42 0.47 0.00 

26 2.77 0.46 0.42 0.46 
 

0.43 0.37 0.36 0.41 
 

0.43 0.35 0.40 0.43 -0.07 

27 2.27 0.24 0.69 0.23 
 

0.68 0.25 0.26 0.04 
 

0.69 0.22 0.32 0.06 -0.06 

28 3.19 0.40 0.14 0.63 
 

0.14 0.33 0.55 0.39 
 

0.11 0.33 0.55 0.39 0.00 

29 2.96 0.67 0.21 0.33 
 

0.20 0.65 0.32 0.23 
 

0.18 0.66 0.32 0.22 0.07 

30 2.99 0.63 0.20 0.40 
 

0.20 0.54 0.32 0.39 
 

0.17 0.56 0.32 0.37 0.12 

31 2.84 0.61 0.25 0.29 
 

0.26 0.55 0.22 0.31 
 

0.23 0.56 0.23 0.29 0.13 

32 3.14 0.59 0.12 0.28 
 

0.12 0.54 0.24 0.27 
 

0.10 0.56 0.23 0.25 0.12 

33 3.03 0.55 0.20 0.46 
 

0.22 0.44 0.33 0.48 
 

0.17 0.46 0.33 0.45 0.19 

34 2.45 0.21 0.65 0.38 
 

0.64 0.22 0.40 0.09 
 

0.61 0.20 0.45 0.10 0.06 

35 2.46 0.25 0.63 0.25 
 

0.63 0.23 0.23 0.17 
 

0.59 0.22 0.27 0.16 0.12 

cor   0.56 -0.79 0.49   -0.79 0.48 0.38 0.56   -0.85 0.52 0.31 0.51 0.05 

 
 

As is well-known, the vectors of loadings in FA, PCA, and SVD, as 

eigenvectors of eigenproblems for covariance, correlation, or non-centered 

second-moment matrices, are defined up to an arbitrary normalizing constant – 

particularly, up to sign change of all their elements that flips the vectors to 
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opposite direction. It is so for maximum likelihood and other methods of 

estimation, with orthogonal, oblique, and rotated solutions as well. Negative 

correlations of some vectors of loading with mean values of attributes can be 

observed practically in any FA or PCA solution, but it does not eliminate such 

factors from analysis and interpretation on the basis of this correlation sign only. 

However, for Likert scales it could indicate that negative correlation of a factor’s 

loadings with the vector of the variables’ means occurs because this factor is 

constituted by the variables with the values mostly on the “lower”, or “non-

relevant” levels. For instance, such a factor can consist of the attributes getting 

mostly the lower 1 and 2 levels in the scale of “does not apply to me” meaning in 

(1). 

To check it, let us reshape Table 2 by sorting FA loadings due to the 

descending order of the items mean values – the results are presented in Table 3. 

Indeed, it is easy to see by Table 3 that in any FA solution the factors negatively 

correlated with mean values have the main loadings on the attributes with 

minimum mean values, in the range below about the mean point 2.5 in the scale 

(1). But those values correspond to meaningless attributes in this study because 

they are related to the “non-applied to respondent” levels. 
 
 

 
 
Figure 3. FA-3 solution for 35 attributes with the second factor loadings vs. means 
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Table 3. Factor loadings sorted by mean values 

 

  
FA-3 

 
FA-4 

 
FA-5 

item mean F1 F2 F3   F1 F2 F3 F4   F1 F2 F3 F4 F5 

28 3.19 0.40 0.14 0.63 
 

0.14 0.33 0.55 0.39 
 

0.11 0.33 0.55 0.39 0.00 

32 3.14 0.59 0.12 0.28 
 

0.12 0.54 0.24 0.27 
 

0.10 0.56 0.23 0.25 0.12 

24 3.08 0.53 0.20 0.48 
 

0.22 0.36 0.28 0.66 
 

0.20 0.36 0.29 0.65 0.06 

11 3.07 0.56 0.21 0.42 
 

0.22 0.44 0.28 0.50 
 

0.18 0.46 0.28 0.48 0.15 

13 3.07 0.70 0.11 0.23 
 

0.10 0.65 0.19 0.27 
 

0.10 0.66 0.19 0.25 0.02 

33 3.03 0.55 0.20 0.46 
 

0.22 0.44 0.33 0.48 
 

0.17 0.46 0.33 0.45 0.19 

12 3.00 0.52 0.27 0.45 
 

0.29 0.35 0.24 0.64 
 

0.27 0.35 0.26 0.64 0.09 

25 2.99 0.48 0.28 0.52 
 

0.29 0.37 0.40 0.47 
 

0.27 0.37 0.42 0.47 0.00 

30 2.99 0.63 0.20 0.40 
 

0.20 0.54 0.32 0.39 
 

0.17 0.56 0.32 0.37 0.12 

14 2.97 0.72 0.14 0.16 
 

0.12 0.77 0.20 0.08 
 

0.12 0.77 0.20 0.06 0.02 

29 2.96 0.67 0.21 0.33 
 

0.20 0.65 0.32 0.23 
 

0.18 0.66 0.32 0.22 0.07 

19 2.94 0.24 0.38 0.69 
 

0.35 0.24 0.72 0.18 
 

0.31 0.23 0.74 0.18 0.05 

20 2.94 0.26 0.40 0.63 
 

0.39 0.24 0.61 0.23 
 

0.31 0.26 0.63 0.21 0.20 

6 2.92 0.73 0.16 0.10 
 

0.14 0.79 0.15 0.04 
 

0.16 0.78 0.15 0.04 -0.03 

8 2.91 0.24 0.42 0.68 
 

0.40 0.23 0.69 0.20 
 

0.36 0.22 0.71 0.20 0.06 

2 2.86 0.13 0.56 0.51 
 

0.55 0.12 0.49 0.18 
 

0.46 0.14 0.51 0.14 0.40 

4 2.85 0.32 0.41 0.62 
 

0.41 0.27 0.56 0.31 
 

0.34 0.28 0.59 0.29 0.16 

22 2.84 0.34 0.45 0.60 
 

0.44 0.29 0.56 0.29 
 

0.41 0.28 0.59 0.30 0.00 

31 2.84 0.61 0.25 0.29 
 

0.26 0.55 0.22 0.31 
 

0.23 0.56 0.23 0.29 0.13 

5 2.81 0.24 0.50 0.64 
 

0.49 0.22 0.62 0.24 
 

0.44 0.22 0.65 0.24 0.10 

7 2.81 0.66 0.20 0.01 
 

0.19 0.64 0.00 0.15 
 

0.20 0.64 0.01 0.13 0.05 

17 2.78 0.46 0.34 0.29 
 

0.35 0.39 0.20 0.34 
 

0.33 0.38 0.22 0.33 0.07 

1 2.77 0.12 0.59 0.38 
 

0.60 0.07 0.33 0.22 
 

0.52 0.09 0.33 0.19 0.51 

26 2.77 0.46 0.42 0.46 
 

0.43 0.37 0.36 0.41 
 

0.43 0.35 0.40 0.43 -0.07 

16 2.68 0.57 0.18 0.09 
 

0.18 0.56 0.08 0.16 
 

0.20 0.54 0.09 0.17 -0.08 

15 2.60 0.44 0.52 0.34 
 

0.54 0.34 0.24 0.39 
 

0.53 0.33 0.27 0.40 0.03 

3 2.54 0.20 0.64 0.41 
 

0.64 0.18 0.38 0.19 
 

0.58 0.18 0.43 0.18 0.16 

23 2.47 0.06 0.68 0.27 
 

0.69 0.03 0.23 0.15 
 

0.63 0.04 0.24 0.11 0.45 

35 2.46 0.25 0.63 0.25 
 

0.63 0.23 0.23 0.17 
 

0.59 0.22 0.27 0.16 0.12 

34 2.45 0.21 0.65 0.38 
 

0.64 0.22 0.40 0.09 
 

0.61 0.20 0.45 0.10 0.06 

9 2.39 0.32 0.67 0.34 
 

0.66 0.29 0.32 0.19 
 

0.67 0.26 0.37 0.22 -0.06 

10 2.34 0.30 0.67 0.29 
 

0.67 0.26 0.25 0.22 
 

0.65 0.24 0.30 0.23 0.04 

27 2.27 0.24 0.69 0.23 
 

0.68 0.25 0.26 0.04 
 

0.69 0.22 0.32 0.06 -0.06 

21 2.06 0.35 0.52 0.01 
 

0.52 0.34 0.02 0.06 
 

0.53 0.32 0.06 0.08 -0.02 

18 1.91 0.09 0.62 0.06 
 

0.63 0.06 0.03 0.10 
 

0.62 0.05 0.07 0.11 0.12 

cor   0.56 -0.79 0.49   -0.79 0.48 0.38 0.56   -0.85 0.52 0.31 0.51 0.05 

 
 

So we can see by negative correlations of FA loadings and means that it is 

possible to identify the variables gravitating to the levels of “does not really apply 

to me” and “does not apply to me at all”. Such attributes do not supply useful 

information elicited from the respondents. Thus, the factors negatively correlated 
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with means can be skipped from the analysis and interpretation. For illustration, 

the loadings of the second factor in the solution with three factors (FA-3 solution, 

the factor F2 in Table 3) are shown in Figure 3, which clearly describes a negative 

pattern of correlation. 

Cleaning data from inadequate variables always helps to a meaningful 

statistical analysis, so FA can be re-run without the redundant variables of mostly 

the irrelevant levels on the limited scale. It is also interesting to note that the PCA 

loadings even without rotation produce similar to FA correlations with means. For 

instance, correlations of three first PCA vectors with the vector of means are 0.72, 

-0.62, and 0.31, so very close to three factor solution’s correlations given at the 

last row in Table 3. 
 
 
Table 4. Correlations of means and FA loadings for several factor solutions with 45 

attributes measure by 7-point Likert scale 
 

  F1 F2 F3 F4 F5 F6 

FA-3 0.89 0.08 -0.89 
   

FA-4 0.87 0.03 -0.87 0.19 
  

FA-5 0.82 0.14 -0.94 0.21 0.17 
 

FA-6 0.83 0.15 -0.95 0.21 0.14 0.07 

 
 

 
 
Figure 4. FA-3 solution for 45 attributes with the third factor loadings versus means 
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Table 5. FA-3 loadings sorted by means for 45 attributes measured by 7-point Likert 

scale 
 

item mean F1 F2 F3 
 

item mean F1 F2 F3 

21 5.79 0.62 0.19 -0.02 
 

13 5.14 0.48 0.31 0.30 

22 5.74 0.75 0.15 -0.01 
 

15 5.14 0.45 0.55 0.28 

20 5.72 0.70 0.11 0.04 
 

28 5.14 0.28 0.70 0.20 

41 5.63 0.57 0.15 0.07 
 

31 5.14 0.41 0.66 0.20 

18 5.60 0.65 0.41 0.04 
 

37 5.14 0.52 0.16 0.35 

26 5.57 0.70 0.37 0.13 
 

29 5.13 0.32 0.68 0.21 

43 5.56 0.69 0.42 0.09 
 

12 5.12 0.46 0.34 0.26 

10 5.55 0.63 0.40 0.10 
 

40 5.07 0.51 0.17 0.26 

14 5.48 0.65 0.36 0.18 
 

17 5.05 0.24 0.70 0.25 

32 5.43 0.59 0.48 0.18 
 

36 5.01 0.53 0.17 0.38 

5 5.42 0.73 0.24 0.28 
 

38 5.00 0.57 0.17 0.47 

3 5.41 0.60 0.37 0.19 
 

25 4.94 0.41 0.47 0.29 

42 5.37 0.59 0.19 0.19 
 

35 4.93 0.34 0.66 0.26 

45 5.37 0.64 0.28 0.17 
 

44 4.86 0.45 0.36 0.50 

7 5.33 0.54 0.45 0.21 
 

2 4.63 0.37 0.20 0.62 

24 5.28 0.56 0.46 0.25 
 

39 4.59 0.27 0.43 0.42 

16 5.24 0.56 0.15 0.36 
 

30 4.26 0.01 0.60 0.40 

33 5.23 0.57 0.16 0.27 
 

23 3.93 0.18 0.32 0.57 

19 5.22 0.43 0.64 0.22 
 

8 3.76 0.08 0.41 0.60 

27 5.19 0.59 0.23 0.23 
 

9 3.70 0.11 0.18 0.76 

34 5.17 0.52 0.47 0.31 
 

6 3.68 0.11 0.22 0.74 

1 5.16 0.56 0.20 0.51 
 

11 3.04 0.03 0.10 0.70 

4 5.15 0.63 0.23 0.40 
 

cor   0.89 0.08 -0.89 

 
 

In another data set from the same marketing research project, forty five 

attributes had been measured by a 7-point Likert scale, from 7 meaning 

“extremely important” to 1 meaning “not at all important.” A general structure of 

the relations between mean values and FA loadings is very similar to that 

described above for the smaller set of attributes. Table 4 presents the correlations 

between mean values and factors loadings from three factor solution (FA-3 in the 

first row) to six factor solution (FA-6 in the last row). 

It is useful to note that PCA loading correlated with mean values also yield 

negative values. PCA constructed by correlation matrix gives three first 

correlations 0.93, 0.66, and -0.21, and PCA by covariance matrix produces 

correlations 0.97, -0.29, and -0.11. By Table 4 we see that adding more factors 

does not change the correlations of the first three factors (F1, F2, and F3 in the 

first columns) with the mean values of attributes. So, for illustration on the FA 

loading sorted by means of the attributes, it is sufficient to use the FA-3 solution 

which is presented in Table 5. This solution demonstrates that the negative 
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correlation of the loadings with means is observed for the third factor mostly 

defined by the attributes with mean values below the mid-point of the scale. So 

there is no need to consider and interpret this 3rd factor defined mostly by the 

“non-important” attributes. The last factor’s loadings for 45 attributes solution 

from Table 5 is presented in Figure 4 with decreasing loadings profiled by the 

mean values. 

Another interesting example of factor analysis performed on eighty 

adjectives measured by a 5-point Likert scale for characterizing the beauty of a 

mathematical proof can be found in Inglis and Aberdein (2014), with the second 

factor excluded from interpretation because of correspondence to lower levels of 

description accuracy. 

Summary 

The work considers the possibility to identify factors which can be skipped from 

interpretation and further application. The analysis is based on correlations of 

factor loadings with means of variables constituting the factors. Although the 

factor and principal component loadings are defined up to their sign, the 

correlations of factor loadings with variables’ means permit the identification of 

factors consisting mostly of variables measured in Likert scales related to non-

relevant values. The variables’ means can influence the variances and correlations, 

which in turn define the factor loadings. In some factors the loading structure 

defined by subsets of highly-related variables can correspond to the “non-

important” levels by Likert scale. Factor loadings after rotation to a simpler 

structure contain mostly the positive elements, so their negative correlations with 

the attribute means is a convenient indicator of the redundant factors which can be 

skipped from further analysis. Thus, depending on the content of a scale levels, 

there are studies with all main factors making sense, so they can be interpreted 

and used. Negative correlation of the loadings with mean values of variables in 

such a case simply shows that lower-level observations define this factor. But on 

the other hand, there could be studies where factors negatively correlated with 

mean values can be excluded from consideration because they rather correspond 

to the absence of analyzing features. 
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The effect of correlation on multivariate rank outlyingness, a result of deviation of 
multivariate rank functions from property of spherical symmetry, is examined. Possible 
affine invariant versions of this multivariate rank are surveyed, and outlyingness of affine 
invariant and non-invariant spatial rank functions under general affine transformation are 

compared. 
 
Keywords: rank function, outlyingness function, symmetry, correlation 

 

Introduction 

Ordering of data and the search for the units lying far from the centroid is closely 

related to searching for outliers in the data cloud. In a univariate setting, this 

ordering is a linear ranking from smallest to largest. Given sample points 

X1, X2, …, Xn, we can order them by their rank values. Ordering of univariate 

objects based on rank does not depend heavily on the underlying distribution of 

the data, nor involve estimation of parameters of probability distributions. 

Similarly in a multivariate setting, we can order multivariate sample points 

X1, X2, …, Xn by their rank function. 

An appealing way of working with probability distributions in ℝd, especially 

in nonparametric inference, is through “descriptive measures” that characterize 

features of particular interest (Serfling, 2004, p. 260). One attractive approach is 

to base the measures on outlyingness of multivariate rank. In the last couple of 

decades, notions of multivariate signs and ranks have become a useful tool in 

analyzing multivariate data, as it does not depend heavily on distributional 

assumptions, and characterizes the central and extreme observations quite 

effectively (Makinde & Chakraborty, 2015). Use of multivariate rank for ordering 

https://doi.org/10.22237/jmasm/1493597580
mailto:osmakinde@futa.edu.ng
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of data preserves the direction of the data. Möttönen & Oja (1995), Möttönen, Oja 

& Tienari (1997) used the notion of spatial ranks to construct multivariate tests of 

location. 

A related notion to multivariate ranks is the data depth. Data depth measures 

depth or centrality of a d-dimensional observation with respect to a multivariate 

data cloud or underlying multivariate distribution. Depth functions in literature 

include Mahalanobis depth, half-space depth, simplicial depth, likelihood depth, 

and projection depth, among others. Liu, Parelius & Singh (1999) proposed 

various ideas on analyzing multivariate data using data depths. We refer readers 

to Liu, Parelius & Singh (1999) for detailed discussion on depth functions. 

Statistical approaches based on most of these depth functions suffer 

computational complexities of the depth functions.  

The spatial rank and its outlyingness can be applied in classification and 

clustering (Makinde, 2015). It has been applied in construction of geometric 

quantile (Chaudhuri, 1996; Serfling, 2004). It is well known that multivariate rank 

is not invariant under arbitrary affine transformations, so it may be affected by 

deviation of population distribution from spherical symmetry. Effect of this 

deviation on spatial rank outlyingness will be investigated. Based on this, we shall 

introduce a way of constructing affine invariant multivariate rank outlyingness. 

Spatial Rank 

Signs and ranks are commonly used in statistical methodology to develop 

methods or procedures that are independent of distribution assumptions. Use of 

rank for computing statistical quantities gives robust estimators (e.g. estimator for 

location) as they are not affected by the presence of outlying values in the data. 

For the univariate data, sign of  x  ℝ can be defined as 
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Univariate centred rank of x with respect to data points X1, X2, …, Xn from 

distribution F can be defined as  

 

    
1

1
.

n

i

i

rank x sign x X
n 

   

 

Following are some of the basic properties of rank(x), 

 

1. | rank(x) | ≤ 1. 

2. | rank(x) | = 0 implies x is the median and | rank(x) | = 1 implies x is 

an extreme point. 

3. E(| rank(x) |) = 2F(x) – 1 

 

These properties suggest that rank(x) is not only a useful descriptive 

statistics, it also characterizes the distribution. Now, we want to define sign and 

rank functions in a multivariate set up following Chakraborty (2001). Suppose  

x  ℝd, then the lp sign of x is 
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The lp rank of x   ℝd with respect to data points X1, X2, …, Xn   ℝd is 

defined as 
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when p = 1,         1 2, , , ,
T

dsign sign x sign x sign xx  the vector of co-

ordinatewise signs and for p = 2, 

 

  2

2

sign 
x

x
x

  

 

where ||.||2 is the Euclidean norm defined as  
1
22 2 2

1 22
.dy y y   y  

sign2(x) is called the spatial sign vector.  

Suppose X is a d-dimensional random vector having a distribution F, which 

is assumed to be absolutely continuous with respect to the Lebesgue measure ℝd. 

The spatial rank function (Möttönen & Oja, 1995) of any point x   ℝd with 

respect to F is defined as 

 

   .F Frank E
 

    

x X
x

x X
  (1) 

 

Here ||.|| is the usual Euclidean norm. It follows immediately from the 

definition that rankF(x) = 0 implies that x is the spatial median of the multivariate 

distribution F. Koltchinskii (1997) established that this spatial rank function is a 

one-to-one function of the distribution function F and hence it characterizes the 

distribution. Moreover the direction of the vector rankF(x) suggests the direction 

in which x is extreme compared to the distribution. Using this idea, Serfling 

(2004) introduced ||rankF(x)|| as a measure of outlyingness and defined several 

descriptive measures. Smaller values of ||rankF(x)|| implies that x is more central 

to the distribution and larger values of ||rankF(x)|| indicates that x is more extreme. 

If ||rankF(x)|| = 0, then x is the spatial median.  

Spatial rank helps determine the geometric position of points in ℝd with 

respect to the data cloud, and hence can be viewed as a descriptive statistic (Guha, 

2012). Suppose F is spherically symmetric and characterized by location 

parameter θ  ℝd, ||rankF(x)||  increases as ||x − θ||  increases. This result is stated 

formally in Theorem 1 below: 

 

Theorem 1.   If x has spherically symmetric distribution F with θ as the 

centre of symmetry, then for any x   ℝd, 
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    Frank q






 



x
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x
  

 

for some increasing, non-negative function q. 

 

This is proved in Guha (2012). Following Theorem 1, smaller rank 

outlyingness indicates more central observation and larger rank outlyingness 

indicates extreme observation. The following results hold for rank outlyingness: 

 

Fact:   Let ||rankF(x)|| denote the measure of outlyingness of rankF(x). 

Then 

 

1. ||rankF(x + θ)|| = ||rankF(x)|| for a constant vector θ. 

2. ||rankF(Ax)|| = ||rankF(x)|| for an orthogonal matrix A. 

 

The first expression above implies that rank outlyingness is invariant under 

location shift or translation while the second indicates that rank outlyingness is 

invariant under orthogonal scale transformation. In practice, the rank functions 

rankF will hardly be known completely and we need to estimate them from the 

training sample. Let X1, X2, …, Xn   ℝd be a random sample from a population 

having distribution F. We define the empirical rank function as 
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Theorem 2.  Let X1, X2, …, Xn be independent and identically 

distributed d-dimensional random vectors having distribution function F, which is 

absolutely continuous, then as ,n  

 

    sup 0.
n

d
F Frank rank



 
x

x x   

 

The proof follows from Koltchinskii’s (1997) work on the convergence of 

the empirical version of spatial rank to its population analogue. 

Chaudhuri (1996) defined spatial quantiles as vectors in 
d

 that are indexed 

by a vector u in d-dimensional unit ball. Define an open ball 
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 | , 1 .d dB   u u u  For any 
du  and 

dt , also define 

 , , ,  u t t u t  where .,.  denotes the usual Euclidean inner product. 

Spatial quantile corresponding to u and based on X1, X2, …, Xn d  is defined as 

 

    
1

ˆ arg min , .
d

n

n i
Q
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Q Q
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It follows from Theorem 1.1.2 of Chaudhuri (1996) that 
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if Qn(u) ≠ Xi for all 1 ≤ i ≤ n. This implies 

 

 
 

 1

1 n
n i

i n i

Q

n Q






u X
u =

u X
. (2) 

 

Serfling (2004) defined  
nFrank x  as the inverse function of the spatial 

quantile function,  ˆ .nQ u  Mathematically, we can write (2) as 

    ˆ
n nF n Frank Q rank u u x  and so  ˆ

nQ u x  implies   .
nFrank x u  It 

follows that  
nFrank x  is the inverse function of the multivariate geometric 

quantile function Qn(u) in the sense that  
nFrank x u  implies that Qn(u) = x and 

vice-versa. 

Effect of correlation on rank outlyingness 

The distribution of a random variable X is said to be spherically symmetric about 

a parameter θ if, for any orthogonal matrix B, 

 

  d

 X B X   

 

The density function of any spherically symmetric distribution of a random 

variable X, if it exists, is of the form       T
f g  x x x   for some 
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nonnegative scalar function g(.). Similarly, the distribution of a random vector X 

is said to be elliptically symmetric about θ if there exists a d × d nonsingular 

matrix A such that A(X − θ) has a spherically symmetric distribution about 0. See 

Liu (1990), Liu & Singh (1993), Liu, Parelius & Singh (1999) and Serfling (2006) 

for further reading on multivariate symmetry. The deviation of rank outlyingness 

from the property of spherical symmetry implies that there exists correlation 

among variables in the population from which the sample is drawn. 

Now, examine the effect of correlation among variables on rank 

outlyingness. Define y = Ax + b and Yi = AXi + b for nonsingular matrix A and 

constant vector b, then  

 

 
 

 

 

1 1 1

1 1 1
.

n n n
i ii

i i ii ii
n n n  

 
 

 
  

A x X x Xy Y

y Y x XA x X
  (3) 

 
 
Table 1. Descriptive statistics of rank outlyingness of bivariate normal objects, bivariate 
Laplace objects and bivariate t objects with 3 degrees of freedom. 
 

  
δ = 0 

 
δ = 2 

 
Statistics ρ = 0 ρ = 0.5 ρ = 0.75 ρ = 0.9 

 
ρ = 0 ρ = 0.5 ρ = 0.75 ρ = 0.9 

Bivariate 
normal 

distribution 

Minimum 0.0378 0.0272 0.0156 0.0048   0.0799 0.0806 0.0809 0.0804 

25% quantile 0.4396 0.4136 0.4143 0.3739 
 

0.4497 0.4430 0.4258 0.3870 

Median 0.6263 0.6405 0.6157 0.5794 
 

0.6069 0.5900 0.5774 0.5503 

Mean 0.6021 0.5986 0.5873 0.5693 
 

0.6053 0.6007 0.5900 0.5711 

75% quantile 0.7827 0.7852 0.7767 0.7665 
 

0.7948 0.7724 0.7408 0.7524 

Maximum 0.9647 0.9649 0.9846 0.9941 
 

0.9637 0.9678 0.9714 0.9900 

           

Bivariate 

Laplace 
distribution 

Minimum 0.0687 0.0673 0.0589 0.0607 
 

0.0459 0.0588 0.0655 0.0732 

25% quantile 0.4346 0.4429 0.4114 0.3797 
 

0.3688 0.3693 0.3749 0.3770 

Median 0.6133 0.6076 0.5717 0.5410 
 

0.6244 0.6089 0.5749 0.5691 

Mean 0.5952 0.5894 0.5791 0.5649 
 

0.5934 0.5868 0.5762 0.5618 

75% quantile 0.7611 0.7646 0.7821 0.7742 
 

0.7986 0.7942 0.7853 0.7664 

Maximum 0.9693 0.9763 0.9800 0.9832 
 

0.9819 0.9925 0.9955 0.9976 

           

Bivariate t 

distribution with 

3 d.f. 

Minimum 0.1054 0.1129 0.1050 0.0871 
 

0.0883 0.0865 0.0899 0.0698 

25% quantile 0.4076 0.4075 0.3900 0.3569 
 

0.4260 0.4158 0.4098 0.3951 

Median 0.6188 0.5967 0.5705 0.5433 
 

0.6054 0.6009 0.5817 0.5566 

Mean 0.5940 0.5849 0.5716 0.5546 
 

0.5945 0.5885 0.5783 0.5630 

75% quantile 0.8034 0.7875 0.7682 0.7656 
 

0.7734 0.7715 0.7890 0.7600 

Maximum 0.9833 0.9843 0.9927 0.9978   0.9948 0.9964 0.9986 0.9996 
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As illustration of the effect of correlation on rank outlyingness in (3), a 

small simulation study is presented. Consider a population to be bivariate 

elliptically symmetric with centre of symmetry μ = (δ 0)T and scale matrix 

1

1





 
   

 
. Simulate a random sample X1, X2, …, Xn, where sample size n is 

taken to be 100, and estimate the rank outlyingness function. For various values 

of ρ, Table 1 presents rank outlyingness for bivariate normally distributed sample, 

bivariate Laplace distributed sample and bivariate t distributed sample with 3 

degrees of freedom.  

The outlyingness function behaves anomalously for different values of 

 0,1  irrespective of class distribution. For each family of distribution, 

descriptive statistics are not in any specific order of ρ. The reason is that though 

the distribution of Xi is taking more ellipsoid form as ρ increases, the rank 

outlyingness is being computed with respect to sphere as spatial rank is non-

invariant under affine transformation. To overcome the problem of affine non-

invariance property of spatial rank, affine invariant versions of rank outlyingness 

are suggested next. 

Affine Invariant Rank Function 

Approach based on Cholesky decomposition of the covariance matrix 

Spatial rank function can also be defined (Makinde & Chakraborty, 2015) as 

 

  
 

 

1

*

1F Frank E





 
 
 
 

V x X
x

V x X
 

 

where V is a d × d matrix such that VVT = cΣ for some constant c. If the 

covariance of the distribution F exists, we can take V to be the Cholesky 

decomposition of the covariance matrix. For the empirical versions, one can 

estimate Σ by minimum covariance determinant (MCD) estimator of Rousseeuw 

(1984) and then V by its square root matrix. Note that, the Choleski 

decomposition of Σ (or, its estimate) may not produce an affine invariant rank 

function but the outlyingness function  *

Frank x  will be affine invariant 

(Makinde & Chakraborty, 2015). 
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Transformation and re-transformation approach 

Chakraborty & Chaudhuri (1996) proposed transformation and re-transformation 

methodology for conversion of non-equivariant and non-invariant measures under 

affine transformation to affine equivariant and affine invariant versions 

respectively, using data driven coordinate system. and then used to construct an 

affine equivariant median. This technique was also used in Chakraborty & 

Chaudhuri (1998) to construct robust estimate of location; in Chakraborty, 

Chaudhuri & Oja (1998) to construct an affine equivariant median and angle test; 

in Chakraborty (2001) to construct an affine equivariant quantile and also in Dutta 

& Ghosh (2012); and in Makinde & Chakraborty (2015) to construct affine 

invariant classifier. The concept is to form an appropriate data driven coordinate 

system and express all the data points in terms of the new coordinate system. 

Then compute the spatial rank of the transformed data. Define  

 

   | 1,2, ,  and 1nS n d       

 

as the collection of all d + 1 subset of {1, 2, ..., n}. For a fixed 

α = {i0, i1, …, id}   Sn, we define X(α) to be a d × d matrix whose columns are 

1 0 2 0 0
, , , .

di i i i i iX X X X X X    That is, one of the d + 1 data points determines 

the origin and the lines joining that origin to the remaining d data point will form 

the coordinate system.   

Assuming that elements of α are naturally ordered and that Xi's are 

independent and identically distributed observations with common probability 

distribution, which is absolutely continuous with respect to the Lebesgue measure 

in 
d

, X(α) is invertible with probability one (Chakraborty, 2001). So, X(α) is the 

transformation matrix and for each i  , the data set Xi is transformed into a new 

coordinate system, Yi = {X(α)}−1Xi and then compute the rank of y = {X(α)}−1x. 

X(α) is chosen in such a way that the columns of  
1
2 


 X  are as orthogonal as 

possible. Because population covariance matrix Σ is unknown in practice, 

compute its estimate from the data. The choice of α depends on the value of α that 

minimizes  
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so that ζ(α) becomes very close to 1. Obviously, once α is selected, the 

computation of affine invariant spatial rank is straightforward in any dimension. 

The affine invariant spatial rank is defined as 

 

  
    

    

1

1Frank E








 
 


 

 
 

X x X
x

X x X
 (4) 

 

The sample version is defined as 

 

  
    

    

1

1
1

1
n

n
i

F

i
i

rank
n
















X x X
x

X x X
  (5) 

 

Suppose Xi, 1 ≤ i ≤ n be samples on 
d

 from a distribution F, it is easy to 

show that the rank function (defined in (5) above) of a data point y = Ax + b is 

rankG(y) = rankF(x), where G is the distribution of y. This is shown by the 

theorem below. 

 

Theorem 3.   Suppose Xi, 1 ≤ i ≤ n is a sample on 
d

 having a 

distribution F. For any 
nS  ,  

nFrank x  defined in (5) is affine invariant. 

 

Hence, the transformed multivariate rank is invariant under affine 

transformation. Any statistic based on this transformed rank is affine invariant and 

can handle the problem associated with deviation from spherical symmetry. Gao 

(2003) defined another version of spatial depth based on rank outlyingness 

defined in (1) and can be made affine invariant by replacing outlyingness of the 

rank function in (1) by its affine invariant version.  

Numerical Example 

To illustrate these methodologies, an example based on ordering of iris data 

(Fisher, 1936) is presented and quantiles of outlyingness functions of the variants 

of multivariate rank for the three species of iris flower are compared. The species 

are iris setosa, iris versicolor and iris virginica.  
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Presented in Table 2 are the quantiles and mean of the outlyingness of affine 

invariant and non-affine invariant rank for three species of iris data. The data is 

available on package R. We denote outlyingness function of affine invariant 

multivariate rank based on Cholesky decomposition of the covariance matrix by 

CD approach, outlyingness function of affine invariant multivariate rank based on 

transformation and re-transformation approach by TR approach and outlyingness 

function of affine non-invariant multivariate rank defined in equation (1) by non-

invariant.  

Observe that quantiles of rank outlyingness based on Cholesky 

decomposition of the covariance matrix and one based on transformation and re-

transformation approach are close to each but far away from corresponding 

quantiles of values of outlyingness based on affine non-invariant multivariate rank. 

The implication of this is that correlation among the four variables (sepal length, 

sepal width, petal length and petal width) of each observation in the data can 

affect the performance of any statistical method or test based on non-affine 

invariant rank outlyingness.  
 
 
Table 2. Ordering of species of Iris data based on the outlyingness functions of affine 
invariant and non-affine invariant ranks. 
 

Iris Species Approaches Minimum 1st Quartile Median Mean 3rd Quartile Maximum 

Setosa 

CD approach 0.2461 0.5500 0.6805 0.6447 0.7740 0.8827 

TR approach 0.2456 0.5383 0.6792 0.6437 0.7791 0.8820 

Non-invariant 0.1398 0.5138 0.6372 0.6160 0.7640 0.9436 

  
      

Versicolor 

CD approach 0.2727 0.5520 0.6811 0.6506 0.7682 0.8755 

TR approach 0.2710 0.5532 0.6862 0.6485 0.7603 0.8676 

Non-invariant 0.2992 0.4759 0.6406 0.6197 0.7317 0.9116 

  
      

Virginica 

CD approach 0.3879 0.5578 0.6724 0.6543 0.7382 0.8877 

TR approach 0.3513 0.5394 0.6722 0.6531 0.7596 0.9063 

Non-invariant 0.2808 0.4850 0.6447 0.6204 0.7439 0.9538 

 
 

Observe that range of outlyingness of observations is noticeably bigger in 

affine non-invariant rank compare to the affine invariant rank. The minimum 

outlyingness value is least in affine non-invariant rank and may therefore mis-

identify an observation as outlying. Hence, both affine invariant rank outlyingness 

functions perform quite well.  
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Conclusion 

The effect of correlation on spatial rank outlyingness was considered and its 

possible applications. The spatial rank outlyingness based on the training sample 

does not depend on any distributional assumption and does not require any 

estimation of model parameters. These give a nonparametric flavor to any 

statistical technique based on multivariate rank. It is also computationally simple 

and can be applied to very high dimensional data as well. The rank outlyingness is 

not affine invariant and as a remedial measure we suggested a transformation of 

the data to a new coordinate system to make the rank outlyingness affine invariant.  

The first idea of transformation is based on transformation retransformation 

approach proposed by Chakraborty (2001). This makes the spatial ranks affine 

invariant and hence the rank outlyingness becomes affine invariant. The other 

transformation considered is based on the square root of the scale matrix Σ. It 

requires the estimation of Σ and may result in a non-robust rank outlyingness. 

Though the resulting spatial ranks are not affine invariant, rank outlyingness is 

affine invariant and usually computationally very simple if we use the sample 

covariance matrix as an estimate of Σ. When variables of the data are independent 

of one another, then both affine invariant versions of rank outlyingness reduces to 

the usual rank outlyingness. 
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Appendix 

Proof of Theorem 3.   For any d × d nonsingular matrix A, let Yi = AXi + b. 

Since X(α)=[Xi1 − Xi0, Xi2 − Xi0, ..., Xid − Xi0], we have 
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The transformed multivariate rank of a data point y = Ax + b, where 
dx  

is 
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The outliers’ influence on power rates in ANOVA and Welch tests at various conditions 
was examined and compared with the effectiveness of nonparametric methods and 
Winsorizing in minimizing the impact of outliers. Results showed that, considering both 

power and Type I error, a nonparametric test is the safest choice to control the inflation of 
Type I error with a decent sample size and yield relatively high power. 
 
Keywords: Outlier, Monte Carlo simulation, nonparametric, Winsorizing, Type I 
error, power 

 

Introduction 

Outliers are defined as “observations (or subset of observations) which appears to 

be inconsistent with the remainder of that set of data” (Barnett & Lewis, 1994, p. 

4). They are often present in datasets of educational research, and could have 

disproportionate influence on statistical conclusions. Therefore, outlier detection 

and outlier treatment have become important issues in the practice of statistical 

analysis (Bakker, & Wicherts, 2014; Rousseeuw & van Zomeren, 1990). 

Detection of outliers has been the focus of outlier research for decades, and there 

is abundant literature on outlier detecting approaches (Berkane & Bentler, 1988; 

Barnett & Lewis, 1994; Cook, 1986; Gnanadesikan, 1997; Jarrell, 1991). 

In practice, the most widely used method is to detect an outlier using the 

absolute Z value in standard normal distributions; a threshold value of Z beyond 3 

is often used. Other methods include using the median absolute deviation statistic 

(MAD), the interquartile range (IQR), and different kinds of residuals (Bakker, & 

Wicherts, 2014; Barnett & Lewis, 1994; Berkane & Bentler, 1988; Cook, 1986; 

Gnanadesikan, 1997; Jarrell, 1991). There are also bivariate and multivariate 

techniques for outlier detection, such as principal components, hat matrix, 

minimum volume ellipsoid, minimum covariance determinant, minimum 

https://doi.org/10.22237/jmasm/1493597640
mailto:hongjing.liao@139.com
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generalized variance, and Mahalanobis distance (Hawkins, 1974; Hoaglin & 

Welsch, 1978; Stevens, 1984; Wilcox, 2012). Methods of outlier detection may 

vary depending on research design, methods, and contexts. Yet after detecting an 

outlier, the researcher faces another challenge of dealing with the outliers. It is 

suggested that before any treatment on outliers, the unusual observations should 

be examined and evaluated under the specific context and try to find the reason 

for their occurrence. Outlier occurrence is usually from the following four 

sources: (a) errors, such as erroneous data entries, analysis errors, or equipment 

problems; (b) failure to specify missing values; (c) including a case that does not 

belong to the target population; (d) an actual value of the target population but the 

population has more extreme scores than a normal distribution (Freedman, Pisani, 

& Purves, 2007; Tabachnick & Fidell, 2001; Hampel, 2001; Warner, 2012). 

Warner (2012) suggested three approaches of dealing with an outlier: “to 

retain, omit, or modify” (p. 287). When reasons for outlier occurrence are 

deterministic, that is, due to apparent errors in execution of data that are 

controllable, the approach to deal with the outliers is to correct or delete erroneous 

values. However, when reasons for outlier occurrence are less apparent, it is often 

recommended to decide on outlier handling before seeing the results of the main 

analyses and to report transparently about how outliers were handled (Bakker, & 

Wicherts, 2014; Liao, Li, & Brooks, 2016). Under these circumstances, 

thoughtless removal of the outliers is often not recommended, as outlying data 

can be legitimate data points (Orr, Sackett, & DuBois, 1991). When outliers are 

unusual but substantively meaningful aspects of the intended study, deleting the 

outliers causes loss of useful information and often increases the probability of 

finding a false positive (Chow, Hamaker, & Allaire, 2009; Hampel, 2001). If 

outliers have to be removed, it is suggested to compare the resulting analyses with 

and without outliers, and then report an assessment of the influence of outliers 

through deletion (Allison, Gorman, & Primavera, 1993; Bakker, & Wicherts, 

2014). 

Many other studies suggest outlier accommodation is a more reliable 

method to address outliers than simple removal (Analytical Methods Committee, 

1989). Accommodation of outliers includes using a robust approach to reduce the 

impact of the outlying observations and treating outliers to lower their impact in 

statistical tests. Nonparametric statistical ranking is a commonly-used robust test 

that is shown to be less influenced by outliers; other robust tests also include the 

Mann-Whitney-Wilcoxon test and the Yuen-Welch test (Zimmerman & Zumbo, 

1990). 
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Other popular approaches to treating outliers include trimming and 

Winsorizing (Wilcox, 1998; Dixon & Yuen, 1974). Trimming involves removing 

the extreme values and often results in a loss in sample size and power. 

Winsorizing is another popular method to reduce the weights of outliers by 

replacing them with a specific percentile of data-dependent values (Orr, Sackett, 

& DuBois, 1991). One-end Winsorizing means that, when outliers are all positive 

or negative, they are replaced from only one end; two-end Winsorizing means 

replacing outliers from each end. These different approaches of outlier 

accommodation may well vary in usefulness of producing consistent study results, 

and may affect both Type I error and power. 

Some researchers studied the robustness of nonparametric tests in the 

presence of outliers (Zimmerman, 1994, 1995; Li et al., 2009), and Zimmerman 

(1995) found that nonparametric methods based on ranks have an advantage for 

outlier-prone densities over ANOVA. However, few studies have focused on 

multiple comparisons of different outlier accommodation methods. In 2014, the 

authors conducted a Monte Carlo simulation study and examined the influence of 

outliers on Type I error rates in ANOVA and Welch tests, and compared 

nonparametric test and Winsorizing at different locations in controlling outlier 

impact (Liao et al., 2016). In the current study, the authors followed up their 

previous simulation study to add new approaches to outlier accommodation 

methods on Type I error, and further explored outlier impact and accommodation 

methods on power. 

Purpose of the Study 

The purpose of this study is to look for answers to two practical questions by 

means of Monte Carlo methods: (1) what is the impact of outliers on statistical 

power with different effect sizes, sample sizes, and number of outliers? (2) 

Among the commonly-used outlier accommodation methods, such as 

nonparametric rank-based test and Winsorizing (one-end and two-end), which 

method is more effective in reducing outlier impact, and under what 

circumstances? 

In this study, outliers’ influence on statistical power in ANOVA and Welch 

tests were examined with different effect sizes, sample sizes, and number of 

outliers. Furthermore, two basic approaches in handling outliers, nonparametric 

tests and Winsorizing, and their effectiveness in controlling outlier impact were 

investigated. More specifically, the study compared the statistical power in the 

following two conditions: when the outliers were retained and non-parametric 
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methods were then applied to the data, and when outliers were treated using 

Winsorizing. As there has been no consensus regarding the percentile of 

Winsorizing and little information provided on how to decide the locations in 

existing literature, this study explored both one-end and two-end Winsorizing, and 

compared their difference in statistical power and Type I error. 

Compared with outlier detection, there are few studies that concentrate on 

outlier treatment methods and even fewer on comparisons of outlier 

accommodation techniques. This study ventures to explore some new areas based 

on existing studies. From the research design perspective, when the reason for 

outlier occurrence cannot be traced – which frequently happens in statistical 

analyses of educational research – it is reasonable to retain the outliers but give 

less weight to their influence. Therefore, understanding the impact brought by the 

presence of outliers and choosing an appropriate method for outlier 

accommodation are critical for credible analysis and conclusion. Moreover, this 

study focused on multiple comparisons of outlier accommodation techniques and 

presents simulation results for comparisons of outlier accommodation methods in 

order to provide recommendations for practice. 

Methodology 

In this study, a Monte Carlo program developed in the R programming language 

was conducted to simulate data, extract samples and calculate the statistics indices 

under a variety of conditions. First, three groups of univariate standard normal 

distribution data under different conditions were simulated by using the built-in R 

function rnorm. Samples of varied sample size and varied number of outliers were 

drawn from the same univariate normally-distributed data. For each condition, 

equal sample sizes were manipulated for three groups and a varied number of 

outliers were injected in only one group. ANOVA and Welch tests were 

performed using the same group of simulated data with both outliers included but 

with no treatment, and with outliers accommodated by the two types of 

Winsorization methods. Nonparametric tests were also performed using the same 

sample data with outliers included. For each condition, 10,000 replications were 

conducted. Type I error rate and statistical power for different outlier 

accommodation techniques and two different effect size conditions were 

computed and compared, and advantages and disadvantages of the outlier 

treatment techniques under different conditions noted. 
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Data Generation and Outlier Injection 

The sample sizes (n = 20, 40, 60, 80, and 100) were manipulated in such a way 

that the three groups for statistical test always had equal sample sizes with the 

outlier(s) being inserted into only one group (group one). 200,000 normally 

distributed N(0, 1) cases were generated using the function rnorm. The generated 

population data were split into two data sets: data without outliers (u –

 3σ ≤ x ≤ u + 3σ) and data with outliers (x < u – 3σ and x > u + 3σ). Data for each 

sample were randomly selected from these two data sets. Previous research has 

investigated outlier impact on Type I error rate (Liao et al., 2016); this study 

repeated the Monte Carlo methods under the true null condition. Distinct from 

that effort, however, the performance of the Type I error rate by adding both one-

end and two-end Winsorizing methods was considered in the current study. The 

mean for each group was 0. Additionally, two false null conditions were 

examined to display the performance of power rate under different treatment 

methods such as ANOVA, Welch, Nonparametric test and two types of 

Winsorizing. For the first false null condition, the means for group one, group two, 

and group three were set as 0.0, 0.3, and 0.6, respectively. For the second false 

null condition, 0.0, -0.3 and -0.6 were assigned respectively to the means of group 

one, two and three. The two conditions have equal magnitude of effect size. 

Outliers were sampled from data beyond 3 standard deviations in both 

directions of the generated data, and the absolute value of outliers were injected 

into each sample; that is, all the inserted outliers are positive 1, 2, 3, 4 and 5 

outliers and, for each sample size mentioned above, were investigated for both the 

Type I error analysis and power study under various treatment methods. 

Monte Carlo Analysis 

Under the true null hypothesis for each sample from the simulated population 

(e.g., u1 = 0, u2 = 0, u3 = 0, n = 40, noutliers = 1, 2, 3, 4, 5, sd = 1), two types of 

Winsorizing methods were used to examine the extent to which the inflation of 

the Type I error could be controlled: Winsorizing one end of data (the side with 

outliers) and Winsorizing both ends of data. The specified percentiles of 

Winsorizing for each condition are listed in Table 1, and the percentiles were 

performed through setting the value of parameter lambda (λ) in the R program. 

For example, when N = 40 and noutliers = 2, λ = 0.05 (5th percentile) was employed. 

Under the conditions of one-end Winsorizing, only the outlier(s) were 

Winsorized; under the conditions of two-end Winsorizing, both the outlier(s) and 

the corresponding number of data on the opposite side were Winsorized. 
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Table 1. The percentile of Winsorizing (lambda λ) 

 

 
Number of outlier(s) 

Sample size 1 2 3 4 5 

20 0.0500 0.1000 0.1500 0.2000 0.2500 

40 0.0250 0.0500 0.0750 0.1000 0.1250 

60 0.0200 0.0400 0.0500 0.0700 0.0900 

80 0.0125 0.0250 0.0375 0.0500 0.0625 

100 0.0100 0.0200 0.0300 0.0400 0.0500 

 
 

Under the false null hypothesis, for each sample from the simulated 

population (e.g., u1 = 0, u2 = 0.3, u3 = 0.6, n = 20, noutliers = 1, 2, 3, 4, 5, sd = 1), 

ANOVA and Welch tests were used to explore the statistical power, that is, true 

rejection rates for the false null hypothesis. Statistical p-values were documented 

for data with no outliers, data with outliers, and data treated by two commonly-

used outlier accommodation methods: nonparametric and Winsorizing. 

Apart from the simulation procedures and data analyses, this study also 

adopted different verification approaches to validate data generation and 

collection. A small sample size (e.g., N = 10), small outlier number (e.g., 1 

outlier), and small replications (e.g., 10 iterations) were carried out for generating 

dataset. Total rejection rates computed by hand were compared with the solution 

acquired from a cyber-program in order to manually verify data generation. A few 

normally- distributed sample data sets, simulated by the R program, were tested 

via the Statistical Package for the Social Sciences (SPSS) program. The data were 

confirmed to be indeed distributed normally. Various trials such as 1, 10, 100, and 

1000 were employed for the stress-testing of R codes. All the results obtained 

from the specific R testing codes exhibited good performances under varied 

conditions. 

Results 

Simulation results are compiled in Table 2 and Table 3. The results include 

statistical power of parametric significance tests and different outlier 

accommodation techniques under two effect sizes (0, 0.3, 0.6; 0, -0.3, -0.6), five 

sample sizes (20, 40, 60, 80, and 100), and with six outlier conditions (outlier = 0, 

1, 2, 3, 4, 5). 
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Table 2. Power of parametric significance tests and different outlier accommodation 

techniques under varied sample size, outlier conditions and effect size 0.0, 0.3, 0.6 
 

Sample 
Size  

Parametric 
 

Non-
parametric  

Wins.: one-end 
 

Wins: two-end 

Outlier ANOVA Welch     ANOVA Welch   ANOVA Welch 

N = 20 0 0.3720 0.3629 
 

0.3473 
 

0.3720 0.3629 
 

0.3720 0.3629 

 
1 0.1555 0.1536 

 
0.2250 

 
0.2677 0.2619 

 
0.2618 0.2573 

 
2 0.0663 0.0927 

 
0.1312 

 
0.1929 0.1939 

 
0.1871 0.1879 

 
3 0.0451 0.0859 

 
0.0831 

 
0.1523 0.1589 

 
0.1588 0.1578 

 
4 0.0573 0.0992 

 
0.0653 

 
0.1341 0.1421 

 
0.1604 0.1614 

 
5 0.0989 0.1296 

 
0.0720 

 
0.1276 0.1378 

 
0.2057 0.2042 

            

N = 40 0 0.6723 0.6620 
 

0.6419 
 

0.6723 0.6620 
 

0.6723 0.6620 

 
1 0.4966 0.4800 

 
0.5425 

 
0.5754 0.5623 

 
0.5674 0.5561 

 
2 0.3313 0.3265 

 
0.4393 

 
0.4741 0.4648 

 
0.4572 0.4500 

 
3 0.2148 0.2349 

 
0.3493 

 
0.3898 0.3859 

 
0.3684 0.3655 

 
4 0.1365 0.1826 

 
0.2712 

 
0.3209 0.3249 

 
0.2991 0.2980 

 
5 0.1003 0.1643 

 
0.2127 

 
0.2686 0.2785 

 
0.2505 0.2561 

            

N = 60 0 0.8507 0.8480 
 

0.8245 
 

0.8507 0.8480 
 

0.8507 0.8480 

 
1 0.7520 0.7429 

 
0.7699 

 
0.7918 0.7852 

 
0.7875 0.7815 

 
2 0.6340 0.6208 

 
0.7070 

 
0.7203 0.7143 

 
0.7060 0.7025 

 
3 0.5068 0.5006 

 
0.6380 

 
0.6475 0.6397 

 
0.6261 0.6201 

 
4 0.3817 0.3976 

 
0.5605 

 
0.5739 0.5673 

 
0.5411 0.5378 

 
5 0.2818 0.3203 

 
0.4877 

 
0.5739 0.5673 

 
0.4652 0.4677 

            

N = 80 0 0.9386 0.9376 
 

0.9235 
 

0.9386 0.9376 
 

0.9386 0.9376 

 
1 0.8940 0.8888 

 
0.8958 

 
0.9108 0.9081 

 
0.9086 0.9054 

 
2 0.8301 0.8199 

 
0.8652 

 
0.8718 0.8689 

 
0.8628 0.8611 

 
3 0.7449 0.7349 

 
0.8211 

 
0.8246 0.8197 

 
0.8103 0.8056 

 
4 0.6509 0.6473 

 
0.7748 

 
0.7745 0.7681 

 
0.7509 0.7469 

 
5 0.5483 0.5595 

 
0.7232 

 
0.7198 0.7133 

 
0.6845 0.6830 

            

N = 100 0 0.9748 0.9741 
 

0.9658 
 

0.9748 0.9741 
 

0.9748 0.9741 

 
1 0.9575 0.9547 

 
0.9536 

 
0.9634 0.9619 

 
0.9618 0.9608 

 
2 0.9253 0.9197 

 
0.9373 

 
0.9450 0.9431 

 
0.9414 0.9392 

 
3 0.8811 0.8740 

 
0.9180 

 
0.9211 0.9162 

 
0.9128 0.9088 

 
4 0.8234 0.8168 

 
0.8955 

 
0.8897 0.8863 

 
0.8757 0.8729 

  5 0.7561 0.7525   0.8630   0.8543 0.8511   0.8331 0.8305 
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Table 3. Power of parametric significance tests and different outlier accommodation 

techniques under varied sample size, outlier conditions and effect size 0.0, -0.3, -0.6 
 

Sample 
Size  

Parametric 
 

Non-
parametric  

Wins.: one-end 
 

Wins: two-end 

Outlier ANOVA Welch     ANOVA Welch   ANOVA Welch 

N = 20 0 0.3724 0.3640 
 

0.3488 
 

0.3724 0.3640 
 

0.3724 0.3640 

 
1 0.4864 0.4405 

 
0.4185 

 
0.4564 0.4391 

 
0.4994 0.4846 

 
2 0.6272 0.5462 

 
0.4984 

 
0.5549 0.5247 

 
0.6414 0.6251 

 
3 0.7641 0.6590 

 
0.5877 

 
0.6471 0.6096 

 
0.7680 0.7572 

 
4 0.8791 0.7709 

 
0.6777 

 
0.7253 0.6902 

 
0.8670 0.8608 

 
5 0.9508 0.8712 

 
0.7665 

 
0.7925 0.7610 

 
0.9314 0.9347 

            

N = 40 0 0.6691 0.6621 
 

0.6352 
 

0.6691 0.6621 
 

0.6691 0.6621 

 
1 0.7557 0.7354 

 
0.6878 

 
0.7343 0.7230 

 
0.7515 0.7423 

 
2 0.8307 0.8015 

 
0.7382 

 
0.7924 0.7760 

 
0.8241 0.8166 

 
3 0.8934 0.8613 

 
0.7895 

 
0.8402 0.8253 

 
0.8842 0.8754 

 
4 0.9413 0.9081 

 
0.8311 

 
0.8835 0.8685 

 
0.9273 0.9209 

 
5 0.9702 0.9456 

 
0.8714 

 
0.9148 0.9017 

 
0.9587 0.9536 

            

N = 60 0 0.8542 0.8472 
 

0.8265 
 

0.8542 0.8472 
 

0.8542 0.8472 

 
1 0.9008 0.8909 

 
0.8576 

 
0.8902 0.8833 

 
0.8979 0.8930 

 
2 0.9350 0.9245 

 
0.8836 

 
0.9189 0.9135 

 
0.9296 0.9253 

 
3 0.9613 0.9495 

 
0.9075 

 
0.9411 0.9317 

 
0.9555 0.9502 

 
4 0.9786 0.9677 

 
0.9259 

 
0.9588 0.9516 

 
0.9727 0.9693 

 
5 0.9882 0.9804 

 
0.9451 

 
0.9706 0.9646 

 
0.9837 0.9821 

            

N = 80 0 0.9424 0.9398 
 

0.9243 
 

0.9424 0.9398 
 

0.9424 0.9398 

 
1 0.9619 0.9585 

 
0.9399 

 
0.9581 0.9553 

 
0.9606 0.9585 

 
2 0.9762 0.9723 

 
0.9534 

 
0.9695 0.9678 

 
0.9738 0.9723 

 
3 0.9863 0.9824 

 
0.9640 

 
0.9793 0.9767 

 
0.9843 0.9817 

 
4 0.9922 0.9896 

 
0.9725 

 
0.9862 0.9838 

 
0.9905 0.9897 

 
5 0.9951 0.9940 

 
0.9790 

 
0.9910 0.9890 

 
0.9941 0.9937 

            

N = 100 0 0.9793 0.9790 
 

0.9719 
 

0.9793 0.9790 
 

0.9793 0.9790 

 
1 0.9881 0.9872 

 
0.9773 

 
0.9861 0.9854 

 
0.9872 0.9864 

 
2 0.9925 0.9907 

 
0.9821 

 
0.9903 0.9898 

 
0.9915 0.9910 

 
3 0.9954 0.9943 

 
0.9867 

 
0.9933 0.9925 

 
0.9943 0.9937 

 
4 0.9977 0.9968 

 
0.9901 

 
0.9954 0.9948 

 
0.9969 0.9965 

  5 0.9983 0.9977   0.9925   0.9968 0.9966   0.9979 0.9977 

Outlier Impact on Power 

Results for the first false null condition (mean = 0.0, 0.3, 0.6) are summarized in 

Figure 1 and Figure 2. As is shown in the figures, under the first false null 

condition, the presence of outliers caused significant decrease in the power of 

statistical testing. When sample size is as small as 20, with the presence of one 
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outlier, the power dropped by about 60% in ANOVA from 0.372 to 0.156. As 

sample size increases, the power decrease slowed down. When sample size is as 

large as 100, the power dropped only by less than 2% at the presence of an outlier. 

Shown in Figure 2 is the statistical power when nonparametric and 

Winsorizing two-end methods were used under the first false null condition. From 

what is shown in the figure, outlier accommodation methods, though slightly 

different in effectiveness, can help diminish the impact of outlier on power. 

However, these outlier-robust measures can only diminish the impact but can 

hardly eliminate the impact. 

Simulation results for the second false null condition (mean = 0.0, -0.3, -0.6) 

are summarized in Figure 3 and Figure 4. In contrast to the first null condition, 

under the second false null condition power was increased with the presence of 

outliers. The results further confirmed the impact of outliers on power rates, and 

indicated that, as the number of outliers increase, their impact on power increases 

as well. 
 
 

 
 
Figure 1. Statistical power for ANOVA and Welch with varied sample size and number of 

outliers when standardized group mean equals to 0.0, 0.3 and 0.6 
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Figure 2. Statistical power for Nonparametric and Wisorizing two-end method with varied 

sample size and number of outliers when standardized group mean equals to 0.0, 0.3 
and 0.6 

 

 
 

 
 
Figure 3. Statistical power for ANOVA and Welch with varied sample size and number of 

outliers when standardized group mean equals to 0.0, -0.3 and -0.6 
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Figure 4. Statistical power for Nonparametric and Wisorizing two-end method with varied 

sample size and number of outliers when standardized group mean equals to 0.0, -0.3 
and -0.6 

 

 
 

Regarding the impact of outliers and effect size, in this study we inserted 

only positive outliers, and the results show that outlier impact is different for 

positive (mean = 0.0, 0.3, 0.6) and negative effect sizes (mean = 0.0, -0.3, -0.6). 
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with the effect size (-0.3, 0.0, 0.3) were conducted and yielded similar results as 
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corresponds to Winsorizing one-end ANOVA under the effect size 0.0, 0.3 and 

0.6; W11_Welch corresponds to Winsorizing one-end Welch under the effect size 

0.0, 0.3 and 0.6; W12_ANOVA corresponds to Winsorizing two-end ANOVA 

under the effect size 0.0, 0.3 and 0.6; W12_Welch corresponds to Winsorizing 

two-end Welch under the effect size 0.0, 0.3 and 0.6; and P2_ANOVA 

corresponds to Parametric ANOVA under the effect size 0.0, -0.3 and -0.6. 

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

0 1 2 3 4 5

St
at

is
ti

ca
l P

o
w

er

Number of Outlier

Nonparametric_N=20

Win_ANOVA_N=20

Win_Welch_N=20

Nonparametric_N=40

Win_ANOVA_N=40

Win_Welch_N=40

Nonparametric_N=60

Win_ANOVA_N=60

Win_Welch_N=60

Nonparametric_N=80

Win_ANOVA_N=80



OUTLIER ACCOMMODATION ON POWER 

272 

Across all effect sizes, sample sizes, and numbers of outliers, ANOVA yields 

more power than Welch tests (see Table 2 and Table 3). 
 
 

 
 
Figure 5. Statistical power for ANOVA and Welch with sample size = 20, number of 

outliers = 0, 1, 2, 3, 4, 5, and two effect sizes (standardized group mean equals to 0.0, 
0.3, 0.6 and 0.0, -0.3, -0.6) 
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Results on the effectiveness of the two outlier accommodation methods are now 

presented. As the results in Table 2 and Table 3 showed, outlier accommodation 
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when sample sizes are large and when power decreases by about 50%, the outlier 

accommodation methods can increase the power by 10% at most. 
 
 
Table 4. Type I error rates of nonparametric tests and Winsorizing method under varied 

sample sizes and outlier conditions 
 

Sample 
Size  

Non-
parametric  

Winsorizing: one-end 
 

Winsorizing: two-end 

Outlier   ANOVA Welch   ANOVA Welch 

N = 20 0 0.0480 
 

0.0492 0.0467 
 

0.0492 0.0467 

 
1 0.0459 

 
0.0522 0.0507 

 
0.0615 0.0585 

 
2 0.0583 

 
0.0707 0.0664 

 
0.1043 0.1004 

 
3 0.0873 

 
0.1034 0.0949 

 
0.1940 0.1873 

 
4 0.1348 

 
0.1563 0.1354 

 
0.3339 0.3293 

 
5 0.2098 

 
0.2282 0.1952 

 
0.5053 0.5129 

         
N = 40 0 0.0507 

 
0.0528 0.0528 

 
0.0528 0.0528 

 
1 0.0508 

 
0.0556 0.0531 

 
0.0597 0.0565 

 
2 0.0593 

 
0.0674 0.0642 

 
0.0856 0.0818 

 
3 0.0748 

 
0.0898 0.0844 

 
0.1288 0.1239 

 
4 0.0988 

 
0.1247 0.1156 

 
0.1950 0.1842 

 
5 0.1298 

 
0.1709 0.1535 

 
0.2878 0.2717 

         
N = 60 0 0.0508 

 
0.0497 0.0522 

 
0.0497 0.0522 

 
1 0.0511 

 
0.0517 0.0530 

 
0.0546 0.0558 

 
2 0.0559 

 
0.0617 0.0611 

 
0.0713 0.0709 

 
3 0.0644 

 
0.0776 0.0742 

 
0.1015 0.0994 

 
4 0.0805 

 
0.1052 0.0983 

 
0.1461 0.1418 

 
5 0.0509 

 
0.1399 0.1285 

 
0.2087 0.1996 

         
N = 80 0 0.0514 

 
0.0546 0.0535 

 
0.0546 0.0535 

 
1 0.0511 

 
0.0543 0.0529 

 
0.0566 0.0558 

 
2 0.0548 

 
0.0621 0.0613 

 
0.0694 0.0676 

 
3 0.0620 

 
0.0770 0.0721 

 
0.0931 0.0891 

 
4 0.0742 

 
0.0990 0.0922 

 
0.1315 0.1244 

 
5 0.0913 

 
0.1303 0.1196 

 
0.1787 0.1674 

         
N = 100 0 0.0509 

 
0.0489 0.0483 

 
0.0489 0.0483 

 
1 0.0513 

 
0.0506 0.0496 

 
0.0527 0.0516 

 
2 0.0531 

 
0.0551 0.0554 

 
0.0609 0.0601 

 
3 0.0606 

 
0.0685 0.0669 

 
0.0832 0.0807 

 
4 0.0697 

 
0.0879 0.0844 

 
0.1121 0.1074 

 
5 0.0795   0.1116 0.1043   0.1503 0.1434 

 
 

Regarding a comparison between nonparametric tests and Winsorizing, for 

the first false null condition with the effect size (0.0, 0.3, 0.6), Winsorizing 
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performed a little better in obtaining higher power than nonparametric test. In 

general, both nonparametric and Winsorizing show similar effects in increasing 

power. Similarly, a comparison of one-end and two-end Winsorizing methods 

shows that the two Winsorizing methods yield similar results, with one-end 

Winsorizing having slightly better performance in controlling outlier impact on 

power. 

It is suggested by the simulation results and comparison of outlier 

accommodation methods above that, when examining the robustness and 

effectiveness of outlier accommodation methods, both power and Type I error 

should be taken into consideration. In our earlier study (Liao et al., 2016), we 

compared the effectiveness of nonparametric tests and one-end Winsorizing in 

controlling outlier impact on Type I error rates. In this study, based on earlier 

results, a comparison of Type I error rates with one-end and two-end Winsorizing 

was conducted. Table 4 is a summary of Type I error rates from previous studies 

with new results on the comparison of one-end and two-end Winsorizing methods. 

For effect size (0.0, 0.3, 0.6), although both nonparametric and Winsorizing show 

similar effects in increasing power, nonparametric methods yield the lowest Type 

I error rates across different sample sizes and numbers of outliers. For effect size 

(0.0, -0.3, -0.6), as the presence of outliers increases power, there is less concern 

regarding power but more regarding Type I error rate. Nonparametric tests were 

shown to be the most robust in controlling Type I error among all accommodation 

methods. Between one-end and two-end Winsorizing, one-end Winsorizing 

consistently performed better in controlling outlier impact on Type I error and 

power. In addition, one-end Winsorizing becomes more effective when the 

number of outliers gets bigger. 

Conclusion 

It was concluded previously that the impact of outliers on nonparametric tests in 

terms of Type I error rates alone depends on sample size and the number of 

outliers (Liao et al., 2016). When sample size is relatively large (e.g., n = 80 and 

100), a nonparametric test has a good control of Type I error. When the sample 

size is small, there is non-ignorable inflation in Type I error caused by outlier 

influence, especially with two and more outliers present. Furthermore, it is the 

number of outliers that seems to matter when it comes to the issue of outlier 

impact on the statistical results, regardless of the sample size. No matter how 

large the sample size is, the false rejection rates almost adhere to the nominal 

significance level (0.05) when the number of outliers is less than two, indicating 
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that no accommodation techniques are necessary. As the number of outliers 

increases, the inflation of Type I errors begins to appear. 

This simulation study built on the previous simulation stud. It further 

compared outlier accommodation with one-end and two-end Winsorizing and 

followed up with outlier impact on power to discuss outlier accommodation 

methods with consideration of both power and Type I error. This study has 

yielded new evidence regarding outlier impact on power, and the comprehensive 

effectiveness of the two commonly-used outlier accommodation methods in 

controlling outlier impact on Type I error and power. 

First, the results show that the location of outliers could affect the direction 

of their impact. When only positive outliers were inserted, power decreases for 

positive effect size (mean = 0.0, 0.3, 0.6) and increases for negative effect size 

(mean = 0.0, -0.3, -0.6). Therefore, depending on the location of the outliers, the 

researcher needs to decide when outlier impact on power is a big concern. 

Secondly, among parametric tests, ANOVA, and Welch tests yield similar 

results in the presence of outliers; Welch tests consistently have better control in 

Type I error rate. Winsorizing seems a little more effective compared with 

nonparametric tests in controlling outlier impact on power, but since the 

difference is less than 5% and nonparametic tests always have better control of 

Type I error inflation, the nonparametric tests seem the safest approach across 

most conditions. 

Lastly, Winsorizing only one end seems better than both ends in controlling 

Type I error inflation and outlier impact on power. Therefore, it is recommended 

that when all outliers are on the same side, one-end Winsorizing is the most useful 

approach. 

Both nonparametric and Winsorizing methods have similar effects in 

diminishing outlier impact on power, yet when deciding on an accommodation 

method, it is necessary to comprehensively consider both power and Type I error. 

Therefore, the nonparametric seems safest because the Type I error remains only 

a little inflated with more outliers but it generally has higher power. 

Outliers will almost inevitable exist in educational datasets and, in practice, 

removing outliers is still a common approach (Bekker, 2014). It is therefore 

highly recommended to examine the reason for outlier occurrence and, if the 

reasons are obscure or cannot be traced, our recommendation is to retain the 

outlier and use appropriate outlier accommodation methods to minimize outlier 

impact in statistical testing. 
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In most empirical studies (clinical, network modeling, and survey-based and aeronautical 
studies, etc.), sample observations are drawn from population to analyze and draw 
inferences about the population. Such analysis is done with reference to a measurable 
quality characteristic of a product or process of interest. However, fixing a sample size is 

an important task that has to be decided by the experimenter. One of the means in 
deciding an appropriate sample size is the fixation of error limit and the associated 
confidence level. This implies that the analysis based on the sample used must guarantee 
the prefixed error and confidence level. Although there are methods to determine the 
sample size, the most commonly used method requires the known population standard 
deviation, the preset error and the confidence level. Nevertheless, such methods cannot 
be used when the population standard deviation is unknown. Because the sample size is 

to be determined, the experimenter has no clue to obtain an estimate of the unknown 
population standard deviation. A new approach is proposed to determine sample size 
using the population standard deviation estimated from the product or process 
specification from the perspective of Six Sigma quality with a goal of 3.4 defects per 
million opportunities (DPMO). The aspects of quality improvement through variance 
reduction are also presented. The method is effectively described for its use and is 
illustrated with examples. 

 
Keywords: Coefficient of variation, DPMO, error, confidence level, sample size, Six 
Sigma quality, stopping criteria 

 

Introduction 

In most empirical studies, sample observations are often used to analyze and draw 

inferences about the population. Though a larger sample size results in better 

conclusions, the choice of sample size is very important for such studies. This is 

due to the fact that a larger sample size may require too much time, resources, and 

cost and, at the same time, a smaller sample size may lead to inaccurate inferential 

https://doi.org/10.22237/jmasm/1493597700
mailto:aishwar2@rediffmail.com
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results. Therefore, in practice, before the choice of sample size, the aspects of 

time, resources, and cost have to be taken into consideration in addition to 

sufficient statistical power. An experimenter also prefers to fix a sample size 

without much compromise on the two types of errors. The problem of sample size 

determination is quite common in the research areas such as clinical trials (Ando 

et al., 2015), network modeling (Krivitsky & Kolaczyk, 2015), and aeronautical 

studies (Suárez-Warden, Rodriguez, Hendrichs, García-Lumbreras, & Mendívil, 

2015). 

In order to know how large a sample size must be fixed, a number of factors 

may be considered by both statisticians and researchers. Sometimes, it depends on 

the nature of study of interest. That is, the study may be survey-based to find out 

the proportion of something, or may be to estimate the population mean, standard 

deviation, correlation coefficient, regression coefficients, etc. So, given the nature 

of a study, “how to conclude if the sample size used is enough and is the right 

representation of the population?” is the most commonly raised question. 

From a normal population whose mean is, say, μ and standard deviation is, 

say, σ, a number of samples may be collected, from which respective sample 

means, say (X̅1, X̅2,…, X̅i,…) can be computed. The difference between each 

sample mean and population mean can be thought of as an error. However, in 

practice and due to various reasons, an experimenter selects randomly only one 

sample of size, say, n, and computes a sample mean, say X̅. Then the difference 

|X̅ − μ| is treated as an absolute error. Apart from this, a (1 – α)100% confidence 

interval for μ can be constructed by setting 

 

  2 2P 1 100%
X

z z
n

 






 
      
 

  

 

Here α is the level of significance or the probability of Type-I error. Therefore, an 

experimenter always prefers to fix the sample size n such that the absolute error is 

kept at minimum, that is, |X̅ − μ| ≤ ε, ε > 0 with maximum confidence that can 

result from maintaining minimum Type-I error probability. Clearly, 

2z n   and hence  
2

2n z   . 

Since the population standard deviation σ is usually unknown and the 

sample standard deviation cannot be used as it needs the sample size n, there is a 

difficulty in determining the sample size n. In this paper, under the normality 

assumption, it is proposed to estimate the unknown population standard deviation 

from the specification of the quality characteristic that is under study from the 
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perspective of Six Sigma quality (SSQ), which can ensure only 3.4 defects per 

million opportunities (DPMO); refer to Ravichandran (2006). This estimated 

standard deviation is then used to determine the sample size. 

Process and product specifications play a major role in ensuring the degree 

of quality of a process or product. It may be noted that a unit of a product is said 

to be defective if it fails to meet the preset specification limits of the quality 

characteristic that is critical-to-quality. Setijono (2010) has considered the case of 

matching the SSQ limits to specification limits in order to estimate customer 

dissatisfaction (not meeting specification) and delight (meeting specification) in a 

survey related study. A similar study was done by Ravichandran (2016) from the 

perspective of process/product specification to estimate DPMO and extremely 

good parts per million opportunities (EGPMO) for higher the better and lower the 

better quality characteristics. A process or product that meets the specification 

target is always said to be stable. However, the process/product mean may move 

away from the target over a period of time. In the context of Six Sigma, this has 

prompted the practitioners to allow a shift up to ± 1.5σ (Lucas, 2002) as it can 

still produce only 3.4 DPMO. It has been argued that, though such a shift from the 

target is not acceptable to many researchers due to lack of either theoretical or 

empirical justification (Antony, 2004), there is a strong belief among the Six 

Sigma practitioners that no process can maintain on its own target in the long run. 

Therefore, the population mean and standard deviation estimated using the 

proposed method are expected to satisfy the Six Sigma goal of 3.4 DPMO. 

Sampling from Normal Population 

Let the quality characteristic X follow a normal distribution with mean μ and 

variance σ2. That is, 

 

     2E and VX X     

 

Let (x1, x2,…, xi,…, xn) be a sample of size n drawn from this population. Then 

the sample mean X̅ and sample variance S2 are given as 

 

 
1

1 n

i

i

X x
n 

    (1) 
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1

1

1

n

i

i

S x X
n 

 

   (2) 

 

It may be noted that the sample mean and variance given in (1) and (2) are the 

unbiased estimators of the mean μ and variance σ2, respectively. That is, 

 

    2 2E and EX S     

 

Because the sample mean X̅ itself can be thought of as a random variable as it can 

vary for varying samples, the mean and variance of the sample mean itself can be 

shown as μ and σ2/n. It is a proven result that the sample mean X̅ also follows the 

normal distribution with mean μ but with variance σ2/n. In general, the standard 

deviation σ/n of the sample mean X̅ is known as standard error (SE). 

Standard Normal Distribution 

It may be recalled that if the underlying distribution of the random variable X has 

mean μ and known variance σ2, then we can define a standard normal variate, say 

Z, as 

 

 or
X X

Z Z
n

 

 

 
    (3) 

 

or in general, equation (3) can be written as 

 

 
 

 

sample statistic E sample statistic

SE sample statistic
Z


   

 

which has mean 0 and variance 1. Here, E(*) represents expectation and SE(*) 

represents standard error. However, if the standard deviation σ is unknown then Z 

is observed to be not a standard normal variate. Under this circumstance, we 

replace the unknown standard deviation σ by the sample standard deviation given 

by S and construct a variable called Student’s T as 

 

 
X

T
S n


   (4) 
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which follows the Student’s T distribution with n – 1 degrees of freedom. It may 

also be noted that the Student’s T variable is defined when the sample size n is 

small. 

Error and Sample Size 

It may be noted that fixing the sample size n is a major concern in statistical 

inference problems. As discussed earlier, a large sample size, though preferred, 

may be expensive, laborious, and time-consuming, while a small sample may 

result in poor and inconsistent inferential decisions. Statistical errors – Type-I and 

Type-II errors – are also influenced by the size of the sample. Therefore, there 

needs to be a balance between these two types of error. It is preferable to choose n 

such that the size, say α, which is the probability of Type-I error and power, say 

1 – β, where β is the probability of Type-II error, are optimum and vice-versa. 

Given the Type-I error probability α, it is known that 
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2
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P 1 100%
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n

X z
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  (5) 

 

Here ± zα/2 can be obtained by setting P(Z < -zα/2) = P(Z > +zα/2) = α/2 with an 

assumed value of μ = μ0 (null hypothesis is true), and hence Z ~ N(0, 1). Now it is 

supposed that an experimenter would like to have the difference (error) between 

the sample mean X̅ and the unknown population mean μ to be less than or equal to 

a pre-specified negligible value, say ε (> 0), with the confidence level (1 –

 α)100%. This implies that 

 

 

2

2 2z n z
n

 

 




 
    

 
  (6) 

 

(Refer to Montgomery & Runger, 2003; Ravichandran, 2010). One way of 

choosing ε is to allow the difference between X̅ and μ as some δ (> 0) percentage 

of μ, that is ε = (δ/100)μ. Therefore we have 
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  (7) 

 

Accordingly, if μ and σ are known, then for the known values of (σ/μ)100 (note 

that (σ/μ)100 gives the coefficient of variation (CV)) and for different δ values, 

the sample size can be determined by fixing α values. Table 1 shows such sample 

size values for 

 

(i) CV = (σ/μ)100 = 2.5% (2.5) 20% 

(ii) δ = 1.0, 2.5, 50 

(iii) α = 0.01, 0.05, 0.10 

 

Readers may note that, in Table 1, CV = x% and δ = y means x = σ/μ and 

y = δ/100 so that 
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Table 1 can now readily be used by the experimenters for sampling or can 

be used as a guideline for determining sample size for other combinations of 

parameters. If both Type-I and Type-II error probabilities are known, then the 

sample size n given in equation (6) can also be written as 

 

 

2

2n z z 





 
    

 
  (8) 

 

Here zβ can be obtained by setting β equal to 

   2 2P PZ z n Z z n            with an assumed mean value 

1 n      (alternative hypothesis is true) and hence  ~ N ,1Z n  . It 

is observed that the approximation in (8) holds good if  2P Z z n      is 

small ( = 0) compared to β for the sample size given in (8). Refer to Montgomery 

and Runger (2003) for more details. Therefore, P(Z < -zβ) = β implies that 

2z z n       . Following (7), we have 
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Table 1. Sample size values according to equation (7) 

 

  
Size (α) 

CV δ 0.01 0.05 0.10 

2.5 1.0 42 24 17 

 
2.5 7 4 3 

 
5.0 2 1 1 

     
5.0 1.0 166 96 68 

 
2.5 27 15 11 

 
5.0 7 4 3 

     
7.5 1.0 374 216 153 

 
2.5 60 35 25 

 
5.0 15 9 6 

     
10.0 1.0 666 384 272 

 
2.5 107 61 44 

 
5.0 27 15 11 

     
12.5 1.0 1040 600 425 

 
2.5 166 96 42 

 
5.0 42 24 17 

     
15.0 1.0 1498 864 613 

 
2.5 240 138 98 

 
5.0 60 35 25 

     
17.5 1.0 2039 1176 834 

 
2.5 326 133 82 

 
5.0 82 47 33 

     
20.0 1.0 2663 1537 1089 

 
2.5 426 246 174 

  5.0 107 61 44 
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2

1
100n z z 



 

  
      

  
  (9) 

 

From Table 1, the following observations can easily be made: 

 

(i) For a fixed CV, as the error δ increases, the sample size n decreases 

meaning that smaller sample size will result in higher error and vice-

versa. 
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(ii) For a fixed CV, as the Type-I error probability α increases, the sample 

size n decreases meaning that smaller sample size will result in higher 

degree of Type-I error probability (size) and vice-versa. 

(iii) As CV increases, the sample size increases and vice-versa. This means 

that if the CV is less, then fewer sample observations are sufficient to 

achieve the error levels. 

 

If μ is zero, then it is always wise to use the formula involving ε given in 

equation (6) rather than using the formula involving δμ given in (7). Values for ε 

can be assumed to be 10-2, 10-3, 10-4, etc. If σ is unknown, S cannot be used in (6) 

or (7) since E(S) ≠ σ. But, though E(S/c4) = σ where c4 is an appropriate constant, 

one cannot use c4 and S since both of them depend on sample size n. Therefore, 

using 
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  (10) 

 

respectively, as replacement of (6) or (7) for sample size determination is 

erroneous. 

Stopping Criteria in Simulations 

There are situations, such as simulations, where it is important to decide when to 

stop the simulation. Under these circumstances, the simulations are run for a 

preset number n1 of times (i.e., sample of size n1) and then the sample mean X̅1, 

standard deviation S1, 
1

4c , and 
1 , 2vt   are computed for the quality characteristic of 

interest, say X. The simulation is stopped if the following condition is satisfied 

(refer to Yeap, 1998): 

 

 
 1 1

22
1 1

1 4 1 4
1 , 2 1 , 2

1

or
100

v v

S c S c
n t n t

X
 

 

  
      
   

  

 

Otherwise, collect the next observation from the next simulation so that 

n2 = n1 + 1, from which X̅2, S2, 
2

4c , and 
2 , 2vt   are computed to verify if 
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In general, the simulation is stopped after ni, i = 1, 2,…, simulations if 
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where the mean X̅i, standard deviation Si, 4

ic , and , 2ivt   are computed form the 

sample of size ni, that is after i simulations. 

A method is proposed here to estimate the unknown population standard 

deviation σ from the perspective of the concept of SSQ. This sample size can 

ensure the conformance of the process to the Six Sigma goal of 3.4 DPMO. 

Sample Size Determination based on Six Sigma Quality 

Consider a measurable quality characteristic, say X, that follows normal process 

with mean T = μ and variance σ2. Because not all values of X towards the tails of 

the distribution are acceptable, the specification of X is usually given in the form 

T ± Kσ, where T is the target or population mean, K is a positive constant, and σ 

is the population standard deviation. Notationally, X ~ N(T, σ2) and P(T –

 Kσ ≤ X ≤ T + Kσ) = 1 – αK, where αK is a prespecified probability value such that 

αK = P(X < T – Kσ) + P(X > T + Kσ). From T ± Kσ, we get half of the process 

spread as Kσ = d (say) (also refer to Lin, 2006), which implies σ = d/K and hence 

we have SS
ˆ d K   . Therefore, we have  SS SS SS

ˆ n d K n  . Now 

equation (5) becomes 

 

  2

SS

P 1 100%
K K

d K
X z

n
 

 
      

 
 

  (11) 

 

and hence equations (6) and (7) become, respectively: 

 

 

2

SS 2K

d K
n z



 
  
 

  (12) 
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Table 2. Determination of αK and 
Kα

z
2
 

 

K DPMO αK K
α

z
2

 

3.0 66810.63 0.1336210 1.50 

3.5 22750.35 0.0455010 2.00 

4.0 6209.70 0.1241900 2.50 

4.5 1349.97 0.0027000 3.00 

5.0 232.67 0.0004650 3.50 

5.5 31.69 0.0000634 4.00 

6.0 3.40 0.0000068 4.50 

 
 

and 

 

 
 

2

SS 2
100 K

d K
n z

 

 
   
 

  (13) 

 

Here, K represents the current sigma quality level (SQL) of the process. For 

example, if K = 6, then we have DPMO = 3.4 either on left tail or on right tail. 

Therefore, αK = 6.8 × 10-6 implies 2 4.50
K

z  . In (13), if μ is unknown, then the 

same can be replaced by the specification target T. 

The computation of the values of 2K
z  with different SQLs is discussed as 

follows: If the process is operating at a Three Sigma level, then we have the 

current quality level as K = 3. It may be noted that, with allowable shift, a Three 

Sigma process may result in 66810.63 DPMO. Once this level is maintained, and 

if there is a scope for improvement, the practitioner may change the value of 2K
z . 

Various DPMOs and the corresponding 2K
z  values are given as shown in Table 

2 (Harry, 1998; Lucas, 2002). Therefore, for SSQ process with 3.4 DPMO, (12) 

and (13) respectively become 

 

  
2

SS

6
4.50

d
n



 
  
 

  (14) 

 

and 
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2 2

SS SS

2

SS
SS

6 1 6
4.50 or 100 4.50

100

ˆ1
100 4.50

d d
n n

n

   



 

    
      

   

  
    

  

  (15) 

 

Shown in Table 3 are sample size values from the perspective of Three 

Sigma (3σ), Four Sigma (4σ), Five Sigma (5σ), and Six Sigma (6σ) qualities for 

the following parameter set up: 
 

(i)    SS SS
ˆCV 100 1.0, 2.5% 2.5 20%x    

(ii) δ = 1.0, 2.5, 5.0 

(iii) αK = 0.1336210, 0.1241900, 0.0004650, 0.0000068 

 

From Table 3, it can be seen that: 

 

(i) For a fixed CVSS, as the error δ increases, the sample size n decreases 

meaning that a smaller sample size will result in higher error and vice-

versa. 

(ii) For a fixed CVSS, as the sigma quality decreases (that is, as the Type-I 

error probability α increases), the sample size n decreases meaning that a 

smaller sample size will result in poor sigma quality and vice-versa. 

(iii) As CV increases the sample size increases and vice-versa. This means 

that if the CV is less, then fewer sample observations are sufficient to 

achieve the goal of SSQ of 3.4 DPMO. For example, if (d/6)/μ = 0.01 

and the error percentage is δ = 1% of μ, then an inspection of a sample 

with 20 observations is sufficient to show if the process is meeting the 

Six Sigma goal of 3.4 DPMO. 

 

Table 3 is an indicative one, and experimenters can use it as a guideline for 

determining the sample size for different parameter combinations. Looking at 

Tables 1 and 3, the values of 

 

 SS
SS

ˆ
CV 100% and CV 100%
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are assumed as same for comparison purpose. However, in practice, the variation 

indicated by 
SŜ  in the case of a Six Sigma process is usually far below the 

normal process whose variation is indicated by σ. Therefore, reduced variation in 

Six Sigma may result in a good reduction in the sample size. See example 2 in the 

following section. 
 
 
Table 3. Sample size nSS for Six Sigma quality 

 

CVSS δ 6σ 5σ 4σ 3σ 

1 1.0 20 12 6 2 

 
2.5 3 2 1 - 

 
5.0 1 - - - 

     
 

2.5 1.0 127 77 39 14 

 
2.5 20 12 6 2 

 
5.0 5 3 2 1 

     
 

5.0 1.0 506 306 156 56 

 
2.5 81 49 25 9 

 
5.0 20 12 6 2 

     
 

7.5 1.0 1139 689 352 127 

 
2.5 182 110 56 20 

 
5.0 46 28 14 5 

     
 

10.0 1.0 2025 1225 625 225 

 
2.5 324 196 100 36 

 
5.0 81 49 25 9 

     
 

12.5 1.0 3164 1914 977 352 

 
2.5 506 306 156 56 

 
5.0 127 77 39 14 

     
 

15.0 1.0 4556 2756 1406 506 

 
2.5 729 441 225 81 

 
5.0 182 110 56 20 

     
 

17.5 1.0 6202 3752 1914 689 

 
2.5 992 600 306 110 

 
5.0 248 150 77 28 

     
 

20.0 1.0 8100 4900 2500 900 

 
2.5 1296 784 400 144 

  5.0 324 196 100 36 
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Numerical Examples 

Example 1 

Yeap (1998) has given an example that the standard deviation of power samples 

measured from a circuit has been observed to have ± 20% fluctuations from the 

mean. Now the number of sample units (sample size) required to ensure that the 

experimenter is 99% confidence that the error of the sample mean is within ± 5% 

can be obtained by setting: 

 

 20% 0.2, 5% 5 100           

 

which, according to (7), gives 

 

    
2 2

2

1 1
100 0.2 100 2.58 107

5
n z



 

    
      

   
  

 

However, for the SSQ requirement of 3.4 DPMO, the sample size can be obtained 

as 

 

    
2 2

SS
SS 2

ˆ1 1
100 0.2 100 4.50 324

5K
n z



 

    
      

   
  

 

It is alarming to note that the SSQ process requires more sample observations in 

this example. This is due to the fact that the CV% is too high with σ = 20%μ, 

which is beyond expectation. However, it is presented here for illustration 

purpose to show that given this CV% and the specification of the quality 

characteristic of interest, it may require 324 sample observations to ensure that it 

is a Six Sigma process. 

Example 2 

Montgomery and Runger (2003) presented an example of vane-manufacturing 

process. The specifications on vane opening are given as 0.5030 ± 0.0010 inches. 

Let us suppose that we would like to draw a sample of size n so that the process 

average can lie around ± 0.05% of the target. Then the sample size meeting the 

SSQ requirement of 3.4 DPMO can be obtained by setting: 
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SS

ˆ0.5030, 6 0.0010 6 0.000167,

0.000361, 0.05% 0.05 100

d 

  

   

  
  

 

This, according to (15), gives 

 

   
2 2

SS
SS 2

ˆ1 1
100 0.0361 4.50 11

0.05K
n z



 

    
      

   
  

 

If it is assumed that by past experience the standard deviation of this process 

is known as 0.00025, then the required sample size can be obtained by setting: 

 

 0.5030, 0.00025, 0.000497, 0.05% 0.05 100           

 

    
2 2

2

1 1
100 0.000497 100 4.50 20

0.05
n z



 

    
      

   
  

 

It may be noted that since σ = 0.00025, the process is at the level of 4σ only with 

K = 4 (that is, 4σ = (4)(0.00025) = 0.0010 = d) and hence it requires more sample 

observations. Therefore, the process variation needs to be improved (reduced 

variation) with regard to standard deviation from σ = 0.00025 to σ = 0.000167 so 

that the process becomes a Six Sigma process with 3.4 DPMO. 

If an experimenter is interested in drawing a sample of size n so that it meets 

the Four Sigma requirement of 6209.70 DPMO, then it can be obtained by setting: 

 

 
SS

SS

ˆ0.5030, 4 0.0010 4 0.00025,

ˆ 0.000497, 0.05% 0.05 100

d 

  

   

  
  

 

    
2 2

SS
SS 2

ˆ1 1
100 0.000497 100 2.50 6

0.05K
n z



 

    
      

   
  

 

Given the process conditions, it may be noted that a meager sample of size 6 is 

sufficient to meet the error constraints under Four Sigma quality of 6209.70 

DPMO. 
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Example 3 

Consider an example of a manufacturing process of a product in which the 

specification for the dimension of the product is set as 20 ± 6. For laboratory 

testing purposes it is proposed to collect sample units of the product. The error 

limit between sample mean and the target is set as ± 5% of the target. Then the 

sample size meeting the SSQ requirement of 3.4 DPMO can be obtained by 

setting: 

 

 
SS SS

ˆ ˆ20, 6 6 6 1, 0.005, 5% 5 100d             

 

This, according to (15), gives 

 

    
2 2

SS
SS 2

ˆ1 1
100 0.05 100 4.50 20

5K
n z



 

    
      

   
  

 

This can also be verified from Table 3. Now, after drawing a sample of size 20, 

the sample standard deviation is computed as 3.63, which is an indication that the 

process is only at an SQL of 6/3.63 = 1.65 sigma. Therefore, the process variation 

needs to be improved (reduced variation) with regard to standard deviation from 

3.63 to 1 so that the process becomes a Six Sigma process with 3.4 DPMO. 

Discussions and Conclusions 

In this paper, first a discussion on the existing methods of sample size 

determination is presented. It is observed that such methods critically need the 

known population standard deviation. Therefore, a new approach is then 

presented that uses an estimate of population standard deviation from the 

perspective of the Six Sigma goal of 3.4 DPMO. The proposed method helps the 

experimenter to fix the sample size in such a way that the process either meets the 

SSQ requirement of 3.4 DPMO or can be improved towards the goal. This can be 

achieved by comparing the estimated standard deviation from the perspective of 

Six Sigma and the actual process standard deviation obtained after fixing the 

sample size. If the difference is wide, then we recommend using the stopping 

criteria approach by adding more samples until the requirements are met. 

The proposed sample size determination method is studied and evaluated 

numerically. It is observed that as the CV% increases, the method recommends a 
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larger sample size to cover up the higher standard deviation and vice-versa. The 

approach is also demonstrated using suitable examples. In these examples, it is 

discussed that the proposed method not only helps in determining the sample size, 

it also prompts the experimenter to look for improvement opportunities, such as 

variance reduction exercises through quality improvement programs. As a future 

study, the case of proportions instead of measurable quality characteristic will be 

considered. Also, it will be attempted to propose a method for determining a 

sample of specific size from a finite size population. 
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A new class of weighted distributions is proposed by incorporating an extended 
exponential distribution in Azzalini’s (1985) method. Several statistics and reliability 
properties of this new class of distribution are obtained. Maximum likelihood estimators 
of the unknown parameters cannot be obtained in explicit forms; they have to be obtained 

by solving some numerical methods. Two data sets are analyzed for illustrative purposes, 
and show that the proposed model can be used effectively in analyzing real data. 
 
Keywords: Exponential distribution, extended exponential distribution, hazard rate 
function, maximum likelihood estimation, weighted exponential distribution 

 

Introduction 

Adding an extra parameter to an existing family of distribution functions is 

common in statistical distribution theory. Introducing an extra parameter often 

brings more flexibility to a class of distribution functions, and it can be very 

useful for data analysis purposes. Azzalini (1985) introduced the skew normal 

distribution by introducing an extra parameter to bring more flexibility to the 

normal distribution. Afterwards, extensive works on introducing shape parameters 

for other symmetric distributions have been defined, and several properties and 

their inference procedures have been discussed by several authors; see for 

example Balakrishnan and Ambagaspitiya (1994), Arnold and Beaver (2000), and 

Nadarajah (2009). 

Recently, there has been an attempt to use Azzalini's method for non-

symmetric distributions. Gupta and Kundu (2009) introduced a class of weighted 

exponential (WE) distribution that has a shape parameter. It is said that a random 

variable X follows the WE(α, λ) distribution if its density function is given by 

https://doi.org/10.22237/jmasm/1493597760
mailto:a.mahdavi@vru.ac.ir
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1

f ; , e 1 ex xx  
  



 
    (1) 

 

where x > 0, α > 0, and λ > 0. 

Shakhatreh (2012) generalized the WE distribution to the two-parameter 

weighted exponential (TWE) distribution. A random variable X is said to have a 

TWE distribution with shape parameters α1 > 0, α2 > 0 and scale parameter λ > 0 

if the PDF of X is given by 

 

       1 2

1 2 1 2f ; , , k , e 1 e 1 e , 0
x xxx x

              (2) 

 

where  
   

 
1 2 1 2

1 2

1 2 1 2

1 1 1
k ,

2

   
 

   

   


 
. 

It is observed that the WE and TWE distributions can provide a better fit for 

survival time data relative to other common distributions such as the gamma, 

Weibull, or generalized exponential distributions. 

The aim of this study is to introduce an extended weighted exponential 

(EWE) distribution based on extended exponential (EE) distribution introduced 

by Gómez, Bolfarine, and Gómez (2014). A random variable X follows the EE 

distribution with parameters λ and β if its density function is given by 

 

  
 2 1

f ; , , 0

xx e
x x

 
 

 


 


  (3) 

 

where λ > 0 and β > 0 with the notation X ~ EE(λ, β). 

One of the goals of the introduction of the EWE is that involves the WE as 

its sub-model. The EWE has three parameters, one scale parameter and two shape 

parameters, which makes it more flexible in describing different types of real data 

than its sub model. 

It is observed that the EWE distribution has several desirable properties. The 

generation of random samples from the EWE is straight forward. The maximum 

likelihood estimators (MLEs) of unknown parameters can be obtained by solving 

three nonlinear equations. For illustrative purposes we have analyzed the two real 

data sets. After analyzed the data using the EWE model, observe that EWE 

provides a better fit than the WE model and TWE. 
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Definition, Interpretations, and Generation 

Definition: A random variable X is said to have an extended weighted 

exponential distribution with shape parameters α > 0, β > 0 and scale parameter 

λ > 0, denoted by EWE(α, β, λ), if the density function of X is given as below 

 

  
 

  
  

2
1

f ; , , e e
1

x xx x  
       

   

 


    
 

  (4) 

 

for x > 0 and 0 otherwise. 

Plots of the EWE density function for fixed scale parameter λ = 1 and 

selected shape parameters are given in Figure 1. It is a unimodal density function 

for various values of the shape parameters. It is easy to show that if α → 0 then (4) 

converges to gamma(2, λ) and if α → ∞ then (4) converges to exp(λ). Note that, 

when β = 0, then EWE(α, β = 1, λ) = WE(α, λ). 

 

Interpretation 1: EWE distribution can be obtained the same way that 

Azzalini obtained the skew-normal distribution. Suppose X1 and X2 are two 

independent variables and X1 ~ exp(λ), X2 ~ EE(λ, β). For any α > 0, consider a 

new random variable X = X1 given that αX1 > X2. It can be easily observed that the 

density function of X is (4). 

 

Interpretation 2: EWE distribution can be obtained by the hidden truncation 

model proposed by Arnold and Beaver (2000). Suppose Z and Y are two 

dependent random variables with the joint density function 

 

      
3

1

,f , 1 e , 0, 0
z y

Z Y

z
z y zy z y




 

 
   


  (5) 

 

It can be shown that the conditionally random variable Z |Y ≤ α has the EWE 

distribution. 
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Figure 1. Plots of the EWE density function for fixed scale parameter λ = 1 and some 

selected shape parameters 

 

 

Interpretation 3: Using the moment generating function (MGF) the 

stochastic representation of X can be easily obtained. Suppose U and V are two 

independent variables with distributions exp(λ) and EE(λ(1 + α), αβ), respectively. 

Then it can be observed that if 

 

 X U V    (6) 

 

then X has the density function (4). 

 

Generation: All the above three interpretations can be used to generating 

random numbers from EWE distribution. Note that the simplest way to generate 

EWE random number is to use the stochastic representation (6). 

Statistical and Reliability Properties 

If X ~ EWE(α, β, λ), then the MGF of X for any t < λ is given by 
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By straightforward integration, the row moments of X about the origin are 

found to be 
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! 1 1 1
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1 1
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  (8) 

 

In particular, mean and E(X 2) are given, respectively, by 
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The distribution function for the random variable X is given by 
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where 
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Also, the survival function and hazard rate function (HRF) of X can be placed in 

the following compact forms respectively: 
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Figure 2. Plots of the EWE hazard rate function for fixed scale parameter λ = 1 and some 

selected shape parameters 

 

 
 

In Figure 2, the HRF of the EWE distribution is plotted for selected values 

of the shape parameters and fixed scale parameter λ = 1. The HRF is an increasing 

function. The concept of an increasing failure rate is very attractive in an 

engineering context, where it has often been related to a mathematical 

representation of wear out (Marshall & Olkin, 2007). 

One of the well-known properties of the life time distribution is mean 

residual life time. For the EWE distribution it can be written as 
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where  
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. 

Maximum Likelihood Estimation 

The MLEs will be derived for the unknown parameters of the EWE distribution 

from complete samples only. 

Let X1,…, Xn be a random sample from GWE(α, β, λ). The log-likelihood 

function based on the observed sample {x1,…, xn} is 
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To find the MLE estimates for the EWE model parameters, differentiate the 

log-likelihood function and equating the resulting expressions to 0 as follows: 
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The MLEs of the unknown parameters cannot be obtained explicitly. They 

have to be obtained by solving some numerical methods, like the Newton-
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Raphson method, Gauss-Newton method, or their variants. In this paper we use 

the optim function from the statistical software R (R Core Team, 2013) to 

estimate the unknown parameters. 

Simulation 

Some simulation results are presented to see how the maximum likelihood 

estimators behave for different sample sizes and for different parameter values. 

The sample sizes, namely n = 20, 40, 60, and 80 and two different sets of 

parameter values: Set 1: α = 0.5, λ = β = 1, and Set 2: β = 0.5, α = λ = 1. In each 

case, the maximum likelihood estimators of the unknown parameters are 

computed by maximizing the log-likelihood function (15). The average estimates 

and mean squared errors were computed over 1000 replications and the results are 

reported in Table 1. In all the cases the performances of the maximum likelihood 

estimates are quite satisfactory. As sample size increases the average estimates 

and the mean squared error decrease for all the parameters, as expected. It verifies 

the consistency properties of the MLEs. 

