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a b s t r a c t 

Scoliosis is a common medical condition, which occurs most often during the growth spurt just before 

puberty. Untreated Scoliosis may cause long-term sequelae. Therefore, accurate automated quantitative 

estimation of spinal curvature is an important task for the clinical evaluation and treatment planning of 

Scoliosis. A couple of attempts have been made for automated Cobb angle estimation on single-view x- 

rays. It is very challenging to achieve a highly accurate automated estimation of Cobb angles because it is 

difficult to utilize x-rays efficiently. With the idea of developing methods for accurate automated spinal 

curvature estimation, AASCE2019 challenge provides spinal anterior-posterior x-ray images with manual 

labels for training and testing the participating methods. We review eight top-ranked methods from 12 

teams. Experimental results show that overall the best performing method achieved a symmetric mean 

absolute percentage (SMAPE) of 21 . 71% . Limitations and possible future directions are also described in 

the paper. We hope the dataset in AASCE2019 and this paper could provide insights into quantitative 

measurement