 

 
Table 1. The average MLEs and the associated square root of the mean squared errors 

(within brackets) 
 

 
Set 1 

 
Set 2 

n α β λ 
 

α β λ 

20 0.6143 1.1257 1.1014 
 

1.1316 0.6013 1.1286 

 
(0.0726) (0.0793) (0.0563) 

 
(0.0811) (0.0701) (0.0599) 

40 0.5825 1.1094 1.0614 
 

1.1105 0.5784 1.0742 

 
(0.0592) (0.0696) (0.0352) 

 
(0.0713) (0.0501) (0.0431) 

60 0.5675 1.0835 1.0452 
 

1.0922 0.0553 1.0562 

 
(0.0411) (0.0536) (0.0261) 

 
(0.0658) (0.0398) (0.0371) 

80 0.5595 1.0658 1.0352 
 

1.0715 0.5462 1.0402 

  (0.0388) (0.0414) (0.0201) 
 

(0.0456) (0.0321) (0.0245) 

 

Data Analysis 

Two real data sets are considered to demonstrate the performance of the proposed 

distribution in practice. For each data set, the results of the fitted proposed model 

are compared with the WE, TWE, and EE models. To see which one of these 

models is more appropriate to fit the data set, the MLEs of unknown parameters 

and Akaike information criterion (AIC) were computed. The Kolmogorov-
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Smirnov (K-S) distance between the empirical cumulative distribution function 

and the fitted distribution function was obtained in each case, as well as the 

associated p-value. 

 

Data Set 1: Bjerkedal (1960) provided a data set consisting of survival times of 

72 Guinea pigs injected with different amount of tubercle. We consider only the 

study in which animals in a single cage are under the same regimen. The data 

represents the survival times of Guinea pigs in days. The data are given below: 

 

 

12 15 22 24 24 32 32 33 34 38 38 43 44 48 52 53 54 54 55 56 57 58 58 59 60

60 60 60 61 62 63 65 65 67 68 70 70 72 73 75 76 76 81 83 84 85 87 91 95 96

98 99 109 110 121 127 129 131 143 146 146 175 175 211 233 258 258 263 297

341 341 376

  

 
 
Table 2. The MLEs of parameters, AIC, and K-S statistics for the Guinea pigs data 

 

Model MLE of the parameters AIC K-S statistics p-value 

EE(β, λ) 10.1738, 0.0200 792.6086 0.1334 0.1544 

WE(α, λ) 1.6312, 0.0138 791.1381 0.1153 0.2939 

TWE(α1, α2, λ) 2.8013, 2.8013, 0.0142 789.0153 0.1132 0.3147 

EWE(α, β, λ) 3.9035, 3.0313, 0.0141 788.7657 0.1129 0.3174 

 
 

 
 
Figure 3. The fitted EWE distribution and the relative histogram for the Guinea pigs data 
(a); Empirical and fitted survival functions for the Guinea pigs data (b) 
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Table 3. The MLEs of parameters, AIC, and K-S statistics for the melanoma data 

 

Model MLE of the parameters AIC K-S statistics p-value 

EE(β, λ) 4.1321, 0.0019 913.2957 0.1551 0.1158 

WE(α, λ) 1.6197 ,0.0010 912.5643 0.0767 0.8651 

TWE(α1, α2, λ) 0.0136 0.2099 0.0022 913.3586 0.0696 0.9271 

EWE(α, β, λ) 0.0375, 0.1435, 0.0021 912.0859 0.0620 0.9710 

 
 

It is clear from Table 2 that, based on the AIC value and also based on the 

K-S statistic, the proposed EWE model provides a better fit than the WE, TWE 

and EE models for this specific data set. The relative histogram and the fitted 

EWE distribution are plotted in Figure 3. In order to assess if the model is 

appropriate, the plots of the fitted EWE survival function and empirical survival 

function are displayed in Figure 3. 

 

Data Set 2: This data set relates to survival time for 57 patients in Denmark 

with malignant melanoma (Andersen, Borgan, Gill, & Keiding, 1993). The data 

are given below: 

 

 

185 204 210 232 279 295 386 426 469 529 621 629 659 667 718 752 779 793

817 833 858 869 872 967 977 982 1041 1055 1062 1075 1156 1228 1252 1271

1312 1435 1506 1516 1548 1560 1584 1621 1667 1690 1726 1933 2061 2062

2103 2108 2256 2388 2467 2565 2782 3042 3338

  

 

The results are given in Table 3. The lowest values of the AIC and K-S test 

statistics are obtained for the EWE distribution. Based on these measures, the 

EWE is the best distribution among all those used here to fit the data set. In order 

to assess if the model is appropriate, the histogram of the data and the plot of the 

fitted EWE model are displayed in Figure 4. 
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Figure 4. The fitted EWE distribution and the relative histogram for the melanoma data 

(a); Empirical and fitted survival functions for melanoma data (b) 

 

Conclusion 

A new class of weighted distributions based on the extended exponential 

distribution were introduced. The proposed model contains the WE model as its 

submodel. It is shown that the distribution function, hazard function, and moment 

generating function can be obtained in closed form. The MLEs can be computed 

using numerical algorithms. The failure rate function of proposed distributions is 

an increasing function. The flexibility of the proposed distribution and increased 

range of skewness was able to fit and capture features in two real data sets much 

better than the WE and other popular distributions. 

References 

Andersen, P. K., Borgan, O., Gill, R. D., & Keiding, N. (1993). Statistical 

models based on counting processes. New York: Springer. 

Arnold, B. C., & Beaver, R. J. (2000). The skew-Cauchy distribution. 

Statistics & Probability Letters, 49(3), 285-290. doi: 10.1016/S0167-

7152(00)00059-6 

Azzalini, A. (1985). A class of distributions which includes the normal ones. 

Scandinavian Journal of Statistics, 12(2), 171-178. Available from 

http://www.jstor.org/stable/4615982 

http://dx.doi.org/10.1016/S0167-7152(00)00059-6
http://dx.doi.org/10.1016/S0167-7152(00)00059-6
http://www.jstor.org/stable/4615982


MAHDAVI & JABBARI 

307 

Balakrishnan, N., & Ambagaspitiya, R. (1994). On skew-Laplace 

distributions (Technical report). Hamilton, Ontario, Canada: Department of 

Mathematics and Statistics, McMaster University. 

Bjerkedal, T. (1960). Acquisition of resistance in guinea pigs infected with 

different doses of virulent tubercle bacilli. American Journal of Hygiene, 72(1), 

130-148. 

Gómez, Y. M., Bolfarine, H., & Gómez, H. W. (2014). A new extension of 

the exponential distribution. Revista Colombiana de Estadística, 37(1), 25-34. 

doi: 10.15446/rce.v37n1.44355 

Gupta, R. D., & Kundu, D. (2009). A new class of weighted exponential 

distributions. Statistics: A Journal of Theoretical and Applied Statistics, 43(6), 

621-634. doi: 10.1080/02331880802605346 

Marshall, A. W., & Olkin, I. (2007). Life distributions: Structure of 

nonparametric, semiparametric, and parametric families. New York: Springer. 

Nadarajah, S. (2009). The skew logistic distribution. AStA Advances in 

Statistical Analysis, 93(2), 187-203. doi: 10.1007/s10182-009-0105-6 

R Core Team. (2013). R: A language and environment for statistical 

computing [computer software]. Vienna, Austria: R Foundation for Statistical 

Computing. 

Shakhatreh, M. K. (2012). A two-parameter of weighted exponential 

distributions. Statistics and Probability Letters, 82(2), 252-261. doi: 

10.1016/j.spl.2011.10.008 

https://dx.doi.org/10.15446/rce.v37n1.44355
http://dx.doi.org/10.1080/02331880802605346
http://dx.doi.org/10.1007/s10182-009-0105-6
http://dx.doi.org/10.1016/j.spl.2011.10.008


Journal of Modern Applied Statistical Methods 

May 2017, Vol. 16, No. 1, 308-323. 
doi: 10.22237/jmasm/1493597820 

Copyright © 2017 JMASM, Inc. 

ISSN 1538 − 9472 

 

 

 
Elisa Norberto Ferreira Santos is Faculty teaching statistics in the Department of 
Agronomic Engineering. Email at matematica.uab@iftm.edu.br. Email Gilberto 
Rodrigues Liska at gilbertoliska@hotmail.com. Email Marcelo Angelo Cirillo at 
macufla@dex.ufla.br.  

 

 

308 

Methodology For Constructing 
Perceptual Maps Incorporating Measuring 
Error In Sensory Acceptance Tests 

Elisa Norberto  

Ferreira Santos 
Fed. Univ. of Triângulo Mineiro 

Uberaba, Brazil 

Gilberto 

Rodrigues Liska 
Federal University of Lavras 

Lavras, Brazil 

Marcelo 

Angelo Cirrillo 
Federal University of Lavras 

Lavras, Brazil 

 

 
A new method is proposed based on construction of perceptual maps using techniques of 
correspondence analysis and interval algebra that allow specifying the measurement error 
expected in panel choices in the evaluation form described in unstructured 9-point 
hedonic scale. 
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Introduction 

Sensory analysis is important in many domains: to improve the quality of 

products throughout the development process, to describe sensory properties of 

products, and to compare products to competitor’s products (Latreille et al., 2006). 

Murray, Delahunty & Baxter (2001) treated the importance of descriptive sensory 

tests, noting that the sensory scientist requires an arsenal of sophisticated tools 

(Lawless & Heymann, 2010) to be applied to the detection (discrimination) and 

description of both the qualitative and quantitative sensory components of a 

consumer product by a trained panels of judges (see also Meilgaard, Civille & 

Carry, 1999). The qualitative aspects of a product include aroma, appearance, 

flavor, texture, aftertaste, and sound properties, and distinguish it from others. 

Sensory judges quantify these product aspects in order to facilitate description of 

the perceived product attributes. 

There are several different methods of descriptive analysis: for instance, 

quantitative descriptive analysis (Stone & Sidel, 1993). Rossi (2001) suggested 

https://doi.org/10.22237/jmasm/1493597820
mailto:matematica.uab@iftm.edu.br
mailto:gilbertoliska@hotmail.com
mailto:macufla@dex.ufla.br
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repeatability and reproducibility measures defined by Mandel (1991). Others 

proposed more elaborate methodologies based on univariate or multivariate 

analysis with graphical and tabular representations of results.   

Acceptance tests are generally applied to assess how much the consumer 

likes or dislikes a particular product (Prescott, 2009; Menezes et al., 2012). 

Different numerical scales are used for this purpose, especially the hedonic scale. 

Lim (2011), however, stated measurements of sensory or hedonic responses are 

inherent to effects relating to sensory and cognitive processes. 

The stimulus-response model allows the interpretation that the first phase of 

sensory process, involving input of a stimulus, causes a sensory signal shown by 

feelings expressing quality and/or intensity. With regard to cognitive process, the 

initial phase is the decision that involves choice of scale, resulting in a more 

precise response to a specific sensory attribute, among other factors. 

The relationship between sensory perceptions (sensory processing) and 

hedonic experience (cognitive process) is mentioned in the model as internal 

representation. Individual responses are certainly featured in a descriptive study 

summarized in numerical data. (Lim & Fujimaru, 2010). As to interference of the 

contextual effect in stimulus-response model, consider a situation where sensory 

perception comes from a trained panel with the ability to detect small differences 

between samples. Based on this panel’s observations, and also considering the 

homogeneity of results obtained by a trained panel, results will certainly be more 

accurate than those of an untrained panel, which may show fatigue and 

unwillingness to perform all the tests, as well as heterogeneity in their skills and 

sensory perceptions. These are all important factors contributing to inaccurate 

responses. 

Another factor that contributes to inaccuracy of answers is that responses 

from this range in practice are treated as continuous points. This suggests that 

parametric statistics such as analysis of variance may return incoherent results 

(Peryam & Pilgrim, 1957), because the assumptions are generally violated. See 

Gay & Mead (1992), Giovanni & Pangborn (1983), Lim, Wood & Green (2009), 

Lim & Fujimaru (2010), O'Mahony (1982), and Villanueva, Petenate and Silva 

(2000). 

To find consumers who have similar liking patterns, clustering techniques 

have often been used (Yenket et al., 2011a; Liggett et al., 2008; Carlucci et al., 

2009; Ares et al., 2010; Neely et al., 2010; Schmidt et al., 2010; Sinesio et al., 

2010). Furthermore, to avoid the shortcomings inherent in the points system, new 

descriptive methodologies, such as the Quantitative Descriptive Analysis (QDA) 

have been developed (Stone & Sidel, 1993). 
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 The advantages of QDA over other methods of evaluation are: (1) 

confidence in judgment of 10-12 trained panelists, instead of a few experts, (2) 

development of objective description closer to consumer language, and (3) 

consensual development of descriptive terminology, which implies higher 

concordance in judgments among panelists. 

Amorim et al. (2010) indicated a good sensory panel should provide results 

that are accurate, discriminating, and precise. Thus, in a successful analysis, it is 

key to have a set of robust tools for monitoring individual assessor’s 

performances as well as the performance of the panel as a whole. The success of 

using a sensory panel depends on its performance, i.e., its ability to identify small 

differences between products in certain attributes with statistical significance 

(Kermit & Lengard, 2005). 

A good panel performance is achieved when each panelist discriminates 

between products (large product variability), repeats the assessments (small 

within-assessor variability) and agrees with all other panelists on the sensory 

sensation that is described by a particular attribute with certain strength (small 

between-assessor variability) (Derndorfer et al., 2005). Sample size estimation has 

been discussed (Gacula & Singh, 1984; Moskowitz, 1997; Lawless & Heymann, 

2010; Gacula & Rutenbeck, 2006) over the last twenty years. It can be concluded 

that sample size calculation is generally an approximation because the formula 

contains elements based on assumptions such as the variance in the data and 

amount to be detected. Sensory scales vary in length; as a result, the variance and 

amount to be detected become a problem.  

The sample or base size used in consumer acceptance tests has varied in 

practice, mostly based on experienced for a particular product. Thus, the proposed 

methodology is to construct perceptual maps with techniques of correspondence 

analysis (Blasius et al., 2009) that allow specification of the measurement error 

expected in relation to consumer/panelist choices in the evaluation form, 

described in an unstructured 9cm-point hedonic scale through interval algebra 

(Gioia & Lauro, 2005, 2006). 

To illustrate this methodology, a case study is presented on sensory 

acceptance, considering different numbers of panelists in the evaluation of three 

genotypes of soybeans [Glycine max (L.) Merrill] called Black (MGBR07-7141), 

Brown (BRSMG-800A) and Yellow Soybeans (BRSMG-790A). 

The statistical methodology proposed is applied to sensory acceptance tests, 

and has the advantages of quantitative descriptive analysis (QDA). The accuracy 

of the response interval is inferred by panelists, considering the expected 

measurement error in relation to consumer/panelist choices in the evaluation form 
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(described in unstructured hedonic terms). Usually, unstructured line scales are 

constructed, and a sample set is used to train panelists to reliably score the 

intensity of the chosen attributes. 

Description of procedure for performing sensory tests 
applied to three soybean genotypes 

Genotypes of soybeans [Glycine max (L.) Merrill] fit for human consumption in 

many seed coat colors came from the breeding program of the Embrapa/Epamig 

/Triângulo Foundation partnership, and sensory tests were performed at the 

Sensory Analysis Laboratory, Federal Institute IFTM-Triângulo Mineiro - 

Campus Uberaba, Brazil. The three genotypes were named according to the seed 

coat colors: Black (MGBR07-7141), Brown (BRSMG-800A), and Yellow 

Soybeans (BRSMG-790A). 

Soybean genotypes were first soaked for 10 hours and then cooked with 

twice their volume of water. Cooking time was about 45 minutes in a pressure 

cooker, where each breed was cooked separately until they reached softness. Then 

the beans were cooled to approximately 25°C and served without spices. 

Acceptance test was conducted with 50 potential consumers of soybeans among 

students, teachers and administrative staff at IFTM, aged between 15-50 years, 

both genders. 

The analysis was performed in individual white-lighted booths and samples 

were served in white plastic cups with a three-digit code. Six grains were served 

in each container and water was supplied to cleanse the palate between samples. 

Grains were presented in monadic sequential scheme (one at a time) in 

unstructured 9cm-hedonic scale from 1 (dislike extremely) to 9 (like extremely) to 

assess appearance, texture, and overall acceptance.  

Incorporation of fundamentals of interval algebra in 
correspondence analysis and construction of perceptual 
maps 

Based on the panelist scores obtained, the concepts of interval algebra were 

incorporated into sensory analysis considering each score and giving a 

measurement error ξ = ± 0.2 cm and ξ = ± 1.0 cm, which was determined by a 

priori knowledge of the researchers. 

In agreement with the statistical methodology and given the unstructured 9-

point hedonic scale, imposition of measurement error ξ to be made by the 
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panelists in marking the acceptance form was made by considering two 

conjectures. First, the panelists showed some similar sensory abilities, i.e., there is 

a slight error in marking, arbitrarily set at ξ = ± 0.2 cm, to be considered in 

measuring results. Second, the panelists show some heterogeneous sensory 

abilities, i.e., there was an error of considerable extent, arbitrarily set at 

ξ = ± 1.0 cm, to be considered in measuring results. 

Importantly, the accuracy of each measurement depended on the skills of 

panelists. No matter how careful the measurement and how precise the scoring in 

the evaluation form, there was always an uncertainty due to panel heterogeneity. 

However, as scoring uncertainty is considered when using interval algebra for 

constructing perceptual maps, both inaccuracy and accuracy of scores become 

predictable. Therefore, it is consistent to use a smaller sample size in acceptance 

testing. Thus, considering 50 panelists for each sensory attribute, each interval 

observation was represented by ;ij ijf f 
   for the ith taster (i = 1, ..., I = 50) and jth 

cultivate (j = 1, ..., J = 3), the lower limit ijf  being calculated by the score ij − ξ 

and the upper limit ijf  represented by the score ij + ξ. 

Thus, interval sensory data were organized in a contingency table of interval 

frequency for constructing perceptual maps (Table 1) in a way similar to 

correspondence analysis (Guedes et al., 1999). 
 
 
Table 1. Contingency table of interval frequency used for constructing perceptual maps 

 

Panelist n(i) 

Genotypes of Soybeans 

Total Black (MGBR07-
7141) 

Yellow 
(BRSMG-790A) 

Brown 
(BRSMG-800A) 

n1 11 11;f f 
   12 12;f f 

   13 13;f f 
   1 1

1 1

;
J J

j j

j j

f f
 

 
 
 
    

n2 21 21;f f 
   22 22;f f 

   23 23;f f 
    

     

nI 1 1;I If f 
   2 2;I If f 

   3 3;I If f 
    

Total 1 1

1 1

;
I I

i i

i i

f f
 

 
 
 
    … …  

1 1 1 1

;
I J I J

ij ij

i j i j

f f
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Following the structure of the interval data shown in Table 1, we obtained 

the correlation matrix considering interval data (1). 

 

  

11 11 12 12 13 13

1 1 2 2

; ; ;

; ; ;I I I I IJ IJ

q q q q q q

Q

q q q q q q

      
      
 

  
 
      
      

  (1) 

 

where each element was calculated by the expression (2) following specific 

mathematical operations for interval division (Gioia & Lauro, 2005). 

 

 

1 1 1 1

;
;  for 1,..., ; 1,...,

;

ij ij

ij ij I J I J

ij ij

i j i j

f f
q q i I j J

f f
   

 
        

 
 
 

  (2) 

 

After obtaining the correlation matrix considering data interval, use the chi-

square correction which resulted in the matrix [D], each element being obtained 

by (3). 

 

 
. . . .

. . . .

; ; ;

; ;

ij ij i i j j

ij

i i j j

q q q q q q
d

q q q q

          
   
   

  (3) 

 

where marginal probabilities were respectively defined for lines and columns of 

the correlation matrix considering data interval, according to expressions (4) and 

(5). 
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1 1

1 1

2 2

1 1. .

1 1

;

;
;

;

J J

j j

j j

J J

j j

j ji i

J J

Ij Ij

j j

q q

q q
q q

q q

 

 

 

  
  
  

 
  
       
 
 
 
  
    

 

 

 

  (4) 

 

 . . 1 1 2 2

1 1 1 1 1 1

; ; ; ;
I I I I I I

j j i i i i iJ iJ

i i i i i i

q q q q q q q q
     

      
          

      
        (5) 

 

Interval mathematical operations used for calculating probabilities were 

performed as described by Gioia & Lauro (2005). Thus, regarding the correlation 

matrix considering data interval [D], whose dimension is I lines by J columns, 

corrected by the chi-squared distance, covariance matrices associated with 

profiles ‘line’ and ‘column’ keeping interval data were respectively determined by 

(6) and (7). 

 

      
T

L D D    (6) 

 

     
T

C D D    (7) 

 

The normalization procedures used for profiles ‘line’ and ‘column’ were 

performed with singular value decomposition (Gioia & Lauro, 2006; Deif & Rohn, 

1994; Seif, Hashem & Deif, 1992) considering the matrices [ΣL] and [ΣC] whose 

dimension is I lines by J columns. The position of each profile ‘line’ in relation to 

profiles ‘column’ were obtained in (8) and (9). 

 

      
1
2

LL D U


   (8) 

 

where [DL]−½ is the square root of the diagonal matrix of the marginal 

probabilities ‘line’ of [Q] and [U] is the matrix of normalized eigenvectors of [ΣL]. 

Similarly, the position of each profile ‘column’ in relation to profiles ‘line’ was 

determined by 
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1
2

CC D V


   (9) 

 

where [V] is the matrix of eigenvectors normalized of [ΣC], and [DC]−½ is the 

square root of the diagonal matrix of marginal probabilities ‘column’ of [Q]. 

Based on the interval matrices [L] and [C] the coordinates related to profiles 

‘line’ were been given by [ L ] = [DL]−1[Q]T[C] and the coordinates related to 

profiles ‘column’ were obtained by [ C ] = [DC]−1[Q]T[L]. 

A total inertia of the cloud of points is illustrated in Figure 1. 
 
 

 
 
Figure 1. Inertia of decomposition in correspondence analysis 

 

 
 

The coordinates obtained enabled the construction of interval perceptual 

maps, using a routine in R (R Core Team, 2013), and similar to technique 

preference maps as follows: coordinate values, variance explained on the first two 

components, consumer space, descriptive space, descriptive attributes that 

promote liking as recommended Yenket, et al. (2011b). 

Results 

Considering acceptance data in interval scale in relation to the attribute 

appearance, the results compiled in Figure 2 correspond to perceptual maps 

constructed respectively to ξ = ± 0.2 cm (A) and ξ = ± 1.0 cm (B). Percentage of 

sample variation explained for axes F1 and F2 is shown in Table 2. 
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Table 2. Decomposition of sample variability for the attribute appearance 

 

  Axis Inertia Proportion Cumulative (%) 

(A) ξ = ± 0.2 cm 

F1 [1.6918; 2.2516] [0.8420; 0.8629] [84.20; 86.29] 

F2 [0.2687; 0.4225] [0.1370; 0.1579]  [97.90; 102.8]  

Total [1.9605; 2.6741] 
  

(B) ξ = ± 1 cm 

F1 [1.9584; 4.0786] [0.5950; 1.742] [59.50; 174.2] 

F2 [1.3326; 2.3408] [0.3646; 0.4049] [95.96; 214.69] 

Total [3.2910; 6.4194]     

 
 

 
 
Figure 2. Perceptual map using interval scale for the attribute ‘appearance’. Grayscale 

shows the 50 panelists, dotted line displays cultivar MGBR07-7141 (Black Soybeans), 
dash line for cultivar BRSMG-790A (Yellow Soybeans), and dashed-dotted line for 
cultivar BRSMG-800A (Brown Soybeans). 

 

 
 

Results in Figure 2(A) indicated when considering a small measurement 

error ξ = ± 0.2 cm there is statistical evidence to state that the panel responses 

were homogeneous with respect to the attribute appearance, however, there was 

no evidence of preference for any particular soybean cultivar. Nevertheless, by 

increasing the measurement error to ξ = ± 1.0 cm, results in Figure 2(B) showed 

panel scores with a certain degree of similar homogeneity and no preference to 

cultivate, since a simple inspection of the rectangles indicated they had similar 

areas. 

Given the two differential conjectures by different margins of error to be 

considered in response marking, and also keeping in mind the statement of Cohen 

(1990) related to beliefs and opinions of consumers about a product, such results 
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would most likely help companies develop packaging, labels, and advertising 

campaigns to inform consumers about characteristics and properties of products in 

order to raise consumer expectations and encourage purchase. Thus, constructing 

perceptual maps via interval scaling definitely minimizes uncertainties regarding 

product acceptability as far as publicity is concerned.  

Perceptual maps for evaluation of the attribute overall acceptance are 

described in Figure 3, while percentage of sample variation explained for axes F1 

and F2 is shown in Table 3. 
 
 
Table 3. Decomposition of sample variability for the attribute overall acceptance 

 

  Axis Inertia Proportion Cumulative (%) 

(A) ξ = ± 0.2 cm 

F1 [1.4175; 2.8151] [0.7120; 0.8189] [71.20; 81.89] 

F2 [0.3133; 1.1386] [0.1810; 0.2879] [89.3; 110.68] 

Total [1.7308; 3.9537]     

(B) ξ = ± 1 cm 

F1 [1.0985; 2.6511] [0.4706; 0.5616] [47.06; 56.16] 

F2 [0.8572; 2.9814] [0.4383; 0.5293] [90.89; 109.09] 

Total [1.9557; 5.6325]     

 
 

 
 
Figure 3. Perceptual map using interval scale for the attribute ‘overall acceptance’. 

Grayscale shows the 50 panelists, dotted line displays cultivar MGBR07-7141 (Black 
Soybeans), dash line for cultivar BRSMG-790A (Yellow Soybeans), and dash-dotted line 
for cultivar BRSMG-800A (Brown Soybeans). 
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Considering the situation of a small and essential error in response marking 

represented by ξ = ± 0.2 cm (Figure 3(A)), a greater heterogeneity is seen between 

panelists. However, cultivar preference is inconclusive with regard to the attribute  

overall acceptance, as rectangle areas look similar. When considering the 

conjecture in which scale variability is greater, results in Figure 3(B) indicated 

homogeneous panel scores, although showing no specific preference for any 

particular soybean cultivar, as the rectangles do not overlap. Yenket et al. (2011a) 

mentioned this may be based on the frequency of a particular product being most 

or least liked by individual consumers and is not based on mean liking scores for 

a group of consumers.  

Using perceptual maps reinforces the hypothesis that incorporating 

measurement error in data analysis is recommended provided there is a priori 

knowledge of the critical values for the margin of error. However, not all errors 

have to be measured. Behrens & Silva (2004) stated that the score given to the 

attribute ‘overall acceptance’ is merely determined by a simple inspection. Also, 

the response is related to the panelist attitude influenced by individual learning 

and experience on the object of our study: soybean genotypes, degree of 

individual acceptance/preference, and motivational component associated with 

action tendency. Perceptual maps for evaluation of the attribute ‘texture’ are 

shown in Figure 4, while percentage of sample variation explained for axes F1 

and F2 is shown in Table 4. 
 
 
Table 4. Decomposition of sample variability for the attribute texture 

 

  Axis Inertia Proportion Cumulative (%) 

(A) ξ = ± 0.2 cm 

F1 [1.3216; 1.6500] [0.7698; 0.9402] [76.98; 94.02] 

F2 [0.3950; 0.1048] [0.0597; 0.2301] [82.95; 117.03] 

Total [1.7166; 1.7548]     

(B) ξ = ± 1 cm 

F1 [1.1440; 4.4134] [0.6067; 0.6319] [60.67; 63.19] 

F2 [0.7414; 2.5701] [0.3680; 0.3932] [97.47; 102.51] 

Total [1.8854; 6.9835]     
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Figure 4. Perceptual map using interval scale for the attribute ‘texture’. Grayscale shows 

the 50 panelists, dotted line displays cultivar MGBR07-7141 (Black Soybeans), dash line 
for cultivar BRSMG-790A (Yellow Soybeans), and dashed-dotted line for cultivar 
BRSMG-800A (Brown Soybeans). 

 

 
 

Results plotted in Figure 4(A) showed that scores for the attribute texture 

were very different, considering that the panelists could have made a mistake of 

ξ = ± 0.2 cm when marking  answers. Thus, there is no evidence of preference for 

any particular soybean cultivar, as rectangles do not overlap. In the situation with 

the greatest measurement error, arbitrarily set at ξ = ± 1.0 cm, the results in Figure 

4(B) indicated more homogeneous scores, which showed evidence of similarity 

among the genotypes BRSMG-790A (Yellow Soybeans) and BRSMG-800A 

(Brown Soybeans). This was evidenced by overlapping in most areas of cultivar-

specific rectangles. Score differentiation regarding the genotype MGBR07-7141 

(Black Soybeans) could possibly be influenced by physiological aspects, as seed 

coat is very important for regulating water absorption. 

McDonald Jr. et al. (1988) stated that water intake affects a few 

morphological characteristics of seed coats that may influence water penetration 

time. Thus, it is reasonable to assume that physicochemical properties of 

genotypes with different seed coat colors are differentiated. This fact could 

possibly imply a genotype appearance more or less pleasing to the panelists, 

either in appearance or texture, so that responses of sensory evaluations 

presumably could be influenced by stimulation effect (Lim, 2011). Such effect is 

impossible to detect by incorporating measurement error, as the contextual 

interference effect suggested by Lim, Wood, and Green (2009) was recognized as 

a source of error and bias in evaluation testing. 
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Conclusion 

Different scale variability in the case study showed that using interval algebra in 

correspondence analysis applied to descriptive tests provided additional 

information on the accuracy of panelist responses. Concerning the selection of 

soybean genotypes, incorporating measurement error in data analysis allowed for 

identification of groups with similar genotypes due to subjective analysis of 

profile location and overlapping in the quadrants. 
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Confidence interval construction for the scale parameter of the half-logistic distribution is 
considered using four different methods. The first two are based on the asymptotic 
distribution of the maximum likelihood estimator (MLE) and log-transformed MLE. The 
last two are based on pivotal quantity and generalized pivotal quantity, respectively. The 
MLE for the scale parameter is obtained using the expectation-maximization (EM) 
algorithm. Performances are compared with the confidence intervals proposed by 
Balakrishnan and Asgharzadeh via coverage probabilities, length, and coverage-to-length 

ratio. Simulation results support the efficacy of the proposed approach. 
 
Keywords: Progressively Type-II censoring, EM algorithm, MLE, pivotal quantity, 
confidence interval, generalized confidence interval, coverage probability, coverage to 
length ratio, half-logistic distribution 

 

Introduction 

In many life testing situations, an experiment has to be terminated before 

completion. Because of the various limitations of time and money, testing of life 

may need to be stopped for some of the units. In day-to-day experiments, 

incomplete information about the failure times is available, or some of the units 

must be removed before completion of the experiment. A plan is necessary for 

removal of the units before the termination of an experiment to save time and cost, 

which is called the censored data. 

Type-I censoring depends on time, where the time is fixed for the 

termination of experiment. Suppose an observer continues an experiment up to 

time T; lifetimes of units will be known exactly only if these are less than T. 

https://doi.org/10.22237/jmasm/1493597880
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Failure times of units which have not failed by the time T are not observed. 

Suppose n units are being tested, but the decision is made to terminate the 

experiment at time T. In this experiment, lifetimes will be known exactly only for 

those units that fail before time T. In Type-I censoring, the number of exact 

lifetimes observed is random. 

A Type-II censoring scheme is often used in life testing experiments where 

the number of units that can be observed before the termination of the experiment 

is fixed. In this scheme, only a pre-planned number m out of n units (m < n) are 

observed. In the case of Type-II censoring, the number of exact lifetimes observed 

is fixed, but the time required for the termination of the experiment is unknown. 

In conventional Type-I and Type-II censoring, units are removed from the 

experiment at the terminal stage, while in a progressive censoring scheme, units 

are removed at different stages. Progressive censoring schemes can be applied in 

both Type-I and Type-II censoring schemes. More details about various censoring 

schemes are available in Lawless (1982). 

In an (R1, R2,…, Rm) progressive type-II censoring scheme, the number m 

and R1, R2,…, Rm are fixed before the start of the experiment and 
1

m

ii
R n m


  . 

At the first failure, R1 units are randomly removed from the remaining n – 1 units. 

At the second failure, R2 units are randomly removed from the remaining 

n − 2 − R1 units, etc. At the mth failure, all the remaining Rm units are removed. 

Here, we observe failure times of m units and the remaining n – m units are 

removed at different stages of the experiment. In a conventional Type-II 

censoring scheme, Rm = n – m and the rest of the Ri are zero. 

Consider the problem of interval estimation for the scale parameter of a 

half-logistic distribution under a progressive Type-II censoring scheme. 

Progressive Type-II censoring schemes for various lifetime distributions was 

discussed by Cohen (1963), who introduced progressive Type-II censoring 

schemes. Mann (1969, 1971), Balakrishnan, Kannan, Lin, and Ng (2003), 

Balakrishnan, Kannan, Lin, and Wu (2004), Ng (2005), and Ng, Kundu, and 

Balakrishnan (2006) discussed inference for different lifetime distributions under 

progressive Type-II censoring schemes. Balakrishnan and Aggarwala (2000) is an 

excellent reference on progressive censoring. Balakrishnan (2007) studied various 

distributions and inferential methods for the progressively censored data. Lin and 

Balakrishnan (2011) discussed the consistency and the asymptotic normality of 

Maximum Likelihood Estimators (MLEs) based on the progressive Type-II 

censored samples. Potdar and Shirke (2013, 2014) studied inference for the scale 

parameter of the half logistic and Rayleigh distribution of k-unit parallel systems 
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based on progressively Type-II censored data. Ghitany, Alqallaf, and 

Balakrishnan (2014) discussed estimation of the parameters of Gompertz 

distributions based on progressively Type-II censored samples. Sultan, Alsadat, 

and Kundu (2014) studied estimation for the inverse Weibull parameters under 

progressive Type-II censoring. 

As far as the half-logistic distribution is concerned, Balakrishnan and 

Puthenpura (1986) discussed the best linear unbiased estimation of location and 

scale parameters. Balakrishnan and Wong (1991) computed the approximate 

Maximum Likelihood Estimator (AMLE) for the location and scale parameters of 

the half-logistic distribution. Balakrishnan and Chan (1992) studied estimation for 

the scale parameter of the half-logistic distribution. Kim and Han (2010) used 

importance sampling methods to obtain a Bayes estimator for the scale parameter 

of the half-logistic distribution under progressively Type-II censored samples. 

Jang, Park, and Kim (2011) studied estimation of the scale parameter of the half-

logistic distribution with a multiply Type-II censored sample. Rastogi and 

Tripathi (2014) studied estimation of parameter and reliability for the 

exponentiated half-logistic distribution. 

The likelihood equation of a half-logistic distribution with scale parameter 

does not have a closed form solution to obtain MLE. In most of the reported work, 

an AMLE of the scale parameter is obtained. Following this approach, 

Balakrishnan and Asgharzadeh (2005) and Wang (2009) reported inference for 

the scale parameter of a half-logistic distribution based on progressive Type-II 

censored samples. 

Balakrishnan and Asgharzadeh (2005) showed that, if the relative sample 

fraction is small, then the coverage probability of the confidence interval (CI) 

based on asymptotic normality of the MLE is unsatisfactory. Wang (2009) paid 

more attention to length of CI and gave a shorter length CI. Dempster, Laird, and 

Rubin (1977) introduced the expectation-maximization (EM) algorithm to obtain 

the MLE for the incomplete data. McLachlan and Krishnan (1997) gave more 

details about the EM algorithm. Here, the MLE is computed using the EM 

algorithm, and the focus is on both the coverage probability and length of CI. 

Assume that n units having half-logistic lifetime distribution are put on test 

and failure times of 
1

m

ii
R n m


   units are censored. Lifetimes of these 

censored units are unknown. Consider the censored data as missing data and use 

the EM algorithm to compute the MLE. As indicated in Potdar and Shirke (2014), 

the EM algorithm gives improved inferential results. 
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Model and Estimation of the Scale Parameter 

Suppose progressively Type-II censored data are obtained from the scaled half-

logistic distribution with probability density function 
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Suppose n units are under test and lifetimes of m units are observed under 

progressive Type-II censoring. Suppose (R1, R2,…, Rm), a progressive censoring 

scheme, is used. The observed lifetimes x(1), x(2),…, x(m) are the progressively 

Type-II censored sample. The likelihood function for the observed data is given 

by (Balakrishnan & Aggarwala, 2000) 
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Maximum Likelihood Estimation 

Suppose z1, z2,…,zm are the censored data. Note zi is a vector with Ri element 

corresponding to Ri removed units after the ith failure is observed (i = 1, 2,…., m). 

The censored data Z = (z1, z2,…, zm) can be considered to be the missing data and 

X = (x(1), x(2),…, x(m)) the observed data. W = (X, Z) is the complete data set to be 

used for drawing inference for the scale parameter. The complete log-likelihood 

function can be written as 
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By differentiating Lc with respect to λ, 
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The EM algorithm suggested by Dempster et al. (1977) was used to compute 

the MLE. For the E step in the EM algorithm, the expectation of Zij was taken. 

Hence, the above equation becomes 
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Solving equation (4) is the M step. 

The Newton-Raphson method was used to solve equation (4) by taking the 

least square estimate as an initial value. Ng (2005) discussed estimation of model 

parameters of modified Weibull distributions based on progressively Type-II 

censored data, where the empirical distribution function is computed as 
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with 
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The estimate of the parameters can be obtained by the least squares fit of 

simple linear regression 
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The least square estimate of λ is given by 
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While obtaining the MLE ˆ
n of the scale parameter λ, the above approach 

was adopted, where 0̂  was taken as an initial value of λ in the Newton-Raphson 

method. It will be shown that the MLE ˆ
n  exits and is unique. From equation (2), 
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where C is defined as above. 
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Note 
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Therefore, the MLE, a solution to g(λ) = 0, exists and is unique. 

Fisher Information 

We compute observed Fisher information using the idea of the missing 

information principle of Louis (1982). Thus, observed information = complete 

information – missing information. Write this as 
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In the following, we obtain complete and missing information given by 
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where, L is the log-likelihood function of the complete data. By differentiating L 

with respect to λ twice 

 

 

 

 22

22 2 4 3
1 1

1 eeL 2 2

1 e1 e

i
i

i
i

xxn n
ii

x
x

i i i

xxd n

d x




   






 


  


   

 

The complete information is given by 

 



POTDAR & SHIRKE 

331 

  
 

 2

22 4 3
1 1

1 ee2 2
I E

1 e1 e

i
i

i
i

XXn n
ii

w X
X

i i i

XXn
E

x







  






 

   
      
      

   (8) 

 

Missing information is given by 
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Confidence Intervals Based on MLE and log-Transformed 
MLE 

Confidence Interval Based on MLE 

Let ˆ
n be the MLE of λ and 
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be the estimated asymptotic variance of ˆ
n . Therefore, a 100(1 – α)% asymptotic 

CI for λ based on asymptotic normality of ˆ
n  is given by 
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 (10) 

 

where τα/2 is the upper 100(α/2)th percentile of the standard normal distribution. 

Confidence Interval Based on log-Transformed MLE 

Meeker and Escobar (1998) reported the asymptotic CI for λ based on  ˆlog n . 

An approximate 100(1 – α)% CI for log(λ) is 
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where   2 ˆˆ log n   is the estimated asymptotic variance of  ˆlog n , which is 

approximated by 
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Hence, an approximate 100(1 – α)% CI for λ is 
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Confidence Interval Based on Pivotal and Generalized 
Pivotal Quantity 

Consider two exact CIs based on the pivotal quantities. To define these CIs, show 

that the distribution of ˆV   is free from λ, where ̂ is the MLE of λ, based on 

the complete data. In the following lemma, it is proved that V is a pivot, following 

Gulati and Mi (2006): 

 

Lemma 1: The distribution of V is free from λ. 

 

Proof:  Consider the probability density function of the half-logistic 

distribution with scale parameter λ: 
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Then the log-likelihood function becomes 
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dL/dλ = 0 gives the following equation: 
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The solution of the above equation is the MLE of λ (say ̂ ). Hence 
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Let ξ = ˆ   and Yi = Xi/λ. Then 
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Note thatY1, Y2,…,Yn is a random sample from the half-logistic distribution with 

parameter λ = 1. Therefore, the distribution of ˆ   is independent of λ. Hence 

the proof. 

 

Lemma 2: The distribution of V under progressive Type-II censored data from 

the half-logistic distribution with scale parameter λ is free from λ. 

 

Proof:  This is similar to Lemma 1 and hence is omitted. 

 

This property of the MLE will be used to derive the confidence interval 

based on pivot and generalized pivot quantity methods. 

 

Remark: V is also a pivot for k-unit parallel and k-unit series systems. 

Confidence Interval Based on Pivotal Quantity 

From Lemma 2, the distribution of V is free from λ. Define a and b such that 
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  P 1a V b      

 

Therefore we obtain the following as a CI for λ: 

 

 
ˆ ˆ

,
b a

  
  
 

 (12) 

 

The constants a and b are obtained using Monte Carlo simulation by using the 

following algorithm: 

 

Algorithm to Obtain Percentiles of V 

 

1. Input α, N, m, and progressive Type-II censoring scheme (R1, R2,…, Rm). 

2. Generate a progressive Type-II censored random sample of size m using 

censoring scheme (R1, R2,…, Rm) from the half-logistic distribution with 

parameter λ = 1. 

3. Obtain a MLE of λ (say ̂ ) using the EM algorithm. 

4. Repeat steps 2 and 3 N times so as to get 1 2
ˆ ˆ ˆ, , , N   . 

5. Arrange the ˆ
i  in an increasing order. Denote them by 

     1 2
ˆ ˆ ˆ, , ,

N
   . 

6. Compute 
  2

ˆ
N

a



  

 and 
  1 2

ˆ
N

b



  

 . 

Confidence Interval Based on Generalized Pivotal Quantity 

The concept of a generalized confidence interval (GCI) is introduced by 

Weerahandi (1993). Let x denote the observed value of X. To construct a GCI for 

λ, first define a generalized pivotal quantity (GPQ), T(X; x, λ), which is a function 

of the random variable X, its observed value x, and the parameter λ. A quantity 

T(X; x, λ) is required to satisfy the following two conditions: 

 

i) For a fixed x, the probability distribution of T(X; x, λ) is free of unknown 

parameters. 

ii) The observed value of T(X; x, λ), namely T(x; x, λ), is simply λ. 

 

Let Tα be the 100αth percentile of T. Then Tα becomes the 100(1 – α)% 

lower bound for λ. Therefore a 100(1 – α)% two-sided GCI for parameter λ is 

given by 
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  2 1 2T ,T   (13) 

 

Define the GPQ as 

 

   0
ˆ

T ; ,
ˆ

X x



 

  

 

where
0̂ is the MLE obtained using observed data. Note: 

 

i) The distribution of T(X; x, λ) is free from λ, which follows from Lemma 2, 

and 

ii) T(x; x, λ) = λ, since for the observed data, 
0

ˆ ˆ  . 

 

A GCI based on T(X; x, λ) is obtained by using following algorithm: 

 

Algorithm to Obtain CI for λ using GPQ 

 

1. Input α, N, m, and progressive Type-II censoring scheme (R1, R2,…, Rm). 

2. Generate a progressive Type-II censored random sample of size m from 

the half-logistic distribution with an unknown parameter λ. 

3. Based on the data in step 2, obtain a MLE of λ (say 0̂ ) using the EM 

algorithm. 

4. Generate a progressive Type-II censored random sample of size m from 

the half-logistic distribution with parameter λ = 1. 

5. Obtain a MLE of λ (say ˆ
i ) using the EM algorithm for step 4 data. 

6. Compute Ti =  0̂ / ˆ
i . 

7. Repeat steps 4 to 6 N times, so as to get T1, T2,…,TN. 

8. Arrange the Ti in an increasing order. Denote them by T(1), T(2),…, T(N). 

9. Compute a 100(1 – α)% CI for λ as 
      2 1 2

,
N N

T T
       

. 

Simulation Study 

The CIs given in (10) to (13) will now be compared with the CIs given by 

Balakrishnan and Asgharzadeh (2005) and Wang (2009). A simulation study was 
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carried out to study the performance of each of the CIs. Asymptotic CIs based on 

MLE, log-transformed MLE, and GPQ are compared through length and 

confidence level. Balakrishnan and Sandhu (1995) presented an algorithm for 

sample generation from progressively Type-II censored schemes. This algorithm 

was used to generate samples from a half-logistic distribution. Consider the 34 

different progressively Type-II censored schemes compiled in Table 1. 

 

Algorithm 

 

1. Generate i.i.d. observations (W1, W2,…,Wm) from U(0, 1). 

2. For censoring scheme (R1, R2,…, Rm), 
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m m m i

E
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for i = 1, 2,…, m. 

3. Set iE

i iV W  for i = 1, 2,…,m. 

4. Set Ui = 1 – (Vm∙Vm – 1∙…∙Vm – i + 1) for i = 1, 2,…,m. Then (U1, U2,…, Um) 

is the uniform (0, 1) progressively Type-II censored sample. 

5. For given values of the parameter λ, set 
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for i = 1, 2,…, m. 

 

Then (x(1), x(2),…, x(m)) is the required progressively Type-II censored 

sample from the half-logistic distribution. In Table 1, censoring scheme 

(a, b, c, d) stands for R1 = a, R2 = b, R3 = c, and R4 = d. A similar meaning holds 

for schemes described through completely specified vector, while scheme 

(10, 9*0) means R1 = 10 and remaining nine Ri are zero, i.e. 

R2 = R3 = R4 = … = R10 = 0. A simulation was carried out with λ = 1. For each 

particular progressive censoring scheme, 5,000 sets of observations are generated. 

The CIs based on asymptotic normal distributions of the MLE and log-

transformed MLE are derived. 
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Table 1. Censoring schemes 

 

Scheme No. n m m/n Scheme 

[1] 10 4 0.2500 (0, 0, 0, 6) 

[2] 10 4 0.2500 (6, 0, 0, 0) 

[3] 10 5 0.5000 (0, 0, 0, 0, 5) 

[4] 10 5 0.5000 (5, 0, 0, 0, 0) 

[5] 15 4 0.2667 (0, 0, 0, 11) 

[6] 15 4 0.2667 (11, 0, 0, 0) 

[7] 15 5 0.3333 (0, 0, 0, 0, 10) 

[8] 15 5 0.3333 (10, 0, 0, 0, 0) 

[9] 15 5 0.3333 (0, 10, 0, 0, 0) 

[10] 15 5 0.3333 (0, 0, 10, 0, 0) 

[11] 15 5 0.3333 (2, 2, 2, 2, 2) 

[12] 15 5 0.3333 (4, 4, 2, 0, 0) 

[13] 20 5 0.2500 (0, 0, 0, 0, 15) 

[14] 20 5 0.2500 (15, 0, 0, 0, 0) 

[15] 20 5 0.2500 (5, 5, 5, 0, 0) 

[16] 20 5 0.2500 (3, 3, 3, 3, 3) 

[17] 20 5 0.2500 (0, 15, 0, 0, 0) 

[18] 20 5 0.2500 (5, 10, 0, 0, 0) 

[19] 20 10 0.5000 (9*0, 10) 

[20] 20 10 0.5000 (10, 9*0) 

[21] 25 5 0.2000 (0, 0, 0, 0, 20) 

[22] 25 5 0.2000 (20, 0, 0, 0, 0) 

[23] 25 10 0.4000 (9*0, 15) 

[24] 25 10 0.4000 (15, 9*0) 

[25] 25 15 0.6000 (14*0, 10) 

[26] 25 15 0.6000 (10, 14*0) 

[27] 50 20 0.4000 (19*0, 30) 

[28] 50 20 0.4000 (30, 19*0) 

[29] 50 25 0.5000 (24*0, 25) 

[30] 50 25 0.5000 (25, 24*0) 

[31] 100 20 0.2000 (19*0, 80) 

[32] 100 20 0.2000 (80, 19*0) 

[33] 100 50 0.5000 (49*0, 50) 

[34] 100 50 0.5000 (50, 49*0) 
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Table 2. Simulated coverage probabilities for confidence intervals 

 

 

C1  C3  C4  C5  C6 

Scheme 90% 95%  90% 95%  90% 95%  90% 95%  90% 95% 

[1] 0.8100 0.8396  0.8108 0.8470  0.8710 0.9176  0.8944 0.9458  0.8992 0.9474 

[2] 0.8300 0.8640  0.8338 0.8676  0.8804 0.9282  0.9072 0.9514  0.8986 0.9464 

[3] 0.8288 0.8638  0.8330 0.8684  0.8768 0.9256  0.8968 0.9462  0.9025 0.9503 

[4] 0.8290 0.8688  0.8382 0.8768  0.8814 0.9286  0.9014 0.9528  0.9036 0.9494 

[5] 0.8204 0.8508  0.8160 0.8500  0.8786 0.9204  0.8978 0.9476  0.9016 0.9518 

[6] 0.8350 0.8650  0.8364 0.8706  0.8830 0.9306  0.8978 0.9528  0.8948 0.9468 

[7] 0.8194 0.8582  0.8278 0.8640  0.8736 0.9230  0.8998 0.9522  0.9058 0.9548 

[8] 0.8360 0.8686  0.8418 0.8778  0.8834 0.9284  0.9006 0.9528  0.8998 0.9482 

[9] 0.8370 0.8684  0.8398 0.8724  0.8794 0.9240  0.9050 0.9526  0.8986 0.9498 

[10] 0.8354 0.8656  0.8364 0.8666  0.8780 0.9306  0.8946 0.9456  0.8978 0.9506 

[11] 0.8262 0.8596  0.8308 0.8684  0.8822 0.9274  0.9022 0.9494  0.9050 0.9518 

[12] 0.8354 0.8650  0.8408 0.8798  0.8896 0.9336  0.9014 0.9514  0.8934 0.9486 

[13] 0.8318 0.8626  0.8418 0.8750  0.8842 0.9348  0.9002 0.9504  0.8966 0.9520 

[14] 0.8474 0.8806  0.8474 0.8834  0.8866 0.9342  0.8960 0.9474  0.8974 0.9462 

[15] 0.8368 0.8740  0.8388 0.8716  0.8752 0.9250  0.8974 0.9528  0.9008 0.9482 

[16] 0.8308 0.8632  0.8312 0.8664  0.8816 0.9260  0.9048 0.9532  0.8950 0.9496 

[17] 0.8432 0.8724  0.8492 0.8818  0.8870 0.9296  0.9004 0.9504  0.9000 0.9464 

[18] 0.8318 0.8690  0.8390 0.8756  0.8788 0.9260  0.8944 0.9488  0.8998 0.9500 

[19] 0.8592 0.8954  0.8790 0.9122  0.8902 0.9416  0.8960 0.9510  0.8950 0.9458 

[20] 0.8680 0.9068  0.8706 0.9098  0.8864 0.9358  0.9002 0.9528  0.8958 0.9418 

[21] 0.8196 0.8544  0.8280 0.8606  0.8764 0.9284  0.8990 0.9496  0.8976 0.9492 

[22] 0.8372 0.8720  0.8400 0.8712  0.8764 0.9304  0.8972 0.9542  0.8970 0.9504 

[23] 0.8640 0.9072  0.8636 0.8994  0.8858 0.9364  0.8976 0.9490  0.8980 0.9454 

[24] 0.8774 0.9128  0.8780 0.9132  0.8964 0.9434  0.8904 0.9466  0.9010 0.9512 

[25] 0.8714 0.9160  0.8770 0.9158  0.8948 0.9432  0.8926 0.9448  0.9006 0.9466 

[26] 0.8822 0.9210  0.8848 0.9242  0.8996 0.9504  0.9008 0.9492  0.8938 0.9468 

[27] 0.8844 0.9246  0.8790 0.9212  0.8914 0.9388  0.9002 0.9502  0.8970 0.9472 

[28] 0.8852 0.9302  0.8880 0.9292  0.8952 0.9470  0.9084 0.9532  0.8948 0.9496 
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Table 2, continued. 

 

 

C1  C3  C4  C5  C6 

Scheme 90% 95%  90% 95%  90% 95%  90% 95%  90% 95% 

[29] 0.8904 0.9276  0.8950 0.9360  0.9022 0.9494  0.9024 0.9466  0.8948 0.9504 

[30] 0.8896 0.9348  0.8918 0.9374  0.8982 0.9484  0.9044 0.9530  0.8978 0.9478 

[31] 0.8920 0.9324  0.8856 0.9248  0.8962 0.9460  0.9008 0.9526  0.8968 0.9486 

[32] 0.8864 0.9306  0.8876 0.9336  0.8972 0.9478  0.9062 0.9534  0.8958 0.9478 

[33] 0.8930 0.9374  0.8938 0.9408  0.8998 0.9454  0.8958 0.9446  0.9046 0.9530 

[34] 0.8924 0.9416  0.9010 0.9452  0.9026 0.9522  0.8948 0.9448  0.9070 0.9544 

 
 
Table 3. The expected lengths of confidence intervals 

 

 

C1  C2  C3  C4  C5  C6 

Scheme 90% 95%  90% 95%  90% 95%  90% 95%  90% 95%  90% 95% 

[1] 2.0913 2.7742  2.0330 2.7028  1.3723 1.6352  1.4919 1.8397  2.0003 2.6406  2.0432 2.7096 

[2] 2.0150 2.6663  1.9223 2.5345  1.3790 1.6432  1.4943 1.8403  1.9281 2.5360  1.9254 2.5328 

[3] 1.6829 2.2413  1.6495 2.1395  1.2142 1.4468  1.2952 1.5849  1.6353 2.1214  1.6562 2.1440 

[4] 1.6656 2.1061  1.5932 2.0518  1.2246 1.4592  1.3051 1.5965  1.5883 2.0467  1.5690 2.0143 

[5] 2.1526 2.8298  2.1217 2.8244  1.4289 1.7026  1.5625 1.9313  2.1204 2.8675  2.0944 2.7809 

[6] 2.0219 2.8139  1.9415 2.5615  1.3863 1.6519  1.5039 1.8530  1.9146 2.5256  1.9121 2.5117 

[7] 1.8253 2.3360  1.7234 2.2392  1.2655 1.5079  1.3562 1.6627  1.7120 2.2377  1.7132 2.2203 

[8] 1.7290 2.2818  1.6054 2.0685  1.2395 1.4770  1.3220 1.6177  1.6076 2.0631  1.5954 2.0493 

[9] 1.6816 2.1968  1.6431 2.1214  1.2488 1.4880  1.3343 1.6339  1.6136 2.0929  1.6358 2.1071 

[10] 1.8064 2.2591  1.6754 2.1675  1.2566 1.4973  1.3445 1.6474  1.6653 2.1710  1.6636 2.1482 

[11] 1.7245 2.2904  1.6782 2.1775  1.2430 1.4812  1.3285 1.6270  1.6886 2.2053  1.6426 2.1253 

[12] 1.6759 2.1434  1.6449 2.1252  1.2481 1.4872  1.3333 1.6326  1.6374 2.1200  1.6348 2.1033 

[13] 1.8299 2.4993  1.7724 2.3044  1.3030 1.5526  1.4010 1.7199  1.7660 2.2984  1.7672 2.2909 

[14] 1.6007 2.0857  1.6130 2.0789  1.2401 1.4776  1.3232 1.6194  1.5938 2.0671  1.5858 2.0396 

[15] 1.7540 2.2729  1.6768 2.1690  1.2731 1.5170  1.3625 1.6695  1.6698 2.1834  1.6496 2.1262 

[16] 1.7848 2.3377  1.7207 2.2350  1.2532 1.4933  1.3429 1.6464  1.6982 2.2097  1.7251 2.2365 

[17] 1.7424 2.1501  1.6597 2.1438  1.2722 1.5159  1.3607 1.6669  1.6277 2.1042  1.6401 2.1126 
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Table 3, continued. 

 

 

C1  C2  C3  C4  C5  C6 

Scheme 90% 95%  90% 95%  90% 95%  90% 95%  90% 95%  90% 95% 

[18] 1.7336 2.1373  1.6528 2.1345  1.2618 1.5035  1.3490 1.6523  1.6297 2.1138  1.6378 2.1099 

[19] 1.0242 1.2681  1.0099 1.2531  0.8758 1.0436  0.9047 1.0926  1.0153 1.2497  1.0011 2.2410 

[20] 1.0137 1.2284  0.9834 1.2145  0.8717 1.0387  0.8998 1.0864  0.9957 1.2302  0.9712 1.1978 

[21] 1.8246 2.3465  1.8066 2.3495  1.3169 1.5692  1.4194 1.7442  1.8067 2.3370  1.8018 2.3372 

[22] 1.6455 2.0421  1.6180 2.0857  1.2377 1.4748  1.3211 1.6170  1.6001 2.0816  1.5875 2.0391 

[23] 1.0462 1.2845  1.0328 1.2825  0.8884 1.0586  0.9189 1.1104  1.0393 1.2960  1.0311 1.2787 

[24] 1.0103 1.2819  0.9854 1.2171  0.8753 1.0430  0.9036 1.0911  0.9800 1.2079  0.9812 1.2099 

[25] 0.7842 0.9543  0.7775 0.9509  0.7016 0.8360  0.7165 0.8613  0.7766 0.9502  0.7754 0.9475 

[26] 0.7846 0.9490  0.7714 0.9407  0.7079 0.8435  0.7229 0.8691  0.7677 0.9354  0.7671 0.9342 

[27] 0.6895 0.8386  0.6832 0.8310  0.6328 0.7540  0.6436 0.7723  0.6820 0.8351  0.6820 0.8275 

[28] 0.6546 0.8045  0.6550 0.7944  0.6162 0.7343  0.6261 0.7510  0.6526 0.7914  0.6561 0.7941 

[29] 0.6009 0.7334  0.5902 0.7144  0.5567 0.6634  0.5640 0.6758  0.5945 0.7184  0.5879 0.7109 

[30] 0.5796 0.7047  0.5780 0.6982  0.5513 0.6569  0.5583 0.6688  0.5752 0.6973  0.5761 0.6951 

[31] 0.7042 0.8616  0.7249 0.8823  0.6713 0.7999  0.6842 0.8217  0.7312 0.8881  0.7259 0.8817 

[32] 0.6482 0.7763  0.6563 0.7960  0.6176 0.7359  0.6275 0.7526  0.6639 0.8022  0.6546 0.7929 

[33] 0.4067 0.4736  0.4067 0.4884  0.3951 0.4708  0.3977 0.4752  0.4043 0.4892  0.4047 0.4859 

[34] 0.3985 0.4815  0.3992 0.4789  0.3897 0.4644  0.3922 0.4686  0.4014 0.4818  0.3968 0.4754 

 

 
Table 4. Coverage to Length Ratio (CLR) of confidence intervals 

 

 
C1  C3  C4  C5  C6 

Scheme 90% 95%  90% 95%  90% 95%  90% 95%  90% 95% 

[1] 0.3873 0.3026  0.5908 0.5180  0.5838 0.4988  0.4471 0.3582  0.4401 0.3497 

[2] 0.4119 0.3240  0.6046 0.5280  0.5892 0.5044  0.4705 0.3752  0.4667 0.3737 

[3] 0.4925 0.3854  0.6860 0.6002  0.6770 0.5840  0.5484 0.4460  0.5449 0.4433 

[4] 0.4977 0.4125  0.6845 0.6009  0.6754 0.5816  0.5675 0.4655  0.5759 0.4713 

[5] 0.3811 0.3007  0.5711 0.4992  0.5623 0.4766  0.4234 0.3305  0.4305 0.3423 

[6] 0.4130 0.3074  0.6033 0.5270  0.5871 0.5022  0.4689 0.3773  0.4680 0.3770 
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Table 4, continued. 

 

 

C1  C3  C4  C5  C6 

Scheme 90% 95%  90% 95%  90% 95%  90% 95%  90% 95% 

[7] 0.4489 0.3674  0.6541 0.5730  0.6442 0.5551  0.5256 0.4255  0.5287 0.4300 

[8] 0.4835 0.3807  0.6791 0.5943  0.6682 0.5739  0.5602 0.4618  0.5640 0.4627 

[9] 0.4977 0.3953  0.6725 0.5863  0.6591 0.5655  0.5609 0.4552  0.5493 0.4508 

[10] 0.4625 0.3832  0.6656 0.5788  0.6530 0.5649  0.5372 0.4356  0.5397 0.4425 

[11] 0.4791 0.3753  0.6684 0.5863  0.6641 0.5700  0.5343 0.4305  0.5510 0.4478 

[12] 0.4985 0.4036  0.6737 0.5916  0.6672 0.5718  0.5505 0.4488  0.5465 0.4510 

[13] 0.4546 0.3451  0.6460 0.5636  0.6311 0.5435  0.5097 0.4135  0.5073 0.4156 

[14] 0.5294 0.4222  0.6833 0.5979  0.6700 0.5769  0.5622 0.4583  0.5659 0.4639 

[15] 0.4771 0.3845  0.6589 0.5746  0.6423 0.5541  0.5374 0.4364  0.5461 0.4460 

[16] 0.4655 0.3693  0.6633 0.5802  0.6565 0.5624  0.5328 0.4314  0.5188 0.4246 

[17] 0.4839 0.4057  0.6675 0.5817  0.6519 0.5577  0.5532 0.4517  0.5487 0.4480 

[18] 0.4798 0.4066  0.6649 0.5824  0.6514 0.5604  0.5488 0.4489  0.5494 0.4503 

[19] 0.8389 0.7061  1.0037 0.8741  0.9840 0.8618  0.8825 0.7610  0.8941 0.7621 

[20] 0.8563 0.7382  0.9987 0.8759  0.9851 0.8614  0.9041 0.7745  0.9224 0.7863 

[21] 0.4492 0.3641  0.6287 0.5484  0.6174 0.5323  0.4976 0.4063  0.4982 0.4061 

[22] 0.5088 0.4270  0.6787 0.5907  0.6634 0.5754  0.5607 0.4584  0.5650 0.4661 

[23] 0.8258 0.7063  0.9721 0.8496  0.9640 0.8433  0.8637 0.7323  0.8709 0.7393 

[24] 0.8685 0.7121  1.0031 0.8756  0.9920 0.8646  0.9085 0.7836  0.9183 0.7862 

[25] 1.1112 0.9599  1.2500 1.0955  1.2488 1.0951  1.1493 0.9943  1.1614 0.9990 

[26] 1.1244 0.9705  1.2499 1.0957  1.2444 1.0935  1.1733 1.0148  1.1651 1.0135 

[27] 1.2827 1.1026  1.3891 1.2218  1.3850 1.2156  1.3199 1.1378  1.3153 1.1447 

[28] 1.3523 1.1562  1.4411 1.2654  1.4298 1.2610  1.3920 1.2045  1.3639 1.1959 

[29] 1.4818 1.2648  1.6077 1.4109  1.5996 1.4049  1.5180 1.3177  1.5220 1.3368 

[30] 1.5349 1.3265  1.6176 1.4270  1.6088 1.4181  1.5722 1.3668  1.5584 1.3635 

[31] 1.2667 1.0822  1.3192 1.1561  1.3099 1.1513  1.2319 1.0727  1.2354 1.0759 

[32] 1.3675 1.1988  1.4372 1.2687  1.4298 1.2594  1.3651 1.1885  1.3684 1.1954 

[33] 2.1957 1.9793  2.2622 1.9983  2.2625 1.9895  2.2158 1.9311  2.2351 1.9614 

[34] 2.2394 1.9556  2.3120 2.0353  2.3014 2.0320  2.2291 1.9611  2.2857 2.0076 
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We denote by C1 the CI proposed by Balakrishnan and Asgharzadeh (2005), 

by C2 the CI proposed Wang (2009), by C3 the CI based on the MLE obtained by 

the EM algorithm, by C4 the CI based on the log-transformed MLE, by C5 the CI 

based on pivotal quantity, and by C6 the GCI. Coverage probabilities of the CIs 

for various censoring schemes are displayed in Table 2. Coverage probabilities of 

C1 are also displayed in the same table. Coverage probabilities for C2 are not 

provided by Wang (2009). Lengths of CIs for the various censoring schemes are 

given in Table 3. For comparison, lengths of C1 and C2 are given in the same table. 

For effective comparison of CIs, we compute coverage to length ratio (CLR). 

CLR for C1, C3, C4, C5, and C6 are given in Table 4. It is clear that the CIs having 

a higher value of CLR are preferred. 

Conclusion 

Coverage probabilities of C3, C4, C5, and C6 are better than coverage probabilities 

of C1. Comparing coverage probabilities of all four CIs, C5 and C6 show the best 

performance. For small and large sample sizes (n) and the smallest effective 

sample size (m), C5 and C6 show good coverage probability. For large sample 

sizes, C3, C4, C5, and C6 show good performance. As n and m increase, coverage 

probability of C3 and C4 increases rapidly as compared to C5 and C6. C6 has 

higher coverage probability for conventional censoring schemes than progressive 

censoring schemes, but C3 and C4 show higher coverage probability for 

progressive censoring schemes than conventional censoring schemes. 

C3 has smaller length than the lengths of C1 and C2. The MLE by the EM 

algorithm provides the shortest length CI among all five CIs. For large sample 

sizes, the length of C6 approaches the length of C3. Lengths of all CIs decrease as 

n and m increase. Lengths of CIs based on progressive censoring schemes are 

smaller than lengths of CIs based on conventional censoring schemes. There is a 

minor difference among lengths of C3, C4, C5, and C6 for large sample sizes. 

According to the CLR, C3 is the best among the four CIs for small sample sizes. 

C4, C5, and C6 also show higher CLR than the CLR of C1. CLRs of CIs based on 

progressive censoring schemes are better than CLRs of CIs based on conventional 

censoring. 
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Appendix A. Illustrative Examples 

Numeric Example 

Balakrishnan and Asgharzadeh (2005) gave simulated sample of size n = 50 from 

the half-logistic distribution with scale parameter λ = 25. This complete sample is 

 

1.7110, 2.0024, 2.3963, 3.9034, 4.6412, 6.4002, 6.7956, 8.5646, 8.6428, 8.8354, 

9.3518, 9.7358, 10.5080, 10.5095, 11.8015, 12.8005, 16.3451, 16.9938, 17.2101, 

18.5384, 20.3508, 21.1838, 22.1529, 22.4062, 22.4381, 23.0369, 25.8435, 

27.0574, 27.1237, 29.0360, 30.6449, 32.5713, 33.6688, 40.3890, 45.4092, 

46.4756, 49.8833, 51.1798, 53.0397, 53.8135, 64.9315, 66.1807, 69.9004, 

75.2674, 75.4427, 75.7291, 76.1571, 89.5827, 99.8525, 134.6488. 

 

Balakrishnan and Asgharzadeh (2005) and Wang (2009) derived CIs for this 

complete sample and the censored sample. We also derive CIs by using the MLE 

obtained by the EM algorithm, and the CIs based on pivot and generalized pivot. 

In Table 5, we consider two cases suggested by Wang (2009). Also we use the 

censoring schemes and samples given by Wang (2009) and derive 90% and 95% 

CIs and their lengths. For comparison, we display CIs and their lengths as stated 

by Wang (2009). 
 
 
Table 5. Confidence interval and its length for illustrative example: n = 50, λ = 25 

 

 
C2  C3 

Scheme 90% 95%  90% 95% 

Case 1 (24.49, 42.97) (23.37, 45.72)  (22.76, 40.26) (21.08, 41.94) 

(25*1) 18.48 22.35  17.50 20.86 

Case 2 (20.93, 34.82) (20.05, 36.81)  (19.95, 33.28) (18.67, 34.56) 

(28*0, 10,10) 13.89 16.76  13.33 15.89 

 
 C5  C6 

Scheme 90% 95%  90% 95% 

Case 1 (24.52, 42.94) (23.38, 45.67)  (24.05, 42.82) (23.18, 45.66) 

(25*1) 18.42 22.29  18.77 22.48 

Case 2 (21.21, 35.21) (20.31, 37.23)  (21.42, 34.93) (20.31, 37.24) 

(28*0, 10,10) 14.00 16.92  13.51 16.93 
 

Note: For Case 1, Sr. No. is 1 and m = 25. For Case 2, Sr. No. is 2 and m = 30. 
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Table 6. Confidence interval and its length for illustrative example: n = 50, λ = 25 

 

 

C1  C3 

Scheme 90% 95%  90% 95% 

Case 1 (19.81, 29.53) (18.90, 30.45)  (19.88, 29.48) (18.96, 30.40) 

(50*0) 9.72 11.55  9.6 11.44 

Case 2 (20.78, 32.12) (19.72, 33.18)  (18.88, 29.21) (17.89, 30.20) 

(39*0, 10) 11.34 13.46  10.33 12.31 

Case 3 (18.66, 31.16) (17.48, 32.34)  (15.92, 26.62) (14.89, 27.65) 

(29*0, 20) 12.5 14.86  10.7 12.76 

 

 

C5  C6 

Scheme 90% 95%  90% 95% 

Case 1 (20.59, 30.37) (19.85, 31.60)  (20.55, 30.26) (19.92, 31.28) 

(50*0) 9.78 11.75  9.71 11.36 

Case 2 (19.68, 30.38) (18.94, 31.81)  (19.53, 30.07) (18.95, 31.47) 

(39*0, 10) 10.7 12.87  10.54 12.52 

Case 3 (16.95, 28.23) (16.23, 29.80)  (16.90, 28.20) (16.06, 29.92) 

(29*0, 20) 11.28 13.57  11.3 13.86 
 

Note: For Case 1, Sr. No. is 1 and m = 50. For Case 2, Sr. No. is 2 and m = 40. For Case 3, Sr. No. is 3 and 
m = 30. 

 
 

Balakrishnan and Asgharzadeh (2005) considered three cases, (n = 50, 

m = 50), (n = 50, m = 40), and (n = 50, m = 30). They used progressive and 

conventional Type-II censored samples but have not provided samples. To 

compare the proposed CIs with the CI proposed by Balakrishnan and 

Asgharzadeh (2005), we considered conventional censored and complete samples 

considered by Balakrishnan and Asgharzadeh (2005). We obtained 90% and 95% 

CIs for these schemes. In Table 6, 90% and 95% CIs and their lengths are 

displayed. Also, the CIs and their length proposed by Balakrishnan and 

Asgharzadeh (2005) are displayed. 

Observe that in the illustrated example, C3 has shorter length than the 

lengths of C1, C2 and C5. C6 has shorter length than that of C1. 

Real Data Example 

Lawless (1982) presented real data which represented failure times for a specific 

type of electrical insulation that was subjected to a continuously increasing 

voltage stress. 

 

12.3, 21.8, 24.4, 28.6, 43.2, 46.9, 70.7, 75.3, 95.5, 98.1, 138.6, 151.9. 
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Table 7. Confidence interval and its length for real data: n = 12, λ = 50.50 (BLUE) 

 

 

C3  C4 

Scheme 90% 95%  90% 95% 

Case 1 (28.59, 66.24) (24.98, 69.85)  (31.88, 70.53) (29.54, 76.10) 

(12*0) 37.65 44.87  38.65 46.56 

Case 2 (25.55, 73.70) (20.94, 78.31)  (30.55, 80.61) (27.84, 88.46) 

(7*0, 4) 48.15 57.37  50.06 60.62 

Case 3 (23.35, 68.29) (19.05, 72.59)  (28.06, 74.82) (25.54, 82.19) 

(4, 7*0) 44.94 53.54  46.74 56.65 

 

 

C5  C6 

Scheme 90% 95%  90% 95% 

Case 1 (33.37, 75.18) (31.19, 82.30)  (33.65, 73.96) (31.88, 83.36) 

(12*0) 41.81 51.11  40.31 51.48 

Case 2 (33.13, 90.13) (30.73, 101.89)  (32.60, 86.50) (30.13, 94.26) 

(7*0, 4) 57 71.16  53.9 64.13 

Case 3 (30.14, 82.01) (27.78, 92.25)  (30.55, 83.15) (27.58, 92.42) 

(4, 7*0) 51.87 64.47  52.6 64.84 
 

Note: For Case 1, Sr. No. is 1 and m = 12. For Case 2, Sr. No. is 2 and m = 8. For Case 3, Sr. No. is 3 and 
m = 8. 

 
 

The half-logistic distribution fits the data extremely well (Balakrishnan & 

Chan, 1992). This dataset was used with two censoring schemes, (7*0, 4) and 

(4, 7*0), and complete data, and the CI is constructed based on the MLE, log-

MLE, pivot, and generalized pivot. These 90% and 95% CIs and their lengths are 

presented in Table 7. Observe that, for real data, C3 has shorter length than C4, C5 

and C6. 

The EM algorithm approach works well for small sample size n and the 

smallest effective sample size m. Overall, the proposed CIs perform better than 

the CIs proposed by Balakrishnan and Asgharzadeh (2005) and Wang (2009). The 

proposed CIs are superior to the other two CIs with regard to the length and the 

coverage probability. 
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The Pickands dependence function characterizes an extreme value copula, a useful tool in 
the modeling of multivariate extremes. A new estimator is presented along with its 
convergence properties and performance through simulation. 
 

Keywords: Extreme value copula; tail dependence; nonparametric estimation 

 

Introduction 

Tail dependence is an important issue in several areas like finance, environment, 

engineering, among others, given the concern on the impact of the occurrence of 

joint extreme events. The copula concept provides a margin-free tool to describe 

the dependence structure of a random vector. Focusing on the bivariate case from 

now on, given a random pair (X, Y) with joint distribution function (df) H, then it 

may be represented as 

 

       H , C F ,Gx y x y   

 

for all x, y ∈ , where F and G are the marginal df's of X and Y, respectively. We 

always assume that F and G are continuous and thus copula C is unique (Sklar, 

1959). Considering U = F(X) and V = G(Y), we may also write 

 

    C , P ,u v U u V v     

 

for all u, v ∈ [0, 1]. Extreme-value copulas arise in the limit of an increasing 

sample length of copulas of componentwise maxima of independent or strongly 

https://doi.org/10.22237/jmasm/1493597940
mailto:msferreira@math.uminho.pt
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mixing stationary sequences (Deheuvels, 1984; Hsing, 1989). Extreme-value 

copulas are completely determined by the Pickands dependence function, 

A: [0, 1] → [1/2, 1], which is convex and satisfies t ∨ (1 – t) ≤ A(t) ≤ 1, 

∀t ∈ [0, 1], where x ∨ y = max(x, y). More precisely, for all 0 ≤ u, v ≤ 1, 

 

    
 

 

log
C , exp log A

log

v
u v uv

uv

  
     

  

  (1) 

 

Modeling applications of extreme-value copulas can be seen in Tawn (1988), 

Ghoudi, Khoudraji, and Rivest (1998), Frees and Valdez (1998), Coles, Heffernan, 

and Tawn (1999), Cebrian, Denuit, and Lambert (2003), McNeil, Frey, and 

Embrechts (2005), Salvadori, De Michele, Kottegoda, and Rosso (2007), amongst 

others. For instance, in volatile and bear markets, a dependence measure often 

used in lieu of Pearson's correlation to account for extreme events dependence is 

the so-called tail dependence coefficient (TDC) introduced in Sibuya (1960), 

usually denoted λ, which corresponds to 2(1 – A(0.5)). The TDC ranges in [0, 1]. 

The null boundary case corresponds to asymptotic tail independence, a very 

important topic in the statistics of extremes. Indeed, this case may not correspond 

to perfect independence but to a “residual" one that must be taken into account in 

order to avoid misleading risk estimates. See, e.g., Beirlant, Goegebeur, Segers, 

and Teugels (2004) and references therein. 

Other representations than (1) may be considered, e.g., based on the stable 

tail dependence function, l: [0, ∞)2 → [0,∞), which is convex, homogeneous of 

order one (i.e., l(αx, αy) = αl(x, y) for α > 0), satisfies x ∨ y ≤ l(x, y) ≤ x + y, 

∀x, y ≥ 0, and l(x, y) = (x + y)A(y/(x + y)), thus leading to 

 

        C , exp log , logu v l u v      

 

Representation (1) can also be formulated as 

 

    A1C ,
tt tw w w    

 

and thus, as well, 

 

    1 ,1C ,
l t tt tw w w
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Therefore, statistical inference on a bivariate extreme-value copula can be 

reduced to the estimation of a univariate Pickands dependence function (or a 

bivariate stable tail dependence function, although they are related). 

Several parametric and non-parametric estimators of the Pickands 

dependence function are found in the literature. A wide survey on this topic is 

presented in Beirlant et al. (2004). Nonparametric estimation has been essentially 

based on the Pickands estimator (Pickands, 1981) and on the Capéraà-Fougères-

Genest (CFG) estimator (Capéraà, Fougères, & Genest, 1997). Further 

modifications of the former can be seen in Deheuvels (1991) and Hall and Tajvidi 

(2000), while the latter can be found in Jiménez, Villa-Diharce, and Flores (2001), 

Zhang, Wells, and Peng (2008), and Gudendorf and Segers (2011); for both, see 

Segers (2007). All these approaches assume known margins, which is rather 

unrealistic in practice. Nonparametric versions of the Pickands and CFG 

estimators based on unknown margins are addressed in Abdous and Ghoudi 

(2005), Genest and Segers (2009), and Gudendorf and Segers (2012). 

Pickands Dependence Function: Estimators and Properties 

Let (X, Y) be a random pair with joint df H and continuous marginal df's F and G, 

respectively, such that, U = F(X) and V = G(Y). Let C be a bivariate extreme-value 

copula, i.e. of the form (1), characterizing the dependence between X and Y. Thus 

C is the df of the random pair (U, V). 

Consider S = −log(U), T = −log(V) and 

 

  0 , 0 1
1

S T
t

t t
    


  

 

with ξ(0) = S and ξ(1) = T. The random variables (rv's) S and T are Exponential 

with unit mean value and ξ(t) is also exponentially distributed with mean values 

 

   
 

      
1

E ξ and E log ξ log A γ
A

t t t
t

      

 

where γ denotes the Euler's constant  
0

log e 0.577xx dx


  . These relations are 

the bases of, respectively, the Pickands and the CFG estimators by considering the 

empirical counterparts. More precisely, for a random sample (X1, Y1),…, (Xn, Yn) 
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distributed as (X, Y) such that Ui = F(Xi) and Vi = G(Yi), Si = −log(Ui) = ξi(0), 

Ti = −log(Vi) = ξi(1) for all i = 1,…, n, with 

 

  ξ , 0 1
1

i i
i

S T
t t

t t
   


  

 

we have 

 

 
 

 P
1

1 1
ξ

A

n

i

in

t
t n 

    

 

and 

 

      CFG

1

1
log A γ log ξ

n

n i

i

t t
n 

      

 

Whenever the margins F and G are unknown, the natural approach is to consider 

the respective marginal empirical df's Fn and Gn and take 

 

 
 

 

 
 

1 1

F 1ˆ an
G 1ˆ

1
d

1 1 1j i j i

n
n i

iX X Y Y

n i

i

j j

n n Y

n

X
VU

n n

n

n  


 


 
  

    (2) 

 

where 𝕀 is the indicator function. The replacement of Ui and Vi everywhere in the 

expressions above by, respectively, ˆ
iU  and ˆ

iV , leads now to 

 

 
 

 
P

1

ˆ1 1
ξ

Â

n

i

in

t
nt 

    

 

and 

 

      CFG

1

1
log A γ l ˆog ξˆ

n

n i

i

t t
n 

      

 

In order to satisfy the endpoint constraints A(0) = A(1) = 1, endpoint 

corrected versions were considered, namely, 
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   P P P P

,

1 1 1 1
1 1 1

A A A 0 A 1n c n n n

t t
t t

   
           

   
  

 

and 

 

              CFG CFG CFG CFG

,log A log A 1 log A 0 log A 1n c n n nt t t t      

 

Further developments on this topic can be found in Segers (2007). Similar 

procedures can be applied to the case of unknown marginal estimators and thus 

derive  P

,Ân c t  and  CFG

,Ân c t , although they are asymptotically equivalent to the 

respective uncorrected  PÂn t  and  CFGÂn t , as shown in Genest and Segers 

(2009). Another correction of the Pickands estimator based on Hall and Tajvidi 

(2000) is to consider 

 

 
 

 
HT

1

1 1
ξ

Â

n

i

in

t
nt 

    

 

with 

 

  ξ
1

i i
i

S T
t

t t
 


  

 

where  1
ˆ ˆ ˆ

i i nS nS S S   and  1
ˆ ˆ ˆ

i i nT nT T T  ,    ˆˆ ˆlog ξ 0i i iS U   , 

   ˆˆ ˆlog ξ 1i i iT V   , i = 1,…, n. We have    HT HTˆ ˆA 0 A 1 1n n   and also 

   HTÂ 1n t t t    for all 0 ≤ t ≤ 1. Relation      HT P PA A Aˆ ˆ ˆ 0n n nt t  means that 

 HTÂn t  and  PÂn t  are asymptotically equivalent, too. 

The asymptotic properties of estimators  PÂn t  and  CFGÂn t , derived in 

Genest and Segers (2009), are based on the empirical copula 

 

      
,ˆ ˆ

1

1
C ,  ,  , 0,1ˆ  

i i
n U u V

i
v

n

u v u v
n  



     

 

More precisely, Genest and Segers’ Lemma 3.1 states that, for all t ∈ [0, 1], 
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1

1

0

P

,1

Â

1

A

t t

n

n

u u du
n

t ut


 

  
 
 


  (3) 

 

     
 

1
1

CFG 0
,

log A log A
log

ˆ
t t

n

n

u u du
n t t

u u



 


  (4) 

 

where ℂn is the empirical copula process  CĈnn  . Now consider 

 α C Cn nn  , with 

 

      ,
1

1
C ,  , , 0,1

i i

n

n U u V v
i

u v u v
n

 


     

 

The classical theory of empirical processes states that the weak limit α of the 

process  α C Cn nn   is a centered Gaussian process with covariance 

 

             cov α , ,α , C , C , C , , , , , 0,1u v u v u v u v u v u v u v u v             

 

The weak limit ℂ of the process  Ĉ Cn nn   is closely related to α, namely, 

 

    
 

 
 

     
2C , C ,

, α , α ,1 α 1, , , 0,1
u v u v

u v u v u v u v
u v

 
    

 
  

 

If A is twice continuously differentiable on (0, 1) and sup{0 < t < 1}t(1 –

 t)A''(t) < ∞, then the following weak convergence results hold, as n → ∞, in the 

space 𝒞([0, 1]) of continuous and real-valued functions on [0, 1] equipped with 

the topology of uniform convergence: 

 

         
 1

1
P P P 2

0

,
Â A A

t t
w

n n

u u du
n t t t t

u



        (5) 

 

and 
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1
1

CFG CFG CFG

0

,
A A     ˆ A

log

t t
w

n n

u u du
n t t t t

u u



       (6) 

 

See Genest and Segers (2009, Theorem 3.2) and Gudendorf and Segers (2012, 

Theorem 1). 

In the case of known margins, the results (3) and (4) hold with Ĉn
 replaced 

by Cn and thus ℂn replaced by αn, as well as process ℂ replaced by α in (5) and (6). 

These were already proved in Segers (2007). 

The new estimator can be stated for the Pickands dependence function based 

on Ferreira and Ferreira (2012), and will be denoted FF. Define 

 

    1/ 1 1/η
t tt U V


    

 

with η(0) = U and η(1) = V. By Proposition 3.1 of Ferreira and Ferreira (2012), 

we have 

 

   
 

1
E η 1

1 A
t

t
 


  

 

By an analogous reasoning used above, let 

 

    1/ 1 1/η , 0 1
t t

i i it U V t


      

 

with ηi(0) = Ui and ηi(1) = Vi, i = 1,…, n. Thus, in the case of known margins we 

derive 

 

 
  

 
FF

1

1 1
1 η

1 A

n

i

in

t
nt 

 


   

 

and, for unknown margins, 

 

 
  

 
FF

1

ˆ1
ˆ

1 1
η

1 A

n

i

in

t
nt 
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where   ˆη̂ 0i iU ,   ˆη̂ 1i iV , and 

 

    1/ 1 1/ˆ ˆη̂ ,  0 1
t t

i i it U V t

     

 

with ˆ
iU  and ˆ

iV  as defined in (2). Because 

 

    
1 11 1 1

1 1 1 1 1 1
η 0 η 1

1
ˆ ˆˆ

2
ˆ

n n n n

i i i i

i i

n

i ii

i
U V

n n n n n n   

    


     

 

the estimator already satisfies the constraints    FF FFA 0 A 1 1n n  . The following 

statements are direct adaptations of the results above concerning Pickands and 

CFG estimators. 

 

Proposition 1:  For all t ∈ [0, 1], 

 

 
   

 
1

1

FF 0

1 1
,

1 AÂ1

t t

n

n

n u u du
tt


 

  
  

   (7) 

 

Proof:  Observe that 

 

 
        1ˆ ˆ

1 1 1
1

ηFF ,0 0ˆ 0
1 1

1 1 1
C ,

1 A

ˆ
ˆ t t

i i i

n n
t t

nt u U u V u
i in

du du u u du
n nt





  
 

  


      

 

Proposition 2:  If A is twice continuously differentiable on (0, 1) such that 

sup0 < t < 1t(1 – t)A''(t) < ∞, we have 

 

            
12FF FF FF 1

0
A A A 1 ,ˆ

w
t t

n n nn t t t t u u du         (8) 

 

in 𝒞([0, 1]) equipped with the topology of uniform convergence. 

 

Proof:  Considering u = e−s in the integral of (7), 

 



PICKANDS DEPENDENCE FUNCTION ESTIMATION 

358 

 
   

    1

FF 0

1 1
e ,e h

1ˆ A1 A

s t st

n

n

n s ds
tt

   
 

  
  

   (9) 

 

with h(s) = e−s. The proof of the convergence of the integral in (9) towards 

    1

0
e ,e h

s t st s ds
   

  runs as the one of Theorem 1 in Gudendorf and Segers 

(2012). Now the assertion follows by applying the functional delta method (van 

der Vaart & Wellner, 1996). 

For the case of known margins, replace Ĉn
 by Cn, ℂn by αn, and ℂ by α, 

respectively, in (7) and (8). See Gudendorf and Segers (2012) and references 

therein. Furthermore, Propositions 1 and 2 are extensible to the d-variate case for 

d > 2 as stated, respectively, in Lemma 1 and Theorem 1 of Gudendorf and Segers 

(2012). 

Simulations 

Consider the most interesting case for practical purposes of unknown margins, 

where the performance of the new estimator is examined through simulation and 

compared with the corrected version of CFG and Hall and Tajvidi estimators. 

Specifically, 1000 random samples of size n = 100, and of n = 1000 were 

generated for each of the following models: logistic, asymmetric logistic, Hüsler-

Reiss, negative logistic, asymmetric negative logistic, bilogistic, negative 

bilogistic, Dirichlet, and asymmetric mixed. A description of the latter can be 

found in Beirlant et al. (2004). 

The empirical mean integrated squared error, 

     
21

0

ˆMISE E A An t t dt  , was computed for each estimator and the 

obtained values are reported in Tables 1-3 (the numbers in brackets correspond to 

standard errors). The values of the parameters of each model were chosen in order 

to have the TDC (λ = 2(1 – A(0.5))) approximately 0.5 and the boundary cases 0 

and 1, corresponding to Tables 1, 2, and 3, respectively. In the unit bound case in 

Table 3, i.e., λ ≈ 1, the considered asymmetric versions coincide with the 

respective symmetric models and thus omitted. Also, in the asymmetric mixed 

model, the largest value achieved by λ correspond to 0.5 already reported in Table 

1. Observe that the unit TDC scenario presents the smallest errors. Note the FF 

estimator has an overall good performance, particularly in the boundary cases of 

asymptotic tail independence (λ ≈ 0) and λ ≈ 1 (see Tables 2 and 3). 
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Table 1. Empirical MISE values obtained for estimators CFG, HT and FF of the Pickands 

dependence function where the considered parameters for each model are such that 
λ ≈ 0.5 
 

n = 1000 CFG 
 

HT 
 

FF 

Log 4.070×10-5 (3.011×10-6) 
 

5.607×10-5 (5.607×10-6) 
 

4.569×10-5 (4.569×10-6) 

Alog 8.383×10-4 (6.200×10-5) 
 

8.403×10-4 (6.199×10-5) 
 

8.496×10-4 (6.268×10-5) 

HR 3.587×10-5 (3.046×10-6) 
 

4.840×10-5 (4.170×10-6) 
 

3.947×10-5 (3.364×10-6) 

Neglog 4.181×10-5 (3.306×10-6) 
 

5.560×10-5 (4.444×10-6) 
 

4.609×10-5 (3.669×10-6) 

Aneglog 6.809×10-5 (3.952×10-6) 
 

8.318×10-5 (4.819×10-6) 
 

6.858×10-5 (3.995×10-6) 

Bilog 5.032×10-4 (3.897×10-5) 
 

5.221×10-4 (3.942×10-5) 
 

5.115×10-4 (3.948×10-5) 

Negbilog 1.063×10-4 (6.854×10-6) 
 

1.200×10-4 (7.558×10-6) 
 

1.123×10-4 (7.204×10-6) 

Dir 4.114×10-4 (3.114×10-5) 
 

4.342×10-4 (3.205×10-5) 
 

4.191×10-4 (3.150×10-5) 

Amix 4.156×10-5 (3.063×10-6) 
 

5.621×10-5 (4.319×10-6)   4.604×10-5 (3.401×10-6) 

         
n = 100 CFG 

 

HT 

 

FF 

Log 2.890×10-4 (2.861×10-6) 
 

4.181×10-4 (4.140×10-6) 
 

3.656×10-4 (3.323×10-6) 

Alog 1.289×10-3 (7.866×10-5) 
 

1.436×10-3 (8.335×10-5) 
 

1.403×10-3 (8.386×10-5) 

HR 3.544×10-4 (3.035×10-5) 
 

4.595×10-4 (4.011×10-5) 
 

4.043×10-4 (3.385×10-5) 

Neglog 3.948×10-4 (3.246×10-5) 
 

5.368×10-4 (4.482×10-5) 
 

4.584×10-4 (3.713×10-5) 

Aneglog 6.150×10-4 (3.735×10-5) 
 

7.542×10-4 (4.435×10-5) 
 

6.787×10-4 (4.027×10-5) 

Bilog 8.055×10-4 (5.198×10-5) 
 

9.542×10-4 (6.003×10-5) 
 

8.872×10-4 (5.600×10-5) 

Negbilog 4.231×10-4 (3.147×10-5) 
 

5.505×10-4 (4.182×10-5) 
 

4.786×10-4 (3.489×10-5) 

Dir 7.399×10-4 (4.869×10-5) 
 

8.956×10-4 (5.916×10-5) 
 

8.117×10-4 (5.214×10-5) 

Amix 4.249×10-4 (3.462×10-5) 
 

5.617×10-4 (4.730×10-5) 
 

4.748×10-4 (3.752×10-5) 

 

Note: Numbers in brackets correspond to standard errors 

 
 
Table 2. Empirical MISE values obtained for estimators CFG, HT and FF of the Pickands 

dependence function, in the case of asymptotic tail independence (λ ≈ 0) 
 

n = 1000 CFG 
 

HT 
 

FF 

Log 1.020×10-4 (5.090×10-6) 
 

1.997×10-4 (1.017×10-5) 
 

7.133×10-5 (3.616×10-6) 

Alog 9.932×10-5 (4.885×10-6) 
 

2.103×10-4 (1.042×10-5) 
 

6.230×10-5 (3.007×10-6) 

HR 1.054×10-4 (5.203×10-6) 
 

2.212×10-4 (1.068×10-5) 
 

7.121×10-5 (3.499×10-6) 

Neglog 1.021×10-4 (5.161×10-6) 
 

2.052×10-4 (1.065×10-5) 
 

6.792×10-5 (3.502×10-6) 

Aneglog 1.032×10-4 (5.171×10-6) 
 

2.101×10-4 (1.081×10-5) 
 

6.890×10-5 (3.468×10-6) 

Bilog 1.025×10-4 (5.413×10-5) 
 

2.093×10-4 (1.145×10-5) 
 

7.438×10-5 (4.023×10-6) 

Negbilog 1.042×10-4 (5.279×10-6) 
 

2.142×10-4 (1.123×10-5) 
 

7.067×10-5 (3.565×10-6) 

Dir 1.022×10-4 (5.162×10-5) 
 

2.072×10-4 (1.060×10-5) 
 

7.737×10-5 (4.080×10-6) 

Amix 1.054×10-4 (5.248×10-6) 
 

2.100×10-4 (1.054×10-5)   7.307×10-5 (3.698×10-6) 

 

Note: Numbers in brackets correspond to standard errors 
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Table 2, continued. 

 

n = 100 CFG 
 

HT 
 

FF 

Log 1.404×10-3 (6.483×10-5) 
 

2.232×10-3 (1.120×10-4) 
 

9.676×10-4 (4.309×10-5) 

Alog 1.349×10-3 (6.389×10-5) 
 

2.165×10-3 (1.107×10-4) 
 

9.250×10-4 (4.308×10-5) 

HR 1.350×10-3 (6.161×10-5) 
 

2.121×10-3 (1.096×10-4) 
 

9.128×10-4 (3.889×10-5) 

Neglog 1.344×10-3 (6.274×10-5) 
 

2.181×10-3 (1.128×10-4) 
 

8.938×10-4 (3.966×10-5) 

Aneglog 1.441×10-3 (6.655×10-5) 
 

2.141×10-3 (1.064×10-4) 
 

1.001×10-4 (4.488×10-5) 

Bilog 1.339×10-3 (6.351×10-5) 
 

2.123×10-3 (1.052×10-4) 
 

9.496×10-4 (4.462×10-5) 

Negbilog 1.236×10-3 (5.570×10-5) 
 

1.989×10-3 (1.035×10-4) 
 

8.316×10-4 (3.542×10-5) 

Dir 1.345×10-3 (6.343×10-5) 
 

2.087×10-3 (1.047×10-4) 
 

9.509×10-4 (4.345×10-5) 

Amix 1.409×10-3 (6.608×10-5) 
 

2.190×10-3 (1.139×10-4) 
 

9.676×10-4 (4.348×10-5) 

 

Note: Numbers in brackets correspond to standard errors 

 
 
Table 3. Empirical MISE values obtained for estimators CFG, HT and FF of the Pickands 

dependence function, in the case λ ≈ 1 
 

n = 100 CFG 

 

HT 

 

FF 

Log 3.874×10-9 (2.394×10-9) 
 

3.539×10-9 (2.262×10-9) 
 

6.118×10-10 (3.926×10-10) 

HR 4.930×10-10 (2.935×10-9) 
 

4.413×10-9 (2.768×10-9) 
 

5.571×10-10 (3.625×10-10) 

Neglog 4.001×10-9 (2.451×10-9) 
 

3.709×10-9 (2.378×10-9) 
 

5.826×10-10 (3.753×10-10) 

Bilog 3.913×10-9 (2.400×10-10) 
 

3.610×10-9 (2.312×10-9) 
 

6.220×10-10 (4.000×10-10) 

Negbilog 4.131×10-9 (2.464×10-9) 
 

3.517×10-9 (2.276×10-9) 
 

5.985×10-10 (2.869×10-10) 

Dir 2.890×10-8 (2.612×10-8) 
 

2.154×10-7 (3.900×10-8) 
 

8.186×10-8 (2.721×10-8) 

      

n = 100 CFG 
 

HT 
 

FF 

Log 1.530×10-7 (7.468×10-8) 
 

1.352×10-7 (7.366×10-8) 
 

1.342×10-8 (1.062×10-8) 

HR 1.872×10-7 (9.113×10-8) 
 

1.627×10-7 (8.760×10-8) 
 

1.903×10-8 (1.487×10-8) 

Neglog 1.492×10-7 (7.352×10-8) 
 

1.348×10-7 (7.360×10-8) 
 

1.279×10-8 (1.018×10-8) 

Bilog 1.516×10-7 (7.519×10-8) 
 

1.342×10-7 (7.256×10-8) 
 

1.606×10-8 (1.035×10-8) 

Negbilog 1.519×10-7 (7.513×10-8) 
 

1.361×10-7 (7.457×10-8) 
 

1.265×10-8 (1.003×10-8) 

Dir 2.074×10-6 (5.517×10-7) 
 

2.033×10-6 (6.234×10-7) 
 

1.250×10-6 (4.285×10-7) 

 

Note: Numbers in brackets correspond to standard errors 

Conclusion 

A new estimator for the Pickands dependence function, an important map in 

generating extreme value copulas, was presented. It was found via simulation that 

it may be used as an alternative to the well-known CFG estimator, especially in 

the limiting situation of asymptotic tail independence. Thus, it may have a 

promising performance in testing independence, a crucial issue in statistics of 

extremes. 
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An exponential-type estimator is developed for the population mean of the sensitive study 
variable based on various Randomized Response Techniques (RRT) using a non-sensitive 
auxiliary variable. The mean squared error (MSE) of the proposed estimator is derived 
for generalized RRT models. The proposed estimator is compared with competitors in a 
simulation study and an application. The proposed estimator is found to be more efficient 
using a non-sensitive auxiliary variable. 
 

Keywords: Randomized response techniques, sensitive question, auxiliary variable, 
exponential estimator, efficiency 

 

Introduction 

In surveys on sensitive topics, estimation of the population mean with a direct 

questioning technique may cause respondents to refuse answering or to give 

untruthful answers on purpose. Respondents may encounter questions about drug 

use, illegal income, political views, abortion, homosexual activities, and AIDS in 

some social, medical, and epidemiological questionnaires. On these surveys, 

respondents do not feel comfortable and they may choose not to answer or may 

intentionally provide false answers. This can bring about significant bias in the 

estimation of population parameters. 

Random response techniques (RRT) are used to reduce nonrespondent’s 

rates and biased responses to sensitive questions. Warner (1965) introduced the 

randomization technique for the proportion of a population characterized by a 

sensitive variable, which was followed by studies where the response to a 

sensitive question results in a quantitative variable. Quantitative RRT are used to 

https://doi.org/10.22237/jmasm/1493598060
mailto:nilgunozgul@yahoo.com
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estimate the mean value of some behavior in a population. For example, the 

sensitive study variable may be the total number of abortions a woman has had or 

the average weekly alcohol consumption or annual earnings of people. These 

RRT are sub-classified as either additive or multiplicative techniques. 

In additive RRT, respondents are asked to scramble their responses using a 

randomization device such as a deck of cards. Each of the cards in the deck has a 

number. The numbers in the deck follow a known probability distribution, such as 

Normal, Chi-square, Uniform, Poisson, Binomial, Weibull, etc. The respondent is 

asked to add the real response to the number listed on card picked, and then report 

only the sum to the interviewer. Multiplicative RRT are similar to additive RRT. 

Again, a deck of cards with known probability distribution is used, but now when 

the respondents scramble their responses, they are asked to report the product of 

the real response and the number listed on the selected card. The interviewer 

cannot see the card, but records the reported number. RRT can also be categorized 

by how the respondents are instructed to randomize. If all respondents are asked 

to randomize their response, the model is characterized as a full randomization 

RRT model. If some of the respondents are instructed to randomize their response, 

the model is characterized as a “partial RRT model” (Özgül, 2013). 

Thornton and Gupta (2004) extended Warner’s (1971) approach by using 

partial additive models for estimating the mean of sensitive quantitative variables 

in RRT. The multiplicative model was later investigated in depth by Eichhorn and 

Hayre (1983), who referred to it as the scrambled responses method. Similarly, 

Bar-Lev, Bobovitch, and Boukai (2004) proposed a method which uses a partial 

model that generalizes Eichhorn and Hayre’s results and yields an estimate which, 

under mild conditions, has a uniformly smaller variance. Further developments 

focused on the use of auxiliary variables to improve the precision. Diana and Perri 

(2011), Sousa, Shabbir, Real, and Gupta (2010), and Gupta, Shabbir, Sousa, and 

Real (2012) suggested mean estimators using the auxiliary variable for estimating 

of the quantitative sensitive variable in RRT. Bahl and Tuteja (1991), Shabbir and 

Gupta (2011), Grover and Kaur (2014), and Özgül and Cingi (2014) studied 

exponential-type estimators to obtain more efficient estimates for various 

sampling methods. In the current study, an exponential-type estimator of the mean 

of a sensitive variable is proposed using a non-sensitive auxiliary variable for 

generalized partial quantitative RRT. 
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Various Estimators Based on Auxiliary Information through 
Quantitative RRT 

Diana and Perri (2011) introduced a general mechanism to scramble responses 

and proposed a class of regression estimators for the mean of a sensitive variable 

using a non-sensitive auxiliary variable. To estimate μy, a sample of individuals is 

selected from the population and each respondent is asked to perform a Bernoulli 

trial with a probability of success P. If this is successful, the respondent then gives 

the true values of both Y and X. In the case of failure, the respondent gives their 

answers by using the values given in S and R, which are the various randomized 

designs for the variables Y and X, respectively. The interviewer does not know the 

outcome of the Bernoulli experiment. Then, the distribution of the responses is 

given in (1) as 

 

  
 

   

, with probability
,

, with probability 1

Y X P
Z U

S R P


 


  (1) 

 

where Y is the sensitive variable of interest with unknown mean μy and unknown 

variance 
2

yS , X is the non-sensitive variable with known mean μx and known 

variance 2

xS , Z is the reported response for the sensitive variable Y, and U is the 

reported response for the first non-sensitive variable X. In S and R, the 

respondents answer the questions using the additive or multiplicative technique. 

For the additive technique, each respondent is requested to draw a value from the 

distribution of the scrambling variable, add it to the real response, and report back 

to the interviewer. For the multiplicative model, the respondent responds with the 

product of the drawn value and their true response. The scrambling variables are 

defined as W and T which have pre-assigned distributions such as Normal, Chi-

square, Uniform, Poisson, Binomial, Weibull, etc. W is the scrambling variable 

with known true mean μw and known variance 2

wS  in S and T is the scrambling 

variable with known true mean μt and variance 2

tS  in R (Özgül, 2013). 

Under the generic scheme given in (1), the following class of estimators 

based on a SRSWR sample {(z1, u1), (z2, u2),…, (zn, un)} of n responses is 
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where b is a suitably selected real constant and 

 

 
1 1

1 1
,

n n

i i

i i

z z u u
n n 

     

 

are the sample means of the reported responses for the sensitive variable and the 

non-sensitive auxiliary variable, respectively. Here, c and h depend exclusively on 

the scrambling design. 

The variance of 
DP̂  is 
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are the population variances of z and u, respectively, 
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is the population covariance between z and u, 2

zu uB S S  is the population 

regression coefficient between z and u, and 
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are the population means of z and u, respectively. The minimum variance of DP̂  

is 
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where  zu zu z uS S S   is the population correlation coefficient between z and u. 

Sousa et al. (2010) proposed a ratio estimator for the mean of a sensitive 

variable using a non-sensitive auxiliary variable. The respondent is asked to 

provide true responses for X. The Sousa et al. estimator is 

 

 
SR

ˆ xz
x




 
  

 
  (5) 

 

where z̄ is the sample mean of the reported responses for the sensitive variable 

(Z = Y + W), 

 

 
1

1 N

x i

i

x
N




    

 

is the known population mean of non-sensitive auxiliary variable, and 

 

 
1

1 n

i

i

x x
n 

    

 

is the sample mean of non-sensitive auxiliary variable. The Bias and MSE of SR̂ , 

under first order of the approximation, is 

 

    2ˆBias SR z x zxC C     (6) 

 

   2 2 2ˆMSE 2SR z z x xz x zC C C C         (7) 

 

where 

 

 
1 1

n N
     

 

and Cz = Sz/μz and Cx = Sx/μx are the coefficients of variation of Z and X, 

respectively. 

Gupta et al. (2012) proposed regression-cum-ratio estimator using a non-

sensitive auxiliary variable. 
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  GRR 1 2
ˆ x

xb z b x
x


 

 
     

 
  (8) 

 

where z̄, μx, and x̄ are defined as above for (5), and b1 and b2 are constants. The 

Bias and minimum MSE of GRR̂ , under first order of the approximation, is 

 

      2 2

1 1 2
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  (10) 

Suggested Exponential-Type Estimator Based on Auxiliary 
Information through Quantitative RRT 

Applying the general formulation of Diana and Perri (2011) and following Grover 

and Kaur (2014), an exponential-type estimator for the mean of a sensitive 

variable is proposed using a non-sensitive auxiliary variable in RRT. Consider the 

following improved exponential estimator based on a SRSWOR sample {(z1, u1), 

(z2, u2),…, (zn, un)} of n responses: 
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        (11) 

 

where b1 and b2 are suitably selected real constant and α and β are already 

assumed to be either any known constants or functions of any known population 

parameters of the auxiliary variable, such as standard deviation (σx), coefficient of 

variation (Cx), coefficient of skewness {β1(x)}, coefficient of kurtosis {β2(x)}, 

coefficient of correlation (ρyx) (Cingi & Kadilar, 2009). Here, c and h depend 

exclusively on the scrambling design. 

To obtain the MSE equation for the proposed estimator, we define following 

relative error terms 
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such that 
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Expressing (11) in terms of the e’s: 
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where 
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Assuming |e1| < 1, expanding the right hand side of (10), and retaining terms up to 

the second degree of the e’s we have 
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  (13) 

 

Taking the expectation both sides of (13), the Bias Equation of  NH exp
̂  is 

obtained to the first degree of approximation as 
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     23

1 1 22
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   (14) 

 

Squaring both sides of (13), retaining terms of the e’s up to the second degree and 

taking the expectation, we get the MSE Equation of  NH exp
̂  to the first degree of 

approximation as 
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  (15) 

 

where 2 2 24 4z u zu z uA C C C C    , 22 u zu z uD C C C   , and Cu is the 

coefficient of variation of u. 

To minimize 
  NH exp

ˆMSE  , consider the following normal equations: 
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On solving these two normal equations simultaneously, the optimum values of b1 

and b2 are, respectively, 
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  (16) 

 

On substituting the optimum values of b1 and b2 from (15) into (14), the minimum 

MSE of the proposed estimator  NH exp
̂ , up to first order of approximation, is 

given by 
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  (17) 

 

The expressions of c, h, and the MSE and mean equations change depending on 

the specified models. Two additive models and two multiplicative models are 

specified. In the first model, M1, the additive technique is applied for the sensitive 

variable while the direct technique is utilized for the non-sensitive auxiliary 

variable: {Z = PY + (1 – P)(Y + W), U = X}. In the second model, M2, the 

multiplicative model is applied for the sensitive variable while the direct 

technique is utilized for the non-sensitive auxiliary variable: {Z = PY + (1 –

 P)(YW), U = X}. In the third model, M3, the additive model is applied for both 

the sensitive variable and the non-sensitive auxiliary variable: {Z = PY + (1 –

 P)(Y + W), U = PX + (1 – P)(X + T)}. In the fourth model, M4, the multiplicative 

model is applied for both the sensitive variable and the non-sensitive auxiliary 

variable: {Z = PY + (1 – P)(YW), U = PX + (1 – P)(XT)}. In some surveys dealing 

with sensitive topics, the auxiliary variable that researchers determine to be non-

sensitive may be sensitive for respondents. Therefore, in the third model M3 and 

fourth model M4, randomized devices are also used for the auxiliary variable. 

Mean, variance, and correlation equations, which will be used in MSE equation in 

(17), are presented in Appendix A according to these four models (Özgül, 2013). 

Efficiency Comparisons 

A comparison of the proposed estimator with the Diana and Perri (2011) estimator 

DP̂ , the Sousa et al. (2010) estimator SR̂ , and the Gupta et al. (2012) estimator 

GRR̂  is now considered. To compare the efficiencies of the various existing 

estimators with the proposed estimator, we compare their MSE under the model 1 

M1, in which the respondent is asked to provide true responses for X. The MSEs 

of estimators under that model with SRSWOR are given below: 
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From (18) and (21), 
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and so     DP NH expmin
ˆ ˆVar MinMSE 0    always. 

From (19) and (21), 
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From (20) and (21), 
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and so     GRR NH expmin
ˆ ˆMSE MinMSE 0    provided that   2 2 21 1x z zxC C     . 
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Simulation Study 

A simulation study is presented to show the performance of the proposed 

estimator in comparison to other estimators using the auxiliary variable for RRT 

models. The proposed estimator  NH exp
̂  is compared with the Diana and Perri 

(2011) estimator 
DP̂ , the Sousa et al. (2010) estimator 

SR̂ , and the Gupta et al. 

(2012) estimator GRR̂ . Three finite populations of size 1000 are generated from a 

multivariate normal distribution. The three populations each have theoretical 

mean μ = [5, 5] of [Y, X] and have different covariance matrices. The populations 

are generated based on correlation levels between the variables. The correlation 

levels are classified as low, medium and high. The covariance matrices and the 

correlations are presented below. The scrambling variable W is considered to be a 

normal random variable with mean equal to zero and standard deviation equal to 

0.30. The scrambling variable T is considered to be a normal random variable 

with mean equal to zero and standard deviation equal to 0.20. We use the 

simulation studies of Gupta et al. to determine the parameters that are easier to 

compare. 

The covariance matrices and the correlation coefficients for each population 

are given below: 

 

Population I (Low Correlation): 

 

 1

9.0 5.4
, 0.30

5.4 4.0
yx

 
  
 

Σ   

 

Population II (Medium Correlation): 

 

 2

9.0 3.6
, 0.60

3.6 4.0
yx

 
  
 

Σ   

 

Population III (High Correlation): 

 

 3

9.0 5.4
, 0.90

5.4 4.0
yx

 
  
 

Σ   
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Table 1. Theoretical and empirical MSEs of estimators according to degree of the 

correlation between the sensitive and non-sensitive variable for model 1 (M1) 
 

   

Estimators 

Population n MSE 
ˆ

DP
μ  ˆ

SR
μ  ˆ

GRR
μ   

ˆ
NH exp
μ  

I 50 Theoretical 0.1684 0.1894 0.1672 0.1601 

ρyx = 0.30 
 

Empirical 0.1728 0.1916 0.1754 0.1705 

 
100 Theoretical 0.0838 0.0942 0.0828 0.0782 

  
Empirical 0.0840 0.0945 0.0840 0.0808 

 
200 Theoretical 0.0415 0.0466 0.0414 0.0398 

  
Empirical 0.0408 0.0465 0.0411 0.0388 

 
300 Theoretical 0.0274 0.0308 0.0273 0.0268 

  
Empirical 0.0272 0.0308 0.0272 0.0262 

       
II 50 Theoretical 0.1197 0.1203 0.1191 0.0972 

ρyx = 0.60 
 

Empirical 0.1187 0.1191 0.1187 0.0982 

 
100 Theoretical 0.0595 0.0599 0.0594 0.0494 

  
Empirical 0.0608 0.0613 0.0610 0.0498 

 
200 Theoretical 0.0295 0.0296 0.0291 0.0239 

  
Empirical 0.0300 0.0302 0.0297 0.0244 

 
300 Theoretical 0.0194 0.0196 0.0194 0.0162 

  
Empirical 0.0193 0.0193 0.0193 0.0158 

       
III 50 Theoretical 0.0358 0.0472 0.0358 0.0058 

ρyx = 0.90 
 

Empirical 0.0372 0.0480 0.0374 0.0060 

 
100 Theoretical 0.0178 0.0235 0.0178 0.0098 

  
Empirical 0.0186 0.0239 0.0186 0.0100 

 
200 Theoretical 0.0088 0.0116 0.0088 0.0033 

  
Empirical 0.0091 0.0120 0.0091 0.0014 

 
300 Theoretical 0.0058 0.0077 0.0058 0.0010 

  
Empirical 0.0060 0.0079 0.0060 0.0010 

 
 
Table 2. Theoretical and empirical MSEs of estimators according to degree of the 

correlation between the sensitive and non-sensitive variable for model 2 (M2) 
 

   
Estimators 

Population n MSE 
ˆ

DP
μ  ˆ

SR
μ  ˆ

GRR
μ   

ˆ
NH exp
μ  

I 50 Theoretical 3.5609 3.5628 3.1889 3.1872 

ρyx = 0.30 
 

Empirical 2.6095 2.5585 2.2517 2.2515 

 
100 Theoretical 1.6867 1.6877 1.5985 1.5980 

  
Empirical 1.5985 1.6009 1.3017 1.3015 

 
200 Theoretical 0.7497 0.7501 0.7317 0.7316 

  
Empirical 1.0440 1.0409 0.8691 0.8622 

 
300 Theoretical 0.4373 0.4376 0.4311 0.4310 

  
Empirical 0.8338 0.8312 0.7260 0.7259 
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Table 2, continued. 

 

   

Estimators 

Population n MSE 
ˆ

DP
μ  ˆ

SR
μ  ˆ

GRR
μ   

ˆ
NH exp
μ  

II 50 Theoretical 3.1069 3.1073 2.8349 2.8334 

ρyx = 0.60 
 

Empirical 2.1729 2.1638 1.9602 1.9517 

 
100 Theoretical 1.4717 1.4719 1.4078 1.4073 

  
Empirical 1.3937 1.3960 1.1353 1.1316 

 
200 Theoretical 0.6541 0.6542 0.6412 0.6410 

  
Empirical 0.9189 0.9192 0.7682 0.7624 

 
300 Theoretical 0.3816 0.3816 0.3772 0.3770 

  
Empirical 0.7939 0.7964 0.6994 0.6898 

       
III 50 Theoretical 2.8921 2.9277 2.6571 2.6557 

ρyx = 0.90 
 

Empirical 2.0042 2.0091 1.8101 1.7838 

 
100 Theoretical 1.3699 1.3868 1.3150 1.3145 

  
Empirical 1.3401 1.3760 1.0960 1.0958 

 
200 Theoretical 0.6089 0.6164 0.5978 0.5976 

  
Empirical 0.9457 0.9552 0.8018 0.7990 

 
300 Theoretical 0.3552 0.3596 0.3514 0.3512 

    Empirical 0.8639 0.8687 0.7715 0.7684 

 
 
Table 3. Theoretical and empirical MSEs of estimators according to degree of the 

correlation between the sensitive and non-sensitive variable for model 3 (M3) 
 

   
Estimators 

Population n MSE 
ˆ

DP
μ  ˆ

SR
μ  ˆ

GRR
μ   

ˆ
NH exp
μ  

I 50 Theoretical 0.1670 0.1883 0.1659 0.1603 

ρyx = 0.30 
 

Empirical 0.1722 0.1905 0.1740 0.1698 

 
100 Theoretical 0.0831 0.0937 0.0835 0.0780 

  
Empirical 0.0835 0.0938 0.0847 0.0798 

 
200 Theoretical 0.0411 0.0464 0.0411 0.0394 

  
Empirical 0.0405 0.0462 0.0408 0.0382 

 
300 Theoretical 0.0271 0.0306 0.0271 0.0257 

  
Empirical 0.0270 0.0307 0.0271 0.0257 

       
II 50 Theoretical 0.1183 0.1191 0.1178 0.0964 

ρyx = 0.60 
 

Empirical 0.1188 0.1180 0.1173 0.0978 

 
100 Theoretical 0.0589 0.0593 0.0588 0.0484 

  
Empirical 0.0606 0.0605 0.0600 0.0488 

 
200 Theoretical 0.0291 0.0293 0.0294 0.0238 

  
Empirical 0.0297 0.0298 0.0300 0.0242 

 
300 Theoretical 0.0192 0.0194 0.0197 0.0157 

    Empirical 0.0191 0.0191 0.0193 0.0157 
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Table 3, continued. 

 

   

Estimators 

Population n MSE 
ˆ

DP
μ  ˆ

SR
μ  ˆ

GRR
μ   

ˆ
NH exp
μ  

III 50 Theoretical 0.0357 0.0459 0.0357 0.0056 

ρyx = 0.90 
 

Empirical 0.0375 0.0466 0.0370 0.0061 

 
100 Theoretical 0.0178 0.0229 0.0178 0.0096 

  
Empirical 0.0188 0.0233 0.0186 0.0100 

 
200 Theoretical 0.0088 0.0113 0.0088 0.0031 

  
Empirical 0.0090 0.0116 0.0090 0.0017 

 
300 Theoretical 0.0058 0.0075 0.0058 0.0028 

  
Empirical 0.0059 0.0077 0.0060 0.0028 

 
 
Table 4. Theoretical and empirical MSEs of estimators according to degree of the 

correlation between the sensitive and non-sensitive variable for model 4 (M4) 
 

   
Estimators 

Population n MSE 
ˆ

DP
μ  ˆ

SR
μ  ˆ

GRR
μ   

ˆ
NH exp
μ  

I 50 Theoretical 2.0340 2.8564 1.8945 1.8568 

ρyx = 0.30 
 

Empirical 2.6028 3.3407 2.2134 1.9528 

 
100 Theoretical 0.9635 1.3530 0.9327 0.9223 

  
Empirical 1.4757 1.6144 1.2717 1.1878 

 
200 Theoretical 0.4282 0.6013 0.4222 0.4199 

  
Empirical 0.8659 0.8751 0.7673 0.7651 

 
300 Theoretical 0.2498 0.3508 0.2478 0.2469 

  
Empirical 0.6889 0.6764 0.6284 0.6265 

       
II 50 Theoretical 1.6396 2.4315 1.5521 1.5146 

ρyx = 0.60 
 

Empirical 2.2175 2.9569 1.8395 1.6508 

 
100 Theoretical 0.7767 1.1518 0.7577 0.7479 

  
Empirical 1.3376 1.6164 1.1199 1.0010 

 
200 Theoretical 0.3452 0.5119 0.3415 0.3394 

  
Empirical 0.8464 0.9276 0.7488 0.7016 

 
300 Theoretical 0.2014 0.2990 0.2001 0.1993 

  
Empirical 0.7073 0.7303 0.6484 0.6456 

       
III 50 Theoretical 1.3325 2.2892 1.2748 1.2421 

ρyx = 0.90 
 

Empirical 1.7606 2.1009 1.4869 1.4323 

 
100 Theoretical 0.6312 1.0843 0.6187 0.6104 

  
Empirical 1.1714 1.2880 1.0017 0.9817 

 
200 Theoretical 0.2806 0.4820 0.2781 0.2763 

  
Empirical 0.7664 0.7792 0.6878 0.6821 

 
300 Theoretical 0.1637 0.2811 0.1628 0.1622 

    Empirical 0.6670 0.6459 0.6185 0.6139 
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The process was repeated 5000 times and for different sample sizes: n = 50, 

100, 200, and 300. The value of the design parameter P changes from 0.10 to 0.90 

with an increment of 0.1. We observe small differences in efficiency with almost 

each value of the design parameter when an auxiliary variable is utilized in RRT 

models. Thus, simulation results are only presented for P = 0.20. That means 20 

percent of the respondents gave direct answers; the rest of the respondents use the 

randomized devices. The performances of the estimators are measured by the 

simulated MSE: 

 

    
5000

2

1

1
ˆ ˆMSE

5000
i y

i

  


    

 

where ˆ
i  is the estimate of μy on the ith sample. Simulation results are 

summarized in Tables 1-4. 

In Tables 1-4, theoretical and empirical MSE values of the estimators, 

according to degree of the correlation between the sensitive and non-sensitive 

variables, are given for the four specified models. In all circumstances, regardless 

of both degree of correlation and sample size, the proposed estimator is always 

more efficient than the Diana and Perri (2011) estimator DP̂ , the Sousa et al. 

(2010) estimator SR̂ , and the Gupta et al. (2012) estimator GRR̂ . The MSE 

values of the estimators are smaller when the sample size increases, and that is an 

expected result. However, additive models performed better than multiplicative 

models. When additive models are applied in RRT, more efficient estimates are 

obtained. 

Application 

To test the models and show the performance of the proposed estimator in 

comparison to other estimators, a survey was performed at the Hacettepe 

University Department of Statistics to estimate the grade point average (GPA) of 

students who graduated in 2016. One hundred and two students who graduated in 

2016 are considered as our population. In this application, the study variable Y is 

the GPA of students, the auxiliary variable X is study hours per week. Four 

models for P = 0.20 were applied to the population. Twenty students were 

requested to report their true GPA, and 82 students used the randomized devices. 

To apply the randomized devices, random numbers were generated for scrambling 

variables W and T. For scrambling variable W, 82 random numbers were 
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generated from the normal distribution with mean equal to zero and standard 

deviation equal to 0.60. For scrambling variable T, 82 random numbers were 

generated from the normal distribution with mean equal to zero and standard 

deviation equal to 0.20. 

The following are some characteristics of the population: 

 

 
2 22.51, 7.16, 0.1166, 38.53, 0.71y x yxY X S S        

 
 
Table 5. Theoretical Bias and MSE values of the estimators by using non-sensitive 

auxiliary variable according to Models 
 

  
n = 50

 

 
n = 100

 

 
n = 200

 

Model Estimators Bias MSE   Bias MSE   Bias MSE 

M1 ˆ
DP
μ  -- 0.0155 

 
-- 0.0091 

 
-- 0.0039 

 
ˆ

SR
μ  0.0563 0.1205 

 
0.0329 0.0705 

 
0.0143 0.0305 

 
ˆ

GRR
μ  0.0061 0.0155 

 
0.0035 0.0091 

 
0.0015 0.0039 

  
ˆ

NH exp
μ  0.0041 0.0151 

 
0.0024 0.0089 

 
0.0011 0.0038 

          
M2 ˆ

DP
μ  -- 2.3298 

 
-- 1.3638 

 
-- 0.5909 

 
ˆ

SR
μ  0.1290 2.3519 

 
0.0151 1.3767 

 
0.0054 0.5966 

 
ˆ

GRR
μ  0.5661 1.9313 

 
0.3571 1.2184 

 
0.0337 0.5622 

  
ˆ

NH exp
μ  0.5548 1.9212 

 
0.3504 1.2134 

 
0.0330 0.5609 

          

M3 ˆ
DP
μ  -- 0.0143 

 
-- 0.0084 

 
-- 0.0091 

 
ˆ

SR
μ  0.0604 0.1270 

 
0.0354 0.0743 

 
0.0153 0.0322 

 
ˆ

GRR
μ  0.0056 0.0143 

 
0.0033 0.0084 

 
0.0014 0.0036 

  
ˆ

NH exp
μ  0.0039 0.0139 

 
0.0023 0.0082 

 
0.0010 0.0035 

          
M4 ˆ

DP
μ  -- 2.0248 

 
-- 1.1852 

 
-- 0.5136 

 
ˆ

SR
μ  0.0474 2.0475 

 
0.0277 1.1985 

 
0.0121 0.5194 

 
ˆ

GRR
μ  0.4974 1.6970 

 
0.3135 1.0696 

 
0.1440 0.4914 

   
ˆ

NH exp
μ  0.9625 0.3203   0.2991 0.5629   0.0276 0.3902 

 

Note: Blank cells indicate unbiased estimators. 
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To compute the Bias and MSE values of the Diana and Perri (2011) estimator 

DP̂ , the Sousa et al. (2010) estimator 
SR̂ , the Gupta et al. (2012) estimator 

GRR̂ , and the proposed estimator  NH exp
̂  for the four models based on different 

sample sizes: n = 20, 30, and 50, arbitrarily take α = 1 and β = −1, that is 

 

 
 2 1

x

x








  

 

for simplicity. The results are summarized in Table 5. 

In the application study, the most efficient estimator was the proposed 

exponential-type estimator. It was always more efficient than the existing 

estimators in all RRT models for different sample sizes. From Table 5, it can be 

concluded that the additive models were more efficient than the multiplicative 

models and that the proposed estimator gave better results. 

Conclusion 

An exponential-type estimator was proposed, based on a non-sensitive auxiliary 

variable, for the population mean of a sensitive variable for Generalized 

Quantitative RRT models. The MSE equation is derived for all Quantitative RRT 

models. The proposed estimator was more efficient than other existing estimators 

in all circumstances, regardless of which model was applied. It was shown that 

the efficiency of the proposed estimator can be quite substantial if the correlation 

between the study and the auxiliary variables is high. Additionally, the additive 

models were more efficient than the multiplicative models. These results were 

supported by simulation and application studies. In a future work, an estimator 

will be developed for the population mean of the sensitive study variable by 

combining additive and multiplicative techniques based on Quantitative RTT 

using multi-sensitive auxiliary variables. 
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Appendix A: Special Models for Generalized RTT 

First Model (M1): S = Y + W, R = X, Mean given by 
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Variance and correlation equations to be used in (17) are given by 
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Second Model (M2): S = YW, R = X, Mean given by 
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Variance and correlation equations to be used in (17) are given by 
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Third Model (M3): S = Y + W, R = X + T, Mean given by 
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Variance and correlation equations to be used in (17) are given by 
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Fourth Model (M4): S = YW, R = XT, Mean given by 
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Variance and correlation equations to be used in (17) are given by 

 

 

     

     

       

           

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

1 1 1

1 1 1

1 1 1 1

1 1 1 1 1 1

z y y w w z

u x x t t u

yx t w y x w t

zu

y y w w z x x t t u

S C P P C

S C P P C

P P P P

C P P C C P P C

  

  

      


     

      
 

      
 

       
               

      

  

 



Journal of Modern Applied Statistical Methods 

May 2017, Vol. 16, No. 1, 388-405. 
doi: 10.22237/jmasm/1493598120 

Copyright © 2017 JMASM, Inc. 

ISSN 1538 − 9472 

 

 

 
Olusola Samuel Makinde is a Lecturer in the Department of Statistics. Email at 
osmakinde@futa.edu.ng. Adeyinka Damilare Adewumi is a graduate of the Department 
of Statistics. Email at adewumiadeyinkad@yahoo.com. 

 

 

388 

A Comparison of Depth Functions in 
Maximal Depth Classification Rules 

Olusola Samuel Makinde 
Federal University of Technology 

Akure, Nigeria 

Adeyinka Damilare Adewumi 
Federal University of Technology 

Akure, Nigeria 

 

 
Data depth has been described as alternative to some parametric approaches in analyzing 
many multivariate data. Many depth functions have emerged over two decades and 
studied in literature. In this study, a nonparametric approach to classification based on 
notions of different data depth functions is considered and some properties of these 

methods are studied. The performance of different depth functions in maximal depth 
classifiers is investigated using simulation and real data with application to agricultural 
industry. 
 
Keywords: classification rules, data depth, error rates, non-parametric approach, 
symmetry 

 

Introduction 

Classification is a practical subject in statistics. It aims at assigning an 

unclassified observation to one of several groups or populations on the basis of 

some measurement. Anderson (1984) described classification problem as a 

problem of statistical decision-making. However, classical multivariate analysis 

has relied heavily on the assumption of normality in data presentation and 

analysis. Among the classification methods that rely heavily on distribution 

assumption are Bayes rule (Welch, 1938), linear discriminant analysis and 

quadratic linear discriminant analysis (Anderson, 1984), and independence rule 

(Dudoit, Fridlyand & Speed, 2002). Research has shown that most of the data 

acquired nowadays do not satisfy normality assumption. Similarly, some 

parametric approaches are prone to the effect of outlying observations. This gives 

nonparametric approach to classification an edge over parametric methods. 

https://doi.org/10.22237/jmasm/1493598120
mailto:osmakinde@futa.edu.ng
mailto:adewumiadeyinkad@yahoo.com
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Other methods in literature include support vector machine (Vapnik, 1998; 

Cortes & Vapnik, 1995), nearest neighbour rule (Cover & Hart, 1967), 

classification rules based on distance functions (Chan & Hall, 2009; Hall, 

Titterington & Xue, 2009), classifiers based on distribution functions of rank 

outlyingness (Makinde & Chakraborty, 2015). 

Data depth is a way to measure the depth or outlyingness of a given point 

with respect to a multivariate data cloud or its underlying distribution (Liu, Singh 

& Parelius, 1999). It gives rise to a natural centr-outward ordering of the sample 

points in ℝd. This ordering gives rise to new and easy ways to quantify many 

complex multivariate features of the underlying distribution, including location, 

quantiles, scale, skewness and kurtosis. Liu (1990) introduced a notion of 

simplicial depth and corresponding estimators of location, and formulated a 

quality index with simplicial depth, Mahalanobis depth and majority depth. 

Koshevoy & Mosler (1997) introduced a notion of zonoid depth while Fraiman, 

Meloche & García-Escudero (1999) introduced a likelihood type depth function. 

Rousseeuw & Hubert (1999) introduced a notion of regression depth. Liu, Singh 

& Parelius (1999) considered some examples of depth functions and developed 

methodology for their practical applications. 

Classification rule based on data depth is considered in the current study. 

Data depth is formally defined based on Zuo & Serfling (2000a) and examples of 

depth functions are presented. In reality, an important question that arises in 

almost all fields where supervised learning is employed is that which of the depth 

functions should be employed. Classification rules based on the depth functions 

are defined and properties of the classification rules are presented. Evaluation of 

the classification rule, accounting for performance of various depth functions are 

presented based on numerical examples. 

Notions of Statistical Depth Functions 

Definition 1 (Zuo & Serfling, 2000a). Let the mapping D(.;.) ꞉ ℝd × 𝓕 → ℝ be 

bounded and non-negative, and satisfy: 

 

i. D(Ax + b, FAX+b) = D(x, FX) holds for any random vector X ∈ ℝd 

and any d × d nonsingular matrix A, and any d dimensional vector b. 

ii. D(θ,F) = supx∈ℝd D(x,F) holds for any F ∈ 𝓕 having centre θ. 

iii. For any F ∈ 𝓕 having deepest point θ, D(x,F) ≤ D(θ + α(x − θ),F) 

holds for α ∈ [0,1]; and 
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iv. D(x,F) → 0 as ||x||→∞, for each F ∈ 𝓕. 

 

Then D(.,F) is called a statistical depth function. 

From Definition 1, the first property describes invariance of depth function 

under general affine transformation of the data. That is, the depth of any 

observation in ℝd should not depend on the scale of the underlying measurement 

or underlying coordinate system. The second property implies that depth value 

attains its maximum value at the point of symmetry for symmetric distributions. 

The third property implies that the depth value decreases monotonically as vector 

x moves away from its most central point while the fourth property implies that 

the depth value of x vanishes (tend to zero) as Euclidean norm of x approaches 

infinity.  

The depth functions in literature include 

 

1. Mahalanobis Depth (MhD). Mahalanobis (1936); Liu & Singh 

(1993) defined the depth of an observation x with respect to the 

distribution F as 

 

 MhD(x,F) = [1 + O(x,μF,ΣF)]-1 

 

where O(x,μF,ΣF) = (x − μF)' ΣF
−1(x − μF), μF and ΣF are the mean 

vector and dispersion matrix of F respectively. The sample version 

of MhD is obtained by replacing μF and ΣF with their estimates. 

 

2. Zonoid Depth (ZD). Dyckerhoff et al. (1996) defined a zonoid depth 

as 

 

 ZD(x,F) = sup{α ꞉ x ∈ Dα(X1,…,Xn)} 

 

where Dα(X1,…,Xn) = 
1

n

i i i  X , 
1 1n

i i   , λi ≥ 0, and αλi ≤ 1
n

 for all 

i. 

 

3. Half-Space Depth (HD). Tukey (1975) defined half-space depth of a 

point x ∈ ℝd with respect to F as the minimum probability mass 

carried by any closed half-space containing x, Mathematically, 

 

 HD(x,P) = infH [P(H)] 
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where H is a closed halfspace in Rd and x ~ H. 

 

4. Oja Depth (OD). Oja (1983) defined the depth of x ∈ ℝd with 

respect to F as  

 

 OD(F;x) = [1 + O(x,F)]−1 

 

where O(x,F) = EF(Volume(S[x, X1,…,Xd])), S[x, X1,…,Xd] is a 

closed simplex with vertices x and d random observations X1,…,Xd 

from F. 

 

5. Simplicial Depth (SD). Liu (1990) defined simplicial depth of 

x ∈ ℝd with respect to F as  

 

 SD(F;x) = P(x ∈ S[x, X1,…,Xd+1]) 

 

where S[x, X1,…,Xd+1] is a closed simplex formed by (d + 1) 

random observation from F. The sample version of SD(F;x) is 

obtained by replacing F in SD(F;x) by Fn. 

 

6. Projection Depth (PD). Donoho & Gasko (1982) defined the depth 

of x with respect to F as the worst case outlyingness of x with 

respect to one dimensional median in any one-dimensional 

projection.  

 

 PD(F;x) = (1 + O(x,F))−1 

 

where    

 1
, sup ,u

u

Med F

MAD Fu
O F

 




u x
x  Fu is the distribution u'X, 

Med(Fu) is the median of Fu, MAD(Fu) is the median absolute 

deviation of Fu and X ∼ F. The sample version of PD(F;x) is 

obtained by replacing the median and MAD with their sample 

estimates. 

 

7. Likelihood Depth (LD). Fraiman, Meloche & García-Escudero 

(1999) defined the depth of x with respect to F simply as its 

probability density, that is, LD(F;x) = f(x), and the empirical version 
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can be any consistent density estimate at x, for example, the kernel 

density estimate. 

 

8. Spatial Depth (SPD). Serfling (2002) defined spatial depth of any 

observation x with respect to F as 

 

  , 1 FSBD F E
 

     

x X
x

x X
  

 

where X ∼ F. 

 

9. Simplicial volume depth (SVD). Zuo & Serfling (2000a, b) 

expressed SVD of an observation x with respect to F as  

 

  
 

1
2

1

1,...,
, , 1

d

F

F

SVD F E







   
   
    

x, X X
x


  

 

where X1,…,Xd are independent and identically distributed 

observations from F, ∇(x, X1,…,Xd) is the volume of the d-

dimensional simplex formed by x and ΣF is the scatter matrix of the 

distribution F. 

 

10. Majority Depth (MJD). Liu & Singh (1993) defined the depth of x 

with respect to F as the probability that x belongs to the major side 

(i.e. the half-space with the larger probability measure) of a random 

hyperplane passing through the data points in ℝd. 

 

Other depth functions include regression depth (Rousseeuw & Hubert, 

1999). Gao (2003) defined another depth function based on square of spatial 

outlyingness function. Few of these depth functions satisfy all the four properties 

in Definition 1 while others satisfy some of the properties. See Zuo & Serfling 

(2000a; 2000b) for detail. 
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Classification Rule 

The goal of any classification rule is to find a rule or tool that enables us to assign 

an observation x ∈ ℝd to one of the several competing groups (or classes). One 

can define a classification rule based on depth functions. It is easy to observe that 

data depth gives an idea on how outlying an observation x is with respect to the 

distribution F. If x is a central observation, its depth value will be large. On the 

other hand, if x is an extreme observation, its depth value will be small. Thus a 

small depth value may suggest a deviation of x from F. 

Ghosh & Chaudhuri (2005) proposed a classification rule based on simple 

idea of assigning a new observation to any of the J competing classes, for which it 

attains maximal depth value. It is expressed as: 

 

    
1

, arg max ,k j
j J

D F D F
 

x x   (1) 

 

where Fk is the distribution of kth class and 1 ≤ j ≤ J. 

Let us consider two classes for simplicity. Suppose πj has multivariate 

distribution with mean vector μj and covariance matrix Σj, j = 1,2. For 

Σ1 = Σ2 = Σ, the classification rule in (1) can be expressed as  

 

 Assign x to F if    , ,D F D Gx x , and to G if otherwise. (2) 

 

It is straightforward to show that a depth function can be expressed in terms 

of probability density function of the competing distribution. This result is 

presented by a Lemma below: 

 

Lemma 1.   Let Fj be spherically symmetric distributions with density 

functions of the form 

 

      
1
2

j j j jf h
 

  x x x     

 

for some strictly decreasing, continuous, non-negative scalar function h. Then for 

any of the depth functions OD and SPD,  

 

     ,j jf D Fx x   
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for some increasing function ω. 

 

Suppose a random vector X in ℝd is elliptically distributed such that its 

density is of the form f(x)=|Σ|−½ h ((x − θ)' Σ−1 (x − θ)), then D(F,x) can be 

expressed as a function of (x − θ)' Σ−1 (x − θ). This result is presented formally by 

a Lemma below: 

 

Lemma 2.  Let Fj be elliptically symmetric distributions with density 

functions of the form 

 

      
1
2 1

j j j j jf h


 
   

 
x x x      

 

for some strictly decreasing, continuous, non-negative scalar function h. Then for 

any of the depth functions detailed earlier, except OD and SPD, 

 

     , ,j jf D Fx x   

 

where Σj is not a constant multiple of identity matrix for some increasing function 

ω. 

 

The optimal rule, Bayes rule, assigns an observation to the class or 

distribution with highest posterior probability. That is, assign x to jth class class if 

pjfj(x) is the highest, where pj is the prior probability of the jth class.  Based on the 

results of Lemmas 1 and 2, it is straightforward to show that maximum depth 

classifiers are Bayes rules under necessary conditions. 

 

Theorem 1.  Suppose the conditions of Lemmas 1 and 2 hold on all the 

depth functions defined earlier. Then the classifier defined in (1) is Bayes rule if 

competing distributions have equal covariance matrices and prior probabilities. 

 

In practice, a depth function may not be completely known and so need to 

be estimated based on sample and then define the empirical version of the 

classification rule based on the empirical depth function. The empirical depth 

function based on sample is denoted by D(Fn,x). To show the consistency of 

empirical depth functions, it is desirable to establish the almost sure convergence 

of empirical depth functions to its population counterpart. 
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Theorem 2.  Suppose D(Fn,x) is an empirical depth function based on 

X1, X2, …, Xn. Let D(F,x) be a population depth function of any random vector x. 

Then for any x in the support of F,  

 

    sup , , 0, .nD F D F n  
x

x x   

 

The almost sure convergence of half-space depth has been established in 

Donoho & Gasko (1992), simplicial depth in Liu (1990). Liu & Singh (1993) has 

shown almost sure convergence of Mahalanobis depth and majority depth while 

Zuo & Serfling (2000b) proved convergence of projection depth. The almost sure 

convergence of spatial depth follows from Koltchinskii’s (1997) work on the 

convergence of the empirical spatial rank function to its population version. 

Convergence of the empirical classification rule to population version follows 

from Theorem 2.  

Evaluation of Classification methods 

One way of evaluating the performance of a classifier is to compute its associated 

misclassification probability. In a two class classification problem, one can define 

a misclassification probability as 

 

          1 2, , | , , |p P D F D G F p P D F D G G      x x x x x x   

 

The empirical version of the probability of misclassification or error rate, 

denoted by ̂ , can be defined as 

 

 

    

    

1

1

2

1

ˆˆ ˆ , , |

ˆˆ , , |

n

i i

i

m

i i

i

p
I D F D G F

n

p
I D F D G F

m





   

  





x x x

x x x

  

 

Under the conditions of Theorems 1 and 2, it is straightforward to show that 

̂  is a Bayes risk. 



DEPTH FUNCTIONS IN MAXIMAL DEPTH CLASSIFICATION RULES 

396 

Simulation Study 

As illustration of the performance of maximum depth classification methods, 

consider the following example. Let populations π1 and π2 be bivariate spherically 

symmetric with centres of symmetry μ1 and μ2, and covariance matrices, Σ1 and 

Σ2, respectively. Assume that the prior probabilities of π1 and π2 are equal. 

Suppose X1, X2, …, Xn is a random sample from π1 and Y1, Y2, …, Ym, a random 

sample from π2. New random vectors Z1, Z2, …, Zm from π1 and 

Zm+1, Zm+2, …, Z2m from π2 are generated and sample sizes n and  m are taken to 

be 100. μ1 and μ2 are chosen to be (0  0)T and (δ  0)T respectively for δ ∈ [−2,2] 

and Σ1 = Σ2 = I2. The simulation size is taken to be 1000. Different depth 

functions are considered for some competing distributions. The distributions are 

bivariate normal distributions and bivariate Laplace distributions. For 

computation of likelihood depth, Gaussian kernel is used with turning parameter 

(=0.3). R Package fda.usc is used for computing projection and likelihood depth. 

R Package depth is used for computing Oja depth, simplicial depth and half-space 

depth while R Package ddalpha is used for computing simplicial volume depth, 

Mahalanobis depth and Zonoid depth. 

Estimates of misclassification probabilities are less in bivariate normally 

distributed samples than bivariate Laplace samples, as shown in Figure 1. It is 

observed from Figures 2 and 3 that maximal depth classification rule based on 

half-space depth outperforms others when the distinction between competing 

distributions is not wide. That is, when μ1 − μ2 → 0. The distinction between 

competing distributions becomes clear as μ1 − μ2 moves away from 0 and the 

performance of various depth functions becomes equivalent. It is noted that exact 

computation of half-space depth and simplicial depth functions is feasible only in 

ℝ3 and ℝ2 respectively. Cuesta-Albertos & Nieto-Reyes (2010) suggested a 

modified version of half-space depth for functional data, as extension of 

multivariate set-up. The performance of empirical likelihood depth based on 

kernel estimator of probability density function depends on the choice of kernel 

function and turning parameter. It is observed that spatial depth and Oja depth are 

not invariant under general affine transformation. Makinde (2017) considered 

various affine invariant versions of spatial rank, a related notion to spatial depth. 

Robustness of spatial rank (a straightforward extension of spatial depth) against 

deviation from notion of elliptical symmetry is demonstrated in Makinde and 

Chakraborty (2015). 

Maximum depth classification rule is compared with some classification 

methods, which include linear discriminant analysis (LDA), k-nearest neighbor 
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rule (kNN) and support vector machine (SVM); using the above setting for δ = 1,2. 

Table 1 below presents performance of classifiers. It is observed from the table 

that maximum depth classifiers based on half-space depth has the best 

per formance among the depth based procedures, linear di scriminant  

analysis, k-nearest neighbor rule and support vector machine. It has the least mean 

error rates when the competing distributions are normal and Laplace. Next to half-

space depth among the depth functions for maximum depth classification rule is 

zonoid depth.  

However, zonoid depth is not robust against outlying observations in the 

data cloud. LDA performs well compared with kNN and SVM.  It is noted that 

linear discriminant analysis is Bayes (optimal) rule when competing distributions 

are multivariate normal. Hence maximum depth classifiers based on half-space 

depth is a better alternative to the known parametric classification methods, e.g. 

LDA. 
 
 

 
 
Figure 1. Comparison of error rates associated with half space depth for normally 

distributed samples and Laplace distributed samples. 
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Figure 2. Comparison of depth functions in classification based on error rates for 

normally distributed samples 

 

 
 

 
 
Figure 3. Comparison of depth functions in classification based on error rates Laplace 

distributed samples. 
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Table 1. Comparison of mean error rates of classifiers when competing distributions 

differ in location. 
 

  
Maximal Depth Classifiers 

   
Distribution δ HD SD OD SPD SVD PD ZD MhD LD LDA kNN SVM 

Biv normal 
1 0.295 0.309 0.318 0.313 0.313 0.319 0.307 0.316 0.334 0.315 0.356 0.316 

2 0.153 0.160 0.165 0.162 0.161 0.167 0.159 0.161 0.167 0.161 0.181 0.167 

Biv Laplace 
1 0.334 0.361 0.383 0.369 0.375 0.373 0.357 0.369 0.413 0.377 0.410 0.381 

2 0.227 0.243 0.250 0.248 0.248 0.253 0.239 0.246 0.287 0.246 0.273 0.257 

 
 
Table 2. Comparison of mean error rates of classifiers when competing distributions 

differ in location and scale. 
 

 
Maximal Depth Classifiers 

   

 
HD SD OD SPD SVD PD ZD MhD LD QDA kNN SVM 

Biv normal 0.382 0.386 0.500 0.387 0.389 0.386 0.389 0.389 0.166 0.142 0.209 0.148 

Biv Laplace 0.410 0.417 0.500 0.418 0.421 0.419 0.421 0.418 0.255 0.214 0.282 0.214 

 
 
Table 3. Comparison of computation time of classifiers for bivariate Laplace distributions. 

 

 
Maximal Depth Classifiers 

   

 
HD SD OD SPD SVD PD ZD MhD LD QDA kNN SVM 

Time (seconds) 0.12 0.12 0.14 0.52 15.84 5.97 0.34 0.32 1.39 0.08 0.05 0.31 

 
 

Only populations which are separated by location are considered so far. 

Table 2 presents a comparison of proportions of misclassification of depth based 

procedures, quadratic discriminant analysis (kNN) and SVM when competing 

populations have different location vectors and covariance matrices. 

Suppose the mean vectors and covariance matrices of π1 and π2 are 

(μ1 = (0  0)T, Σ1 = I2) and (μ2 = (2  0)T, Σ2 = 9I2), respectively. It is well known 

that QDA is an optimal rule when competing populations are normally distributed 

and differ in location and scale. Hence it has a least mean error rate (= 0.142) for 

normal distributions. Maximum depth classifier based on likelihood depth has the 

least mean error rate (= 0.166) among the depth classifiers, which is competitive 

with QDA and SVM (with mean error rate = 0.148). Maximum depth classifier 

based on Oja depth has the worst performance in this case. For bivariate Laplace 

distributions, Maximum depth classifier based on likelihood depth has the least 

mean error rate (= 0.255) among the depth classifiers, which is competitive with 

QDA (with mean error rate = 0.214), SVM (with mean error rate = 0.214) and 

kNN (with mean error rate = 0.282). Mean error rates of other depth classifiers are 

a bit high. 
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Presented in Table 3 is a comparison of computation time in seconds of each 

classifier when competing distributions are bivariate Laplace for one repetition. It 

is shown in Table 3 that QDA and kNN have the least computation time. 

However, computation time of maximum depth classifiers based on half-space 

depth, simplicial depth, Oja depth, zonoid depth and spatial depth are competitive 

with those of parametric classifiers. 

Analysis of Real Data 

A real dataset is also analysed to illustrate the performances of depth functions in 

maximal depth classification methods. Maximal depth classifiers are applied on 

mineral ions variability data. The data was extracted from a project experiment on 

crop science and production at the Institute for Agricultural Research and 

Training (IAR&T) project titled “inter- and intra-maturity group differences in 

physiological quality of maize seeds" (Olasoji, 2014). The data contains 

measurements of mean amount of mineral ions (Na, Ca, K and P) leaked after 24 

hours from soaked maize seeds at different maturity groups (early, intermediate 

and lately). Each observation consists of four attributes, which are mean mineral 

ions (Na, Ca, K and P). Each group consists of 36 observations. A random sample 

of size 30 and a test sample of size 6 are chosen. The experiment is repeated 100 

times; quantile, mean and standard deviation of the proportions of 

misclassification associated with each of the classifiers are computed. 
 
 

 
 
Figure 4. Box plot of proportions of misclassification associated with some classifiers for 

real data example 
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Table 4. Quantiles, means and standard deviations of proportions of misclassification of 

some classifiers for real data example. 
 

 
Maximal Depth Classifiers 

 

 
HD OD SPD SVD PD ZD MhD LD LDA 

Minimum 0.0000 0.0000 0.0000 0.0000 0.2222 0.0000 0.0000 0.0000 0.0000 

25% Quantile 0.0000 0.3541 0.0833 0.0556 0.3333 0.0278 0.0764 0.1111 0.1111 

Mean 0.0069 0.3861 0.2697 0.2364 0.3717 0.0725 0.2683 0.2767 0.2619 

Median 0.0000 0.4167 0.3611 0.3333 0.3611 0.0556 0.3472 0.3611 0.3333 

75% Quantile 0.0000 0.4722 0.3889 0.3611 0.4167 0.1111 0.3889 0.3889 0.3611 

Maximum 0.0556 0.6111 0.4444 0.4444 0.5000 0.2500 0.4167 0.4167 0.4167 

Standard deviation 0.0150 0.1478 0.1575 0.1618 0.0623 0.0600 0.1533 0.1462 0.1472 

 
 

Presented in Figure 4 is a comparison of maximum depth classifiers with 

linear discriminant analysis based on the proportions of misclassification using 

box plot. The figure shows that the maximum depth classifiers based on half-

space depth and zonoid depth has the least proportions of misclassification while 

the maximum depth classifiers based on Oja depth and projection depth has 

highest proportions of misclassification.  

Presented in Table 4 is the quantile, mean and standard deviation of the 

proportions of misclassification associated with each of the competing classifiers. 

Maximum depth classifier based on half-space depth has the least mean 

proportion of misclassification as shown in the table. Use of spatial depth, 

simplicial volume depth, Mahalanobis depth and likelihood depth in maximum 

depth classifiers perform equivalently to LDA, while maximum depth classifiers 

based on half-space depth and zonoid depth outperform LDA. Simplicial depth 

values could not be computed as d = 4 > 2. For computation of half-space depth, 

an approximate algorithm implemented in R Package depth is used.  

Conclusion 

The maximum depth classifiers based on the training samples when any of the 

half-space depth, projection depth, simplicial depth, spatial depth, Oja depth, and 

majority depth is used, do not depend on any distributional assumptions or do not 

require any estimation of model parameters. That gives maximum depth 

classifiers an importance over parametric methods. Maximum depth classifiers are 

easily lent to multiclass cases. We have noted in our real data examples that the 

maximum depth classifiers are quite competitive with similar classifiers, 

especially when any of half-space or zonoid depth is used. 
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A comparison of double informative priors assumed for the parameter of exponential life 
time model is considered. Three different sets of double priors are included, and the 
results are compared with a forth single prior. The data is Type II censored and Bayes 
estimators for the parameter and reliability are carried out under a squared error loss 
function in the cases of the four different sets of prior distributions. The predictive 
distribution was derived for future failure time and also for the remaining ordered failure 
times after the first r failure times have been observed. Corresponding Bayes credible 

equal tail intervals are also derived. Simulations and real data are employed to exemplify 
the method. 
 
Keywords: Gamma prior, chi-square prior, predictive intervals, squared error loss 
function 

 

Introduction 

In life testing experiments, the experimenter may not be always in a position to 

observe the life times of all items tested because of time limitations or restrictions 

on the number of failures during the test due to very high-cost items. When the 

cost of the experiment is directly proportional to the number of failures, the 

failure-censored experiment is more preferable than the time-censored experiment. 

The failure-censored experiment is also known as Type II censoring. In this 

censoring scheme, the test is terminated as soon as the pre-determined number of 

failures (r) is observed out of n units tested. 

The exponential distribution has an important position in life time models. It 

is the first lifetime model for which statistical methods were extensively 

developed. Many authors contributed to the methodology of this distribution. 

https://doi.org/10.22237/jmasm/1493598180
mailto:ronak2307@yahoo.in
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Important works include Epstein (1954), Epstein (1960a, 1960b), Epstein and 

Sobel (1953), Epstein and Sobel (1954), Bartholomew (1957), Mann, Schafer, 

and Singpurvala (1974), Lawless (1971), Balakrishnan and Cohen (1991), and 

others. A number of authors considered prediction problems for the exponential 

distribution. For example, Hahn (1975), Lawless (1971), and Likeš (1974). In life 

testing experiments, prediction using the Bayesian method is considered by Box 

and Tiao (1973), Dunsmore (1974), Evans and Nigm (1980), and Howlader and 

Hossain (1995). Saleem and Aslam (2008), Tahir and Zawar (2008), and Haq and 

Dey (2011) considered comparison and selection of a suitable prior using 

Bayesian methodology. 

They considered a set of single prior distributions for comparison. However, 

there may have been different prior information about the unknown parameter of 

the lifetime model; to include two different kind of information in the Bayesian 

analysis, two different priors have been selected for a single unknown parameter 

of the life time model. Haq and Aslam (2009) considered double prior selection 

for the parameter of a Poisson distribution based on posterior variance, posterior 

predictive variance, and the posterior predictive probabilities. Radha and 

Vekatesan (2013) considered the problem of selection of double priors for the 

parameter of a Maxwell distribution. They did not derive any Bayes estimator, but 

just showed that the double priors and their posterior distribution belong to the 

same family. 

The purpose of the current study, therefore, is to contribute something in 

this direction of double prior distribution for the parameter of the exponential life 

time model. The following three different types of joint priors and one type of 

single prior are used for the unknown parameter θ of the exponential distribution: 

 

(i) Exponential-Gamma distribution 

(ii) Gamma-Chi-square distribution 

(iii)Chi-square-Exponential distribution 

(iv) Gamma distribution 

 

Bayes estimators of parameter θ and reliability at time t are obtained based on a 

Type II censored sample (with fixed r observed failures) under squared error loss 

function based on the above prior distributions. Also, Bayes predictive estimation 

and Bayes predictive equal credible intervals are carried out. Prediction of the 

remaining (n – r) failure times is done and their Bayes credible prediction 

intervals are also derived. A real-life example is considered to exemplify the 
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theoretical results obtained in the paper, as is a simulation study, and comparison 

is made between the results obtained based on the different priors considered. 

The Posterior Distribution of θ Under Different Prior 
Distributions 

Let n items be put on a life test such that the test is terminated as soon as the rth 

failure is observed, and the corresponding failure times are X(1), X(2),…, X(n). 

During the test, failure items are not replaced, but the test is carried out with the 

remaining items on the test. Such a censoring scheme is known as Type II 

censoring without replacement. We assume the life time model is exponential 

with mean life 1/θ, θ > 0. The probability density function (pdf) and the 

cumulative distribution function (cdf) of this life time model are, respectively, 

given by 

 

  f , e , 0, 0xx x       (1) 

 

  F , 1 e xx      (2) 

 

Its reliability function at time t is given by 

 

  R e , 0t

t t     (3) 

 

The likelihood function under such a censoring scheme is given by 
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Using (1) and (2), 
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Exponential and Gamma Distributions as Double Priors 

Consider the first prior distribution of θ to be exponential with hyper parameter c1, 

having pdf 
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The second prior distribution is a gamma distribution with hyper parameters a1 

and b1, having pdf 
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The double prior for θ can be defined by combining these two priors as follows: 
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Hence, the posterior distribution of θ for the given data x is obtained, using (4) 

and (7), as 
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where 
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which is the gamma distribution with parameters α1 = r + a1 and β1 = y + c1 + b1. 

That is, π1(θ | x) has gamma G(α1, β1) distribution. 

Gamma and Chi-Square Distributions as Double Priors 

Assume the first prior distribution for θ is a gamma distribution: 
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The second prior for θ is a chi-square distribution having pdf 

 

  

2

2

1
22

22 2

22

e
p , 0, 0

2
2

c

c
c

c




 

   
 

  
 

 
 

  (10) 

 

By combining (9) and (10), obtain the double prior distribution for θ as 
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Hence, the posterior distribution of θ based on this double prior distribution of θ 

for given data x can be obtained, using (4) and (11), as 
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which is the gamma distribution G(α2, β2), where 
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Chi-Square and Exponential Distributions as Double Priors 

In a similar manner, assume both the prior distributions have pdfs given by 
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Hence, the double prior distribution θ becomes 
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and the posterior distribution of θ given the data x, based on this double prior 

distribution, comes out to be 
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which is the gamma distribution G(α3, β3), where 
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Only Single Gamma G(a4, b4) Prior Distribution for θ 

Here we consider only a single gamma prior distribution for θ, given by 
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The corresponding posterior distribution for θ becomes 
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which is also a gamma distribution G(α4, β4) with parameters α4 = r + a4 and 

β4 = y + b4. Thus, in all the cases of the different types of double prior 

distributions and in the case of a single prior distribution, the posterior 

distribution of θ given the data x becomes a gamma distribution. Thus the ith case 

of the posterior distribution for θ given the data X can be denoted by G(αi, βi), 

i = 1, 2, 3, 4, with pdf 
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for i = 1, 2, 3, 4. 

Bayes Estimator of θ and Reliability Rt(θ) at Time t 

Consider the squared error loss function defined as 

 

    
2

ˆ ˆL ,       

 

The Bayes estimator of θ under the squared error loss function is nothing but the 

posterior mean, i.e. 

 

  π
ˆ E |

i
x    (18) 

 

where πi is the posterior distribution of θ given the data X in case i. 
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Under the Exponential-Gamma prior distribution, using (8) and (18), the Bayes 

estimators of θ and Rt(θ) can be obtained as 
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Similarly, the Bayes estimators of θ and Rt(θ) at time t in the case of the ith joint 

prior distribution are obtained as 
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with 
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for i = 2, 3, 4. 

(1 – α)100% Equal Tail Credible Interval for θ 

Let [I1i, I2i] be the (1 – α)100% equal tail credible interval for θ. Then I1i and I2i 

can be obtained by solving the following equations: 

 

    
1

20
π | and π |

2 2

i

i

I

i i
I

x d x d
 

   


     (27) 

 

From (17) and (27), 
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Thus, equation (27) reduces to 
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Solving these equations yields I1i and I2i, i = 1, 2, 3, 4. 

Posterior Distribution of Rt(θ) 

As Rt(θ) = e-tθ, from the posterior distribution of θ given the data x as defined in 

(17), the posterior distribution of Rt(θ) = R can be derived as 
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The (1 – α)100% equal tail credible interval for R(t) can be derived by solving the 

equations: 
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From (30) and (31), 
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Again using (28), deduce that 
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Finally, solving these equations, obtain R1i and R2i for i = 1, 2, 3, 4. 
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Bayes Predictive Estimator and Equal Tail Credible Interval for a 

Future Observation 

A predictive estimator is derived for a future observation and its equal tail 

credible interval. Let Zi be a future observation which has already survived X(r), 

and let W(i) = Zi – X(r). Given the data x, the conditional joint pdf of Wi and θ is 

 

      h , | f , | π |i i i iw x w x x     

 

From (10) and (17), 
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Integrating out with respect to θ, the predictive density of wi under the ith case of 

the joint prior distribution comes out as 
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  (34) 

 

The Bayes estimator of wi under a squared error loss function is given by 
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Hence 
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i ir
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Now the (1 – α)100% predictive interval (h1i, h2i) for wi can be obtained by 

solving the equations 
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Using (34) in (37), after some algebraic manipulation, 
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Prediction of the Remaining (n – r) Failure Times Truncated at x(r) and 

their Equal Tail Intervals 

Consider the prediction of the remaining (n – r) failure times given the first r 

failure times of a sample of n units. Let x(s)i, (r + 1 ≤ s ≤ n) denote the failure 

times of the sth unit to fail under the ith case of double prior distribution. The 

conditional pdf of u = x(s) – x(r) from a pdf truncated at x(r) is given by 
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Here f(u) and F(u) are the pdf and cdf of a random variable X, respectively, as 

given in (1) and (2). Hence 
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Given x, the conditional joint pdf of u and θ under the ith case of the double prior 

distribution is given by 
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Integrating out θ, the predictive density of ui for the ith case of the double prior is 

given by 
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with ui > 0. Under the squared error loss function, the Bayes predictive estimator 

of ui is 
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On simplification, 
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For s = r + 1, obtain the estimator for the x(r + 1)
th failure time as    

*

1 ir r
x u x


  , 

where 
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  (43) 

 

Similarly, for s = r + 2, r + 3,…, n, 
*

iu  can be obtained. Now a (1 – α)100% equal 

tail confidence interval (H1i, H2i) for ui is the solution of the equations: 
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Using (41) and (44), we have 

 

 

 

   

    

 

   

    

1

0, 1 1

1

0, 1 2

1 1 !1
1

! 1 ! 21

and

1 1 !1
1 1

! 1 ! 21

i

i

i

i

j
s r

i

js r n s i i

j
s r

i

js r n s i i

s r

j s r j H j n s

s r

j s r j H j n s









 

 

 

 

 

  

 

  

   
  

        

   
   

        





  (45) 

 

Solving the equations in (45), obtain the (1 – α)100% equal tail confidence 

interval (H1i, H2i) for the remaining (n – r) failure times given the first r failure 

times of a sample of size n for the ith case of the double prior distribution, i = 1, 2, 

3, 4. 

A Real Data Example 

The data were obtained from Bain and Engelhardt (1991), representing the times 

between successive failures. The times are exponentially distributed 

(Kolmogorov-Smirnov p-value: 0.900) with mean failure time 3.744. 

Times between system failures data: 

 

5.2, 8.4, 0.9, 0.1, 5.9, 17.9, 3.6, 2.5, 1.2, 1.8, 1.8, 6.1, 5.3, 1.2, 1.2, 3.0, 3.5, 

7.6, 3.4, 0.5, 2.4, 5.3, 1.9, 2.8, 0.1 

 

For this example, Bayes estimates of parameter θ, reliability R(t), Bayes 

predictive estimator of a future observation Z*, and predictive estimator of the 

remaining order statistic x(r + 1) based on the known first r order statistics and their 

equal tail credible intervals ( in the bracket) are derived under different types of 

joint prior distributions and presented in Table 1 for hyper parametric values 

ai = bi = ci = 4, i = 1, 2, 3, 4. 
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Table 1. Bayes estimates and credible intervals 

 

Prior Distribution θ̂   R̂ t  Z* x(r + 1) 

Exponential-Gamma 0.291971 0.242397 8.873913 6.014783 

 
(0.187679, 
0.419851) 

(0.122587, 
0.92453) 

(5.386759, 
18.95711) 

(5.303434, 
9.361143) 

Gamma-Chi-square 0.317662 0.214404 8.579167 5.955853 

 
(0.205576, 
0.453757) 

(0.103450, 
0.357776) 

(5.379741, 
17.81308) 

(5.303156, 
9.015658) 

Chi-square-Exponential 0.279543 0.257919 9.047619 6.049524 

 
(0.175190, 
0.407894) 

(0.130106, 
0.416476)  

(5.390621, 
19.66698) 

(5.303587, 
9.586129) 

Only Gamma 0.306905 0.225945 8.700000 5.980000 

 
(0.196647, 
0.441330) 

(0.110079, 
0.374119) 

(5.382537, 
18.29253) 

(5.303267, 
9.16352) 

Simulation Study 

A Monte Carlo simulation study was carried out to compare the performance of 

the Bayes estimators under different joint priors and single prior. To generate 

1000 Type II censored samples, the value of the parameter θ is considered as 0.7 

and the values of the hyper parameters for all joint and single priors are 

considered to be ai = bi = ci = 4. The reliability is calculated at time t = 1. 

Values of the hyper parameters can be obtained from our prior belief. If 

there is any information from past data about the mean, variance, or about 

reliability measure, by comparing such prior beliefs with the theoretical results 

and by solving the equations the estimates of the hyper parameters can be 

obtained. A value 4 was used for the hyper parameters, i.e. ai = bi = ci = 4, for 

simulation purpose. 

The simulation was conducted for different values of sample size (n) and of 

fixed censored value (r): (n, r) = (15, 5), (15, 10), (15, 12), (30, 10), (30, 20), and 

(30, 24). In each case, Bayes estimates of θ, R(t), future observation z*, and the 

(r + 1)th ordered failure time X(r + 1) are derived. Their mean square errors (MSE) 

and Bayes equal tail credible intervals are also obtained. The first, second, and 

third values for each cell of the third and fourth columns of Tables 2 to 5 denote 

the Bayes estimate, MSE, and credible intervals, respectively. 
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Table 2. Bayes estimates and credible intervals for θ and R(t) for n = 15 

 

Joint priors r θ R(t) 

Exponential-Gamma 5 0.620546 0.552537 

  
0.020495 0.006874 

  
(0.283758, 1.08687) (0.344604, 0.754072) 

 
10 0.658255 0.529796 

  
0.018407 0.005175 

  
(0.359880, 1.045241) (0.358859, 0.699491) 

 
12 0.666924 0.524325 

  
0.017280 0.004657 

  
0.381210, 1.031245) (0.363315, 0.684830) 

    

Gamma-Chi-square 5 0.923133 0.423851 

  
0.105171 0.012966 

  
(0.442683, 1.577159) (0.223643, 0.646348) 

 
10 0.852047 0.444890 

  
0.064292 0.009208 

  
0.476877, 1.334254) (0.276191, 0.624641) 

 
12 0.835802 0.449584 

  
0.054266 0.008109 

  
(0.486891, 1.277455) (0.289965, 0.618192) 

    

Chi-square-Exponential 5 0.646193 0.545833 

  
0.030033 0.008780 

  
(0.259808, 1.205569) (0.313306, 0.772884) 

 
10 0.681619 0.521700 

  
0.026693 0.006481 

  
(0.352208, 1.117977) (0.338067, 0.705574) 

 
12 0.688308 0.516572 

  
0.024432 0.005762 

  
(0.376310, 1.092958) (0.345085, 0.688844) 

    

Only Gamma 5 0.873913 0.444968 

  
0.085159 0.010865 

  
(0.399614, 1.530634) (0.234776, 0.674373) 

 
10 0.819872 0.459206 

  
0.055039 0.008196 

  
(0.448236, 1.301867) (0.285404, 0.642552) 

 
12 0.807536 0.462281 

  
0.046925 0.007281 

    (0.461582, 1.248669) (0.298505, 0.633848) 
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Table 3. Bayes estimates and credible intervals for θ and R(t) for n = 30 

 

Joint priors r θ R(t) 

Exponential-Gamma 10 0.658399 0.529698 

  
0.018254 0.005154 

  
(0.359958, 1.045468) (0.358739, 0.699423) 

 
20 0.681753 0.513881 

  
0.013730 0.003502 

  
(0.436817, 0.980345) (0.380295, 0.647858) 

 
24 0.686436 0.510669 

  
0.012823 0.003193 

  
(0.456137, 0.963065) (0.386387, 0.635486 ) 

    

Gamma-Chi-square 10 0.852159 0.444759 

  
0.063765 0.009202 

  
(0.476952, 1.334466) (0.275997, 0.624550) 

 
20 0.791372 0.463756 

  
0.030889 0.005325 

  
(0.512140, 1.130405) (0.330128, 0.602004) 

 
24 0.779839 0.467613 

  
0.026108 0.004659 

  
(0.522275, 1.088224) (0.343117, 0.595763) 

    

Chi-square-Exponential 10 0.681728 0.521585 

  
0.026326 0.006450 

  
(0.352264, 1.118155) (0.337909, 0.705506) 

 
20 0.696408 0.508011 

  
0.017468 0.004104 

  
(0.436440, 1.016152) (0.368543, 0.648527) 

 
24 0.699166 0.505450 

  
0.015863 0.003687 

  
(0.456723, 0.992416) (0.376460, 0.635478) 

    

Only Gamma 10 0.819986 0.459075 

  
0.054456 0.008184 

  
(0.448299, 1.302049) (0.285213, 0.642467) 

 
20 0.772391 0.472523 

  
0.027461 0.004911 

  
(0.494890, 1.110679) (0.336687, 0.612383) 

 
24 0.763553 0.475196 

  
0.023514 0.004341 

    (0.507380, 1.071258) (0.348968, 0.604628) 
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Table 4. Bayes estimates and credible intervals for Z* and x(r + 1) for n = 15 

 

Joint priors r Z* x(r + 1) 

Exponential-Gamma 5 2.435166 0.738994 

  
0.394374 0.078934 

  
(0.593002, 8.189055) (0.550949, 1.976656) 

 
10 3.161177 1.800628 

  
0.670290 0.303256 

  
(1.50051, 8.125572) (1.462075, 3.494605) 

 
12 3.738878 2.633385 

  
0.880619 0.541882 

  
(2.120031, 8.530325) (2.084978, 4.972641) 

    

Gamma-Chi-square 5 1.836860 0.679165  0.076552 

  
0.342344 0.076552 

  
(0.579878, 5.715377) (0.550820, 1.500505) 

 
10 2.789699 1.726333 

  
0.631423 0.298065 

  
(1.491927, 6.648723) (1.461736, 3.037210) 

 
12 3.416487 2.525922 

  
0.845020 0.532755 

  
(2.112493, 7.260214) (2.084148, 4.398042) 

    

Chi-square-Exponential 5 2.480049 0.743482 

  
0.572588 0.086304 

  
(0.592479, 83.582894) (0.5506944, 2.117547) 

 
10 3.152210 1.798834 

  
0.774620 0.316687 

  
(1.499793, 8.157714) (1.462047, 3.526374) 

 
12 3.724764 2.628682 

  
0.971637 0.564728 

  
(2.119327, 8.524054) (2.084899, 4.985378) 

    

Only Gamma 5 1.935169 0.688994 

  
0.394375 0.078935 

  
(0.581735, 6.162530) (0.55084, 1.598301) 

 
10 2.853482 1.739090 

  
0.670290 0.303256 

  
(1.493269, 6.919713) (1.461789, 3.1265887) 

 
12 3.472212 2.544495 

  
0.880620 0.548882 

  
 

(2.113695, 7.493128) (2.084279, 4.507569) 
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Table 5. Bayes estimates and credible intervals for Z* and x(r + 1) for n = 30 

 

Joint priors r Z* x(r + 1) 

Exponential-Gamma 10 2.259726 0.644702 

  
0.268444 0.037871 

  
(0.599704, 7.222201) (0.559800, 1.235965) 

 
20 3.081523 1.663868 

  
0.377836 0.142476 

  
(1.544589, 7.525605) (1.506728, 2.533688) 

 
24 3.735099 2.442472 

  
0.521211 0.273523 

  
(2.221829, 8.081593) (2.184982, 3.693112) 

    

Gamma-Chi-square 10 1.888297 0.626132 

  
0.243800 0.037402 

  
(0.591122, 5.745548) (0.559779, 1.081897) 

 
20 2.870057 1.642720 

  
0.364330 0.141661 

  
(1.53951, 6.710169) (1.506678, 2.392701) 

 
24 3.554705 2.412403 

  
0.508779 0.272072 

  
(2.217467, 7.390260) (2.184864, 3.514660) 

    

Chi-square-Exponential 10 2.250640 0.644248 

  
0.336536 0.039082 

  
(0.598986, 7.253850) (0.559799, 1.253045) 

 
20 3.064872 1.662202 

  
0.409659 0.144348 

  
(1.544036, 7.481150) (1.506722, 2.530874) 

 
24 3.719194 2.439816 

  
0.549649 0.276788 

  
(2.221333, 8.034713) (2.184969, 3.685021) 

    

Only Gamma 10 1.952034 0.629318 

  
0.268442 0.037872 

  
(0.592464, 6.016336) (0.559782, 1.113566) 

 
20 2.907609 1.646474 

  
0.377836 0.142476 

  
(1.540366, 6.861025) (1.506685, 2.420264) 

 
24 3.586950 2.417776 

  
0.521211 0.273523 

  
 

(2.218210, 7.518306) (2.184883, 3.548975) 
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Conclusion 

Comparison of Priors Based on the MSE and Credible Interval of θ 

From the third columns of Tables 2 and 3 it is observed that the values of the 

MSE of the Bayes estimator of parameter θ and length of its credible intervals are 

smaller in the case of the Exponential-Gamma joint prior and then followed by 

Chi-square-Exponential, Gamma, and Gamma-Chi-square priors in all the values 

of n and r considered here. 

Comparison of Priors Based on the MSE and Credible Interval of R(t) 

From the fourth column of Tables 2 and 3 it is observed that, for all values of n 

and r considered here, the values of the MSE of the Bayes estimator of R(t) are 

smaller in the case of the joint prior Exponential-Gamma, and then followed by 

Chi-square-Exponential, Gamma, and Gamma-Chi-square priors. The 

Exponential-Gamma joint prior generates the minimum length of the credible 

intervals of R(t), followed by Gamma-Chi-square, Gamma, and Chi-square-

Exponential priors in all the values of n and r considered here. 

Comparison of Priors Based on MSE and Credible Interval of Future 

Predicted Value 

From the third columns of Tables 4 and 5, note that MSEs and lengths of the 

credible intervals are minimum in the case of the Gamma-Chi-square prior, and 

then followed by Gamma, Exponential-Gamma, and Chi-square-Exponential 

priors in all the values of n and r considered here. 

Comparison Based on the MSE and Credible Interval of Next Ordered 

Failure Time X(r + 1) 

From the fourth columns of the Tables 4 and 5, we observed that the minimum 

MSE as well as the minimum length of credible interval are generated by the 

Gamma-Chi-square joint prior, whereas other priors give erratic effect. 

Thus, it was found that the Exponential-Gamma joint prior performs well 

compared to the other single and joint priors considered in this study. 
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Ridge estimator in linear regression model requires a ridge parameter, K, of which many 
have been proposed. In this study, estimators based on Dorugade (2014) and Adnan et al. 

(2014) were classified into different forms and various types using the idea of Lukman 
and Ayinde (2015). Some new ridge estimators were proposed. Results shows that the 
proposed estimators based on Adnan et al. (2014) perform generally better than the 
existing ones. 
 
Keywords: linear regression model, multicollinearity, ridge estimator, mean square 
error 

 

Introduction 

The parameter estimates obtained through the use of the Ordinary Least Squares 

(OLS) estimator have optimal performance when there is no violation of any of 

the assumptions of the classical linear regression model. One of the most basic of 

these assumptions is that explanatory variables are independent. Multicollinearity 

refers to the presence of strong or perfect linear relationships among the 

explanatory variables. Multicollinearity is an inherent phenomenon in most 

economic relationships due to the nature of economic magnitude (Koutsoyiannis, 

2003). When there is a perfect relationship among the explanatory variables, the 

regression coefficients of the OLS estimator are indeterminate, and the standard 

error of the estimates becomes very large. Also, when there are strong 

relationships among the explanatory variables, the regression estimates are 

determinate but possesses large standard error (Koutsoyiannis, 2003). 

https://doi.org/10.22237/jmasm/1493598240
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Generally, the performance of OLS estimator is unsatisfactory when there is 

multicollinearity (Koutsoyiannis, 2003). Several techniques have been suggested 

in the literature to handle this problem. Massy (1965) introduced the principal 

component regression to eliminate the model instability and reduce the variances 

of the regression coefficients. Wold (1966) developed the partial least square to 

deal with the problem of multicollinearity. Hoerl and Kennard (1970) proposed 

the ridge estimator for dealing with multicollinearity in a regression model, which 

modifies the OLS to allow biased estimation of the regression coefficients. This 

study is limited to the application of the ridge regression estimator in handling the 

problem of multicollinearity. Ridge estimator is defined as: 

 

  
1ˆ KIR X X X Y


     (1) 

 

where K is a non-negative constant known as ridge parameter and I denotes 

an identity matrix. When K equals zero, (1) returns to OLS estimator; this is 

defined as follows: 

 

  
1ˆ

OLS X X X Y


    (2) 

 

The corresponding mean square error (MSE) of (1) and (2) are defined 

respectively as: 

 

  
   

2
2 2

2 21 1

ˆ
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ˆ ˆ

p pi i
R i i

i i

MSE K
K K

 
 

 
 

 
 

    (3) 

 

   2

1

1ˆ ˆ
p

OLS i
i

MSE  


    (4) 

 

where λ1, λ2, …, λp are the eigenvalues of X'X, K̂  is the estimator of the 

ridge parameter K and ˆ
i  is the ith element of the vector ̂ . 

Although this estimator is biased, it gives a smaller mean squared error 

when compared to the OLS estimator for a positive value of K (Hoerl and 

Kennard, 1970). The use of the estimator depends largely on the ridge parameter, 

K. Several methods for estimating this ridge parameter have been proposed by 

different authors, as follows: Hoerl and Kennard (1970); McDonald and 
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Galarneau (1975); Lawless and Wang (1976); Hocking et al. (1976); Wichern and 

Churchill (1978); Gibbons (1981); Nordberg (1982); Kibria (2003), Khalaf and 

Shukur (2005), Alkhamisi et al. (2006), Muniz and Kibria (2009), Mansson et al. 

(2010), Dorugade (2014) and recently, Lukman and Ayinde (2015). The purpose 

of this study is to classify the ridge parameters proposed by Dorugade (2014) and 

Adnan et al. (2014) into different forms and various types. A simulation study is 

conducted and the performances of the estimators is examined via mean square 

error (MSE).  

Model and Estimators 

A linear regression model can be expressed in matrix form as: 

 

 X + UY    (5) 

 

where X is an n × p matrix with full rank, Y is a n × 1 vector of dependent 

variable, β is a p × 1 vector of unknown parameters, and U is the error term such 

that E(U) = 0 and E(UU') = σ2In. The Ordinary Least Square (OLS) estimator of β 

is defined in (2): Model (5) can be written in canonical form. Suppose there exists 

an orthogonal matrix Q such that X'QX = Ʌ, where Ʌ = diag(λ1, λ2, …, λp) and 

λ1, λ2, …, λp are the eigenvalues of X'X. Substituting α = Q'β, model (5) can be 

written as: 

 

 Z + UY    (6) 

 

where Z'Z = Ʌ. 

Therefore, the ridge estimator of α can be defined as: 

 

  
1

ˆ KIR Z Z Z Y


     (7) 

 

The corresponding mean square error (MSE) is defined as: 

 

  
   

2
2 2
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where ˆ
i  is the ith element of the vector α = Q'β. Hoerl and Kennard (1970) 

defined the value of the ridge parameter K that minimizes the mean square error 

as: 

 
2

2

ˆ
K̂ ,

ˆ
i

i




  where 

2

12 1ˆ

n

i
e

n p
 




  (9) 

 

Hoerl and Kennard (1970) proposed 
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ˆ
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They suggested estimating ridge parameter by taking the maximum (Fixed 

Maximum) of 2

i  such that the estimator of K is: 
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ˆ
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   (10) 

 

Hoerl et al. (1975) proposed a different estimator of K by taking the 

Harmonic Mean of the ridge parameter KHKi. This estimator is given as: 
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  (11) 

 

Kibria (2003) proposed some new estimators of K by taking the geometric 

mean, arithmetic mean and median (p ≥ 3) of the ridge parameter KHKi. These 

estimators are respectively defined as: 
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  (14) 

 

Furthermore, Muniz and Kibria (2009) proposed some estimators of K in the 

form of the square root of the geometric mean of KHKi and its reciprocal, the 

median of the square root of KHKi and its reciprocal, and varying maximum of the 

square root of KHKi and its reciprocal. These estimators are respectively defined 

as: 
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Dorugade (2014) suggested the modification of the generalized ridge 

parameter in (9) by multiplying the denominator with λmax/2. The estimator is 

defined as: 

 

 

2

D 2

max

2
k̂

ˆ
i



 
   (21) 

 

where λmax is the maximum eigenvalue of X'X. 

Following Kibria (2003), Dorugade (2014) suggested the following ordinary 

ridge regression for the ridge parameter in (21). 
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Following Dorugade (2014), Adnan et al. (2014) proposed some ridge 

parameters:  
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The proposed ridge estimators by Dorugade (2014) and Adnan et al. (2014) are 

classified into different forms and various types. 

Ridge Parameter Proposed by Dorugade (2014) 

Dorugade (2014) proposed the ridge parameter 
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ˆi

i



 
 . 

 

Its estimators in the light of different forms and various types are summarized in 

Table 1. 
 

Table 1. Summary of Different Forms and Various Types for ˆ ˆˆ /   2 2

D maxK 2
i i  

 

Forms 
Types of K 

Original Reciprocal Square Root Reciprocal Square Root 

Fixed Maximum 
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Notes: * Dorugade (2014); all others are proposed estimators 
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Ridge Parameter Proposed by Adnan et al. (2014) 

Adnan et al. (2014) proposed the ridge parameter  
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Its estimators in the light of different forms and various types are summarized in 

Table 2. 
 
 

Table 2. Summary of Different Forms and Various Types for ˆ ˆˆ /   2 2
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Notes: * Adnan et al. (2014); all others are proposed estimators 

 
 

The ridge parameter estimators in Table 1 and 2 were examined and evaluated in 

this study. 

Monte Carlo Simulation 

The considered regression model is of the form: 

 

 0 1 1 2 2t i i p ip tY X X B X U          (30) 
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where t = 1, 2, …, n; p = 3, 7. 

The error term Ut was generated to be normally distributed with mean zero 

and variance σ2, Ut ~ N(0, σ2). In this study, σ were taken to be 0.5, 1 and 5. 

β0 was taken to be identically zero. When p = 3, the values of β were chosen 

to be β = (0.8, 0.1, 0.6)'. When p = 7, the values of β were chosen to be 

β = (0.4, 0.1, 0.6, 0.2, 0.25, 0.3, 0.53)'. The parameter values were chosen such 

that β'β = 1 which is a common restriction in simulation studies of this type 

(Muniz and Kibria, 2009). We varied the sample sizes between 10, 20, 30, 40 and 

50. Following McDonald and Galarneau (1975), Wichern and Churchill (1978), 

Gibbons (1981), Kibria (2003), Muniz and Kibria (2009), Lukman and Ayinde 

(2015), the explanatory variables were generated using the following equation: 

 

  
1
221 , 1,2,3,..., , 1,2,..., .ij ij ipX Z Z i n j p        (31) 

 

where Zij is independent standard normal distribution with mean zero and 

unit variance, ρ is the correlation between any two explanatory variables and p is 

the number of explanatory variables. The number of explanatory variable (p) is 

taken to be three (3) and seven (7). The value of ρ is taken as 0.95, 0.99 

respectively. Three different values of σ, 0.5, 1 and 5, were also used. The 

experiment is replicated 1,000 times. The ridge parameter estimators are 

evaluated using mean square error (MSE).  

Results 

The results of the simulation are presented in Table 3 and 4. These tables provide 

the results of the estimated mean square error of the ridge parameter when the 

number of regressors is three (3) and seven (7) respectively. The mean square 

error increases as the multicollinearity level increases. Across each 

multicollinearity level, the mean square error decreases as the sample sizes 

increase from 10 to 50, while increasing the number of regressors increases the 

estimated MSE. However, it is observed that the ridge estimators based on KAYA 

performed consistently better than KD. Occasionally, this method performs better 

than KAYA. For instance, estimators 
VMSR

DK̂  and 
AMSR

DK̂  perform consistently well 

over estimators based on KAYA especially when the number of regressors 

increases to seven (7), and when the number of regressors is three (3), especially 

when n ≤ 20. This can be seen in Figure 1 and 2. The following ridge parameter 
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estimators based on KAYA: FMSR

AYAK̂ ,  HMO

AYAK̂ ,  FMO

AYAK̂ ,  HMSR

AYAK̂ ,  GMO

AYAK̂ ,  MO

AYAK̂ ,  and 

GMSR

AYAK̂  performed best when compared to others. All but HMO

AYAK̂  are proposed in 

this study. When p = 3, FMSR

AYAK̂  performs better than the existing ridge parameter 

HMO

AYAK̂ ,  while HMO

AYAK̂  performs better than FMSR

AYAK̂  when p = 7. The estimators 

considered best in this study have the least MSE when compared to others. The 

proposed estimators perform better than the existing estimators based on KD. 
 
 

 
 
Figure 1. Graphical Illustration when 

n = 20, σ2 = 0.25, p = 3 

 
 
Figure 2. Graphical Illustration when 

n = 50, σ2 = 0.25, p = 7 
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Table 3. Estimated Mean Square Error of ridge parameter when p = 3 

 

 
p = 3, σ = 0.5, ρ = 0.95 

 
n = 10 n = 20 n = 30 n = 40 n = 50 

Methods ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  

FMO 3.501 2.297 1.757 1.265 1.633 1.224 0.877 0.750 0.680 0.611 

FMR 4.470 4.049 2.091 1.683 2.149 1.722 1.191 0.795 1.017 0.631 

FMSR 2.340 1.757 1.369 1.004 1.309 0.941 0.789 0.627 0.635 0.532 

FMRSR 3.904 3.550 1.630 1.363 1.690 1.390 0.805 0.595 0.649 0.456 

VMO 2.374 2.263 1.248 1.078 1.235 1.039 0.705 0.572 0.581 0.471 

VMR 4.470 4.049 2.091 1.683 2.149 1.722 1.191 0.795 1.017 0.631 

VMSR 2.004 2.289 1.019 0.969 1.000 0.948 0.607 0.493 0.514 0.407 

VMRSR 3.904 3.550 1.630 1.363 1.690 1.390 0.805 0.595 0.649 0.456 

AMO 2.589 2.033 1.358 1.019 1.337 0.987 0.755 0.571 0.611 0.477 

AMR 4.092 3.659 1.856 1.575 1.889 1.532 1.016 0.760 0.843 0.592 

AMSR 1.995 2.088 1.079 0.932 1.054 0.906 0.652 0.506 0.546 0.426 

AMRSR 3.532 3.107 1.465 1.293 1.490 1.242 0.725 0.630 0.572 0.500 

HMO 3.184 1.863 1.665 1.045 1.579 1.027 0.865 0.666 0.674 0.559 

HMR 4.322 3.889 1.968 1.573 2.037 1.606 1.102 0.724 0.938 0.568 

HMSR 2.098 1.723 1.259 0.920 1.215 0.868 0.759 0.575 0.618 0.494 

HMRSR 3.789 3.380 1.548 1.287 1.614 1.302 0.754 0.574 0.602 0.448 

GMO 2.782 1.762 1.483 0.919 1.447 0.903 0.821 0.562 0.651 0.476 

GMR 4.206 3.747 1.892 1.546 1.956 1.535 1.043 0.730 0.882 0.571 

GMSR 1.963 1.855 1.142 0.883 1.109 0.845 0.709 0.521 0.588 0.447 

GMRSR 3.665 3.215 1.489 1.260 1.546 1.242 0.727 0.592 0.577 0.468 

MO 2.930 1.856 1.581 0.992 1.508 0.965 0.837 0.618 0.658 0.508 

MR 4.243 3.710 1.931 1.505 2.007 1.532 1.105 0.732 0.938 0.586 

MSR 2.045 1.910 1.209 0.920 1.162 0.874 0.733 0.549 0.600 0.467 

MRSR 3.675 3.192 1.499 1.230 1.567 1.230 0.754 0.580 0.605 0.461 
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Table 3, continued. 

 

 
p = 3, σ = 0.5, ρ = 0.99 

 
n = 10 n = 20 n = 30 n = 40 n = 50 

Methods ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  

FMO 18.092 11.590 8.556 5.451 8.606 5.586 4.642 3.313 3.604 2.739 

FMR 23.328 22.984 9.951 9.565 10.616 10.215 5.488 5.093 4.354 3.988 

FMSR 9.438 9.998 4.895 4.092 5.062 4.119 3.310 2.287 2.815 1.905 

FMRSR 22.714 22.414 9.400 9.056 10.082 9.728 5.018 4.634 3.932 3.534 

VMO 11.597 16.282 5.494 6.071 6.106 6.470 3.466 2.787 2.872 2.165 

VMR 23.328 22.984 9.951 9.565 10.616 10.215 5.488 5.093 4.354 3.988 

VMSR 14.796 18.237 5.274 6.626 5.578 7.151 2.623 2.900 2.174 2.099 

VMRSR 22.714 22.414 9.400 9.056 10.082 9.728 5.018 4.634 3.932 3.534 

AMO 11.942 13.339 6.064 5.189 6.616 5.595 3.748 2.659 3.087 2.144 

AMR 22.669 21.913 9.565 8.967 10.164 9.469 5.173 4.703 4.038 3.562 

AMSR 13.197 16.753 4.928 5.998 5.217 6.536 2.692 2.669 2.292 1.972 

AMRSR 22.012 21.079 8.921 8.200 9.590 8.753 4.695 4.075 3.603 2.997 

HMO 15.724 9.207 7.667 4.343 7.982 4.490 4.469 2.739 3.517 2.309 

HMR 23.199 22.808 9.808 9.399 10.482 10.073 5.361 4.965 4.240 3.868 

HMSR 9.301 11.554 4.433 4.382 4.564 4.508 2.997 2.214 2.595 1.760 

HMRSR 22.602 22.215 9.291 8.846 9.992 9.529 4.936 4.450 3.855 3.358 

GMO 12.880 9.977 6.567 4.300 6.973 4.520 4.091 2.440 3.318 2.024 

GMR 23.011 22.525 9.658 9.191 10.324 9.846 5.248 4.809 4.153 3.710 

GMSR 11.006 14.465 4.495 5.213 4.643 5.625 2.745 2.381 2.387 1.792 

GMRSR 22.407 21.806 9.128 8.529 9.840 9.186 4.823 4.231 3.753 3.156 

MO 13.018 11.525 6.768 4.807 7.190 5.032 4.263 2.569 3.396 2.121 

MR 22.980 22.395 9.662 9.091 10.321 9.762 5.264 4.760 4.171 3.693 

MSR 11.634 14.736 4.766 5.443 4.932 5.955 2.864 2.499 2.464 1.856 

MRSR 22.373 21.717 9.106 8.456 9.822 9.103 4.822 4.177 3.758 3.124 
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Table 3, continued. 

 

 
p = 3, σ = 1, ρ = 0.95 

 
n = 10 n = 20 n = 30 n = 40 n = 50 

Methods ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  

FMO 3.730 2.432 1.811 1.306 1.675 1.249 0.894 0.763 0.690 0.620 

FMR 4.650 4.224 2.228 1.806 2.151 1.726 1.190 0.794 1.015 0.630 

FMSR 2.488 1.864 1.413 1.039 1.340 0.960 0.804 0.638 0.644 0.539 

FMRSR 4.077 3.716 1.747 1.457 1.695 1.396 0.805 0.597 0.649 0.459 

VMO 2.516 2.394 1.291 1.127 1.259 1.052 0.720 0.582 0.584 0.472 

VMR 4.650 4.224 2.228 1.806 2.151 1.726 1.190 0.794 1.015 0.630 

VMSR 2.127 2.426 1.063 1.021 1.020 0.961 0.617 0.499 0.520 0.410 

VMRSR 4.077 3.716 1.747 1.457 1.695 1.396 0.805 0.597 0.649 0.459 

AMO 2.749 2.150 1.407 1.060 1.367 1.001 0.771 0.582 0.616 0.478 

AMR 4.309 3.860 1.975 1.663 1.900 1.548 1.020 0.768 0.843 0.598 

AMSR 2.117 2.216 1.123 0.977 1.078 0.920 0.663 0.513 0.553 0.430 

AMRSR 3.725 3.288 1.558 1.361 1.496 1.257 0.730 0.639 0.574 0.506 

HMO 3.386 1.969 1.716 1.080 1.619 1.045 0.882 0.676 0.685 0.566 

HMR 4.497 4.059 2.102 1.686 2.040 1.611 1.101 0.725 0.937 0.569 

HMSR 2.229 1.829 1.299 0.954 1.243 0.885 0.773 0.584 0.627 0.501 

HMRSR 3.956 3.539 1.658 1.372 1.618 1.309 0.754 0.579 0.602 0.452 

GMO 2.945 1.868 1.535 0.961 1.483 0.922 0.835 0.570 0.662 0.481 

GMR 4.395 3.936 2.018 1.642 1.956 1.541 1.044 0.735 0.882 0.574 

GMSR 2.081 1.970 1.184 0.923 1.135 0.862 0.721 0.528 0.597 0.453 

GMRSR 3.837 3.381 1.589 1.335 1.549 1.250 0.729 0.599 0.578 0.473 

MO 3.110 1.966 1.634 1.028 1.543 0.982 0.853 0.628 0.668 0.515 

MR 4.411 3.853 2.059 1.602 2.010 1.537 1.104 0.734 0.937 0.587 

MSR 2.173 2.036 1.250 0.958 1.188 0.890 0.746 0.557 0.609 0.473 

MRSR 3.834 3.333 1.601 1.305 1.571 1.238 0.755 0.586 0.606 0.465 
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Table 3, continued. 

 

 
p = 3, σ = 1, ρ = 0.99 

 
n = 10 n = 20 n = 30 n = 40 n = 50 

Methods ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  

FMO 19.320 12.313 8.834 5.679 8.819 5.696 4.733 3.366 3.659 2.771 

FMR 24.239 23.888 10.731 10.337 10.647 10.247 5.495 5.099 4.357 3.991 

FMSR 10.025 10.572 5.094 4.299 5.168 4.187 3.368 2.318 2.854 1.926 

FMRSR 23.617 23.307 10.161 9.794 10.115 9.758 5.025 4.638 3.936 3.537 

VMO 12.249 17.173 5.723 6.502 6.221 6.549 3.509 2.806 2.902 2.180 

VMR 24.239 23.888 10.731 10.337 10.647 10.247 5.495 5.099 4.357 3.991 

VMSR 15.584 19.109 5.605 7.122 5.650 7.209 2.648 2.914 2.191 2.112 

VMRSR 23.617 23.307 10.161 9.794 10.115 9.758 5.025 4.638 3.936 3.537 

AMO 12.630 14.109 6.275 5.487 6.741 5.673 3.806 2.676 3.120 2.161 

AMR 23.633 22.899 10.276 9.604 10.198 9.528 5.186 4.710 4.041 3.567 

AMSR 13.939 17.597 5.190 6.413 5.290 6.596 2.723 2.684 2.312 1.985 

AMRSR 22.911 21.970 9.631 8.816 9.639 8.791 4.702 4.083 3.607 3.001 

HMO 16.754 9.756 7.941 4.546 8.168 4.569 4.553 2.776 3.569 2.333 

HMR 24.107 23.707 10.588 10.161 10.513 10.104 5.367 4.970 4.243 3.871 

HMSR 9.865 12.191 4.630 4.626 4.652 4.572 3.047 2.241 2.629 1.778 

HMRSR 23.501 23.099 10.045 9.567 10.024 9.558 4.942 4.453 3.859 3.361 

GMO 13.612 10.593 6.819 4.498 7.099 4.591 4.167 2.466 3.365 2.040 

GMR 23.903 23.382 10.441 9.922 10.361 9.899 5.259 4.815 4.160 3.715 

GMSR 11.654 15.236 4.708 5.533 4.714 5.684 2.786 2.401 2.416 1.806 

GMRSR 23.293 22.663 9.872 9.222 9.875 9.221 4.832 4.237 3.758 3.161 

MO 13.811 12.216 7.015 5.072 7.339 5.106 4.338 2.598 3.442 2.143 

MR 23.880 23.264 10.423 9.789 10.353 9.795 5.270 4.763 4.176 3.698 

MSR 12.330 15.539 5.007 5.781 5.009 6.012 2.905 2.521 2.494 1.873 

MRSR 23.259 22.573 9.839 9.130 9.853 9.130 4.827 4.180 3.762 3.129 
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Table 3, continued. 

 

 
p = 3, σ = 5, ρ = 0.95 

 
n = 10 n = 20 n = 30 n = 40 n = 50 

Methods ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  

FMO 11.368 7.438 3.629 2.802 2.943 1.823 1.443 1.109 1.019 0.857 

FMR 10.621 10.033 6.060 5.043 2.220 1.935 1.172 0.872 0.997 0.690 

FMSR 7.609 5.767 2.910 2.281 2.232 1.451 1.265 0.940 0.937 0.750 

FMRSR 9.739 9.054 4.878 3.849 1.820 1.663 0.835 0.762 0.672 0.589 

VMO 7.360 8.088 2.773 2.920 1.880 1.335 1.014 0.712 0.805 0.580 

VMR 10.621 10.033 6.060 5.043 2.220 1.935 1.172 0.872 0.997 0.690 

VMSR 6.811 7.703 2.385 2.638 1.505 1.251 0.884 0.641 0.719 0.528 

VMRSR 9.739 9.054 4.878 3.849 1.820 1.663 0.835 0.762 0.672 0.589 

AMO 7.511 7.398 3.017 2.465 2.125 1.309 1.123 0.732 0.870 0.604 

AMR 10.043 9.853 5.115 3.460 2.193 2.206 1.145 1.113 0.912 0.821 

AMSR 6.579 7.210 2.448 2.377 1.644 1.242 0.974 0.680 0.777 0.565 

AMRSR 8.675 8.335 3.880 2.948 1.791 1.824 0.889 0.973 0.683 0.731 

HMO 9.971 5.816 3.471 2.400 2.752 1.446 1.406 0.928 1.006 0.752 

HMR 10.380 9.682 5.817 4.507 2.124 1.926 1.091 0.891 0.927 0.689 

HMSR 6.650 5.618 2.704 2.158 2.021 1.297 1.201 0.840 0.906 0.685 

HMRSR 9.452 8.641 4.562 3.485 1.760 1.643 0.803 0.797 0.640 0.615 

GMO 7.658 6.150 3.220 2.209 2.420 1.247 1.293 0.749 0.956 0.619 

GMR 9.931 9.221 5.533 3.973 2.107 2.036 1.080 1.007 0.892 0.757 

GMSR 6.115 6.311 2.529 2.169 1.803 1.220 1.099 0.736 0.852 0.609 

GMRSR 8.890 8.085 4.239 3.182 1.739 1.690 0.824 0.877 0.644 0.669 

MO 8.041 6.399 3.326 2.325 2.588 1.354 1.338 0.844 0.975 0.683 

MR 9.931 8.925 5.641 4.182 2.105 1.882 1.116 0.942 0.941 0.721 

MSR 6.330 6.458 2.613 2.193 1.913 1.285 1.146 0.788 0.877 0.646 

MRSR 8.852 7.938 4.375 3.302 1.716 1.602 0.824 0.833 0.655 0.639 
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Table 3, continued. 

 

 
p = 3, σ = 5, ρ = 0.99 

 
n = 10 n = 20 n = 30 n = 40 n = 50 

Methods ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  

FMO 59.692 37.770 18.672 13.998 15.022 8.319 7.487 4.664 5.332 3.620 

FMR 53.657 53.218 32.462 31.863 11.276 10.893 5.636 5.244 4.434 4.088 

FMSR 30.381 30.342 12.064 11.318 7.969 5.753 4.993 3.111 3.975 2.487 

FMRSR 52.809 52.248 31.367 30.231 10.761 10.376 5.175 4.763 4.032 3.644 

VMO 38.646 46.837 14.345 22.905 8.345 7.902 4.911 3.312 3.799 2.541 

VMR 53.657 53.218 32.462 31.863 11.276 10.893 5.636 5.244 4.434 4.088 

VMSR 42.916 47.776 17.149 23.077 7.080 8.247 3.447 3.340 2.766 2.443 

VMRSR 52.809 52.248 31.367 30.231 10.761 10.376 5.175 4.763 4.032 3.644 

AMO 37.226 42.827 13.573 17.671 9.686 7.071 5.585 3.234 4.197 2.570 

AMR 53.188 53.091 31.009 26.815 10.952 10.668 5.464 5.240 4.288 4.035 

AMSR 40.230 45.767 14.585 20.156 6.903 7.713 3.689 3.163 2.993 2.351 

AMRSR 49.835 48.112 28.792 25.131 10.257 9.549 4.890 4.452 3.789 3.374 

HMO 50.356 29.122 17.437 11.743 13.310 6.311 7.033 3.630 5.128 2.922 

HMR 53.471 52.979 32.281 31.474 11.141 10.762 5.512 5.110 4.328 3.984 

HMSR 29.248 33.662 11.305 12.463 6.897 5.957 4.396 2.882 3.602 2.239 

HMRSR 52.585 51.797 31.043 29.510 10.654 10.172 5.076 4.586 3.949 3.490 

GMO 35.454 34.552 15.197 11.493 11.040 6.049 6.262 3.140 4.669 2.489 

GMR 52.980 51.557 31.959 30.408 10.994 10.583 5.417 5.054 4.261 3.947 

GMSR 34.408 41.170 11.755 15.542 6.585 6.913 3.917 2.952 3.220 2.206 

GMRSR 51.759 50.074 30.358 28.030 10.483 9.835 4.959 4.430 3.852 3.358 

MO 37.649 36.864 15.980 12.632 11.137 6.681 6.483 3.275 4.891 2.644 

MR 53.025 51.491 32.038 30.644 10.985 10.394 5.437 4.922 4.260 3.795 

MSR 35.513 41.459 11.932 14.442 6.907 7.242 4.045 3.064 3.376 2.305 

MRSR 51.761 50.035 30.626 28.647 10.446 9.710 4.952 4.354 3.838 3.263 
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Table 4. Estimated Mean Square Error of ridge parameter when p = 7 

 

 
p = 7, σ = 0.5, ρ = 0.95 

 
n = 10 n = 20 n = 30 n = 40 n = 50 

Methods ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  

FMO 76.120 47.232 7.028 5.439 4.881 4.079 2.493 2.267 2.262 2.018 

FMR 81.940 81.594 6.749 6.071 5.540 4.870 2.855 2.186 2.544 1.960 

FMSR 36.541 45.788 5.381 3.873 4.109 3.051 2.316 1.900 2.072 1.655 

FMRSR 81.165 80.643 5.940 5.289 4.789 4.137 2.192 1.660 1.960 1.584 

VMO 66.682 76.133 4.525 5.406 3.600 4.332 1.837 2.072 1.625 1.918 

VMR 81.940 81.594 6.749 6.071 5.540 4.870 2.855 2.186 2.544 1.960 

VMSR 72.487 76.644 4.136 4.789 3.209 3.754 1.597 1.636 1.439 1.530 

VMRSR 81.165 80.643 5.940 5.289 4.789 4.137 2.192 1.660 1.960 1.584 

AMO 58.101 71.296 4.656 4.586 3.658 3.671 1.996 1.733 1.750 1.601 

AMR 78.493 74.787 5.534 5.222 4.306 3.761 2.071 1.971 1.842 1.835 

AMSR 68.811 74.331 3.983 4.278 3.119 3.342 1.736 1.504 1.528 1.405 

AMRSR 78.005 74.811 4.786 4.485 3.667 3.320 1.661 1.773 1.535 1.637 

HMO 57.198 33.682 6.594 4.036 4.731 3.217 2.463 1.946 2.226 1.666 

HMR 81.751 81.162 6.439 5.582 5.263 4.403 2.644 1.833 2.335 1.712 

HMSR 43.538 57.236 4.637 3.498 3.687 2.736 2.199 1.669 1.939 1.445 

HMRSR 80.853 80.051 5.639 4.879 4.515 3.768 1.978 1.534 1.790 1.492 

GMO 42.525 58.346 5.592 3.572 4.256 2.806 2.355 1.537 2.079 1.331 

GMR 81.271 79.981 6.073 4.937 4.957 3.766 2.405 1.683 2.099 1.588 

GMSR 60.770 69.328 4.072 3.645 3.258 2.818 2.023 1.475 1.743 1.321 

GMRSR 80.170 78.605 5.239 4.455 4.146 3.378 1.767 1.534 1.616 1.456 

MO 45.003 60.574 5.992 3.791 4.438 2.983 2.397 1.702 2.122 1.437 

MR 77.079 77.064 4.594 4.616 3.422 3.432 1.983 1.987 1.858 1.862 

MSR 74.023 73.944 4.031 4.027 3.163 3.162 1.347 1.347 1.310 1.310 

MRSR 76.542 76.518 4.168 4.172 3.130 3.132 1.741 1.744 1.611 1.613 
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Table 4, continued. 

 

 
p = 7, σ = 0.5, ρ = 0.99 

 
n = 10 n = 20 n = 30 n = 40 n = 50 

Methods ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  

FMO 447.805 273.075 37.946 28.276 27.117 21.641 13.239 11.463 12.476 10.244 

FMR 485.223 485.064 34.950 34.397 29.708 29.129 14.293 13.683 13.301 12.705 

FMSR 258.034 346.812 22.494 18.038 18.429 14.253 10.843 7.742 9.695 6.900 

FMRSR 484.613 484.223 34.080 33.385 28.880 28.145 13.521 12.635 12.567 11.742 

VMO 419.503 465.165 23.743 28.568 20.208 24.458 9.430 10.457 9.084 10.228 

VMR 485.223 485.064 34.950 34.397 29.708 29.129 14.293 13.683 13.301 12.705 

VMSR 459.749 473.060 24.503 28.718 20.411 24.204 8.218 9.863 8.292 9.733 

VMRSR 484.613 484.223 34.080 33.385 28.880 28.145 13.521 12.635 12.567 11.742 

AMO 368.598 442.992 24.438 24.674 20.076 21.319 10.316 8.959 9.659 8.950 

AMR 482.205 476.562 32.652 30.640 27.796 24.643 12.890 10.899 11.882 10.120 

AMSR 447.205 465.894 22.355 26.311 18.496 22.178 8.094 8.673 7.963 8.840 

AMRSR 481.236 477.172 31.482 28.781 26.510 23.579 11.709 9.718 10.819 9.212 

HMO 327.951 196.248 34.716 20.103 25.809 16.181 12.964 9.262 12.106 7.938 

HMR 485.147 484.810 34.688 33.978 29.441 28.742 14.020 13.272 13.029 12.282 

HMSR 331.301 401.383 19.395 19.438 15.862 15.458 9.612 6.985 8.450 6.648 

HMRSR 484.361 483.812 33.801 32.646 28.625 27.393 13.264 11.887 12.313 11.078 

GMO 258.937 377.570 28.176 19.582 22.283 16.053 12.173 7.586 11.000 7.152 

GMR 484.816 484.036 34.340 32.952 29.120 27.714 13.791 12.336 12.782 11.289 

GMSR 418.634 449.401 19.796 22.825 15.970 18.870 8.533 7.266 7.694 7.517 

GMRSR 483.824 482.511 33.300 31.360 28.138 26.069 12.861 10.917 11.877 10.176 

MO 286.980 388.382 29.404 20.143 23.176 16.568 12.488 8.068 11.506 7.514 

MR 481.859 481.850 29.872 29.865 23.813 23.805 9.406 9.406 8.879 8.879 

MSR 464.829 464.318 26.449 26.407 22.389 22.372 8.670 8.663 8.806 8.802 

MRSR 480.163 480.143 29.045 29.028 23.410 23.399 9.042 9.038 8.746 8.743 
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Table 4, continued. 

 

 
p = 7, σ = 1, ρ = 0.95 

 
n = 10 n = 20 n = 30 n = 40 n = 50 

Methods ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  

FMO 81.355 51.963 7.225 5.692 5.002 4.184 2.546 2.311 2.298 2.048 

FMR 101.096 100.762 7.808 7.122 5.690 5.012 2.866 2.192 2.559 1.972 

FMSR 41.344 54.271 5.599 4.132 4.213 3.129 2.364 1.935 2.103 1.678 

FMRSR 100.314 99.768 6.965 6.277 4.927 4.254 2.200 1.670 1.973 1.598 

VMO 82.129 94.427 5.134 6.301 3.688 4.469 1.879 2.077 1.656 1.959 

VMR 101.096 100.762 7.808 7.122 5.690 5.012 2.866 2.192 2.559 1.972 

VMSR 90.071 95.087 4.777 5.626 3.295 3.870 1.631 1.651 1.456 1.559 

VMRSR 100.314 99.768 6.965 6.277 4.927 4.254 2.200 1.670 1.973 1.598 

AMO 70.252 88.388 5.085 5.329 3.746 3.782 2.048 1.756 1.766 1.639 

AMR 97.638 93.084 6.270 5.636 4.394 3.901 2.088 2.008 1.877 1.876 

AMSR 85.460 92.346 4.485 5.009 3.208 3.439 1.775 1.528 1.538 1.428 

AMRSR 96.866 93.247 5.506 4.960 3.742 3.418 1.678 1.805 1.570 1.676 

HMO 62.106 37.820 6.801 4.291 4.849 3.298 2.515 1.980 2.260 1.688 

HMR 100.913 100.326 7.485 6.594 5.411 4.528 2.655 1.841 2.350 1.727 

HMSR 51.275 69.899 4.858 3.835 3.779 2.802 2.244 1.699 1.968 1.464 

HMRSR 99.984 99.135 6.639 5.797 4.644 3.870 1.985 1.549 1.803 1.508 

GMO 49.184 72.188 5.809 4.021 4.356 2.872 2.402 1.560 2.106 1.341 

GMR 100.412 99.036 7.093 5.768 5.099 3.863 2.417 1.704 2.110 1.612 

GMSR 75.548 86.521 4.371 4.189 3.333 2.884 2.062 1.498 1.765 1.334 

GMRSR 99.227 97.505 6.178 5.224 4.262 3.462 1.778 1.557 1.629 1.477 

MO 52.630 75.436 6.197 4.179 4.547 3.056 2.447 1.731 2.155 1.459 

MR 95.434 95.380 5.109 5.127 3.494 3.504 2.026 2.031 1.887 1.892 

MSR 92.275 92.184 4.751 4.746 3.246 3.244 1.363 1.363 1.326 1.326 

MRSR 95.045 95.014 4.754 4.754 3.200 3.202 1.777 1.779 1.635 1.638 
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Table 4, continued. 

 

 
p = 7, σ = 1, ρ = 0.99 

 
n = 10 n = 20 n = 30 n = 40 n = 50 

Methods ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  

FMO 479.139 301.137 39.063 29.750 27.804 22.235 13.521 11.688 12.671 10.387 

FMR 601.450 601.301 40.901 40.362 30.487 29.903 14.363 13.750 13.399 12.801 

FMSR 303.518 422.962 23.865 20.055 18.910 14.607 11.059 7.873 9.835 6.988 

FMRSR 600.849 600.446 40.020 39.319 29.651 28.898 13.588 12.689 12.663 11.829 

VMO 521.305 578.507 27.350 33.856 20.911 25.040 9.655 10.539 9.117 10.329 

VMR 601.450 601.301 40.901 40.362 30.487 29.903 14.363 13.750 13.399 12.801 

VMSR 572.441 587.779 29.099 34.101 20.959 24.853 8.356 9.942 8.340 9.813 

VMRSR 600.849 600.446 40.020 39.319 29.651 28.898 13.588 12.689 12.663 11.829 

AMO 456.594 552.428 26.595 29.195 20.724 21.906 10.561 9.080 9.685 9.035 

AMR 599.015 594.110 39.025 36.016 28.368 25.098 12.893 10.930 11.870 10.240 

AMSR 557.880 579.699 26.220 31.327 19.004 22.800 8.244 8.765 8.007 8.906 

AMRSR 597.876 593.860 37.571 34.529 27.070 24.034 11.731 9.725 10.879 9.258 

HMO 357.282 220.799 35.927 21.611 26.467 16.608 13.235 9.418 12.293 8.041 

HMR 601.379 601.052 40.645 39.929 30.218 29.511 14.089 13.332 13.127 12.373 

HMSR 402.765 496.974 21.078 22.475 16.253 15.805 9.793 7.083 8.569 6.727 

HMRSR 600.587 600.009 39.730 38.547 29.390 28.126 13.327 11.932 12.407 11.160 

GMO 307.081 470.214 29.384 22.461 22.805 16.390 12.417 7.694 11.182 7.217 

GMR 601.046 600.232 40.284 38.886 29.891 28.429 13.860 12.374 12.885 11.378 

GMSR 523.625 560.779 22.637 27.212 16.298 19.295 8.679 7.345 7.796 7.590 

GMRSR 600.000 598.580 39.196 37.154 28.882 26.745 12.917 10.954 11.972 10.257 

MO 344.556 486.174 30.481 23.214 23.721 16.948 12.738 8.169 11.673 7.610 

MR 597.746 597.734 35.219 35.201 24.426 24.419 9.471 9.472 8.965 8.966 

MSR 578.893 578.320 31.713 31.665 22.965 22.948 8.725 8.718 8.889 8.885 

MRSR 595.905 595.883 34.454 34.434 24.003 23.992 9.094 9.090 8.820 8.817 
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Table 4, continued. 

 

 
p = 7, σ = 5, ρ = 0.95 

 
n = 10 n = 20 n = 30 n = 40 n = 50 

Methods ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  

FMO 245.847 206.324 13.648 12.477 8.925 7.687 4.247 3.636 3.406 2.937 

FMR 702.157 701.896 38.766 37.977 10.527 9.586 3.195 2.433 3.243 2.535 

FMSR 200.188 334.411 11.878 10.816 7.614 5.710 3.873 3.014 3.086 2.405 

FMRSR 701.135 700.018 37.386 35.751 9.385 8.006 2.435 2.084 2.536 2.116 

VMO 610.902 681.797 23.315 33.177 6.684 8.515 2.612 2.460 2.307 2.557 

VMR 702.157 701.896 38.766 37.977 10.527 9.586 3.195 2.433 3.243 2.535 

VMSR 655.825 681.263 24.043 30.872 5.936 7.314 2.321 2.025 2.045 2.081 

VMRSR 701.135 700.018 37.386 35.751 9.385 8.006 2.435 2.084 2.536 2.116 

AMO 507.349 652.570 17.667 28.221 6.640 7.108 3.127 2.187 2.559 2.192 

AMR 671.962 627.505 30.695 20.513 7.973 6.736 2.732 3.339 2.492 2.740 

AMSR 627.882 668.286 19.588 27.354 5.634 6.357 2.707 2.008 2.217 1.947 

AMRSR 678.095 654.138 28.502 21.283 6.708 5.920 2.343 2.966 2.130 2.427 

HMO 219.097 173.903 13.235 10.792 8.651 5.956 4.166 2.932 3.339 2.376 

HMR 702.008 701.327 38.330 36.735 10.155 8.469 2.951 2.289 3.006 2.263 

HMSR 307.207 481.565 11.101 12.850 6.747 4.953 3.636 2.568 2.877 2.085 

HMRSR 700.344 698.117 36.401 33.452 8.766 7.010 2.225 2.161 2.320 2.041 

GMO 272.739 544.532 11.967 18.062 7.653 5.074 3.925 2.192 3.104 1.884 

GMR 700.807 695.054 37.026 30.008 9.481 6.656 2.678 2.595 2.697 2.241 

GMSR 555.757 634.786 13.407 21.094 5.773 5.074 3.309 2.187 2.580 1.882 

GMRSR 696.388 688.388 33.710 27.725 7.809 5.970 2.106 2.400 2.122 2.072 

MO 314.950 575.882 12.144 18.589 7.980 5.216 4.041 2.530 3.195 2.061 

MR 672.820 672.433 17.880 17.781 6.061 6.084 3.521 3.530 2.814 2.821 

MSR 668.530 668.190 27.900 27.872 6.048 6.045 1.790 1.791 1.802 1.802 

MRSR 674.310 674.097 20.956 20.872 5.432 5.436 2.985 2.991 2.395 2.399 
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Table 4, continued. 

 

 
p = 7, σ = 5, ρ = 0.99 

 
n = 10 n = 20 n = 30 n = 40 n = 50 

Methods ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  ˆ
DK   ˆ

AYAK  

FMO 1465.681 1221.250 74.342 67.324 49.754 41.369 22.547 18.404 18.808 15.170 

FMR 4242.117 4242.026 218.709 218.292 55.081 54.422 16.355 15.626 17.341 16.648 

FMSR 1810.703 2897.433 59.291 71.107 34.486 25.768 17.728 11.619 14.416 9.990 

FMRSR 4241.490 4240.837 217.652 216.573 54.035 52.742 15.463 14.173 16.487 15.313 

VMO 3993.568 4193.263 140.741 198.687 36.040 46.002 13.257 12.360 12.430 13.682 

VMR 4242.117 4242.026 218.709 218.292 55.081 54.422 16.355 15.626 17.341 16.648 

VMSR 4149.675 4204.280 173.098 199.007 36.755 45.257 10.669 11.592 11.141 12.899 

VMRSR 4241.490 4240.837 217.652 216.573 54.035 52.742 15.463 14.173 16.487 15.313 

AMO 3570.762 4095.430 100.596 173.300 35.184 39.306 15.756 11.148 13.609 12.012 

AMR 4212.933 4143.105 210.922 190.956 50.930 43.785 15.140 14.313 15.691 13.685 

AMSR 4079.126 4172.108 150.398 186.934 32.406 40.952 11.345 10.514 10.893 11.728 

AMRSR 4225.677 4199.721 208.595 194.082 48.556 41.904 13.481 12.148 14.228 12.291 

HMO 1297.400 1030.908 71.579 57.889 47.574 30.452 21.850 13.783 18.180 11.491 

HMR 4242.073 4241.811 218.503 217.683 54.787 53.806 16.070 14.931 17.057 16.032 

HMSR 2733.910 3548.233 64.883 106.353 28.803 26.953 15.284 9.776 12.436 9.368 

HMRSR 4241.023 4239.830 217.053 214.838 53.558 51.219 15.076 13.201 16.126 14.403 

GMO 1907.678 3525.788 64.386 116.466 40.055 28.037 19.950 10.384 16.380 9.948 

GMR 4241.579 4239.498 217.808 214.219 54.328 51.297 15.782 13.679 16.767 14.639 

GMSR 3848.564 4067.859 112.552 163.774 27.263 33.591 13.008 9.372 11.073 10.181 

GMRSR 4238.586 4232.948 214.991 208.642 52.448 48.033 14.490 12.179 15.517 13.231 

MO 2077.145 3612.882 66.849 123.869 40.641 28.986 20.697 11.191 17.048 10.500 

MR 4230.358 4230.299 197.452 197.302 41.674 41.646 11.876 11.896 11.794 11.799 

MSR 4154.180 4152.100 190.071 189.885 41.694 41.662 10.327 10.321 11.743 11.739 

MRSR 4222.197 4222.106 196.988 196.881 41.815 41.785 10.818 10.821 11.499 11.496 

 

Conclusion 

In this study, ridge parameters proposed by Dorugade (2014) and Adnan et al. 

(2014) are classified into different forms and various types following the idea of 

Lukman and Ayinde (2015), and some new ridge parameters are proposed. The 

performances of these estimators are evaluated through Monte Carlo Simulation, 

where levels of multicollinearity, sample sizes, number of regressors and error  

variances have been varied. The performance evaluation was done using the mean 

square error. The proposed estimators generally have the least minimum square 

error when compared to others. 
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Traditionally, quality control methodology is based on the assumption that serially-
generated data are independent and normally distributed. On the basis of these 
assumptions the operating characteristic (OC) function of the control chart is derived 
after setting the control limits. But in practice, many of the basic industrial variables do 

not satisfy both the assumptions and hence one may doubt the validity of the inferences 
drawn from the control charts. In this paper the power of the control chart for the mean is 
examined when both the assumptions of independence and normality are not tenable. The 
OC function is calculated and compared with the normal population. 
 
Keywords: Control chart, correlation, Edgeworth Series, standardized cumulants 

 

Introduction 

The quality control techniques currently used in industry are aimed at the 

detection of changes in the production process that result in quality defects. 

Quality control charts are currently the most widely-adopted control technique. 

Traditionally, quality control methodology is based on the assumption that 

serially-generated data are independent and normally distributed. Under these 

conditions, appropriate control limits for X̅ can be worked out from the tables 

available in standard textbooks on statistical quality control. But in practice, many 

of the basic industrial processes do not satisfy both the assumptions and hence 

one may doubt the validity of the inference drawn from the control charts. 

Alwan (1992) studied the effect of auto-correlation on control chart 

performance. Maragah and Woodall (1992) studied the effect of auto-correlation 

on the retrospective X-chart. Alwan and Roberts (1995) conducted investigations 

of control charts when the assumptions of normality, independence, or both are 

violated. Dar and Singh (2015) studied the effect of correlation on the power of 

https://doi.org/10.22237/jmasm/1493598300
mailto:lateefdar.2007@rediffmail.com
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the X̅ chart. The purpose of this study is to consider the power of the control chart 

and the effect of correlation on Type-I error and the OC function, and also to 

consider relaxing the assumption of normality and considering the production 

process to follow a non-normal distribution represented by the first four terms of 

an Edgeworth series. 

Effect of Correlation on OC Function for Normal Case 

Suppose that the observations x1, x2,…, xn have a multivariate normal distribution 

with E(xi) = μ, V(xi) = σ2 and ρ is the common correlation coefficient between any 

xi and xj, i ≠ j. Then 
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The power of the control chart is judged by its OC function. The control 

chart for the mean is set up by drawing the central line at the process average θ 

and the control limits at 
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where σ is the process standard deviation and n is the sample size. The OC 

function gives the probability that the control chart indicates the value θ as the 
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where T2 is as defined in equation (2). 

The OC function is derived by integrating the distribution of the mean with 

θʹ as the process average between the limits of the control chart. 

For the normal population under correlated data, 
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The distribution of the sample mean is given by 
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The OC function is obtained after replacing θ in (4) by θʹ and integrating it 

between the limits of the control chart as 
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Making the transformation 
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and y – γ = t sequentially, the above integral simplifies to 
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The error of Type I gives the probability of searching for assignable causes when 

in fact there are no such causes. It is given by 
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After integrating above as in the case of the OC function we will get 
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The Effect of Non-Normally Correlated Data on OC 
Function 

For non-normal populations represented by the first four terms of an Edgeworth 

series, 
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where 3 1   and  4 2 3    are the standardized third and fourth cumulants, 

respectively. 

The distribution of the sample mean for correlated data can be derived, by 

following Gayen (1952), as 
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The OC function is obtained after replacing θ in equation (11) by θʹ and 

integrating it between the limits of the control chart, i.e. between  k n  . 

Integrating in the similar way as for the normal case, we get 
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where LN is given by equation (7). The other two terms of the OC function are 

given by 
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The Type-I error for the non-normal population works out to be 
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where α as defined by equation (9) is the Type-I error when the population is 

normal and dependent, and 
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is the correction for non-normality and dependencies in Type-I error. 
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Table 1. Value of Type-I error for normally and correlated data 

 

 
K = 2 

 
K = 3 

n ρ = 0.0 ρ = 0.2 ρ = 0.5 ρ = 0.8   ρ = 0.0 ρ = 0.2 ρ = 0.5 ρ = 0.8 

5 0.04550 0.13603 0.24821 0.32911 
 

0.00269 0.02534 0.08326 0.14323 

10 0.04550 0.23200 0.39377 0.48491 
 

0.00270 0.07300 0.20083 0.29480 

15 0.04550 0.30490 0.47950 0.56692   0.00270 0.12381 0.28884 0.39040 

 
 
Table 2. Value of OC function for normally and correlated data 

 

  
K = 2 

 
K = 3 

n γ ρ = 0.0 ρ = 0.2 ρ = 0.5 ρ = 0.8   ρ = 0.0 ρ = 0.2 ρ = 0.5 ρ = 0.8 

5 -2 0.9932 0.3050 0.1981 0.1514 
 

0.8413 0.5932 0.3942 0.2956 

 
-1 0.9997 0.6818 0.5458 0.4663 

 
0.9772 0.8911 0.7647 0.6717 

 
0 0.9999 0.8639 0.7517 0.6708 

 
0.9973 0.9746 0.9167 0.8567 

 
1 0.9997 0.6818 0.5458 0.4663 

 
0.9772 0.8911 0.7647 0.6717 

 
2 0.9932 0.3050 0.1981 0.1514 

 
0.8413 0.5932 0.3942 0.2956 

           
10 -2 0.5000 0.2098 0.1235 0.0930 

 
0.8413 0.4179 0.2350 0.1693 

 
-1 0.8400 0.5633 0.4095 0.3368 

 
0.9772 0.7835 0.5986 0.4987 

 
0 0.9545 0.7680 0.6062 0.5151 

 
0.9973 0.9270 0.7992 0.7052 

 
1 0.8400 0.5633 0.4095 0.3368 

 
0.9772 0.7835 0.5986 0.4987 

 
2 0.5000 0.2098 0.1235 0.0930 

 
0.8413 0.4179 0.2350 0.1693 

           
15 -2 0.5000 0.1638 0.0946 0.0717 

 
0.8413 0.3222 0.1727 0.1248 

 
-1 0.8400 0.4890 0.3409 0.2766 

 
0.9772 0.6995 0.5045 0.4124 

 
0 0.9545 0.6951 0.5205 0.4331 

 
0.9973 0.8762 0.7112 0.6096 

 
1 0.8400 0.4890 0.3409 0.2766 

 
0.9772 0.6995 0.5045 0.4124 

  2 0.5000 0.1638 0.0946 0.0717   0.8413 0.3222 0.1727 0.1248 

Results and Conclusion 

For normal populations with correlation coefficient ρ = 0, 0.2, 0.5, and 0.8, the 

values of Type-I error have been computed and given in Table 1 for k = 2, 3 and 

n = 5, 10, 15. Table 1 clearly indicates that the effect of correlation on Type-I 

error is quite substantial as the error increases with the increase in ρ. For example, 

for n = 5, k = 2, and ρ = 0, 0.2, 0.5, and 0.8, the corresponding values of Type-I 

error are 0.04550, 0.13605, 0.24821, and 0.32911. Though the effect goes on 

decreasing with increasing k, it still affects the value of Type-I error quite largely. 

For non-normal populations we have a similar result (Table 3) as the error goes on 

increasing with an increase in the value of ρ, λ3, and λ4. From Table 2, it is evident 

that the value of the OC are affected seriously as the correlation between the 

observations increases. For example, for ρ = 0, k = 2, n = 5, and γ = ±1, the value 
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of the OC is 0.9997, while for ρ = 0.2, 0.5, 0.8, k = 2, and n = 5, the value reduces 

to 0.6818, 0.5458, 0.4663. For other values of n = 10, 15, we have a similar 

results. The values of the OC for non-normal populations with k = 2, n = 5 and for 

different values of ρ = 0, 0.2, 0.5, 0.8 are given in Table 4. For ρ = 0 and 

(λ3, λ4) = (0, 0) we get tabulated values of Singh, Sankle, and Ahmad (2012), 

which are shown in Table 4. The effect of correlation on the OC function remains 

more or less of the same magnitude when we move from normal to non-normal 

populations. As is evident from the Table 4, for ρ = 0, λ3 = 0, λ4 = 0, and γ = ±1, 

the value of the OC function is 0.8400 while for ρ = 0.5, λ3 = 0.5, λ4 = 0.5, and 

γ = ±1, the corresponding value of the OC function is reduced to 0.3725. On 

changing λ3 (skewness), λ4 (kurtosis), or both at the same time, the value of the 

OC is affected. Therefore, it may be inferred that the violation in the assumptions 

of independence and normality have a serious effect on the control chart 

performance and it is advisable to take into account the dependence and non-

normality of the parent population while designing control charts. 
 
 
Table 3. Values of the Type-I error for non-normally correlated data 

 

   
K = 2 

 
K = 3 

ρ n λ3 λ4=0.0 λ4=0.5 λ4=1.0 λ4=2.0   λ4=0.0 λ4=0.2 λ4=0.5 λ4=0.8 

0.0 5 0.0 0.0455 0.0464 0.0473 0.0491 
 

0.0027 0.0034 0.0040 0.0054 

  
0.5 0.0442 0.0451 0.0459 0.0477 

 
0.0028 0.0035 0.0041 0.0055 

 
10 0.0 0.0455 0.0459 0.0464 0.0473 

 
0.0027 0.0030 0.0034 0.0040 

  
0.5 0.0448 0.0453 0.0457 0.0466 

 
0.0028 0.0031 0.0034 0.0041 

 
15 0.0 0.0455 0.0458 0.0461 0.0467 

 
0.0027 0.0029 0.0031 0.0036 

  
0.5 0.0451 0.0454 0.0456 0.0462 

 
0.0027 0.0030 0.0032 0.0036 

   
         0.2 5 0.0 0.1360 0.1338 0.1315 0.1269 

 
0.0253 0.0275 0.0297 0.0341 

  
0.5 0.1349 0.1326 0.1303 0.1258 

 
0.0235 0.0257 0.0279 0.0323 

 
10 0.0 0.2320 0.2277 0.2234 0.2149 

 
0.0730 0.0734 0.0737 0.0744 

  
0.5 0.2332 0.2290 0.2247 0.2161 

 
0.0711 0.0715 0.0718 0.0725 

 
15 0.0 0.3049 0.2999 0.2950 0.2850 

 
0.1238 0.1226 0.1213 0.1188 

  
0.5 0.3073 0.3023 0.2973 0.2874 

 
0.1228 0.1215 0.1203 0.1178 

   
         0.5 5 0.0 0.2482 0.2384 0.2285 0.2088 

 
0.0833 0.0833 0.0833 0.0833 

  
0.5 0.2516 0.2418 0.2319 0.2122 

 
0.0794 0.0794 0.0794 0.0794 

 
10 0.0 0.3938 0.3814 0.3691 0.3445 

 
0.2008 0.1938 0.1867 0.1727 

  
0.5 0.4012 0.3889 0.3766 0.3519 

 
0.2020 0.1949 0.1879 0.1738 

 
15 0.0 0.4795 0.4673 0.4551 0.4307 

 
0.2888 0.2788 0.2687 0.2487 

  
0.5 0.4878 0.4756 0.4634 0.4390 

 
0.2933 0.2833 0.2732 0.2531 
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Table 3, continued. 

 

   
K = 2 

 
K = 3 

ρ n λ3 λ4=0.0 λ4=0.5 λ4=1.0 λ4=2.0   λ4=0.0 λ4=0.2 λ4=0.5 λ4=0.8 

0.8 5 0.0 0.3291 0.3118 0.2944 0.2598 
 

0.1432 0.1372 0.1312 0.1192 

  
0.5 0.3381 0.3208 0.3034 0.2688 

 
0.1411 0.1351 0.1291 0.1171 

 
10 0.0 0.4849 0.4662 0.4474 0.4099 

 
0.2948 0.2791 0.2634 0.2320 

  
0.5 0.4978 0.4790 0.4603 0.4228 

 
0.3020 0.2863 0.2706 0.2392 

 
15 0.0 0.5669 0.5494 0.5318 0.4967 

 
0.3904 0.3722 0.3541 0.3177 

    0.5 0.5799 0.5623 0.5447 0.5096   0.4013 0.3832 0.3650 0.3286 

 
 
Table 4. Values of OC function for non-normally correlated data 

 

  

(λ3, λ4) 

ρ γ (0.0,0.0) (0.0,0.5) (0.0,1.0) (0.0,2.0) (0.5,0.0) (0.5,0.5) (0.5,1.0) (0.5,2.0) 

0.0 -2 0.5000 0.5000 0.4999 0.4999 0.4850 0.4850 0.4849 0.4849 

 
-1 0.8400 0.8408 0.8417 0.8434 0.8396 0.8413 0.8430 0.8464 

 
0 0.9545 0.9540 0.9536 0.9527 0.9545 0.9536 0.9527 0.9509 

 
1 0.8400 0.8408 0.8417 0.8434 0.8404 0.8420 0.8437 0.8471 

 
2 0.5000 0.5000 0.4999 0.4999 0.5150 0.5149 0.5149 0.5148 

  
        0.2 -2 0.2098 0.2063 0.2028 0.1957 0.2022 0.1986 0.1951 0.1881 

 
-1 0.5633 0.5638 0.5643 0.5653 0.5633 0.5430 0.5435 0.5445 

 
0 0.7680 0.7723 0.7766 0.7851 0.7680 0.7723 0.7766 0.7851 

 
1 0.5633 0.5638 0.5643 0.5653 0.5633 0.5846 0.5851 0.5861 

 
2 0.2098 0.2063 0.2028 0.1957 0.1229 0.2139 0.2104 0.2033 

  
        0.5 -2 0.1235 0.1178 0.1120 0.1006 0.1229 0.1172 0.1115 0.1000 

 
-1 0.4095 0.4069 0.4042 0.3990 0.3752 0.3725 0.3699 0.3646 

 
0 0.6062 0.6186 0.6309 0.6555 0.6062 0.6186 0.6309 0.6555 

 
1 0.4095 0.4069 0.4042 0.3990 0.4439 0.4413 0.4386 0.4333 

 
2 0.1235 0.1178 0.1120 0.1006 0.1241 0.1183 0.1126 0.1012 

          0.8 -2 0.0930 0.0860 0.0790 0.0649 0.0968 0.0898 0.0828 0.0687 

 
-1 0.3368 0.3314 0.3260 0.3152 0.3314 0.3314 0.3260 0.3152 

 
0 0.5151 0.5338 0.5526 0.5901 0.5338 0.5338 0.5526 0.5901 

 
1 0.3368 0.3314 0.3260 0.3152 0.3314 0.3314 0.3260 0.3152 

  2 0.0930 0.0860 0.0790 0.0649 0.0860 0.0860 0.0790 0.0649 
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Shape-based feature extraction in content-based image retrieval is an important research 
area at present. An algorithm is presented, based on shape features, to enhance the set of 
features useful in a leaf identification system. 
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Introduction 

The recognition and identification of plants permits exploration of the genetic 

relationship and evolutionary law of plant systems. When recognizing and 

identifying plants, leaf, flower, stem, fruit and other discriminating features are 

observed. Eventually, computers will conduct the recognition of plants 

automatically or semi-automatically.  

Content-based retrieval methods may be classified by features such as shape, 

color, or texture. They are divided into subclasses by the types of algorithm used 

for constructing the feature vector. 

Shape is an important visual feature, and it is one of the primary features for 

image content description. However, shape description is difficult, because it is 

demanding to define perceptual shape features that measure the similarity 

between the shapes. The problem is more complex if shape is corrupted with 

noise, defection, arbitrary distortion, or occlusion. Shape has been an active 

research area for over thirty years. In the past, shape research has been driven 

https://doi.org/10.22237/jmasm/1493598420
mailto:bviji0677@gmail.com
mailto:vmohan@tce.edu
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mainly by object recognition. As a result, techniques of shape representation and 

description mostly target particular applications such as leaf classification. 

The centroid radius model is frequently used as a shape feature. The 

centroid radius describes the length of a radius from its centroid to its boundary, 

and the model captures these lengths at regular intervals as shape descriptors, 

using the Euclidean distance. These distances are considered features for shape 

description.  

Let θ be the regular interval (measured in degrees) between the radii. At that 

point, the number of intervals given by k = (360/θ). Numbers of features depend 

on the fixed value of θ, and this strategy cannot measure many features of the 

specific region. This conventional radii model generates the vector that is the 

normalized length of radius for shape representation. The vector depends on the 

order of the radii. 

The purpose of this study is to propose a new shape descriptor, based on a 

center point and a border of the circle and contour of the leaf, which is more 

effective for shape description and retrieval. It overcomes the limitation of earlier 

descriptors by calculating radius (distance) in distinctive ways, and by upgrading 

the set of feature values. Distance will be calculated between the contour of the 

circle and contour of leaf image, rather than between the center point and border 

of leaves. 

This descriptor leads to identification of plant leaves based on a leaf query 

using shape features such as contour of leaf, center point of the leaf, and border of 

the circle in addition to radius. The prototype of this system has been 

implemented and the experiment results prove the effectiveness and superiority of 

the proposed method. 

Existing Method 

Centroid Radii Model (CRM) 

Tan et al. (2003) proposed the centroid radii model (CRM) for estimating shapes 

of objects in images. A shape is defined to be an area of black with a background 

of white. Each pixel is represented by its color (black or white) and its x/y 

coordinates on the canvas. The boundary of a shape consists of a series of 

boundary points. A boundary point is a black pixel with at least one white pixel as 

its neighbor. Let (xi, yi), i = 1, …, n represent the shape having n boundary points. 

The centroid is located at the position C(Xc,Yc) which are respectively, the average 

of the x and y co-ordinates for all black pixels: 



463 

 1

n

ii
c

x
X

n




  (1) 

 

 1

n

ii
c

y
Y

n




  (2) 

 

A radius is a straight line joining the centroid to a boundary point. In the 

CRM, lengths of a shape’s radii from its centroid to the boundary are captured as 

the shape descriptor at regular intervals using the Euclidean distance. More 

formally, let θ be the regular interval (measured in degrees) between radii (Figure 

1). Then, the number of intervals is given by k = (360/θ).  The length Li of the ith 

radius formed by joining the centroid C(Xc,Yc) to the ith sample point si(Xi,Yi) is 

given by: 

 

    
2 2

i c i c iL X x Y y      (3) 

 

All radii lengths are normalized by dividing with the longest radius length 

from the set of radii lengths extracted. Let the individual radii lengths be  

L1, L2, L3, …, Lk Where k is the total number of radii drawn at an angle. If the 

maximum radius length is Lmax, the normalized radii lengths are given by: 
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Furthermore, without loss of generality, suppose that the intervals are taken 

clockwise starting from the x-axis direction (00). Then, the shape descriptor can be 

represented as a vector consisting of an ordered sequence of normalized radii 

lengths: 

 

   0 2 1
, , , ,

k
S l l l l  
   (5) 

 

Here, liθ, 0 ≤ i ≤ (K − 1) is the (i + 1)th radius from the centroid to the 

boundary of the shape. With sufficient number of radii, dissimilar shapes can be 

differentiated from each other. 
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Figure 1. The centroid radii modeling of shape 

 

 

Midpoint Circle Algorithm 

One of the fundamental graphics primitives is the circle. The most efficient 

conventional algorithm for drawing a circle is the mid-point algorithm, based on 

Bresenham's approach (Bresenham, 1977; Ray, 2006). The mid-point algorithm 

starts on a quadrant boundary, and generates pixel by pixel, making either an axial 

or a diagonal move, depending on the sign of the decision variable. 

A circle is defined as a set of points that are all at a given distance r from a 

center positioned at (Xc,Yc). This is represented mathematically by the equation 

 

    
2 2 2

c cx x y y r      (6) 

 

Using equation (6), calculate the value of y for each given value of x as 

 

  
22

c cy y r X X      (7) 

 
Thus, it is possible to calculate different pairs by giving step increments to x 

and calculating the corresponding value of y. The midpoint circle algorithm uses 

an alternative approach, wherein the pixel positions along the circle are 

determined on the basis of incremental calculations of a decision parameter. 

Let  

 

      
2 2 2, c cf x y x x y y r       (8) 
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Thus, f(x,y) = 0 represents the equation of a circle. Further, from coordinate 

geometry, for any point the following holds: 

 

1. f(x,y) = 0   → The point lies on the circle. 

2. f(x,y) < 0  →  The point lies within the circle. 

3. f(x,y) > 0   → The point lies outside the circle. 

 

In the midpoint circle algorithm, the decision parameter at the kth step is the 

circle function evaluated using the coordinates of the midpoint of the two pixel 

centers, which are the next possible pixel position to be plotted. 

Assume that unit increments to x in the plotting process given, and the y 

position is determined using this algorithm. Assuming that the kth pixel is plotted 

at (Xk,Yk) to determine whether the pixel at the position (Xk + 1, Yk), or the one at 

(Xk + 1,Yk − 1), is closer to the circle as shown in Figure 2. 
 

 

   
 
 Figure 2. Plotting of the midpoint  Figure 3. Eight-way symmetry 

 

 

 

The decision parameter pk at the kth step is the circle function evaluated at 

the midpoint of these two pixels. 

The coordinates of the midpoint of these two pixels are (Xk + 1, Yk − ½). 

Thus pk, 

 

  
22 21 1

2 2
1, 1k k k k kp f X Y X Y r          (9) 
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Symmetry of a circle calculation of a circle point (x,y) in one octant yields 

the circle points shown for the other seven octants, as shown in Figure 3. 

The steps involved in the midpoint circle algorithm are as follows: 

 

1. Input radius r and circle center (Xc,Yc), and obtain the first point on 

the circumference of a circle centered on the origin as  

 

    0 0, 0,X Y r   (10) 

 

2. Calculate the initial value of the decision parameter as  

 

 0

5

4
p r    (11) 

 

3. At each Xk position, starting at k = 0, perform the following test: if 

pk < 0, the next point along the circle centered on (0,0) is (Xk+1,Yk ) 

and p 

 

 
1 12 1k k kp p x      (12) 

 

otherwise, the next point along the circle is (Xk + 1,Yk – 1).  And 

 

 1 1 12 1 2k k k kp p x y        (13) 

 

where  

 

 1 12 2 2 and 2 2 2.k k k kx x y y       

 

4. Determine symmetry points in the other seven octants. 

5. Move each calculated pixel position (x,y) onto the circular path 

centered on (Xc,Yc) and plot the coordinate values. 

 

 ,c cx x x y y y      

 

6. Repeat steps 3 through 5 until x ≥ y. 

 

By using this algorithm, a circle will be formed in a two-dimensional plane. 
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Related Works 

Chaki and Parekh (2011) proposed an approach that consists of comparing 

binary versions of the leaf images through superposition and using the sum of 

nonzero pixel values of the resultant as the feature vector. Consider the invariant 

(M-I) model and centroid radii (C-R) model. In M-I, central moments and 

normalized central moments are calculated.  In C-R, the length of a shape’s radii 

from its centroid of the boundary is captured at regular intervals as the shape 

descriptor using Euclidean distance. In the method, two images are in binary 

superposition; a large-value sum would indicate high similarity between images, 

and a small-value sum would indicate low similarity between images. A 

comparison of the recognition accuracy of these two methods with a proposed 

method used 180 leaf images from the plantScan database, three classes of 60 

samples each. From that set, 120 images were used for training and 60 images 

were tested. 

Lee and Hong (2013) proposed a leaf recognition system for plant 

classification, employing major vein, frequency domain data by using fast Fourier 

transformation. Dilation and erosion operations were used to extract leaf veins, 

and a projection histogram was calculated for both horizontal and vertical 

directions in order to measure the vein distribution of the leaf. The authors 

extracted 10 features, using fast Fourier transformation, distance, and phase; 

another 10 features were extracted using leaf length, width, area, and perimeter; 

and a final feature, convex hull, was also extracted. This system was applied to 

1970 leaf images, consisting of 32 types of leaves with 50 to 77 samples each and 

implemented in VC++ 6.0, Intel OpenCV Library. The accuracy of this method 

was reported at 97.19%. 

Deokar, Zope, and Suralkar (2013) presented feature point extraction. The 

feature points were extracted from a leaf image based on the geometric center. 

The authors proposed two schemes, vertical and horizontal, to extract feature 

points. In the vertical scheme, leaf images are split vertically in half with respect 

to a central point. Each half is then split horizontally in a number of repetitions, 

until 14 feature points are obtained. This process is repeated starting on the leaf’s 

horizontal access, obtaining 14 more feature points for a total of 28. 

Fulsoundar, Kadlag, Bhadale, Bharvirkar & Godse (2014) created an 

Android application to identify plant species based on photographs of the plant’s 

leaves taken with a mobile phone. At the heart of this application is an algorithm 

that acquires morphological features of the leaves, computes well-documented 

metrics consisting of the angle code histogram (ACH), and classifies the species. 

The first algorithm was prepared against several samples of known plant species 
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after being used to classify unknown query species. Supported by features 

designed into the application such as touch screen image rotation and contour 

preview, the algorithm has been very successful in properly classifying species 

inside the training library. 

Bong, M. F., Sulong, G., Kumoi, R., & Rahim, M. S. M. (2015) proposed a 

novel approach to cluster the species of plants based on their lobes, sinuses and 

margin. Firstly, all the boundary points in a clockwise or anticlockwise direction 

were selected. Then, a center point for leaf boundary points was estimated, and 

used to compute the distance between the leaf boundary points and the center. 

Next, the peaks and valleys from the computed distance were located, where 

peaks represent lobes and valleys represent the sinuses. The number of peaks and 

valleys was calculated to cluster the plant, according to a rule-based method. The 

accuracy of this method for plant clustering is up to 100 percent. 

The Proposed Circle-based Radii Model (CBRM) 

A new Circle-based Radii Model is now proposed for shape descriptor. A circle is 

formed by using a midpoint circle algorithm based on the center point of the leaf, 

as discussed earlier under that heading. Here, the radius is 0.5, after forming the 

circle; the proposed method uses two phases to obtain four feature points on the 

circle of a leaf image in the two-dimensional plane. 

Architecture of the Circle-based Radii Model 

The architecture of proposed circle-based radii model for the plant leaf 

recognition of 2D objects is given in the Figure 4. 
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Figure 4. Architecture for leaf recognition system 

 

 
 

It includes the following stages: preprocessing, circle formation and feature 

extraction. 

Preprocessing 

The leaf images may be acquired utilizing an advanced digital camera. 

There is no confinement on image resolution or format. Resulting digital images 

are usually in RGB color space; some may be grayscale. The fundamental 

objective of preprocessing is to a) identify the leaf in an image and b) discard all 

information other than the leaf shape. The initial step is to resize all the leaves to 

256×256, then convert any RGB image to grayscale. Below is the equation used 

to convert RGB value of a pixel to its grayscale value. 

 

 Gray = 0.2989*R + 0.5870*G + 0.1140*B (14) 

 

where R, G, B corresponds to color of the pixel. 

Finally, the Sobel edge detection method is applied to the resulting image. 

The entire procedure is shown in Figure 5. 
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Figure 5. Sample of color to gray conversion and contour extraction of Leaf 

 

 
 

 
 
Figure 6. Circle formation within leaf 

 

 

Circle Formation inside the Leaf 

Once the contour of the leaf image is detected, a circle is formed based on 

the center point of the leaf image by using the midpoint circle algorithm. In the 

midpoint circle algorithm, an eight-way symmetry sample is used as in Figure 3. 
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The midpoint circle algorithm works on the same midpoint concept as 

Bresenham’s line algorithm (Bresenham, 1977). Figure 6 shows the circle 

arrangement inside the leaf image. 

Feature Extraction 

The proposed techniques of the circle-based radii model (CBRM) are discussed 

here. Subsequent to forming the circle, the method obtains four feature points on 

the circle of a leaf image in the two-dimensional plane. The distance is calculated 

between the contour of the circle and the contour of the leaf image as shown in 

Figure 7. They are described as: 

The distance between the contour of the circle (xi,yi) and the contour of the 

leaf image (xr,yr) is called Realdistance, and is shown in Figure 7. 

The distance between a point in a vertical or horizontal line running through 

the center point (xc,yc) and contour of circle (xi,yi) is called Imaginarydistance. 
 
 

 
 
Figure 7. Circle-based radii model (CBRM) 

 

 
 

In the proposed method, the Realdistance (RD) are calculated using 

equation (15) for feature extraction: 

 

    
2 2

i i r i rRD X x Y y      (15) 
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In the first phase, splitting the circle vertically through the center derives its 

top and bottom points. Then, left-to-right row-wise scanning from the top point of 

the circle to the leaf contour is conducted to the bottom point, as illustrated in 

Figure 8(a). Euclidean distance is calculated between the contour of the circle and 

contour of the leaf image, rather than between the center point and border of 

leaves. This set of Realdistance values is considered the first set of feature points 

for shape description. The process is repeated in the opposite direction, as shown 

in Figure 8(b), resulting in the second set of shape descriptor features. 

The second phase repeats this process, splitting the circle horizontally and 

measuring similar distances vertically, to derive the third and fourth set of shape 

descriptor features, as illustrated in Figure 8(c) and 8(d). 
 
 

 
 
Figure 8. Real distance calculation (a) Right direction (b) Left direction (c) Top direction 

(d) Down direction 

 

 

Algorithm: Circle-based Radii Model 

The CBRM algorithm for radius calculation is summarized in the following 

steps. 

 

Input:  Image and radius 

Output: N number of features 

 

Step 1:  Load the image and detect the border of the image. 

 

Step 2:  Assign image size as [a,b] 
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Step 3:  Find the center point of the image (xc,yc) 

 

Step 4:  Draw the circle by using Midpoint circle algorithm. 

 

Assign: 

Center point  =  (xc,yc) 

Top point        =  (xc – radius, yc) 

Bottom point  =  (xc + radius, yc) 

Leaf point        =  (xc,yc  – radius) 

Right Point      = (xc,yc  + radius) 

Count = 0, Flag = 0 

 

The following steps are used to extract the features by vertical splitting of 

the circle 

 

Step 1:  Divide the circle in half vertically from the top point to the bottom 

point.  

 

Apply steps 2 to 7 to right half of the circle.  

 

Step 2:  Start scanning from top point to the bottom point in a row-wise 

manner. 

 

Step 3:  Take the every column value and check the following conditions 

one by one. 

 

Step 4:  Check image (i,j) is equal to the border of the circle or not. If it is 

bordered, assign Flag = 1.  

 

Step 5:  Check flag > 0 (zero), get the value of (xi,yi) coordinate 

 

Step 6:  Check image (i,j) is equal to border of the image. If it is  

i. Get the value of (xr,yr) coordinate 

ii. Calculate the distance using equation (15) 

iii. Reassign Flag = 0 (zero) 
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Step 7:  Go to the next row, repeat the steps from 4 to 7 until the bottom 

point of the circle. These are considered the first set of features for 

shape description  

 

Step 8:  Repeat the steps 2 to 7 to the left half side of the circle. This 

process will produce the second set of feature values. 

 

The following steps are used to extract sets three and four: 

 

Step 10:  Divide the circle in half horizontally from the leftmost point to the 

rightmost point. 

 

Step 11:  Start reading from the left point to the right point in column wise 

manner. 

 

Step 12:  Take the every row value of each column and check the following 

conditions one by one, as in steps 4 to 6. 

 

Step 13:  Go to the next column, repeat the steps 4 to 6 until right point of 

the circle. 

 

Step 14:  Repeat the steps 4 to 6 to bottom half side of the circle. 

 

Calculating all distances in four directions in this way, the number of 

features and sets of feature values will be obtained. 

Experiments and Results 

Plant leaves classification framework is developed and executed in 

MATLABR2009b, to test the retrieval effectiveness and performance of the 

CBRM. To evaluate the effectiveness of the proposed approach, recognition 

procedure is carried out on a large texture dataset, provided by the Intelligent 

Computing Laboratory at the Chinese Academy of Science (ICL CAS, n.d.). 

Samples of leaf images belonging to various classes are shown in Figure 9. A 

sample converted gray scale leaf image is shown in Figure 10. 

Experiments are performed by using 50 of 220 classes from the ICL dataset. 

Fifteen leaves are selected randomly from each class. 750 total (15×50 classes) 

sample leaves are trained. In conventional centroid radii model, twelve features 
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are extracted when θ = 30°. Using the proposed method, 11 features are extracted 

from each direction, for a total of 44. Extracted feature values are stored in feature 

vector. In the end, the dataset generates 33,000 (750 leaves × 44 features) feature 

values. 
 
 

   
 
 Figure 9. A sample of plant leaf images  Figure 10. Transformed gray scale leaf  

 taken from the ICL plant leaf dataset image 

 

 

 

Presented in Figure 11 are the results obtained with CBRM. In the testing 

phase, 15,000 leaves were tested randomly for the accuracy of the proposed 

technique. The recognition process is carried out by comparing the length of the 

tested circle radii with the reference. The input query image feature vector is 

compared with trained feature set using SVM classifier. Average of recognition of 

each class is given in Table 1. The performance comparison of the proposed 

CBRM with the centroid radii model is shown in Figure 12. The accuracy rate of 

the proposed method is shown to be 93.33%. 
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Figure 11. Set of feature value of trained leaves 

 

 
 
Table 1. CBRM recognition accuracy for each class of leaf 

 

Class Accuracy   Class Accuracy   Class Accuracy   Class Accuracy   Class Accuracy 

1 90% 
 

11 95% 
 

21 89% 
 

31 94% 
 

41 88% 

2 92% 
 

12 88% 
 

22 89% 
 

32 93% 
 

42 87% 

3 94% 
 

13 84% 
 

23 92% 
 

33 95% 
 

43 96% 

4 90% 
 

14 94% 
 

24 92% 
 

34 94% 
 

44 95% 

5 90% 
 

15 93% 
 

25 94% 
 

35 84% 
 

45 97% 

6 89% 
 

16 91% 
 

26 97% 
 

36 96% 
 

46 93% 

7 86% 
 

17 97% 
 

27 86% 
 

37 95% 
 

47 92% 

8 92% 
 

18 88% 
 

28 95% 
 

38 94% 
 

48 96% 

9 86% 
 

19 86% 
 

29 89% 
 

39 93% 
 

49 96% 

10 84%   20 84%   30 89%   40 89%   50 93% 
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Figure 12. Performance comparison graph of the proposed circle-based radii model with 

the centroid radii model 

 

 
 

Shown in Figure 13 is the 3D view-confusion matrix of the proposed circle-

based radii model. Shown in Figure 14 is the 3D view of positive classification 

rate of the circle-based radii model. Shown in Figure 15 is the accuracy of the 

proposed circle-based Radii model. 
 
 

   
 
 Figure 13. 3D view-confusion matrix of  Figure 14. 3D view of positive classifi- 

 circle based radii model cation rate of circle-based radii model 
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Figure 15. Accuracy of proposed circle-based radii model 

 

 

Conclusion 

One of the most important low-level features in content-based image retrieval is 

the shape. In this study a new shape descriptor, the circle-based radii model, was 

proposed. It is based on the center point and border of a circle centered inside the 

contour of a leaf. It is a successful feature extraction technique for the plant leaf 

classification system. 

In the conventional method, the centroid radii model, the lengths of the radii 

from the centroid to the boundary are used to represent the shape, and the angular 

interval between radii is fixed. This conventional radii model generates a vector 

that is the normalized length of radii for shape representation. The vector depends 

on the order of the radius. 

The proposed shape descriptor differs from the conventional centroid radii 

model in such a way that the distance will be calculated between the contour of 
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the circle and contour of leaf image, instead of calculating distance between the 

center point and border of the leaf. In this method, 44 features are extracted from 

every leaf in specified regions and compared with standard database features of 

the trained leaf images by using the SVM classifier.  

By using the proposed method, the plant has been identified successfully in 

a large number of classes. The proposed method upgrades the set of feature values. 

The experimental results indicate that the proposed method shows significant 

improvement in terms of the increased number of features, and enhances the 

feature value. Accuracy of proposed circle-based radii model for the shape 

descriptor is 93.33% (the centroid radii model achieves 85.92% accuracy), 

indicating that the circle-based radii model is more suitable for a plant leaf 

classification system given its high retrieval performance. 
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The purpose of this study is to re-analyze the atmospheric science component of the 
Florida Public Hurricane Loss Model v. 5.0, in order to investigate if the distributional 

fits used for the model parameters could be improved upon. We consider alternate fits for 
annual hurricane occurrence, radius of maximum winds and the pressure profile 
parameter. 
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Introduction 

Hurricanes are one of the greatest natural hazards; relatively rare in occurrence 

but capable of causing colossal economic losses. In 1992, “when Hurricane 

Andrew struck Florida it caused over $30 billion in direct economic losses” 

(Lokupitiya, Borgman, & Anderson-Sprecher, 2005, p. 4394). Hurricane 

modeling has become a widely used tool for assessing risks associated with 

windstorm catastrophes. Since the groundbreaking studies of Russell (1968, 1971) 

and Tryggvason, Davenport, and Surry (1976), the modeling methods have 

improved significantly due to increased computing capabilities, new advanced 

physical and statistical models, and vast growth in quantity and quality of 

available data. Several private models for simulating hurricane loss have been 
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developed in the recent years for use in the State of Florida, but such models 

typically are commercial and are not available to the research community and 

public. The Florida Public Hurricane Loss Model (FPHLM) is a notable exception. 

The FPHLM is an open public hurricane loss evaluation model, which was 

developed jointly by specialists in the fields of meteorology, engineering, 

computer science, finance, and statistics from the Florida State University system 

(SUS), National Oceanic and Atmospheric Administration (NOAA) Hurricane 

Research Division, and the University of Miami. This model was created “for the 

purpose of probabilistic assessment of risk to insured residential property 

associated with wind damage from hurricanes” (Hamid et al., 2005, p. 552). 

FPHLM consists of three main components: first, the atmospheric science 

component which models the track and intensity of hurricanes that threaten 

Florida; second, the engineering component which models vulnerability of 

insured property; and third, the actuarial science component which models the 

insured loss. In order to be used for rate making purposes in the State of Florida, a 

model has to the rigorous statistical standards set by the Florida Commission for 

Hurricane Loss Projection Methodology (FCHLPM.) The purpose of this study it 

to re-analyze some of the components of the atmospheric component of the 

FPHLM v 5.0 model certified by the commission in 2011. 

The atmospheric science component simulates thousands of storms, their 

wind speeds, and their decay once on land based on historical hurricane statistics, 

thus defining probabilistic wind risk for all residential zip codes in Florida. The 

wind risk information is then passed on to the engineering and actuarial science 

components to assess damage and annual insured loss. Each component is 

developed independently and delivered as a one-way input to the next component 

in line until the end result is achieved. We now look at the atmospheric science 

component in details. 

The first step in modeling annual wind risk for a zip code is the 

determination of a model for the annual hurricane occurrence (AHO). FPHLM 

uses a non-parametric method to estimate annual hurricane occurrence, in that we 

sample from historical records to determine the number of hurricanes in a given 

year. The research question was if a parametric distribution could be used to 

estimate AHO instead. The two alternative distributions were the Poisson 

distribution that assumes homogenous hurricane frequencies (the mean number of 

hurricanes in any two years is the same) or the Negative Binomial distribution 

that assumes a non-homogenous annual occurrence rate. 

In addition to investigating fits for AHO, it was also decided to reanalyze 

two other important storm parameters, radius of maximum winds, Rmax, and the 
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pressure profile parameter, Holland B. These two variables are important for 

estimating loss. Greater values of the radius of maximum winds imply greater 

losses and, similarly, lower values of central pressure mean a more intense 

hurricane and therefore higher losses. 

The sensitivity and uncertainty analysis shows that loss costs are fairly 

sensitive to Holland B and Rmax regardless of hurricane category. FPHLM has 

historically used the Gamma distribution to fit Rmax. The question arose, however, 

if there were other distributions that might provide better fits for Rmax. 

Holland B is an additional parameter defining the pressure field and 

maximum wind speeds in a hurricane. It was introduced by Holland (1980) and 

has been used in many hurricane threat studies since. FHPLM shows that the 

Holland B parameter is inversely correlated with both the size and latitude of the 

hurricane. Here we investigate alternate models for Holland B and see if they 

explain more of the variability in Holland B as compared to the present model. 

As specified by the FCHLPM, analysis of annual hurricane occurrence and 

radius of maximum winds (for PHLM v 5.0) is based on the data obtained from 

historical record for the Atlantic tropical cyclone basin (known as HURDAT) for 

the period from 1901 till 2010. Earlier data is available but not used due to lack of 

population centers and uncertainties about meteorological measurements before 

the start of 20th century. The model for the Holland B pressure profile parameter is 

developed based on a subset of the data published by Willoughby and Rahn 

(2004) and obtained by NOAA and U.S. Air Force Reserve aircraft between 1977 

and 2000. 

To find the best fitting distribution, a preliminary analysis of the data was 

conducted through the use of EasyFit software which allows us to easily fit a large 

number of distributions to the data. Estimated parameters of the best fitting 

distributions were then found using the maximum likelihood estimator (MLE) 

method. In order to determine how well the selected distributions fit the data, they 

were tested for goodness-of-fit using Kolmogorov-Smirnov, Anderson-Darling, 

and Chi-Squared tests. Along with the goodness-of-fit tests, the probability 

density function graphs, Q-Q, and P-P plots were also used to enable visual 

assessment of the goodness-of-fit and empirically compare several fitted models. 

In order to determine the model for the estimation of Holland B, multiple 

regression analysis was performed using the PROC REG procedure in SAS. 
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Annual Hurricane Occurrence 

The first step in the study of hurricanes and their impacts is to determine the 

frequency with which they occur. Annual Hurricane Occurrence (AHO) rate 

estimates “the frequency of hurricanes occurring in a series of years based on an 

associated hurricane occurrence probability distribution, which is obtained 

through statistical analysis and calculation on the basis of historical hurricane 

records” (Chen et al., 2004, p. 6). In the recent years, substantial research in the 

area of modeling the occurrence of hurricanes has been done by Chen et al. (2003, 

2004), Gray, Landsea, Mielke, and Berry (1992), Elsner and Schmertmann (1993), 

and Elsner and Jagger (2004). The basic principle of these papers was to develop 

the statistical models from the available historical data in order to estimate AHO. 

Based on the obtained probability distributions, the number of hurricanes per year 

in the future is produced for a desired number of years. 

The Poisson and the Negative Binomial distributions are often used by 

modeling agencies to model AHO. The rate of occurrence of a stochastic process 

is typically described by the use of the Poisson distribution. However, Poisson 

distributions assume the mean number of storms in any two non-overlapping time 

intervals of the same length to be equal. To allow those means to be unequal will 

lead to the modeling of the annual occurrence by the Negative Binomial 

distribution. General guiding principles as to the adequacy of the two distributions 

have been discussed (Thom, 1966), but one cannot accurately determine which 

model is appropriate until necessary tests are conducted. In this section we 

determine whether the Poisson or the Negative Binomial is adequate in describing 

the distribution of the annual hurricane occurrence. 

For the assessment of the AHO distribution to be conducted, a suitable data 

set has to be obtained. Annual counts of tropical storms and hurricanes in the 

Atlantic Ocean are obtained from the HURDAT (National Oceanic and 

Atmospheric Administration’s Hurricane Research Division, 2012) database, 

which is maintained by the National Hurricane Center in Miami, Florida and the 

National Climatic Data Center in Asheville, North Carolina. This historical record 

for the Atlantic tropical cyclone basin contains positions and intensities of tropical 

storms and hurricanes recorded every six hours from 1851 onwards. However, as 

specified by the commission, we use data starting from 1901 for our research due 

to the unreliability of 19th century data. At the time as this research was conducted, 

the FPHLM was based on the period 1901-2010, thus all our analysis is conducted 

on the HURDAT data from 1901-2010. In its analysis of the hurricane counts, 

FPHLM does not count all hurricanes in the Atlantic. Instead, it counts only the 
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storms in a “threat area” (Figure 1) – within 1000 km of a location (26.0 N, 82.0 

W) – in order to focus on storms capable of affecting residential property in 

Florida. 

In order to obtain the number of hurricanes in each year from 1901 to 2010, 

FPHLM looks at each hurricane and its six hourly positions recorded by 

HURDAT. The first time a hurricane entered the threat area during its track was 

counted as an occurrence. Subsequent entries by the same storm were not counted, 

so that any hurricanes could only be counted once. The annual number of 

hurricanes in any given year range between 0 and 5 with mean 1.1091 and 

standard deviation 1.1704, as seen in the summary statistics for AHO in Table 1. 

Each storm is considered as a point event in time, occurring independently. 

If λ is a measure of the historically based number of events per year, then 

P(X = x | λ) defines the probability of having x events per year, which is given by 

the Poisson probability distribution function (PDF) 
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Figure 1. Florida hurricane threat area 
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Table 1. Descriptive statistics of annual occurrence rate 

 

Sample Size (N) 110 Min 0 

Mean 1.1091 Median 1 

Variance 1.3699 Max 5 

Std Deviation 1.1704 Range 5 

 
 

The parameter λ of the Poisson distribution can be estimated from data by 

the maximum likelihood estimator 
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where xi is the number of events in a given year and N is the total number of years. 

However, if it is assumed that the number of events X has a Negative 

Binomial distribution, then the corresponding pdf for the distribution is given by 
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where Γ is the gamma function and m and k are parameters of the distribution. 

The MLEs of the parameters m and k can be obtained as 
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where s2 is the sample variance. 

The parameters of both the Poisson and Negative Binomial distributions 

were estimated using annual number of hurricanes dataset and results are 

presented in Table 2. 
 
 
Table 2. Estimated parameters of the distribution for AHO data 
 

Distribution Parameter Values 

Poisson λ = 1.1091 

Negative Binomial n = 4, p = 0.8096 
 

Note: The parameters of the negative binomial distribution are n = k + m and p = k/(m + k) 
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Table 3. Goodness-of-fit tests for AHO data 

 

 

Chi-Squared 
 

Kolmogov-Smrinov 
 

Anderson-Darling 

Distribution Statistic p-value Rank   Statistic Rank   Statistic Rank 

Poisson 1.71979 0.88640 1 
 

0.32986 1 
 

16.465 1 

Neg. Binomial 2.83815 0.58527 2   0.42963 2   28.094 2 

 
 

 
 
Figure 2. Comparison of simulated vs. historical occurrences 

 

 
 

 
 
Figure 3. P-P plot 
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Once distributions were fitted, it was decided to conduct goodness-of-fit 

tests to see which distribution provided a better fit. The tests considered were the 

Kolmogorov-Smirnov test, the chi-square test, and the Anderson-Darling test. The 

results are given in Table 3. It is clear the Poisson distribution provides a better fit 

for AHO using the threat area. 

The distribution graphs were examined to provide a visual assessment and 

an empirical comparison of the goodness-of-fit. Indicated in Figure 2 are the 

occurrence rates of historical and modeled hurricane data. A P-P plot of the fitted 

distributions is presented in Figure 3. It is not clear from Figure 2 which 

distribution provides a better fit, but Figure 3 does make it clear that the Poisson 

distribution is a better fit in keeping with the goodness-of-fit tests. 

It was concluded the best fitting distribution for the annual hurricane 

occurrence for the Florida threat area, based on the results of goodness-of-fit tests 

and the P-P plot, is a Poisson distribution with parameter λ = 1.1091. 

Radius of Maximum Winds 

Consider the wind field model for the FPHLM; specifically, consider the radius of 

maximum winds at landfall, the distance between the center of a cyclone and its 

band of strongest winds. Meteorologists at FPHLM developed an Rmax model 

using a landfall Rmax database from Ho, Su, Hanevich, Smith, and Richards (1987) 

and supplemented by NOAA HRD research flight data and NOAA-HRD H*Wind 

analyses (Powell et al., 2005). The current database includes 112 measurements of 

radius of maximum wind, central pressure, and location at landfall for storms 

from 1901 till 2010. 

Values of Rmax, measured in statute miles, range between 5.75 and 52.9 with 

mean 25.65 and standard deviation 11.2 as seen in Table 4. 

The histogram of the data is depicted in Figure 4 and shows that the Rmax 

data is right-skewed. A preliminary analysis of the Rmax landfall database was 

conducted using the Easyfit software. As initial models, we considered right-

skewed distributions with a maximum of 2 parameters (extra parameters would 

have made the use for the wind field model over-complicated and not practical). 

Moreover, it was desirable to avoid the situations where distributions with more 

parameters may well fit the data better because of a lot more flexibility in shape, 

but then the apparent improvement would be spurious due to over-fitting. 
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Table 4. Descriptive statistics of radius of maximum winds 

 

Sample size 112 Min 5.75 

Mean 25.649 Median 24.725 

Variance 125.31 Max 52.9 

Std. deviation 11.194 Range 47.15 

 
 

 
 
Figure 4. Probability density function radius of maximum winds 

 

 
 

Five distributions that were found to be a good fit for modeling Rmax based 

on the above criteria were Gamma, Lognormal, Rayleigh, Weibull, and Inverse 

Gaussian. Gamma and Lognormal are the distributions that were considered in the 

FPHLM and Gamma was chosen as the best fit. Parameters of selected 

distributions were obtained using MLEs and results are presented in the Table 5. 

Once again, they were tested for goodness-of-fit in order to determine how 

well the selected distributions fit the Rmax data. Due to the continuous nature of 

the data and the low power of the chi-squared test, the Anderson-Darling and the 

Kolmogorov-Smirnov tests were employed. They were chosen because they are 

general, apply to all continuous distributions, and have high power. The results 

are presented in Table 6. 

The distributions are ranked according to the p-value of the test, with higher 

p-values indicating a better fit. Regardless of the test being used, both the 

Lognormal and Inverse Gaussian distributions show a poor fit for Rmax data with 



DISTRIBUTION FITS FOR VARIOUS PARAMETERS 

490 

p-values below 0.5 for the K-S test. It was concluded that Lognormal and Inverse 

Gaussian distributions are not good fits and exclude them from further 

consideration. 

The three distributions for be considered further are Weibull, Rayleigh and 

Gamma. Gamma distribution is used to fit the radius of maximum winds in the 

Florida Public Hurricane Loss Evaluation Model, however, notice both the 

Weibull and Rayleigh perform better than the Gamma distribution according to 

the tests. 

In order to finalize the model, a visual inspection of the data set was 

conducted starting with the Probability Density Function Graph for the data. The 

graph displays the theoretical PDFs of the fitted distributions and the histogram of 

the Rmax data (Figures 5 and 6). Because the histogram depends on how the data is 

sorted into bins, two histograms are displayed with the Rmax values binned in 10 

and 15 intervals for comparative analysis. All three distributions are plotted on the 

same graphs. Displaying several distributions at the same time will allow us to 

visually compare the models and determine how they differ. 

Although it is hard to make a decision about better fit based on these graphs 

as they require the arbitrary grouping of the data, Weibull and Rayleigh 

distributions do appear to fit the data better. 
 
 
Table 5. Estimated distribution parameters for Rmax data 
 

Distributions Parameters 

Gamma α = 5.250, β = 4.886 

Lognormal δ = 0.492, μ = 3.136 

Weibull α = 2.474, β = 28.666 

Raleigh δ = 17.293, γ = 3.879 

Inverse Gamma λ = 134.66, μ = 25.650 

 
 
Table 6. Goodness-of-fit tests for Rmax data 

 

 
Kolmogov-Smrinov 

 
Anderson-Darling 

Distributions Statistic p-value Rank   Statistic Rank 

Weibull 0.0494 0.9349 1 
 

0.3226 1 

Rayleigh 0.0561 0.8530 2 
 

0.3006 2 

Gamma 0.0703 0.6124 3 
 

0.5349 3 

Lognormal 0.0904 0.3015 4 
 

1.0419 4 

Inverse Gaussian 0.0953 0.2450 5   1.8773 5 
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Figure 5. PDF graph with Rmax values binned in 10 intervals 

 

 
 

 
 
Figure 6. PDF graph with Rmax values binned in 15 intervals 
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To avoid grouping of the data, consider the Q-Q plot (Figure 7). Although 

all three distributions appear to be good fits based on the Q-Q plot, it appears that 

the Gamma and Rayleigh distributions have points further away from the straight 

line as values of Rmax get larger. This is consistent with the results of the 

Kolmogorov-Smirnov test. Based on the results of the goodness-of-fit test, the 

PDF graph, and the Q-Q plot, it was concluded the Weibull distribution with 

parameters α = 2.4736 and β = 28.666 is the best fit for the Radius of maximum 

winds. 

Although it was shown that the Weibull distribution provided a better fit for 

Rmax based on the data set, the Gamma distribution was used for modeling the 

radius of maximum winds in the FPHLM. The analysis shows the Gamma 

distribution as a possible fit for the radius of maximum winds, although perhaps 

not the best fit. Both the Gamma and Weibull distributions are commonly 

encountered in reliability analysis and it is often difficult to choose between the 

two. Hence, it should be stressed the Gamma distribution was not rejected as a 

possible fit for Rmax. Instead, it was concluded the Weibull might be a better fit. 
 
 

 
 
Figure 7. Q-Q plot 
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Holland B 

Another important parameter of the wind field model is the Holland B parameter. 

Holland B is an additional parameter defining the pressure field and maximum 

wind speeds in a hurricane. It was introduced by Holland in 1980 and has since 

been used in hurricane threat studies by many researchers including Powell et al. 

(2005), James and Mason (2005), Emanuel, Ravela, Vivant, and Risi (2006), Lee 

and Rosowsky (2007), Hall and Jewson (2008), Vickery and Wadhera (2008), and 

Vickery, Masters, Powell, and Wadhera (2009), among others. The relation 

between the pressure of a hurricane, p(r), and the Holland B parameter is given as 

follows: 
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p e
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R

r
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where r is the distance from the center of the storm, pc is the pressure at the center 

of the storm, Δp is the difference between central minimum sea level pressure (pc) 

and the outer peripheral pressure (1013 mb), and Rmax is the radius of maximum 

winds. Thus Holland B allows for the distinction in the maximum wind speeds 

observed in hurricanes for a given Δp (all else being equal). With the introduction 

of the B parameter, the maximum wind speeds in the simulated hurricane are 

proportional to B p  compared to p  otherwise. 

In meteorological literature, Holland B is often modeled as a linear function 

of the location of the storm, the radius of maximum winds, and the central 

pressure difference or deficit Δp. FPHLM uses a similar regression fit for Holland 

B based on a filtered subset of the data published by Willoughby and Rahn (2004). 

The data consist of winds and geo-potential heights obtained by the NOAA and 

U.S. Air Force Reserve aircraft between 1977-2000, supplemented with Δp, the 

pressure deficit, and Rmax values. FPHLM retains 116 profiles filtered as follows: 

 

1) by Height of flight-level pressure surface ≤ 700, 

2) Longitude between 70 and 95 degrees west, 

3) Storm relative flight level Vmax > 33 m/s, 

4) Latitude between 20 and 34 degrees North. 

 

The final fitted model used by FPHLM is based on statistical analysis as 

well as validation using storm tracks and is 
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 2

max1.74425 0.007915 Lat 0.0000084 0.005024B p R       (1) 

 

This model explains about 15% of the variability in the four Holland B. 

Most Holland B models have low R2 values, and the model used by FPHLM 

does have higher R2 values than most available models. It was decided to 

investigate if equation (1) could be further improved on in terms of a higher R2 

value by examining functions of Holland B other than liner functions or by the 

inclusion of other variables. Using the same data set as the one used by the 

FPHLM, we considered various fits for Holland B using latitude, longitude, Δp, 

and Rmax as independent variables. 

Matrix scatter plots indicated that using ln(B) as an dependent variable 

rather than B might yield better fits. However, a detailed stepwise regression 

analysis in SPSS did not yield a better fit when using ln(B) as a dependent 

variable. Stepwise regression indicates that the only variable significant in 

predicting either B or ln(B) is Rmax. Using B as a dependent variable yields an R2 

of 0.112 while using ln(B) as a dependent variable yields an R2 of 0.122. 

Although it appears from the analysis there was no statistical need to use Δp or 

latitude in fitting Holland B, it is not recommended to make changes to the 

present fit for Holland B in the FPHLM; the analysis does not yield a better fit and 

the benefit of validating the fit using actual storms was not available. 

Conclusion 

The FPHLM is the only open public hurricane loss evaluation model available for 

the assessment of hazard to insured residential property related to damage from 

hurricanes in Florida. A numerical analysis of the atmospheric science component 

of the Florida Public Hurricane Loss Model was conducted to determine if it was 

possible to develop alternate models for the various hurricane parameters. 

Based on the results of goodness-of-fit tests, histograms of historical and 

modeled occurrences, and P-P plots, it was concluded that the best fitting 

distribution for the annual hurricane occurrence is the Poisson distribution. The 

radius of maximum winds has a substantial impact on the area affected by 

hurricane and modeling of the Rmax influences the likelihood of the location 

experiencing strong winds in cases of near misses. The Weibull was chosen as the 

best fit for the radius of maximum winds. The fit for Holland B being used by the 

FPHLM could not be improved. It was shown the models presented for Annual 

Hurricane Occurrence and Rmax are better fits than the ones used by FPHLM, 

although it was not recommended the FPHLM change its modeling strategies. The 
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models considered by the FPHLM are consistent with models used in 

meteorological literature. However, this investigation might start a conversation 

in the meteorological community to search for alternate models for modeling 

hurricane parameters. 
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Introduction 

Aging increases susceptibility to age-associated diseases and some of these 

diseases may increase mortality among adults worldwide. The focus of this study 

is on cardiovascular disease and diabetes (CDD) and chronic respiratory 

conditions (CRC). These are life-threatening diseases with increasing incidence. 

Also, there is a geographical effect of the mortality rates of these diseases (World 

Health Organization, 2005). Therefore, countries are grouped into continents 

geographically, but vary across continents. This establishes the need of multilevel 

hierarchical analysis 

Because the existence of a high correlation between these variables, and the 

presence of some common risk factors to these related diseases, a multivariate 

multilevel concept was used to identify the joint effects of some risk factors on 

these two diseases to analyze data more appropriately. A multivariate multilevel 

model can be considered as a collection of multiple dependent variables in a 

hierarchical nature. When the effect of a set of explanatory variables on a set of 

dependent variables shows a considerable difference then it can be handled only 

by means of a multivariate analysis (Snijders & Bosker, 2012). 

https://doi.org/10.22237/jmasm/1493598540
mailto:nishikaoshadini@gmail.com
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Table 1. Description of the data and its abbreviations 

 
Variable Name Identifier Category Code 

Cardiovascular Diseases and Diabetes (per 100,000 
population) 

CDD 

<220 1 

220-370 2 

>370 3 

    

Chronic Respiratory Conditions (per 100,000 population) CRC 

<20 1 

20-50 2 

>50 3 

    

Population using improved drinking water sources (%)-
2011a 

Water 

<88 1 

88-98 2 

>98 3 

    

Population using improved sanitation (%)-2011a Sanitation 

<40 1 

40-80 2 

>80 3 

    

Population using solid fuels (%)-2011a Solid_Fuel 

<20 1 

20-70 2 

>70 3 

    

Prevalence of raised fasting blood Glucose among adults 
aged ≥ 25 years (%)-2008a 

B_Glucose 

<7.5 1 

7.5-11.5 2 

>11.5 3 

    

Prevalence of raised blood pressure among adults aged ≥ 
25 years (%)-2008a 

B_Pressure 

<25 1 

25-35 2 

>35 3 

    

Adults aged ≥ 20 years who are obese (%)-2008a Obese 

<13 1 

13-24 2 

>24 3 

    

Alcohol consumption among adults aged ≥ 15 years (litres 
of pure alcohol per person per year)-2008a 

Alcohol 

<4 1 

4-10 2 

10-16 3 

>16 4 

    

Prevalence of smoking any tobacco product among adults 
aged ≥ 15 years (%)-2009a 

Smoking 

<12 1 

12-24 2 

24-36 3 

>36 4 
 

Note: a) country level (1st level) variables 

 
 

Considered here is a multivariate multilevel analysis approach by using 

Bayesian methods. Data for this study were obtained from the World Health 

Organization (2013). The dataset consists of worldwide mortality rates among 
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adults aged 30-70 years. Due to the incompleteness of the records, a multiple 

imputation (MI) was conducted to variables Smoking, Water and Sanitation prior 

to fitting the models (Sterne et al., 2009). The MI procedure requires the variables 

to be imputed to be normally distributed or categorical. Water and Sanitation did 

not follow a normal distribution, and were categorized to perform the MI (Table 

1), and are considered ordinal categorical variables for the modeling.  

Given in Table 1 are the variables and their respective categories with 

abbreviations. The continuous data were discretized in to ⅓ splits based on 

percentiles to obtain respective categories. Alcohol and smoking were categorized 

into ¼ splits to obtain more explicate categories due to the expansion of the data. 

Methodology 

Univariate analysis using Zhang and Boos test 

Before carrying out the modeling it is essential to determine the nature of the 

strength of the relationships between explanatory variables and response variables. 

However due to the natural hierarchy of the observations, Zhang & Boos (1997) 

developed the Generalized Cochran Mantel Haenszel (GCMH) test. There are 

three different types of test statistics proposed by Zhang and Boos. These are TEL, 

TP and TU. From these, TP is preferable to TU and TEL (Jayawardana and 

Sooriyarachchi, 2014). Simulation studies showed it maintains error values even 

for a small number of strata (Zhang and Boos, 1997). 

Structure of the Multivariate Multilevel Probit Regression Model 

Although the logit link is the most common, the multivariate model for binary 

responses was developed for the probit link in MLwiN 2.10 (Rasbash et al., 2009). 

Due to the unavailability of a proper documentation of the theory regarding 

multivariate multilevel binary probit models, it was discussed based on the theory 

regarding multivariate multilevel probit models for the ordered categorical 

responses, given by Grilli and Rampichini (2003). 

 

Simple Probit Regression Model   Suppose the response of interest 

which is known as Y can take values 1 and 0 where 1 = higher risk, 0 = lower risk 

and x can be denoted as set of explanatory variables. 

 

    0 1 1 2 2Pr 1| ... k kY x F x x x         , (1) 

file:///C:/Users/Public/Documents/JMASM/16.1/02_TYPESET/ref_grilli_rampichini_2003
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where F(.) is a function such that F: x   [0, 1], for all x that belongs to the real 

line. 

The probit model assumes that the function F(.) follows a Normal 

(cumulative) distribution, 

 

      
x

F x x z dz


   , (2) 

 

where, φ(z) is the Standard Normal Density Function. 

 

  

2

exp
2

2

z

z


 
 
    (3) 

 

Multivariate Multilevel Probit Regression Model   Let 
 h

ijY  be the hth 

(h = 1, 2, …, H) observed binary variable for the ith (i = 1, 2, …, I) observation of 

the jth (j = 1, 2, …, J) cluster. Assume that each of the observed responses 
 h

ijY , 

which takes values in {1, 2} (for the sake of simplicity, assume it as C) is 

generated by a latent variable  through the following relationship: 

 

     h h

ijY C  if and only if  (4) 

 

where the threshold satisfies 
   
0 1

h h
       and γ represents the 

corresponding value of the response variable when h and c takes values as in 

equation (4). 

Now, consider the following multivariate two-level null model for the latent 

variables: 

 

 , (5) 

 

where for each h, 
 h

  is the mean, 
 h

ju  is the cluster’s random effect (level two 

error) and 
 h

ij  is the individual’s disturbance (level one error). The errors are 

assumed to be distributed as 
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      1
,..., ~ 0,

H

ij ij iidN 
  

 
 and      1

,..., ~ 0,
H

j ju u iidN
  

 
 (6) 

 

For example, for H = 2 the covariance matrices are, 

 

 

2 2

1 1 2 1 12

2 2

1 2 2 12 2

,
   

   

   
      

   
  (7) 

 

Moreover, the first and second level errors are assumed to be independent. 

The previous model specification implies the following conditional covariance 

structure for any couple of latent variables : 

 

 . (8) 

 

The unconditional covariance structure is 

 

 , (9) 

 

with . 

The correlation between the same variable for two distinct individuals of the 

same cluster, called the Intra Cluster Correlation Coefficient (ICC), is stated 

below. 

 

 . (10) 

 

ICC also represents the proportion of variance explained by the clusters. 

Variable selection and model comparison 

Consider a subset of covariate and cofactors from the pre-specified set of 

variables, which best describes the dependent variables. A Forward Selection 
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procedure along with the Wald Statistic is specifically used for this purpose. 

MLwiN 2.10 does not use maximum likelihood estimation for estimating the 

parameters because it is computationally difficult. Therefore as a solution to that, 

the quasi-likelihood methods were implemented. This shows the inability of 

considering usual likelihood ratio tests for comparing models. 

These methods are implemented by transforming discrete response model to 

a continuous response model based on a Taylor series expansion. Then, the model 

becomes linear and then estimation is carried out using Iterative Generalized 

Least Squares (IGLS) or Reweighted IGLS (RIGLS). These transformations 

require an approximation known as Marginal Quasi-Likelihood (MQL) and 

Predictive Quasi-Likelihood (PQL) and can be comprised with Taylor series 

expansions of either first order terms or second order terms. However, when the 

sample sizes within level 2 units are small, the first order MQL procedures may 

lead to biased estimates (Rasbash et al., 2009). Therefore, the second order PQL 

procedure was adopted.  

However due, to some convergence and stability problems it was followed 

by a Markov Chain Monte Carlo (MCMC) method, which is an alternative to 

likelihood based estimation procedure. 

Parameter Interpretation for a multivariate multilevel model with a 

probit link function 

Interpretation of the coefficients in probit regression is not as straightforward as 

other regressions. The increase in probability for a unit increment in a given 

predictor depends on both the values of the other predictors and the initial value 

of the given predictors. Because the final model presents a lot of interactions and 

deals with multivariate data in a hierarchical nature, this procedure is more 

complex and time consuming. Therefore, the probability differences for unit 

increase of covariates when the other continuous covariates are at their average 

levels and the categorical covariates are at their base level were considered. Due 

to the inconvenience of calculating the corresponding probability differences in 

manual form, a SAS program was used for this purpose. 

Residual Analysis and Model Adequacy  

It is essential to assess the appropriateness of the fitted model by evaluating the 

adequacy. Because handling data in a multivariate multilevel framework is a 

novel approach, diagnostic techniques specifically designed for this scenario are 

less available. Though the specifications of the models are different according to 
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the types of variables, the methods of residual analysis and model adequacy are 

common to all models in a hierarchical nature. Rasbash et al. (2009) presented the 

theory regarding a basis model having a continuous response in a multilevel data. 

Multiple Imputation 

The original dataset has small number of observations, removing the records with 

missing data may cause to create a rather small dataset and it leads to exclude 

approximately 38% of records. This would cause biased results, because there is a 

high chance of excluding the low- and middle-income countries from the analysis 

due to the unavailability of proper information systems. Furthermore, the Missing 

Data Mechanism (MDM) of this dataset takes the form of Missing At Random 

(MAR) (Rubin, 1976) and it happens when the missingness depends on a specific 

variable, but not the value of the variable including missing data (Howell, 2012). 

In the current dataset, low- and middle-income countries might be less inclined to 

report their health information due to the unavailability of proper information 

systems. Therefore, the probability of reported health status is unrelated to the 

level of health within these low- and middle-income countries and hence the data 

can be considered MAR. Accordingly, MI was carried to this dataset by using 

REALCOM (Carpenter et al., 2011) software. 

Results 

There are three hierarchical levels. Level one consists of the multivariate structure. 

Level two consists of countries and level three consists of continents. There are 10 

variables in the dataset; the countries are clustered within continents. The dataset 

consist of two response variables termed as CDD and CRC and eight continuous 

explanatory variables at the country level: Water, Sanitation, Solid_Fuel, 

B_Glucose, B_Pressure, Obese, Alcohol and Smoking. To implement the 

univariate analysis these variables were discretized. Although originally there 

were 195 countries in the dataset, after removing some observations with many 

missing values and then performing imputation techniques to the variables 

Smoking, Water and Sanitation, that number was reduced to 186. 

Compiled in Table 2 are the p-values of the univariate analysis for the 

associations between imputed explanatory variables with the two outcome 

variables and the composite variable before and after imputation. The test carried 

out was the GCMH test. Continent to which the countries belong is used as the 

second level variable to stratify data accordingly. 
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Table 2. TP statistic test results for imputed variables with the responses. 

 

Disease 
Explanatory 
variable 

Before 
 

After 

TP DF p-value   TP DF p-value 

CDD 

Water 21.888 4 0.00021 
 

23.669 4 9.30E-05 

Sanitation 8.250 4 0.08300 
 

9.954 4 0.04120 

Smoking 8.791 6 0.18600 
 

7.244 6 0.29900 

         

CRC 

Water 21.302 4 0.00028 
 

21.752 4 0.00022 

Sanitation 23.544 4 9.85E-05 
 

25.307 4 4.36E-05 

Smoking 9.805 6 0.13300 
 

11.118 6 0.08500 

         

CDC+CRC 

Water 27.201 6 0.00013 
 

27.422 6 0.00012 

Sanitation 19.810 6 0.00299 
 

21.633 6 0.00141 

Smoking 16.869 9 0.05080   11.812 9 0.22410 
 

Note: Consider 20% level of significance 

 
 

As noted in Table 2, the variables that were considered to be insignificant 

before imputation remained to be so while those that were significant before 

imputation remained to be significant apart from the variable Smoking coming 

under CDD and CDD+CRC which was significant before imputation but had 

become insignificant after imputation.  

Univariate analysis for identifying country level factor impact on the 

response  

Because of the stratified nature of the data, GCMH test was used with a liberal 

significance level of 20% as explained in Collett (1991). This significance level 

can be increased because more severe significance levels can lead to the exclusion 

of potentially useful predictor variables. The requisite calculations were 

performed using the R-macro developed by De Silva and Sooriyarachchi (2012). 

Prior to implementing GCMH test, the correlation between CDD and CRC was 

identified using Pearson’s correlation test. For that, two diseases were taken as 

their continuous form. According to the correlation matrix, there is a significant 

positive correlation (0.680) that exists between CDD and CRC. Therefore, it is 

appropriate to perform the Multivariate Multilevel analysis on CDD and CRC. 

As noted in Table 3, the two diseases were split into binary outcomes in 

order to maintain the simplicity of the analysis. Otherwise the resulting composite 

outcome might have large number of categories and it would be more complex to 

proceed. The categorization was done by considering the cut-points of worldwide 



MULTIVARIATE MULTILEVEL MODELING OF DISEASES 

506 

mortality rates for the two diseases together with the aid of specialists in the field 

of medicine (World Life Expectancy, n.d.). 
 
 
Table 3. Categorization of the diseases and description of combined levels 

 

Code (Category) Coding for Composite 
outcomes CDD  CRC 

1 (<300) 1 (<30) 1 

1 (<300) 2 (≥30) 2 

2 (≥300) 1 (<30) 3 

2 (≥300) 2 (≥30) 4 

 
 

Compiled in Table 4 are the results of the univariate test, which was carried 

out to check the significance of country level covariates in the presence of 

continent as the respective stratification factor for the composite outcome of CDD 

and CRC. 
 
 
Table 4. Test Results for composite variable of two diseases vs. Risk Factors 

 

Risk Factors TP DF p-value 

Water 27.201 6 0.00013 

Sanitation 19.810 6 0.00299 

Solid_Fuel 31.403 6 2.10E-05 

B_Glucose 14.572 6 0.02390 

B_Pressure 21.195 6 0.00170 

Obese 19.385 6 0.00356 

Alcohol 15.797 9 0.07120 

Smoking 16.869 9 0.05080 

 
 

All the risk factors are significant at a liberal 20% level and the variable 

Solid Fuel shows the most significance. It implies that there is a higher tendency 

of getting the disease for the people who are using solid fuel for their day-to-day 

work. 

Fitting a multivariate multilevel probit regression model 

Before applying the modeling techniques two diseases were categorized into 

binary splits as in Table 3. Water and Sanitation were taken as ordered categorical 

variables while others were taken as their original continuous form. For the 

multivariate multilevel analysis, there are two types of parameter estimates named 



RANATHUNGA & SOORIYARACHCHI 

507 

as separate coefficients and common coefficients. Due to that, the model building 

procedure would be more complex and cumbersome. Therefore, several methods 

were adopted for the simplification and to obtain an adequate model. For the 

estimation, the 1st order MQL method was followed by the 2nd order PQL 

method. It was again followed by the MCMC method to obtain Wald statistic 

values. 

Results indicated that improved drinking water sources and improved 

sanitation may lead to decrease the incidence of both diseases. This means that the 

incidence of diseases is increasing when the quality level of water and sanitation 

are decreasing. Therefore, it would be more meaningful and practicable to get the 

highest level as the reference for both water and sanitation. Presented in Table 5 

are the cofactors and their respective base categories used in the modeling phase. 
 
 
Table 5. Variables and corresponding base categories 

 
Cofactors Base category 

Water ≥98% 

Sanitation ≥80% 

 
 

At the 1st stage, each factor/covariate was fitted separately and the 

corresponding Wald statistic value was computed. The p-value of the statistic was 

then compared with the 5% significance level to assess the significance of the 

coefficient. However, because of the Deviance Information Criteria (DIC) is not 

available in the MLwiN for the multivariate multilevel scenario, the model 

building procedure was solely based on the Wald statistic. Forward selection 

procedure was implemented to identify the main effects. If Wald statistic values 

for separate coefficients are quite close, the common coefficients should be used 

as parameter estimates. This argument was used for selecting the other terms as 

common or separate.  

At the 2nd stage each interaction term was fitted separately to the final main 

effects model. Because there are many interactions pertaining to the variables, 

fitting all would be more cumbersome and MLwiN would not respond to most of 

them. Therefore, only the interactions which were significant for the two 

univariate binomial multilevel logistic regressions for CDD and CRC were 

considered. However, because there were separate and common coefficients, the 

interactions were added according to the final main effect model. For an example, 

consider the B_Glucose*Alcohol interaction. In the final model B_Glucose and 

Alcohol were fitted as a common coefficient. This means to fit the 
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B_Glucose*Alcohol interaction also as common coefficients. Figure 1 represents 

the output of the final interaction model. 
 
 

 
 
Figure 1. Final interaction model 

 

 
 

According to Figure 1, it can be seen that though there are two levels 

originally present in the data, the MLwiN is recognized it as three levels. This is 

because the MLwiN treats the outcomes of two diseases responses as the 1st level 

(i). Therefore resp1jk refers to the number of responses for the disease 1 (CDD) 

made by the jth country those who are clustered within the continent k. Similarly, 

resp2jk refers to the number of responses for the disease 2 (CRC) made by the jth 

country those who are clustered within the continent k. As a result of that, respijk 

can take either zero or one for all countries in the study. Moreover, n1jk and n2jk 

always take the value 1, because each country always gives a single response. 

Continent level variance component analysis  

In order to justify the suitability of applying the multilevel concept, it is advisable 

to first look at the significance of the continent level variance. This can be 

checked by the following hypotheses  
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H0: Continent level residual variance is zero 

H1: Continent level residual variance is not zero 

 

Because zero is not included in the 95% credible interval (0.254, 5.109), H 0 

is rejected and concluded that the continent level variance is significant implying 

that the multilevel approach for the multivariate context is suitable. 

Residual analysis of the final model 

After fitting the model the model adequacy was checked. For that purpose, 

Caterpillar plots and Normal probability plots were used. According to the 

Caterpillar plot in Figure 2, four residuals do not contain zeros in their 95% 

confidence bands. These imply significant differences from the overall mean 

predicted by the fixed part from the model. Moreover, it can be seen that two 

continents show a negative residual deviation while another two show positive 

deviations. Therefore it is possible to conclude that these four continents 

contribute to a high continent effect on the mortality rates of CDD and CRC. 

These four continents are North America, Europe, Asia and Oceania respectively. 

Figure 4 illustrates these continent variations more clearly. The continents that 

have a lower risk are symbolized by green, and higher risk are symbolized by red. 

It is suggested in Figure 3 the points are approximately through the 45 ̊ axis 

indicating that the residuals are approximately normally distributed. However, 

because of the number of residuals is less, it is hard to conclude the assumption of 

normality by eye inspection and unable to conduct the Anderson-Darling test with 

the number of residuals less than seven. 

Multivariate Multilevel techniques have recently been developed in the field 

of statistics and its applications and analysis techniques are very rare. Therefore a 

suitable goodness of fit test has not yet been developed to evaluate the adequacy 

of the fitted model. Because there are no other techniques available, the model 

adequacy was solely dependent on the caterpillar plot and the normal plot. 
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Figure 2. Estimated continent level residuals for the final model 

 
 
 

 
 
Figure 3. Normal plot for continent level residuals 
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Figure 4. Continent level variations for CDD and CRC 

 

 

Interpretation and calculation of the parameter estimates 

Because the model consists of two equations, due to the multivariate concept this 

section consists of step-by-step interpretation of each explanatory variable for the 

two diseases separately. The calculated probability differences are represented in 

Table 6 and 7. 

The results of Table 6 indicate the following important conclusions. The 

probability of being in the higher group of CDD is 0.6478 higher when Water is at 

level 1 and 0.3106 higher when Water is at level 2 when compared to level 3 

while all the other continuous variables are taken at average and the Sanitation is 

taken at the base level. However it can be seen that both levels of Sanitation do 

not have a significant impact for this scenario. 

B_Pressure has common interactions with Obese, Smoking and B_Glucose. 

The probability of CDD being in the higher level compared to the lower level is 

0.0149 times more when B_Pressure is increased by one unit and all other 

variables are at an average and water and sanitation are at base levels. 

According to the available medical literature (What Are the Health Risks of 

Overweight and Obesity?, 2012), it was found that Obesity has shown a higher 

impact on CDD together with the B_Pressure rather than individually. Therefore, 

it is more meaningful to identify the combined effect of B_Pressure and Obesity 

to CDD. The results shows the probability of being in the higher CDD category 
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compared to the lower CDD category is 0.0081 higher when B_Pressure and 

Obesity are both increased by one unit when all continuous variables at average 

and Water and Sanitation are at the base levels. 
 
 
Table 6. Probability differences for CDD  

 
Term Probability difference 
aWater 1 0.6478 
aWater 2 0.3106 
bSanitation 1 Not significant 
bSanitation 2 Not significant 
cB_Pressure = z + 1 0.0149 
cObese = y + 1, B_Pressure = z + 1 0.0081 
cSmoking = s + 1 0.0012 
cB_Glucose = x + 1 0.0530 
cAlcohol = w + 1 0.0056 
 

Note: All terms assume continuous variables at average; a) assumes Sanitation = base level; b) assumes 

Water = base level; c) assumes Sanitation, Water = base level 

 
 
Table 7. Probability differences for CRC 

 
Term Probability difference 
aWater 1 0.5745 
aWater 2 0.2344 
bSanitation 1 0.4911 
bSanitation 2 0.2067 
cB_Pressure = z + 1, Smoking = s + 1 0.0457 
cObese = y + 1 -0.0056 
cB_Glucose = x + 1 0.0341 
 

Note: All terms assume continuous variables at average; a) assumes Sanitation = base level; b) assumes 

Water = base level; c) assumes Sanitation, Water = base level 

 
 

Similarly, the probability of CDD being in the higher level compared to the 

lower level is 0.0012 times higher when Smoking is increased by one unit, 0.053 

times more when B_Glucose is increased by one unit and 0.056 times more when 

Alcohol is increased by one unit while all other variables are at an average and 

water and sanitation are at base levels 

For CRC, the probability of being in the higher group is 0.5745 more when 

Water is at level 1 and 0.2344 more when it is at level 2 when compared to level 3 

while all the other continuous variables are taken at the average and the Sanitation 

is taken at the base level. Similar to Water, the probability of being in the higher 
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group of CRC is 0.4911 more when Sanitation is at level 1 and 0.2067 more when 

Sanitation is at level 2 when compared to level 3. Therefore, it can be seen that 

when the usage of improved Water and Sanitation sources decreases, the 

probability of being the higher group of CRC increases. 

Smoking has a higher impact to CRC together with B_Pressure rather than 

individually (Kenny, n.d.). Therefore, when considering the combined effect of 

those two, the probability of being in the higher CRC category compared to the 

lower one is 0.0457 times more when both B_Pressure and Smoking are increased 

by one unit while all continuous variables are at average and Water and Sanitation 

are at the base levels. 

Similarly, the probability of CRC being in the higher level compared to the 

lower level is 0.0341 times more when B_Glucose is increased by one unit, 

0.0693 times more when Alcohol is increased by one unit and 0.0056 times lower 

when Obesity is increased by one unit while other variables are at an average and 

water and sanitation are at base levels. Though the latter result seems to be 

contradictory, it is not so as past medical evidence has suggested that thin people 

are more prone to get CRC than fat people (Schols et al., 1998). 

Discussion 

When the usage of unimproved water sources increases, the probability of 

occurrence of deaths for CDD and CRC also increases. Past evidence also 

indicated this relationship. Fodor et al. (1973) showed the proportion of mortality 

rates for CDD was higher in the soft water areas than hard water areas. It was 

further shown there was a macro geography variation for CDD. Those findings 

tally with the findings in this study because here also CDD shows a continent 

level variation. They also showed CRC has an impact from the variable Water. 

But it is a less known thing. However, officials at the US Environmental 

Protected Agency suggested heavy rainfall events cause storm water overflow that 

may contaminate water bodies used for drinking with other bacteria. It may cause 

to get illnesses, including ear, nose, and throat infections (Climate impacts on 

Human Health, n.d.). 

Although CDD has no impact from Sanitation, the probability of being in 

the higher group of CRC increases due to the usage of unimproved sanitation 

sources. When analyzing risk factors for diseases, the focus is less given for the 

environmental factors such as water, sanitation etc. However, it was shown the 

usage of unimproved Water and Sanitation sources have more impact to the 

diseases CDD and CRC. According to Briggs’s (2003), unsafe water, poor 
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sanitation and poor hygiene seem to be one of the major sources of exposure for 

these types of diseases. 

National Heart, Lung and Blood Institute (What Are the Health Risks of 

Overweight and Obesity?, 2012) claimed most people who have type 2 diabetes 

are overweight and also it leads to heart failures. Furthermore, they have shown 

that the chances of having high blood pressure are greater if people are 

overweight. This joint impact of B_Pressure and Obesity on CDD by showing the 

probability of occurrence of death in CDD increases when both B_Pressure and 

Obesity are increased by one unit. 

When considering CRC, medical evidence (Kenny, n.d.) suggests that 

chronic obstructive pulmonary disease (COPD) usually cause by smoking and 

continuous smoking for a long time causes to increase breathing difficulties and 

also causes to increase blood pressure. As a result of that it can put a heavy strain 

on the heart muscle and creates heart failures. After that Respiratory failures 

occur as the final stage of COPD (Kenny, n.d.). This factor shows that there is an 

interesting flow by beginning from smoking through the increment of blood 

pressure to the respiratory failures. This further demonstrates an interesting 

relationship by showing increase in the probability of being in the higher level of 

CRC compares to the lower level when B_Pressure and Smoking are both 

increased by one unit. 

Some medical evidence (Schols et al., 1998) suggested it is difficult to 

identify a suitable relationship between Obesity and CRC. A decrement of the 

probability being in the higher level of CRC for a unit increment of Obesity was 

shown. However, a large epidemiologic study showed overweight and obesity in 

patients with COPD was associated with a decreased risk of death compared with 

normal weight (Schols et al., 1998). Therefore, it might be concluded that thin 

people are more prone to get CRC than obese people. Furthermore, North 

America and Europe show a less risk of having CDD and CRC while Asia and 

Oceania show a higher risk with CDD varies less with continent while CRC 

varies more. 

Limitations of the study  

In the advanced analysis phase, logistic and probit regression models were fitted 

with the continuous explanatory variables. The models contained common 

interactions as well as cross interactions. Therefore, it was more complex to 

obtain corresponding confidence intervals for the odds ratios and for the predicted 
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probabilities and hence the significance/non-significance of the estimates could 

not be evaluated. 

The interpretations of coefficients in multivariate multilevel binary probit 

regression models are not as simple as in other models (i.e., linear regression, 

logit regression, etc.). Increment in probability for a unit increment in a given 

predictor depends both on the values of the other predictors and the initial value 

of the given predictors. Therefore, the results can be changed due to the different 

values of the predictors. 

Of note, in the advanced model building phase, MLwiN crashed many times, 

therefore some of the terms had to be excluded from the initial model. This might 

have happened due to small number of data points and non-convergence of 

models. 

Conclusion 

In Multivariate multilevel model building process there is no satisfactory 

goodness of fit test yet developed. Therefore it is essential to develop a goodness 

of fit test in order to access the model adequacy of the multivariate multilevel 

models. The mortality rates of Asia and Oceania should be reduced, by improving 

health policies to meet standards like those in North America and Europe. 

Furthermore, higher consideration should be given to environmental risk factors 

such as water quality and sanitation to improve personal health. 
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The performance of several models under different conditions of zero-inflation and 
dispersion are evaluated. Results from simulated and real data showed that the zero-
altered or zero-inflated negative binomial model were preferred over others (e.g., 
ordinary least-squares regression with log-transformed outcome, Poisson model) when 
data have excessive zeros and over-dispersion. 
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Introduction 

In psychological, social, and public health related research, it is common that the 

outcomes of interest are relatively infrequent behaviors and phenomena. Data 

with abundant zeros are especially frequent in research studies when counting the 

occurrence of certain behavioral events, such as number of school absences, 

number of cigarettes smoked, number of hospitalizations, or number of unhealthy 

days. These types of data are called count data and their values are usually non-

negative with a lower bound of zero and typically exhibit excessive zeros and 

over-dispersion (i.e., greater variability than expected).   

Except for transforming the outcome to make it normal and using the 

general linear model, other alternative approaches can be taken in the context of a 

broader framework: generalized linear model (GLM). For example, the Poisson 

distribution becomes increasingly positively skewed as the mean of the response 

https://doi.org/10.22237/jmasm/1493598600
mailto:yangsi06@gmail.com
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variable decreases, which reflects a common property of count data (Karazsia and 

Van Dulmen, 2008). Thus, a typical way of analyzing count data includes 

specification of a Poisson distribution with a log link (the log of the expectation of 

a response variable is predicted by the linear combination of covariates, i.e., 

predictors) in a model known as Poisson regression.  

Several other more rigorous approaches to analyzing count data include the 

zero-inflated Poisson (ZIP) model and the zero-altered Poisson model (ZAP, also 

called a hurdle model) that have been proposed recently to cope with an 

overabundance of zeros (Greene, 1994; King, 1989; Lambert, 1992; Mullahy, 

1986). These two types of models both include a binomial process (modeling 

zeros versus non-zeros) and a count process. The difference between the two 

models is how they deal with different types of zeros: although the count process 

of ZAP is a zero-truncated Poisson (i.e. the distribution of the response variable 

cannot have a value of zero), the count process of ZIP can produce zeros (Zuur, et 

al., 2009). One of the assumptions of using Poisson regression is that the mean 

and variance of a response variable are equal. In reality, it is often the case that 

the variance is much larger than the mean. Variations of negative binomial (NB) 

models can be used when over-dispersion exists even in the non-zero part of the 

distribution. Although a Poisson distribution contains only a mean parameter (μ), 

a negative binomial distribution has an additional dispersion parameter (k) to 

capture the amount of over-dispersion. Thus, the zero-inflated negative binomial 

(ZINB) model and zero-altered negative binomial (ZANB) model were 

introduced to deal with both zero-inflation and over-dispersion. 

Traditionally, dichotomizing or transforming the dependent variables have 

been used as solutions to handle the non-normality of the data. Approaches such 

as a Poisson model, NB model, ZIP/ZAP models, or ZINB/ZANB models have 

recently been demonstrated and compared to analyze zero-inflated count data 

through several tutorial style papers (e.g., Atkins, 2012; Karazsia and Van 

Dulmen, 2008; Loeys, et al., 2012; Vives, et al., 2006). Each of these papers 

largely focus on a single empirical study and models were only being compared in 

one condition. The current study focused on comparing a set of models under 

different conditions of zero-inflation and skewness and aimed to offer clear 

guidelines as to which model to use under a certain condition.  

GLM and Poisson regression 

The GLM is a flexible modeling framework that allows the response variables to 

have a distribution form other than normal. It also allows the linear model of 
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several covariates to be related to a response variable via arbitrary choices of link 

functions. Zuur et al. (2009) summarized that building a GLM consists of three 

steps: a) choosing a distribution for the response variable (Y); b) specifying 

covariates (X); and c) choosing a link function between the mean of the response 

variable (E(Y)) and a linear combination of the covariates (βX). Classical models 

such as analysis of variance (ANOVA) and ordinary least squares regression also 

belong to the GLM when Y is normally distributed. Y can also be specified as 

other distributional forms in the exponential family such as a binomial 

distribution, Poisson distribution, negative-binomial distribution, and gamma 

distribution. The link function brings together the expectation of the response 

variable and the linear combination of the covariates. For ordinary least-squares 

regression, the function to estimate the expected value of Y is βX = E(Y); it is 

termed as an identity link. Specifying a logit link as βX = log(E(Y) / (1−E(Y))) is 

usually used for logistic regression to predict the expectation of a binary response 

variable. The probability mass function (p.m.f) of a Poisson distribution is as 

follows:  

 

 

  

Pr Y
i
= y

i( ) =
e-mm

y
i

y
i
!

, y
i
= 0,1,2,...  

 

where μ is the count mean. Let X = (X1, …, Xp) be a vector of covariates and 

β = (β1, …, βp) be a vector of regression parameters. The logarithm of μ is 

assumed to be a linear combination of p covariates of the form  

 

 
  
E Y | X( ) = m = exp Xb( )  

 

The conditional mean and conditional variance are equal for the Poisson 

regression model, that is E(Y|X) = Var(Y|X) = μ. The greater the mean the greater 

is the variability of the data. A large proportion of zeros in the count data leads to 

a smaller mean value than that of the variance.  

Negative binomial regression model 

The assumption that the variance of counts is equal to the mean also implies that 

the variability of the outcomes sharing the same covariates values (a population 

has the same values for X1, X2, … , Xp) is equal to the mean. If it fails to be true, 

the estimates of the regression coefficients can still be consistent using Poisson 

regression, but the standard errors can be biased. They usually tend to be too 
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small and thus increase the rate of Type I error (false positive results) (Hilbe, 

2014). When analyzing data to explore relationships between variables or make 

predictions, we would not expect we have measured every variable that 

contributes to the rates of the outcome events. There will always be residual 

variation in the response variables. For instance, Roebuck et al. (2004) studied 

how adolescent marijuana use might relate to school attendance (estimated by 

number of days truant) by analyzing data from the National Household Survey on 

Drug Abuse. It is unlikely that adolescent marijuana users will have the same rate 

of being truant; specifically, there is more variation in school attendance among 

marijuana users. To account for greater variation, the negative binomial model 

has been proposed as a generalization of the Poisson model. The negative 

binomial distribution has the following form: 
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where μ is the mean and k is the dispersion parameter. The variance of the 

above distribution is μ + μ2/k, and hence decreasing values of k correspond to 

increasing levels of dispersion. As k increases towards positive infinity, a Poisson 

distribution is obtained. The negative binomial regression model is able to capture 

the over-dispersion in count data that the simple Poisson model cannot. However, 

the problem of excessive zeros is still not solved, as researchers may be interested 

in finding the special meaning underlying the zero-inflation. 

Zero-inflated regression models 

Lambert (1992) proposed an approach to model zero-inflation in count data in 

what is referred to as a ZIP model. In this model, two kinds of zeros are thought 

to exist in the data: structural zeros (or true zeros) from a non-susceptible group 

(i.e., those that do not have the attribute or experience of interest, such as healthy 

people without a disease) and random zeros (or false zeros) for those from a 

susceptible group (e.g., those that have a disease in a health-based study who may 

falsely indicate a score of zero). The probability of being in a susceptible group 

can be estimated by information from covariates with a logistic link. If an 

individual is from the susceptible group, his or her count is a random variable 

from a Poisson distribution with mean µ. The marginal distribution of the ZIP 

model is as follows: 
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The Poisson hurdle model (i.e., ZAP) as an alternative was introduced by 

Mullahy (1986) and modified by King (1989). It models all zeros as one part and 

a zero-truncated part for all non-zero observations. The main difference with ZIP 

is that hurdle models don’t distinguish true and false zeros and all zero 

observations are thought to come from a non-susceptible group:  
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Because a Poisson distribution assumes that the variance of the outcome 

variable equals its mean, when over-dispersion also comes from the non-zero part 

(i.e., the variance is much bigger than the mean even for the non-zero part), both 

ZIP and ZAP models can be extended to ZINB or ZANB models to deal with 

zero-inflation and over-dispersion at the same time. These types of models have 

become popular recently and have been used to analyze number of cigarettes 

smoked per day (Schunck & Rogge, 2012), dental health status (Wong & Lam, 

2012), depressive symptoms (Beydoun, et al., 2012), and alcohol consumption 

(Atkins, 2012), etc. The major advantage of using models specially dealing with 

zero-inflation is that they not only reduce biases resulting from the extreme non-

normality but also have the ability to model the effect on subjects’ susceptibility 

and magnitude at the same time. 

Proposed Study 

For count data, depending on an outcome’s mean-variance relationship and 

proportion of zeros, the choices for modeling its distribution range from standard 

Poisson and negative binomial to ZIP, and ZINB (or ZAP and ZANB). However, 

some researchers argue that they have seen cases where ZIP models were 

inadequate and ZINB also couldn’t be reasonably fitted to the data (Famoye & 

Singh, 2006). Warton (2005) also criticized such zero-inflated models as being 

too routinely applied, leading to overuse. He analyzed 20 multivariate abundance 
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datasets extracted from the ecology literature using three different approaches: 

least squares regression on transformed data, log-linear models (Poisson and 

negative binomial regression), and zero-inflated models (ZIP and ZINB), and then 

compared each model’s goodness-of-fit. The result showed that a Gaussian (i.e., 

normally distributed) model (e.g., least squares regression) based on a 

transformed outcome fit the data surprisingly better than fitting zero-inflated 

count distributions. This study also suggested that negative binomial regression 

had the best fit, and that special techniques for dealing with excessive zeros may 

be unnecessary. 

Based on these open questions in the field, there appears to be a conflict 

since there is increasing popularity of zero-inflated models, although some 

empirical evidence has tended to show no better fit for these models compared 

with the traditional least squares method conducted on transformed data. 

Moreover, there is much disagreement about which zero-inflated model to choose 

from among ZIP, ZINB, ZAP, and ZANB. In the zero-inflation data analysis 

literature, proposing an extensional zero-inflated model or comparing different 

models are often motivated and illustrated by a single empirical study. These can 

look more like case studies in which each dataset or applied situation has its 

particular uniqueness. It is possible that the discrepancy in the results from these 

studies depends on having a different proportion of zeros and different skewness 

in the non-zero part. It is becoming apparent that having data with excessive zeros 

is the norm in many situations, with or without known reasons. However, it is not 

clear what the proportion of zeros is, after which the data should be considered as 

zero-inflated, and what the underlying mechanism of abundant zeros is. Further, 

when researchers have collected data with abundant zeros, should zero-inflated 

models be used, and if so, which one should be used? These are questions that 

have unclear or controversial answers in the zero-inflation literature, and which 

are driving the proposed research. This study used systematic methods to try to 

answer these questions. 

Another consideration is that, a full range of these methods hasn’t been 

compared and tested under different conditions. The purpose of this study was to 

examine the performance of different techniques dealing with zero-inflation. Both 

simulated data and empirical data with and without known reasons for zero-

inflation were analyzed. Specifically, this study addressed the following research 

questions: 

 

1. Under conditions of different degrees of zero-inflation (i.e. proportion 

of zeros in the response variable) but the same level of dispersion, 
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which of the following models is superior: a) least squares regression 

with a transformed outcome; b) Poisson regression; c) negative 

binomial regression; d) ZIP; e) ZINB; f) ZAP; or g) ZANB? 

2. Under conditions of different degrees of dispersion but the same zero-

inflation level, which of the following models is superior: a) least 

squares regression with a transformed outcome; b) Poisson regression; 

c) negative binomial regression; d) ZIP; e) ZINB; f) ZAP; or g) 

ZANB? 

3. Finally, for the empirical data from a national health survey with a 

zero-inflated and over-dispersed response variable, which of the 

following models is superior: a) least squares regression with a 

transformed outcome; b) Poisson regression; c) negative binomial 

regression; d) ZIP; e) ZINB; f) ZAP; or g) ZANB? 

Methods 

Simulation 

Simulation Study Design Data were generated with a mix of zeros and a 

negative binomial distribution. A brief literature review on the frequency of 

various health survey outcomes showed that the percentage of zeros tends to 

range from 20% to 90% (Beydoun, et al., 2012; Lin & Tsai, 2012; Mahalik, et al., 

2013); thus, four conditions with varying probability of zeros (w in Table 1) for 

the response variable were tested in the current study to reflect this range. A 

condition of no zero-inflation (w = 0.00) was also tested as a baseline comparison. 

In order to examine the effect of over-dispersion in the non-zero part, a dispersion 

parameter k with the following values: 1, 5, 10, and 50 were pre-specified. These 

values represent a reasonable range of dispersion to help assess the merit of 

various models with varying distributions. The bigger the k the less dispersed the 

variable is and it approaches a Poisson distribution when k > 10µ (Bolker, 2008). 

The response variable was generated with a negative binomial distribution with a 

different proportion of zeros added. The simulation study was a 5 (i.e., Factor A: 

degree of zero-inflation) x 4 (i.e., Factor B: degree of dispersion) factorial design 

that was examined for the 7 models listed for Factor C, as shown in Table 1. 
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Table 1. Simulation design factors 

 
Factor A Factor B Factor C 

w k Models (Tested on each of the 5×4 conditions in A & B) 

0.00 
0.20 
0.40 
0.60 
0.80 

1 
5 

10 
50 

Least squares regression with transformed outcome (LST) 
Poisson regression model (Poisson) 

Negative binomial regression model (NB) 
Zero-inflated Poisson model (ZIP) 

Zero-inflated negative binomial model (ZINB) 
Zero-altered Poisson model (ZAP) 

Zero-altered negative binomial model (ZANB) 

 

Note. Factor A indicates the proportion of zeros in the simulated data, ranging from w = 0 (i.e., none) to .80 (i.e., 
high). Factor B indicates the degree of dispersion in the data, ranging from k = 1 (i.e., high) to 50 (i.e., low). 

 
 

Generating Simulated Datasets To provide a reasonable prediction model to 

explore in this study, a count response variable Y and two different kinds of 

covariates, X1 and X2, were simulated. X1 was assumed to be a binary variable 

whose values were 0 or 1 with Pr(X1 = 0) = Pr(X1 = 1) = 0.5. X2 was set to follow 

a standard normal distribution, N(0,1). Regression coefficients β1 and β2 for the 

two covariates were set to be 0.3 and 0.5 for the population model to allow for a 

medium and large value, respectively. It is recognized that the two values cannot 

be seen as standardized effect sizes as the scores for Y and X1 are not standardized. 

However, regression coefficients of 0.3 and 0.5 can be seen as reasonable choices 

that allow for a comparison between different levels of prediction for the two 

covariates. To ensure accurate results, 2000 replications (i.e., simulation size, 

S = 2000), each with sample size n = 500, were generated. The simulated mean 

for the count process (µ) was 1.33 (SD = 0.03) across all simulations. The 

decisions on the number of simulations and sample size were made by referring to 

previous simulation studies on zero-inflated data (e.g., Lambert, 1992; Min & 

Agresti, 2005; Williamson, et al., 2007). 

 

Model Selection Criteria The model with minimum AIC (Akaike information 

criterion) was considered as the best model to fit the data (Bozdogan, 2000). AIC 

is given by: 

 

AIC = −2logL(θ) + 2c, 

 

where L(θ) is the maximized likelihood function for the estimated model 

and −L(θ) offers summary information on how much discrepancy exists between 

the model and the data, where c is the number of free parameters in the model. 
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AIC assesses both the goodness of fit of the model and the complexity of the 

model. It rewards the model fit by the maximized log likelihood term 2logL(θ), 

and also prefers a relatively parsimonious model by having c as a measure of 

complexity. There are two challenges for calculating a comparable AIC for the 

LST model. First, AIC can only be used to compare models with the exact same 

response variable. Second, a response variable in the LST model is assumed to be 

continuous, whereas in other models it is a count. It is not correct to compare the 

log-likelihood of discrete distribution models and continuous distribution models, 

as the former is the sum of the log probabilities and the latter is the sum of the log 

densities. Warton (2005) used a discretization method to address the issue and we 

applied the same approximation approach in this paper. For the LST model, the 

Gaussian distribution for AIC calculation was discretized as below.  
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where  m̂  and  ŝ  are the estimated mean and standard deviation of the 

response varaible y, and Φ(c) is the lower tail probability at c from the standard 

normal distribution. 

Empirical Data Analysis 

Analyses were conducted on an existing data set to further assess different 

procedures. The Behavioral Risk Factor Surveillance System (BRFSS) collected 

information on health risk behaviors, health conditions, health care access, and 

use of preventive services (CDC, 2012). In this portion of the study based on 

actual data, the relationship between physical activity and health related quality of 

life was examined after controlling for age and gender, continuous and binary 

covariates, respectively.  

 

Participants  The data were obtained from the 2011 Rhode Island 

BRFSS, a random-digit telephone health survey of adults 18 years of age or older. 

Of 6533 participants involved in the survey, 38.3% were males and 61.7% were 

females ranging in age from 18 to 98 (M = 55.51, SD = 16.90). 
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Measures 

 

Health Related Quality of Life (HRQoL): The overall number of mentally or 

physically unhealthy days (UNHLTH) in the last 30 days was used as an indicator 

of having poor HRQoL. The summary index of unhealthy days was calculated by 

combining the following two questions (CDC, 2012), with a logical maximum of 

30 unhealthy days: 

 

1. “Now thinking about your physical health, which includes 

physical illness and injury, for how many days during the past 

30 days was your physical health not good?” 

2. “Now thinking about your mental health, which includes stress, 

depression, and problems with emotions, for how many days 

during the past 30 days was your mental health not good?”  

 

Physical Activity (PA): A set of questions in the BRFSS captured data on three 

key domains of physical activity: leisure-time, domestic, and transportation. A 

summary score for physical activity was calculated and then was categorized into 

four levels according to CDC’s 2008 Physical Activity Guidelines for Americans, 

a) highly active, b) active, c) insufficiently active, and d) inactive, with higher 

scores indicating higher levels of physical activity.  

 

Analysis  Participants reporting 30 physically or mentally unhealthy 

days during the past month were not included in the analysis. These individuals 

were considered as patients with long-term sickness who did not meet the 

inclusion criteria for this study. PA, age, gender, and their interactions with PA 

were entered as predictors of having poor HRQoL. Seven regression models 

described above were used to fit the data. In addition to using AIC values to 

evaluate the models, Vuong’s tests were also used for model comparisons. 

Vuong’s test is likelihood-ratio based for comparing nested, non-nested, or 

overlapping models in a hypothesis testing framework (Vuong, 1989). The null 

hypothesis was that both models were equally close to the true model. To control 

for Type I error rate for the several model comparisons that were made, p < .01 

was used as a criterion for a statistically significant result. 

 

Statistical Program  R (R Core Team, 2013) was used for both data 

simulation and data analyses. Function rnbinom() was used to generate random 

negative binomial variables. Functions hurdle() and zeroinfl() from package 
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pscl (Jackman, 2008) were used to fit data with zero-altered and zero-inflated 

models; and glm() from package stats was used to fit LST, Poisson, and NB 

models. 

Results 

Results from simulation study 

Average AIC values and selection rates (i.e., percentages of runs having the 

lowest AIC, which indicated a more preferred model) across all simulations for 

the five levels of zero-inflation combined with four levels of over-dispersion on 

the seven models are presented in Table 2. 

Figure 1 gives a visual presentation of how selection rates changed across 

different conditions for different models. Under the no zero-inflation condition 

(w = 0.0), a Poisson model was more preferred when k = 50 (i.e., low dispersion) 

and a NB model was more preferred when k = 1, 5, or 10 (i.e., high to moderate 

dispersion). When data did exhibit zero-inflation, even with just 20% of zeros, a 

ZIP model was more preferred with low dispersion (k = 10 or 50); a ZINB model 

was more preferred with high dispersion (k = 1 or 5); the Poisson model and the 

LST model yielded much larger average AIC values with a 0% selection rate; and 

the NB model had higher selection rates as k and w got smaller (i.e., high 

dispersion and low proportion of zeros). The ZIP, ZINB, ZAP, and ZANB had 

similar AIC values across all of the conditions, however, ZIP and ZINB had much 

higher percentages of being more preferred models compared with ZAP and 

ZANB. 

Boxplots for the AIC values across different conditions were constructed for 

the seven models. Figures 2.1 and 2.5 show the most (k = 1) and least (k = 50) 

over-dispersed levels of the five conditions of proportion of zeros (i.e., w = 0.0, 

0.2, 0.4, 0.6, and 0.8). For each figure, the left side pertains to k = 1 and the right 

side to k = 50. Further, a reference line was added to all figures by using the 

minimum mean AIC values. For definitions of the seven models, refer to the note 

in Figure 1. 
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Table 2. Mean AIC values, and percentage with the lowest AIC across all simulations (in 

parenthesis), for 12 conditions on 7 models 
 

Conditions LST Poisson NB ZIP ZINB ZAP ZANB 

w = 0.0 

k = 1 
1579.19 1724.70 1521.05 1603.99 1522.51 1630.84 1553.50 

(0.00) (0.00) (91.80) (8.15) (0.00) (0.00) (0.05) 

        
k = 5 

1476.20 1471.66 1456.48 1465.11 1457.99 1520.47 1513.84 
(0.50) (1.00) (88.35) (6.70) (3.45) (0.00) 0.00 

        
k = 10 

1450.21 1435.32 1432.23 1434.54 1433.73 1496.19 1495.29 
(0.45) (26.55) (56.80) (15.45) (0.75) (0.00) (0.00) 

        
k = 50 

1425.32 1406.15 1407.34 1407.50 1409.03 1474.36 1475.72 
(0.75) (79.85) (11.30) (8.10) (0.00) (0.00) (0.00) 

         

w = 0.2 

k = 1 1457.22 1615.49 1354.40 1416.87 1353.76 1433.80 1373.51 
(0.00) (0.00) (54.60) (0.00) (0.35) (0.00) (0.00) 

        
k = 5 1407.79 1416.70 1358.24 1358.28 1352.76 1389.93 1384.92 

(0.00) (0.00) (11.55) (17.80) (70.50) (0.00) (0.15) 

        
k = 10 1392.36 1384.38 1348.08 1340.95 1340.27 1375.28 1374.78 

(0.00) (0.00) (4.80) (55.95) (39.15) (0.00) (0.10) 
        
k = 50 1382.03 1363.17 1340.78 1329.22 1330.53 1365.27 1366.62 

(0.00) (0.00) (2.25) (87.65) (9.95) (0.15) 0.00 

         

w = 0.4 

k = 1 1292.70 1435.58 1135.39 1178.50 1132.75 1189.51 1145.75 
(0.00) (0.00) (31.35) (0.00) (66.65) (0.00) (2.00) 

        
k = 5 

1271.47 1290.11 1178.62 1170.28 1166.76 1189.09 1185.91 
(0.00) (0.00) (1.15) (29.65) (68.25) (0.30) (0.65) 

        
k = 10 

1266.32 1269.65 1182.15 1166.74 1166.68 1186.98 1187.06 
(0.00) (0.00) (0.10) (63.80) (35.50) (0.55) (0.05) 

        
k = 50 

1257.74 1249.31 1179.71 1159.01 1160.42 1180.13 1181.58 
(0.00) (0.00) (0.05) (89.40) (9.40) (1.00) (0.15) 

         

w = 0.6 

k = 1 
1078.86 1171.71 861.25 886.33 857.62 892.43 864.80 

(0.00) (0.00) (21.30) (0.50) (70.50) (0.10) (7.60) 

        
k = 5 

1071.22 1075.19 920.11 908.89 907.18 919.48 918.02 
(0.00) (0.00) (0.70) (44.20) (51.75) (1.45) (1.90) 

        
k = 10 

1067.62 1060.84 925.78 909.23 909.59 920.30 920.77 
(0.00) (0.00) (0.15) (69.90) (25.90) (2.95) (1.10) 

        
k = 50 

1063.87 1047.59 931.34 910.16 911.68 921.81 923.36 
(0.00) (0.00) (0.00) (89.00) (7.10) (3.35) (0.55) 

         

w = 0.8 

k = 1 782.26 765.93 516.17 525.66 513.55 528.35 516.84 
(0.00) (0.00) (27.90) (7.65) (49.15) (2.40) (12.90) 

        
k = 5 775.82 720.75 563.92 555.29 555.32 559.70 559.88 

(0.00) (0.00) (2.95) (58.45) (26.40) (9.40) (2.80) 

        
k = 10 773.28 712.79 571.38 559.97 561.04 564.58 565.73 

(0.00) (0.00) (1.00) (72.45) (13.15) (11.60) (1.80) 
        
k = 50 772.36 708.09 576.99 563.21 564.79 568.29 569.91 

(0.00) (0.00) (0.55) (82.05) (5.65) (10.85) (0.90) 
 

Note: Numbers in parentheses are percentages (%) of simulations out of 2,000 simulations in which model had 
the lowest AIC value (most preferred); w is the proportion of zeros and k is the dispersion parameter used to 

simulate the data. LST = least squares regression with transformed outcome, Poisson = Poisson regression 
model, NB = negative binomial regression model, ZIP = zero-inflated Poisson model, ZINB = zero-inflated 

negative binomial model, ZAP = zero-altered Poisson model, ZANB = zero-altered negative binomial model.  
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Note: w is the proportion of zeros and k is the dispersion parameter used to simulate the data. LST = least 

squares regression with transformed outcome, Poisson = Poisson regression model, NB = negative binomial 
regression model, ZIP = zero-inflated Poisson model, ZINB = zero-inflated negative binomial model, ZAP = 

zero-altered Poisson model, ZANB = zero-altered negative binomial model. 

 
Figure 1. Percentages of having the lowest AIC across 2000 simulations  

 

 
 

 
 
Figure 2.1. Boxplot of AIC from seven models (w = 0.0) 
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Figure 2.2. Boxplot of AIC from seven models (w = 0.2) 

 

 
 

 
 
Figure 2.3. Boxplot of AIC from seven models (w = 0.4) 
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Figure 2.4. Boxplot of AIC from seven models (w = 0.6) 

 

 
 

 
 
Figure 2.5. Boxplot of AIC from seven models (w = 0.8) 

 

 
 

From the boxplots, we can see that when k = 1, the NB model and the ZINB 

model had much lower AIC values compared with the Poisson and the ZIP model. 

The difference in AIC values between zero-inflated models (i.e., ZIP and ZINB) 

and zero-altered models (i.e., ZAP and ZANB) showed a tendency to get smaller 

as there was an increase of zero-inflation and dispersion. AIC values for the ZINB 

model were always low across all conditions.   
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Results from empirical data analysis  

Descriptive statistics such as means (and standard deviations) or frequencies (and 

percentages) for the variables of age, sex, UNHLTH and physical activity are 

presented in Table 3. Participants reported an average of 3.63 unhealthy days 

during the past 30 days with a variance of 36.84, which was much larger than the 

mean; and 44.67% of the participants reported 0 unhealthy days. 
 
 
Table 3. Descriptive statistics for independent and dependent variables (n = 5670) 
 

Variable   Mean SD Frequency (%) 

Age (years) 
 

55.03 16.87 
 

Sex 
Male 2126   38.7 

Female 3362   61.3 

# Unhealthy 
Days  

3.63 6.07 
 

Physical Activity 

Highly Active 1659   32.5 

Active 1059 
 

20.8 

Insufficiently Active 1059 
 

20.8 

Inactive 1323   25.9 

 
 

Figure 3 presents the frequency plot of the response variable, UNHLTH. 

Notice that this variable showed an extremely right skewed distribution with a 

spike at zero. 
 
 

 
 
Figure 3. Frequency plot of the response variable UNHLTH from BRFSS data 
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Seven models described above were used to fit the data. AIC values and 

−2log-likelihood for each model are presented in Table 4.1. The Poisson 

regression model had the largest AIC values, demonstrating a poor fit to the data. 

Of the remaining six models, the NB, ZINB, and ZANB models had smaller AICs 

compared with the ZIP, ZAP, and LST models, indicating better fit with the data 

for the three negative binomial based models. ZINB and ZANB models yielded 

similar AICs and are considered as the best models even after penalizing the 

number of parameters in the model. Since not all of the models were nested with 

each other, under the null hypothesis that the models were indistinguishable, 

Vuong tests were used to further compare the above models. LST couldn’t be 

compared because it has a different term for its dependent variable, i.e. it is log-

transformed. The first comparison was made between the Poisson model and the 

NB model, with a Vuong test statistic of −42.41, and p < 0.01, indicating the NB 

model was more preferred. The more preferable model was then compared with 

the next model. After a series of tests and model comparisons (as shown in Table 

4.2), ZANB was chosen as the best model. ZINB could be viewed as a second 

choice with a Vuong test statistic of −1.77, and p = 0.04 compared to ZANB, 

although the p-value was not within the range needed to control Type I error rate. 
 
 
Table 4.1. Model fit comparison for the BRFSS data 

 

 
LST Poisson NB ZIP ZINB ZAP ZANB 

AIC 24050.78 47932.45 21447.22 27814.26 21060.95 27814.26 21060.06 

−2log-likelihood 24046.78 47908.45 21421.22 27766.26 21010.95 27766.26 21010.06 

c 13 12 13 24 25 24 25 
 

Note: AIC = the Akaike Information Criterion, and c is the number of free parameters in the model. LST = least 

squares regression with transformed outcome, Poisson = Poisson regression model, NB = negative binomial 

regression model, ZIP = zero-inflated Poisson model, ZINB = zero-inflated negative binomial model, ZAP = 

zero-altered Poisson model, ZANB = zero-altered negative binomial model. 

 
 
Table 4.2. Vuong non-nested tests results for the BRFSS data 

 
Model Comparison Vuong Test Statistic p Preferable Model 

Poisson vs. NB −41.42 <0.01 NB 

NB vs. ZIP 22.30 <0.01 NB 

NB vs. ZINB −12.16 <0.01 ZINB 

ZINB vs. ZAP 25.35 <0.01 ZINB 

ZINB vs. ZANB −1.77 0.04 ZANB 
 

Note: Poisson = Poisson regression model, NB = negative binomial regression model, ZIP = zero-inflated 

Poisson model, ZINB = zero-inflated negative binomial model, ZAP = zero-altered Poisson model, ZANB = 
zero-altered negative binomial model. 
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Table 5.1. Estimated regression coefficients (and standard errors) for LST, Poisson, and 

NB 
 
Regressor LST SE 

 
Poisson SE 

 
NB SE 

Intercept 0.713*** (0.040)   0.987***  (0.023)   0.983***  (0.080) 

PA_active 0.032 (0.068) 
 

0.097*  (0.038) 
 

0.116 (0.134) 

PA_insufficiently active −0.004 (0.068) 
 

0.021 (0.039) 
 

0.027 (0.133) 

PA_inactive 0.162** (0.062) 
 

0.360***  (0.033) 
 

0.365**  (0.122) 

SEX_female 0.117**  (0.053) 
 

0.173***  (0.029) 
 

0.178 (0.104) 

AGE −0.007***  (0.002) 
 

−0.010***  0.000 
 

−0.010**  (0.003) 

PA_active*SEX_female 0.049 (0.086) 
 

−0.002 (0.046) 
 

−0.025 (0.169) 

PA_insufficiently active*SEX_female 0.158 (0.085) 
 

0.231***  (0.046) 
 

0.225 (0.168) 

PA_inactive*SEX_female 0.11 (0.080) 
 

0.089*  (0.040) 
 

0.083 (0.157) 

PA_active*AGE 0.001 (0.003) 
 

0.004** (0.001) 
 

0.005 (0.005) 

PA_insufficiently active*AGE 0.005 (0.003) 
 

0.009***  (0.001) 
 

0.009 (0.005) 

PA_inactive*AGE 0.007**  (0.002)   0.012***  (0.001)   0.012**  (0.005) 
 

Note: “Male” was the reference group for sex and “highly active” was the reference group for physical activity. 
LST = least squares regression with transformed outcome, Poisson = Poisson regression model, NB = negative 

binomial regression model. 

 
 
Table 5.2. Estimated regression coefficients (and standard errors) for ZIP, ZINB, ZAP, 

and ZANB under the Count Model 
 
Regressor ZIP SE 

 
ZINB SE 

 
ZAP SE 

 
ZANB SE 

Intercept 1.903*** (0.023)   1.754*** (0.065)   1.903*** (0.023)   1.753*** (0.065) 

PA_active 0.047 (0.038) 
 

0.051 (0.105) 
 

0.047 (0.038) 
 

0.055 (0.106) 

PA_insufficiently active 0.000 (0.039) 
 

−0.001 (0.106) 
 

0.000 (0.039) 
 

−0.001 (0.106) 

PA_inactive 0.281*** (0.033) 
 

0.325*** (0.095) 
 

0.281*** (0.033) 
 

0.326*** (0.095) 

SEX_female 0.039 (0.030) 
 

0.046 (0.082) 
 

0.039 (0.030) 
 

0.046 (0.082) 

AGE −0.002* (0.001) 
 

−0.002 (0.002) 
 

−0.002* (0.001) 
 

−0.002 (0.002) 

PA_active*SEX_female −0.044 (0.047) 
 

−0.047 (0.129) 
 

−0.044 (0.046) 
 

0.051 (0.129) 

PA_insufficiently 
active*SEX_female 

0.123** (0.046) 
 

0.143 (0.149) 
 

0.123** (0.046) 
 

0.142 (0.129) 

PA_inactive*SEX_female 0.015 (0.041) 
 

0.007 (0.119) 
 

0.015 (0.041) 
 

0.005 (0.120) 

PA_active*AGE 0.002 (0.001) 
 

0.002 (0.004) 
 

0.002 (0.001) 
 

0.007 (0.003) 

PA_insufficiently active*AGE 0.005*** (0.001) 
 

0.005 (0.004) 
 

0.005*** (0.001) 
 

0.053 (0.004) 

PA_inactive*AGE 0.006*** (0.001)   0.007* (0.003)   0.006*** (0.001)   0.007* (0.003) 
 

Note: “Male” was the reference group for sex and “highly active” was the reference group for physical activity. 

For zero-inflated and zero-altered models, Count Model has relationship between covariates and count mean 
and Zero-inflation Model has relationship between covariates and probability of zeros. ZIP = zero-inflated 

Poisson model, ZINB = zero-inflated negative binomial model, ZAP = zero-altered Poisson model, ZANB = 
zero-altered negative binomial model. Significance levels: *** = 0.001, ** = 0.01, * = 0.05. 
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Table 5.3. Estimated regression coefficients (and standard errors) for ZIP, ZINB, ZAP, 

and ZANB under the Zero-Inflation Model 
 
Regressor ZIP SE 

 
ZINB SE 

 
ZAP SE 

 
ZANB SE 

Intercept 0.393*** (0.078)   0.127 (0.092)   −0.395*** (0.078)   −0.395*** (0.078) 

PA_active −0.074 (0.131) 
 

−0.074 (0.151) 
 

0.075 (0.131) 
 

0.075 (0.131) 

PA_insufficiently active −0.018 (0.131) 
 

−0.019 (0.150) 
 

0.018 (0.130) 
 

0.018 (0.130) 

PA_inactive −0.123 (0.120) 
 

−0.060 (0.135) 
 

0.125 (0.120) 
 

0.125 (0.120) 

SEX_female −0.126* (0.102) 
 

−0.256* (0.118) 
 

0.236* (0.102) 
 

0.236* (0.102) 

AGE 0.015*** (0.003) 
 

0.017*** (0.004) 
 

−0.015*** (0.003) 
 

−0.015*** (0.003) 

PA_active*SEX_female −0.103 (0.165) 
 

−0.129 (0.193) 
 

0.102 (0.165) 
 

0.102 (0.165) 

PA_insufficiently 

active*SEX_female 
−0.226 (0.164) 

 
−0.223 (0.192) 

 
0.228 (0.164) 

 
0.228 (0.164) 

PA_inactive*SEX_female −0.170 (0.154) 
 

−0.184 (0.175) 
 

0.170 (0.154) 
 

0.170 (0.154) 

PA_active*AGE −0.002 (0.005) 
 

−0.001 (0.006) 
 

0.002 (0.005) 
 

0.002 (0.005) 

PA_insufficiently active*AGE −0.008 (0.005) 
 

−0.007 (0.006) 
 

0.008 (0.005) 
 

0.008 (0.005) 

PA_inactive*AGE −0.010* (0.004)   −0.010* (0.005)   0.010* (0.004)   0.010* (0.004) 
 

Note: “Male” was the reference group for sex and “highly active” was the reference group for physical activity. 
For zero-inflated and zero-altered models, Count Model has relationship between covariates and count mean 

and Zero-inflation Model has relationship between covariates and probability of zeros. ZIP = zero-inflated 

Poisson model, ZINB = zero-inflated negative binomial model, ZAP = zero-altered Poisson model, ZANB = 
zero-altered negative binomial model. Significance levels: *** = 0.001, ** = 0.01, * = 0.05. 

 
 

Regression coefficients and standard errors were estimated and presented in 

Table 5.1 and 5.2 for each of the seven models when applied to the BRFSS 

dataset. Standard errors estimated from different models were quite different. 

There was a tendency for the worse models to have smaller standard errors. For 

instance, although estimates from the Poisson model were similar to those from 

the NB model, their standard errors were much smaller, thus yielding significant 

results for most of the regressors, which was most likely not accurate. It was the 

same when comparing ZIP versus ZINB and ZAP versus ZANB.  

With PA (i.e., physical activity), gender, age, PA*gender, and PA*age 

predicting both the count model and zero-inflation model, Table 5.2 shows 

parameter estimates from the ZANB model (the final model). Participants in the 

highly active group and males were used as reference groups. After controlling 

for age, gender, and their interaction terms with PA, compared with highly active 

people, inactive people were likely to experience 1.39 (= exp(0.326), p < 0.001) 

more unhealthy days. This trend can also be seen in Figure 4, where both inactive 

males and females had higher means of UNHLTH than other groups of 

participants. (Male) gender (odds ratio = 1.27, p < 0.05) and younger age (odds 

ratio = 0.99, p < 0.001) were the only results to be significant predictors for those 

who experienced 0 unhealthy days versus those who experienced more than 0 

unhealthy days. Thus, females and older people were more likely to report 
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unhealthy days, although it should be pointed out that the odds ratio for age was 

not very meaningful in size, even if significant.  
 
 

 
 
Figure 4. Least-squared Means of UNHLTH by PA and Gender with 95% Confidence 

Limits 

 

 

Discussion 

This study evaluated seven regression models under various conditions of zero-

inflation and dispersion by analyzing simulated datasets and an empirical dataset. 

Results from both studies suggested that when the data include excessive zeros 

(even as low as 20%) and over-dispersion, zero inflated models (i.e. ZIP, ZINB, 

ZAP, and ZANB) perform better than Poisson regression and ordinary least-

squares regression with transformed outcomes (LST). It was only when fitting 

data with no zero-inflation and the least dispersion (i.e., w = 0.0 and k = 50) in the 

simulation study, that the Poisson regression model performed well and had the 

highest selection rate. 

The poor fit from the LST might be that the log-transformation still fails to 

correct the non-normality and to address the inflation of zeros. Another drawback 
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of using a transformation is that the regression coefficients are harder to interpret. 

The Poisson distribution is the probability model usually assumed for count data, 

however, zero-inflated count data usually tend to have much bigger variance than 

the mean, which violates its assumption that the mean equals the variance. In both 

cases, when failing to address the problem of zero-inflation and over-dispersion, 

standard errors of the estimates tended to be deflated or under estimated (Hilbe, 

2014). Furthermore, if inappropriately choosing the LST or the Poisson model, 

there is greater tendency to make Type I errors, i.e. a variable may appear to be a 

significant predictor when it is in fact, not significant. Estimated regression 

coefficients from Table 5.1 demonstrate this kind of bias.  

Results from these studies of simulated and real data support using special 

zero inflated models for zero-inflated data. When over-dispersion also exists even 

in the non-zero part of the data, a negative binomial regression instead of the 

regular Poisson regression should be used. Compared with other models, the 

ZINB model had the most consistent performance at any combination of 

dispersion and zero-inflation in the simulation study. The use of zero inflated 

models can be justified on both substantive and statistical grounds. Substantively, 

zero inflated models have the ability to identify the factors that have significant 

effects on the probability that the participant is from the non-susceptible group by 

means of a binary regression model; and the magnitude of the counts given that 

the participant is from the susceptible group by means of a Poisson regression or 

negative binomial regression. Factors or explanatory variables do not need to be 

the same for the binomial model and the count model. Although the NB model 

can also effectively offer accurate estimation under some degrees of zero-inflation 

and over-dispersion, it cannot provide information about possible mechanisms 

underlying the zero-inflation. Statistically, zero inflated models provide more 

accurate estimates as shown by both the simulation results and empirical data 

analysis results.   

Zero-inflated models are more preferred than zero-altered models when we 

assume zeros can be produced both from the zero-inflation process and the count 

process. In the simulation study, data were generated under this mechanism and 

we found that zero-inflated models out-performed zero-altered models, especially 

when the levels of zero-inflation and dispersion were low. Therefore, the decision 

when choosing between these two should rely on the nature of the research 

questions. The biggest difference between them is that zero-inflated models 

distinguish between structural zeros (true zeros) and random zeros (false zeros), 

although zero-altered models do not. In public health and medicine studies, zero-

inflated models may be conceptualized as allowing zeros to arise from at-risk 



YANG ET AL. 

539 

(susceptible) and not-at-risk (non-susceptible) populations. In contrast, we may 

conceptualize zero-altered models as having zeros only from an at-risk population 

(Rose et al., 2006). For instance, when answering a survey question that asks the 

number of drinks someone had during the past month, some people report 0 

drinks because they are abstainers and they never drink. However, for people who 

are regular drinkers, they might also report 0 drinks if they did not drink during 

that month. As mentioned earlier, these latter zero responses are called random 

zeros (or false zeros) (Zuur, et al., 2009). It is more appropriate to use ZIP and 

ZINB in these kind of situations when the study design has a greater chance of 

having random zeros.  

Another interest of the study with empirical data was to explore the 

relationship between health related quality of life (HRQoL) and physical activity 

(PA). Many research studies have shown that PA helps to improve overall health 

and fitness, and reduce risk of health conditions including diabetes, coronary heart 

disease, stroke, and cancers (CDC, 2014). Despite the well-known benefits of 

exercise, according to the CDC, less than half of American adults meet the 

recommended level of PA. HRQoL describes both the physical and mental well-

being of an individual. It is an important concept in health research and can help 

to inform decisions on the prevention and treatment of diseases. The present study 

examined the relationship between PA and HRQoL after controlling for relevant 

demographic characteristics within the context of a large representative health 

survey from Rhode Island. Results showed that participants reporting higher 

levels of PA tended to report fewer unhealthy days. Specifically, compared with 

participants in the highly active group, those who seldom reported any physical 

activity were likely to experience 1.30 more unhealthy days. Females and older 

people were also more likely to report unhealthy days versus 0 unhealthy day 

compared to males and younger people. These findings offer a better 

understanding that health-related lifestyle behaviors, such as being more 

physically active, can improve HRQoL and might help to inform policy makers to 

provide more intervention programs for the general population.  

There were also some limitations of the study. First, for the empirical study, 

explanatory variables for the zero versus non-zero model and the count model 

were set to be the same. The most attractive advantage of using zero-inflated 

models is that they allow researchers to have different predictors for two parts of 

the models, which usually can be justified theoretically. Second, since the data 

were collected via a telephone survey, various response biases and non-response 

biases would occur. For instance, participants consisted mostly of older people 

with an average age of 55.51 years; thus, the sample was not sufficiently random. 
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Third, the cross-sectional nature of the data was another limitation of the study. 

Since these data were cross-sectional, no temporal order can be determined, so it 

is possible that those with higher health-related quality of life (HRQoL) reported 

more physical activity (PA). Future longitudinal designs are needed to tease out 

temporal relationships. Only age and gender were controlled for in the empirical 

data analysis. It is possible that other unmeasured factors, such as disease states 

and seasonality, could be potential confounding variables of the relationship 

between PA and HRQoL. Future longitudinal analyses would help to improve our 

understanding of these relationships and increase the predictive power of the 

study, in addition to what model is used to examine the data. Finally, the 

UNHLTH ranges from 0 to 29 days, which follows a zero-inflated negative 

binomial distribution truncated at 29. Creel and Loomis (1990) suggest that 

accounting for truncation of the response variable provides a more accurate 

coefficient estimates, regardless of the choice of the statistical model. Although a 

truncated model was not used in this study, it might be of interest in future studies. 
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A comprehensive study of graphical log-linear models for contingency tables is presented. 
High-dimensional contingency tables arise in many areas. Analysis of contingency tables 
involving several factors or categorical variables is very hard. To determine interactions 
among various factors, graphical and decomposable log-linear models are preferred. 

Connections between the conditional independence in probability and graphs are 
explored, followed with illustrations to describe how graphical log-linear model are 
useful to interpret the conditional independences between factors. The problem of 
estimation and model selection in decomposable models is discussed. 
 
Keywords: Graphical log-linear models, contingency tables, decomposable models, 
hierarchical log-linear models 

 

Introduction 

The aim in the current study is to provide insight into graphical log-linear models 

(LLMs) by providing a concise explanation of the underlying mathematics and 

statistics, by pointing out relationships to conditional independence in probability 

and graphs, and providing pointers to available software and important references. 

LLMs are the most widely used models for analyzing cross-classified categorical 

data (Christensen, 1997). LLM supports various ranges of models based on non-

interaction assumptions. For fairly large-dimensional tables, the analysis becomes 

difficult; as the number of factors increases the number of interaction terms grows 

exponentially. Graphical LLMs are a way of representing relationships among the 

factors of a contingency table using a graph. The graphical LLMs have two great 

advantages: from the graph structure, it is easy to read off the conditional 

independence relations; and graph-based algorithms usually provide efficient 

computational algorithms for parameter estimation and model selection. 

https://doi.org/10.22237/jmasm/1493598000
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The decomposable LLMs are a restricted class of GLLMs which are based 

on chordal graphs. There are several reasons for using decomposable models over 

an ordinary GLLM. Firstly, the maximum likelihood estimates can be found 

explicitly. Secondly, closed-form expressions exist for the test statistics. Another 

advantage is that it has triangulated graph-based efficient inference algorithms. 

Thus decomposable models are mostly used for analysis of high-dimensional 

tables. 

Graph Theory and Markov Networks 

Graph Theory 

Necessary concepts of graph theory that will be used are discussed. See West 

(2000) for further details on graph theory. A graph G is a pair G = (V, E), where 

V is a set of vertices and E is a set of edges. A graph is said to be an undirected 

graph when E is a set of unordered pairs of vertices. Consider only a simple graph 

that has neither loops nor multiple edges. 

 

Definition 1 (Boundary): Let G = (V, E) be an undirected graph. The 

neighbors or boundary of a subset A of vertices is a subset C of vertices such that 

all nodes in C are not in A but are adjacent to some vertex in A. 

 

     bd A V A A : , Eu v u v    ∣   

 

Definition 2 (Maximal Clique): A clique of a graph G is a subset C of 

vertices such that all vertices in C are mutually adjacent. A clique is said to be 

maximal if no vertex can be added to C without violating the clique property. 

 

Definition 3 (Chordal (Triangulated) Graphs): In graph theory, a chord of a 

cycle C is defined as an edge which is not in the edge set of C but joins two 

vertices from the vertex set C. A graph is said to be a chordal graph if every cycle 

of length four or more has a chord. 

 

Definition 4 (Isomorphic Graphs): Two graphs are said to be isomorphic if they 

have same number of vertices, same number of edges, and they are connected in 

the same way. 
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Conditional Independence 

The concept of conditional independence in probability theory is very important 

and it is the basis for the graphical models. It is defined as follows: 

 

Definition 5 (Conditional Independence): Let X, Y, and Z be random variables 

with a joint distribution P. The random variables X and Y are said to be 

conditionally independent given the random variable Z if and only if the following 

holds: 

 

 
     

   

P , | P | P |

P | P |

X Y Z X Z Y Z

X YZ X Z




  

 

Dawid’s (1979) notation, X ⫫ Y | Z, is also used. Conditional independence 

has a vast literature in the field of probability and statistics; see also Pearl and Paz 

(1987). 

Markov Networks and Markov Properties 

Markov network graphs, Markov networks, and different Markov properties for 

the Markov Networks are now defined. 

 

Definition 6 (Markov Network Graphs): A Markov network graph is an 

undirected graph G = (V, E) where V = {X1,…, Xn} represents random variables 

of a multivariate distribution. 

 

Definition 7 (Markov Networks): A Markov network M is a pair M = (G, Ψ). 

Where G is a Markov network graph and Ψ = {ψ1,…, ψm} is a set of non-negative 

functions for each maximal clique Ci ∈ G ∀i = 1,…, m, and the joint probability 

density function (pdf) can be decomposed into factors as 

 

    
1

P
m

a

a C

x x
Z 

    

 

where Z is a normalizing constant. 
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Definition 8 (Pairwise Markov Property (P)): A probability distribution P 

satisfies the pairwise Markov property for a given undirected graph G if, for every 

pair of non-adjacent vertices X and Y, X is independent of Y given the rest. 

 

 X ⫫ Y | (V \ X, Y)  

 

Definition 9 (Local Markov Property (L)): A probability distribution P satisfies 

the local Markov property for a given undirected graph G if every variable X is 

conditionally independent of its non-neighbors in the graph, given its neighbors. 

 

 X ⫫ (V \ (X ∪ bd(X))) | bd(X) 

 

Definition 10 (Global Markov Property (G)): A probability distribution P is 

said to be global Markov with respect to an undirected graph G if and only if, for 

any disjoint subsets of nodes A, B, and C such that C separates A and B on the 

graph, the distribution satisfies the following: 

 

 A ⫫ B | C 

 

Note the above three Markov properties are not equivalent to each other. 

The local Markov property is stronger than the pairwise one, while weaker than 

the global one. More precisely, 

 

Proposition 1:  For any probability measure the following holds: 

 

      G L P    

 

See Lauritzen (1996), for proof of Proposition 1. Refer to Lauritzen (1996) and 

Edwards (2000) for further details on graphical models, and to Darroch, Lauritzen, 

and Speed (1980) for details on Markov fields for LLMs. 

Notations and Assumptions 

The notations and the assumptions are now discussed. Consider three-dimensional 

tables for notational simplicity; this is also a true representative of k-dimensions 

and thus can be easily extended to any higher dimensions by increasing the 
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number of subscripts. See Christensen (1977) and Bishop, Fienberg, and Holland 

(1989). 

Consider a three-dimensional table with factors X, Y, and Z. Numeric 

{1, 2, 3} and alphabetic {X, Y, Z} symbols are used interchangeably to represent 

the factors of a contingency table. Suppose the factors X, Y, and Z have I, J, and K 

levels, respectively. Then we have an I × J × K contingency table. 

The following notations are defined for each elementary cell (i, j, k) for 

i = 1,…, I, j = 1,…, J, and k = 1,…, K: 

 

nijk = the observed counts in the cell (i, j, k) 

mijk = the expected counts in the cell (i, j, k) 

ˆ
ijkm  = the Maximum Likelihood Estimate (MLE) of mijk 

pijk = the probability of a count falling in cell (i, j, k) 

ˆ
ijkp  = the MLE of pijk 

 

The following notations are used for sums of elementary cell counts, where “.” 

represents summation over that factor. For example, 

 

 

..

.

... total number of observations

i ijk

jk

i k ijk

j

n n

n n

N n





 



   

 

Similarly, the marginal totals of probabilities and the expected counts are denoted 

by p.jk, and m.jk, etc. 

Denote by C the tables of sums obtained by summing over one or more 

factors, e.g. C12 represents tables of counts nij.. Subscripted u-term notation is 

used for main effects and interactions. For example, uij is used for two-factor 

interactions ∀i = 1,…, I and ∀j = 1,…, J. We may interchangeably use u12(ij) and 

uij; the latter is obtained by simply dropping the second set of subscript. Thus 

 

  12 12
1, , , 1, ,

ij
u u i I j J      

 

Assume that the observed cell counts are strictly positive for all models we 

consider throughout this article. 
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Overview of Contingency Tables 

A contingency table is a table of counts that summarizes the relationship between 

factors. In a multivariate qualitative data set where each individual is described by 

a set of attributes, all individual with same attributes are counted; this count is 

entered into a cell of a corresponding contingency table (see Bishop, Fienberg, & 

Holland, 1989). The term contingency was introduced by Pearson (1904). There is 

an extensive body of literature on contingency tables; see A. H. Andersen (1974), 

Bartlett (1935), and Goodman (1969). 

 

Example 1: Table 1 provides an example of a three-dimensional contingency 

table taken from example 3.2.1 of Christensen (1997). 

Types of Contingency Tables 

Based on the underlying assumption of sampling distributions, contingency tables 

are divided into three main categories as follows: 

 

The Poisson Model In this model, it is assumed that cell counts are independent 

and Poisson-distributed. The total number of counts and the marginal counts are 

random variables. For three-dimensional tables with counts as random variables, 

the joint probability density function (pdf) can be written as 

 

   
e

f
!

ijk ijkn m

ijk

ijk

i j k ijk

m
n

m



   (1) 

 

The Multinomial Model In this model, it is assumed that the total number of 

subjects N is fixed. With this constraint imposed on independent Poisson 

distributions, the cell counts yield a multinomial distribution. For proof we refer 

to Fisher (1922). The pdf for this model is given as 
 
 
Table 1. Personality type table 

 

  

Diastolic Blood Pressure 

Personality Type Cholesterol Normal High 

A Normal 716 79 

 
High 207 25 

B Normal 819 67 

  High 186 22 
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  (2) 

 

The Product-Multinomial Model In this model, it is assumed that one set of 

marginal counts is fixed and the corresponding table of sums follow a product-

multinomial distribution. For example, consider a three-dimensional table with 

total counts for the first factor, n.jk, fixed. The pdf is given as 
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  (3) 

Introduction to Log-Linear Models 

As discussed previously, the distribution of cell probabilities belong to 

exponential family (Poisson, multinomial, and product-multinomial). Construct a 

linear model in the log scale of the expected cell count. A LLM for a three-factor 

table is defined as 

 

                1 2 3 12 13 23 123
log  ijk i j k ij ik jk ijk

m u u u u u u u u          (4) 

 

with the following identifiability constraints: 
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The above model is called saturated or unrestricted because it contains all possible 

one-way, two-way, and three-way effects. In general, if no interaction terms are 

set to zero, it is called the saturated model. 
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The number of terms in a LLM model depends on the dimensions or number 

of factors and the interdependencies between the factors; it does not depend on 

the number of cells (see Birch, 1963 for more details). The model given by 

equation (4) applies to all three kinds of contingency tables with three factors (as 

discussed in the previous section), but there may be differences in the 

interpretations of the interaction terms (see Kreiner, 1998; Lang, 1996b). There is 

a wide body of literature on LLMs, see for instance Agresti (2002), Christensen 

(1997), Zelterman (2006), and Knoke and Burke (1980). 

Log-Linear Models as Generalized Linear Models 

Recall the generalized linear model (GLM). It consists of a linear predictor and a 

link function. The link function determines the relationship between the mean and 

the linear predictor. Here, we show that the LLMs are special instances of GLMs 

for Poisson-distributed data; see Nelder and Wedderburn (1972) for details. 

Consider a 2 × 2 Poisson model with two factors, say X and Y, and suppose 

cell counts nij are response variables such that nij ~ Poisson(mij) and the factors X 

and Y are explanatory variables. Define a link function g as g(mij) = log(mij). The 

linear predictor is defined as X'β, where X is the design matrix and β is the vector 

of unknown parameters. For this model, X and β are defined as 
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X β   

 

The model can be expressed as follows: 

 

    log ij i i j ij
m x        β   
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Rename the parameters as 

 

   1 2 12log ijm u u u u      

 

The above model is the same as the LLM defined for two-factor tables, where u is 

the overall mean, u1 and u2 are the main effects, and u12 is the interaction effect. 

LLMs can be fit as generalized linear models by using software packages 

available for GLMs, e.g. the glm() function in the stats R package. 

Classes of Log-Linear Models 

Comprehensive Log-Linear Models 

The class of comprehensive LLMs is defined as follows: 

 

Definition 11 (Comprehensive Log-Linear Models): A log-linear model is 

said to be comprehensive if it contains the main effects of all the factors. 

For example, a comprehensive LLM for the three-factor contingency tables 

must include all the main effects u1, u2, and u3, along with other interaction effects, 

if any (see Zelterman, 2006). 

Hierarchical Log-Linear Models 

The class of hierarchical LLMs is defined as follows: 

 

Definition 12 (Hierarchical Log-Linear Models): A LLM is said to be 

hierarchical if it contains all the lower-order terms which can be derived from the 

variables contained in a higher-order term. 

For example, if a model for three-dimension table includes u12, then u1 and 

u2 must be present. Conversely, if u2 = 0, then we must have u12 = u23 = u123 = 0. 

The hierarchical models may be represented by giving only the terms of highest 

order, also known as a generating class, because all the lower-order terms are 

implicit. The generating class is defined as follows: 

 

Definition 13 (Generating class): The highest-order terms in hierarchical 

LLMs are called a generating class because they generate all of the lower-order 

terms in the model. 
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Example 2: A LLM with generating classes C = {[123], [34]} corresponds to 

the following log-linear model: 

 

log(mhijk) = u + u1 + u2 + u3 + u4 + u12 + u23 + u13 + u123 + u34 

Members of generating class [123] = {[1], [2], [3], [12], [23], [13], [123]} 

Members of generating class [34] = {[3], [4], [34]} 

 

All models considered in the remaining sections of this article are hierarchical and 

comprehensive LLMs unless stated otherwise. 

Graphical Log-Linear Models 

Consider a class of LLMs that can be represented by graphs, called graphical log-

linear models (GLLMs). 

 

Definition 14 (Graphical Log-Linear Models): A LLM is said to be 

graphical if it contains all the lower-order terms which can be derived from 

variables contained in a higher-order term, the model also contains the higher 

order interaction. 

For example, if a model includes u12, u23, and u31, then it also contains the 

term u123. In GLLMs, the vertices correspond to the factors and the edges 

correspond to the two-factor interactions. But the factors (vertices) and the two-

factor interactions (edges) alone do not specify the graphical models. As 

mentioned previously, factorization of the probability distribution with respect to 

a graph must satisfy the Markov properties. For such a graph that respects the 

Markov properties with respect to a probability distribution, there is a one-to-one 

correspondence between GLLMs and graphs. It follows that every GLLM 

determines a graph and every graph determines a GLLM, as is illustrated by the 

following examples: 

 

Example 3: Consider the model [123] [134]. The two-factor terms generated by 

[123] are [12], [13], and [23]. Similarly, the two-factor terms generated by [134] 

are [13], [14], and [34]. The corresponding graph is as given in Figure 1. 

Conversely, read the LLM directly from the corresponding graph. Consider 

a graph as given in Figure 2; the edges are [12], [23], [13], and [34]. Because the 

generating class for the terms [12], [23], and [13] is the term [123], we must 

include [123] in the model. Hence, the corresponding GLLM is [123] [34]. 
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Figure 1. Graphical model of [123] [134] 

 

 
 

 
 
Figure 2. Graphical model of [123] [34] 

 

 

Generating classes of GLLMs are in a one-to-one correspondence with the 

maximal cliques of the corresponding graph. Not all hierarchical LLMs have 

graphical representation. For example, the model [12] [13] [23] is hierarchical but 

it is not graphical because it does not contain the higher order term [123]. 

 

Decomposable Models Consider the class of decomposable models, which 

is a subclass of the GLLMs. 

 

Definition 15 (Decomposable Log-Linear Models):  A LLM model is 

decomposable if it is both graphical and chordal. 

The main advantage of this model over other models is that it has closed 

form Maximum Likelihood Estimates (MLEs). For example, consider a 

decomposable model as given by Figure 1. The only conditional independence 

implied by the graph is that, given the factors 1 and 3, factors 2 and 4 are 

independent. The MLEs for the expected cell counts are factorized in a closed 

form in the terms of sufficient statistics as 

 

 
. .

. .

ˆ hij h jk

ijkl

h j

n n
m

n
   

 

The derivation of MLE expressions, like the one above, is discussed in detail in a 

later section. For all the possible non-isomorphic graphical and decomposable 

models for the four-factor contingency tables, see Table 18 in the Appendix. 

A few important articles concerned with the decomposable models are 

Goodman (1970, 1971b), Haberman (1974), Lauritzen, Speed, and Vijayan (1984), 

Meeden, Geyer, Lang, and Funo (1998) and Dahinden, Kalisch, and Bühlmann 

(2010). 
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Statistical Properties of the Log-Linear Models 

Consider statistical properties of the hierarchical LLMs, like the existence of 

sufficient statistics, uniqueness of the MLE, and model testing. 

The Sufficient Statistics for LLMs 

The sufficient statistics exist for the hierarchical LLMs and are very easy to 

obtain. Consider the saturated model with simple multinomial sampling 

distribution for the three-factor contingency tables. The log-likelihood function of 

the multinomial is obtained from the pdf given by equation (1) as follows: 

 

      
!

log f log log logijk ijk ijk

i j kijki j k

N
n n m N N

n

 
   
 
 


 

  (5) 

 

Or, equivalently, 

 

      log f logijk ijk ijk

i j k

n n m C    (6) 

 

where C represents the constant terms. Substituting the value for log(mijk) as given 

by equation (4), 

 

      1 2 3 12 13 23 123log f ijk ijk

i j k

n n u u u u u u u u C           

 

The above expression can be also written as 

 

 
   1 .. 2 . . 3 ..   12 . 13 .

23 .   123

f expijk i j k ij i k

i j k i j i k

jk ijk

j k i j k

n Nu u n u n u n u n u n

u n u n C

 
      

 

  

    

 
  

 

Because the multinomial distribution belongs to exponential family sufficient 

statistic exists, see E. B. Andersen (1970). From the above expression it is 

apparent that, for the three-factor saturated model, the full table itself is the 

sufficient statistic since the lower-order terms are redundant and it will be 
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subsumed in the full table. The marginal sub-tables which correspond to the set of 

generating classes are the sufficient statistics for the log-linear models (see Birch, 

1963). 

 

Example 4: Consider a four-factor table with the following generating classes: 

 

       1 2, 123 , 34C C    

 

Then C1(n) = [nijk.] is a three-dimensional marginal sub-table and C2(n) = [n..kl] is 

a two-dimensional marginal sub-table. These two marginal sub-tables are the 

sufficient statistics for this model. For more details and proofs on the sufficient 

statistics for hierarchical LLMs, see Haberman (1973). 

Maximum Likelihood Estimates for the LLMs 

A unique set of MLEs for every cell count can be obtained from the sufficient 

statistics alone; see Birch (1963) for the proof. The Birch criteria are: 

 

1. The marginal sub-tables obtained by summing over the factors not present 

in the max-cliques are the sufficient statistics for the corresponding 

expected cell counts. e.g., for the model [123] [34], C1(n) = [nijk.] and 

C2(n) = [n..kl] are sufficient statistics for mijk. and m..kl, respectively. 

2. All the sufficient statistics must be the same as the corresponding marginal 

sub-tables of their estimate means. 

 

    ˆ
i iC m C n   

 

for all i from 1 to the number of generating classes. e.g., for the model 

[123] [34], the estimated cell counts are 

 

 
. .
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Finally, the MLE of the expected cell counts for the model [123] [34] is 

expressed as follows: 

 



GRAPHICAL LOG-LINEAR MODELS 

558 

 
. ..

.. .

ˆ ijk kl

ijkl

k

n n
m

n
   

 

The closed form expressions for the MLEs will be derived below in terms of 

sufficient statistics for three-factor contingency tables. 

The reason for choosing MLE for computing the expected cell counts is its 

consistency and efficiency in large samples. There is extensive research on the 

MLEs of LLMs; see for example Glonek, Darroch, and Speed (1988), A. H. 

Andersen (1974), Haberman (1974), Meeden, Geyer, Lang, and Funo (1998), 

Birch (1963), Fienberg and Rinaldo (2007), Lang (1996a), Lang, McDonald, and 

Smith (1999), and Darroch (1962). 

Testing Models 

The assessment of a model’s fit is very important as it describes how well it fits 

the data. Consider the following test statistics: 

Pearson’s χ2 Statistic 

This is defined as 

 

 
 

2

2 i i

i i

O E

E



   

 

where the Oi denote the observed cell counts and the Ei the expected cell counts. 

The Deviance Goodness-of-Fit Test Statistics 

Test a model against the saturated model using the deviance goodness-of-fit test, 

which is defined as follows: 

 

 2 2 log i
i

i i

E
G O

O
     

 

Under the null hypotheses, the deviance is also distributed as χ2 with the 

appropriate degrees of freedom. 

Significance of a test statistic is assessed by its p-value. Statistical 

significance is attained when the p-value is less than a predetermined minimum 
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level of significance, say α. The significance level α is often set at 0.05 or 0.01 

(see Bishop, Fienberg, & Holland, 1989). Here the level α is set at 0.05. 

In Table 2, the degrees of freedom of all the possible models for three-factor 

tables are listed. For more information about the model testing refer to Davis 

(1968), Kreiner (1987), and Landis, Heyman, and Koch (1978). 

Analysis of Three-Factor Contingency Tables 

Consider the different interaction models for three-factor tables and the 

mathematical formulation for the MLE of the expected counts (when it is 

possible) for each model. 
 
 
Table 2. Degrees of freedom 

 

Model DF 

[1][2][3] IJK − I − J − K + 2 

[12][3] (IJ − 1)(K − 1) 

[13][2] (IK − 1)(J − 1) 

[23][1] (JK− 1)(I − 1) 

[12][13] I(J − 1)(K − 1) 

[12][23] J(I − 1)(K − 1) 

[13][23] K(I − 1)(J − 1) 

[12][13][23] (I − 1)(J − 1)(K − 1) 

[123] 0 

 
 

Complete Independence Model 

This is the simplest model where all the factors are mutually independent and 

u12 = u13 = u23 = u123 = 0. The following different equivalent notations can be used 

to represent this model: 

 

 X ⫫ Y | Z 

   1 2 3log ijkm u u u u      (7) 

 C = {[1], [2], [3]}  

 

This model can be represented graphically as given in Figure 3. 

Substitute the value of log(mijk), as given in the equation (4) to the log-

likelihood kernel as given by the Equation (6) and ignoring the constant term: 
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After simplification, obtain 
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From the above expression, obtain the sufficient statistics for this models as 

marginal sub-tables: C1 = {ni..}, C2 = {n.j.}, and C3 = {n..k}, which are estimates of 

mi.., m.j., and m..k, respectively. 

From equation (7), by summing over jk, ik, ij, and ijk, we obtain mi.., m.j., m..k, 

and m... as 
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From the above equations, get the expression for mijk as 
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Applying Birch's result, the estimates of mijk are 
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Figure 3. The complete independence model 

 

 
 
Table 3. Personality type, cholesterol, and DBP marginal sub-tables of Table 1 

 

Personality Type   
 

Cholesterol   
 

Diastolic Blood Pressure   

A 1027 
 

Normal 1681 
 

Normal 1928 

B 1094 
 

High 440 
 

High 193 

 
 
Table 4. Table of estimated cell counts for Example 4 

 

  

Diastolic Blood Pressure 

Personality Type Cholesterol Normal High 

A Normal 739.90 74.07 

 
High 193.70 19.39 

B Normal 788.20 78.90 

  High 206.30 20.65 

 
 

Example 4: Consider the contingency table as given in Table 1. Under the 

complete independence assumption, the sufficient statistics are the marginal sub-

tables given in Table 3. The table of fitted values, under the complete 

independence assumption, is given in Table 4. The G2 statistic for the model is 

8.723 (df: 4, p-value: 0.068), hence we conclude that the data supports the 

complete independence model. For details on the Chi-Squared test of 

independence, refer to Goodman (1971b). 
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Joint Independence Model 

Under this model, two factors are jointly independent of the third factor. There are 

three versions of this model depending on which factor is unrelated to the other 

two. These three models are (XY) ⫫ Z, (XZ) ⫫ Y, and (YZ) ⫫ X. Consider only 

(XY) ⫫ Z in detail as the others are comparable. Equivalent different notations are 

 

 
 

    

1 2 3 12

12 ,

l g

3

o ijkm u u u u u

C

   




  (8) 

 

This model can also be represented graphically, as given in Figure 4. 
 
 

 
 
Figure 4. The joint independence model. 

 

The sufficient statistics for this model are the marginal sub-tables C1 = {nij.} 

and C2 = {n..k}, which are the estimates of mij. and m..k. From equation (8), obtain 
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From the above equations, derive the closed form expression for mijk as 
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and, applying Birch’s criteria, 
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If the previous model of the complete independence X ⫫ Y ⫫ Z fits a data set, then 

the model, (XY) ⫫ Z will also fit. But the smallest model will be preferred. 

 

Example 5: Consider the contingency table displayed in Table 5 to discuss this 

model. The sufficient statistics are given in Table 6. Under the assumptions of this 

model, the table of the expected cell counts is given in Table 7. The G2 statistic 

for this model is 5.560 (df: 5, p-value: 0.351), hence we conclude that the data 

supports the joint independence model. 
 
 
Table 5. Classroom behaviour table (Everitt, 1977) 

 

  
Risk 

Classroom Behaviour Adversity of School Not at Risk At Risk 

Nondeviant Low 16 7 

 
Medium 15 34 

 
High 5 3 

Deviant Low 1 1 

 
Medium 3 8 

 
High 1 3 

 
 
Table 6. Adversity*risk and classroom behaviour marginal sub-tables of Table 5 

 

 
Risk 

   Adversity Not at Risk  At Risk  
 

Classroom Behaviour Total 

Low  17 8 
 

Nondeviant 80 

Medium  18 42 
 

Deviant 17 

High  6 6 
    

 
Table 7. Table of estimated cell counts for Example 5 

 

  
Risk 

Classroom Behaviour Adversity of School Not at Risk At Risk 

Nondeviant Low 14.020 6.597 

 
Medium 14.845 34.639 

 
High 4.948 4.948 

Deviant Low 2.979 1.402 

 
Medium 3.154 7.360 

 
High 1.051 1.051 
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Conditional Independence Model 

Under this model, two factors are conditionally independent given the third factor. 

There are three version for this model as well, these are X ⫫ Y | Z, X ⫫ Z | Y, and 

Y ⫫ Z | X. Consider only X ⫫ Y | Z in detail, as derivation for the others is similar. 

This model can be equivalently represented as 
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  (9) 

 

The graph for this model is given in Figure 5. 
 
 

 
 
Figure 5. The conditional independence model 

 

 
 

The sufficient statistics for this model are the marginal sub-tables C13 = ni.k 

and C23 = n.jk, which are estimates of mi.k and m.jk. From equation (9): 
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From the above three equations, obtain the closed form expression for mijk as 
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As before, applying Birch's criteria derive the expected counts for each cell as 
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Example 6: Consider Table 8, infant’s survival data taken from Bishop (1969). 

Assuming pre-natal care and survival are independent given a clinic, the sufficient 

statistics are given in Table 9. The G2 statistic for this model is 0.082 (df: 2, 

p-value: 0.959), hence we conclude that the data supports the conditional 

independence model. 
 
 
Table 8. Infant survival table 

 

  
Infant’s Survival 

Clinic Pre-natal care Died Survived 

A Less 3 176 

 
More 4 293 

B Less 17 197 

 
More 2 23 

 
 
Table 9. Survival*clinic, clinic*pre-natal care, and clinic marginal sub-tables of Table 8 

 

 
Infant’s Survival 

  
Pre-natal Care 

 
Clinic Total 

Clinic Died Survived 
 

Clinic Less More 
 

A 476 

A 7 469 
 

A 179 297 
 

B 239 

B 19 220 
 

B 214 25 
    

 
Table 10. Table of estimated cell counts for Example 6 
 

  
Infant’s Survival 

Clinic Pre-natal care Died Survived 

A Less 2.632 176.367 

 
More 4.367 292.632 

B Less 17.012 196.987 

 
More 1.987 23.012 

Uniform Association Model 

This model is also known as the no three-factor interaction model, where u123 = 0. 

For this model the log-linear notation is [12] [13] [23], but there is no graphical 

representation for this model. Unlike the previous models, there are no closed-
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form estimates for the expected cell counts/probabilities under this model. The 

MLEs can be computed by iterative procedures such as Iterative Proportional 

Fitting (IPF) and the Newton-Raphson method. 

 

Example 7: Consider Table 11, auto accident data taken from Fienberg (1970). 

None of the models discussed in previous sections fit the data. Use the IPF 

algorithm to obtain the table of estimated counts as given in the Table 12. The G2 

statistic for this model is 0.043 (df: 1, p-value: 0.835), hence we conclude the data 

supports the marginal association model. For more information on IPF, refer to 

Deming and Stephan (1940) and Fienberg (1970). The IPF procedure 

implemented in the R package cat was used, available at cran.r-project.org. 
 
 
Table 11. Auto accident data table 

 

  
Injury 

Accident Type Driver Ejected Not Severe Severe 

Collision No 350 150 

 
Yes 26 23 

RollOver No 60 112 

 
Yes 19 80 

 
Table 12. Table of estimated cell counts for Example 7 

 

  
Injury 

Accident Type Driver Ejected Not Severe Severe 

Collision No 350.48858 149.51130 

 
Yes 25.51142 23.48870 

RollOver No 59.51104 112.48921 

 
Yes 19.48896 79.51079 

 
 

 
 
Figure 6. The saturated model 
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Saturated Model 

For this model, the log-linear notation is [123]. In this case there is no 

independence relationship between the three factors. The expected cell counts are 

the same as the observed cell frequencies, e.g. ˆ
ijk ijkm n . Graphical representation 

for the saturated model is given in Figure 6. 

 

Example 8: Consider Table 13, a partial table which is based on clinical trial 

data from Koch, Amara, Atkinson, and Stanish (1983). None of the models fit the 

data; we leave this for the reader to verify. 
 
 
Table 13. Results of a clinical trial for the effectiveness of an analgesic drug 
 

  
Response 

Status Treatment Poor Moderate Excellent 

1 Active 3 20 5 

 
Placebo 11 4 8 

2 Active 3 14 12 

 
Placebo 6 13 5 

Model Selection for Decomposable Models 

Model selection is now discussed for the decomposable models only, as a non-

decomposable graphical model can be reduced to a decomposable one by adding a 

minimal number of edges to the graph. For details on minimum triangulation, 

refer to Rose, Tarjan, and Lueker (1970) and Heggernes (2006). 

Though decomposable models are a restricted family of GLLMs, selecting 

an optimal model from the class of decomposable graphical models is known to 

be an intractable problem. Most of all existing model selection algorithms are 

based on forward selection, backward elimination, or a combination of the both. 

There is a vast literature available for model selection and inference on graphical 

models, e.g. see Wainwright and Jordan (2008), Dahinden, Kalisch, and 

Bühlmann (2010), Goodman (1971a), Ravikumar, Wainwright, and Lafferty 

(2010), and Allen and Liu (2012). 

The Wermuth's procedure starts with the saturated model, a single clique 

that includes all the two-factor effects as given in Figure 7. The vertices a, b, c, d, 

e, and f correspond to the factors Attendance, Sex, School, Agree, Subject, and 

Plans, respectively. 
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Consider the backward model selection procedure for a real data set called 

women and mathematics (WAM), used in Fowlkes, Freeny, and Landwehr (1988). 

Wermuth's (1976) backward elimination algorithm is used. The data are shown in 

the Table 14. 

Graphical models are completely specified by their two-factor interactions. 

By the hierarchical principle, if a two-factor term is set to zero, then any higher-

order term that contain that particular two-factor term will also be set to zero. 
 
 
Table 14. The women and mathematics data table 
 

  
School Suburban School 

  
Sex Female 

 
Male 

Plan Preference Attend Not 
 

Attend Not 

College Maths-Sciences Agree 37 27 
 

51 48 

  
Disagree 16 11 

 
10 19 

 
Liberal arts Agree 16 15 

 
7 6 

  
Disagree 12 24 

 
13 7 

Job Maths-Sciences Agree 10 8 
 

12 15 

  
Disagree 9 4 

 
8 9 

 
Liberal arts Agree 7 10 

 
7 3 

  
 

Disagree 8 4 
 

6 4 

 

  
School Urban School 

  
Sex Female 

 
Male 

Plan Preference Attend Not   Attend Not 

College Maths-Sciences Agree 51 55 
 

109 86 

  
Disagree 24 28 

 
21 25 

 
Liberal arts Agree 32 34 

 
30 31 

  
Disagree 55 39 

 
26 19 

Job Maths-Sciences Agree 2 1 
 

9 5 

  
Disagree 8 9 

 
4 5 

 
Liberal arts Agree 5 2 

 
1 3 

  
 

Disagree 10 9 
 

3 6 

 
 

In the next step, all the  6
2

 two-factor interactions are considered for 

elimination. Fix a backward elimination cut off level, α = 0.05. Among the two-

factor interactions, the terms having the largest p-value are considered for 

elimination, but only if the p-value exceeds α. From the Table 15, choose the edge 

(bf) for deletion, and the resulting graphical model is [abcde] [acdef]. 

In the next step, consider the cliques [abcde] and [acdef]. The edges ac, ad, 

ae, cd, ce, and de are common to both the cliques; they are not considered for 
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elimination because elimination of such edges may result in a non-decomposable 

model. The candidate edges for deletion are ab, bc, bd, be, af, cf, df, and ef. Let us 

examine the p-values for these edges as in the Table 16. 

Delete the edge (af); the resulting graphical model is [abcde] [cdef]. 

Similarly, in the next step, the edge (ad) gets deleted and the resulting graphical 

model becomes [abce] [bcde] [cdef] as given in Figure 8. 
 
 

 
 
Figure 7. The saturated model for WAM 

 

 
 
Figure 8. The fitted model for WAM 

 

 
 
Table 15. WAM: [abcde] 

 

Edge Clique d.f. G2 p-value 

ab [acdef] [bcdef] 16 18.585 0.29078 

ac [acdef] [bcdef] 16 20.689 0.19080 

ad [acdef] [bcdef] 16 14.172 0.58588 

ae [acdef] [bcdef] 16 18.781 0.28017 

af [abcde] [bcdef] 16 11.951 0.74734 

bc [acdef] [abdef] 16 26.739 0.04447 

bd [acdef] [abcef] 16 34.733 0.00432 

be [acdef] [abcdf] 16 56.570 0.00000 

bf [acdef] [abcde] 16 11.673 0.76616 

cd [abcef] [abdef] 16 29.439 0.02114 

ce [abcdf] [abdef] 16 26.052 0.05329 

cf [abcde] [abdef] 16 81.657 0.00000 

de [abcdf] [abcef] 16 78.248 0.00000 

df [abcef] [abcde] 16 46.221 0.00009 

ef [abcde] [abcde] 16 17.728 0.34005 
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Table 16. WAM: [abcde] [acdef] 

 

Edge Clique d.f. G2 p-value 

ab [bcde] [acdef] 8 12.456 0.13198 

bc [acde] [acdef] 8 18.097 0.02051 

bd [acde] [acdef] 8 27.358 0.00061 

be [acde] [acdef] 8 49.723 0.00000 

af [abcde] [cdef] 8 5.822 0.66711 

cf [abcde] [adef] 8 73.014 0.00000 

df [abcde] [acef] 8 38.845 0.00001 

ef [abcde] [acdf] 8 10.881 0.20852 

 
 
Table 17. WAM: [abce] [bcde] [cdef] 
 

Edge Clique d.f. G2 p-value 

ab [ace] [bce] [bcde] [cdef] 4 10.606 0.03137 

ac [bce] [ace] [bcde] [cdef] 4 10.432 0.03374 

ae [bce] [abc] [bcde] [cdef] 4 10.426 0.03383 

bd [abce] [cde] [bce] [cdef] 4 25.507 0.00004 

cf [abce] [bcde] [def] [i] 4 67.832 0.00000 

 
 

In the next step, candidate edges for deletion are [ab], [ac], [ae], [bd], and 

[cf]. None of the p-values are greater than α = 0.05 as given in Table 17. So, stop 

with the model [abce] [bcde] [cdef]. 

Computational Details 

All the experimental results were carried out using R 3.1.3. For fitting LLMs, 

there are several function in R, for example glm() and loglin() in the stats library 

and loglm() in the MASS library. For model selection, dmod() and backward() 

functions implemented in the package gRim were used. All the packages used are 

available at http://CRAN.R-project.org/. 

Conclusion 

The fundamental mathematical and statistical theory of GLLM and its 

applications were discussed, restricted to the complete table to make the 

discussion simple, because the tables having zero entries require special treatment. 

See Christensen (1997) for analysis of contingency tables with zero cell counts. 

http://cran.r-project.org/
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The limitations and open problems in the use of GLLM for recursive relationships 

can be further explored. 
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Appendix A: Graphical Log-Linear Models for Four-Way 
Tables 

Table 18. Graphical log-linear models for four-way tables 

 
Model Graph Closed-Form Estimate 

[1] [2] [3] [4] 
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Table 18, continued. 

 
Model Graph Closed-Form Estimate 
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No closed-form estimate 
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A stochastic model for cancer cell growth in any organ is presented, based on a single 
forward mutation. Cell growth is explained in a one-dimensional stochastic model, and 
statistical measures for the variable representing the number of malignant cells are 
derived. A numerical study is conducted to observe the behavior of the model. 

 
Keywords: Mutation, probability generating function, differential-difference 
equation 

 

Introduction 

Cancer has complex and stochastic cell growth mechanisms. Malignant cancer 

cells arise from several mutations in the gene of a cell. It has been shown that a 

normal cell requires more than one stage to become a malignant cell (Tan & 

Brown, 1987).  Stochastic growth is observed in malignant cells, and 

deterministic exponential growth is observed in normal cells. Most developed 

models are mixed, representing both deterministic and stochastic cell growth. The 

type of growth in a normal cell population depends on whether mutation has taken 

place. 

Let [X(t), t > 0] be a stochastic process denoting the number of normal cells 

in an organ at time t, and [Y(t), t > 0] be a another stochastic process denoting the 

number of malignant cells in an organ at time t. Let us define a bivariate cell 

growth process {(X(t),Y(t)), t > 0} representing the number of normal and 

malignant cells at time t. The growth of cells can be studied using the birth-and-

death process. In literature, the process of malignant cell growth has been studied 

with homogeneous and non-homogeneous birth, death and mutation processes, 

but it seems most applicable when the study is conducted under a time-dependent 

https://doi.org/10.22237/jmasm/1493598660
mailto:jayabharathi8@gmail.com
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environment. The birth-and-death process has been used to study the stochastic 

growth of a population, and the average and variance of the size of a population 

has been obtained for a given time period (Kendall, 1949). A similar approach can 

be applied to obtain the average and variance of the number of malignant cells in 

an organ at time t.  

Assume there are x0 number of normal cells and y0 number of malignant 

cells in any organ at time t = 0 (initially). The model representing the cell division 

process for normal and malignant cells can be explained using either one or two 

variables. Consider a single forward mutation process for the transformation of 

normal cells into malignant cells, which reflects in the growth of the cell 

population. If a malignant cell is formed from a normal cell, and it remains in the 

same state till extinction, then there is not backward process of mutation. Let us 

assume that the normal cell has deterministic exponential growth; the expected 

number of cells in an organ at time t is then defined by (Serio, 1984), 
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If it is assumed the malignant cells also show deterministic growth, i.e., the 

cell growth at the malignant stage is deterministic and exponential, then the 

expected number of malignant cells is as follows, 
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Assumptions 

The model is developed based on the following assumptions: 

 

1. Let the growth rate of normal cells from normal cells be bN(t), and 

the probability of growth of normal cells from normal cells in dt be 

bN(t)dt + o(dt). Let the death rate of normal cells be dN(t) and 

probability of the death of normal cells in dt be dN(t)dt + o(dt). 

 

2. Let the growth rate of malignant cells from the malignant cells be 

bM(t), and probability of growth of malignant cells from malignant 

cells be bM(t)dt + o(dt). Let the death rate of malignant cells be dM(t) 
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and probability of the death of malignant cells in dt be 

dM(t)dt + o(dt). 

 

3. Let the growth rate of the normal cell population be represented by 

{(bN(t) − dN(t)) + μtNM(t)}, and the growth rate of the malignant cell 

population by (bM(t) − dM(t)). 

 

4. In a very small interval (t + dt), let the probability of a mutation 

which transforms a normal cell into a malignant cell be 

xμtNM(t)dt + o(dt), where X(t) = x0 at t = 0. 

 

When a mutation takes place in a normal cell population, the number of 

normal cells is decreased by one and the number of malignant cells is increased 

by one. Assume that the growth rate for normal and malignant cell populations are 

different. For any organ, a certain number of cells is required for normal, proper 

functioning; normal functioning of any organ depends upon the number of cells. 

The expected population size at time t can be described as X(t) + Y(t). 

Assuming a deterministic growth for normal and malignant cells, then 
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where X(t) = x0 and Y(t) = y0 at t = 0. Hence, the number of normal cells in 

the population of an organ at time t is as follows 
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Assuming the above relation holds, there exists a stochastic dependence 

between X(t) and Y(t). There is no need to observe the variables X(t) and Y(t) as a 
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two-dimensional stochastic process; it is enough to consider one-dimensional 

stochastic process for the malignant cell population [Y(t), t > 0] with the above 

relation. The above discussions deal with a non-homogeneous environment, and 

look more complex in mathematical derivations. For simplicity, let us assume a 

homogeneous environment with respect to birth, death and mutation parameters. 

Stochastic Model 

Let fM(y,t) = P{Y(t) = y} denote the probability density function of Y(t). 

Assume that fM(y,t) exists and is differentiable with respect to both y and t; from 

Assumption 4, obtain the following relation (Armitage, 1952): 
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By passing the limit on both sides in above equation, we obtain the 

differential-difference equation in the form as follows 
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By using the relations given in equation (1), the above equation becomes, 
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The boundary condition for the above equations is 
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The interest is to obtain the statistical moments such as mean and variance 

of malignant cells for a given time t. The probability generating function is 

 

    , , : 0 1ys t s f y t dy s




    (9) 

 

The partial derivative ϕ(s,t) with respect to s exists and from the boundary 

condition, 
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Multiply both sides of equation (1) by sy and integrate, which yields the 

following differential equation for the generating function as 
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To obtain the moments, use the cumulant generating function of y(t). Let 

K(u,t) = logϕ(s,t), where s = eu. On simplification (Bharucha-Reid, 1960), 
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Statistical Moments 

The moments of the model can be obtained by expanding the cumulant generating 

function K(u,t) on both sides of the expression as 

  
K u;t( ) = uE Y t( )( )+ 1

2
u2Var Y t( )( ) + L, comparing the coefficient of the power of 

u’s and v’s, and equating coefficients on both sides of the equation. In this way 

we arrive at the following linear differential equations of constant parameters 
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Solving the differential equation in (14) and (15) gives the average number 

of malignant cells and variance of number of malignant cells at a given time t.  On 

solving above equation,  
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The integration constants C1 and C2 will be obtained using the boundary 

conditions of the differential equations. 

Numerical Study 

For the fixed parameters and changing time, the changes are observed in the 

average, and expected and variance numbers of malignant cells in any organ are 

presented. The numerical study was conducted using Mathematica 8.0 software 

for solving the differential equations as given above in equations (14) & (15) 

numerically. The average and variance of number of malignant cells for fixed 

values of the parameters, bN = 0.0001, dN = 0.0001, bM = 0.04, dM = 1.0 × 10−7, 

x0 = 1.0 × 105, y0 = 1.0 × 105, and varying values of mutation rate and time are 

presented. 

For the good maintenance of normal cell level, growth rate and death rate of 

normal cells are assumed to be equal, and large birth rate values for malignant 

cells and mutation rate are presented in the Figure 1. From the Figure, it is 

observed that there is a positive relationship between time and average number of 

malignant cells; a positive relationship between time and variance of number of 

malignant cells at lower values of mutation rates, and so on. 

Conclusion 

Birth, death, and single mutation processes with different growth rates are 

considered, to the study the growth of malignant cells by assuming X(t) is 

dependent on Y(t). The usual two dimensional models are replaced by a one 

dimensional  model r epresenting  normal and malignant  cells with interest in  
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a) μtNM = 0.0004 

 

b) μtNM = 0.049 

 

 
 

c) μtNM = 0.06 

 

d) μtNM = 0.08 

 

 
 

e) μtNM = 0.1 
 

f) μtNM = 0.15 
 

Figure 1. Variation in the moments with respect to time. 
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malignant cell population. The statistical measure shows that volatility of the 

malignant population decreases as the mutation rate increases, and average 

number of malignant cells increases drastically as the mutation rate increases. The 

results of this study may help to understand the behavior of malignant cells over a 

period of time with various decision parameters. 
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Mean-variance portfolios constructed using the sample mean and covariance matrix of 
asset returns perform poorly out-of-sample due to estimation error. Recently, there are 
two approaches designed to reduce the effect of estimation error: robust statistics and 

robust optimization. Two different robust portfolios were examined by assessing the out-
of-sample performance and the stability of optimal portfolio compositions. The 
performance of the proposed robust portfolios was compared to classical portfolios via 
expected return, risk, and Sharpe Ratio. The aim is to shed light on the debate concerning 
the importance of the estimation error and weights stability in the portfolio allocation 
problem, and the potential benefits coming from robust strategies in comparison to 
classical portfolios. 
 

Keywords: Mean-variance portfolio, robust statistics, robust optimization 

 

Introduction 

The portfolio optimization approach proposed by Markowitz (1952) undoubtedly 

is one of the most important models in financial portfolio selection. This model is 

based upon the fundamental trade-off between expected return and risk, measured 

by the mean and standard deviation of return respectively. Therefore, Markowitz's 

model is called the mean-variance portfolio since this technique is highly reliant 

upon the value of a set of inputs, i.e. the mean vector μ and covariance matrix Σ. 

The goal of the portfolio allocation problem is to find weights w which represent 

the percentage of capital to be invested in each asset. 

https://doi.org/10.22237/jmasm/1493598720
mailto:epha.supandi@uin-suka.ac.id
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To compute the mean-variance portfolios, the mean vector μ̂  and 

covariance matrix Σ̂  need to be estimated and both inputs are obtained from 

historical data. These estimators plug into an analytical or numerical solution to 

the investor’s optimization problem. This leads to an important drawback in the 

mean-variance approach: the estimation error. 

The fact that mean-variance “optimal” portfolios are sensitive to small 

changes in input data is well documented in the literature. Chopra and Ziemba 

(1993) showed that even slight changes to the estimates of expected return or risk 

can produce vastly different mean-variance optimized portfolios. Best and Grauer 

(1991) analyzed the sensitivity of optimal portfolios to changes in expected return 

estimates. Broadie (1993), meanwhile, showed how the estimated efficient 

frontier overestimates the expected returns of portfolios for various levels of 

estimation errors. Because of the ill effects of estimation errors on optimal 

portfolios, portfolio optimization has been called “error maximization” (see 

Michaud, 1989). 

There are two standard methods extensively adopted in the literature to 

combat the impact of estimation error on portfolio selection. The first method is 

robust estimation, which can be quite robust to distributional assumptions. The 

introduction of robust estimation to portfolio optimization is relatively recent 

compared to the Markowitz foundational paper. Nevertheless, the subject has 

become very active in the last decade, as seen in the works of Lauprête (2001), 

Lauprete, Samarov, and Welsch (2002), Mendes and Leal (2003), Perret-Gentil 

and Victoria-Feser (2004), Welsch and Zhou (2007), and DeMiguel and Nogales 

(2009). The main difference among these approaches is in the term of the type of 

robust estimator used. Lauprête (2001) and Lauprete et al. (2002) used the least 

absolute deviation Huber estimator and trimean estimator, Mendes and Leal 

(2003) used the M-estimator, Perret-Gentil and Victoria-Feser (2004) used the S-

estimator, Welsch and Zhou (2007) used the minimum covariance determinant 

estimator and Winsorization, and DeMiguel and Nogales (2009) used the M-

estimator and the S-estimator. In their investigations, the portfolios constructed 

using a robust estimator outperformed those created using traditional mean-

variance portfolio in the majority of cases. 

The second method to deal with the estimation error is robust optimization. 

Robust portfolio optimization is a fundamentally different way of handling 

estimation error in the portfolio construction process. Unlike the previously-

mentioned approaches, robust optimization considers the estimation error directly 

in the optimization problem itself. Introduced by Ben-Tal and Nemirovski (2002) 

for robust truss topology design, robust optimization is an emerging branch in the 
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field of optimization in which the solutions for optimization problems are 

obtained from uncertain parameters. The uncertainty is described using an 

uncertainty set which includes all, or most, possible realizations of the uncertain 

input parameters (see Pachamanova, Kolm, Fabozzi, & Focardi, 2007). The true 

mean and covariance matrix of asset returns lie in a fixed range. A robust 

portfolio, the one that optimizes the worst-case performance concerning with all 

possible values the mean vector and covariance matrix. The worst-case for robust 

optimization probably happened in the uncertainty sets (see, for example, 

Goldfarb & Iyengar, 2003; Tütüncü & Koenig, 2004; Engels, 2004; Garlappi, 

Uppal, & Wang, 2007; Lu, 2011). 

The aim of this study is to shed light on the recent debate regarding the 

importance of the estimation error and weights’ stability in the portfolio allocation 

problem and the potential benefits coming from robust portfolios in comparison to 

classical techniques. Here, two different robust portfolios have been investigated. 

The first portfolio was obtained by robust estimator to the mean-variance 

portfolio towards the S-estimators, constrained M-estimators, Minimum 

Covariance Determinant (MCD), and Minimum Volume Ellipsoid (MVE). The 

second one was obtained by robust optimization to the sample mean-variance 

portfolio where the formulation and the algorithm used in this paper were based 

on those developed by Tütüncü and Koenig (2004). We empirically compared two 

versions of robust asset allocation through the out-of-sample performance of those 

portfolio allocation approaches corresponding to the methodology of rolling 

horizon as proposed in DeMiguel and Nogales (2009). 

The Mean-Variance Portfolio (Classical Portfolio) 

It is assumed that the random vector r = (r1, r2,…, rN)' denotes random returns of 

the N risky assets with mean vector μ and covariance matrix Σ. A portfolio is 

defined to be a list of weights wi for the assets i = 1,…, 𝑁 that represent the 

amount of capital to be invested in each asset. We assumed that 

 

 
1

1
N

i

i

w


   

 

meaning that capital is fully invested. 

For a given portfolio w, the expected return and variance were respectively 

given by: E(w'r) = w'μ and Var(w'r) = wTΣw. Then, the classical mean-variance 
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portfolio models of Markowitz were formulated mathematically as the 

optimization problem: 

 

 max , s.t. 1, 0
2


    

w
w μ w Σw e w w   (1) 

 

where μ ∈ ℜN is the vector of expected return, Σ ∈ ℜN × N is the covariance matrix 

of return, where ℜN × N denotes the set of all N × N positive definite symmetric 

matrices, and w ∈ ℜN is the vector of portfolio weight. The restriction w ≥ 0 

means that short-selling is not allowed. The parameter γ can be interpreted as a 

risk aversion, since it takes into account the trade-off between risk and return of 

the portfolios. 

The main criticisms against the Markowitz models centers on the 

observation that the optimal portfolios generated by this approach are often quite 

sensitive to the input parameters μ and Σ. To make matters worse, these 

parameters can never be observed, and one has to settle for estimates found using 

some particular techniques. 

Robust Portfolio Estimation 

In this section, the class of portfolio policies based on the robust estimators is 

proposed where portfolio optimization and robust estimation are performed in two 

steps. It began by computing the robust estimators of the mean vector and 

covariance matrix of asset returns and followed by computing the portfolio 

policies by solving the classical minimum-variance problem (1), but replacing the 

sample mean and covariance matrix by their robust counterparts. 

One of the most popular classes of robust estimators is affine equivariant 

robust estimators (see Maronna, Martin, & Yohai, 2007). Let     ˆˆ ,μ r Σ r  be 

location and dispersion estimates corresponding to a sample = (r1, r2,…, rN)'. 

Then the estimates are affine equivariant if 

 

        ˆ ˆˆ ˆ and     μ Ar b Aμ r b Σ Ar b AΣ r A   

 

for any constant N-dimensional vector b and any non-singular N × N matrix A. 

There are many different robust estimators for the mean and covariance in this 

class, such as S-estimators (Rousseeuw & Yohai, 1984), MVE and MCD 

proposed by Rousseeuw (1984), as well as CM-estimators (Kent & Tyler, 1996). 
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S-Estimators 

S-estimators were first introduced (in the context of regression) by Rousseeuw 

and Yohai (1984). Later, they were applied to the multivariate scale and location 

estimation problem (Davies, 1992). 

Let r be a data set in ℜN. The S-estimators of the multivariate location 

 ˆ Nμ r  and scatter  ˆ N NΣ r  are defined as the solution to the problem of 

minimizing |Σ| subject to 
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where ρ denotes the loss function and b0 satisfies 0 < b0 < a0 = sup{ρ}. As stated 

by Alqallaf (2003), it is natural to choose   0 E ρb  r . 

Let r be a data set in ℜN and c0 = b0/sup ρ. If c0 ≤ (n – N)/2n, where 

n ≥ N + 1, then the breakdown point ε* = ⌈nc0⌉/n, where ⌈k⌉ denotes the nearest 

integer greater than or equal to k. The breakdown point for S-estimators is 
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Portfolios based on S-estimators with biweight function were examined by 

Perret-Gentil and Victoria-Feser (2004) and, in a one-step approach, by DeMiguel 

and Nogales (2009). 

CM-Estimators 

As stated by Kent and Tyler (1996), the CM-estimator is defined via the 

minimization of an objective function subject to some constraints. For the data set 

r we defined the CM-estimators of the multivariate location  ˆ Nμ r  and 

scatter  ˆ N NΣ r  to be any pair which minimized the objective function 
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where di = (ri – μ)'Σ-1(ri – μ), ρ denotes the loss function, and ε ∈ (0, 1) refers to 

the breakdown point. Kent and Tyler (1996) showed that the breakdown point of 

the CM-estimate for data r in general is 
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Minimum Volume Ellipsoid (MVE) Estimators 

Rousseeuw (1984) introduced a highly robust estimator, the MVE estimator, 

(μ, Σ) where μ was taken to be the center of the minimum volume ellipsoid 

covering at least half of the observations, and Σ was an N by N matrix 

representing the shape of the ellipsoid. 

This approach attempted to seek the ellipsoid with the smallest volume 

covering h data points where n/2 ≤ h ≤ n. Formally, the estimate is defined as 

these μ, Σ that minimized |Σ| subject to 

 

     1 2 1
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2
i i

n N
i c        

 
r μ Σ r μ   (5) 

 

The constant c is chosen as 
2

,0.5N  and # denotes the cardinality. Portfolios based 

on MVE estimators were used by Kaszuba (2013). Let r be a data set in ℜN with 

N ≥ 2, and let n ≥ N + 1; then the breakdown point of MVE is 

 

 
 

*
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Minimum Covariance Determinant (MCD) Estimators 

The MCD estimators are highly robust estimators of multivariate location and 

scatter introduced by Rousseeuw (1984). Given an n × N data matrix 

r = (r1, r2,…, rn)' with ri = (ri1, ri2,…, riN)', it is focused on finding h (with 

⌊(n + N + 1)/2⌋ ≤ h ≤ n) observations whose classical covariance matrix has the 

lowest possible determinant. Then, the MCD estimator of location is the average 

of these h points, whereas the MCD estimator of scatter is their covariance matrix. 

In 1999, Rousseeuw and Van Diressen constructed a very fast algorithm to 

calculate the MCD estimator. The new algorithm was called Fast-MCD based on 

the C-step. The Fast-MCD algorithm is defined as follows: 

 

Algorithm 1. The Fast-MCD (Rousseeuw & Van Diressen, 1999) 

 

1. Set an initial h-subset H1, that is, beginning with a random (N + 1)-subset 

J. 

2. Compute 

 

   0 0 0 0

J J

1 1ˆˆ ˆ ˆand
1 1

i i i

i iN N 

    
 
 μ r r μ r μ   

 

If 
0

ˆ 0Σ , random observations are added to J until 
0

ˆ 0Σ . 

3. Apply the C-step to the initial h-subset H1, and obtain the  1 1
ˆˆ ,μ Σ . If 

0
ˆ 0Σ  or 0 1

ˆ ˆΣ Σ , stop; otherwise, running another C-step produces 

2Σ̂ , and so on, until convergence is reached. 

 

If the data are sampled from a continuous distribution, then these estimators 

have the breakdown point 

 

 * 1
min ,

n h h p

n n


   
  

 
  

 

Portfolios based on MCD estimators were investigated by Zhou (2006), Welsch 

and Zhou (2007), and, in a modified version, by Mendes and Leal (2005). 

S-estimators, CM-estimators, MVE, and MCD are used to construct robust 

portfolio mean-variance. A two-step approach to robust portfolio estimation is 
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proposed. First, compute a robust estimate of the mean vector and covariance 

matrix of asset returns. Second, solve the classical mean-variance problem (1), but 

replacing the sample mean and covariance matrix by their robust counterparts. 

Thus, given the robust estimators, the robust portfolio estimation can be found by 

solving the following optimization problem: 

 

 
rob rob

ˆˆmax , s.t. 1, 0
2


    

w
w μ w Σ w e w w   (6) 

Robust Portfolio Optimization 

Robust optimization has been developed to solve any problems related to the 

uncertainty in the decision environment and, therefore, sometimes it is referred to 

uncertain optimization (Ben-Tal & Nemirovski, 2002). Robust models have been 

adapted in portfolio optimization to resolve the sensitivity issue of the mean-

variance portfolio to its inputs. 

Robust portfolio optimization is to represent all available information about 

the unknown input parameters in the form of an uncertainty set that contains most 

of the possible values for these parameters. 

Tütüncü and Koenig (2004) proposed a bootstrap method to determine the 

uncertainty sets. This method attempted to capture the uncertainty regarding the 

parameters µ and Σ in their uncertainty sets 𝕌μ and 𝕌Σ by carrying out the 

following algorithm: 

 

Algorithm 2. The construction of 𝕌μ and 𝕌Σ using a block bootstrap method 

 

1. Choose the block length (l). In our experiment, we used the non-

overlapping block. Divide the data into n/l blocks in which block 1 

became {r1, r2,…, rl} and block 2 became {rl + 1, rl + 2,…, r2l}, ..., etc. 

2. Resample the blocks and generate the bootstrap sample. 

3. Compute the classical estimators of μ and Σ from bootstrap data. 

4. Construct the empirical distribution of estimators by repeating step 2 and 

step 3 B times and sorting the bootstrap estimators from the smallest to 

largest ones. 

5. Determine the (1 − α)100% percent quintile of distribution of estimators 

 

From algorithm 2, the uncertainty sets are defined as 
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  L Uˆ ˆ:  μ μ μ μ μ   (7) 

 

  L Uˆ ˆ: , 0  Σ Σ Σ Σ Σ Σ   (8) 

 

Given the uncertainty sets of mean vector (7) and covariance matrix (8), then 

robust optimization (Rob.Opt) can be defined as follows: 

 

 T L U Tˆˆmax , s.t. 1, 0
2


  

w
w μ w Σ w e w w   (9) 

Empirical Study 

Data used in this study were collected from the Jakarta Stocks Exchange (JSE) 

consisting of 20 companies categorized as the blue chip. A blue chip is a stock in 

“a nationally recognized, well-established and financially sound company.” 

(“Blue Chip”, n.d.). Table 1 presents the list of companies. 

The time series data span was from 04/02/2008 to 29/12/2014 with a total of 

360 weekly returns. The first 260 observations (02/01/2008 to 07/01/2013) were 

used as the first window to perform the estimation and the uncertainty set. The 

last 100 observations (14/01/2013 to 29/12/2014) referred to the out-of-sample 

period and were used for the ex-post effectiveness analysis. 
 
 
Table 1. Asset name for empirical analysis 
 

No Asset Name 

 

No Asset name 

1 AALI = Astra Argo Lestari, Tbk 
 

11 JSMR = Jasa Marga (Persero) Tbk 

2 AKRA = Akr Corporindo Tbk 

 

12 KLBF = Kalbe Farma Tbk 

3 BBCA = Bank Centra Asia Tbk 
 

13 LPKR = Lippo Karawaci Tbk 

4 BBNI = Bank Negara Indonesia (Persero) Tbk 
 

14 MNCN = Media Nusantara Citra Tbk 

5 BBRI = Bank Rakyat Indonesia (Persero) Tbk 

 

15 PGAS = Perusahaan Gas Neagara (Persero) Tbk 

6 BMRI = Bank Mandiri (Persero) Tbk 
 

16 PTBA = Tambang Batu Bara Asam (Persero) Tbk 

7 CPIN = Charoen Pokphand Indonesia Tbk 
 

17 SMGR = Semen Indonesia (Persero) Tbk 

8 INDF = Indofood Sukses Makmur Tbk 

 

18 TLKM = Telekomunikasi Indonesia (Persero) Tbk 

9 INTP = Indocement Tunggal Prakarsa Tbk 
 

19 UNTR = United Tractors Tbk 

10 ITMG = Indo Tambangraya Megah Tbk 
 

20 UNVR = Unilever Indonesia Tbk 
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Research Methodology 

For an empirical analysis, several parameters have to be set. Firstly, for robust 

portfolio estimation, a translated biweight function is used as the loss function and 

the breakdown point is set at 45%. Meanwhile, in robust portfolio optimization, 

an important question is how to determine the uncertainty sets. The value α 

determines the most extreme parameter values that are still included in the 

uncertainty sets. The smaller α is, the larger an uncertainty set will be, and thus 

the greater the worst-case estimation errors will be. Hence, α can be interpreted as 

a parameter that captures the investor’s tolerance for estimation errors (Fastrich & 

Winker, 2009). Therefore, to measure the level of sensitivity of the Rob.Opt 

model, set α = 0.05, 0.10, and 0.20.  

Use the rolling-horizon procedure to compute the out-of-sample 

performance measures. This procedure has been implemented similarly as in 

DeMiguel and Nogales (2009). First, chose the window T = 260 to perform the 

estimation and the uncertainty sets. Second, using the return data in the estimation 

window, compute some optimal portfolio policies according to each strategy 

(classical portfolio, robust portfolio estimation, and robust portfolio optimization). 

Third, repeat the rolling-window procedure for the next month by including the 

four data points for the new date and dropping the four data points for the earliest 

period of the estimation window (we assumed that investors would rebalance their 

portfolios every one month). Continue this until the end of the dataset is reached. 

Therefore, at the end there is a time series of 25 portfolio weight vectors for each 

of the portfolios considered in the analysis. 

The out-of-sample performance of each strategy was evaluated according to 

the following statistics: mean return, risk, Sharpe ratio, and portfolio turnover. 

Holding the portfolio s

tw  for one trading period gave the following out-of-sample 

excess return at time t + 1, that is s s

1 1t̂ t t 
r w r . After collecting the time series of 

25 excess returns 1t̂r , the out-of-sample mean return, standard deviation (risk), 

Sharpe ratio, and portfolio turnover are: 
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25 5

, 1 ,

1 1

1
Turnover

24
j t j t

t j

w w

 

    

 

where wj,t is the portfolio weight in asset j at time t + 1 but before rebalancing and 

wj,t+1 is the desired portfolio weight in asset j at time t + 1. Therefore, the portfolio 

turnover is a measure of the variability in the portfolio holdings and can indirectly 

indicate the magnitude if the transaction costs associated to each strategy. Clearly, 

the smaller the turnover, the smaller the transaction costs associated to the 

implementation of the strategy. 

Research Hypothesis 

The research hypothesis is that the appropriate application of robust strategies in 

the construction of mean-variance portfolios allows the achievement of better 

investment results (measured with mean return and risk) in comparison to 

classical portfolios (benchmark). Hence, it is verified whether the given method 

allows one to obtain higher mean return compared to the classical method using 

the Wilcoxon signed rank test at significance level of 5%. Similarly, it is 

examined whether the robust methods will have lower risk (measured by standard 

deviation) compared to the classical method (see Kaszuba, 2013). 

Results of Empirical Study 

In the ninth column of Table 2, it can be observed that most of the return data 

were not normally distributed except AKRA, INTP, and UNVR. Also, UNVR had 

the best performance for having the highest mean return and the lowest risk 

(measured by standard deviation) compared to other stocks. 

Presented in Table 3 are the out-of-sample performance of the classical and 

all robust approaches for each time window win in which the former serves as a 

benchmark. The results presented in Table 3 concern only portfolios for which 

risk aversion is equal to 10. Other risk aversion parameters were tested, such as 

γ = 1, 100, and 1000; the summary of these results are presented in Table 4. 

It can be seen that the mean returns are higher in all seven robust approaches 

compared to the classical approach. An examination in the out-of-sample 

performance of portfolio returns indicated that the highest mean returns are 

obtained by robust portfolio estimation generated using CM-estimators (as 

presented in Table 3). 
 
 



AN EMPIRICAL STUDY OF ROBUST PORTFOLIO 

600 

Table 2. Summary statistics of the 20 stocks used in the dataset 

 

 
Min Max Mean Std. Dev Var Skew Kurtosis K.Smirnov 

AALI -0.4329 0.3459 -0.0007 0.0723 0.0052 -0.5740 6.4580 0.0004 

AKRA -0.2673 0.1982 0.0029 0.0612 0.0038 -0.1660 1.6770 0.4150 

BBCA -0.7071 0.1588 0.0017 0.0579 0.0034 -5.0540 62.0380 0.0004 

BBNI -0.4362 0.3920 0.0033 0.0634 0.0040 0.2190 11.6080 0.0002 

BBRI -0.6434 0.2975 0.0015 0.0655 0.0043 -2.6460 27.4440 0.0048 

BMRI -0.2744 0.2380 0.0033 0.0548 0.0030 -0.2460 4.2520 0.0293 

CPIN -1.5404 0.3868 0.0033 0.1109 0.0123 -7.4410 105.2200 0.0000 

INDF -0.2542 0.2654 0.0027 0.0556 0.0031 -0.1560 3.9300 0.0034 

INTP -0.4418 0.2747 0.0032 0.0579 0.0033 -0.9070 10.6050 0.0527 

ITMG -0.5557 0.3153 -0.0008 0.0773 0.0060 -0.9150 8.7970 0.0012 

JSMR -0.2942 0.1842 0.0036 0.0449 0.0020 -0.4700 6.3350 0.0409 

KLBF -1.5991 0.4970 0.0010 0.1038 0.0108 -10.0080 159.2970 0.0000 

LPKR -0.2587 0.3520 0.0011 0.0598 0.0036 0.4410 4.6370 0.0112 

MNCN -0.2801 0.5994 0.0032 0.0786 0.0062 1.3750 10.3110 0.0026 

PGAS -1.5549 0.2841 -0.0023 0.0974 0.0095 -11.3460 180.6230 0.0000 

PTBA -0.5771 0.2451 0.0002 0.0685 0.0047 -1.5180 14.2460 0.0007 

SMGR -0.6012 0.2766 0.0030 0.0591 0.0035 -2.5900 31.3040 0.0042 

TLKM -1.5864 0.1382 -0.0035 0.0930 0.0086 -13.7920 234.9950 0.0000 

UNTR -0.4215 0.2895 0.0009 0.0699 0.0049 -0.8050 7.9740 0.0018 

UNVR -0.1676 0.1436 0.0042 0.0402 0.0016 0.0500 1.5960 0.0590 

 

Note: The bold values indicate the best performance of out-of-sample portfolio. 

 
 

Also, it can be seen that MVE portfolios obtained higher Sharpe ratio than 

the ones obtained with the classical or other robust approaches. Whereas, in the 

context of risk, MCD generated using the fast algorithm exhibited the lowest risks. 

Meanwhile, MVE portfolios achieved the lowest turnover. Therefore, portfolio 

robust estimation (Rob.Est) created using a two-step approach (CM, S, MCD, and 

MVE portfolios) outperformed the classical approach for this case. 

It can also be noticed that by analyzing the performance of Rob.Opt 

portfolios one can observe that increasing the investors’ tolerance for estimation 

error α can decrease the performance of all out-of-sample for this portfolios. 

Presented in Table 4 are the out-of-sample performance’s portfolio, i.e., 

mean returns (
ŝ ), risk (

ŝ ), Sharp Ratio (SR), and portfolio turnover (TO) at a 

number of different risk aversions, as well as different p-values of the Wilcoxon 

test for differences between the portfolios returns calculated with the given 

method and classical portfolios. The presented p-values for Wilcoxon test for 

observation pairs allows us to see whether the average weekly returns for the 

investigated portfolios were significantly higher than the average returns for 

classical portfolios. 
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Table 3. The out-of-sample performance of portfolio return for each time window win at 

γ = 10 
 

  
Rob.Est 

 
Rob.Opt 

win Classic CM S MCD MVE 
 

α=5% α=10% α=20% 

1 0.0167 0.0641 0.0576 0.0523 0.0556 
 

0.0080 0.0088 0.0077 

2 0.0370 0.0450 0.0635 0.0477 0.0450 
 

0.0485 0.0496 0.0500 

3 -0.0017 0.0139 0.0135 0.0110 0.0099 
 

-0.0032 -0.0033 -0.0037 

4 0.0017 0.0060 0.0190 -0.0078 0.0151 
 

0.0155 0.0137 0.0117 

5 -0.0577 -0.0769 -0.0775 -0.0662 -0.0609 
 

-0.0593 -0.0584 -0.0582 

6 0.0434 0.0160 0.0317 0.0181 0.0087 
 

0.0753 0.0742 0.0687 

7 -0.0099 -0.0121 0.0012 -0.0030 0.0023 
 

-0.0186 -0.0222 -0.0181 

8 0.0684 0.1429 0.1275 -0.0030 0.1220 
 

0.0248 0.0270 0.0314 

9 0.0046 0.0310 0.0242 0.0178 0.0291 
 

0.0139 0.0137 0.0122 

10 0.0100 0.0313 0.0236 0.0266 0.0257 
 

0.0043 0.0038 0.0045 

11 -0.0122 -0.0247 -0.0228 -0.0238 -0.0237 
 

-0.0155 -0.0144 -0.0149 

12 0.0135 0.0277 0.0189 0.0229 0.0327 
 

0.0088 0.0099 0.0118 

13 -0.0281 0.0085 -0.0025 -0.0162 0.0050 
 

-0.0166 -0.0167 -0.0227 

14 0.0006 -0.0025 0.0074 -0.0051 -0.0017 
 

-0.0090 -0.0083 -0.0070 

15 0.0054 0.0056 -0.0193 0.0073 0.0083 
 

0.0195 0.0186 0.0168 

16 -0.0060 -0.0107 -0.0217 -0.0087 -0.0163 
 

-0.0131 -0.0125 -0.0112 

17 -0.0222 -0.0123 -0.0304 -0.0092 -0.0086 
 

-0.0113 -0.0158 -0.0169 

18 -0.0267 -0.0112 -0.0131 -0.0036 -0.0016 
 

-0.0125 -0.0118 -0.0164 

19 0.0006 0.0050 0.0079 0.0065 0.0060 
 

0.0171 0.0149 0.0143 

20 0.0389 0.0236 0.0223 0.0256 0.0309 
 

0.0272 0.0285 0.0289 

21 -0.0081 -0.0132 -0.0198 -0.0098 -0.0106 
 

-0.0059 -0.0049 -0.0062 

22 -0.0249 -0.0088 0.0136 -0.0112 0.0004 
 

0.0103 0.0058 0.0024 

23 -0.0248 -0.0398 -0.0594 -0.0338 -0.0479 
 

-0.0171 -0.0181 -0.0193 

24 -0.0011 0.0129 0.0079 0.0105 0.0093 
 

0.0130 0.0109 0.0105 

25 0.0200 0.0203 0.0456 0.0198 0.0037 
 

0.0169 0.0150 0.0193 

          
μ̂

s
 0.0015 0.0097 0.0088 0.0026 0.0096 

 
0.0048 0.0043 0.0038 

̂
s

 0.0269 0.0396 0.0409 0.0249 0.0347 
 

0.0257 0.0258 0.0256 

SR 0.0555 0.2442 0.2142 0.1038 0.2751 
 

0.1881 0.1678 0.1491 

TO 1.5891 1.1840 1.1097 1.1527 1.2927   1.6178 2.0235 2.0165 
 

Note: The bold values indicate the best performance 

 
 

An examination in the out-of-sample performance of portfolio returns 

indicated that the highest mean returns were obtained by robust portfolios. Of the 

robust approaches, portfolios generated with CM-estimators achieved the higher 

mean returns at γ = 1 and 10. Meanwhile, Rob.Opt portfolios obtained higher 

mean returns at γ = 100 and 1000. 
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Table 4. Out-of-sample performance’s portfolio i.e. mean returns ( μ̂
s

), risk ( ̂
s
), Sharpe 

ratio (SR) and portfolio turnover (TO) at different of risk aversions 
 

 

  
Rob.Est 

 
Rob.Opt 

  
Classic CM S MCD MVE 

 

α=5% α=10% α=20% 

γ = 1 μ̂
s

 -0.0076 0.0160 0.0128 0.0142 0.0159 
 

-0.0003 -0.0033 -0.0073 

 
p-value 1.0000 0.0773 0.0773 0.1759 0.0954 

 
0.4410 0.6169 0.8289 

 ̂
s

 0.0435 0.0572 0.0592 0.0752 0.0595 
 

0.0341 0.0351 0.0385 

 
p-value 1.0000 0.0075* 0.001* 0.0012* 0.0274* 

 
0.0004* 0.0000* 0.0000* 

 
SR -0.1751 0.2801 0.2163 0.1891 0.2671 

 
-0.0093 -0.0929 -0.1898 

 
TO 1.9026 1.9372 2.0000 1.8958 1.9282 

 
1.6731 1.6461 2.0955 

           

γ = 10 μ̂
s

 0.0015 0.0097 0.0088 0.0026 0.0096 
 

0.0048 0.0043 0.0038 

 
p-value 1.0000 0.3859 0.3350 0.5004 0.2887 

 
0.5379 0.5900 0.7148 

 ̂
s

 0.0269 0.0396 0.0409 0.0249 0.0347 
 

0.0257 0.0258 0.0256 

 
p-value 1.0000 0.0000* 0.0004* 0.0000* 0.0000* 

 
0.0000* 0.0000 0.0000* 

 
SR 0.0555 0.2442 0.2142 0.1038 0.2751 

 
0.1881 0.1678 0.1491 

 
TO 1.5891 1.1840 1.1097 1.1527 1.2927 

 
1.6178 2.0235 2.0165 

           

γ = 100 μ̂
s

 0.0058 0.0062 0.0054 0.0049 0.0064 
 

0.0067 0.0066 0.0065 

 
p-value 0.9693 0.9540 0.8929 0.9234 0.9234 

 
0.9234 0.9234 0.9234 

 ̂
s

 0.0290 0.0276 0.0267 0.0252 0.0262 
 

0.0292 0.0290 0.0288 

 
p-value 1.0000 0.0000* 0.0000* 0.0000* 0.0000* 

 
0.0000* 0.0000* 0.0000* 

 
SR 0.2010 0.2239 0.2033 0.1953 0.2449 

 
0.2308 0.2283 0.2273 

 
TO 1.4530 1.0739 0.9222 1.0650 1.0682 

 
1.6414 2.0457 2.0276 

           

γ = 1000 μ̂
s

 0.0057 0.0042 0.0041 0.0045 0.0053 
 

0.0061 0.0060 0.0060 

 
p-value 1.0000 0.8626 0.8929 0.8929 0.9693 

 
0.9847 0.9847 0.9847 

 ̂
s

 0.0286 0.0243 0.0244 0.0245 0.0240 
 

0.0290 0.0288 0.0290 

 
p-value 1.0000 0.0000* 0.0000* 0.0000* 0.0000* 

 
0.0000* 0.0000* 0.0000* 

 
SR 0.1978 0.1718 0.1678 0.1835 0.2208 

 
0.2103 0.2083 0.2069 

 
TO 1.4585 1.0547 1.0112 1.0072 1.3808   2.0360 2.0317 2.0270 

 

Note: The bold values indicate the best performance; an asterisk (*) indicates p-values at a significance level of 

0.05 

 
 

The corresponding results for the portfolio risk showed that the Rob.Est 

portfolios were better than two portfolio approaches (i.e. classical and Rob.Opt). 

The lowest portfolio risk was achieved by Rob.Est in the majority of the scenarios 

(γ = 10, 100 and 1000). The research demonstrated that portfolios generated with 

MCD and MVE achieved a lower portfolio risk compared to S- and CM-
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estimators. Therefore, it is obvious if the largest Sharpe ratios are obtained by 

Rob.Est in all cases. 

Comparing portfolio turnover values, one can observe that for all portfolios, 

increasing the risk aversion value from 1 to 1000 has caused these values to 

decrease. Portfolios created using robust estimators (CM and S) had the lowest 

turnover except at γ = 1. 

An empirical study using the real market data indicated that, for all robust 

portfolios with robust estimation and robust optimization on portfolio weights, 

there were statistically significant improvements in the risk. The classical 

portfolios were characterized by a much higher risk than robust portfolios. 

However, in the context of mean return, the difference in performances between 

robust techniques and classical techniques did not seem to be statistically 

significant (p-value > 0.05), the robust estimation techniques were able to deliver 

more stability in the portfolio weights in comparison to the classical approach. 

The main implication of this finding is that, if we assume equal performance 

across techniques, investors will be better off by choosing a strategy that does not 

require any radical changes in the portfolio composition over time. These 

substantial changes in portfolio composition are rather difficult to be implemented 

in practice due to (i) management costs; and (ii) negative cognitive aspects 

perceived by investors and/or investment managers (see Santos, 2010). 

Because the aim was to examine portfolios regarding their robustness 

properties, a small turnover indicates the stability of portfolio, which means it is 

more robust. From the point of view of an investor, the stability of weights in a 

portfolio constructed by them throughout the entire duration of the investment is a 

significant element. In this case, as seen in Table 4, the smallest turnover is 

achieved by Rob.Est. These findings are corroborated by the visual inspection of 

Figure 1 and Figure 2, which show the time-varying portfolio weights and 

boxplots of each portfolio technique. 
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Figure 1. Time-varying portfolio weights for classical portfolio and robust portfolios for the 

case of γ = 10 
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Plotted in Figure 1 are the time-varying portfolio weights for the classical 

portfolio, robust portfolio optimization (right column of graphs), and robust 

portfolio estimation (left column of graphs) at risk aversion is equal to 10. All of 

the eight graphs map the time window win on the x-coordinate, while the y-

coordinate maps the portfolio weights. Other risk aversion parameters were tested, 

such as γ = 1, 100, and 1000, but the insights from the results were similar, and 

thus the results are presented only for the case γ = 10. 

It can be seen that Figure 1 corroborates the main findings by showing the 

high instability associated to the time-varying portfolio weights (compositions) of 

classic and Rob.Opt in contrast to the relative stability in the composition of 

Rob.Est. 

Figure 2 gives the boxplots of the portfolio weights of classical portfolio, 

robust portfolio estimation, and robust portfolio optimization for the case of 

γ = 10. 

Each graph in Figure 2 contains 20 boxplots corresponding to each of the 

twenty assets (for detail, see Table 1). Finally, the box for each portfolio weight 

has lines at the 25th, 50th, and 75th percentile values of the portfolio weights. The 

whiskers are lines extending from each end of the boxes to show the extent of the 

rest of the data. Extreme portfolio weights that have values beyond the whiskers 

are also depicted (as indicated by the white circles). We have tested other risk 

aversion parameters, such as γ = 1, 100 and 1000, but the insights from the results 

were similar and thus the results are presented only for the case γ = 10. 

It can be observed from Figure 2 that the mean-variance portfolios (classical 

and Rob.Opt) are much more unstable than the Rob.Est portfolios. For instance, 

for γ = 10, it can be seen that the Rob.Opt portfolios generated using α = 5% 

concentrate the allocation in only five assets of twenty available, and the 

allocation between these five assets radically changed in the period analyzed (see 

the second row of the second column in Figure 2). This is reflected in the high 

portfolio turnover as achieved by Rob.Opt (2.0235). As in the previous strategy, 

the changes in the portfolio weights associated to the Rob.Est were more stable 

over time since it produced little turnover. 

A further step in the analysis was to check which observations are 

considered outliers and were responsible for this instability of the portfolios. To 

do so, we used a diagnostic tool called Mahalanobis distance. Briefly, the 

Mahalanobis distance can identify which observations are quite far from the bulk 

of data to be considered outliers (Werner, 2003). 
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Figure 2. Boxplots of the portofolio weights for classical portfolio and robust portfolios for 
the case of γ = 10 
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Figure 3. Mahalanobis distance of each of the 360 returns 

 

 

Figure 3 shows the Mahalanobis distances of data using classical estimators 

in panel (a) and MCD estimators in panel (b). It is found that both pictures 

exhibited extreme return observations compared to the majority. They were 

detected to have a very strong influence on the classical estimates of the optimal 

portfolio weights (compositions). In short, it has been found that the outlying 

observations in the data have a strong influence on the composition of the 

resulting optimal portfolios. 

In summary, the robust techniques lead to an improvement compared to the 

classical approach. Of the robust approaches, the robust estimation clearly 

outperforms the robust optimization approach. This improvement is possible due 

to the properties of robust estimator, which is not influenced by the presence of 

outliers. 

Conclusion 

In this work, two different robust techniques, robust estimation and robust 

optimization, have been empirically tested and compared with a classical 

approach. From the results presented in the previous section, some important 

implications for investment decisions based on portfolio selection policies can be 

pointed out. 

Based on an empirical analysis, it is shown that the robust portfolio 

estimation (Rob.Est) significantly outperformed the classical portfolio and robust 

portfolio optimization in terms of out-of-sample performance, i.e. mean excess 

return, risk, Sharpe ratio, and portfolio turnover, in the majority of the scenarios. 

The portfolio compositions of Rob.Est are shown to be more stable and 
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consequently lead to a reduction of the transaction cost. This is simply because 

robustly estimated parameters will be closer to the true parameter values when 

there are some extreme observations (outliers) than their classical counterparts. 

Meanwhile, the portfolio compositions of Rob.Opt are heavily biased as this 

method works on a worst-case approach, so it can be detrimentally influenced by 

outliers in the data 

Therefore, in this case, of the robust approaches the robust estimation 

clearly outperforms the robust optimization approach. In future research, the 

robust estimation should be combined with robust optimization in the formation 

of the optimal portfolio. 
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Trimmed elemental regression is robust to outliers and violations of model assumptions. 
Its properties and statistical inference were evaluated using bias-corrected and accelerated 
bootstrap confidence intervals. An R package named TEEReg is developed to compute 
the trimmed elemental estimates and the corresponding bootstrap confidence intervals. 

Two examples are provided to demonstrate its usage. 
 
Keywords: Trimmed elemental estimator, robust linear regression, R, bias-corrected 
and accelerated bootstrap confidence interval 

 

Introduction 

Linear regression is useful in discovering relationships between observations and 

covariates. Assume that Y is an n-dimensional vector of dependent variables, β is 

a p-dimensional vector of unknown parameters, ϵ is an n-dimensional vector of 

random errors with E(ϵ) = 0 and Var(ϵ) = σ2I, and X is a design matrix with n 

rows and p columns, the multiple linear regression model can be expressed as 

 

  Y Xβ   (1) 

 

For the ordinary least square (OLS) approach, the estimator 

 

  
1

OLS
ˆ t t



β X X X Y   

 

minimizes the sum of squares of the residuals 

 

https://doi.org/10.22237/jmasm/1493598780
mailto:willjiang29@gmail.com
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    ˆ ˆˆ ˆ
t

t   Y Xβ Y Xβ   

 

Although the OLS approach has advantages of easy calculation and well-

developed statistical inference, it is sensitive to outliers and violations of model 

assumptions. 

The weighted least square (WLS) and iterative reweighted least square 

(IRLS) are commonly employed alternatives to the OLS approach to deal with 

unequal variances of the error terms and influential outlying observations; see 

Kutner, Nachtsheim, Neter, and Li (2005) for a complete review. Other examples 

of IRLS can be found in Schlossmacher (1973), Sposito, Kennedy, and Gentle 

(1977), Krasker and Welsch (1983), Carroll and Ruppert (1988), and Street, 

Carroll, and Ruppert (1988). There are some other available alternatives to OLS. 

In 1760, Boscovich first introduced the absolute values estimator that was put into 

a more structured form later by Laplace (Dielman, 2005). The concept of 

regression quantiles was generalized by Koenker and Bassett (1978); see also 

Koenker and D’Orey (1987), Gutenbrunner and Jureckova (1992), Koenker 

(1994), and Koenker (2005). The least median of squares regression was 

developed by Rousseeuw (1984), and Hawkins (1993) introduced the globally 

best estimator and the best elemental estimator. Most of these alternatives were 

developed based on modifying fitting criteria. 

The trimmed elemental (TE) estimator that is robust to outliers and 

violations of model assumptions was developed by Mayo and Gray (1997). It 

belongs to a class of regression estimators called leverage-residual weighted 

elemental (LRWE) estimators (Mayo & Gray, 1997). Hall and Mayo (2008) 

explored the inference properties of TE approach by investigating the coverage 

probability of the associated bias-corrected and accelerated (BCa) bootstrap 

confidence interval (CI). Compared with the traditional bootstrap methods, the 

BCa approach proposed by Efron (1987) corrected the bias and skewness of the 

sampling distribution through adjusting the selected percentiles used for 

constructing CIs. 

The purpose of this article is to provide an R-package called TEEReg to 

compute the TE estimates and the corresponding BCa bootstrap CIs. This package 

contains two functions, TEE() and TEE.BCa(), and can be obtained at CRAN at 

http://cran.r-project.org/web/packages/TEEReg/. 

http://cran.r-project.org/web/packages/TEEReg/
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TE Estimator and BCa Bootstrap CI 

The TE estimator developed by Mayo and Gray (1997) is robust to outlying cases 

and violations of model assumptions. It is a solution based on the elemental subset 

and the elemental regressions. 

Elemental Subsets and Elemental Regressions 

In most situations, the sample size n is much larger than the number of unknown 

parameters p. Instead of using all n observations, only p are required to obtain 

estimates of the p-dimensional vector of unknown parameters defined in model 

(1). In this case, there are  n
p

 distinct subvectors of the data and thus  n
p

 

possible solutions for the vector β in which each solution provides an exact fit to 

the corresponding p observations. Let h = {i1, i2,…, ip} be a subset containing p 

distinct values from the n-dimensional set of indices {1, 2,…, n}, Xh denote a p-

dimensional square matrix constructed by the rows of X with corresponding 

indices, and Yh denote a p × 1 subvector of Y of which elements are those in Y 

indexed by the subset h. Then, the subset h is an elemental subset of the data and 

the solution to ˆ
h h hX β Y , a system of p equations with p unknowns, is called an 

elemental regression and is given by 

 

 OLS

ˆ
ˆ ˆ ˆ

t t

h h h h hh

h h ht th h

h hh

w  


 


X X β X X
β β β

X X X X
  (2) 

 

where |A| denotes the determinant of matrix A. This indicates that the least 

squares estimate is a weighted average over all possible elemental estimates ˆ
hβ  

with weights 

 

 

t

h h

h t
w 

X X

X X
  

 

Moreover, Mayo and Gray (1997) demonstrated that the WLS estimator can be 

formed as a function of elemental regressions. Let vi denote the weight for 

observation i, V be a diagonal matrix containing the weights vi, and Vh be a p × p 
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submatrix of V corresponding to the elemental subset h. After some calculations, 

the WLS estimator can be equivalently written as 

 

 *

WLS

ˆ
ˆ ˆ ˆ

t t

h h h h h h hh

h h ht th h

h h hh

w  


 


X V X β X V X
β β β

X V X X VX
  (3) 

 

In practice, the reciprocal of the variances of error terms is usually employed for 

weight vi to deal with unequal error variances (Kutner et al., 2005), so a lesser 

weight is assigned to an observation with a larger variance than another 

observation with a smaller variance. Many weight functions were suggested for 

dampening the influence of outlying observations, including the Huber weight 

function given below (Kutner et al., 2005): 

 

 

1 1.345

1.345
1.345

i

i

i

i

u

v
u

u

 


 





  

 

where ui denotes the scaled residual for which a definition can be found in Kutner 

et al. (2005). It does not reduce the weight of a case from 1 until the absolute 

scaled residual is greater than 1.345. It is usually suggested to re-estimate the 

scaled residual using the process of IRLS to obtain revised weights when the 

initial estimated coefficients are substantially different from the ones obtained by 

OLS (Kutner et al., 2005). 

TE Estimator 

The TE estimator is a special case of a class of estimators called leverage-residual 

weighted elemental (LRWE) estimators developed by Mayo and Gray (1997). 

The LRWE class consists of all estimators that can be expressed in the form 

 

  
   

   

ˆ,
ˆ ,

,

hh

h

w h h

w h h

 
 

 

  
  




β
β   

 

where the factor λ(h) represents the leverage information related to the elemental 

subsets h and the factor ρ(h) represents the information of degree of fit related to 

elemental subsets. The OLS estimator defined in formula (2) belongs to the class 
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of LRWE estimators with   t

h hh  X X , ρ(h) = 1, and w[λ(h), ρ(h)] = λ(h)ρ(h). 

This reveals that the OLS approach only considers the information of leverage but 

does not take the information of degree of fit for each elemental subset h into 

account; the resulting estimates can be easily affected by the influential points. 

Moreover, it can be seen from formula (3) that the WLS estimator is a member of 

the LRWE class with   t

h hh  X X , ρ(h) = |Vh|, and w[λ(h), ρ(h)] = λ(h)ρ(h). 

This is because Xh and Vh are square matrices and t t

h h h h h hX V X X X V . This 

explains why the WLS approach is robust to violations of model assumptions and 

influential observations because it considers the information of both leverage and 

degree of fit. 

Mayo and Gray (1997) developed a robust TE estimator based on the 

LRWE class. Unlike the OLS method where the same weight of degree of fit is 

assigned to all elemental regressions regardless of whether they are influenced by 

outlying cases, the TE method removes or trims out those elemental regressions 

that poorly fit the data due to extreme observations from calculations. With λ(h) 

and ω[λ(h), ρ(h)] remaining the same as those in formula (2), the TE estimator 

alters ρ(h) to have the form 

 

      
1

1, if 1

0, otherwise

n

hi pi

n
rank e

h p


 

  
   

   




  

 

where αp represents the trimming proportion that ranges from 0 to 1 and 
1

n

hii
e

  

is the sum of absolute residuals based on the elemental estimates ˆ
hβ . By ruling 

out those elemental regressions adversely affected by extreme cases, the TE 

approach produces estimators robust to outliers and violations of model 

assumptions. Notice that the degree of robustness of the presented approach 

depends on the values selected for trimming proportion αp. A bigger αp means a 

greater robustness because it removes more elemental regressions with large sums 

of absolute residuals than a lower αp does. Depending on the proportion of 

regressions one would like to remove from consideration, αp can be adjusted 

accordingly. Taking this into account, the TE estimator is denoted as TEE(αp). 

The TE approach is different from eliminating outliers from data. Omission 

of outlying observations takes away multiple elemental subsets including some 

good ones that could potentially exist with those observations. For example, if a 
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dataset contains 10 observations and 2 unknown parameters are of interest, there 

are  10
2

45  elemental regressions total. If one outlier is removed, then the total 

number of elemental regressions reduces to  9
2

36 . As you may expect, the 

number of elemental regressions eliminated from analysis increases dramatically 

as n or p becomes bigger. Deleting observations from data is not the best way to 

handle outliers unless the outlying cases are indeed resulted from mistakes or 

other extraneous causes. 

BCa Bootstrap CI 

The BCa approach, suggested by Efron (1987), seeks to correct the bias and 

skewness of the sampling distribution through adjusting the selected percentiles 

used for constructing CIs. The adjusted percentiles are 

 

 
   

2 1 2

1 2

2 1 2

ˆ ˆ
ˆ ˆand

ˆ ˆˆ ˆ1 1

z z z z
z z

z z z z

 

 

   
 





    
      
      
   

  

 

where ϕ(.) is the standard normal cumulative function and zα represents the 

100α% quantile of the standard normal distribution. The skewness and bias of the 

sampling distribution are respectively adjusted by ẑ  and ̂ , expressions of which 

can be found in Efron (1987) and DiCiccio and Efron (1996). In general, the 

algorithm for creating the 100(1 – α)% BCa bootstrap CIs in terms of the TE 

estimation is given as follows: 

 

 For m = 1,…, M, do: 

(a) Sample data with replacement from the dataset. 

(b) Compute TE estimates TEEβ̂  based on the mth bootstrap sample. 

 Construct the 100(1 – α)% BCa bootstrap CIs using the adjusted 

percentiles given above based on the generated bootstrap sample of TEEβ̂  

 

Hall and Mayo (2008) conducted simulation studies under various scenarios to 

compare the coverage probabilities of BCa bootstrap CIs based on the TE 

estimation to the ones based on other approaches. It was found that the BCa 

bootstrap CIs in terms of TE estimators are almost indistinguishable from those 

based on OLS when error terms follow the Normal, Contaminated Normal, or 
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Student’s t distribution. For the Cauchy and Laplace error distributions, however, 

the TE estimation is preferred (See Hall and Mayo (2008) for more details). This 

indicates the OLS estimator is robust to small departures from normality; however, 

major departures from normality should be of concern. 

Computation Efficiency 

Even with powerful computers available today the computation time for deriving 

TE estimates increases tremendously as the number of regression parameters or 

sample size increases. For example, if there are 10 observations and the model 

only has two parameters, then  10
2

45  elemental subsets need to be fit; however, 

if the sample size and number of parameters increase to 20 and 4, respectively, we 

need to fit  20
4

4845  elemental regressions, which requires over 100 times more 

computations. In order to reduce the computation intensity, Hall and Mayo (2008) 

examined the appropriateness of the approach of random subsample, suggested by 

Hawkins (1993) for the best elemental estimator, for reducing the number of 

computations required for the TE estimator through simulation studies. They 

claimed that computing the TE estimates based on as low as 50% of the elemental 

subsets may be sufficient to produce reliable estimates as long as the error terms 

follow Normal, Cauchy, Laplace, 10% Contaminated Normal, or Student’s t 

distribution. 

TEEReg Package 

The proposed R package TEEReg provides tools for computing the TE estimates 

and the corresponding BCa bootstrap CIs. In this section, the usage of the two 

functions TEE() and TEE.BCa() enclosed in TEEReg are explained. 

The function TEE() is used to compute the TE estimates. Its usage with 

complete arguments is given as: 

 

TEE(formula, data, offset=NULL, p.trimmed=NULL, p.subsample=1, 

method="tee") 

 

Similar to other R functions developed for linear regressions, such as lm() 

and glm(), the first argument formula gives a symbolic description of the model to 

be fitted (e.g. formula = y ∼ x). The second argument specifies the dataset used 
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for performing regression analyses. Be aware that the data must be formatted as a 

data frame prior to using the TEE() function. The offset can be used to specify 

regressors with coefficients of 1. This argument can be either NULL or a numeric 

vector with length equal to the number of observations. The argument p.trimmed 

indicates the proportion of elemental subsets removed from the computation of 

estimates. It should be either NULL or a numeric value between 0 and 1. 

However, a value must be provided to p.trimmed when method = "tee" is 

specified. The argument p.subsample is for specifying the proportion of random 

selection of elemental subsets. One may improve the computation efficiency by 

providing a numeric value between 0 and 1 to this argument. The default value of 

p.subsample is 1 under which the TE estimates are calculated based on all 

elemental subsets. When using the TEE() function, the TE regression is carried 

out by default (i.e., the default value to argument method is "tee"). Another 

supported option for this argument is "ols" under which the OLS approach is 

employed for fitting linear regressions. When the value ols is given to the 

argument of method, the TEE() function computes the estimates based on the full 

data no matter what values are assigned to p.trimmed and p.subsample. 

The second function TEE.BCa() is used to construct the 100(1 – α)% BCa 

bootstrap CIs based on the TE estimation. It is similar in structure to TEE() and 

has the form with complete arguments as follows: 

 

TEE.BCa(formula, data, offset=NULL, p.trimmed=NULL, p.subsample=1, 

method="tee", est.TEE, conf.level, n.boot) 

 

The specifications of the first six arguments in TEE.BCa() are the same as 

explained above for TEE(). For the remaining three, est.TEE stands for TE 

regression estimates, and conf.level and n.boot represent the confidence level and 

the number of bootstrap samples, respectively. Detailed descriptions of the 

arguments enclosed in these two functions can also be viewed using the 

command ??TEE. 

Sometimes, the elemental regression ˆ
hβ  is not estimable because Xh is 

singular and the inverse matrix 1

h


X  does not exist. This could happen, for 

example, when several subjects have the same covariates values and so the matrix 

Xh is not full-rank. The TEEReg package handles such situations using the 

Moore-Penrose generalized inverse, which is defined and unique for all matrices 

whose entries are real or complex numbers. It is computed using the singular 
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value decomposition. For a review of the Moore-Penrose generalized inverse, see 

Campbell and Meyer (2009). 

Examples 

To evaluate the robustness of the presented TE approach, the first example is 

based on the telephone data (Rousseeuw & Leroy, 1987) with several outlying 

observations and the second example is simulated data based on a Cauchy 

distribution. For both examples, the 95% BCa bootstrap CIs are created based on 

1000 bootstrap samples. 

Example 1: Data with Outliers 

In this example, the telephone data (Rousseeuw & Leroy, 1987) are used to 

demonstrate the usage of the TEEReg package. In the data, the number of 

telephone calls (tens of millions) made in Belgium was recorded from 1959 to 

1973. It contains several extreme observations resulted from mistakes in 

recording units over the years 1964-1969 (see Figure 1), which is useful in order 

to examine the robustness of the TE method to outliers. The response variable of 

the telephone data is the number of telephone calls and the independent variable is 

the year. For illustration purposes, the TE estimates and the corresponding 95% 

BCa bootstrap CIs are computed based on both 30% and 42% trimming 

proportions. The results in terms of all elemental subsets and those based on 70% 

random subsample are also compared in this example. 

The TEEReg package can be loaded into R by the command 

library(TEEReg). The telephone data are stored inside the package and can be 

accessed by the command data(telephone). As explained above, the TE estimates 

and the corresponding 95% BCa bootstrap CIs in terms of the subsample 

proportion of 100% and trimming proportion of 42% can be computed by typing 

the following: 

 

R> fitTEE1 <- TEE(formula=Y~X, data=telephone, p.trimmed=0.42, 

p.subsample=1, method="tee") 

R> CITEE1 <- TEE.BCa(formula=Y~X, data=telephone, p.trimmed=0.42, 

p.subsample=1, + method="tee", est.TEE=fitTEE1$coefficients, 

conf.level=0.05, n.boot=1000) 

 

Their outputs are displayed as below: 
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R> fitTEE1 

$call 

TEE(formula = Y ~ X, data = telephone, p.trimmed = 0.42, p.subsample = 1, 

method = "tee") 

$formula 

Y ~ X 

$coefficients 

(Intercept)        X 

-100.0543   1.991974 

$residuals 

        1          2          3          4         5          6          7 

 4.855597   3.163623   1.171649  0.3796743   -0.9123  -2.204274  -3.396248 

        8          9         10         11        12         13         14 

-4.688223  -4.880197  -5.472171  -5.964145  -6.55612  -7.348094  -4.240068 

       15         16         17         18        19         20         21 

 91.56796   94.57598    110.584    125.592  146.6001   174.6081   3.616112 

       22         23         24 

-17.37586  -16.36784  -16.35981 

$fitted.values 

        1         2          3         4         5         6         7 

-0.455597  1.536377   3.528351  5.520326    7.5123  9.504274  11.49625 

        8         9         10        11        12        13        14 

 13.48822   15.4802   17.47217  19.46415  21.45612  23.44809  25.44007 

       15        16         17        18        19        20        21 

 27.43204  29.42402   31.41599  33.40797  35.39994  37.39191  39.38389 

       22        23        24 

 41.37586  43.36784  45.35981 

 

R> CITEE1 

$call 

TEE.BCa(formula = Y ~ X, data = telephone, p.trimmed = 0.42, p.subsample = 1, 

method = "tee", est.TEE = fitTEE1$coefficients, conf.level = 0.05, n.boot = 

1000) 

$ci 

             estimates(TEE)  Lower limit  Upper limit 

(Intercept)       -100.0543  -452.481442   -49.220453 

X                  1.991974     1.045627     8.588198 
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Note the output yielded by the function TEE() contains the model formula, 

estimates of coefficients, residuals, and fitted values, and the output of the 

TEE.BCa() function consists of the model formula and BCa bootstrap CIs for 

regression parameters. In the case that one only wants to extract, for example, the 

coefficient estimates from the output of TEE() function, the command 

fit1$coefficients can be used. The TE estimates and the corresponding 95% BCa 

bootstrap CIs based on other scenarios planned to be investigated in this example 

can be computed following a similar manner by specifying p.trimmed = 0.30 and 

p.subsample = 1 or 0.7. The key results are summarized in Table 1. For 

comparison purposes, the results based on the OLS approach and the IRLS using 

Huber weight function are also presented in this table. 

The estimated regression function using the TE approach with p.subsample 

= 1 and 42% trimming suggests that the mean number of telephone calls are 

expected to increase by 1.992 (in tens of millions) when the year increases by 1. 

The corresponding 95% BCa bootstrap CI for the slope is (1.046, 8.588) which 

does not include 0. Based on this scenario, it can be concluded that year is 

significantly linearly related to the number of telephone calls. As expected, the 

outlying observations are more influential in the fitted TE regression function 

with p.subsample = 1 and 30% trimming proportion. The estimated slope is 

dragged up by outliers to 3.940 (BCa CI: 1.114, 8.424) due to the fact that more 

elemental regressions with large sums of absolute residuals are used in 

calculations. The same trend can be observed in the case of p.subsample = 0.7. 

Moreover, it can be seen in Table 1 that the TE estimates based on 70% 

random subsample of elemental subsets are similar to those based on all elemental 

subsets for both cases of TEE(30%) and TEE(42%). The 95% BCa bootstrap CIs 

in terms of 70% subsample are wider than the ones based on all elemental subsets, 

but both lead to the same conclusion of statistical inference. It seems that using 

the 70% subsampling provides fairly accurate estimates and works almost equally 

well as utilizing the full data for the given telephone data. 

 
Table 1. Estimates of coefficients and 95% BCa bootstrap Cis based on various 

approaches using telephone data 
 

Methods Intercept est. 95% CI (intercept) Slope est. 95% CI (slope) 

TEE(30%): p.subsample = 1 -204.034 (-452.688, -52.983) 3.940 (1.114, 8.424) 

TEE(30%): p.subsample = 0.7 -217.143 (-516.187, -54.649) 4.193 (1.145, 9.520) 

TEE(42%): p.subsample = 1 -100.054 (-452.481, -49.220) 1.992 (1.046, 8.588) 

TEE(42%): p.subsample = 0.7 -112.678 (-540.452, -50.289) 2.235 (1.062, 10.069) 

OLS -260.059 (-523.136, -118.906) 5.041 (2.475, 9.549) 

IRLS -99.904 (-590.294, -52.987) 1.987 (1.113, 10.873) 
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Figure 1. Fitted regression lines using different regression approaches for telephone data 

 

 

Figure 1 displays the fitted regression lines for a variety of regression 

approaches. The overlaid TE regression lines are obtained in terms of all 

elemental subsets (i.e., p.subsample = 1). In addition, a regression line fitted using 

the OLS approach based on the telephone data with outliers removed is also 

included in this figure for comparison purposes. It is obvious that the OLS 

approach performs the worst with its estimates dramatically affected by outliers. 

The regression lines based on IRLS and TEE(42%) are overlapped with each 

other because they lead to almost identical estimates of unknown parameters (see 

Table 1). This is not surprising because the IRLS approach is also robust to 

outlying cases. The 95% BCa bootstrap CIs for IRLS are wider than the ones for 

TEE(42%) (see Table 1). As explained in the previous paragraph, due to the fact 

that relatively more elemental regressions having large sums of absolute residuals 

are employed in calculations, the TEE(30%) is affected more by the outliers than 

the TEE(42%) and IRLS. Both fitted regression lines of TEE(30%) and 

TEE(42%) are above the one based on the OLS approach with outliers removed. 

The reason is that deleting outlying observations takes away all of their 

corresponding elemental subsets. 
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Example 2: Cauchy Data 

In this example, a simulated dataset consisting of 50 observations and one 

independent variable is used to clarify the usage of TEEReg package and to 

illustrate the robustness to non-normal data of the presented TE estimator. The 

values of the independent variable X are generated from a Poisson distribution 

with mean equal to 10 and the values of the dependent variable Y are computed as 

Y = 0.5 + 1X + ϵ, where the error term ϵ is assumed to follow a Cauchy 

distribution with location 0 and scale 1. We call this artificial dataset the data.sim. 

In this example, the TE estimates and the corresponding 95% BCa bootstrap CIs 

are computed based on all elemental subsets and both 50% and 75% trimming 

proportions. As demonstrated in Hall and Mayo (2008), these two trimming 

proportions provide high coverage probabilities (at least 95%) to the 95% BCa 

bootstrap CIs when the error term follows Cauchy distribution. 

The TE estimates and the corresponding 95% BCa bootstrap CIs in terms of 

the subsample proportion of 100% and trimming proportion of 50% can be 

computed by typing the following: 

 

R> fitTEE3 <- TEE(formula=Y~X, data=data.sim, p.trimmed=0.5, 

p.subsample=1,method = "tee") 

R> CITEE3 <- TEE.BCa(formula=Y~X, data=data.sim, p.trimmed=0.5, 

p.subsample=1, + method="tee", est.TEE=fitTEE3$coefficients, 

conf.level=0.05, n.boot=1000) 

 

The TE estimates and their BCa CIs based on 75% trimming can be computed 

similarly by specifying p.trimmed = 0.75. The key outputs of both scenarios are 

summarized in Table 2. For comparison purposes, the results based on the OLS 

method and the IRLS using Huber weight function are also given in this table. 
 
 
Table 2. Estimates of coefficients and 95% BCa bootstrap Cis based on various 
regression approaches using simulated data 
 

Methods Intercept est. 95% CI (intercept) Slope est. 95% CI (slope) 

TEE(50%) 1.341 (-0.542 , 6.602) 0.899 (0.305, 1.120) 

TEE(75%) 0.919 (-1.026, 3.734) 0.967 (0.634, 1.170) 

OLS 6.639 (1.858, 12.516) 0.471 (-0.096, 0.934) 

IRLS 2.100 (0.0728, 7.281) 0.832 (0.240, 1.055) 
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Figure 2. Fitted regression lines using different regression approaches for simulated data 

 

 

As expected, the OLS approach performs the worst in terms of handling the 

simulated Cauchy data. The corresponding 95% BCa bootstrap CIs for intercept 

and slope are, respectively, (1.858, 12.516) and (-0.096, 0.934), none of which 

captures the true values of 0.5 and 1. The OLS estimates of both intercept and 

slope are significantly different from the true values as well. In contrast, it appears 

that the TEE(75%) performs the best for the given dataset. The resulting TE 

estimates for slope and intercept are, respectively, 0.919 and 0.967, both of which 

are very close to the true intercept and slope used for generating data. The 

estimates produced by TEE(50%) seems to be slightly worse than ones based on 

TEE(75%), but it is closer to the true values than the ones resulting from IRLS. 

The 95% BCa bootstrap CIs of both TEE(50%) and IRLS contain the true 

intercept and slope of 0.5 and 1. It appears that the TE approach is robust to the 

simulated Cauchy data that severely depart from normality. A scatterplot of the 

simulated data along with fitted regression lines using different approaches is 

shown in Figure 2. 
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Summary 

The usage of a new R package TEEReg was explicated for computing the 

TE estimates and creating the BCa bootstrap CIs. This package includes two 

functions: TEE() for the TE regression and TEE.BCa() for the BCa bootstrap CIs. 

Two examples were provided in this paper to demonstrate the usage of the 

TEEReg package. In the first example, the telephone data with several influential 

observations were used to examine the robustness of the TE method to outliers. It 

was found that the TEE(42%) and IRLS approaches work equally well for the 

given dataset. The TEE(30%) was affected more by the outliers because, 

compared to αp = 42%, relatively more elemental regressions with large sums of 

absolute residuals are involved in calculations. The random subsample approach, 

suggested by Hawkins (1993), was employed in this example as well. It appeared 

that, for the telephone dataset, using the 70% subsampling provides fairly 

accurate estimates and works almost equally well as utilizing the full data. This is 

consistent with the conclusions of Hall and Mayo (2008), that the random 

subsample approach is appropriate for reducing computation intensity when the 

error terms follow certain distributions. In the second example, a simulated data 

set with Cauchy error terms was used to assess the robustness of the TE approach 

to non-normal data. It appeared that the TE estimator is robust and efficient to the 

simulated data with Cauchy error terms. This is also consistent with the findings 

based on simulation studies from Hall and Mayo (2008). The new TEEReg 

package can be readily used to conduct TE regression analysis which is a useful 

and robust alternative to OLS in the presence of outliers and violations of model 

assumptions. 
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Introduction 

In survey data, missing values are prevalent. At best, missing data are inefficient 

because the incomplete dataset does not contain as much information as is 

expected. At worst, missing data can be biased if non-respondents are 

systematically different from respondents (Rubin, 1987). The best solution to the 

missing data problem is to collect the true data, by resending questionnaires or by 

calling respondents. Nevertheless, there are two problems to this ideal solution. 

First, data users often have no luxury of collecting more data to take care of 

missingness. Second, facing a worldwide trend of resource reduction in official 

statistics, data providers such as national statistical agencies need to make the 

statistical production as efficient as possible. From these two perspectives for both 

data users and data providers, parametric imputation models, if used properly, 

may help to reduce bias and inefficiency due to missing values. In fact, if the 

missing mechanism is at random (MAR), it has been demonstrated that 

imputation can ameliorate the problems associated with incomplete data (Little & 

Rubin, 2002; de Waal et al., 2011). 

https://doi.org/10.22237/jmasm/1493598840
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Among others, ratio imputation is often used to treat missing values in 

practice (de Waal et al., 2011; Thompson & Washington, 2012; Office for 

National Statistics, 2014). When there is an auxiliary variable that is a de facto 

proxy for the target incomplete variable, ratio imputation is assumed to produce 

high quality data (Hu et al., 2001). On the other hand, proponents of multiple 

imputation have long argued that single imputation generally ignores estimation 

uncertainty by treating imputed values as if they were true values (Rubin, 1987; 

Schafer, 1997; Little & Rubin, 2002). Multiple imputation is indeed known to be 

the gold standard of handling missing data (Baraldi & Enders, 2010; Cheema, 

2014). In the literature, however, there is no such thing as multiple ratio 

imputation, leading to a gap between theory and practice. Here, we fill in this gap 

by proposing a novel application of the Expectation-Maximization with 

Bootstrapping (EMB) algorithm to ratio imputation, where multiple-imputed 

values will be created for each missing value. 

Therefore, the purpose of this study is to examine the standard single ratio 

imputation techniques and their limitations, illustrate the mechanism and 

advantages of multiple ratio imputation, and assess the performance of multiple 

ratio imputation using 45,000 simulated datasets based on a variety of sample 

sizes, missing rates, and missingness mechanisms. Also, a review of 

MrImputation, provided in Takahashi (2017), is included. 

Notations 

D is an n × p dataset, where n is the number of observations and p is the number 

of variables. If no data are missing, the distribution of D is assumed to be 

multivariate normal, with the mean vector μ and variance-covariance matrix Σ, 

i.e., D~Np (μ,Σ). Let i be an observation index, i = 1,…,n. Let j be a variable 

index, j = 1,…,p. Thus, D = {Y1,…,Yp}, where Yj is the jth column in D, and Y−j is 

the complement of Yj. Generally, Y−j refers to all of the columns in D except Yj. 

Especially, this article deals with a two-variable imputation model; thus, Y1 is the 

incomplete variable (target variable for imputation) and Y2 is the complete 

variable (auxiliary variable). Thus, D = {Yi1,Yi2}. 

Also, let R be a response indicator matrix, whose dimension is the same as 

D. Whenever D is observed R = 1, and whenever D is not observed R = 0. Note, 

R in Italics refers to the R software environment for statistical computing and 

graphics. Dobs refers to the observed part of data, and Dmis refers to the missing 

part of data, i.e., D={Dobs,Dmis }. β is the slope in the complete model, ̂  is the 
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slope estimated by the observed model, and   is the estimated slope by multiple 

imputation. 

Assumptions of Missing Mechanisms 

There are three assumptions of missingness (Little & Rubin, 2002; King et al., 

2001). This is an important issue, because the results of statistical analyses depend 

on the type of missing mechanisms (Iwasaki, 2002). The first assumption is 

Missing Completely At Random (MCAR), which means that the missingness 

probability of a variable is independent of the data for the unit. In other words, 

P(R|D) = P(R). Take an economic survey where enterprises choose to answer 

their turnover values by tossing a coin as a perfect example of MCAR. This is the 

easiest case to take care of, because MCAR is simply a case of random 

subsampling from the intended sample; thus, subsamples may be inefficient, but 

unbiased. Note that the assumption of MCAR can be tested by entering dummy 

variables for each variable, and scoring it 1 if the data are missing and 0 otherwise.  

The second assumption is the case where missingness is conditionally at 

random. Traditionally, this is known as Missing At Random (MAR), which means 

that the conditional probability of missingness given data is equal to the 

conditional probability of missingness given observed data. In other words, 

P(R|D) = P(R|Dobs). An example of MAR would be when enterprises with few 

employees, in the above hypothetical survey, are found more likely to refuse to 

answer their turnover values, assuming that there is a column in the dataset that 

has values on the number of employees. If the missing mechanism is at random, 

imputation can rectify the bias due to missingness. Note that the assumption of 

MAR (unlike MCAR) cannot be tested. 

The third assumption is Non-Ignorable (NI), where the missingness 

probability of a variable depends on the variable’s value itself, and this 

relationship cannot be broken conditional on observed data. In other words, 

P(R|D) ≠ P(R|Dobs). Imagine that enterprises with lower values of turnover are 

more likely to refuse to answer their turnover values in our survey, and the other 

variables in the dataset cannot be used to predict which enterprises have small 

amounts of turnover: this would be an example of NI. If the missing mechanism is 

NI, a general-purpose imputation method may not be appropriate. Instead, a 

special technique should be developed to take care of the unique nature of non-

ignorable missing mechanisms.  

For the missingness mechanism to be ignorable, both of the MAR and 

distinctness conditions need to be met (Little & Rubin, 2002, pp.119-120). 
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However, under practical conditions, the missingness data model is often regarded 

as ignorable if the MAR condition is satisfied (Allison, 2002, p.5; van Buuren, 

2012, p.33). This means that NI is Not Missing At Random (NMAR). 

Also, as Carpenter & Kenward (2013) noted, MAR means that the 

probability of observing a variable’s value often depends on its own value, but the 

dependence can be eliminated, given observed data. NI means that the probability 

of observing a variable’s value not only depends on its own value, but also the 

dependence cannot be eliminated, given observed data. However, the meaning of 

MAR differs from researcher to researcher (Seaman et al., 2013); thus, there is 

some ambivalence to this terminology. 

Existing Algorithms and Software for Multiple Imputation 

There are three major algorithms for multiple imputation. The first traditional 

algorithm is based on Markov chain Monte Carlo (MCMC). This is the original 

version of Rubin’s (1978, 1987) multiple imputation. R-Package Norm currently 

implements this version of multiple imputation (Schafer, 1997; Fox, 2015). A 

commercial software program using the MCMC algorithm is SAS Proc MI (SAS, 

2011). The second major algorithm is called Fully Conditional Specification 

(FCS), also known as chained equations by van Buuren (2012). R-Package MICE 

currently implements this version of multiple imputation (van Buuren & 

Groothuis-Oudshoorn, 2011; van Buuren & Groothuis-Oudshoorn, 2015). Other 

commercial software programs using the FCS algorithm are SPSS Missing 

Values (SPSS, 2009) and SOLAS (Statistical Solutions, 2011). The FCS 

algorithm is known to be flexible. The third relatively new algorithm is the 

Expectation-Maximization with Bootstrapping (EMB) algorithm by Honaker & 

King (2010). R-Package Amelia II currently implements this version of multiple 

imputation (Honaker et al., 2011; Honaker et al., 2015). The EMB algorithm is 

known to be computationally efficient. 

Assessing superiority among the different multiple imputation algorithms is 

beyond the scope of the current study. According to Takahashi & Ito (2013), if the 

underlying distribution can be approximated by a multivariate normal distribution 

with the MAR condition, all of the three algorithms essentially give the same 

answers. As for the performance of the EMB algorithm, Honaker & King (2010) 

contended the estimates of population parameters in bootstrap resamples can be 

appropriately used instead of random draws from the posterior. Rubin (1987) 

argued the approximately Bayesian bootstrap method is proper imputation 

because it incorporates between-imputation variability. Also, Little & Rubin 

file:///C:/Users/dp5745/Downloads/ref_van_buuren_2012
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(2002) opined the substitution of Maximum Likelihood Estimates (MLEs) from 

bootstrap resamples is proper because the MLEs from the bootstrap resamples are 

asymptotically identical to a sample drawn from the posterior distribution. 

Therefore, multiple imputation by the EMB algorithm can be considered to be 

proper imputation in Rubin’s sense (1987). Also, according to van Buuren (2012), 

the bootstrap method is computationally efficient because there is no need to 

make a draw from the χ2 distribution, unlike the other traditional algorithms of 

multiple imputation. This means that it is not necessary to resort to the Cholesky 

decomposition (factorization), the property of which is that if A is a symmetric 

positive definite matrix, i.e., A = AT, then there is a matrix L such that A = LLT, 

which means that A can be factored into LLT, where L is a lower triangular 

matrix with positive diagonal elements (Leon, 2006, p.389). Nonetheless, R-

Package Amelia II does not allow estimating the ratio imputation model, nor do 

any of the existing multiple imputation software programs mentioned above. 

Single Ratio Imputation 

Suppose that the population model is equation (1). Under the following special 

case, the ratio 
1 2/Y Y  is an unbiased estimator of β, where εi is independent of Yi2 

with the mean of 0 and the unknown variance of Yi2σ2 (Takahashi et al., 2017; 

Cochran, 1977; Shao, 2000; Liang et al., 2008). Under the general case, the ratio 

1 2/Y Y  is a consistent but biased estimator of β, and the mean of εi is 0 with 

unknown variance. However, as the sample size increases, this bias tends to be 

negligible. Also, the distribution of the ratio estimate is known to be 

asymptotically normal (Cochran, 1977, p.153). 

 

 1 2i i iY Y     (1) 

 

Suppose Yit is missing in the survey and that Yit−1 is fully observed in a previous 

dataset, where Yit is the current value of the variable and Yit−1 is the value of the 

same variable at an earlier moment. The missing values of Yt may be imputed by 

equation (2), where the value of β reflects the trend between the two time points. 

 

 1
ˆ
it itY Y    (2) 

 

A special case of equation (2) is cold deck imputation (de Waal et al., 2011), 

an example of which is that a missing value for unit i in an economic survey at t is 
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replaced with an observed value for unit i in another highly reliable dataset such 

as tax data at t − 1. This model implies that the imputer is confident that β is 

always 1. Thus, there will be no estimation uncertainty whatsoever. A general 

case of equation (2) is ratio imputation (de Waal et al., 2011), an example of 

which is that a missing value for unit i of an economic survey at t is replaced with 

an observed value for unit i of the same economic survey at t − 1, assuming that 

unit i answered at t − 1. In this case, the imputer is not confident that β is always 1. 

Thus, there will be estimation uncertainty. 

Therefore, in the general case of equation (2), the value of β is not known 

and must be estimated from the observed part of data. For this purpose, ratio 

imputation takes the form of a simple regression model without an intercept, 

whose slope coefficient is calculated not by OLS, but by the ratio between the 

means of the two variables. In other words, the ratio imputation model is equation 

(3), where 1, 2,
ˆ /obs obsY Y  . Also, ratio imputation can be made stochastic by 

adding a disturbance term as in equation (4) (Hu et al., 2001). 

 

 1 2
ˆˆ

i iY Y   (3) 

 

 1 2
ˆˆ ˆ

i i iY Y     (4) 

 

To illustrate, consider Table 1, where simulated data on income among 10 

people are recorded. Income0 is the unobserved truth, Income1 is the current 

value, and Income2 is the previous value. The mean of Income0 is 504.500, the 

mean of Income1 is 412.571, and the mean of Income2 is 445.600. 
 
 
Table 1. Example Data (Simulated Weekly Income in U.S. Dollars) 
 

ID Income0 Income1 Income2 

1 543 543 514 

2 272 272 243 

3 797 NA 597 

4 239 239 264 

5 415 415 350 

6 371 371 346 

7 650 NA 545 

8 495 495 475 

9 553 553 564 

10 710 NA 558 
 

Note. Income0 is the true complete variable. Income1 is the observed incomplete variable with NA = missing. 

Income2 is the auxiliary variable. 
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Presented in Table 2 are the imputed dataset by both deterministic ratio 

imputation and stochastic ratio imputation. The true model is, 

Income0=BXincome2 where β = mean(Income0) ⁄ mean(Income2) = 1.132. On the 

other hand, the imputation model is Income1=BxIncome2, where 

̂  = mean(Income1,obs) ⁄ mean(Income2,obs) = 1.048. This clearly means that the 

imputation model consistently underestimates the true model due to missing 

values. 
 
 
Table 2. Example of Imputed Data (Simulated Weekly Income in U.S. Dollars) 

 

   
Deterministic Stochastic 

ID Income0 Income1 Ratio Ratio 

   Imputation Imputation 

1 543 543 543.000 543.000 

2 272 272 272.000 272.000 

3 797 NA 625.594 586.441 

4 239 239 239.000 239.000 

5 415 415 415.000 415.000 

6 371 371 371.000 371.000 

7 650 NA 571.103 575.654 

8 495 495 495.000 495.000 

9 553 553 553.000 553.000 

10 710 NA 584.756 621.730 
 

Note. Income0 is the true complete variable. Income1 is the observed incomplete variable with NA = missing. 

 
 

The deterministic imputations are the exact predicted values by the 

imputation model. The stochastic imputations deviate from the predictions, 

reflecting fundamental uncertainty captured by î . Nevertheless, both types of 

ratio imputation models suffer from the lack of mechanism to incorporate 

estimation uncertainty, i.e., both models share the same deterministically 

calculated value of ̂  = 1.048, which is clearly different from the true β = 1.132. 

Ratio imputation is considered to be an important tool in official statistics, 

because the model is supposed to be intuitively easy to verify for the practitioners 

(Bechtel et al., 2011). As a result, many national statistical agencies use ratio 

imputation in their statistical production processes, such as the U.S. Census 

Bureau (Thompson & Washington, 2012), the UK Office for National Statistics 

(2014), and Statistics Netherlands (de Waal et al., 2011), to name a few. However, 

this section demonstrated that the standard single ratio imputation models ignored 

estimation uncertainty. On this point, multiple ratio imputation comes to the 

rescue. 



MASAYOSHI TAKAHASHI 

637 

Theory of Multiple Ratio Imputation 

If the missing mechanism is MAR, imputation can ameliorate the bias due to 

missingness (Little & Rubin, 2002; de Waal et al., 2011). Caution is required 

because imputed values are not the complete reproduction of the true values, and 

that the goal of imputation is generally not to replicate the truth for each missing 

value, but to make it possible to have a valid statistical inference. For this purpose, 

it is necessary to evaluate the error due to missingness, for which Rubin (1978, 

1987) proposed multiple imputation as a solution. Indeed, Baraldi & Enders 

(2010) and Cheema (2014) demonstrated multiple imputation is superior to 

listwise deletion, mean imputation, and single regression imputation. Furthermore, 

Leite & Beretvas (2010) contended multiple imputation is robust to violations of 

continuous variables and the normality assumption. Thus, multiple imputation is 

the gold standard of treating missing data. The purpose of the current study, 

therefore, is to extend the utility of ratio imputation by transforming it to multiple 

imputation by way of the EMB algorithm described in this section. 

Multiple imputation in theory is to randomly draw several imputed values 

from the distribution of missing data. However, missing data are by definition 

unobserved; as a result, the true distribution of missing data is always unknown. 

A solution to this problem is to estimate the posterior distribution of missing data 

based on observed data, and to make a random draw of imputed values. Honaker 

& King (2010) and Honaker et al. (2011) suggested the use of the EMB algorithm 

for the purpose of drawing the mean vector and the variance-covariance matrix 

from the posterior density, and presented a general-purpose multiple imputation 

software program called Amelia II, which is a computationally efficient and 

highly reliable multiple imputation program. Nevertheless, as presented above, 

Amelia II does not allow us to estimate the ratio imputation model. 

The value of β was estimated by 1, 2,
ˆ /obs obsY Y  . Therefore, in order to 

create multiple ratio imputation, the mean vector needs to be randomly drawn 

from the posterior distribution of missing data given observed data. In the 

following sections, the EMB algorithm is applied to ratio imputation to create 

multiple ratio imputation. First, however, a review of the bootstrap method and 

the Expectation-Maximization (EM) algorithm is in order, to illustrate how the 

EMB algorithm works for the purpose of generating multiple ratio imputation. 
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Nonparametric Bootstrap 

The first step for multiple ratio imputation is to randomly draw vectors of means 

from an appropriate posterior distribution to account for the estimation 

uncertainty. The EMB algorithm replaces the complex process of random draws 

from the posterior by nonparametric bootstrapping, which uses the existing 

sample data (size = n) as the pseudo-population and draws resamples (size = n) 

with replacement M times (Horowitz, 2001). If data Y1,…,Yn are independently 

and identically distributed from an unknown distribution F, this distribution is 

estimated by F̂ (y), which is the empirical distribution Fn defined in equation (5), 

where I(Y) is the indicator function of the set Y.  

 

    
1

1
.

n

n ii
F y I Y y

n 
    (5) 

 

Based on equation (5), bootstrap resamples are generated. The distribution 

F̂  can be any estimator in order to generate the bootstrap resamples of F based 

on Y1,…,Yn. A nonparametric estimator of F is the empirical distribution Fn 

defined by equation (5) (Shao & Tu, 1995, pp. 2-4, pp. 9-11; DeGroot & 

Schervish, 2002, pp.753-754). 
 
 
Table 3. Bootstrap Data (M = 2) 

 

Incomplete Data 
 

Bootstrap 1 
 

Bootstrap 2 

Income1 Income2 
 

IncomeB11 IncomeB12 
 

IncomeB21 IncomeB22 

543 514   NA 545   495 475 

272 243 
 

272 243 
 

272 243 

NA 597 
 

239 264 
 

371 346 

239 264 
 

NA 597 
 

415 350 

415 350 
 

272 243 
 

NA 597 

371 346 
 

553 564 
 

543 514 

NA 545 
 

272 243 
 

272 243 

495 475 
 

495 475 
 

NA 545 

553 564 
 

553 564 
 

371 346 

NA 558   272 243   NA 545 

 
 

Note. NA represents missing values. 

 
 

This is illustrated in Table 3. The incomplete data are the original missing 

data in Table 1. When listwise deletion is applied to this dataset, the mean of 



MASAYOSHI TAKAHASHI 

639 

Income1 is 412.571. The Bootstrap 1 and Bootstrap 2 in Table 3 refer to the 

bootstrap resamples, where M = 2. When listwise deletion is applied to these 

bootstrap datasets, the mean of IncomeB11 is 366.000 and the mean of 

IncomeB21 is 391.286. The variation between these estimates is the essential 

mechanism of capturing estimation uncertainty due to imputation. 

However, when incomplete data are bootstrapped, the chance is that each 

bootstrap resample is also incomplete. Therefore, the information from 

incomplete bootstrap resamples is biased and inefficient. The EM algorithm 

refines bootstrap estimates in the next section. 

EM Algorithm 

MLEs are the parameter estimates that maximize the likelihood of observing the 

existing data (Long, 1997, p.26), which have the NICE properties of asymptotic 

Normality, Invariance, Consistency, and asymptotic Efficiency (Greene, 2003). 

Nevertheless, it is difficult to directly calculate MLE in missing data. Making 

incomplete data complete requires information about the distribution of the data, 

such as the mean and the variance-covariance; however, these incomplete data are 

used to estimate the mean and the variance-covariance. Therefore, it is not 

straightforward to analytically solve this problem. For the purpose of dealing with 

this problem, iterative methods such as the EM algorithm were proposed to 

estimate such quantities of interest (Allison, 2002). 

A certain distribution is assumed in the EM algorithm, as are tentative 

starting values for the mean and the variance-covariance. An expected value of 

model likelihood is calculated, the likelihood is maximized, model parameters are 

estimated that maximize these expected values, and then the distribution is 

updated. The expectation and the maximization steps are repeated until the values 

converge, whose properties are known to be an MLE (Schafer, 1997; Iwasaki, 

2002; Do & Batzoglou, 2008). Formally, the EM algorithm can be summarized as 

follows. Starting from an initial value θ0, repeat the following two steps: 

 

1. E-step:      | | | ;t mis obs t misQ l Y P Y Y dY     , where  |l Y  is 

log likelihood. 

2. M-step: Maximize 1t  = arg maxθ  | tQ   with respect to θ. 

 

Under certain conditions, it is proven that  ˆ
t t   . 
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The values in Table 3 were incomplete. If the EM algorithm is used to refine 

these values, the EM mean for IncomeB11 is 405.741 and the EM mean for 

IncomeB12 is 398.100; also, the EM mean for IncomeB21 is 450.912 and the EM 

mean for IncomeB22 is 420.400. Using these values, the ratio will be estimated as 

1.019 and 1.072, respectively. Thus, in this small example, the ratio is estimated 

as 1.046 on average, ranging from 1.019 to 1.072. This variation captures the 

estimation uncertainty due to missingness, which is called the between-imputation 

variance (Little & Rubin, 2002). Obviously, real applications require a much 

larger value of M (Graham et al., 2007; Bodner, 2008). 

Application of the EMB Algorithm to Multiple Ratio Imputation 

The multiple ratio imputation model is defined by equation (6), where tilde means 

that these values are drawn from an appropriate posterior distribution of missing 

data. In other words,   is a vector of ratios drawn from the appropriate posterior 

taking estimation uncertainty into account and i  is the disturbance term taking 

fundamental uncertainty into account (King et al., 2001). 

 

 1 2 ,i i iY Y    where 1

2

Y

Y
    (6) 

 
 
Table 4. Multiple Ratio Imputation Data (M = 2) 
 

ID Income1 Income2 Imputation1 Imputation2 

1 543 514 543.000 543.000 

2 272 243 272.000 272.000 

3 NA 597 620.917 662.732 

4 239 264 239.000 239.000 

5 415 350 415.000 415.000 

6 371 346 371.000 371.000 

7 NA 545 571.100 600.655 

8 495 475 495.000 495.000 

9 553 564 553.000 553.000 

10 NA 558 597.406 637.115 

 
 

Presented in Table 4 are the result of multiple ratio imputation, where M = 2, 

using the same example data as in Table 1. The model is 

21 iIncome Income    . If M = 100, the mean of   is 1.050 with a standard 

deviation of 0.048, ranging from 0.903 to 1.342. This variation captures the 
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stability of the imputation model, which serves as a diagnostic method for 

imputation, because the simulation standard error (between-imputation variance) 

can be appropriately used for assessing the likeliness of the simulation estimator 

being close to the true parameter of interest (DeGroot & Schervish, 2002). In 

Table 4, the values of Imputation1 and Imputation2 for ID 3, 7, and 10 change 

over columns Imputation1 to Imputation2, because the values in these rows are 

imputed values. Also, note that the values in the other rows do not change over 

columns, because they are observed values. 

Just as in regular multiple imputation (Little & Rubin, 2002), the estimates 

by multiple ratio imputation can be combined as follows. Let ˆ
m  be an estimate 

based on the mth multiple-imputed dataset. The combined point estimate 
M  is 

equation (7). 

 

 
1

1 ˆM

M mmM
 


    (7) 

 

The variance of the combined point estimate consists of two parts. Let vm be 

the estimate of the variance of ˆ
m , var( ˆ

m ), let 
MW  be the average of within-

imputation variance, let 
MB  be the average of between-imputation variance, and 

let TM be the total variance of 
M . Then, the total variance of 

M  is equation (8), 

where (1 + 1 ⁄ M) is an adjustment factor because M is not infinite. If M is infinite, 

 1lim 1M M MM
v v   . In short, the variance of 

M  takes into account within-

imputation variance and between-imputation variance. 

 

  
2

1 1

1 1 1 1 ˆ1 1
1

M M

M M M m m M

m m

T W B v
M M M M

 
 

    
                

    (8) 

 

Graphically outlined in Figure 1 is a schematic overview of multiple ratio 

imputation (M = 5). In summary, multiple ratio imputation replaces missing 

values by M simulated values, where M > 1. Conditional on observed data, the 

imputer constructs a posterior distribution of missing data, draws a random 

sample from this distribution, and creates several imputed datasets. Then, conduct 

the standard statistical analysis, separately using each of the M multiple-imputed 

datasets, and combine the results of the M statistical analyses in the above manner 

to calculate a point estimate just as in regular multiple imputation. 
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Figure 1. Schematic of Multiple Ratio Imputation by the EMB Algorithm (M = 5) 

 

Monte Carlo Evidence 

Using 45,000 simulated datasets with various characteristics, the Relative Root 

Mean Square Errors (RRMSE) of the estimators for the mean, the standard 

deviation, and the t-statistics in regression across different missing data handling 

techniques are compared. The data are a modified version of the simulated data 

used by King et al. (2001). The Monte Carlo experiments are based on 1,000 

iterations, each of which is a random draw from the following multivariate normal 

distribution: Variables y1 and y2 are normally distributed with the mean vector (6, 

10) and the standard deviation vector (1, 1), where the correlation between y1 and 

y2 is set to 0.6 (Note that the value of 0.6 was chosen because this is 

approximately the correlation value among the variables in official economic 

statistics which is the target of the current study. Also, in other few runs, not 

reported, the parameter values were changed, and the conclusions were very 

similar). Each set of these 1,000 data is repeated for n = 50, n = 100, n = 200, 

n = 500, and n = 1,000; thus, there are 5,000 datasets of five different data sizes. 

Our simulated data assume that the population model is equation (9). 
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 1 2 ,i i iY Y    where  1

2

0.6, ~ 0,0.64 .i

Y
N

Y
     (9) 

 

Furthermore, following King et al. (2001), each of these 5,000 datasets is 

made incomplete using the three data generation processes of MCAR, MAR, and 

NI as in Table 5. Under the assumption of MCAR, the missingness of y1 

randomly depends on the values of u (uniform random numbers). Under the 

assumption of MAR, the missingness of y1 depends on the values of y2 and u. 

Under the assumption of NI, the missingness of y1 depends on the observed and 

unobserved values of y1 itself and the values of u. 
 
 
Table 5. Missingness Mechanisms and Missing Rates 

 

MCAR 

Missingness of y1 is a function of u. 

 
15%: y1 is missing if u > 0.85. 

 
25%: y1 is missing if u > 0.75. 

  35%: y1 is missing if u > 0.65. 

MAR 

Missingness of y1 is a function of y2 and u. 

 
15%: y1 is missing if y2 > 10 and u > 0.7. 

 
25%: y1 is missing if y2 > 10 and u > 0.5. 

  35%: y1 is missing if y2 > 10 and u > 0.3. 

NI 

Missingness of y1 is a function of y1, x, and u. 

 
15%: y1 is missing if y1 > 6 and u > 0.7. 

 
25%: y1 is missing if y1 > 6 and u > 0.5. 

  35%: y1 is missing if y1 > 6 and u > 0.3. 

 
 

Variable y1 is the target incomplete variable for imputation, Variable y2 is 

completely observed in all of the situations to be used as the auxiliary variable, 

and Variable u in Table 5 is 1,000 sets of continuous uniform random numbers 

ranging from 0 to 1 for the missingness mechanism. The average missing rates are 

set to 15%, 25%, and 35%. These missing rates approximately cover the range 

from 10% to 40% missingness. 

The performance can be captured by the Mean Square Error (MSE), defined 

as equation (10), where θ is the true quantity of interest and ̂  is an estimator. 

The MSE measures the dispersion around the true value of the parameter, 

suggesting that an estimator with the smallest MSE is the best of a competing set 

of estimators (Gujarati, 2003, p. 901). 
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2

ˆ ˆMSE E      (10) 

 

For the ease of interpretation, following Di Zio & Guarnera (2013), the 

Relative Root Mean Square Error (RRMSE) is used, which is defined as equation 

(11), where θ is the truth, ̂  is an estimator, and T is the number of trials. For 

example, θ in the following analyses is the mean, the standard deviation, and the 

t-statistic based on complete data. ̂  is the estimated quantity based on imputed 

data. T is 1,000. 

 

  
2

1

ˆ1ˆ
T

t

RRMSE
T

 




 
   

 
   (11) 

 

The complete results based on the 45,000 datasets are presented in Tables 6, 

8, and 9. In the following analyses, the multiple ratio imputation model sets the 

number of multiple-imputed datasets (M) to 100, based on the recent findings in 

the multiple imputation literature (Graham et al., 2007; Bodner, 2008). 

RRMSE Comparisons for the Mean 

Presented in Table 6 are the RRMSE comparisons for the mean among listwise 

deletion, deterministic single ratio imputation, and multiple ratio imputation 

(M = 100), where the RRMSE is averaged over the 1,000 simulations. For 

multiple ratio imputation, the 100 mean values are combined using equation (7) in 

each of the 1,000 simulations. 

The standard recommendation (de Waal et al., 2011, p.245) is that if the 

goal is to calculate a point estimate, the choice is deterministic single ratio 

imputation. Thus, the main purpose of this comparison is to show that the 

performance of multiple ratio imputation is as good as that of deterministic single 

ratio imputation, which is known to be a preferred method for the estimation of 

the mean. If multiple ratio imputation equally performs well compared to 

deterministic single ratio imputation, this means that multiple ratio imputation 

attains the highest performance in estimating the mean. 
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Table 6. RRMSE Comparisons for the Mean (45,000 Datasets) 

 

Sample Size 
Average Missing 

Rate 
Missing 

Mechanism Listwise Deletion 
Deterministic Ratio 

Imputation 
Multiple Ratio 

Imputation 

50 

15% 

MCAR 0.009 0.008 0.008 

MAR 0.017 0.008 0.008 

NI 0.026 0.017 0.018 

25% 

MCAR 0.014 0.011 0.011 

MAR 0.03 0.01 0.011 

NI 0.048 0.032 0.033 

35% 

MCAR 0.017 0.014 0.014 

MAR 0.045 0.012 0.014 

NI 0.075 0.05 0.052 

100 

15% 

MCAR 0.007 0.006 0.006 

MAR 0.016 0.005 0.005 

NI 0.024 0.016 0.016 

25% 

MCAR 0.01 0.008 0.008 

MAR 0.028 0.007 0.008 

NI 0.046 0.03 0.03 

35% 

MCAR 0.012 0.01 0.01 

MAR 0.044 0.008 0.01 

NI 0.073 0.048 0.05 

200 

15% 

MCAR 0.005 0.004 0.004 

MAR 0.015 0.004 0.004 

NI 0.024 0.016 0.016 

25% 

MCAR 0.007 0.005 0.005 

MAR 0.028 0.005 0.005 

NI 0.045 0.029 0.03 

35% 

MCAR 0.009 0.007 0.007 

MAR 0.043 0.006 0.007 

NI 0.072 0.048 0.049 

500 

15% 

MCAR 0.003 0.003 0.003 

MAR 0.014 0.002 0.002 

NI 0.024 0.015 0.015 

25% 

MCAR 0.004 0.003 0.003 

MAR 0.027 0.003 0.003 

NI 0.045 0.029 0.029 

35% 

MCAR 0.006 0.004 0.004 

MAR 0.043 0.004 0.005 

NI 0.072 0.047 0.048 

1000 

15% 

MCAR 0.002 0.002 0.002 

MAR 0.014 0.002 0.002 

NI 0.024 0.015 0.015 

25% 

MCAR 0.003 0.003 0.003 

MAR 0.027 0.002 0.002 

NI 0.044 0.029 0.029 

35% 

MCAR 0.004 0.003 0.003 

MAR 0.043 0.002 0.003 

NI 0.072 0.047 0.048 
 

Note. Average over the 1,000 simulations for each data type. M = 100 for multiple ratio imputation 
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In 42 of the 45 patterns, deterministic ratio imputation and multiple 

imputation both outperform listwise deletion with 3 ties. Even when the missing 

mechanism is MCAR, the results by imputation are almost always better than 

those of listwise deletion. Between the ratio imputation methods, deterministic 

ratio imputation slightly performs better than multiple ratio imputation in 14 out 

of the 45 patterns with 31 ties. However, the largest difference is only 0.002 in 

terms of the RRMSE. Thus, there are no significant differences between 

deterministic ratio imputation and multiple ratio imputation. Furthermore, this 

difference is expected to completely disappear as M approaches infinity. In 

general, under the situations where the model is correctly specified and the 

assumption of MAR is satisfied, both single imputation and multiple imputation 

(M = ∞) would be unbiased and agree on the point estimation (Donders et al., 

2006). The results in Table 6 ensure this general relationship also applies to the 

relationship between single ratio imputation and multiple ratio imputation. 

Therefore, on average, multiple ratio imputation can be expected to give 

essentially the same answers as to the estimation of the mean, compared to 

deterministic ratio imputation. 

Multiple ratio imputation can be more useful than deterministic single ratio 

imputation in the estimation of the mean, because multiple ratio imputation has 

more information in its output. Recall that there are three sources of variation in 

multiple imputation (van Buuren, 2012). One is the conventional measure of 

statistical variability (also known as within-imputation variance). Another is the 

additional variance due to missing values in the data (also known as between-

imputation variance). The last one is simulation variance by the finite number of 

multiple-imputed data captured by /MB M  in equation (8). Among these, the 

between-imputation variance is particularly important, because it reflects the 

uncertainty associated with missingness (Honaker et al., 2011). 

To demonstrate how multiple ratio imputation provides additional 

information on the between-imputation variance, presented in Table 7 is the mean 

of y1 when the missing data mechanism is MAR with the average missing rate of 

35%, where the reported values are the average over the 1,000 simulations. In 

Table 7, when the missing data mechanism is MAR, both of the imputation 

methods are almost equally accurate, in terms of estimating the mean. 

Additionally, multiple ratio imputation has more rows in Table 7 for BISD and CI 

(95%). BISD stands for the Between-Imputation Standard Deviation, and CI 

(95%) stands for the Confidence Interval associated with estimation error due to 

missingness at the 95% level. BISD is the square-root of the between-imputation 
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variance and measures the dispersion of the 100 mean values based on multiple 

ratio imputation (M = 100). In other words, BISD is the variation in the 

distribution of the estimated mean, which is usually called the standard error 

(Baraldi & Enders, 2010, p.16). Thus, based on BISD, the imputer can be 

approximately 95% confident that the true mean value of complete data is 

somewhere between 5.941 and 6.057, after taking the error due to missingness 

into account. Furthermore, the imputer can be approximately 95% confident that 

the imputed mean value (6.00) is meaningfully different from the listwise deletion 

estimate (5.74), which is outside the 95% confidence interval (5.94, 6.06). Single 

ratio imputation (both deterministic and stochastic) lacks this mechanism of 

assessing estimation uncertainty. 
 
 
Table 7. Mean of y1 (MAR-35%) 

 

 
Complete Data  Listwise Deletion 

Deterministic 
Ratio Imputation 

Multiple Ratio 
Imputation 

Mean 6.000 5.741 6.000 5.999 

BISD NA NA NA 0.029 

CI (95%) NA NA NA 5.941, 6.057 

n 500 325 500 500 
 

Note. NA means Not-Applicable. Average over the 1,000 simulations. M = 100 for multiple ratio imputation 

 

RRMSE Comparisons for the Standard Deviation 

Presented in Table 8 are the RRMSE comparisons for the standard deviation 

among listwise deletion, stochastic single ratio imputation, and multiple ratio 

imputation (M = 100), where the RRMSE is averaged over the 1,000 simulations. 

For multiple ratio imputation, the 100 standard deviation values are combined 

using equation (7) in each of the 1,000 simulations. 

The standard recommendation (de Waal et al., 2011) is that if the goal is to 

estimate the variation of data, the choice is stochastic single ratio imputation. 

Thus, the main purpose of this comparison is to show that the performance of 

multiple ratio imputation is as good as that of stochastic ratio imputation, which is 

known to be a preferred method to estimate the standard deviation. Note that, in 

other simulation runs, the EM algorithm was applied to the imputed data by the 

deterministic ratio imputation model, in order to compute the standard deviation. 

However, these results were not good and thus omitted here. 
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Table 8. RRMSE Comparisons for the Standard Deviation (45,000 Datasets) 

 

Sample Size 
Average Missing 

Rate 
Missing 

Mechanism Listwise Deletion 
Stochastic Ratio 

Imputation 
Multiple Ratio 

Imputation 

50 

15% 

MCAR 0.042 0.048 0.037 

MAR 0.045 0.047 0.038 

NI 0.048 0.052 0.043 

25% 

MCAR 0.059 0.062 0.049 

MAR 0.066 0.062 0.054 

NI 0.079 0.074 0.067 

35% 

MCAR 0.075 0.075 0.058 

MAR 0.088 0.071 0.067 

NI 0.146 0.117 0.118 

100 

15% 

MCAR 0.029 0.035 0.026 

MAR 0.031 0.034 0.026 

NI 0.035 0.037 0.031 

25% 

MCAR 0.040 0.044 0.033 

MAR 0.046 0.044 0.037 

NI 0.064 0.058 0.054 

35% 

MCAR 0.052 0.052 0.040 

MAR 0.067 0.054 0.047 

NI 0.121 0.097 0.098 

200 

15% 

MCAR 0.021 0.025 0.018 

MAR 0.022 0.025 0.019 

NI 0.025 0.027 0.023 

25% 

MCAR 0.028 0.030 0.023 

MAR 0.036 0.032 0.027 

NI 0.049 0.044 0.042 

35% 

MCAR 0.037 0.037 0.028 

MAR 0.053 0.038 0.034 

NI 0.109 0.086 0.088 

500 

15% 

MCAR 0.014 0.016 0.012 

MAR 0.014 0.016 0.012 

NI 0.018 0.019 0.016 

25% 

MCAR 0.018 0.020 0.015 

MAR 0.024 0.020 0.017 

NI 0.042 0.038 0.036 

35% 

MCAR 0.022 0.023 0.018 

MAR 0.043 0.024 0.021 

NI 0.106 0.083 0.084 

1000 

15% 

MCAR 0.010 0.012 0.008 

MAR 0.010 0.011 0.008 

NI 0.014 0.015 0.013 

25% 

MCAR 0.013 0.014 0.011 

MAR 0.019 0.014 0.011 

NI 0.040 0.037 0.033 

35% 

MCAR 0.017 0.017 0.013 

MAR 0.038 0.016 0.014 

NI 0.100 0.080 0.079 
 

Note. Average over the 1,000 simulations for each data type. M = 100 for multiple ratio imputation 
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In all of the 45 patterns, multiple ratio imputation always outperforms 

listwise deletion. Even when the missing mechanism is MCAR, the results by 

multiple ratio imputation are always better than those of listwise deletion. In 

contrast, stochastic ratio imputation outperforms listwise deletion in only 20 out 

of the 45 patterns. Especially, when the missing mechanism is MCAR, listwise 

deletion often outperforms stochastic ratio imputation in 11 out of the 15 patterns 

with 4 ties, although the difference is minimal. This implies that when missing 

data are suspected to be MCAR, there is a chance that using stochastic ratio 

imputation may make the situation worse than simply using listwise deletion. 

When the missing mechanism is MAR or NI, stochastic ratio imputation indeed 

outperforms listwise deletion in 20 out of the 30 patterns. 

Between the ratio imputation methods, multiple ratio imputation often 

performs better than stochastic ratio imputation, 41 out of the 45 patterns. 

Therefore, this study contends that multiple ratio imputation is the preferred 

method for the estimation of the standard deviation. Table 8 implies that, 

regardless of missing mechanisms, multiple ratio imputation should be used for 

the purpose of estimating the standard deviation. 

Just as in the case of estimating the mean, let us take the case of 35% 

missingness with the MAR condition as an example. Based on BISD, the imputer 

can be approximately 95% confident that the true standard deviation value of 

complete data is somewhere between 0.960 and 1.040, after taking the error due 

to missingness into account. 

RRMSE Comparisons for the t-Statistics in Regression 

The comparisons in this section are particularly important because even if the 

intercept should be zero and the slope should be estimated by the ratio between 

two variables, there are no other choices but to stick to regular multiple 

imputation for the computation of the t-statistics in regression. The regression 

model in Table 9 is y2 = a + b*y1. The quantity of interest is the t-statistic of b, 

i.e., tb = b ⁄ se(b) . The RRMSE reported here measures the average distance 

between the true tb based on complete data and the estimated tb based on imputed 

data. Table 9 presents the RRMSE comparisons for the t-statistics in regression 

among listwise deletion, regular multiple imputation (Amelia II), and multiple 

ratio imputation, where M = 100 for both regular multiple imputation and multiple 

ratio imputation, and the RRMSE is averaged over the 1,000 simulations. For 

regular multiple imputation and multiple ratio imputation, the 100 coefficient 

values are combined using equation (7), the 100 standard error values are 
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combined using equation (8), and the t-statistics are calculated using these two 

values in each of the 1,000 simulations. 

Remember that the multiple ratio imputation model is equation (6). On the 

other hand, multiple imputation by Amelia II is equation (12), where the 

coefficients are random draws of the mean vectors and the variance-covariance 

matrices from the posterior distribution (Honaker & King, 2010). 

 

 1 0 1 2i i iY Y     , where 
 

 
1 2

1 0 1 1 2

2

cov ,
,

var

i i

i

Y Y
Y Y

Y
     . (12) 

 

The standard recommendation (van Buuren, 2012; Hughes et al., 2014) is 

that if the goal is to obtain valid inferences with standard errors, the choice is 

multiple imputation which is a superior variance-estimation method. Thus, the 

main purpose of this comparison is to show that the performance of multiple ratio 

imputation is better than that of regular multiple imputation in terms of estimating 

the t-statistics. The comparison of the t-statistics in regression is appropriate, 

because it is the quantity of interest for many applied researchers in disputing 

whether an independent variable has some impact on a dependent variable. 

According to Cheema (2014), comparisons of t-statistics are fair because the 

complete sample and the imputed sample are identical in all respects including 

power, except for the fact that no values were missing in the complete sample 

while some values were missing in the imputed values. Therefore, the differences 

in the observed values of statistics are caused by the differences between imputed 

values and their true counterparts. 

The comparison of multiple ratio imputation and Amelia II is appropriate, 

because the algorithm is the same EMB under the same platform of the R 

statistical environment. In all of the 45 patterns, regular multiple imputation and 

multiple ratio imputation both outperform listwise deletion. Furthermore, multiple 

ratio imputation almost always outperforms regular multiple imputation 43 out of 

the 45 patterns under the condition where the true population model is equation 

(9). Thus, when the true model is a ratio model such as equation (9), multiple ratio 

imputation is more accurate and efficient than regular multiple imputation. 

Therefore, multiple ratio imputation adds an important option for the tool kit 

of imputing and analyzing the mean, the standard deviation, and the t-statistics. If 

the true model is equation (9), multiple ratio imputation is at least as good as and 

in many cases better than the other traditional imputation methods for the three 

quantities of interest, regardless of the missingness mechanisms. However, it is 
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Table 9. RRMSE Comparisons for t-statistics (45,000 Datasets) 

 

Sample Size 
Average Missing 

Rate 
Missing 

Mechanism Listwise Deletion 
Multiple Imputation 

Amelia II 
Multiple Ratio 

Imputation 

50 

15% 

MCAR 0.126 0.103 0.087 

MAR 0.137 0.107 0.093 

NI 0.141 0.114 0.099 

25% 

MCAR 0.185 0.144 0.113 

MAR 0.220 0.173 0.135 

NI 0.222 0.175 0.138 

35% 

MCAR 0.242 0.189 0.134 

MAR 0.317 0.247 0.171 

NI 0.328 0.269 0.179 

100 

15% 

MCAR 0.104 0.075 0.066 

MAR 0.113 0.080 0.071 

NI 0.111 0.081 0.072 

25% 

MCAR 0.159 0.109 0.087 

MAR 0.192 0.127 0.101 

NI 0.194 0.136 0.108 

35% 

MCAR 0.218 0.153 0.107 

MAR 0.294 0.191 0.131 

NI 0.297 0.224 0.147 

200 

15% 

MCAR 0.091 0.059 0.052 

MAR 0.101 0.064 0.056 

NI 0.101 0.066 0.060 

25% 

MCAR 0.145 0.092 0.075 

MAR 0.181 0.106 0.085 

NI 0.177 0.117 0.095 

35% 

MCAR 0.208 0.136 0.097 

MAR 0.282 0.159 0.113 

NI 0.282 0.199 0.133 

500 

15% 

MCAR 0.084 0.050 0.044 

MAR 0.094 0.053 0.047 

NI 0.093 0.058 0.051 

25% 

MCAR 0.141 0.086 0.066 

MAR 0.171 0.092 0.069 

NI 0.170 0.107 0.083 

35% 

MCAR 0.202 0.127 0.086 

MAR 0.279 0.144 0.097 

NI 0.282 0.193 0.121 

1000 

15% 

MCAR 0.080 0.046 0.041 

MAR 0.089 0.046 0.043 

NI 0.091 0.048 0.049 

25% 

MCAR 0.137 0.053 0.063 

MAR 0.167 0.084 0.067 

NI 0.168 0.105 0.083 

35% 

MCAR 0.198 0.122 0.084 

MAR 0.275 0.132 0.092 

NI 0.275 0.186 0.120 
 

Note. Average over the 1,000 simulations for each data type. M = 100 for multiple imputation 
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not claimed multiple ratio imputation is always superior to regular multiple 

imputation. If the true model is not a ratio model such as equation (9), the 

superiority shown in this section is not guaranteed. 

Conclusion 

A novel application of the EMB algorithm to ratio imputation was proposed, 

along with the mechanism and the usefulness of multiple ratio imputation. Monte 

Carlo evidence was presented, where the newly-developed R-function called 

MrImputation (Takahashi, 2017) for multiple ratio imputation was applied to the 

45,000 simulated data. 

It was shown the fit of multiple ratio imputation was generally as good as or 

sometimes better than that of single ratio imputation and regular multiple 

imputation if the assumption holds. Specifically, for the purpose of estimating the 

mean, the performance of deterministic ratio imputation and multiple ratio 

imputation are essentially equally good, with multiple ratio imputation having 

additional information on estimation uncertainty. For the purpose of estimating 

the standard deviation, multiple ratio imputation outperforms stochastic ratio 

imputation. For the purpose of estimating the t-statistics in regression, multiple 

ratio imputation clearly outperforms regular multiple imputation when the 

population model is equation (9). 

These findings are important because it is often recommended to use 

different ways of imputation depending on the type of statistical analyses, 

meaning that there are no one-size-fit-for-all imputation methods (Poston & 

Conde, 2014). Thus, multiple ratio imputation will be a valuable addition for 

treating missing data problems, so that multiple ratio imputation will expand the 

choice of missing data treatments. 

This is only a starting point for multiple ratio imputation. There are three 

multiple imputation algorithms. The version of multiple ratio imputation 

introduced here used the Expectation-Maximization with Bootstrapping algorithm. 

However, multiple ratio imputation is a generic imputation model; thus, future 

research may apply the other two multiple imputation algorithms to expand the 

scope and the applicability of the method. 
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Although single ratio imputation is often used to deal with missing values in practice, 
there is a paucity of discussion regarding multiple ratio imputation. Code in the R 
statistical environment is presented to execute multiple ratio imputation by the 
Expectation-Maximization with Bootstrapping (EMB) algorithm. 
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Introduction 

Code is presented for multiple ratio imputation step by step in the imputation 

stage, followed by the analysis stage. The Appendix combines these R-codes to 

present Software MrImputation as a collection of R-functions mrimpute and 

mranalyze. R-function mrimpute performs multiple ratio imputation. R-function 

mranalyze allows us to conduct statistical analyses using the multiply-imputed 

data by R-function mrimpute. Takahashi (2017) offers a detailed explanation. As 

for single ratio imputation and multiple imputation, see de Waal et al. (2011), Hu 

et al. (2001), King et al. (2001), Carpenter & Kenward (2013), Honaker & King 

(2010), Honaker et al. (2011), Little & Rubin (2002). 

Preparation Stage 

As an illustration, consider the dataset data. In the code presented in Appendix, 

the name of data can be defined by option data=. Thus, it can be named any way 

an imputer wants it to be. This small example dataset contains two variables and 

five units as displayed in Figure 1. The observation for unit 1 in y1 is missing 

https://doi.org/10.22237/jmasm/1493598900
mailto:mtakahashi@tufs.ac.jp
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(NA). Thus, y1 is the target incomplete variable for imputation, and y2 is the 

auxiliary complete variable. Also, y1 is stored in data[,1] and y2 in data[,2]. 

This article will use this small dataset for illustration. As this dataset implies, the 

target variable for imputation needs to be stored in the first column of data, i.e., 

data[,1], in order to execute the code shown in this article. 

 

data<-read.csv("data.csv",header=T) 

attach(data) 
 
 
 > data 
         y1        y2 
 1       NA 10.545612 
 2 5.779933  9.728869 
 3 4.835343  9.920130 
 4 6.219675  8.897375 
 5 7.012357 10.417368 
 
Figure 1. Example of Incomplete Data 

 

 
 

The number of multiply-imputed data is set by M, where M > 1. In this 

example, it is set to 2 so that the outputs can be visually presented below. To 

allow reproducibility, the random number seed value needs to be set by function 

set.seed. This step is necessary, because multiple imputation relies on pseudo-

random numbers; thus, without setting a seed, there will be no way of reproducing 

the same results. 

 

M<-2 

set.seed(1223) 

 

Many types of data are skewed to the right in the distribution, i.e., the 

distribution is not multivariate normal, but multivariate log-normal. If this is the 

case, a sensible option to deal with such a variable is to use log-transformation, 

and the imputed values will be unlogged after imputations are completed (Allison, 

2002, p.39; Honaker et al., 2011, p.15). In the complete code shown in Appendix, 

if log=TRUE, then the following code log-transforms the data. The default setting is 

that log=FALSE. Obviously, if data are multivariate normal to begin with, this 

option should be set to FALSE. 
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if(log){ 

  data<-log(data) 

} 

Imputation Stage 

Nonparametric Bootstrap 

The first step to perform multiple ratio imputation is to implement random draws 

of μ from an appropriate posterior distribution to account for estimation 

uncertainty. The EMB algorithm substitutes the complex process of drawing μ 

from the posterior distribution with a nonparametric bootstrapping algorithm, 

which is a resampling method, where the observed sample is used as the pseudo-

population. In other words, a resample of size n is randomly drawn from this 

observed sample of size n with replacement, and this process is repeated M times 

(Shao & Tu, 1995; Horowitz, 2001). 

R-function sample(x,size,replace=TRUE) can be used for this purpose, 

where x is a vector from which to sample, size is the number of items to sample, 

and replace=TRUE specifies sampling with replacement. Unfortunately, this 

function randomly draws a vector, not a matrix. In the process of imputation, the 

imputer must keep a pair of observations for the two variables. Thus, our code 

first creates sampleframe to randomly draw the row number of data, which is an 

nrow(data) by M matrix, where nrow(data) is the number of rows in data. 

 

sampleframe<-matrix(sample(nrow(data),nrow(data)*M,replace=TRUE),  

nrow=nrow(data),ncol=M) 

 

The resulting matrix obtained from the above code is displayed in Figure 2, 

where each column contains a vector of the row numbers randomly drawn from 

the original data. For example, sampleframe[1,1] is 4, meaning that this cell 

refers to row number 4 in the original data, i.e., y1 = 6.219675 and y2 = 8.897375, 

sampleframe[2,1] is 1, meaning that this cell refers to row number 1 in the 

original data, i.e., y1 = NA and y2 = 10.545612, and so on. 

Based on sampleframe, our code makes a random draw of the values of y1 

and y2 from the original data M times. First, let us create a list named datasub 

with the elements of NA and then replace these NAs by appropriate values in the 

original data, so that datasub[[i]] obtains data[sampleframe[,i],], and the for 
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loop repeats this process M times. In order to use this datasub in the EM 

algorithm below, datasub is transformed to a matrix. 
 
 
 > sampleframe 
      [,1] [,2] 
 [1,]    4    5 
 [2,]    1    1 
 [3,]    2    4 
 [4,]    2    5 
 [5,]    1    1 
 
Figure 2. Randomly-Drawn Row Numbers 

 

 
 

datasub<-as.list(rep(NA,M)) 

for(i in 1:M){ 

  datasub[[i]]<-as.matrix(data[sampleframe[,i],]) 

} 

 

The resulting bootstrap resamples are shown in Figure 3, where 

datasub[[1]] and datasub[[2]] represent the mth bootstrap resample, respectively. 
 
 

> datasub 
[[1]] 
          y1        y2 
4   6.219675  8.897375 
1         NA 10.545612 
2   5.779933  9.728869 
2.1 5.779933  9.728869 
1.1       NA 10.545612 
 
[[2]] 
          y1        y2 
5   7.012357 10.417368 
1         NA 10.545612 
4   6.219675  8.897375 
5.1 7.012357 10.417368 
1.1       NA 10.545612 

 
Figure 3. Example of Bootstrap Resamples (M = 2) 
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EM Algorithm 

Each bootstrap resample created above is likely to be incomplete. Estimates using 

these resamples are expected to be biased and inefficient. In order to avoid this 

problem, the EM algorithm is used to refine the estimates in bootstrap resamples. 

As for the EM algorithm, see Little & Rubin (2002), Do & Batzoglou (2008), the 

R-package Norm by Schafer (1997), and the function em.norm (Fox, 2015). The 

current code does not use Norm for the sake of generating multiple imputation, but 

function em.norm is useful for the computational purpose of the EM algorithm. 

First, use the require function to load Norm in R. In the code below, p is the 

number of columns (variables) in the data, para is the number of parameters to be 

estimated, thetahat is an empty matrix with the dimension of M by para, and emmu 

is an empty matrix with the dimension of M by p. These are housekeeping issues 

to perform the EM algorithm by way of function em.norm. 

 

require(norm) 

p<-ncol(data) 

para<-p*(p+3)/2+1 

thetahat<-matrix(NA,M,para) 

emmu<-matrix(NA,M,p) 

 

Function prelim.norm takes care of the preliminary manipulations for a 

matrix of incomplete data, which is a necessary step for using em.norm, whose 

results are stored in thetahat. Option showits=FALSE quietly runs em.norm. If the 

imputer wants to monitor the iteration process of EM, then this option should be 

set to TRUE. Option maxits=1000 sets the maximum number of iterations to 1,000. 

Function getparam.norm produces the estimated values of the MLEs, which is 

stored in emmu. Option corr=FALSE computes the means and variance-covariance 

matrix. The for loop repeats the em.norm function to be applied to datasub M 

times. This process is the essential part of the EMB algorithm, meaning that the 

EM algorithm is applied to each of the M bootstrap resamples.  

 

for(i in 1:M){ 

  thetahat[i,]<-em.norm(prelim.norm(datasub[[i]]), 

  showits=FALSE,maxits=1000) 

  emmu[i,]<-getparam.norm(prelim.norm(datasub[[i]]), 

  thetahat[i,],corr=FALSE)$mu 

} 
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All of the estimates of the means by the EM algorithm are stored in emmu. Thus, 

typing emmu returns the following matrix in Figure 4, where the first column refers 

to the means for the first variable in the data, and the second column refers to the 

means for the second variable in the data. Also, the first row refers to the means in 

m = 1 and the second row refers to the means in m = 2. Note that these are the 

MLEs of the means. 
 
 
 > emmu 
          [,1]      [,2] 
 [1,] 5.695139  9.889267 
 [2,] 6.880546 10.164667 
 
Figure 4. MLEs for the Means of y1 and y2 

 

 

Implementation of Multiple Ratio Imputation 

Using matrix emmu allows us to estimate multiple ratios of two variables as 

follows. The estimated ratios are stored in beta, which is an empty matrix with 

the dimension of M by ncol(data)−1. Ratio imputation has only two variables; 

thus, the number of columns in the data, i.e., ncol(data), is 2, which means that 

beta is essentially an M by 1 column vector. 

 

beta<-matrix(NA,M,ncol(data)-1) 

beta<-emmu[,1]/emmu[,2] 

 

Typing beta returns a vector of M values, where the first value is the ratio in 

the first model, the second value in the second model, and so on. This is  in 

equation (6) of Takahashi (2017). 
 
 
 > beta 
 [1] 0.5758909 0.6769082 
 
Figure 5. The Values of the Slopes in the Multiple Ratio Imputation Model 
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As a preparation for multiple ratio imputation, let us define the following 

matrices. These are housekeeping issues to perform multiple ratio imputation. All 

of the matrices are empty matrices with the dimensions of nrow(data) by M. 

 

imp<-matrix(NA,nrow(data),M) 

resid<-matrix(NA,nrow(data),M) 

e<-matrix(NA,nrow(data),M) 

imp1<-matrix(NA,nrow(data),M) 

imp2<-matrix(NA,nrow(data),M) 

 

The values of beta are multiplied by data[,2] which is the values of the 

second variable in the data. Specifically, data[,2] is y2 in our example. Thus, the 

following code is  in equation (6) of Takahashi (2017). The for loop repeats 

this process M times. The imputed values are stored in imp, where imp[,1] is the 

imputed data from m = 1 and imp[,2] is the imputed data from m = 2. 

 

for(i in 1:M){ 

  imp[,i]<-beta[i]*data[,2] 

} 

 

To complete the process, a small disturbance term needs to be added to the 

imputed values, which is  in equation (6) of Takahashi (2017). In the following 

code, resid is the differences (residuals) between observed values and predicted 

values. Also,  is e[,i], which is normally distributed with the mean of 0 and 

the standard deviation of the residuals, resid[,i]. In the last line, e[,i] is added 

to imp[,i]. The for loop repeats this whole process M times. 

 

for(i in 1:M){ 

  resid[,i]<-data[,1]-imp[,i] 

  e[,i]<-rnorm(nrow(data),0,sd(resid[,i],na.rm=TRUE)) 

  imp1[,i]<-imp[,i]+e[,i] 

} 

 

All of the values were imputed, both observed and missing. What actually 

needs to be imputed is the missing part of the data only. Therefore, the final step 

is to replace NA with imp1 and to keep the observed value as is. In the following 

code, imp2 is essentially  in equation (6) of Takahashi (2017). If data[j,1] is 
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missing, then imp2[j,i] obtains the imputed value imp1[j,i]; otherwise, 

imp2[j,i] obtains data[j,1]. In the following loop, i refers to the number of 

imputations and j refers to the row number in the data. 

 

for(i in 1:M){ 

  for(j in 1:nrow(data)){ 

    if (is.na(data[j,1])=="TRUE"){ 

    imp2[j,i]<-imp1[j,i] 

  }else{ 

    imp2[j,i]<-data[j,1]} 

}} 

 

Remember that log-normal data were log-transformed above. Imputed 

values must be put back to the original scale of incomplete data. The following 

code unlogs the log-transformed variables. 

 

if(log){ 

  imp2<-exp(imp2) 

  data<-exp(data) 

} 

 

Some variables have logical bounds. For instance, economic variables such 

as turnover cannot be negative. If this is the case, zero=TRUE can be specified in 

the complete code in Appendix. This option forces negative imputed values to be 

zero. Warning is that this option may suppress the correct uncertainty in the 

imputation model (Honaker et al., 2011, pp. 23-25); thus, this option should be 

used cautiously. The default setting is zero=FALSE. 

 

if(zero){ 

  imp2[which(imp2<0)]<-0 

} 

 

Finally, imp2 returns the following two sets of imputed data, because M = 2. 

The values in row [1,] change over columns [,1] to [,2], because these values are 

imputed values. The values in the other rows do no change over columns, because 

these are observed values. 
> imp2 
         [,1]     [,2] 
[1,] 6.739130 6.828206 
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[2,] 5.779933 5.779933 
[3,] 4.835343 4.835343 
[4,] 6.219675 6.219675 
[5,] 7.012357 7.012357 

 
Figure 6. Example of Multiply-Imputed Data 

 

 
 

The write.csv function saves the imputed data along with the original data as 

follows, where y1 is the original incomplete variable, y2 is the original auxiliary 

variable, and imp2 is a matrix of M imputed data created above. 

 

y1<-data[,1]; y2<-data[,2] 

impdata<-data.frame(y1,y2,imp2) 

write.csv(impdata,"mridata.csv",row.names=FALSE) 

 

Figure 7 contains the output data named mridata in the csv format, which can be 

reloaded in R or any statistical software of an analyst’s choice for subsequent 

statistical analyses. In this output dataset, Column A (y1) is the original 

incomplete data, Column B (y2) is the original auxiliary variable, and Columns C 

to D (X1, X2) are the multiply imputed data. 
 
 

 
 
Figure 7. Example of Output Data (csv file) 
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Analysis Stage 

Mean and Standard Deviation 

After reading mridata.csv, various statistical analyses can be performed. To 

calculate the mean and the standard deviation of an imputed variable (y1), the 

analyst first creates two empty vectors of means and sds, and repeats the 

calculations M times by the for loop. Typing means and sds returns M values of 

the means and the standard deviations. 

 

means<-c(NA); sds<-c(NA) 

  for(k in 1:M){ 

  means[k]<-mean(imp2[,k]) 

  sds[k]<-sd(imp2[,k]) 

} 

 

To calculate a combined point estimate, the analyst simply takes the average by 

equation (7) of Takahashi (2017). Furthermore, by calculating the standard 

deviation of means, i.e. sd(means), the analyst can estimate the amount of 

estimation uncertainty due to imputation as a confidence interval. 

 

mean(means)   #Combined Point Estimate of Mean 

mean(sds)   #Combined Point Estimate of Std. Dev. 

sd(means)   #Estimation Uncertainty 

mean(means)+2*sd(means) #Confidence Interval Upper Limit 

mean(means)-2*sd(means) #Confidence Interval Lower Limit 

 

Consider again the example data in Figure 1. The combined point estimate 

of the means is 6.126, with the combined point estimate of standard deviation 

0.868. Estimation uncertainty is measured by sd(means), which is the standard 

deviation of the M means, or the standard error of the estimated M means. In our 

case, it is 0.013. Therefore, there is an approximately 95% confidence that the 

true mean of complete data is somewhere between 6.101 and 6.151, after taking 

the error due to missingness into account. 

Regression of y2 on y1 

Suppose that y2 is the dependent variable and y1 is the explanatory variable in 

regression. To estimate the regression coefficients and the associated standard 
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errors, the analyst first creates four empty vectors, reg1, reg2, reg3, and reg4. The 

for loop repeats the estimation of regression models M times. The results are 

stored in summary(model)$coefficients[i], where i = 1 and 3 are regression 

coefficients and i = 2 and 4 are standard errors. 

 

reg1<-c(NA); reg2<-c(NA); reg3<-c(NA); reg4<-c(NA) 

for(k in 1:M){ 

  model<-lm(data[,2]~data[,k+2]) 

  reg1[k]<-summary(model)$coefficients[1] 

  reg2[k]<-summary(model)$coefficients[2] 

  reg3[k]<-summary(model)$coefficients[3] 

  reg4[k]<-summary(model)$coefficients[4] 

} 

 

After the analysis stage is complete, there are M values of outputs. Using 

equations (7) and (8) of Takahashi (2017), the results are combined as follows. 

 

intercept<-mean(reg1)   #Combined Intercept 

WV1<-mean(reg3^2)   #Within-Imputation Variance 

BV1<-sum((reg1-intercept)^2)/(M-1) #Between-Imputation Variance 

TV1<-WV1+(1+1/(M))*BV1  #Total Variance 

TSE1<-sqrt(TV1)   #Total Std. Error 

tstat1<-intercept/TSE1  #t-statistics for Intercept 

slope<-mean(reg2)   #Combined Slope 

WV2<-mean(reg4^2)   #Within-Imputation Variance 

BV2<-sum((reg2-slope)^2)/(M-1) #Between-Imputation Variance 

TV2<-WV2+(1+1/(M))*BV2  #Total Variance 

TSE2<-sqrt(TV2)   #Total Std. Error 

tstat2<-slope/TSE2   #t-statistics for Slope 

 

Consider again the example data in Figure 1. The combined point estimate 

of the regression intercept is 8.231, with the total standard error of 2.512. Thus, 

the t-statistic for the intercept is 3.277. The combined point estimate of the 

regression slopes is 0.273 with the total standard error of 0.407. Thus, the t-

statistic for the slope is 0.671. 
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Conclusion 

It was outlined here how to implement multiple ratio imputation in R, which can 

be easily copied and pasted into R for use (See Appendix). These codes estimate 

multiple ratio imputation, and statistically analyze imputed data by multiple ratio 

imputation. Therefore, this will be a valuable addition to the choice for imputation 

techniques. 

However, the code described here is only a first step toward implementing 

multiple ratio imputation; thus, the code is expected to be updated so as to 

maximize computational efficiency and to expand the scope of data that can be 

handled. Furthermore, the EMB algorithm is a general approach composed of the 

EM algorithm and nonparametric bootstrapping. Therefore, multiple ratio 

imputation can be implemented not only in R, but also in other statistical 

environments. Also, multiple ratio imputation is not limited to the EMB algorithm. 

Depending on the nature of imputation, multiple ratio imputation may be 

implemented by way of other multiple imputation algorithms, such as MCMC and 

Fully Conditional Specification (FCS) (van Buuren, 2012). 
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Appendix: Software MrImputation 

Software MrImputation (version 1.0.0), which stands for multiple ratio imputation, 

is a collection of R-functions explained step by step in this article. This appendix 

combines each of the steps as a set of R-functions mrimpute and mranalyze. 

User Manual 

Copy the following codes into the R script and save them as mrimpute.R and 

mranalyze.R on the computer. After reading an appropriate data file in R, use 

function source to read these functions as follows. 

 

source("mrimpute.R") 

source("mranalyze.R") 

 

Description of mrimpute  This function performs the imputation stage of 

multiple ratio imputation and produces multiply-imputed data named mridata.csv. 

 

Usage  mrimpute(data = data, M = 100, seed = 1223, log = FALSE, 

zero = FALSE, outdata = TRUE) 

 

Arguments 

data A data frame that contains the incomplete variable targeted for 

imputation. The imputer can specify any name of the data to be used. 

M The number of multiply-imputed datasets. The imputer can set any 

number. 

seed Random number seed value. Any number can be specified. 

log An option to log-transform the data. The default is FALSE. If log-

transformation is optimal, then this option should be set to TRUE. 

zero An option to suppress negative values to zero. The default is FALSE. 

If negative imputed values are unacceptable, this option should be 

set to TRUE. 

outdata An option to save the imputed data as a csv file. The default is 

TRUE. 

 

Description of mranalyze This function performs the analysis stage. It returns 

the mean and the standard deviation of the imputed variable. It can also return the 

result of regression analysis of y2 on y1 if reg=TRUE. 
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Usage  mranalyze(data, reg = FALSE) 

 

Arguments 

data The mridata.csv created by mrimpute. 

reg An option to perform regression analysis. The default is FALSE. If 

the analyst wants to see the result of regression analysis, this option 

should be set to TRUE. 

 

R-Function mrimpute: Imputation Stage 

mrimpute<-function(data,M,seed,outdata=TRUE,log=FALSE,zero=FALSE){ 

data<-data; M<-M; seed<-seed; set.seed(seed) 

if(log){data<-log(data)} 

sampleframe<-matrix(sample(nrow(data),nrow(data)*M, 

             replace=TRUE),nrow=nrow(data),ncol=M) 

datasub<-as.list(rep(NA,M)) 

for(i in 1:M){datasub[[i]]<-as.matrix(data[sampleframe[,i],])} 

suppressMessages(suppressWarnings(require(norm))) 

p<-ncol(data); para<-p*(p+3)/2+1; thetahat<-matrix(NA,M,para) 

emmu<-matrix(NA,M,p) 

for(i in 1:M){thetahat[i,]<-em.norm(prelim.norm(datasub[[i]]), 

                            showits=FALSE,maxits=1000) 

              emmu[i,]<-getparam.norm(prelim.norm(datasub[[i]]), 

                            thetahat[i,],corr=FALSE)$mu} 

imp0<-as.list(rep(NA,M)); imp<-matrix(NA,nrow(data),M) 

resid<-matrix(NA,nrow(data),M); e<-matrix(NA,nrow(data),M) 

imp1<-matrix(NA,nrow(data),M); beta<-matrix(NA,M,ncol(data)-1) 

beta<-emmu[,1]/emmu[,2] 

for(i in 1:M){imp[,i]<-beta[i]*data[,2]} 

for(i in 1:M){resid[,i]<-data[,1]-imp[,i] 

              e[,i]<-rnorm(nrow(data),0,sd(resid[,i],na.rm=TRUE)) 

              imp1[,i]<-imp[,i]+e[,i]} 

imp2<-matrix(NA,nrow(data),M) 

for(i in 1:M){imp2[,i]<-data[,1]} 

for(i in 1:M){ 

  for(j in 1:nrow(data)){ 

    if (is.na(data[j,1])=="TRUE"){ 
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    imp2[j,i]<-imp1[j,i] 

    }else{ 

    imp2[j,i]<-data[j,1]} 

  }} 

if(log){imp2<-exp(imp2);data<-exp(data)} 

if(zero){imp2[which(imp2<0)]<-0} 

impdata<-data.frame(data, imp2) 

  if (outdata){ 

    write.csv(impdata,"mridata.csv",row.names=FALSE) 

  } 

} 

R-Function mranalyze: Analysis Stage 

mranalyze<-function(data,reg=FALSE){ 

data<-data; M<-ncol(data)-2; means<-c(NA); sds<-c(NA) 

 

for(k in 1:M){ 

  means[k]<-mean(data[,k+2]) 

  sds[k]<-sd(data[,k+2]) 

} 

meanimp<-mean(means);BISD<-sd(means);UL<-mean(means)+2*sd(means);LL<-

mean(means)-2*sd(means);sd<-mean(sds) 

outmatrix1<-matrix(c(meanimp, sd, BISD, UL, LL)) 

colnames(outmatrix1)<-"Summary" 

rownames(outmatrix1)<-c("mean","sd","BISD","95%CIUL","95%CILL") 

 

if(reg){ 

reg1<-c(NA); reg2<-c(NA); reg3<-c(NA); reg4<-c(NA) 

for(k in 1:M){ 

  model<-lm(data[,2]~data[,k+2]) 

  reg1[k]<-summary(model)$coefficients[1] 

  reg2[k]<-summary(model)$coefficients[2] 

  reg3[k]<-summary(model)$coefficients[3] 

  reg4[k]<-summary(model)$coefficients[4] 

} 

 

intercept<-mean(reg1) 
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WV1<-mean(reg3^2) 

BV1<-sum((reg1-intercept)^2)/(M-1) 

TV1<-WV1+(1+1/(M))*BV1 

TSE1<-sqrt(TV1) 

tstat1<-intercept/TSE1 

 

slope<-mean(reg2) 

WV2<-mean(reg4^2) 

BV2<-sum((reg2-slope)^2)/(M-1) 

TV2<-WV2+(1+1/(M))*BV2 

TSE2<-sqrt(TV2) 

tstat2<-slope/TSE2 

 

outmatrix2<-matrix(c(intercept, TSE1, tstat1, slope, TSE2, tstat2)) 

colnames(outmatrix2)<-"Regression" 

rownames(outmatrix2)<-c("intercept","TSE(intercept)","t-

Stat(intercept)","slope","TSE(slope)" ,"t-Stat(slope)") 

} 

 

if(reg){ 

result<-list(outmatrix1, outmatrix2) 

  return(result) 

}else{ 

result<-list(outmatrix1) 

  return(result) 

} 

} 
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The greatest lower bound to the reliability of a test, based on a single administration, is 
the Greatest Lower Bound (GLB). However the estimate is seriously biased. An 
algorithm is described that corrects this bias. 
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Introduction 

In classical test theory the concept of reliability refers to the precision of a 

measurement. In order to estimate the reliability of a test one needs two or more 

measurements applied to the same subjects. However, in many situations it is 

impossible to repeat a test administration under the same conditions. The next 

best thing is to estimate a lower bound to the reliability. 

The current study is restricted to the reliability of tests that consist of a 

number of items and to the situation where the test is administered only once. The 

total score is the sum of scores on the individual items. According to classical test 

theory, the score xij of person i on item j consists of two parts: the true score τij 

and an error component εij : xij = τij + εij. The error component includes not only 

real measurement errors but also the information that is unique to the item. It is 

assumed that these error components are uncorrelated with the true parts, as well 

as with each other. As a consequence the covariance matrix Γ of the items is the 

sum of two component matrices: the covariance matrix Γτ of the true parts and the 

covariance matrix Γε of the error components: 

 

https://doi.org/10.22237/jmasm/1493598960
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Γ = Γτ + Γε 

 

The assumption of uncorrelated errors implies that Γε is a diagonal matrix. 

Therefore the off-diagonal cells of Γ and Γτ are identical.   

The reliability of a test consisting of v items is defined as: 
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According to these definitions the formula of reliability can be rewritten as 
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The Greatest Lower Bound  

From (4) it becomes clear, given the covariance matrix Γ, that the reliability is 

maximal if the trace of the error covariance matrix Γe is minimal. As Jackson and 

Agunwamba (1977) remark, the only restrictions that the classical model imposes 

on the elements of Γε are  

 

 (1)      0 ≤ Γeii ≤ Γii (5) 

 

 (2)      Γτ = Γ − Γε is non-negative definite 
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Therefore, if the set of values Γe can be found that maximizes its trace   

under these restrictions, the result is the smallest possible value for the reliability, 

given the covariance matrix Γ. Τhis value is the greatest possible lower bound to 

the reliability, called the GLB. Its possible values are restricted to the range [0,1]. 

A procedure to estimate it from a given covariance matrix is described in Ten 

Berge, Snijders and Zegers (1981). 

A serious problem with the GLB is that it suffers from a phenomenon 

known as capitalization on chance: if it is estimated from a sample it tends to 

overestimate the population value. The bias increases with decreasing sample size 

and with lower values of the GLB; see Shapiro and ten Berge (2000). Moreover, 

the bias will be larger with a larger number of items. 

To illustrate the seriousness of the problem: imagine a set of 40 items, 

completely uncorrelated and all with a unit normal distribution. Because the 

covariance matrix of these items is diagonal, the GLB for the test is zero. 

However, if samples of size 200 are drawn from the population, the average GLB-

estimate from these samples is about 0.56.   

Finding an unbiased estimator 

Bendermacher (2010) describes an algorithm which reduces the bias in the 

estimated GLB by the use of a bootstrapping procedure. A large number of 

samples are drawn (with replacement) from the observed data with sample sizes 

equal to the size of the observed sample. For each sample the GLB is computed 

and the difference between the average of the sample-GLBs and the observed 

GLB is taken as an estimate of the bias. If this difference is subtracted from the 

observed GLB, the result is a less-biased estimate. The algorithm to be explained 

in this article starts in the same way, but it proceeds a few steps further and 

thereby manages to reduce the bias to a negligible quantity. 

The algorithm tries to reconstruct the population covariance matrix Γ and 

then takes the GLB of this reconstructed matrix Gp as an unbiased estimator of the 

population GLB. The reconstruction is based on the following simple starting 

points: 

 

1. The population-GLB β is smaller than the observed sample-GLB bo. 

Theoretically this is incorrect (take for instance the case β = 1), but 

in almost all practical situations it will hold. 
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2. The population matrix Γ is similar to the sample covariance matrix 

Go. 

3. If samples Gs are drawn from the reconstructed covariance matrix Gp 

(with the same size as the sample from which the observed matrix 

Go was computed) their uncorrected GLB has as its expectation the 

observed value bo. 

 

The reconstruction of Γ will be called Gp. It is built by adjustments to Go, 

which lower the value of its GLB. Because the three starting points still leave a 

considerable room in the exact way they are operationalized, several approaches 

were investigated, like adding error variances to the diagonal of Go, shrinking the 

off-diagonal cells, and reflecting some items to make their item-rest correlations 

negative. All these methods succeed in finding a covariance matrix that complies 

with the three starting points, but that does not mean by itself that the resulting 

GLB is an unbiased estimator. After some trial and error based on analyses of 

samples from two large real life data files, the following procedure appears to 

produce the best results by far: 

 

1. Given the observed covariance matrix Go, compute the estimate Gt 

of Γτ with on its diagonal the minimal true variances and with its off-

diagonals equal to those of Go. Example: 

Go= 
    

Gt= 
   6.4259 … … … 

 

3.0717 … … … 

3.0040 3.9210 … … 

 

3.0040 3.6019 … … 

1.5511 1.2191 5.0580 … 

 

1.5511 1.2191 0.9501 … 

1.2958 0.3373 1.0951 14.3406 

 

1.2958 0.3373 1.0951 1.8588 

The GLB of Go is bo = 0.5666. 

 

2. Multiply the diagonals of Gt by a factor c ≤ 1. Call the resulting 

matrix G*.The rationale is that if Γ has a lower GLB than Go its 

minimal true variances must be relatively smaller. How the factor c 

should be chosen will be explained later on.  

The example with c = 0.69543: 
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G*= 
    

 

2.1358 … … … 

 

 

3.0040 2.5045 … … 

 

 

1.5511 1.2191 0.6606 … 

 

 

1.2958 0.3373 1.0951 1.2924 

  

3. Due to its lowered diagonal elements, G* will have some negative 

eigenvalues. 

Compute the eigenvectors V and eigenvalues Λ of G*, such that G* = 

VΛVT. Example: 

 

Λ= 
   

 

6.4570 … … … 

 

… 1.4324 … … 

 

… … -0.3546 … 

 

… … … -0.9415 

 

4. Replace the negative eigenvalues of G* by zeros and add their 

(negative) values to the smallest non-negative eigenvalues without 

letting them become negative. Call the result Λ*. Example: 

 

Λ*= 
   

 

6.4570 … … … 

 

… 1.3630 … … 

 

… … 0.0000 … 

 

… … … 0.0000 

 

5. Compute G* = VΛ*VT; its trace will be c.TR(Gt) 

 

6. Complete the reconstruction of the population matrix by replacing 

the diagonal of G* by that of Go : Gp = G* − DIAG(G*) + DIAG(Go). 

Example: 

 

Gp= 
   

 

6.4259 … … … 

 

2.5760 3.9210 … … 

 

1.4686 1.4016 5.0580 … 

 

1.1435 1.0547 0.6671 14.3406 
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7. Compute the GLB bp of Gp. This is the corrected estimate of the 

population GLB. In the example, bp = 0.5005. 

 

There remains a crucial question: what is the correct value of the factor c in 

step 2 of the above procedure. The answer is based on the third starting point. The 

factor c must be chosen such that the expected GLB of samples from Gp is equal 

to the observed GLB bo. This means that one can start from a well chosen guess c, 

compute Gp and perform a bootstrapping run in which a large number of samples 

matrices Gsi are drawn from Gp. 

The average bs of the sample GLB-values, as compared to the observed 

GLB bo, is used to update the choice of c, and the process is repeated until the 

correct value has been found. More details are given in the section Algorithm. 

This procedure requires several bootstrapping runs, each generating a vast number 

of samples. Therefore it is important to have an efficient algorithm that keeps the 

number of bootstrap runs at a minimum.  

Drawing samples from a covariance matrix 

How a sample covariance matrix can be derived from a population matrix without 

knowing the underlying raw data will now be explicated. The algorithm requires 

covariance matrices based on samples from the data from which Go is computed. 

If these data are available one might actually draw such samples and compute 

covariance matrices from them. However, because the algorithm implies a 

number of bootstrapping runs, with a large amount of samples for each run, such a 

procedure would be very time consuming. Moreover, the algorithm also requires 

sampling from modified covariance matrices for which no raw data are available. 

Fortunately it is possible to compute these sample covariance matrices directly 

from the observed or constructed covariance matrix and the given or assumed 

distributions of the items. 

If a sample of raw data is given, estimates of the distributions of the items 

can be derived from that sample. If no information is available about the 

distributions of the items one may assume a multivariate normal distribution. 

Sampling from a given v × v covariance matrix G with sample size k can be 

performed as follows: 

 

1. Compute, by Cholesky triangularization, a matrix C such that 

CCT = G. 
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2. Generate k times a vector of v independently chosen random 

drawings using the distributions of the v items. Compute the 

covariance matrix Gz from these vectors, as if they were observed 

cases. 

 

3. Compute a matrix G* by dividing each cell of Gr by the standard 

deviations of the two items involved: * zij

ij

i js s


G
G . 

 

4. Compute the sample matrix as Gs = CG*CT 

 

The average of the GLB-values of the matrices Gz (see step 2) gives an 

estimate of the expected sample GLB bz under the null hypothesis that Gp has 

GLB-value zero. If the observed GLB (bo) is clearly less than bz the corrected 

estimate bp can immediately be set to zero. 

If one assumes a multivariate normal distribution of the items, the v 

independently chosen drawings mentioned in step 2 can be drawings from a unit 

normal distribution. To speed up the program one may construct in advance a 

long list (say 4000 numbers) of drawings from a unit normal distribution by 

taking equally spaced values between 0 and 1 and computing the inverse of the 

cumulative normal distribution function for them. Sampling from a unit normal 

distribution then comes down to randomly choosing from this list, using a 

uniform random generator. 

Algorithm 

This description of the algorithm uses the following definitions: 

 

Go the observed covariance matrix 

Gp the current reconstruction of Γ 

bo the GLB of Go 

bp the GLB of Gp, i.e. the provisional estimate of β 

bs the average GLB of the samples from the most recent bootstrap run 

bz the average of the GLB-values of samples simulated under the null 

hypothesis of uncorrelated items 

bt the intended GLB-value for an updated reconstruction Gp 
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The algorithm consists of the following steps: 

  

Step 1: Choose a precision criterion Precision; 0.001 will do well. 

Choose MaxSteps = the maximum number of steps in the main 

algorithm; suggested value: 100. 

Set CurrentPrecision = Precision × 5; set ShrinkFactor = 0.2⅕ 

ShrinkFactor will be used to decrease CurrentPrecision in five 

steps towards Precision. 

 

Step 2: Perform a bootstrap run in which samples are drawn from Go until 

the standard error of the mean of sample GLB-values is less than 

CurrentPrecision or a maximum number of samples is drawn. 

The main results are: bz, bs and Significance. Significance gives 

the proportion of samples generated under the null hypothesis of 

uncorrelated items with a GLB-value greater than bo. 

 

Step 3: If bo < bz × 0.9 or Significance ≥ 0.5, then set Bestbp = 0 and go to 

step 16 

 

Step 4: Initialize some variables:  BestDiff = 9, Bestbp = bo, BestCount = 0, 

Count = 0  

 

Step 5: Find successive new versions of the reconstructed population matrix 

Gp by repeating steps 6-15 

 

Step 6: Increase Count; If Count > MaxSteps go to step 16 

 

Step 7: Find a new bt: 

If bs ≤ bo then  

set LowLim = MIN(bs,bp) 

set UppLim = MAX(LowLim,UppLim) 

set bt = (LowLim + UppLim) / 2 

else perform steps 7a - 7d 

Step 7a: Set UppLim = bp 
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Step 7b: Set LowLim = MIN(LowLim,UppLim) 

Step 7c. Find a second order polynomial y = f(x) through the 

points (x,y) = (bz,0), (bs,bp) and (1,1) 

and find bt = f(bo).  

Compute the predictor matrix P and the criterion 

vector Q: 

P = 

2

2

1

1

1 1 1

z z

s s

b b

b b

 
 
 
 
 

; Q = 

0

1

pb

 
 
 
  

 

If P is singular set 

bt = MIN(1,MAX(0,bp − (bs − bo) × 1.2) 

else compute the weights W = P−1Q and set 

bt = 2

1 2 3o oWb W b W   

 

Step 8. IF Count = 1 set bt= MIN(bt,0.95) 

 

Step 9. Find a new estimate Gp such that its GLB bp is close enough to bt, i.e. 

until ABS(bp−bt) < CurrentPrecision) or a maximum of steps is 

taken. 

Compute the GLB bp of Gp. The details of this step are described 

later. 

 

Step 10. Perform a bootstrap run and compute the average value bs of the 

sample GLB's. 

 

Step 11. Compute Diff = ABS(bs−bo) 

If Diff < BestDiff then 

set BestDiff = Diff; set Bestbp = bp; and set BestCount = Count 

 

Step 12. If Diff ≤ CurrentPrecision then 

If CurrentPrecision = Precision go to step 16 

else set CurrentPrecision = Precision 
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Step 13. If BestCount  ≤ Count − 5 then 

If CurrentPrecision = Precision go to step 16 

else set CurrentPrecision = Precision 

 

Step 14. If Count < 4 

set CurrentPrecision = ShrinkFactor × CurrentPrecision  

If Count = 4 set CurrentPrecision = Precision 

 

Step 15. Go back to step 6 

 

Step 16. Set bp = MAX(0,MIN(Bestbp,1) 

 

Step 17. Now bp is the final value of the corrected GLB 

 

Some explanations: 

 

at Step 1: The algorithm may be very time consuming. Therefore the required 

precision is varied from 5 times Precision in the first cycle to 

Precision in the fifth and following cycles.  

 

at Step 9: The factor c and the corresponding matrix Gp can be found by the 

following algorithm: 

 

Step 9a. Set Lowc = 0; Set Highc = 1; set Lowb = bz; set 

Highb = bo 

 

Step 9b. Repeat steps 9c through 9h 

 

Step 9c. Set Midc = (Lowc + Highc)/2 

If ABS(Highb − Lowb) < CurrentPrecision go to step 

9i 

 

Step 9d. Copy Go to Gp 

 

Step 9e. If MidC  ≥  1 − Precision set Midb = bo 

else ... (steps 9f through 9h)  
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Step 9f. Replace the diagonal of Gp by Midc 

times the vector of minimal true 

variances of Go 

Compute the eigenvectors V and the 

diagonal matrix Λ with eigenvalues of 

Gp 

 

Step 9g. Set T1 = TR(Gp); set T2 = sum of the 

negative eigenvalues in Λ. 

Replace the negative eigenvalues by 

zero. 

Loop over the positive eigenvalues λi 

from smallest to greatest: 

If Λi,i ≥ T2 then set 

Λi,i = Λi,i − T2 and continue 

with step 9h 

else set T2 = T2 − Λi,i and set 

T2 = 0; continue the loop over 

the eigenvalues 

 

Step 9h. Recompute Gp = VΛV with the 

adjusted eigenvalues given by Λ 

Replace the diagonal of Gp by that of 

Go and compute its GLB bp. 

Set Midb = bp 

 

Step 9i. If ABS(bt − Midb) < CurrentPrecision go to step 9k  

If a maximum (e.g. 30) number of cycles (9c through 

9h) is taken go to step 9k 

If bt < MidB set HighC = MidC 

else set LowC = MidC 

 

Step 9j. Go back to step 9c 
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Step 9k. Now Gp is the wanted matrix with its GLB bp close to 

bt. 

Border effects 

The correction procedure as it was specified above may fail for extreme observed 

GLB-values bo. For low values, there may be no population matrix possible with 

bo as its expected sample value. This happens if the observed GLB is lower than 

the expected sample value bz under the null hypothesis bp = 0. In such cases the 

corrected estimate can immediately be set to 0. For high values of bo, the problem 

is not that easy to be solved. If the observed GLB bo is (almost) 1, the estimator 

bp = 0.99... complies with the three starting points, but samples from a population 

with a lower value might as well have a GLB equal to or close to 1. In such cases 

the algorithm may erroneously overestimate the population GLB.  

Evaluating the estimation procedure 

In order to test the quality of the above procedure several large datasets were 

downloaded (personality-testing.info, n.d.), not including the files used in the trial 

and error phase. From each of these datasets one or more tests were selected and 

from each test 100 or 50 samples were taken, consisting of randomly chosen cases. 

Cases with missing values were not allowed to enter the samples. 

As a result several sets were available each consisting of a large population 

and 100 or 50 samples extracted from it. The mean of the corrected GLB-values 

over the samples renders an estimate of the expected value of the corrected GLB. 

If the correction algorithm works correctly, these expected corrected GLB's 

should be (almost) equal to their corresponding population values. The tests were 

taken from the following data collections: 

 

1. 16PF, test 1, items A1-A10, ordinal scores (1-5), 49159 cases 

2. 16PF, test 2, items B1-B13, ordinal scores (1-5), 49159 cases 

3. 16PF, test 3, items C1-C10, ordinal scores (1-5), 49159 cases 

4. ECR, items Q1-Q36, ordinal scores (1-5), 17386 cases 

5. MSSCQ, items Q1-Q100, ordinal scores (1-5), 17685 cases 
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Table 1 summarizes the main results, with column definitions as follows: 

 

test name of the test 

# files number of sample files taken from the large population file 

v test length 

n sample size 

β the GLB-value computed from the large population file; the 

average bp (in column 7) should be close to this value  

bo the mean of the uncorrected observed GLB-values from the 

sample files 

bp the mean of the corrected GLB-values from the sample files; 

it should be close to the population value β 

bz the mean of the expected GLB-values under the null 

hypothesis of uncorrelated items 

SE(bp) the standard error of the mean of the corrected GLB-values 

duration the average time (mm:ss) needed to analyze a single sample 

file on a basic desk top computer 
 
 
Table 1. Results of the testing procedure. 

 
test # files v n β bo bp bz SE(bp) duration 

16PF_1 100 10 100 0.6716 0.7559 0.6791 0.3389 0.0075  0:02 

16PF_2 100 13 200 0.5581 0.6410 0.5571 0.3099 0.0084  0:06  

16PF_3 100 10 500 0.4404 0.4722 0.4373 0.1671 0.0060  0:07 

ECR 100 32 100 0.9016 0.9601 0.9052 0.6889 0.0023  1:11 

ECR 100 32 200 0.9016 0.9410 0.9044 0.5184 0.0018  1:02 

ECR 100 32 500 0.9016 0.9247 0.9072 0.3543 0.0010  1:05 

ECR 100 32 1000 0.9016 0.9142 0.9011 0.2545 0.0006  1:09 

MSSCQ 50 100 100 0.9675 0.9986 0.9834 0.9725 0.0012 53:36 

MSSCQ 50 100 200 0.9675 0.9924 0.9782 0.8406 0.0008 28:20 

MSSCQ 50 100 500 0.9675 0.9828 0.9712 0.6138 0.0006 24:44 

MSSCQ 50 100 1000 0.9675 0.9772 0.9711 0.4651 0.0003 19:45 

 
 

The result of these tests strongly suggest that the chosen algorithm reduces 

the bias in the GLB to a negligible quantity. However, the procedure becomes 

laborious when the observed GLB is close to unity. It should also be noticed that 

the expected GLB under the null hypothesis of uncorrelated items (bz) may 

become extremely high when the ratio v/n is almost 1. 
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The assumption of multivariate normality of the items 

Above, all scales consisted of ordinal items with a small set of possible scores and 

their distributions could be estimated from the observed data. If only a covariance 

matrix is available without information about the distribution of the item scores, 

one might fall back on the assumption of multivariate normality, but this 

assumption will frequently be incorrect. In order to get an impression of the 

seriousness of violations of this assumption, the tests described in the previous 

section were repeated, now replacing drawings from the actual distributions by 

drawings from normal distributions. The results are given in Table 2. These 

results suggest an analysis based on the assumption of multivariate normality will 

deliver a correct estimator of the GLB, even if the assumption is incorrect. 
 
 
Table 2. Results using actual distributions and results assuming multinormality. 

 

  
Actual Distributions Normal Distributions 

test β bp bz bp bz 

16PF_1 0.6716 0.6791 0.3389 0.6710 0.3397 

16PF_2 0.5581 0.5571 0.3099 0.5539 0.3106 

16PF_3 0.4404 0.4373 0.1671 0.4353 0.1645 

ECR 0.9016 0.9052 0.6889 0.8923 0.6873 

ECR 0.9016 0.9044 0.5184 0.9034 0.5206 

ECR 0.9016 0.9072 0.3543 0.9066 0.3534 

ECR 0.9016 0.9011 0.2545 0.9011 0.2549 

MSSCQ 0.9675 0.9834 0.9725 0.9498 0.9576 

MSSCQ 0.9675 0.9782 0.8406 0.9723 0.8403 

MSSCQ 0.9675 0.9712 0.6138 0.9704 0.6142 

MSSCQ 0.9675 0.9711 0.4651 0.9707 0.4659 

 
 
Table 3. Distributions (proportions) of the 10 items in scale 16PF. 

 

 
Items 

 
1 2 3 4 5 6 7 8 9 10 

Score 1 0.0425 0.0238 0.0350 0.0316 0.0203 0.0185 0.0221 0.0729 0.2560 0.1771 

Score 2 0.1163 0.0748 0.0893 0.1087 0.0678 0.0753 0.0699 0.3092 0.4727 0.4053 

Score 3 0.1511 0.1787 0.1337 0.1664 0.1767 0.2588 0.1285 0.2486 0.1420 0.2340 

Score 4 0.4764 0.4749 0.4771 0.5267 0.4964 0.4732 0.5469 0.2770 0.0997 0.1500 

Score 5 0.2137 0.2479 0.2648 0.1666 0.2387 0.1742 0.2326 0.0922 0.0296 0.0336 

 
 

As an illustration, Table 3 shows the distributions of the items of the 

population 16PF. The scores are clustered into only 5 categories and the 
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distribution over these categories is different for the individual items. 

Nevertheless the estimation of the GLB remains practically unbiased.  

Conclusion 

It is clear that under the assumptions of the classical test theory and without 

additional assumptions, the measure known as the Greatest Lower Bound (GLB) 

is the highest possible lower bound to the reliability of a test. Unfortunately the 

use of this measure is severely hindered by its bias for small or even moderate 

samples. It is possible to remove this bias by the given algorithm. 

The ideas of this article are implemented in a program called GLBFind, 

which is available at http://www.ru.nl/socialewetenschappen/rtog/software/ 

statistische/kunst/glbfind/. 
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Planners of longitudinal studies of binary responses in applied sciences have not yet 
benefitted from optimal designs, which have been shown to improve precision of model 
parameter estimates, due to absence of a computer program. An interactive computer 
program for Bayesian optimal binary repeated measurements designs is presented for this 
purpose. 
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Introduction 

Longitudinal study designs are used in different disciplines of science to study the 

change of a particular outcome variable over time. In smoking prevention studies, 

for example, pupils in primary and secondary school may be followed up to study 

the prevalence of smoking as a function of age. The generalized linear mixed 

model (GLMM) is the most frequently used model for the analysis of longitudinal 

dichotomous data such as smoking status. Optimal design of longitudinal studies 

has been shown useful to improve the precision of the model parameter estimates 

of interest, such as the rate of change, by optimizing the number and timing of 

repeated measurements. For cross-sectional data, the review of McClelland 

(1997) provided a good introduction into optimal design for psychologists. 

Raudenbush and Feng (2001) considered a study with a quantitative outcome in 

https://doi.org/10.22237/jmasm/1493599020
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which two groups are followed over time to assess group differences. Optimal 

design techniques were used to optimize power over feasible designs as a function 

of duration of a study, frequency of observations, and number of participants. For 

the GLMM, optimal designs were studied extensively in the literature by Han and 

Chaloner (2004); Niaparast (2009); Niaparast and Schwabe (2013); and Abebe, 

Tan, van Breukelen, and Berger (2014a, c), among others. 

Unfortunately, optimal designs for nonlinear models depend on the 

unknown parameter values of interest, that is, on the regression weights that 

reflect the outcome change over time. Thus, in order to find the optimal design, 

the model parameter values should be known in advance. However, the parameter 

values are always unknown as the design is planned to obtained data for 

estimating them. A common approach to this problem is to use a best guess of the 

parameter values, which leads to locally-optimal designs, that is, designs which 

are optimal for a given set of parameter values (see, e.g., Chernoff, 1953). Such 

designs may not be efficient when the true parameter values differ from those best 

guesses, that is, the design may not be robust for other parameter values. To 

overcome this local optimality problem, various methods have been proposed in 

the literature (see, e.g., Berger & Wong, 2009). The Bayesian approach is one 

way that has been shown to be useful to take into account the uncertainty of the 

parameter values (Chaloner & Larntz, 1989; Atkinson, Donev, & Tobias, 2007; 

Abebe et al., 2014a, b, c; Abebe et al., 2015; among others). The Bayesian design 

literature is vastly restricted to binary response models. However, no user-friendly 

software has been developed so far for Bayesian design of longitudinal studies 

with binary responses. 

Due to the absence of a computer program, planners of longitudinal studies 

in psychology, health sciences, and medicine face the problem of choosing the 

best number and timing of the repeated measurements. Usually the number and 

the allocation of the time points at which the measurements are taken are 

determined by non-statistical criteria. As an example, consider the Dutch smoking 

prevention study, where smoking and other data were collected from 3735 

children in 156 elementary schools by means of a questionnaire at six time points 

between September 1997 and September 2000: September 1997, February 1998, 

June 1998, May 1999, February 2000 and September 2000 (Ausems, Mesters, van 

Breukelen, & De Vries, 2002). 

Another example is the attention deficit hyperactivity disorder (ADHD) 

study (Lahey et al., 1998; Hartung et al., 2002). It was a longitudinal study on 255 

children that sought to identify risk and prognostic factors in early childhood for 

ADHD symptoms, diagnoses, and functional outcomes across childhood, 
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adolescence, and early adulthood. All participants were followed over seven 

annual visits after the baseline. The question is whether these designs are efficient, 

in terms of the number and the timing of the measurements, for estimating the 

change in smoking and ADHD prevalence over the total follow-up time. This 

question can be answered by optimal design theory, which is part of the field of 

statistics. 

For the linear random effects model optimal designs were discussed by Tan 

and Berger (1999) and Tekle, Tan, and Berger (2009), among others. They 

showed that regardless the underlying polynomial regression model, the number 

of repeated measures should be chosen as close as possible to the number of 

regression parameters. Ouwens, Tan, and Berger (2006) and Tekle et al. (2008) 

extended the work on optimal designs for logistic models with random effects 

using a maximin approach to handle the local optimality problem, without 

considering the cost of sampling and measuring. They have kept constant the 

number of subjects and the number of repeated measures per subject. But in a 

longitudinal study, costs are associated with the inclusion of patients (subjects) as 

well as with each repeated measurement. 

Further, Bayesian designs are an increasingly popular alternative to 

maximin design as a method to overcome the local optimality problem. The 

Bayesian approach takes the uncertainty of the parameter values of the statistical 

model into account by using a prior distribution on the unknown parameters rather 

than single-value guesses. This will give more flexibility. 

Therefore, a new interactive computer program is presented that computes 

Bayesian optimal repeated measurements designs for mixed effects logistic 

models with polynomial time effects under cost constraints, but also allows the 

user to compute maximin designs. The maximin approach essentially minimizes 

the largest possible (generalized) variance of the fixed-effect estimators within a 

user-specified region of the true fixed-effect values, or equivalently, it optimizes 

among worst possible efficiencies (see, e.g., Tekle et al., 2008; Ouwens et al., 

2006). 

It computes Bayesian optimal designs for longitudinal studies under cost 

constraints, thus helping researchers to reduce their study costs. The computer 

program helps users to identify the optimal number and optimal allocation of time 

points for a given subject-to-measurement cost ratio. Moreover, it computes the 

loss in efficiency of equidistant time points compared to the optimal allocation. It 

produces a plot of optimal allocations of time points under different values of 

autocorrelation. A separate manual is presented in the appendix and describes the 
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capabilities of the software, which runs in a Matlab environment (MathWorks, 

2010). 

The logistic mixed effects model with polynomial time effects is described, 

and the optimality criterion and the relative efficiency as a measure for the 

comparison of designs. Thereafter, the smoking prevention study by Ausems et al. 

(2002) is used to illustrate the application of the program and to discuss the 

various decisions that the user has to make when determining the most efficient 

design. The manual can be considered as part of the paper, but can be consulted 

independently from it. Finally, conclusions and recommendations are provided. 

The paper ends with a summary and discussion. 

The Logistic Mixed Effects Model 

Let the q × 1 vector yi = (yi1,…, yiq)ʹ be binary responses yij of subject i at q time 

points, i = 1, 2,…, N and j = 1,…, q. It is assumed that all subjects have 

measurements at the same time points, and that, conditional on the subject-

specific random effect vector bi, the binary responses yij of yi are assumed to be 

Bernoulli distributed with probability of success p(yij = 1 | bi). These probabilities 

are related to the fixed and random effects via the logit link function. The 

corresponding logistic mixed effects model is given by: 
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where the p × 1 vector xj is the design vector of the explanatory variables at the jth 

measurement for subject i, β is the corresponding p × 1 vector of fixed 

polynomial time effects, and zj is the r × 1 design vector for the random effects 

that is usually a subset of vector xj. The vector bi is the corresponding r × 1 

vector of random effects, which is assumed to have a multivariate normal 

distribution with mean zero and covariance matrix D. 

For example, if a quadratic (p = 3) time effect is assumed, the design vector 

is  21j j jt t x  and β = (β0  β1  β2)ʹ, where tj is the time point of the jth 

measurement, j = 1,…, 6, and β0, β1, and β2 are the fixed effects. Suppose that a 

random intercept and random linear slope are assumed. Then the design vector is 

zʹj = (1  tj) and bi = (b0i  b1i)ʹ, where b0i and b1i are the corresponding random 

(subject-specific) deviations from these fixed effects, i = 1,…, 3735. Then, 
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according to model (1), the log-odds of a positive response (smoking) for subject i 

at time tj is given by: 

 

        2

0 0 1 1 2logit p 1|ij i i i j jy b b t t       b   (2) 

 

To prevent misunderstanding about the flexibility of this model, note that it can 

handle U-shaped as well as monotonic trends over time. For the average subject 

(i.e. if the random effects are zero), the derivative of (2) with respect to time t is 0 

if 
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The time variable is bounded by the follow-up period of the longitudinal study, 

and so equation (2) reaches its maximum or minimum inside or outside the time 

interval, depending on the values of β1 and β2. So model (2) can handle monotonic 

as well as non-monotonic trends. 

For example, in the Dutch smoking prevention study, a quadratic (p = 3) 

time effect will be needed if smoking prevalence on the logodds scale increases 

nonlinearly over time. For the sequel, it is important to note that in this paper and 

software, the time interval is scaled as t ∈ [-1, +1]. This can be translated into any 

suitable time scale by linear transformation, and vice versa. For instance, the time 

scale of the smoking prevention study, with its baseline of September 1997 as the 

origin, its last measurement in September 2000, and a month as the unit of 

measurement, is obtained by the transformation t* = 18(t + 1). Likewise, our 

present time scale is obtained as t = (t* − 18)/18. The repeated measurements of 

smoking were made at time points t* = 0, 5, 9, 20, 29, and 36 months, which in 

terms of the present time scale gives as time points t = -1.00, -0.72, -0.50, 0.11, 

0.61, and 1.00, respectively. 

Due to the random effects in model (1) and (2), the log-likelihood cannot be 

written down in closed form. Hence, either numerical methods or approximations 

to the log-likelihood must be used. Numerical methods require large 

computational resources and more importantly they require full knowledge of the 

data (Moerbeek, Van Breukelen, & Berger, 2003; Han & Chaloner, 2004), 

making them computationally inconvenient for optimal design procedures. To 

overcome this problem, approximation methods are employed. There is a large 

statistical literature on various approximation methods, but here, for the purpose 
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of obtaining optimal designs, we will focus on the two most frequently used ones, 

which are implemented in commercially available software packages: first order 

penalized quasi-likelihood (PQL1) and an extended version of generalized 

estimating equations (GEE). 

First Order Penalized Quasi-Likelihood 

The PQL1 variances and covariances of the fixed parameter estimates are 

calculated using the first-order Taylor expansion around the fixed and random 

effects. An advantage is that the method performs well in terms of point estimates 

since it produces the smallest mean squared error and the bias of the estimators 

decreases as the sample size increases (Breslow & Clayton, 1993; Moerbeek et al., 

2003; Jang & Lim, 2009). A disadvantage is that design optimization based on 

PQL1 is very time consuming. This is due to the fact that the covariance matrix of 

the binary responses, which must be inverted at each iteration of the optimization 

process, is very large because it depends on the random effects (which in the 

design stage are sampled from a multinormal distribution). The variance-

covariance matrix of the estimator β̂  of the parameter β for the logistic mixed 

effects models (1) is approximated in PQL1 by: 

 

    
1

1ˆvar


β XV X   (3) 

 

where X is the Nq × p design matrix formed by stacking {xʹj} for N subjects and q 

time points, and V is the Nq × Nq block-diagonal matrix with N blocks of q × q 

variance-covariance matrices given by: 

 

  1 2 1 2

i i i   v w R w ZDZ   (4) 

 

The q × q matrix R(ρ) is the residual correlation matrix, Z is the q × r design 

matrix with rows zʹj, j = 1,…, q, the r × r matrix D is the variance-covariance 

matrix of the random effects, and 1

i


w  is the diagonal matrix of the conditional 

variances of the transformed responses given the random effects bi, which is equal 

to the inverse of the diagonal matrix of the conditional variances of the 

untransformed responses given the random effects bi (See for detail Moerbeek et 

al., 2001; Molenberghs & Verbeke, 2005, p. 270). Note that, under conditional 

independence, R(ρ) is an identity matrix and equation (4) becomes 
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  v w ZDZ   (5) 

 

The diagonal matrix of the conditional variances of the untransformed responses 

given the random effects bi, is given by: 
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ij ij iw y
b

b , for i = 1,…, N, j = 1,…, q. Since the random effects are 

unknown in the design stage, we will generate bi from a multivariate normal 

distribution with mean zero and variance-covariance D. 

Extension of Generalized Estimating Equations 

The extended GEE is an alternative method which is not likelihood-based. It has 

been extended by Zeger, Liang, and Albert (1988) and Molenberghs and Verbeke 

(2005) to include autocorrelations of the errors in the standard formulation of 

GLMM. The covariance matrix of the binary responses is expressed conditional 

on the random effects being zero, which makes the calculations much faster. The 

asymptotic variance-covariance matrix of β̂  for the logistic mixed effects models 

(1) with autocorrelation, based on the extension of the GEE approach, is 

approximated by: 
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where β̂  is the estimator of β for model (1), Pi = (p(yi1 | bi),…, p(yiq | bi))ʹ and the 

working variance-covariance matrix of the responses is given by: 
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i i i i i  u w R w w ZDZ w   (8) 

 

When there are no residual correlations in R(ρ), a conditional independence 

model or purely random effects model results and equation (8) reduces to 
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where wi is the diagonal matrix of the conditional variances of untransformed 

responses given the random effects bi = 0, which is given by: 

 

  0 0
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i i iw w
 


b b
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where  0
var | 0i

ij ij iw y

 

b
b  for i = 1,…, N, j = 1,…, q (Molenberghs & 

Verbeke, 2005, p. 443). 

Time-structured data are naturally correlated (Berger, 1986). In this paper, a 

first order auto regressive (AR1) is considered, i.e., j lt t



, where j, l = 1,…, q, 

and so ρ is the autocorrelation coefficient between two responses at a time 

distance of one, that is, ρ = Corr(yij, yil) for which |tj – tl| = 1. This autocorrelation 

structure implies that repeated measurements closer in time are more highly 

correlated and that the correlation decreases as the distance between the time 

points increases. 

Bayesian D-Optimal Design and Relative Efficiency 

To introduce the notation for the optimality criterion, suppose that the study to be 

designed will have q ordered time points t1, t2,…, tq at which measurements are 

taken for all N subjects. The design space Ξ then contains all designs of the form 
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with weight wi indicating per time point what proportion of all observations is 

obtained at that point (see also, e.g., Bunke & Bunke, 1986, p. 506) and q ≥ p to 

make these fixed effects identifiable with p being the number of fixed parameters 

of the model. Although in general the weights (wi) at the different time points can 

be different, in this paper we make the restriction of all weights equal to 1 

(w1 = w2 =…= wq = 1) at all q ordered time points, i.e., measurements are taken on 

all N subjects at each time point, because we consider longitudinal designs and so 

all q repeated measurements are obtained from the same individuals. The time 

interval [a, b] is assumed to be fixed by substantive constraints within the field of 

application, for example, the total follow-up time in the cohort study of smoking 

prevention is b – a = 3 years, or 36 months. A design ξq is an element of the 

design space Ξ if it has q time points within the time interval [a, b]. 
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Optimal designs are usually selected by minimizing a real-valued function 

of the variance-covariance matrix of the parameter estimators, here of the 

estimators of the three regression weights in (2), which is known as optimality 

criterion (see, e.g., Silvey, 1980). In this way the precision of the estimators and 

the power of their significance tests are maximized. Various optimality criteria 

have been proposed in the literature, such as the D-, A-, or G-optimality criteria. 

In this paper, we will focus on the best-known and most popular optimality 

criterion, i.e., the D-optimality criterion. This optimality criterion has two nice 

properties: 1. It minimizes the volume of the asymptotic confidence ellipsoid for 

the parameters, for instance for the fixed effects in model (2), thus giving the 

multivariate generalization of the familiar confidence interval for a single 

parameter; and 2. It does not depend on the coding used for the endpoints of the 

chosen time interval [a, b], for instance, on whether we code the time predictor in 

equation (2) as running from 0 to 1, or from -1 to +1, or use the original time 

scale in days or months. This means that if the coding for the time interval is 

transformed linearly, a D-optimal design for the new time interval is obtained by 

applying the same linear transformation to the D-optimal design for the old 

interval (see Ouwens et al., 2006). 

For example, in the smoking study, the measurements were taken between 

September 1997 and September 2000 (a period of three years), and by linearly 

transforming the measured time points into the interval [-1, +1], the actual design 

of the smoking study ξ6 becomes (-1  -0.72  -0.50  0.11  0.61  1). Likewise, if e.g. 

the D-optimal allocation of the time points for the smoking study is -1, -0.5, 0, 0.5, 

and 1 on the time interval [-1, +1], then it is after 0, 9, 18, 27, and 36 months 

respectively on the original time scale of [0, 36] months. 

The D-optimal design 
*

qξ  is the design among all possible designs ξq with q 

time points for which the determinant of the variance-covariance matrix of 

parameter estimators, for instance, the covariance matrix of  0 1 2
ˆ ˆ ˆ, ,    in model 

(2), is minimized (Berger & Wong, 2009). It should be noted that, for some 

studies, other criteria could be more obvious. Using the D-optimality criterion, all 

fixed-model parameters are considered to be equally important. If, for example, 

only some of the model parameters are of interest and others are considered to be 

nuisance, then a DA-criterion will be more relevant, indicating that only a subset 

or m linear combinations of the p regression parameters (p ≥ m) are of interest and 

specified by an m × p design matrix A (see, e.g., Tan, 2011). Nevertheless, the 

concentration here will be on this D-optimality criterion, because it is expected all 

fixed effects in model (1) will be of interest. 
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The variance-covariance matrix of the fixed-effects estimators β̂  depends 

on the unknown parameter vector β (see Abebe et al., 2014a, b, c; Abebe et al., 

2015), which makes design optimization dependent on the very same parameters 

that have to be estimated with the study to be designed, thus creating a vicious 

circle. The Bayesian approach resolves this dependency problem by taking the 

expectation of a function of the variance-covariance matrix over a prior 

distribution for the unknown parameter vector β. Thus, the Bayesian D-optimality 

criterion is defined as follows: 
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where π(β) is the prior distribution for β and  ˆvar β  is the variance-covariance 

matrix of β̂  for the logistic mixed effects models based on approximation 

methods (see Abebe et al., 2014a, b, c; Abebe et al., 2015 for details). In fact, the 

design criterion (12) follows from maximizing the expected Kullback-Leibner 

(KL)-distance between the prior and posterior distributions, measuring how much 

information can be gained when moving from prior to posterior. When the normal 

approximation is used for the posterior distribution, then a design that maximizes 

the KL-distance is equivalent to maximizing expression (12) and is called Bayes 

D-optimal. It should be mentioned that expression (12) does not represent the full 

Bayesian design criterion, but only approximately by ignoring the additional 

effect of the prior information about the fixed effects. However, for large sample 

sizes, the contribution of the prior information to the posterior variance is usually 

negligible (for further details, see Chaloner & Verdinelli, 1995; Sebastiani & 

Settimi, 1998). Note that maximization of (12) comes down to minimization of 

the expected log determinant of the covariance matrix, where the expectation is 

taken over the prior (Atkinson et al., 2007). 

The precision of estimating the fixed-effects parameters β increases by 

taking more measurements and sampling more subjects (Moerbeek et al., 2001). 

However, the addition of subjects and of measurements per subject will increase 

the costs of the study and these are usually limited by budget constraints. 

Therefore, it is reasonable to take into account the costs of a longitudinal study 

when designs are compared with each other. There are two main components of 
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these costs. These are the costs for recruitment of subjects and the costs of the 

measurements once a subject has been recruited. Let the cost of recruiting a 

subject be C1 and the cost of one measurement per subject be C2. Then the total 

cost of a longitudinal study with q time points and N subjects, excluding overhead 

cost, is given by the linear cost function: 
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where k = C1/C2 is the ratio of the cost of adding a new subject to the cost of an 

additional measurement per subject. 

To compare different designs, we will use their relative efficiencies while 

fixing the total costs C. This means that the designs can differ in terms of the 

number of subjects N and the number and timing of the measurements q. First, we 

compute the Bayesian D-optimal designs using fixed N and then we correct for 

costs and different q and N as follows: Let  *

D | πq ξ  denote the value of design 

criterion (12) for the optimal design 
*

qξ  with q time points, given the prior 

distribution π for the fixed effects. Then the relative efficiency (RE) of an 

arbitrary design ξs with s time points relative to the optimal design 
*

qξ  is defined 

as: 
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where π is the prior distribution for the fixed effects and p is the number of fixed 

effects, that is, p = 3 for model (2). If the value of this relative efficiency is close 

to unity, then the design ξs is about equally efficient as the optimal design 
*

qξ  for a 

given prior π. The inverse of this relative efficiency is the number of times that a 

design ξs must be replicated to have the same efficiency as the optimal design 
*

qξ . 

Note that the term between squared brackets on the right side of equation (14), so 

without the (k + q)/(k + s) term, is the RE under the assumption of an equal 

number of subjects N for both designs, which then differ only in the number and 

timing of the repeated measures. This fixed N-situation, i.e. Ns = Nq, underlies the 

RE formula as given by Chaloner and Larntz (1989). However, if we keep the 
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total budget C instead of N the same for all designs, then it follows from equation 

(13) that we can have 
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N k s





  

 

as many subjects in design ξs as in design 
*

qξ . Since  ˆvar β  is inversely 

proportional to the sample size N, it then follows from equations (12) and (13) 

that the RE of both designs obeys equation (14). See the Appendix for details on 

the derivation of RE in (14). 

Method of Optimization 

The Bayesian D-optimal designs for the logistic mixed effect model are found by 

our computer program numerically by maximization of the criterion value (12) 

among all candidate designs for a given prior distribution of the parameters. 

Details of this will be given in the next sub-sections. 

Sampling Parameter Values from Priors to Compute the Criterion 

To construct Bayesian designs for continuous prior distributions, all candidate  

designs must be evaluated in terms of their criterion values as defined by (12). 

However, evaluation of the integration over the prior distribution is very 

complicated and cannot easily be done analytically. A numerical approximation 

of the integral is necessary. Numerical approximations can be done by sampling 

parameter values from the prior distribution and then by replacing the integral in 

(12) with a summation over the sample (Atkinson et al., 2007; Chaloner & 

Verdinelli, 1995). Estimating (12) using the traditional sampling (pseudo Monte 

Carlo) method requires very large samples from the prior to reduce the sample-to-

sample variability to the point where different samples do not lead to different 

design choices. Thus, this approach is costly in terms of computing time. In our 

computer program, we will use an Adaptive Rejection Metropolis Sampling 

(ARMS) algorithm (Gilks & Wild, 1992; Gilks, Best, & Tan, 1995), which is a 

more efficient sampling algorithm that requires a smaller sample to obtain a good 

approximation of the design criterion (12). ARMS is a generalization of the 

method of adaptive rejection sampling (ARS) (Gilks, 1992), which was itself a 

development of the original method proposed by Gilks and Wild (1992). The 
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ARMS generalization includes a Metropolis step to accommodate non-concavity 

in the log density. ARMS is a Markov chain Monte Carlo (MCMC) scheme for 

generating samples from high dimensional target distributions and widely used 

within Gibbs sampling, where automatic and fast samplers are often needed to 

draw. It can deal with (intrinsic) non-linear functions as often used in, for instance, 

pharmacokinetics. For the present log-linear model, the ARMS works very well 

and is much faster than the Gibbs sampling method. 

Optimization Algorithm for Finding an Optimal Design 

To find candidate designs and in particular the optimal design, the program uses 

the FMINCON function of MATLAB version 7.10.0499 (R2010a). This function 

performs constrained non-linear optimization and requires an initial design ξ0. 

Without loss of generality, the time interval was coded as [-1, +1], and equally-

spaced time points were used as initial designs. There is no need to start with non-

equally spaced time points because our experience is that Bayesian optimal 

designs for our model do not depend on the spacing of the initial design. 

According to Firth and Hinde (1997), the Bayesian criterion may only lead to 

different optimal designs for different starting values when very dispersed prior 

distributions are considered. In fact, the Bayesian D-optimal designs as obtained 

with our program can deviate a lot from equidistance, thus showing that 

equidistance as initial design does not constrain the final design (see, e.g., Abebe 

et al., 2015). 

The following global search algorithm is used to find the Bayesian D-

optimal designs for a given multivariate normal prior distribution of the 

parameters: 

 

1. Take samples from the prior distribution of the parameters using 

ARMS. 

2. Compute the Bayesian D-optimal allocation of q time points, using 

q = p equidistant time points as initial design, where p is the number of 

fixed parameters of the model. Note that the final optimal allocation 

does not need to be equally spaced (see, e.g., Abebe et al., 2014a). 

3. Increase the number of time points q by one and perform step 2 again 

to find the Bayesian optimal design (allocation) for the new value of q. 

Repeat step 2 and 3 until the maximum number of time points q (user 

specified) is reached. 
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4. Thereafter, select the optimal number of time points q for the Bayesian 

D-optimal design by computing the relative efficiencies of designs 

with different numbers of time points against each other for a user-

specified subject-to-measurement cost ratio. Do this for each cost ratio 

considered to obtain one optimal design per cost ratio for a chosen 

prior distribution. 

An Example: The Dutch Smoking Prevention Study 

As an illustration of the various decisions that the user has to make when 

determining the most efficient design, consider the Dutch smoking prevention 

study as described in the introduction section. A logistic mixed-effects model with 

quadratic time effect was found to give an adequate fit to the repeated measures of 

smoking status (0 = no, 1 = yes). Therefore, this model was adopted to illustrate 

the application of the BODMixed_Logistic program in guiding researchers for a 

similar future study. After starting the BODMixed_Logistic program, all the steps 

will be reviewed that are necessary to obtain the optimal design, starting with the 

specification of the model and the various input values. See the program manual 

for a description of the graphical user interface offered per step. 

Choice of the Model 

The first step is to choose the statistical model; the optimal design depends on the 

underlying statistical model and is different for a quadratic model than for a linear 

one. For the fixed model part, we choose a quadratic growth function, both in 

view of its fit to the smoking data and because it is more flexible than a linear one 

and can handle monotonic trends as well as U-shaped trends due to the finite time 

interval. For the random model part, we assume a random intercept as well as a 

random linear slope. This can be specified in the program by choosing nonzero 

variances for the intercept and linear slope and zero variance for the quadratic 

slope, with or without slope-intercept covariance. 

To the program user it may be reassuring to know that Abebe et al. (2014c) 

found that the Bayesian D-optimal designs are hardly affected by the choice of a 

covariance structure for the random effects, at least in case of a non-zero 

autocorrelation and the presence of a random intercept or random slope. Further, 

the autocorrelation between the repeated measures must be specified. Fortunately, 

the maximum loss in efficiency incurred by misspecification of the 

autocorrelation appears to be less than 5% (Abebe et al., 2014c), excepting the 
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case of a zero autocorrelation which gives very different allocations of time points 

than nonzero values. For illustration purpose, we will assume the default value of 

0.1 for the autocorrelation, remembering that this is the correlation between two 

measurements with a time interval of 1 on the time scale [-1, +1]. Of course, the 

program user is free to try out different covariance structures and autocorrelations 

to check the dependence of the optimal design on these values for his/her specific 

study. 

Approximation Method 

Next, the user has to choose between the two approximations of the likelihood 

that are implemented in the program: PQL1 and extended GEE. If computation 

time is not an issue, then we would recommend using the PQL1 approximation. 

The extended GEE, however, is computationally much faster and often produces 

similar Bayesian D-optimal designs as the PQL1 approximation (Abebe et al., 

2014c). In this example, we choose the extended GEE. 

Choice of Optimality Criterion 

At this stage, the model and the necessary parameter values have been specified. 

The program offers three different optimization criteria. 

 

a. The option ‘Bayesian D-optimal’ maximizes the criterion in equation (12), 

thus minimizing the generalized variance of the fixed effects estimators, 

for a user specified prior distribution of those fixed effects. Abebe et al. 

(2014b, c) showed that it is best to choose a prior distribution with a large 

variance (uninformative prior) to express the degree of uncertainty about 

the ‘true’ parameter values. The prior means then have little impact on the 

optimal design, provided that the autocorrelation is not too close to zero 

(ρ > 0.001). 

b. The option ‘locally D-optimal’ criterion can be chosen if the user wants to 

check the optimal design for specific values of the fixed effects regression 

parameters. Note that this comes down to assuming a prior with zero 

variance. This option is in general not recommended, because it will often 

lead to a sub-optimal design. 

c. The option ‘Maximin D-optimal design’ essentially minimizes (among all 

possible designs) the largest possible (generalized) variance of the fixed-

effect estimators within a user-specified region of the true fixed-effect 

values, or equivalently, it maximizes the minimum efficiency within this 
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region (see, e.g., Tekle et al., 2008; Ouwens et al., 2006). Using this 

criterion, the user remains on the safe side, and will furthermore obtain a 

design that is optimal for at least one combination of likely parameter 

values. A disadvantage of this criterion is that the maximin design is often 

optimal for some points on the boundary of the region (“parameter space”) 

for the true fixed effects, and these boundary points are less likely than 

values within the region (Atkinson et al., 2007, p. 258). 

 

For this illustration, Bayesian D-optimal design is selected with, as input 

prior distribution for the fixed effects, an independent normal with prior means 

µ = [1, 2, 3] and a prior variance σ2 = 5 for both fixed effects. Abebe et al. (2014c) 

showed that the Bayesian D-optimal designs with such large prior variance are 

hardly affected by the choice of prior means, provided that the autocorrelation is 

not too close to zero (ρ > 0.001). 

Optimal designs can be determined now in either of two ways: By fixing the 

number of time points q and finding the optimal q allocations, or by finding the 

optimal number and allocation of time points for a given subject-to-measurement 

cost ratio k. 

Computing the Optimal Allocation for a Given Number of Time Points 

q 

For this illustration, we use q = 6 time points as the design in the smoking 

example had 6 repeated measurements. The resulting optimal time points are, 

according to Figure 1 (see the 4th design in it), [-1, -0.6080, -

0.2063, 0.1875, 0.5465, 1]. Translated into the scale of the smoking study period 

in months, that is, into the time interval [September 1997, September 2000], this 

gives as optimal design points September 1997, April 1998, November 1998, June 

1999, January 2000, and September 2000. To compare, the actual time points 

were September 1997, February 1998, June 1998, May 1999, February 2000, and 

September 2000. In this example we fixed the number of time points, but it may 

be of interest to find the optimal number of time points for a given subject-to-

measurement cost ratio, which will now be discussed. 

Finding the Optimal Design for a Given Subject-to-Measurement Cost 

Ratio k 

As mentioned previously, the user can choose between fixing the number of time 

points q and fixing the subject-to-measurement cost ratio. The second option will 
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now be illustrated assuming a cost ratio k = 1, that is, equal costs for recruiting a 

subject and for a single measurement on a single subject. A maximum of seven 

time points were chosen, which covers the number of time points in most 

longitudinal studies. The minimum is three because the model has p = 3 fixed 

effects and is thus not identifiable with less than three time points. 

The results are given in Figure 1, showing the Bayesian optimal designs for 

each of the number of time points q = 3, 4,…, 7, and the relative efficiency of 

each Bayesian optimal design compared to the Bayesian optimal design with 

q = 7 time points for the chosen cost ratio, here k = 1. The optimal number of 

repeated measures q for that cost ratio is q = 4, giving a relative efficiency of 

1.2324 compared to q = 7. Further, the relative efficiency of an equidistant design 

with q = 4 time points compared to the optimal design with q = 4 is 0.9770, and 

so equidistance is highly efficient here, although it is not optimal. Finally, to show 

the effect of the chosen cost ratio on the optimal design, Figure 2 gives a plot of 

the relative efficiencies of the Bayesian optimal designs with different numbers of 

time points compared to the optimal design with the maximum number of time 

points, for each of several cost ratios k. Clearly, the optimal number of time points 

increases as the subject-to-measurement cost ratio becomes large. The practical 

implication of this is that, if the user is uncertain about the cost ratio, he or she 

should try several cost ratios within the plausible range. 

The efficiencies of the actual design of the smoking design relative to the 

Bayesian optimal design increase with an increasing cost ratio k, and the relative 

efficiency is large for cost ratios k ≥ 2. For small cost ratios k, the loss in 

efficiency for the actual design relative to the Bayesian design with 4 time points 

is at most 25%, which can be compensated by sampling about 33% more children. 

For large cost ratios (k ≥ 10), the loss in efficiency for the actual design is at most 

about 4%, which can be compensated by sampling about 4% more children. 

Plotting the Bayesian Optimal Design for Different Values of the 

Autocorrelation 

In the example it was assumed there is a single value 0.1 for the 

autocorrelation. However, the autocorrelation is rarely known in the design stage. 

The program therefore offers as a last option a plot of the effect of the 

autocorrelation value on the Bayesian D-optimal design for a user specified 

number of time points q and range of autocorrelation. Figure 3 shows such a plot 

for q = 6 time points (horizontal axis) against the autocorrelation (vertical axis) 

within the range from 0.001 to 0.90 for the random intercept logistic model with 
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quadratic time effects. From this plot we see that the Bayesian D-optimal 

allocation for q = 6 is fairly independent of the size of the autocorrelation, at least 

within the chosen range from 0.001 to 0.9. As mentioned before, a zero 

autocorrelation usually gives quite different optimal allocations which are far 

from equidistant. 
 
 

 
 
Figure 1. Bayesian optimal allocations of time points for cost ratio k = 1 with a maximum 

number of time points q = 7 for the logistic mixed model with quadratic time effects, 
assuming a random intercept and random linear slope logistic model with quadratic time 
effects, and autocorrelation 0.1 
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Figure 2. Relative efficiency of Bayesian optimal designs compared to the Bayesian 

optimal design 

 

 

 
 
Figure 3. Bayesian D-optimal allocation of q = 6 time points as a function of the 

autocorrelation, for the logistic mixed model with quadratic time effects 
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Table 1. Optimal time points for a quadratic model, fixed effects, number of time points q = 6 

 

Prior variance σ2 
Prior mean 
(β1, β2, β3) 

Autocorrelation (ρ) 

0.0 0.01 0.9 

0.5 [0, 0, 0] (-1, -1, 0, 0, 1, 1) (-1,-0.60,-0.19, 0.19,0.60,1) (-1,-0.63,-0.22,0.22,0.64,1) 

 
[1, 2, 3] (-1,-1, -0.27, -0.27, 0.47,0.47) (-1,-0.66,-0.30,0.04,0.40,0.71) (-1,-0.69, -0.25,0.21,0.53,1) 

5 [0, 0, 0] (-1, -0.36, 0.06, 0.06, 0.56, 1) (-1, -0.60, -0.20, 0.20, 0.60, 1) (-1,-0.67,-0.23,0.25,0.67, 1) 

  [1, 2, 3] (-1,-0.60,-0.24,0.13,0.46,0.91) (-1, -0.60, -0.21, 0.18, 0.54, 1) (-1,-0.65,-0.21,0.21, 0.60,1) 

 
 

Table 2. Optimal time points for a quadratic model, random intercept, intercept variance 
2

0
= 1τ , number of time points q = 6 

 

 
Prior mean 
(β1, β2, β3) 

Autocorrelation (ρ) 

Prior variance σ2 0.0 0.01 

0.5 [0, 0, 0] (-1, -1, 0, 0, 1, 1) (-1, -0.58, -0.18, 0.18, 0.58, 1) 

 
[1, 2, 3] (-1, -1, -0.26, -0.26, 0.51, 0.51) (-1, -0.66, -0.29, 0.06, 0.41, 0.73) 

5 [0, 0, 0] (-1, -1, -0.28, 0.29, 1, 1) (-1, -0.60, -0.20, 0.20, 0.60, 1) 

 
[1, 2, 3] (-1, -0.62, -0.22, 0.19, 0.50, 0.98) (-1, -0.60, -0.21, 0.18, 0.55, 1) 

 
 

Table 3. Optimal time points for a quadratic model, random intercept/slope, random intercept variance 
2

0
= 1τ , random slope 

variance 
2

1
= 1τ , number of time points q = 6 

 

 
Prior mean 
(β1, β2, β3) 

Autocorrelation (ρ) 

Prior variance σ2 0.0 0.01 

0.5 [0, 0, 0] (-1, -1, 0, 0, 1, 1) (-1, -0.56, -0.17, 0.17, 0.57, 1) 

 
[1, 2, 3] (-1, -1, -0.24, -0.24, 0.51, 0.51) (-1, -0.64, -0.28, 0.07, 0.42, 0.73) 

5 [0, 0, 0] (-1, -0.66, -0.17, 0.17, 0.63, 1) (-1, -0.60, -0.20, 0.20, 0.60, 1) 

 
[1, 2, 3] (-1, -0.59, -0.20, 0.18, 0.50, 0.97) (-1, -0.60, -0.21, 0.18, 0.54, 1) 
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Summarizing the example of Bayesian optimal design with the 

BODMixed_Logistic program, it can be concluded that when the subject-to-

measurement cost ratio k is less than 5, i.e. the cost of an additional subject does 

not exceed five times the cost of an additional observation on a single subject, 

then the optimal number of repeated measurements is four time points. Further, 

the optimal allocation is not equidistant, but equidistance is highly efficient. 

Using the suggested Bayesian D-optimal design, the relative efficiency of 

the optimal number of repeated measures q for the given cost ratio k = 1, which is 

equal to q = 4, relative to the q = 6 (which is the number of time points in the 

smoking study) is equal to about RE = 1.2324/1.099 = 1.1213 (see Figure 2). This 

means that about 10% less budget is needed for the optimal design to reach the 

same efficiency as compared to the actual design of the smoking prevention study 

of Ausem et al. (2004), which had six time points. 

Finally, to demonstrate the effect of the covariance structure D, prior means 

and variances, as well as of autocorrelation on the Bayesian D-optimal design, we 

will show some additional results for a quadratic model with fixed effects, 

random intercept, random intercept/slope, and for various priors and 

autocorrelations. We fixed the number of time points to q = 6 and used the 

extended GEE method for these results which are summarized in Tables 1 to 3, 

which gives the optimal time points for varying parameter values. 

Shown in Table 1 are optimal allocations of time points for a quadratic 

model with fixed effects only, Table 2 for the random intercept model with 

intercept variance equal to 2

0 1  , and Table 3 for the random intercept/slope 

model with intercept variance and slope variance equal to 2

0 1   and 2

1 1  , 

respectively. It can be seen that when there is no autocorrelation (i.e. ρ = 0), the 

optimal allocation of time points depends strongly on the covariance structure and 

priors and coinciding time points occur. Further, when the autocorrelation ρ > 0, 

the optimal allocations are never coinciding and are comparable for a prior 

variance equal to σ2 = 5 and all covariance structures D. The effect of a large 

versus small autocorrelation is only presented for the fixed effects model (D = 0), 

because Abebe et al. (2014c) already showed this for the random effects models. 

Finally, the prior means do not have much effect on the optimal allocation. This is 

in line with the findings of Abebe et al. (2014c) for a large prior variance. 
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Summary and Discussion 

Optimal designs for longitudinal studies have been shown useful to improve the 

precision of the model parameter estimates of interest. Due to absence of a 

computer program for the optimal design of longitudinal studies with a binary 

response, planners of such studies in psychology, health sciences, and medicine 

have not yet benefitted from optimal design theory. We present a user-friendly 

computer program that computes Bayesian optimal designs for mixed effects 

logistic models with polynomial time effects. This computer program helps 

researchers to identify the optimal number and allocations of time points of 

measurements for a given subject-to-measurement cost ratio, and computes the 

loss in efficiency of equidistance compared to the optimal allocation. Moreover, it 

helps to assess the effect of autocorrelation on optimal allocations of design points. 

The program was illustrated on a smoking prevention study showing that, when 

the cost ratio k is less than 5, the optimal number of repeated measurements is 4 

time points. Further, the optimal allocation is not equidistant, but equidistance is 

highly efficient. 

The use of a Bayesian design does not force researchers to use Bayesian 

methods to analyze the data. Once the experimental data is collected by using the 

Bayesian D-optimal design, researchers can fit their model either with Bayesian 

or with frequentist methods. 

The current version of the MATLAB program BODMixed_Logistic is freely 

available upon request from the corresponding author, which may be available 

eventually via the internet. The current version of the program considers designs 

based on the D-optimality criterion and assumes that all subjects are available 

over the total study period and that there is no dropout. Further, extensions of the 

model and software can be made by, e.g., adding a grouping variable or covariates 

like age or allowing for different types of covariance structures than already 

described in this paper. Future work may therefore aim at these extensions and at 

allowing for dropout. Another important issue for future work is Bayesian optimal 

design for model using non-polynomial (splines) time effects. 
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Appendix A: Derivation for the Relative Efficiency Equation 
(14) 

To compare designs we compute their efficiencies using the concept of equivalent 

sample size (see Atkinson et al., 2007, p. 152; Berger & Wong, 2009, p. 37). Let 

 ˆvar
sξ

β  and  ˆvar
qξ

β  be the variance-covariance matrices of β̂  for the design ξs 

with s time points and the design ξq with q time points, respectively, and let Ns 

and Nq be the number of subjects for the design ξs and ξq, respectively. For the D-

criterion and a given model with p parameters, the relative efficiency of design ξs 

compared to design ξq is given by: 
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Where the two determinants in (15) are both based on one subject only, and the 

factor Ns/Nq takes into account the sample size per design. 

This relative efficiency (15) can be rewritten as follows: 
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Rewriting Ns and Nq in terms of cost ratio k and number of time points for the 

same total cost using the cost function equation (13), i.e., 
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This relative efficiency (17) is for locally optimal design, i.e., for given parameter 

values. By generalizing this to Bayesian design, the RE of design ξs compared to 

design ξq with prior distribution π for β becomes as follows: 
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Thus, using the Bayesian D-optimality criterion (12), the RE will be: 
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When the ratio (k + q)/(k + s) is one, that is, if either q = s or the cost ratio k is 

very large, this relative efficiency (19) becomes the same as the relative efficiency 

given by Chaloner and Larntz (1989). 
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Appendix B: BODMixed_Logistic Manual 

Introduction 

Bayesian Optimal Design for Mixed effects Logistic models with polynomial time 

effect (BODMixed_Logistic) is graphical user interface software that computes 

optimal designs for longitudinal studies with a binary response. The program runs 

in a MATLAB (32-bit version 7.10.0499 (R2010a)) environment. In any case, the 

program works on a HP Compaq 8200 Elite PC with Windows 7 Enterprise and 

configuration i5-2400 CPU, 3.1 GHz, 4 GB RAM memory and 64-bit operating 

system or comparable systems. 

To start the program: 

 

1. Start Matlab. 

2. Choose the option Window → Workspace → Current Folder and 

choose the directory where the software is located. 

3. Choose Window → Command window and type BODMixed_Logistic 

(case sensitive) press the   Enter key. 

 

After starting the BODMixed_Logistic program, the user will find the main menu 

of the BODMixed_Logistic program as shown in Figure 4. There are five panels 

that will each be explained in turn. In this paper, a tutorial section is included 

which discusses the various decisions that the user has to make when using the 

program to find the most efficient design. 

First Panel: Input Values of the Model 

• Choose model type: The user can choose the degree of the polynomial of 

the mixed logistic model, i.e., a linear (which is the default value), 

quadratic or cubic model for the trend over time. 

• Variance-covariance parameters (D): The user will find a sub-menu to 

enter the input values for the variances and covariances (matrix D) of the 

random parameters. Figure 5 shows the sub-menu for a quadratic model. 

A fixed effects logistic model is obtained by setting all values in D to zero. 

The matrix D must be specified for each run, i.e. the values of the previous 

run are not saved. 
 



BAYESIAN D-OPTIMAL BINARY REPEATED MEASUREMENTS DESIGN 

718 

 
 
Figure 4. Layout of the main menu with the default input values for BODMixed_Logistic 

program 

 

 

• Enter/change the value of autocorrelation (rho): This is the size of the 

autocorrelation coefficient that the user expects between two repeated 

measurements at a time distance of one, i.e., ρ = Corr(yij, yil) for which |tj –

 tl| = 1, keeping in mind that the total follow-up time is scaled to the 

interval [-1, +1] so that a time distance of 1 corresponds to half the follow-

up time. 

Second Panel: Computational Method 

• Approximation to the likelihood: The user can choose an approximation 

method for the computation of optimal designs, i.e., either extended GEE 

or PQL1. The default method is the extended GEE. 
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Figure 5. The sub-menu of BODMixed_Logistic for input values for variance components 
in the D matrix for the mixed logistic model with quadratic time effects 

 

 
 

 
 
Figure 6. The sub-menu of BODMixed_Logistic for input values for the (normal) priors for 

the fixed effects parameters of the logistic model with quadratic time effect in the case of 
Bayesian design 
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Third Panel: Design Criterion 

• Select design type: Either Bayesian D-optimal, locally D-optimal, or 

Maximin D-optimal design. When the user selects a design type, a sub-

menu to fill in the input values for the relevant parameters will appear. 

Figure 6 is an example of a sub-menu for a Bayesian D-optimal design, 

where the prior means and prior variances can be specified. The input 

values must be filled in for each run, i.e. the values of the previous run are 

not saved. 

Fourth Panel: Optimal Design Results 

In this panel the user can choose between two methods of optimization: 

 

 Fixing the number of time points at some value q to find the optimal 

allocation of those time points within the time interval [-1, +1], 

 or fixing the subject-to-measurement cost ratio and letting the software 

then find the optimal number of time points as well as the optimal 

allocation. 

 

• Optimal allocations for q time points: A dialog box appears to fill in a 

specific number of time points q (see Figure 7a). Then, the optimal 

allocations of time points within the time interval [-1, +1] will be found 

for the specified number of time points q, and the relative efficiency of 

equidistant time points compared to the optimal allocation will also be 

computed 
 
 

  
 
Figure 7. The sub-menu of BODMixed_Logistic to specify the (a) number of time points 

(q), left, and (b) maximum number of time points, right 
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• Enter/change the subject-to-measurement cost ratio (k): This is the ratio of 

the cost of adding a new subject to the cost of an additional measurement 

per subject. This ratio is assumed to be greater than or equal to zero. 

• Optimal design for a given cost ratio k: determines the optimal number (q) 

of repeated measurements as well as the optimal allocation of the q time 

points for a given subject-to-measurement cost ratio k. The user must 

specify the maximum allowable number of time points (see Figure 7b). 

Note that the minimum number of time points is two for a linear, three for 

a quadratic, and four for a cubic polynomial time effect model. These 

minima have been implemented in the program already. 

Fifth Panel: Plot of Optimal Designs for Different Values of 

Autocorrelation 

The optimal allocations within the time interval [-1, +1] for a given number of 

time points q can be computed for each autocorrelation value and plotted against 

the autocorrelation within the range chosen by the user. 

 

• Enter/change the value of autocorrelation range: The user can enter a 

lower and upper bound for the autocorrelation parameter. 

• Optimal allocations of q time points for different values of autocorrelation: 

The user gets the sub-menu of Figure 7a to choose the number of time 

points (q). Any value with q ≥ p can be filled in, where p is the number of 

fixed parameters of the model (p = 2, 3, or 4 for the linear, quadratic, or 

cubic model, respectively). 

 

The user can change input values or obtain results by pressing the 

corresponding buttons on the main menu (Figure 4) as many times as he/she 

wishes. A ‘Help’ button is also available for guidance. The ‘Exit’ button in the 

main menu stops the program. 
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The probabilistic problem of cross-calibration of two categorical variables is addressed. 
A probabilistic forecast of the categorical variables is obtained based on a sample of 
observed data. This forecast is the output of a genetic algorithm based approach, which 
makes no assumption on the type of relationship between the two variables and applies a 

scoring rule to assess the fitness of the chromosomes. It converges to a good-quality point 
probability forecast of the joint distribution of the two variables. The proposed approach 
is applied both at stationary points in time and across time. Its performance is enhanced 
when additional sampled data is included, and can be designed with different scoring 
rules or made to account for missing data. 
 
Keywords: categorical variables, cross-calibration, genetic algorithms, probability 

forecasting 

 

Introduction 

Estimating the joint probability distribution of two categorical variables, based on 

observed data, is a common yet elusive statistical problem. Depending on the 

nature of the categorical variables and the intricacies that characterize their 

relationship, such an endeavor can be highly technical and computationally 

intensive. In addition, the observed data used to estimate the relationship often 

contains numerous sources of error or bias. Such errors, generally due to operators, 

equipment, or the environment, further complicate the problem; impairing the 

validity of any inference.  

Statistical calibration models the relationship between two variables that 

measure the same characteristic. It saves researchers, industrials and technicians 

valuable time, money and effort by providing a mechanism that gives a more 

accurate measurement to a corrupted reading (Osborne, 1991). Its application is 

https://doi.org/10.22237/jmasm/1493599080
mailto:saboukhamseen@yahoo.com
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particularly vital in two cases. The first case emanates when the data consists of 

precise measurements acquired using an invasive, destructive, costly, or time-

consuming technique. In such a situation, there usually exists an alternative 

measurement scheme that is more complaisant but not as reliable. Paired samples 

from the two measurements may be calibrated; thus, providing a mechanism to 

forecast the more reliable method from the less reliable one. The second case 

arises in problems requiring data comparability. It occurs when more than one 

technique gives valid and reliable measurements of a certain characteristic and 

there is a need for cross comparison, over time or across individuals. This cross 

comparison or mapping or translating of one measurement of a specific 

phenomenon to another is known as cross-calibration. 

In both cases, the data may be quantitative or qualitative (categorical). The 

nature of categorical data brings its own set of challenges. The data may be self-

reported or may consist of self-responses/assessments. The challenge herein lies 

in assessing the different ways individuals apply and interpret categorical 

response scales (Salomon et al., 2004; Murray et al., 2002; van Buuren & 

Hopman-Rock, 2001). However, the calibration of such variables requires that the 

mapping process be customized to fit the nature of their relationship. The traits 

that characterize the relationship must be explicitly stated in order to maintain its 

integrity during the translation process. Catering to the requirements of the 

statistical association often means imposing restrictions on the outcomes through 

complex mathematical models and structures. 

Assume that X and Z are categorical random variables that measure the same 

qualitative random phenomenon with r and c possible classes, respectively. Let π 

be the matrix of joint probabilities of X and Z where πij = P(X = i, Z = j) for 

i = 1, …, r and j = 1, …, c. Further assume that π is unknown, but that there exists 

an observed sample of N pairs of qualitative readings on (X, Z) of the single 

characteristic of interest. The N pairs are cross-classified into an r × c contingency 

table n which represents the observed relationship between the categories of the 

two variables X and Z. In the contingency table, the cell frequency nij, i = 1, …, r, 

j = 1, …, c, denotes the number of readings classified simultaneously into 

category i by the qualitative reading on X and into category j by the qualitative 

reading on Z, with 
1 1

r c

iji j
n N

 
  . Let the observed relative frequency 

distribution corresponding to the contingency table n be denoted by p where 

ij

ij

n
p

N
 , i = 1, …, r and j = 1, …, c. 
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The objective is to use the observed relative frequency distribution p to find 

an estimate of the functional translation π between X and Z; explicitly to estimate 

the conditional distributions P(Z | X) and P(X | Z). Since both distributions 

P(Z | X) and P(X | Z) are derived from the joint P(X, Z), it is sufficient to find the 

joint probability function π. The notions behind the science of probability 

forecasting are used to derive an estimate of π. 

DeGroot and Fienberg (1983), Dawid (1982), Schervish et al. (2014) and 

others established guidelines as to what constitutes a good forecasting generating 

system. However, how to construct that system remains an open question. In 

some fields, the forecasting mechanism relies heavily on expert opinion. In others, 

more objective procedures are employed. Herein, our focus is on the development 

of a forecasting generating system. A genetic algorithm (GA) -based method is 

applied, that searches for a (near-)optimal translation between the variables of 

interest. The translation corresponds to a joint distribution in the form of a 

probability forecasting system, from which predictive estimates of one of the two 

variables may be generated for a specific set of values of the other variable. 

A primary advantage of this approach is that it obtains this translation 

without explicitly accounting for constraints that characterize the nature of the 

relationship between the variables. It uses the observed sample data to guide the 

search process. Specifically, the GA fitness construct, which is based on methods 

developed in probability forecasting theory (DeGroot and Fienberg, 1983; 

Lichtenstein et al., 1982; Gneiting and Katzfuss, 2014), ensures that the generated 

forecasts are valid and that they are the best among all forecasts in their class.  

The purpose of this study, therefore, is to provide an overview of 

applications of cross calibration and genetic algorithms, and to propose a genetic 

algorithm. To further improve the reliability of the generated estimates, a quasi-

Markov element is added to the analysis. It extends the method to cross-calibrate 

categorical variables measured longitudinally over time, where the calibration 

forecasts are generated both forward and backward on a time scale. Incorporating 

time broadens the applicability of the methodology. It models the relationship in a 

manner that is closer to the true state of nature, thus enhancing the accuracy of the 

estimates. This is supplemented with an illustrative example using stroke 

rehabilitation data. 
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Background 

Applications of Cross-Calibration 

The importance of cross-calibration emanates not only from the savings it induces, 

but mainly from its wide areas of applicability. Applications for this kind of 

analysis are manifold, making statistical calibration a valuable analytical tool. 

Possible fields of applications are demography, psychology, engineering, and item 

response theory. The following presents many fields requiring cross-calibration. 

In surveys, cross-calibration facilitates the comparison of results from 

different questionnaires and the evaluation of response consistency. In corrosion 

analysis, a fundamental part of engineering, pipes and wires of oil fields are 

subject to corrosion because of harsh weather conditions. Following up the 

progress of corrosion is essential not only to production and transport of oil 

products but most importantly to the safety of the equipment and the personnel. 

Accurate tests for the state of corrosion are often invasive, destructive, and costly. 

The use of statistical calibration provides an efficient cost-effective alternative. 

In the computation of official statistics, indicators are essential in 

monitoring and assessing the performance of a nation’s public policy agenda, 

development, and how far a nation has come along in attaining its goals. Because 

the concepts stated above are intuitively understood, standards for their 

computation and compilation tend to vary widely depending on the country and 

the era. This makes the comparison of indicators either among countries or over 

time within countries exceedingly difficult. In light of today’s United Nations’ 

millennium goals, many nations are eager to show how far they have come 

towards attainment. This is only possible through valid data comparison, which is 

achievable via cross-calibration (Murray et al., 2002). 

Similarly, in medicine, the assessment of a given treatment may be 

conducted differently depending on the researcher’s preference or the time in 

which the study was carried out. The development of a quantitative translation 

between them enables the comparison of clinical trials in particular those 

requiring a longitudinal design over time (van Buuren et al., 2001). 

In psychometrics, evaluating people’s abilities, attitudes, and cognition 

through the process of testing and scoring is essential. Item response theory (IRT) 

is used in psychometrics to develop and refine tests that measure latent traits of 

individuals. The development of reliable techniques to measure traits such as 

intelligence and scholastic aptitude are of primary aim/essence of common exams, 

and tests of certification, such as the GRE and GMAT exams. Calibration is used 
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in IRT to provide a frame of reference to interpret test results, to equate tests, and 

to unify measurement scales both within the test items of a single test and 

between tests. The current practice in many of these applications is limited in 

scope. In some, such as IRT, the analysis requires impractical and unrealistic 

assumptions of independence between the items (categories) under investigation. 

Other applications require complicated models that tailor each aspect of the 

relationship separately and impose assumptions that are at many times invalid. As 

a result, the translations produced by the calibration model may be deficient and 

inaccurate. The proposed method overcomes these pitfalls by applying a 

methodology that makes no assumption on the type of relationship between the 

categorical variables under consideration. 

GA Applications in Statistics 

GAs mimic the role nature plays in refining and improving creation. GAs apply 

selective procreation and survival of the fittest to produce (near-)optimal solutions. 

They start from an arbitrary initial population consisting of a set of K 

chromosomes, where each chromosome k, k = 1, …, K, acts as a representative 

solution to the problem. The population undergoes an iterative process of 

selection, crossover, mutation, and survival of the fittest to form future 

generations; thus, instigating an artificial evolutionary process. The algorithm 

iterates until it satisfies a stopping criterion, which can be a prefixed number of 

iterations without improvement (i.e., convergence of the fitness function), a time 

limit, or a preset number of generations, ng. 

Many fields of science, such as bio-informatics, computer science, genetics, 

operations research, economics, engineering, quality control and mathematics, 

have benefited from GA’s straightforward yet efficient solution strategies. GAs 

identified (near-)optima to numerous practical problems with varying degrees of 

complexity. Sayed et al. (2009) show that GAs and their hybrids can improve the 

predictive performance of regression models. Chen et al. (2015) apply an adaptive 

GA to forecast the holiday daily tourist volume based on seasonal tendency. 

Huang et al. (2014) used GAs to assess the quality of a certain type of salted meat 

based on three quality indices whose values are inferred from a colorimetric 

sensor array. Stojanovic et al. (2013) apply a self-adjusting GA to model the 

behavior of dams. Liu et al. (2013) develop a real-time GA that forecasts water 

quality in river crab aquaculture. Nieto et al. (2013) forecast the presence of 

cyanotoxins in the Trasona water reservoir of Northern Spain via GAs.  
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Örkcü (2013) construct a hybrid GA to choose the minimal subset of 

explanatory variables of a multiple linear regression model. Wibowo and Desa 

(2012) employ GA in conjunction with kernel principal component analysis to 

predict the non-linear relationship between surface roughness resulting from 

milling processes and the milling machine parameters in the presence of multiple 

collinearity. Huang (2012) designs a support vector regression GA for stock 

selection. Ahn et al. (2012) use GAs to forecast the appraisal value of a real estate. 

Aydilek and Arslan (2013) identify missing values in data sets via GAs. 

In the field of scientific calibration, GAs are applied to estimate model 

parameters and generate predictions (Vitkovský et al., 2000). However, the 

application of GAs to statistical calibration in general and to categorical cross-

calibration in particular remains limited. 

Procedure 

Although the observed relative frequency distribution p is a valid statistical point 

estimate of π, the true joint probability function of X and Z, it may, in many 

instances, be biased or corrupted because it is subject to numerous sources of 

errors. To obtain an alternative point estimate of π based on the same observed 

sample frequency distribution p, a GA evolutionary procedure is applied for 

categorical data. Unlike most GAs, the proposed GA design does not require 

encoding the data and maintains the data’s structural integrity throughout the 

execution of the algorithm. 

Chromosome’s Definition and Fitness 

When considering unknown outcomes from categorical variables, a common tacit 

employed is the probability of occurrence in each category. When generated for a 

future event, this probability is a point probability forecast. If the probability of 

occurrence is evaluated for each forecast category, then the sum of the 

probabilities should equal one; constituting a probability forecasting system. 

Given the available information, a probability statement about the unknown 

outcome of a categorical variable can be calculated and its competency evaluated. 

Of the numerous criteria that are available to assess probability forecasts, 

(i.e. validity, refinement, etc.), calibration and scoring rules defined on the 

probabilities and their subsequently observed outcomes are among the more 

prevalent methods (Dawid, 1982; Gneiting & Katzfuss, 2014). A scoring rule is 
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the squared error function in which scores for all the forecast probabilities are 

aggregated and averaged to evaluate the system’s predictive performance. 

Even though originally developed for subjective probability forecasting in 

the field of meteorology, subjective probability forecasting has a broad 

applicability and a wide range of applications. For instance, it can be applied to 

cross-calibration and incorporated into the proposed GA as follows. For our 

purposes, we regard the GA chromosome k in generation g as an 

expression/propagation of some objective forecasting system ˆ g

k . In this regard, 

the chromosome forecasting performance may be assessed and compared with 

other chromosomes. 

GA, which is sequential in nature, obtains K possible estimates of π at each 

iteration (or generation), g = 1, …, ng. The r × c relative frequency matrix for the 

two categorical variables X and Z, ˆ g

k , for each chromosome k, k = 1, …, K, of 

iteration g is a possible estimate of π. The relative frequency
ˆ

ˆ

g

ijkg

ijk
N


  , represents 

the kth probability forecast of P(X = i, Z = j) at iteration g, where ˆ g

ijk  are 

realizations from the kth proposed joint probability ˆ g

ijk  = P(X = i, Z = j) at 

iteration g of the number of times X = i and Z = j. The sum of all frequencies, 

1 1
ˆ

r c g

ijki j


   , which equals N, is independent of g and k. Thus, the sum of all 

relative frequencies, 
1 1

ˆ
r c g

ijki j


   , always equals 1. 

The fitness of a chromosome depends on the fitness of its genes. It reflects 

how well-calibrated the forecast frequency ˆ g

ijk  is in comparison to pij, the 

observed proportion of times that X = i and Z = j in the observed data. A 

probability forecast is considered well calibrated if ˆ g

ijk  = pij. The larger the 

discrepancy between the observed relative frequency and the forecast probability, 

the less-calibrated the gene. Hence, the chromosome fitness , 1, ,g

kF k K , is 

gauged by the scoring rule  
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1
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k ijk ij

i j

F p
N


 

  , 

 

which is the sum of the squared differences of the observed and forecast 

frequency. The chromosomes within the population are hitherto evaluated and 

ranked according to this criterion. The fitness function , 1, ,g

kF k K  is a proper 
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scoring rule (Brier, 1950). Therefore, it ensures the sharpness and calibration of 

the probability forecasts of the selected chromosome. 

GA’s Design 

The proposed GA’s design follows. The initial population consists of K randomly 

generated chromosomes. Only the fittest 
2

K
 chromosomes of the population are 

granted procreation or crossover privileges. The other least fit 
2

K
 chromosomes 

are deemed too weak and, therefore, unworthy of mating. 

Crossover combines the genes of two existing chromosomes to generate two 

offspring. First, two chromosomes are selected to become parents, Parent1 and 

Parent2. Second, two integers s1 and s2 are randomly generated from the discrete 

intervals [1, r] and [1, c], respectively. Third, the sub-matrix consisting of the first 

s1 rows and the first s2 columns is cut out of Parent1 and positioned on the same 

location on Parent2, thus producing Child1. This new offspring consists of the 

intersection of the first s1 rows and s2 columns of Parent1 and of all other entries 

of Parent2. Simultaneously, a sub-matrix of the same size and location is removed 

from Parent1 and inserted into Parent2 in the same way, giving rise to a second 

offspring, Child2. This latter has the reverse composition of Child1 with the sub-

matrix of its first s1 rows and s2 columns emanating from Parent2 and the 

remaining entries from Parent1. Figure 1 illustrates the crossover of Parent1 and 

Parent2 to produce two children Child1 and Child2. The chromosomes are 5 × 3 

matrices; i.e., categorical variables X and Z have 5 and 3 classes, respectively. The 

crossover chooses the two integer numbers s1 = 3 and s2 = 2 from the discrete 

uniforms [1,5] and [1,3], respectively. The light grey shaded areas of the parent 

chromosomes combine to form Child1 and the dark grey shaded areas constitute 

Child2. 

To preserve the uniformity and hence the coherence of the new offspring, 

the alleles within Child1 and Child2 must be re-scaled. This requires that the 

relative frequencies in the child add up to 1. This is done by dividing each relative 

frequency by the existing total. The offspring are then merged with the existing 

population of generation g which consists of the 
2

K
 parents that were involved in 

crossover and the 
2
K  childless chromosomes. The merged population has 

2

2

K
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chromosomes: the K chromosomes of generation g and the 2 1
2 2

K K 
 

 
 offspring 

chromosomes. The merged population is then assessed and ranked. 
 
 

 
 
Figure 1. Crossover of two 5 × 3 parent chromosomes with s1 = 3 and s2 = 2 crossover 

points.  

 

 
 

Further evolution of the population is enabled through mutation. For each 

chromosome k, k = 1, …, K in the population of generation g, a random 

probability measure  0,1k   is generated. If αk is greater than α, the probability 

of mutation, the chromosome k is subject to a random swap of two of its alleles as 

follows. Two random integers s1 and s1' (resp., s2 and s2') are randomly chosen 

from the discrete uniform [1, r] (resp. [1, c]). The entries corresponding to 
1 2

ˆ g

s s k   

and 
1 2

ˆ g

s s k
 

 of k are then swapped. Mutation does not require the re-scaling of the 

alleles since the total relative frequency is fixed. The mutant replaces the least fit 

chromosome of the population if the former improves the latter. Once it 

completes the mutation step, GA ranks the population again. 

To maintain the vitality of the population, GA culls the weakest 

chromosomes. Applying the survival of the fittest principle, GA selects the elite 

group consisting of the fittest K chromosomes of the mutated population. This 

group serves as the population of the next generation or iteration g + 1. 
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GA iterates through the above steps (i.e., crossover, mutation, and selection) 

until it satisfies a stopping criterion. Preliminary testing of the algorithm suggests 

that the stopping criterion should be a preset number of iterations ng = 1,000. It 

ensures reasonably well-calibrated forecasts with a negligible fitness value of the 

best chromosome. 

The above GA determines the joint probability distribution of two 

categorical variables X and Z based on an observed sample of paired observation. 

This distribution is used to determine the conditional probabilities of X given Z 

and of Z given X. However, the joint and conditional distributions are valid for a 

stationary point in time. In the following, the GA is extended to account for a time 

component (if applicable). Thus, GA will provide point probability forecasts for 

future or past points in time; allowing for the comparison of results of scientific 

studies undertaken at different points on the time horizon. 

GA Across Time 

For applications that involve time, GA is altered so that it evolves over time in a 

manner similar to a Markov chain. Let t = t1, t2, t3, …, represent sequential points 

in time. At any arbitrary initial point in time tι, the GA is executed as described 

above until a well-calibrated population, t
P , comes to term. To move either 

forward or backward to instant tι, the GA is executed once more using tP

 as the 

initial population. The transition in time is made possible by altering the fitness 

function to  

 

  
2

1 1

1
ˆ

r c
t t t

k ij ij

i j

F p
N

   

 

  . 

 

When applied forward (resp. backward) in time, this procedure sets tι' to tι+1 

(resp. tι−1). Time points do not need to be equally spaced on the time horizon. 

Explained in Figure 2 is the application of GA for transitions, where the present 

time is indicated via a dashed arrow and the future/past via a solid arrow. At the 

present time tι, the initial population is generated randomly and GA is applied. 

The outcome of GA at the present time is then used as the initial population for 

the time tι', regardless of whether tι' = tι+1 or tι−1. 
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Figure 2. Forward and backward transition of GA in time. 

 

A Cross-Calibration Application 

In the assessment of stroke victims, standardized disability measures are 

commonly used. The scales are crucial in understanding the effectiveness of 

stroke treatments; yet, seldom is a patient assessed on more than one scale. A 

translation between two scales allows for the comparison among clinical trials and 

aids the development of alternative treatments. 

Consider two commonly used standardized stroke disability measures, and 

apply GA cross calibration to form a feasible translation between them. The first 

is the Barthel Activity of Daily Living (ADL) Index (BI) attributed to Mahoney 

and Barthel (1965). It is a general measure of ADL, applied to a spectrum of 

medical conditions. The second is the Modified Rankin Outcome Scale (RS) 

(Rankin, 1957). It is a measure of the severity of disability in stroke victims. 

Currently, it is the most widely used measure of disability assessment for stroke 

victims (Saver et al., 2010). Much work has been done to compare the 

effectiveness of the measures and to determine whether the same clinical 

conclusion can be drawn from them (Sulter et al., 1999; Saver et al., 2010; 

Uyttenboogaart et al., 2007). 

The BI defines 10 criteria of basic ADL and assesses the patients’ capability 

to perform each of them. A minimum score of 0 is given if the patient is incapable 

of carrying out the task, and a maximum score is attributed if the patient can 

perform the ADL task independently. Partial scores, presented in increments of 5, 
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are allocated to patients who can perform the tasks, but with varying degrees of 

assistance. The scores of the 10 tasks are compiled to create an aggregate score 

with a maximum of 100. That is, a BI score of 100 indicates that the patient is 

physically independent. 

The RS score assigns patients a discrete score from 0 to 5 depending on 

their degree of reliance on assistance and care. In contrast to the BI measure, a 

maximum RS score of 5 indicates the patient has severe disability and is highly 

dependent on nursing assistance. Whereas, a patient who exhibits no symptom of 

stroke debilitation and is independent is given a score of 0. Table 1 describes the 5 

RS rankings and the 10 ADL criteria assessed by BI and their maximal achievable 

scores. 
 
 
Table 1. The different measurement schemes: their measurement criteria and scores. 

 

a. The BI criteria for ADL 
 

b. The Modified Rankin Scale 

Item Maximum score 
 

Item  Score 

Feeding 10 
 

No symptoms  0 

Transferring  15 
 

No significant disability 1 

Grooming  5 
 

Slight disability  2 

Toileting  10 
 

Moderate disability  3 

Bathing 5 
 

Moderately severe disability 4 

Walking  15 
 

Severe disability  5 

Stairs 10 
   

Dressing 10 
   

Bowel continence 10 
   

Bladder continence 10 
 

    

 
 

The data used in this example was taken from the Kansas City Stroke Study 

(KCSS), a prospective cohort study of 459 individuals designed to characterize 

the patterns of recovery of patients with mild, moderate, and severe stroke. As 

described by Duncan et al. (2000), the 459 individuals with stroke were assessed 

using both the BI and RS instrumentations 14 days after the incidence of stroke. A 

follow-up was performed at 1, 3, and 6 months after stroke. Table 2 summarizes 

the observed data. 

All data was collected from hospitals in the Greater Kansas City area. The 

rating of the stroke patients in the study was performed on both the RS and BI 

scales by either a physical therapist or a study nurse. Despite the fact that the 

same enumerator rated each patient, the data is still subject to numerous sources 

of measurement error. One possible source is the two groups of raters: the study 
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nurses and the physical therapists. There can be differences both between and 

within these two groups on how they perceive and interpret the disability criteria 

measures. Likewise, a stroke patient’s subjective interpretation of daily functions 

can vary widely from patient to patient depending on a wide spectrum of factors 

such as the patient’s level of activity pre and post the advent of stroke. Another 

source of measurement error is how the enumerator perceives the patients’ 

activity and the many interaction effects therein. All of these factors (among 

others) culminate adding noise to the observed sample distorting the true 

distribution of the data. 
 
 
Table 2. Cross tabulation of the ADL scores of the KCSS at 1, 3, and 6 months after the 

onset of a stroke. The columns represent the RS score. The rows are the BI.  
 

Month 1 
      

Month 2 
      

Month 3 
     

BI\RS 0 1 2 3 4 5 
 

BI\RS 0 1 2 3 4 5 
 

BI\RS 0 1 2 3 4 5 

0 0 0 0 0 1 10 
 
0 0 0 0 0 1 7 

 
0 0 0 0 0 0 5 

5 0 0 0 0 0 9 
 
5 0 0 0 0 0 2 

 
5 0 0 0 0 1 2 

10 0 0 0 0 3 1 
 
10 0 0 0 0 0 2 

 
10 0 0 0 0 1 1 

15 0 0 0 0 2 1 
 
15 0 0 0 0 5 0 

 
15 0 0 0 0 3 0 

20 0 0 0 0 5 3 
 
20 0 0 0 0 3 0 

 
20 0 0 0 0 3 2 

25 0 0 0 0 7 1 
 
25 0 0 0 0 7 0 

 
25 0 0 0 0 4 1 

30 0 0 0 0 7 0 
 
30 0 0 0 0 6 0 

 
30 0 0 0 0 4 0 

35 0 0 0 0 8 0 
 
35 0 0 0 0 7 0 

 
35 0 0 0 1 3 0 

40 0 0 0 2 14 0 
 
40 0 0 0 0 3 0 

 
40 0 0 0 0 4 0 

45 0 0 0 0 4 0 
 
45 0 0 0 0 3 0 

 
45 0 0 0 0 2 0 

50 0 0 0 1 8 0 
 
50 0 0 0 1 6 0 

 
50 0 0 0 2 3 0 

55 0 0 0 1 9 0 
 
55 0 0 0 0 5 0 

 
55 0 0 0 3 5 0 

60 0 0 1 5 9 0 
 
60 0 0 0 3 6 1 

 
60 0 0 0 3 4 0 

65 0 0 1 5 3 0 
 
65 0 0 0 4 3 0 

 
65 0 0 1 0 5 0 

70 0 0 1 12 3 0 
 
70 0 0 1 11 8 0 

 
70 0 0 0 6 1 0 

75 0 0 1 19 6 0 
 
75 0 0 0 5 0 0 

 
75 0 0 0 12 2 0 

80 0 0 1 18 3 0 
 
80 0 0 6 12 0 0 

 
80 0 0 0 9 0 0 

85 0 0 4 26 0 0 
 
85 0 2 4 21 0 0 

 
85 0 0 3 18 0 0 

90 1 0 7 24 1 0 
 
90 1 2 9 23 0 0 

 
90 0 3 11 13 0 0 

95 1 4 31 13 0 0 
 
95 1 4 24 20 0 0 

 
95 2 6 35 16 0 0 

100 2 17 62 11 0 0   100 7 44 72 9 0 0   100 11 57 62 11 0 0 

 
 

Parmigiani et al. (2003) proposed a functional translation for the two 

measures using a statistical estimation approach. Although it produces adequate 

results, their approach requires that each characteristic of the relationship be 

modeled separately. GA avoids this. Its calibration accounts for all the 

relationship’s characteristics intrinsically. 
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The objective is to determine the conditional probability distributions 

P(BI|RS) and P(RS|BI) at stationary time points and across time. Since both 

conditional distributions are functions of the joint distribution P(BI,RS), GA 

determines only the latter. The GA is labeled vertical if applied at a stationary 

point in time and horizontal when applied either backward or forward across time. 

Given in Table 3 are the joint distributions of RS and BI assessments at 

month 1. Table 3a is the result of a vertical GA at month 1 whereas Table 3b is 

the result of a backward GA starting at month 6 and moving in time to month 3 

then to month 1. Both representations show good results; the negative correlation 

between the two scales is present, as expected, with higher probabilities attributed 

to the joint distribution of ratings along the counter diagonal in the lower triangle 

of Table 3. 
 
 
Table 3. GA representations of the joint distributions after month 1 of the onset of a 
stroke. a) The joint distribution is independent of the information in months 3 and 6; b) 

The resulting joint distribution at month 1 when the GA is allowed to work backward in 
time from month 6 to month 3 to month 1. 
 

a. Month 1: Random GA 
    

b. Month 1: Time Reversal 
   

BI\RS 0 1 2 3 4 5 
 

BI\RS 0 1 2 3 4 5 

0 0.000 0.000 0.000 0.000 0.006 0.027 
 
0 0.000 0.000 0.000 0.000 0.000 0.020 

5 0.000 0.000 0.000 0.000 0.000 0.025 
 
5 0.000 0.000 0.000 0.000 0.000 0.011 

10 0.000 0.000 0.000 0.000 0.008 0.006 
 
10 0.000 0.000 0.000 0.000 0.000 0.011 

15 0.000 0.000 0.000 0.000 0.006 0.006 
 
15 0.000 0.000 0.000 0.000 0.014 0.000 

20 0.000 0.000 0.000 0.000 0.013 0.008 
 
20 0.000 0.000 0.000 0.000 0.011 0.000 

25 0.000 0.000 0.000 0.000 0.020 0.006 
 
25 0.000 0.000 0.000 0.000 0.019 0.000 

30 0.000 0.000 0.000 0.000 0.019 0.000 
 
30 0.000 0.000 0.000 0.000 0.017 0.000 

35 0.000 0.000 0.000 0.000 0.024 0.000 
 
35 0.000 0.000 0.000 0.000 0.020 0.000 

40 0.000 0.000 0.000 0.006 0.049 0.000 
 
40 0.000 0.000 0.000 0.000 0.010 0.000 

45 0.000 0.000 0.000 0.000 0.012 0.000 
 
45 0.000 0.000 0.000 0.000 0.011 0.000 

50 0.000 0.000 0.000 0.006 0.023 0.000 
 
50 0.000 0.000 0.000 0.010 0.020 0.000 

55 0.000 0.000 0.000 0.006 0.026 0.000 
 
55 0.000 0.000 0.000 0.000 0.014 0.000 

60 0.000 0.000 0.006 0.013 0.024 0.000 
 
60 0.000 0.000 0.000 0.011 0.021 0.000 

65 0.000 0.000 0.006 0.013 0.008 0.000 
 
65 0.000 0.000 0.000 0.012 0.010 0.000 

70 0.000 0.000 0.006 0.032 0.008 0.000 
 
70 0.000 0.000 0.011 0.031 0.022 0.000 

75 0.000 0.000 0.006 0.051 0.018 0.000 
 
75 0.000 0.000 0.000 0.014 0.000 0.000 

80 0.000 0.000 0.006 0.049 0.008 0.000 
 
80 0.000 0.000 0.019 0.043 0.000 0.000 

85 0.000 0.000 0.011 0.067 0.000 0.000 
 
85 0.000 0.011 0.011 0.063 0.000 0.000 

90 0.006 0.000 0.020 0.078 0.007 0.000 
 
90 0.010 0.011 0.023 0.064 0.000 0.000 

95 0.006 0.011 0.067 0.049 0.000 0.000 
 
95 0.011 0.011 0.071 0.064 0.000 0.000 

100 0.006 0.018 0.067 0.033 0.000 0.000   100 0.021 0.133 0.094 0.024 0.000 0.000 

 
 

Similarly good results are reported for month 3, as depicted in Table 4, 

which gives its joint distribution. These results were achieved by applying the GA 
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forward (Table 4a), backward (Table 4b), and vertically (Table 4c); thus, allowing 

for the comparison of the three probability forecasts at month 3. All three GA 

approaches perform well, but the retrospective GA provides the best results. This 

conclusion is based on the smallest value of the fitness function and on how well 

the joint distribution exhibits the nature of the relationship between RS and BI. 
 
 
Table 4. GA representations of the joint distributions at month 3 after stroke onset. a) The 

joint distribution resulting from the GA going back in time from month 6 to month 3;         
b) The GA results independent of the information in months 3 and 6; c) The results of the 

GA moving forward in time from month 1 to month 3. 
 
a. Time Reversal 

 
b. Random GA 

BI\RS 0 1 2 3 4 5 
 

BI\RS 0 1 2 3 4 5 

0 0.000 0.000 0.000 0.000 0.000 0.020 
 

0 0.000 0.000 0.000 0.000 0.008 0.019 

5 0.000 0.000 0.000 0.000 0.000 0.008 
 

5 0.000 0.000 0.000 0.000 0.000 0.008 

10 0.000 0.000 0.000 0.000 0.000 0.008 
 

10 0.000 0.000 0.000 0.000 0.000 0.007 

15 0.000 0.000 0.000 0.000 0.012 0.000 
 

15 0.000 0.000 0.000 0.000 0.014 0.000 

20 0.000 0.000 0.000 0.000 0.008 0.000 
 

20 0.000 0.000 0.000 0.000 0.008 0.000 

25 0.000 0.000 0.000 0.000 0.020 0.000 
 

25 0.000 0.000 0.000 0.000 0.019 0.000 

30 0.000 0.000 0.000 0.000 0.020 0.000 
 

30 0.000 0.000 0.000 0.000 0.017 0.000 

35 0.000 0.000 0.000 0.000 0.023 0.000 
 

35 0.000 0.000 0.000 0.000 0.022 0.000 

40 0.000 0.000 0.000 0.000 0.010 0.000 
 

40 0.000 0.000 0.000 0.000 0.008 0.000 

45 0.000 0.000 0.000 0.000 0.008 0.000 
 

45 0.000 0.000 0.000 0.000 0.009 0.000 

50 0.000 0.000 0.000 0.008 0.020 0.000 
 

50 0.000 0.000 0.000 0.000 0.017 0.000 

55 0.000 0.000 0.000 0.000 0.020 0.000 
 

55 0.000 0.000 0.000 0.000 0.014 0.000 

60 0.000 0.000 0.000 0.010 0.023 0.000 
 

60 0.000 0.000 0.000 0.008 0.017 0.000 

65 0.000 0.000 0.000 0.011 0.008 0.000 
 

65 0.000 0.000 0.000 0.010 0.008 0.000 

70 0.000 0.000 0.000 0.031 0.021 0.000 
 

70 0.000 0.000 0.007 0.038 0.028 0.000 

75 0.000 0.000 0.000 0.020 0.000 0.000 
 

75 0.000 0.000 0.000 0.014 0.000 0.000 

80 0.000 0.000 0.020 0.038 0.000 0.000 
 

80 0.000 0.000 0.017 0.038 0.000 0.000 

85 0.000 0.010 0.011 0.061 0.000 0.000 
 

85 0.000 0.007 0.011 0.059 0.000 0.000 

90 0.000 0.011 0.025 0.064 0.000 0.000 
 

90 0.008 0.008 0.040 0.064 0.000 0.000 

95 0.000 0.009 0.084 0.068 0.000 0.000 
 

95 0.000 0.011 0.093 0.055 0.000 0.000 

100 0.020 0.124 0.118 0.027 0.000 0.000   100 0.011 0.122 0.128 0.027 0.000 0.000 

               c. Forward in Time 

        BI\RS 0 1 2 3 4 5 

 

BI\RS 0 1 2 3 4 5 

0 0.000 0.000 0.000 0.000 0.006 0.022 

 

55 0.000 0.000 0.000 0.000 0.020 0.000 

5 0.000 0.000 0.000 0.000 0.000 0.007 

 

60 0.000 0.000 0.000 0.017 0.020 0.007 

10 0.000 0.000 0.000 0.000 0.000 0.007 

 

65 0.000 0.000 0.000 0.011 0.009 0.000 

15 0.000 0.000 0.000 0.000 0.025 0.000 

 

70 0.000 0.000 0.007 0.033 0.023 0.000 

20 0.000 0.000 0.000 0.000 0.008 0.000 

 

75 0.000 0.000 0.000 0.022 0.000 0.000 

25 0.000 0.000 0.000 0.000 0.020 0.000 

 

80 0.000 0.000 0.017 0.050 0.000 0.000 

30 0.000 0.000 0.000 0.000 0.019 0.000 

 

85 0.000 0.010 0.011 0.064 0.000 0.000 

35 0.000 0.000 0.000 0.000 0.020 0.000 

 

90 0.008 0.007 0.025 0.079 0.000 0.000 

40 0.000 0.000 0.000 0.000 0.007 0.000 

 

95 0.000 0.017 0.074 0.063 0.000 0.000 

45 0.000 0.000 0.000 0.000 0.009 0.000 

 

100 0.025 0.045 0.118 0.042 0.000 0.000 

50 0.000 0.000 0.000 0.006 0.021 0.000                 

 
 

Table 5 provides the joint distribution of RS and BI for month 6. Obtained 

in Table 5a is this joint distribution using the past information in month 1; a 

vertical GA is then applied for month 3 first then for month 6. Applied in Table 

5b is a horizontal GA at month 6, using none of the data observed during months 

1 and 6. Again, although both techniques show good results, the forward GA 



ABOUKHAMSEEN & M’HALLAH 

737 

produces slightly better results as it uses additional sample information for its 

forecast. 
 
Table 5. GA representations of the joint distributions at month 6 after stroke onset.  a. 

The resulting joint distribution at month 6 when the GA is allowed to move forward in time 
from month 1 to month 3 to month 6.  b. The joint distribution independent of the 
information in months 1 and 3. 
 

a. Month 6: Time Dependent 
    

b. Month 6: Random GA 
   

BI\RS 0 1 2 3 4 5 

 
BI\RS 0 1 2 3 4 5 

0 0.000 0.000 0.000 0.000 0.006 0.027 

 
0 0.000 0.000 0.000 0.000 0.000 0.020 

5 0.000 0.000 0.000 0.000 0.000 0.025 

 
5 0.000 0.000 0.000 0.000 0.000 0.011 

10 0.000 0.000 0.000 0.000 0.008 0.006 

 
10 0.000 0.000 0.000 0.000 0.000 0.011 

15 0.000 0.000 0.000 0.000 0.006 0.006 

 
15 0.000 0.000 0.000 0.000 0.014 0.000 

20 0.000 0.000 0.000 0.000 0.013 0.008 

 
20 0.000 0.000 0.000 0.000 0.011 0.000 

25 0.000 0.000 0.000 0.000 0.020 0.006 

 
25 0.000 0.000 0.000 0.000 0.019 0.000 

30 0.000 0.000 0.000 0.000 0.019 0.000 

 
30 0.000 0.000 0.000 0.000 0.017 0.000 

35 0.000 0.000 0.000 0.000 0.024 0.000 

 
35 0.000 0.000 0.000 0.000 0.020 0.000 

40 0.000 0.000 0.000 0.006 0.049 0.000 

 
40 0.000 0.000 0.000 0.000 0.010 0.000 

45 0.000 0.000 0.000 0.000 0.012 0.000 

 
45 0.000 0.000 0.000 0.000 0.011 0.000 

50 0.000 0.000 0.000 0.006 0.023 0.000 

 
50 0.000 0.000 0.000 0.010 0.020 0.000 

55 0.000 0.000 0.000 0.006 0.026 0.000 

 
55 0.000 0.000 0.000 0.000 0.014 0.000 

60 0.000 0.000 0.006 0.013 0.024 0.000 

 
60 0.000 0.000 0.000 0.011 0.021 0.000 

65 0.000 0.000 0.006 0.013 0.008 0.000 

 
65 0.000 0.000 0.000 0.012 0.010 0.000 

70 0.000 0.000 0.006 0.032 0.008 0.000 

 
70 0.000 0.000 0.011 0.031 0.022 0.000 

75 0.000 0.000 0.006 0.051 0.018 0.000 

 
75 0.000 0.000 0.000 0.014 0.000 0.000 

80 0.000 0.000 0.006 0.049 0.008 0.000 

 
80 0.000 0.000 0.019 0.043 0.000 0.000 

85 0.000 0.000 0.011 0.067 0.000 0.000 

 
85 0.000 0.011 0.011 0.063 0.000 0.000 

90 0.006 0.000 0.020 0.078 0.007 0.000 

 
90 0.010 0.011 0.023 0.064 0.000 0.000 

95 0.006 0.011 0.067 0.049 0.000 0.000 

 
95 0.011 0.011 0.071 0.064 0.000 0.000 

100 0.006 0.018 0.067 0.033 0.000 0.000   100 0.021 0.133 0.094 0.024 0.000 0.000 

 
 

In all executions of GA for this example, the fitness function converges 

quickly. Despite its small magnitude, the fitness function never converges to zero. 

This only reiterates the fact that the observed sample data used for the assessment 

of the chromosomes’ fitness contains some noise, the sources of which were 

enumerated earlier. Figure 3 demonstrates how the fitness function decreases with 

the population evolution at a stationary point in time.  
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Figure 3. Convergence of the fitness function as the number of generations increases for 

a vertical GA applied at the stationary point 3 months after stroke onset. 

 

 
 

In summary, GA performs well. The population converges quickly. In each 

generation, the chromosomes of the population display the negative correlations 

and properties that characterize the nature of the relationship between RS and BI. 

The time dependent GA performs better than the vertical GA because of the 

additional observed information being used. In particular, it is evident from the 

joint distribution of the first two time periods that a backward transition in time 

produces results that are more compliant with the expected nature of the 

relationship between the RS and BI measures. 

Conclusion 

Estimating the joint distribution of two categorical variables based on an observed 

sample data that contains some bias is an important topic and a cross-calibration 

problem. Because of its theoretical complexity and its widespread applications in 

several fields ranging from engineering to medicine to meteorology to population 

statistics. It is, herein, approximately solved using a non-traditional statistical 

method: genetic algorithm. Unlike other existing statistical methods, the adopted 

genetic algorithm does not make any assumption on the type or strength of the 

relationship between the categorical variables. It uses the observed sample to 

gauge the chromosomes of the successive populations. It converges rapidly to a 

good estimate of the true joint distribution. When applied over a time horizon, the 

genetic algorithm further enhances its estimates as it uses more observed data. 

When applied to the data collected for the Kansas City Stroke Study, it obtains 

logical point probability forecasts that concord with the true state of nature. 
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The proposed genetic algorithm based cross calibration approach can be 

tested with more sophisticated scoring rules or different fitness functions. 

Similarly, it can be applied to overcome missing data; in particular in clinical 

studies where subjects may move to different cities, die, or simply decide to stop 

participating in the study, and also in engineering set ups where the more reliable 

measurement methods are destructive or expensive.  
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Missing data may be a concern for data analysis. If it has a hierarchical or nested 
structure, the SUDAAN package can be used for multiple imputation. This is illustrated 
with birth certificate data that was linked to the Centers for Disease Control and 
Prevention’s National Assisted Reproductive Technology Surveillance System database. 
The Cox-Iannacchione weighted sequential hot deck method was used to conduct 

multiple imputation for missing/unknown values of covariates in a logistic model. 
 
Keywords: Hierarchical or nesting structure, multiple imputation, weighted 
sequential hot deck 

 

Introduction 

Population-based hierarchical or nested data and multiple covariates are often 

used in maternal and child health research. The covariates may contain 

unknown/missing values, which are excluded in traditional model fitting such that 

only complete cases are used. Although the percent of unknown/missing values 

for one variable is usually small, the percent of unknown/missing values across all 

covariates may be larger. Using only complete cases in analysis reduces the 

effective sample size and testing power, which is especially concerning when the 
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outcome is infrequent since it likely introduces small-sample bias in logistic 

model fitting (King & Zeng, 2001; Rotnitzky & Wypij, 1994).  

One strategy to address the impact of missing values on parameter estimates 

is to use imputed data in analysis. A single imputation method fills each missing 

entry with an imputed value, such that standard complete-data methods can be 

used for analysis. This method ignores the variability contributed by the lack of 

information on the missing values, leading to variance underestimation. Another 

method, multiple imputation replaces each missing entry with two or more values 

and draws inferences by combining the results of several complete-data analyses 

to address within and between-imputation variability in variance estimation 

(Rubin, 1986, 1997; Schafer, 1999).  

The traditional multiple imputation method used by most commercial 

statistical software packages such as SAS, IVEware, etc., adopts a parametric 

approach such as regression imputation modeling and imputes data under an 

assumption that the data follow a multivariate normal distribution. The 

multivariate normal distributional assumption may not always hold, especially for 

multilevel hierarchical data with very small clusters. The aim of the present study 

is to demonstrate a method of multiply imputing missing values for data with a 

hierarchical or nested data structure using a well-known statistical software 

package. This approach is demonstrated using SUDAAN’s HOTDECK procedure 

(SUDAAN Release 11, RTI International, Research Triangle Park, North 

Carolina) and then fit logistic models using the multiply imputed data.  

Data  

A population-based dataset collected from multiple sources was used. It included 

live birth records (2000-2006) from Florida, Massachusetts, and Michigan linked 

to the National Assisted Reproductive Technology (ART) Surveillance System 

(NASS) at the Centers for Disease Control and Prevention (CDC) (Centers for 

Disease Control and Prevention, 2014). The population of interest was infants 

conceived via ART. To eliminate the potential impact of subsequent treatments on 

maternal complications and pregnancy outcomes, only the first live born infant of 

the first live birth was included if a woman was identified as having more than 

one birth in the time period (Grigorescu, et al., 2014). Because the NASS data 

were reported by each fertility clinic in the United States, the data had a 

hierarchical structure and observations were nested in fertility clinics. 

The main outcome of interest for our analysis was an Apgar score at five 

minutes, a binary variable corded as 0 (>=7) and 1 (<7). The Apgar score at five 
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minutes is the first test given to a newborn to quickly evaluate a newborn's 

physical condition with a score ranging from one to ten. Values of 7 and above 

are considered normal. The independent covariates in a logistic model were 

reason for ART (V1), maternal age (V2), race/ethnicity (V3), education (V4), 

adequacy of prenatal care (V5), co-morbid conditions (V6), delivery method (V7), 

induction of labor (V8), gestational age (V9), newborn gender (V10), and birth 

weight (V11) (Grigorescu, et al., 2014). 

Missing Value Imputation  

SUDAAN was developed to analyze data from complex surveys; however 

SUDAAN is also able to analyze other hierarchical or nested data, or non-survey 

data. Data inspection showed that the amount of data missing for the outcome 

value was extremely small (<0.3%) so observations with missing outcome values 

were excluded, and imputed values only for observations with missing values for 

the covariates. SUDAAN’s HOTDECK procedure was used to impute missing values 

of covariates, because 8.3% of the observations had a missing value for at least 

one covariate, resulting in a reduction of 67 cases. HOTDECK replaces missing 

values of one or more variables of a recipient using observed values from a 

“similar” respondent. Since our data were naturally clustered, i.e., the 

observations (infants) were clustered in fertility clinics, we restricted to obtaining 

the pool of respondents by clinic and replacing missing values of recipients in the 

same clinic. For each infant with missing values of the covariates 

(V1, V2, …, V11), the HOTDECK procedure collected a set of similar infants from 

the same clinic (cluster) without missing covariates. From this set, randomly 

chosen infants were used to fill in the missing values of the covariates with 

replacement where each variable was filled separately. This process was repeated 

until all infants with missing values for covariates within the clinic were imputed. 

SUDAAN’s HOTDECK procedure uses a weighted sequential hot deck method 

proposed by Cox (1980) and Iannacchione (1982) to perform imputation, the 

default method for PROC HOTDECK. 

The SAS-callable SUDAAN was used with the following code for the 

HOTDECK procedure: 

 

PROC HOTDECK DATA=DATA_INPUT SEED=3123845; 

IMPBY CLINIC;  

IMPID INFANT_ID; 

IMPVAR V1 V2 … V11/MULTIMP=5; 
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WEIGHT _ONE_; 

IMPNAME V1=”V1_IMP” V2=”V2_IMP” … V11 = “V11_IMP”; 

IDVAR APGAR; 

OUTPUT /IMPUTE=default FILENAME=OUTDATA REPLACE; 

RUN; 

 

 In the PROC HOTDECK statement, DATA= specifies the input dataset 

(DATA_INPUT) which includes variables with missing values. The SEED= specifies 

an integer to generate a random number for the imputation. The cluster variable is 

specified on the IMPBY statement (CLINIC); data must be sorted by this cluster 

variable prior to running this procedure. Each observation clustered within the 

clinic is identified using the IMPID statement, in this case by the infant variable 

(INFANT_ID). The variables with missing values to be imputed (V1, V2, …, V11) 

are listed in the IMPVAR statement. The option, MULTIMP=5, in the IMPVAR statement 

specifies that five imputed datasets are to be created. For the non-survey data, set 

the variable in the WEIGHT statement to be _ONE_, a default option in SUDAAN to 

indicate no weighting. 

The IMPNAME statement assigns variable names for imputed variables 

(original variable name + IMP in our case). For each imputation, SUDAAN 

assigns a consecutive number after the imputed variable name (V1_IMP1 V2_IMP1 

… V11_IMP1 in the first imputation, V1_IMP2 V2_IMP2 … V11_IMP2 in the second 

imputation, etc.). The IDVAR statement specifies that our outcome variable (APGAR), 

which was not imputed, should be included in the output dataset. The OUTPUT 

statement provides a dataset with all imputed variables, the cluster variable 

(specified by IMPBY), the imputation identification variable (specified by IMPID), 

and variables not imputed (specified by IDVAR). The option IMPUTE=default 

indicates that the output dataset will include all imputed variables (11×5 = 55 

imputed variables), the option FILENAME= specifies the name of the output dataset 

(OUTDATA), and the option REPLACE instructs SUDAAN to overwrite any existing 

dataset with the same name. 

PROC MI in SAS (SAS v. 9.3, Cary, NC) was used to impute missing values 

in order to compare imputation results from PROC MI to those obtained from 

SUDAAN’s PROC HOTDECK. The MI procedure is a parametric multiple imputation 

procedure that creates multiply imputed data sets using predicted values rather 

than observed values as HOTDECK to replace missing values. Due to some clinics 

having fewer than three observations (38.8% of total included clinics), PROC MI 

failed to provide any output for imputation. This demonstrates that the parametric 

imputation approach, such as sequential regression models, is limited in dealing 
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with very small clusters for multiple imputation. Because the MI procedure does 

not adequately perform imputation for the data, this method is not described in 

detail.  

Statistical Analysis 

Multiply imputed data was used. According to Rubin (1978), the multiple 

imputation estimator (denoted as ̂ ) of parameter is the average of the estimators 

obtained from all K imputed datasets: 
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The variance of 
K  is the sum of the average within (imputed dataset)-

imputation variance and the between (imputed datasets)-imputation variance. 

Because the population data was used, the finite population correction can be 

ignored, denoting the variance of the ith imputed dataset as Wi, the average within-

imputation variance is: 
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The overall variance of 
K  is the sum of within-imputation variance and the 

between-imputation variance, with a bias correction for the finite number of 

multiply imputed data sets: 
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The SAS-callable SUDAAN RLOGISTIC procedure was used to fit a random 

effects logistic regression model using imputed data. Collinearity was inspected 

between covariates using Zack’s SAS Macro (n.d.) for the logistic model with the 

following RLOGISTIC procedure: 
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PROC RLOGIST DESIGN=WR DATA=IMPN1 MI_COUNT=5;  

NEST _ONE_ CLINIC; 

WEIGHT _ONE_; 

CLASS V1_IMP …; 

REFLEVEL V1_IMP=1 …;  

MODEL APGAR= V1_IMP V2_IMP … V11_IMP; 

RUN; 

 

In the PROC RLOGISTIC statement, set DESIGN = WR (sampling with 

replacement for population data, SUDAAN’s default design). Using the output 

dataset from the imputation procedure (OUTDATA), we created 5 datasets (Sinharay, 

Stern, and Russell, 2001), one for each imputation, and each dataset included 14 

variables, INFANT_ID, CLINIC, APGAR, V1_IMP, V2_IMP, …, V11_IMP for model fitting. 

Assign the names IMPN1, IMPN2, IMPN3, IMPN4 and IMPN5 to these datasets. The 

options DATA=IMPN1 and MI_COUNT=5 informs SUDAAN to use all five datasets 

(IMPN1, IMPN2, IMPN3, IMPN4, IMPN5) for pooling the estimates from the five logistic 

models. The statements NEST and WEIGHT are set for non-survey data that are 

nested within clinics (CLINIC). The CLASS statement is used to specify the 

categorical covariates and the REFLEVEL statement specifies the reference level for 

each categorical variable. Note with DESIGN=WR and the NEST and WEIGHT 

statements as listed, the variable CLINIC is modeled as a random effect. 

Results 

There were 335 cases with an Apgar score less than seven found in 16,833 infants 

in the data. The primary risk factor of interest was a three level (tubal obstruction 

only, ovulatory dysfunction only, and other reasons) variable of infertility 

diagnosis (reason for ART, V1). The primary interest was in comparing women 

with ovulatory dysfunction only to women with tubal obstruction only, 

controlling for other covariates mentioned above. Using imputed data, all 335 

cases were included in the adjusted model; however, only 268 cases and 15,430 

infants could be used for the adjusted model derived from the original non-

imputed data (20.0% less cases and 8.3% less infants). For our multivariable 

logistic model, the inspection of collinearity using Zack’s SAS Macro showed 

that only one condition index is greater than 30, indicating no sign of 

multicollinearity between covariates. 

The odds ratios, 95% confidence intervals (CI), and P values for the 

unadjusted and adjusted models for reason for ART are compiled in Table 1. 



USING MULTIPLE IMPUTATION TO ADDRESS MISSING VALUES 

750 

Comparing a diagnosis of only ovulatory dysfunction to only tubal factor, the 

unadjusted odds ratio (OR) using all 335 cases was 1.86 (95% CI: 1.31-2.63, P-

value = 0.0005). Notice that the missing for V1 was negligible (comparing the 

imputed data adjusted odds ratio to the non-imputed data adjusted odds ratio) and 

no cases were deleted from the unadjusted analysis. Using the multiply imputed 

data, the adjusted odds ratio was 1.93 (95% CI: 1.31-2.84, P-value = 0.0009) and 

using the non-imputed data, the adjusted odds ratio was 1.73 (95% CI: 1.12-2.69, 

P = 0.015). 
 
 

Table 1. Unadjusted odds ratio (OR) and adjusted odds ratio (aOR) for reasons 
for ART 
 

Reason for ART 
OR (95% CI*) 

P value 

Imputed data 
aOR (95% CI*) 

P value 

Non-Imputed data 
aOR (95% CI*) 

P value 

Tubal Obstruction 
only 

Ref Ref Ref 

Ovulatory Dis-
function only 

1.86 (1.31-2.63) 
0.0005 

1.93 (1.31-2.84) 
0.0009 

1.73 (1.12-2.69) 
0.015 

Other reasons 
1.20 (0.85-1.69) 

0.297 
1.35 (0.91-1.99) 

0.134 
1.27 (0.91-1.77) 

0.152 
 

*CI-Confidence interval  

 
 

Because there were a small number of infants with Apgar scores less than 7 

(335/16,833), there was a concern that missing values of covariates would change 

the results of the adjusted model. This concern was addressed using the method of 

multiple imputation. Because the data were naturally clustered, consider the 

impact of such data structure in multiple imputation and modeling, which likely 

provides better statistical inferences than not addressing such impact on analysis. 

The SUDAAN HOTDECK procedure imputed missing values by incorporating 

covariate information in the imputation process. The merit of this approach is to 

use real (and hence realistic) values in imputation without strong parametric 

assumptions, and to provide good inferences for linear and non-linear statistics 

(Andridge & Little, 2010). However, this procedure has limitations, because it 

requires good matches of respondents to recipients based only on available 

covariate information and finding good matches is more likely in large clinics. 

Moreover, repeating the HOTDECK with the same respondent pool but randomly 

sorting data is an arguable imputation procedure. To determine the impact of this 

method on the results, we also conducted the analysis using the traditional 

complete observations method. In this study, the results were similar, meaning 
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multiple imputation may not be necessary. However, the conclusion does not 

exclude the possibility that results may vary across applications.  

The data had a hierarchical or nested data structure with observations 

(infants) clustered within fertility clinics. The impact of this data structure was 

addressed in the multiple imputation and statistical analysis using the SUDAAN 

software package. The example provided could be applied to other datasets with 

hierarchical or nested structures where missing values of variables are a concern. 

Disclaimer 

The findings and conclusions in this report are those of the authors and do not 

necessarily represent the official position of the Centers for Disease Control and 

Prevention. 
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The need for analysts with expertise in big data software is becoming more apparent in 
today’s society. Unfortunately, the demand for these analysts far exceeds the number 

available. A potential way to combat this shortage is to identify the software sought by 
employers and to align this with the software taught by universities. This paper will 
examine multiple data analysis software – Excel add-ins, SPSS, SAS, Minitab, and R – 
and it will outline the cost, training, statistical methods/tests/uses, and specific uses 
within industry for each of these software. It will further explain implications for 
universities and students. 
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Introduction 

In the age of big data, technology has transformed how business decisions are 

made. According the McKinsey Global Institute, “decision making will never be 

the same; some organizations are already making better decisions by analyzing 

entire datasets from customers, employees, or even sensors embedded in products” 

(Manyika et al., 2011, p. 5). In addition to intuition and judgment, business 

personnel use various software to draw conclusions from data sets and to thereby 

make decisions. 

In measuring the popularity of many data analysis software, Muenchen 

(2014) noted discovering the software skills that employers are seeking would 

“require a time consuming content analysis of job descriptions” (para. 17). 

Muenchen found other ways to determine the statistical software skills that 

https://doi.org/10.22237/jmasm/1493599200
mailto:ceyhun.ozgur@valpo.edu
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employers seek. One method is to examine which software they currently use. 

Muenchen cited a survey conducted by Rexer Analytics about the relative 

popularity of various data analysis software in 2010. The results are pictured in 

Figure 1. Data miners use R, SAS, and SPSS the most. It can be inferred these are 

the software skills that the greatest proportion of employers will continue to look 

for in their potential employees. However, this method only examines the 

software that employers might seek if they are hiring, so it does not accurately 

measure the software that they currently look for in their current employees. 

Another method used by Muenchen (2014) was to study software skills 

employers currently seek as they try to fill positions. A rough sketch of statistical 

software capabilities sought by employers was put together by perusing the job 

advertising site Indeed.com, a search site the comprises major job boards – 

Monster, Careerbuilder, Hotjobs, Craigslist – as well as many newspapers, 

associations, and company websites. The results are summarized in Figure 2. 
 
 

 
 
Figure 1. 2010 Rever Analytics survey results of analytic tools (Muenchen, 2014) 
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Figure 2. Jobs requiring various software (Muenchen, 2014) 

 

 

As seen, in contrast to R’s greater usage in companies over SAS, illustrated 

in Figure 1, jobs requiring SAS led to more positions than any other data analysis 

software. For employers, SPSS and R skills finished in second and third place. 

This second estimation method of Muenchen (2014) measured the software skill 

deficits in the job market. It seemed the demand for people with SAS skills 

outweighs the number of individuals with this capability. One reason for this 

disconnect could be that college and university faculty are not teaching SAS skills 

in proportion to the demand for these skills (Lofland & Ottesen, 2013). 

To assess this potential disconnect, a non-random survey was conducted 

with faculty from eighteen departments, which included small and large, state and 

private, undergraduate and graduate, and East and West, with the results compiled 

in Table 1. As expected, there was a discrepancy between the software taught and 

the software sought. SAS led in job openings, but data analysis software taught at 

those universities did not reflect it. Only a few departments had faculty who 

taught SAS more than R or SPSS. 

The faculty at some departments did not teach any software at all. For 

example, at Valparaiso University, faculty in the Information and Decision 

Sciences Department did not teach statistical software, although in certain courses 

the faculty utilized SPSS, SAS, and R. Excel was the most applicable software 

used. 
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Table 1. Results from a survey of statistical software packages taught (Compiled by 

Kleckner, 2014) 
 

Department 
Software Taught at 

Grad Level 
Software Taught at 

Undergrad Level 

Large, Midwestern, State Universities 

Actuarial Science SAS, Excel, Mathematica SAS 

Mathematics None none 

Marketing SAS, SPSS, JMP N/A 

Marketing SPSS, Excel* SPSS, Excel* 

   
Large, Southeastern, State Universities 

Statistics 
SAS, R, SAS Enterprise 

Miner 
SAS, R, JMP 

Engineering 
Excel, JMP, Matlab, 

Mathematica, Mathcad 
SAS, Excel, JMP, Matlab, 

Mathematica, Maple, Mathcad 

Economics N/A SAS, R, ForecastX, GRETL 

Economics 
No Graduate Program in 

Economics 
SPSS, Excel, Stata 

Information Systems & 
Decision Sciences 

SAS, SPSS, Excel, 
Megastat, JMP, SAP, 

Minitab, Matlab, Stata, 
Mathematica* 

SAS, SPSS, Excel, Megastat, 
JMP, SAP, Minitab, Matlab, 

Stata, Mathematica* 

   
Medium, Northeastern, Private Universities 

Statistics 
SAS, R, Excel, Minitab, JMP, 

Matlab, Python 
N/A 

Mathematics 
SAS, R, JMP, Matlab, 
DataDesk, ActivStats* 

SAS, R, JMP, Matlab, 
DataDesk, ActivStats* 

   
Medium, Southeastern, Private University 

Biostatistics 

SAS, SPSS, Minitab, 
Mathematica, Fortran, 

StatExact, Spatial Stat, C, 
C++ 

No Undergraduate Program in 
Biostatistics 

   
Small, Midwestern, Private Universities 

Mathematics & Computer 
Science 

N/A SAS, Excel 

Mathematics No Graduate School 
SPSS, Excel, Minitab, 

Mathematica 

Statistics No Graduate School R 

Economics No Graduate School Minitab, GRETL 

   
Small, Southern, Private Universities 

Computational and Applied 
Mathematics 

Matlab, C, C++ Matlab, C, C++ 

Statistics 
SAS, SPSS, R, Excel, JMP, 
Matlab, Mathematica, Stata 

JMP, Stata 

 

Note: * These schools did not specify whether the software listed were for graduate or undergraduate students, 

so we assumed both 
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This survey was not random, and therefore they cannot be generalized 

throughout the United States. However, within the sample, there was a trend seen 

in quantitative, engineering, and business departments, where the use of statistical 

packages were not aligned to the skills required by employers. 

Paying attention only to job availability, it seems that many schools need to 

reconsider their software choice in favor of implementing SAS. Nevertheless, 

there are many factors to consider other than the popularity within the job market. 

Faculty must also consider the cost and time effectiveness of incorporating each 

software into their curriculum. Further, faculty in specific departments within the 

school should consider which software best fits their area of study. 

Purpose of the Study 

The purpose of this study is to gather and condense the necessary information for 

teaching statistical software. It will assist faculty in their software choices, and it 

will help their counterparts in business decide which software is best to bring their 

workforce to the next level of capability. This has increased importance as big 

data analysis becomes a necessity in business, as Manyika et al. (2011) noted. 

The impact of developing a superior capacity to take advantage of big data 

will confer enhanced competitive advantage over the long term and is therefore 

well worth the investment to create this capability. But the converse is also true. 

In a big data world, a competitor that fails to sufficiently develop its capabilities 

will be left behind. Big data can no longer be ignored, as noted by the successes 

of companies where it is invoked as compared to less-modern competitors 

(Manyika et al., 2011). 

Computer software can be written to flexibly support statistical practice 

(Buchan, 2000). Hence, the focus of this study is on SAS, SPSS, and R software, 

because both methods in Muenchen’s (2014) study indicated they are the three 

most competitively sought software in business. 

Minitab for Teaching Purposes 

Minitab’s Quality Trainer teaches users how to analyze data online. This 

multimedia course includes animated lessons that bring statistical concepts to life, 

and interactive quizzes that give real-time feedback. Hands-on exercises walk the 

user through applying statistics with Minitab Statistical Software, so knowledge 

may be put to use immediately. 
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Quality Trainer contains nine chapters with 141 interactive lessons that can 

be repeated. It covers statistics needed to analyze quality improvement data, 

including Basic Statistics, Control Charts, Process Capability, ANOVA, DOE, 

and more. Easily implementation of projects using a comprehensive collection of 

more than 100 tools specifically designed for each task. These built-in templates 

promote greater speed and accuracy. 

Below is a list detailing Minitab guide use of statistical and other tools to 

manage projects:  

 

 Value Stream Mapping: Establish the flow of materials and information 

through your organization. Streamline processes to add value that meets 

customer expectations. 

 Fishbone Diagram: Identify every relevant element of your process and 

refine the scope of complex projects. 

 On-Demand Coaches: Receive the expert guidance you need to complete 

every step of your project. Add your own instructions or information to 

any Coach. 

 Process Mapping: Construct high-level or detailed flow charts that help 

you understand and communicate all the activities in a process. Assign 

variables to each shape and then share them with other tools. 

 FMEA (Failure Modes and Effects Analysis): Identify the potential causes 

for a product or process failure, anticipate the resulting effects, and 

prioritize the actions needed to mitigate them. 

 Pugh Matrix: Compare product design proposals and improvement 

strategies and determine which ones best fulfill your customer 

requirements and organizational goals. 

 Capture Analysis: Identify and record the important and relevant sections 

of your Minitab analyses. 

 Financial Analysis: Estimate your project savings and the timeframe for 

realizing them. 

 Project Risk Assessment: Evaluate whether a potential project can be 

successfully completed on time. 

 Stakeholder Analysis: Summarize the impact your stakeholders have on 

your project so you can more effectively leverage their support and 

address their concerns. 

 5S Audit: Evaluate process conditions relative to 5S best practices and 

track the ongoing implementation of 5S improvements and controls. 
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 SIPOC (Supplier-Input-Process-Output-Customer) Analysis: Identify 

every relevant element of your process and refine the scope of complex 

projects. 

 C&E (Cause and Effects) Matrix: Save time determining what X variables 

to address by comparing and evaluating their potential to impact your goal.  

 Y Metrics Chart: Evaluate the progress of your project over time in 

relation to its baseline and goal. 

 Insert Team Members: Easily add team members to your project from 

your e-mail address book or other file. 

Excel Add-Ins 

Add-ins are programs that add optional features and commands. With regard to 

Microsoft Excel, there are add-ins for a multitude of purposes: data analysis, 

presentation, investment, business, personal, utilities, and productivity tools, and 

organization. Within data analysis are the Analysis Toolpak, Solver, MegaStat, 

and PHStat. Both MegaStat and PHStat access codes come with a textbook. 

However, if an access code isn’t available for PHStat, the MegaStat add-ins are 

available separately from McGraw-Hill 

(http://highered.mheducation.com/sites/0077425995/information_center_view0/in

dex.html) and Pearson (https://wps.aw.com/phstat/), respectively. Although the 

Analysis Toolpak and Solver are free add-ins, MegaStat is not. 

MegaStat Training 

With the current focus on STEM (science, technology, engineering, and 

mathematics), students and workers may already be familiar with Microsoft Excel 

or similar spreadsheet software. Building on this familiarity, Burdeane (O. 

Burdeane, personal communication, January 29, 2014) explained, “Since 

MegaStat looks and works like Excel, almost anyone could use it to generate 

some output with just a few minutes of training”. MegaStat has dialog and input 

boxes, buttons, and checkboxes that work largely the same as those in Excel. 

Therefore, the 53-page tutorial PDF – complete with a step-by-step process to 

using each test that MegaStat performs, and pictures at every step – will likely 

provide sufficient guidance to effectively use this software. 

http://highered.mheducation.com/sites/0077425995/information_center_view0/index.html
http://highered.mheducation.com/sites/0077425995/information_center_view0/index.html
https://wps.aw.com/phstat/
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Statistical Methods/Tests/Uses 

MegaStat can perform a multitude of statistical operations: descriptive statistics, 

frequency distributions, probability, confidence intervals and sample size, 

hypothesis tests, ANOVA, regression, time series/forecasting, chi-square, nine 

nonparametric tests, quality control process charts, and generate random numbers 

(McGraw-Hill Education, 2014). SPSS and SAS, for example, have more 

advanced options, “especially in the area of multivariate statistics” (O. Burdeane, 

personal communication, January 29, 2014). However, “MegaStat can handle 

most things encountered by non-PhD statisticians” (O. Burdeane, personal 

communication, January 29, 2014). 

The major caveat for this inexpensive and easy-to-use software is its size 

capability. For example, Burdeane (O. Burdeane, personal communication, 

January 29, 2014) experimented with the number of data points that MegaStat can 

handle, and noted, “I did find a file with 10 columns and 152630 rows. That is 

over 1.5 million data points and MegaStat did a descriptive statistics analysis on it 

in about 10 seconds.” Although the capability to analyze a million and a half data 

points sounds quick, this capability may not meet the demand of large companies, 

because “Wal-Mart handles more than a million customer transactions each hour 

and imports those into databases estimated to contain more than 2.5 petabytes of 

data,” and “Facebook handles more than 250 million photo uploads and the 

interactions of 800 million active users with more than 900 million objects (pages, 

groups, etc. – each day” (Troester, 2012, p. 1). Extracting this data and making 

use of it using MegaStat is not feasible. Other restrictions of MegaStat include its 

limitation to twelve independent variables in multiple regression and restrictions 

on variables and table size (O. Burdeane, personal communication, January 29, 

2014). 

Burdeane (personal communication, January 29, 2014) opined 

 

I would guess that most use of MegaStat in companies is by people who 

are not professional statisticians. I think people with formal training in 

statistics beyond an introductory course would have experience with one 

of the big packages (SAS, SPSS, Minitab) and would tend to stick with 

that software even if it was overkill for many analyses. 

 

Burdeane also suggested many analyses do not require major packages, like SAS, 

SPSS, and R, but statisticians stick to them because they are comfortable. 
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However, personnel in industry still use Excel. For example, a global 

appliance manufacturer uses Excel “for extensive ‘What If’ analysis around 

budgeting” and to forecast (J. Ward, personal communication, January 20, 2014). 

Other Excel Add-Ins 

 Analyse (www.analyse-it.com) Standard Edition 

 XLStat (www.xlstat.com) from Addinsoft’s website. 

 NumXL (www.spiderfinancial.com/products/numxl) 

 Quantum XL (www.sigmazone.com) 

SPSS 

SPSS, originally termed Statistical Package for the Social Sciences, was released 

in 1968 as a software designed for the social sciences. A series of companies 

subsequently acquired SPSS, ending with International Business Machines (IBM), 

the current owner, during which time the product’s user base was expanded. 

Therefore, its former acronym was replaced with Statistical Product and Service 

Solutions to reflect the greater diversity of its clients. Along with Minitab, it is 

one of the leading statistical packages used in the social and behavioral sciences. 

Cost 

Consumers can buy SPSS software packages separately by choosing a particular 

product that they think will satisfy their need; however, SPSS offers bundles that 

cost much less than paying for the programs independently. SPSS offers three of 

these bundles: standard, professional, and premium. 

Within each of these bundles, SPSS gives four options: an authorized user 

license, authorized user initial fixed term license, concurrent user license, and 

concurrent user initial fixed term license. Thus, when customers decide they want 

to purchase SPSS, they have to make two decisions: user license versus initial 

fixed term license, and authorized user versus concurrent user. User licenses 

never expire, while initial fixed term licenses last for twelve months. An 

authorized user is a single licensee who buys the right to use the program; a 

concurrent user is the right for a single person to use the program at a given time, 

but it does not distinguish who this person has to be. 

SPSS also offers student packages for college attendees. Students can 

purchase the single user initial fixed term license “SPSS GradPack” software 

from their college or university, or they can buy it from SPSS’s official 

https://www.analyse-it.com/
https://www.xlstat.com/
https://www.spiderfinancial.com/products/numxl
https://www.sigmazone.com/
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distributers, like Creation Engine, On the Hub, StudentDiscounts.com, Studica, or 

ThinkEDU (IBM, n.d.c). For example, on the Creation Engine website, students 

can buy the SPSS Statistics Premium GradPack (IBM, n.d.a). 

Training 

Crossman (n.d.) addressed the difficulty of using SPSS for the first time: 

 

SPSS provides a user interface that makes it very easy and intuitive for all 

levels of users. Menus and dialogue boxes make it possible to perform 

analyses without having to write command syntax, like in other programs. 

It is also simple and easy to enter and edit data directly into the programs. 

(SPSS section, para. 1) 

 

Although SPSS does look similar to typical spreadsheet applications like Excel, 

and its ease of use is very comparable to Excel as well, the cells cannot be 

manipulated in spreadsheet fashion. 

Statistical Methods, Tests, Uses 

“SPSS was designed specifically for statistical processing of large amount of data 

at an enterprise level,” while spreadsheets are broadly applicable to many 

different tasks outside of statistical computing (Robbins, 2012, para. 3). An 

advantage of this specialized design is that SPSS “keeps calculated statistics and 

graphs separate from the raw data but still easily accessible” (Robbins, 2012, para. 

3). SPSS software furthermore has a much more convenient platform for 

performing statistical tests. For instance, performing a one-sample t-test in Excel 

(without a plug-in) requires some independent calculations by the user, whereas 

with SPSS, the user only needs to “select a variable and supply the value to 

compare with [the] sample” and click “Ok” (Robbins, 2012, para. 4). Another 

advantage of SPSS is that it links numerically coded data to its original meaning 

(Robbins, 2012). With most data being electronically stored in numerical fashion, 

this feature of SPSS is highly valuable. 

SPSS’s standard bundle includes its statistics base, advanced statistics, 

bootstrapping, custom tables, and regression capabilities. Purchasing the 

professional bundle further supplies the consumer with the categories, data 

preparation, decision trees, forecasting, and missing values features. The most 

comprehensive bundle, premium, provides the user with the complex samples, 

conjoin, direct marketing, exact tests, neural networks, amos, sample power, and 
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visualization designer, in addition to all of the packages from the professional 

bundle (IBM, n.d.b). SPSS is also useful for generating plots of distributions and 

trends, charts, and tabulated reports. 

Specific Uses in Industry 

On its website, prospective SPSS clients can read about applications in fields like 

automotive, banking, chemical and petroleum, computer services, consumer 

products, education, electronics, and energy and utilities. They can also access a 

list of SPSS’s clients. Below are specific examples of SPSS at work within 

business. 

 

 Infinity Insurance uses SPSS’s predictive analytics feature to detect 

fraudulent claims (IBM, n.d.e). 

 “By mining alumni and stakeholder records, social media and other 

unstructured data-sets with text analytics software, [Michigan State 

University] gains insights into the engagement, sentiments and behavior of 

current and potential donors,” which enables smarter fundraising (IBM, 

n.d.d). 

 The Guardia Civil, Spain’s very first national law enforcement agency, has 

investigated crimes and psychology using SPSS (IBM, n.d.d). 

 One distinguished hospital uses SPSS to forecast payment behavior. It 

tries “to better identify patients who are most likely to pay their hospital 

bills” by what it calls “predict[ing] patient payment potential” (IBM, 

n.d.d). 

SAS 

SAS (Statistical Analysis System) is a commercial statistical package that was 

developed during the 1960s at North Carolina State University as part of an 

agricultural research project. Its usage has grown considerably. Ninety-one of the 

top one hundred companies on the 2013 Fortune Global 500 list use the software 

(SAS Institute, n.d.a). SAS does not run on Mac computers very easily. One way 

to run the software on a Mac computer is through parallels, where users buy and 

run the Windows interface as well. 
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Cost 

An individual license of the Analytics Pro version is available on an annual basis, 

with a price reduction for subsequent years. With a few more features than the 

Analytics Pro system, the Visual Data Discovery package is more expensive, 

although renewals are available with a price break.  It is important to consider the 

added costs if a user wishes to perform data analysis for the benefit of some other 

party. A different license must be obtained by consulting a SAS representative 

(SAS Institute, n.d.c). 

One of these alternative licenses is a server-based license. These licenses 

certainly save schools and businesses money by allowing their affiliates each to 

access the software through a web-based connection or a network. SAS fills these 

requests on a case-by-case basis, so interested customers should speak to SAS 

directly to get a quote (SAS Institute, n.d.c). 

On top of these two versions, SAS has created an OnDemand edition, which 

is available at no cost to degree granting institutions. Professors can set up an 

account online, and they and their students can access the software anywhere with 

an Internet access. Although this free software “has been reported to be slow at 

times,” it definitely provides a great opportunity for schools to teach students the 

basics of SAS programming (Lofland & Ottesen, 2013, p. 3). 

In addition to the software license, there is also considerable cost time in the 

form of installation. Lofland and Ottesen (2013) explained that “SAS can be 

difficult for users to obtain and the initial installation is sometimes tricky […] 

long and difficult” (p. 3). However, SAS does not require users to install 

additional packages. 

Training 

Crossman (n.d.) claimed, “SAS is a great program for the intermediate and 

advanced user because it is very powerful, can be used with extremely large data 

sets, and can perform complex and advanced analyses” (SAS section, para. 1). 

SAS requires more training than Excel and SPSS, because it largely runs on 

programming syntax rather than point-click menus that other software boast. 

The amount of training necessary for individuals to properly use SAS 

depends on many factors, including the trainee’s background and the type of 

analysis she will need to perform. In terms of background, prospective SAS 

programmers with prior programming experience will have a much easier time. 

SAS syntax resembles that of other programming languages, so experience with 

one language often helps learn another. For instance, SAS is similar to Java in that 
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both contain data values, function calls, identifying key words at the beginning of 

each line, and semicolons at the end of each line (Boudreaux, 2003, p. 1). 

However, even if the syntax of SAS and a previously learned language are 

completely different, experience with coding is extremely helpful because the art 

of programming is a different kind of thinking. The training required also depends 

on the type of analysis that the trainee must carry out. If the trainee only needs to 

run the same type of test repeatedly, then she may only need training in a specific 

aspect of SAS programming; however, if the trainee will need to develop a 

process based on each new task, then she will need more sound understanding of 

the software. 

Fortunately, experts have written copious texts about how to use SAS and 

SAS has a strong user support system; even if users do not have complete 

understanding of the software, they can run it. Although there exists no easy way 

to calculate the number of books written about SAS, Muenchen estimates it by 

searching for books published with SAS in their title and found that close to 500 

were published between 2001 and 2011 (as cited in Lofland & Ottesen, 2013). 

Regarding user support, Lofland and Ottesen (2013) observed 

 

SAS has extensive online documentation, expert technical support, 

professional training courses, many excellent books in press, and a tight 

knit user group and web based community. Problems can be addressed to 

SAS directly via tech support who replies very quickly and will work with 

the user to solve the problem. (p. 3) 

 

They designated the user support service of SAS as one of its main specialties. 

Therefore, even though SAS requires some programming skill, the strength of 

SAS’s support system makes it more manageable for less advanced users. 

Statistical Methods, Tests, Uses 

SAS’s Analytics Pro bundle comes with three of the most popular SAS products: 

Base SAS, SAS/STAT, and SAS/GRAPH. The Visual Data Discovery collection 

includes SAS Enterprise Guide (SAS’s only point-click interface) and JMP 

software to make discovery and exploratory analysis easier. 

With either of these toolsets, programmers can perform a number of 

statistical tests.  The Institute for Digital Research and Education website outlines 

a multitude of statistical tests and their corresponding SAS code. The list includes 

thirty-two tests that come from statistical categories such as regression, factor 
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analysis, discriminant analysis, ANOVA, non-parametric tests, and correlation 

(University of California, Los Angeles [UCLA]: Statistical Consulting Group, 

n.d.). The full list can be seen in the Appendix below. 

SAS can perform many more statistical tests than just these, though. It also 

functions well with forecasting, time series analysis, and many other advanced 

statistical techniques. In fact, SAS has created specialized programs for these 

methods. The SAS website’s “Products & Solutions” 

(http://support.sas.com/software/) has a list of these programs. 

Also on this page, SAS has additional packages to access that are industry-

specific. For example, there is an SAS Drug Development package that “enables 

the efficient development, execution and management of analysis and reporting 

activities for clinical research,” (SAS, n.d.b) an SAS Fraud Management package 

that “delivers a full-service enterprise-wide fraud management system that offers 

real-time scoring of accounts by looking at all card transactions—including 

purchases, payments and nonmonetary transactions,” (SAS, n.d.b) and an SAS 

Risk Management for Insurance package that “implements the Solvency II 

standard model approach for calculating risk-based capital with [its] 

comprehensive solution for preforming risk analysis and risk-based capital 

calculations” (SAS Institute, n.d.b). In addition to these specialized packages for 

health-care, banking, and insurance, SAS has formulated software with built-in 

functions for other areas like law enforcement, communications, retail, casinos, 

utilities, and sports, among others. 

SAS’s advantageous functions extend beyond just carrying out statistics, 

though. It has superior qualities for both before the statistical analysis and after. 

Prior to the actual statistics, it facilitates the reading in and managing of 

disorganized data. Real life data is rarely clean and analysis-ready. SAS can 

interpret messy data sets, convert them to a clean form, and manipulate them in 

ways that other software cannot (Lofland & Ottesen, 2013, p. 3-4). After the user 

performs the statistics, SAS has impressive graphics and report-writing features 

that will help disseminate the findings in clear and appealing ways. But, these 

aesthetic products come with a caveat according to Lofland and Ottesen (2013), 

who explained, “SAS provides many useful procedures for creating detailed and 

polished reports,” however, “some of the more detailed reporting procedures […] 

have a learning curve that takes place before being able to use them correctly” (p. 

3-4). 

http://support.sas.com/software/
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Specific Uses in Industry 

SAS has built-in, functional packages for many specific industries, including 

health-care, banking, insurance, law enforcement, communications, retail, casinos, 

utilities, sports, and more. To follow are a couple of real-life uses of SAS within 

some of these industries. 

 

 A leading medical device company utilizes SAS “for clinical study data 

analysis” (K. Kleckner, personal communication, February 1, 2014). This 

same company furthermore uses the software “for setting sample sizes for 

pre-clinical studies and human clinical studies; [and] for setting controls 

on manufacturing operations” (K. Kleckner, personal communication, 

February 1, 2014). 

 A global appliance manufacturer uses SAS for quality control by 

performing predictive analyses of product defects (J. Ward, personal 

communication, January 20, 2014). 

R 

R is a free, open-source statistical software. Colleagues at the University of 

Auckland in New Zealand, Robert Gentleman and Ross Ihaka, created the 

software in 1993 because they mutually saw a need for a better software 

environment for their classes. R has more than two million users according to an 

R Community website (Revolution Analytics, n.d.a). 

Cost 

R is free and is downloadable from the Internet, with no subscription fees, user 

limits, or license managers. However, this presents a danger. As open source 

software, R could be a security concern for large companies, because the software 

can be freely used, changed, and shared by anyone. 

Like SAS, R can be expensive in a form other than monetary. Although the 

base for R is very easy to install, users must download packages to perform 

specific analyses, which can be very time-consuming (Lofland & Ottesen, 2013, p. 

3-4). For example, currently there are 5,508 available packages, and this number 

grows weekly if not daily (Comprehensive R Archive Network [CRAN], n.d.). 

This provides many options, but searching through the assemblage of choices can 

be difficult and time-consuming. 
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Training 

The training necessary for effectively using R depends on the previous computing 

experience of the trainee. Computing experience is helpful because data analysis 

in R requires writing functions and scripts, not just pointing and clicking. In many 

ways, though, R is comparable to other programming languages. For instance, 

similar to many other languages, it is a command line interface. Additionally, its 

source code is similar to that of C and Fortran, and it supports matrix arithmetic 

and data structures like APL and MATLAB. Having used any of these in the past 

could lessen the training time necessary to learn R. As stated with SAS above, 

though, having any programming experience at all will often speed up the 

learning process for trainees since programming problems are a completely 

different type of puzzle. 

Sources report varied answers when identifying the training necessary to 

successfully utilize R. Some believe that R does not necessitate much knowledge 

of computer programming after all. For example, Pregibon claimed R “allows 

statisticians to do very intricate and complicated analyses without knowing the 

blood and guts of computing systems (Vance, 2009, para. 4). Vance (2009) also 

noted, “R has quickly found a following because statisticians, engineers and 

scientists without computer programming skills find it easy to use” (para. 3). R is 

not as daunting as other languages, having very natural and expressive syntax for 

data analysis. In R language, “anova(object_1, object_2)” produces an ANOVA 

table; “coef(object)” extracts the regression coefficient; and “plot(object)” 

produces plots showing residuals, fitted values, and other diagnostics (R Core 

Team, 2014). Still, R does require the use of objects, operators, and functions 

before applying these intuitive commands. Fortunately – as stated earlier – many 

packages are available for download and use off the Internet, so users do not 

necessarily have to know the code or write it. This is another reason why some 

say that R does not require much programming knowledge. 

However, because of errors in some of these packages and lack of user 

support for R, others believe that advanced training investment is necessary in 

order to use the software. Lofland and Ottesen (2013) stated, “[R] users rely on 

what others put out there about the software. [….] Packages are not written by the 

R Development Core-Team; therefore, they are not well polished and some could 

have questionable validity. It  is also difficult to direct an issue to a particular 

person or support system” (p. 3). Although R may be useable without much 

coding experience, when a problem arises, the lack of programming knowledge 

will become evident and costly due to a dearth of documentation and technical 

support for resolving the issue. In other words, people without sufficient 
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knowledge of the R programming language can implement the syntax in their own 

use, but they do not necessarily have solid understanding of what the code 

actually says. This lack of R coding knowledge makes debugging difficult if not 

impossible, and it could lead to erroneous results with severe decision-making 

consequences. 

Lofland and Ottesen (2013) also explained that report writing in R is 

difficult. They claim that the extensive programming required to code a report in 

R is quite a time investment, as “R does not have a defined way of producing 

reports” (p. 3). 

Statistical Methods, Tests, Uses 

R is a comprehensive statistical analysis toolkit. It can perform any statistical 

analysis desired, but users must either write the code or access the code from 

someone who has already written it. As stated on its website, people have already 

designed many standard data analysis tools “from accessing data in various 

formats, to data manipulation (transforms, merges, aggregations, etc.), to 

traditional and modern statistical models (regression, ANOVA, GLM, tree models, 

etc.)” (Revolution Analytics, n.d.b). Programmers have designed many more 

packages than just these, including packages for Bayesian statistics, time series 

analysis, simulation based analysis, spatial statistics, survival analysis, and many, 

many more (CRAN, 2014). A complete list of packages already designed for R 

can be found on the R packages website (http://cran.us.r-

project.org/web/packages/). 

The key feature of R that differentiates it from other statistical software is its 

acceptance of customization. The aforementioned software have “data-in-data-out 

black-box procedures” (Revolution Analytics, n.d.b). Developers have written the 

code for a certain function, such as performing decomposition for a time-series 

model, and users have never seen this built-in code that runs in the background. A 

“decomp” command, or something of the sort, is all that is needed, and the 

statistical package will perform the decomposition for them. For example 

multiplicative decomposition is the forecasted value (F) = Trend × Seasonal × 

Cyclical × Irregular. However, R is an interactive language. It requires users to 

write the code (for the decomposition, or whatever procedure desired) or to paste 

the code in from someone who already wrote it. Because the function’s code is 

visible in their command box, users can manipulate the commands however they 

see fit. Thus, R enables experimentation and exploration by allowing users to 

improve the software’s code or to write variations for specific tasks. They can 

http://cran.us.r-project.org/web/packages/
http://cran.us.r-project.org/web/packages/
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even mix-and-match models for better results. With the pre-packaged functions in 

the other statistical software, this is not as easy. 

R is known for generating appealing charts and tables. The custom charting 

capabilities of R create “stunning infographics seen” (Revolution Analytics, n.d.a). 

However, it cannot manage messy data as easily as other available statistical 

software. Lofland and Ottesen (2013) warned, “The design of R was focused 

around statistical computing and graphics, so data management tends to be time 

consuming and not as clean as SAS. […] Students who have used solely R have 

an unrealistic expectation of the state of the data they receive” (p. 3). But, once 

the data is organized, R is a valuable data analysis performer and graphics creator. 

Specific Uses in Industry 

The usage of R is diverse in business. Some examples follow. 

 

 Google “taps R for help understanding trends in ad pricing and for 

illuminating patterns in the search data it collects” (Vance, 2009, para. 24). 

 Pfizer has engineered its own custom packages in R, which allows 

scientists to manipulate their own data during nonclinical drug studies 

instead of hiring a statistician to do the work for them (Vance, 2009). 

 A financial services company utilizes dozens of R packages to perform 

derivatives analysis (Vance, 2009). 

Conclusion 

Excel add-ins are well-suited to small companies and small projects because of 

their availability and low cost, while SPSS, SAS, and R work well for large 

projects and large businesses because of their ability to handle large sums of data 

efficiently. As discovered at the beginning of the paper, Excel’s MegaStat option 

can execute many important statistical procedures that people trying to interpret 

smaller data sets can utilize for low financial cost and training cost. However, as 

stated, MegaStat can only manage a certain amount of data. Therefore, larger data 

sets require a higher-powered software, like SPSS, SAS, or R. Differentiating 

between which of these software best fits the analysis of these larger data sets 

depends on a number of factors, and each statistical package has its own strengths 

and weaknesses. Hence, the purpose of this study was to investigate their features. 

Finding the suitable software is important, because companies that employ 

the most efficient data analysis software will compete better against competition 
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by effectively accessing and using their stockpiles of data to make better decisions. 

Faculty at colleges and universities could improve job placement by preparing 

students in the specific software that hiring companies use. It is difficult for new 

data analysts to see the forest for the trees when choosing a statistical 

programming language (DataCamp Team, 2014). 

Students can add a software taught category to their list of traits sought in 

higher education in order to prepare themselves for job placement. One of the 

most important decisions that future students make is selecting a major. Often, a 

student’s desired major can influence the selection set. However, other decisions 

are growing in importance too. In terms of finding a job, employers are 

increasingly seeking out recent graduates that have experience with big data 

software, like SPSS, SAS, and R. Therefore, it is becoming more important for 

students to seek out a university that will prepare them with knowledge of 

pertinent software, which will increase their likelihood of finding a satisfying job. 

Obviously, careers in big data will be abundant, so prepared students will have 

little trouble finding a job in that area. Nevertheless, students trained on high 

demand software will have more and better options for job placement. 
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Appendix A: List of Tests That SAS Can Perform 

 One sample t-test 

 One sample median test 

 Binomial test 

 Chi-square goodness of fit 

 Two independent samples t-test 

 Wilcoxon-Mann-Whitney test 

 Chi-square test 

 Fisher’s exact test 

 Kruskal-Wallis test 

 Paired t-test 

 Wilcoxon signed rank sum test 

 McNemar test 

 One-way repeated measures ANOVA 

 Repeated measures logistic regression 

 Factorial ANOVA 

 Friedman test 

 Ordered logistic regression 

 Factorial logistic regression 

 Correlation 

 Simple linear regression 

 Non-parametric correlation 

 Simple logistic regression 

 Multiple regression 

 Analysis of covariance 

 Multiple logistic regression 

 Discriminant analysis 

 One-way MANOVA 

 Multivariate multiple regression 

 Canonical correlation 

 Factor analysis 

 

(UCLA: Statistical Consulting Group, n.d.) 



Journal of Modern Applied Statistical Methods 

May 2017, Vol. 16, No. 1, 775. 

Copyright © 2017 JMASM, Inc. 

ISSN 1538 – 9472 

 

 

 

775 

Book             
Reviews 
 



Journal of Modern Applied Statistical Methods 

May 2017, Vol. 16, No. 1, 776-777. 
doi: 10.22237/jmasm/1493599260 

Copyright © 2017 JMASM, Inc. 

ISSN 1538 − 9472 

 

 

 
Prof. Rao, Sc.D. (Cantab), FRS, is the Eberly Professor Emeritus of Statistics and the 
Director of Center for Multivariate Analysis at Penn State, and Research Professor in 
Biostatistics at the University at Buffalo. Email him at crr1@psu.edu. 

 

 

776 

Book Review: Multivariate Statistical 
Methods, A Primer 

C. R. Rao 
University at Buffalo 

Buffalo, NY 

 

 

 

 

 
Multivariate Statistical Methods, A Primer, 4

th
 Ed. Bryan F. J. Manly and Jorge A. 

Navarro Alberto. NY: Chapman & Hall / CRC Press. 2016. 264 p. ISBN 10: 
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The purpose of the book is to introduce multivariate statistical methods to non-

mathematicians. It is assumed that readers have a working knowledge of 

elementary statistics, including tests of significance using normal, t, Chi-squared 

and F distributions, analysis of variance and linear regression. The authors made 

an excellent effort by presenting multivariate data of different kinds, such as body 

measurements, made on two or more kinds of individuals within each group and 

raising questions such as how different the measurements are within groups and 

how different they are between different kinds of individuals. With one 

measurement, differences between groups is examined by comparing individual 

mean values and variances within groups. With p measurements, p mean values 

are needed, and p (p − 1) variances and covariances for comparison. Appropriate 

multivariate methods for this purpose have been demonstrated. In addition, there 

is the problem of grouping given populations by similarity of measurements 

which needs a measure of distance between populations based on observed data. 

The authors give a good account of different methods available for these 

purposes. Some of the measures of similarity such as Penrose and Mahalanobis 

distances are mentioned for possible use. Penrose distance does not take into 

account correlations between measurements and may not be appropriate in all 

practical applications. Mahalanobis distance will be appropriate for correlated 

variables when the measurements are nearly normally distributed. Some 

discussion on the choice of distance measure to be used will be helpful to 

https://doi.org/10.22237/jmasm/1493599260
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practical workers. The authors describe all available statistical methods for these 

purposes in terms of principal components, factor analysis, discriminant functions 

and canonical correlation analysis. 

Multivariate analysis was developed during the 1940s. The Anthropology 

Department at Cambridge University, UK sent an expedition to Jebel Moya in 

Africa to dig ancient graves and bring the skeletons back for study. Their purpose 

was to analyze multiple measurements to find their relationship with skeletal 

material available in nearby areas. This is a multivariate problem for which no 

solution was available at that time. 

Professor Trevor, a member of the Anthropology faculty, heard about the 

work of Prof. Prasanta Chandra Mahalanobis and the distance from point P and 

distribution D named after him. In July, 1946 he sent a telegram to Prof. 

Mahalanobis to send someone to Cambridge to analyze the skeleton 

measurements. At that time, I was working in the Indian Statistical Institute as a 

research scholar under the direction of Prof. Mahalanobis, and I had published 

some papers on multivariate analysis. Prof. Mahalanobis deputed me to go to 

Cambridge and analyze their data. I travelled to Cambridge that month, and for 

the following two years worked in Cambridge’s Anthropology Department as a 

paid visiting scholar. The result was the development of the necessary tools to 

analyze their multivariate data, and were published in 1954 by Cambridge 

University Press as a book, Ancient Inhabitants of Jebel Moya, under the joint 

authorship of myself along with two anthropologists, Trevor and Mukherji. 

Subsequently, I was asked by the President of Royal Statistical Society 

(RSS) to present my research work on the Jebel Moya data at a meeting of the 

Society, which I did in October, 1948. That material was later published in two 

research papers, which constitute the corpus of multivariate analysis as practiced 

today. One is Rao, C. R. (1948), Utilization of multiple measurements in 

problems of biological classification. Journal of the Royal Statistical Society, 10, 

159-203. The other is Rao, C. R. (1948), Tests of significance in multivariate 

analysis, Biometrika, 35(1-2), 58-79. This material also provided the basis for my 

book Rao, C. R. (1952), Advanced Statistical Methods in Biometric Research. 

NY: Wiley. 
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Letter to the Editor 

Walker (2015) presented an SPSS program for estimating effect sizes and 

approximating confidence intervals. It contains flaws and should not be used. The 

consequences are nontrivial, as is apparent from Walker’s example, which used 

the following input: M1 = 16.45, M2 = 11.77, SD1 = 2.23, SD2 = 4.66, N1 = 30, 

N2 = 34, N = 64, where M1 and M2 are the sample means, SD1 and SD2 are the 

sample standard deviations, N1 and N2 are the group sample sizes, and N is the 

total sample size. Given this input, the resulting 95% confidence intervals in 

Walker’s output (see his Table 1) are far too narrow: either [1.109, 1.403] or 

[1.094, 1.387], depending on whether Cohen’s d or an approximation of Hedges’ 

g is used in the estimation. 

Walker did not validate these results by simulation, or by analytic methods, 

or by comparing the results to those produced by established software. For 

example, the ci.smd function in the extensively vetted MBESS package for R (see 

Kelley, 2007; Kelley & Rausch, 2006) uses a standard iterative procedure to 

compute exact confidence intervals for the standardized effect size. For Walker’s 

input, the ci.smd function may be executed in conjunction with the smd function, 

as follows: 

 

library (MBESS) 

https://doi.org/10.22237/jmasm/1493599320
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cohend <- smd (Mean.1=16.45, Mean.2=11.77, s.1=2.23, s.2=4.66, 

n.1=30, n.2=34) 

ci.smd (smd=cohend, n.1=30, n.2=34, conf.level=.95) 

 

This method correctly gives the 95% confidence interval as [0.714, 1.790]. 

Note that this interval is much wider than Walker’s approximations and is 

appropriately asymmetrical around Cohen’s d. 

Part of the problem with Walker’s code is how it computes the variables it 

calls D1 and G1. These cryptically-named variables purportedly estimate the error 

terms of Cohen’s d and Hedges’ g (respectively), but as coded actually estimate 

the squares of those error terms. That is, the program computes estimated 

variances when it should be computing estimated standard errors. The same 

confusion is evident in Walker’s equation 9 (compare to Hedges & Olkin, 1985, p. 

86, equation 15, which appropriately squares the error term on the left side of the 

equation). Hence, Walker’s erroneous computations could be vastly improved by 

adding square roots to the two lines of code where D1 and G1 are computed, as 

follows: 

 

COMPUTE D1 = SQRT (N / (N1*N2) + COHEND**2 / (2*N)). 

COMPUTE G1 = SQRT (N / (N1*N2) + HEDGESG**2 / (2*N)). 

 

However, there is no justification for using approximations at all, given that 

superior, exact confidence intervals can now be easily computed with simple 

commands in freely available, industry standard software (namely, R with the 

MBESS package). 

Walker acknowledged that by disregarding noncentrality, the program could 

not provide exact confidence intervals, a limitation defended as follows: “Bird 

(2002) found that if d is < 2.00, which in social science research frequently can be 

the circumstance with middling-sized effects (Richard, Bond, & Stokes-Zoota, 

2003; Rosnow & Rosenthal, 2003), adjustment for noncentrality is not 

compulsory” (Walker, 2015, p. 285). Bird (2002) did note that heuristically 

speaking, approximate standardized intervals are likely to be similar to exact 

standardized intervals for d < 2, provided degrees of freedom ≥ 30. However, 

Walker overlooked Bird’s caveat that “exact standardized intervals should be 

preferred to approximate standardized intervals whenever both are available” 

(Bird, 2002, p. 204). 

Walker’s program implements incorrectly a method that would be obsolete 

even if implemented correctly. The program also contains other peculiarities. For 
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example, given that the user must input N1 and N2, it is redundant that the 

program also requires the user to input N (which the program could instead have 

computed for itself, as simply N1 + N2). Additionally, an anonymous reviewer of 

the present letter identified a potentially confusing conflict between the coding 

and the text in Walker’s article: The coding computes Cohen’s d using the pooled 

standard deviation, which is likely the proper approach, but Walker’s equation 6 

computes Cohen’s d using the unweighted average of SD1 and SD2. 

Walker (2015) appeared in the same issue as an article noting the perils of 

using inadequately vetted statistical software (Lorenz, Markman, & Sawilowsky, 

2015). Indeed, checking new software against established software prior to 

dissemination and professional use is essential. 
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A rebuttal to Frane's letter to the Editor in this issue. 

 

Letter to the Editor 

Frane (2017) disagreed with my interpretation of Bird (2002), suggesting I 

overlooked Bird’s (2002) important assertion that “exact standardized intervals 

should be preferred to approximate standardized intervals whenever both are 

available” (p. 204). The ensuing sentence from Bird (2002) should be stated, 

because it is effective for full contextual purposes: “It is often necessary, therefore, 

to rely on approximate (classic) intervals for inferences about standardized effect 

sizes” (p. 204). A personal, research perspective is important, as is taking stock in 

this assertion from Bird (2002), which utilized, “In general, approximate and 

exact standardized intervals are likely to lead to similar (often indistinguishable) 

interpretations of effect sizes (p. 204).” Frane (2017) suggested the entirety of this 

idea was qualified under the pretext of heuristically speaking, but it is not clear 

how this could be known. 

To be sure, there was full comprehension of Bird (2002), but exact 

confidence intervals (CIs) were not the intent of Walker (2015). This was obvious 

even with Frane’s (2017) example and R code, because it “uses a standard 

iterative procedure to compute ‘exact’ confidence intervals for the standardized 

effect size”. However, one of the main objectives, stated in the first sentence of 

Walker (2015), was to afford code in SPSS, not R. Moreover, as stated in Walker 

(2015) at numerous locations and with support from literature, “The program’s 

estimated CI formula is based on previous research.” The operative word was 

estimated and similar synonyms, such as approximate, but not, as Frane (2017) 

would have it, “exact.” 

https://doi.org/10.22237/jmasm/1493599380
mailto:dawalker@niu.edu


IN RESPONSE (FRANE, 2017)  

784 

Wrangling about the peculiarities of a program that a user might not be 

advocating in favor of alternative programs remains a personal choice. It should 

not, however, rise to a level warranting description as a fundamental flaw, 

obsolete, or an incorrect implementation. Frane (2017) claimed the program in 

Walker (2015) does not provide exact confidence intervals. Precisely. Exact CIs 

were not discussed in Walker (2015), because they did not comport with the 

purpose of the article. 
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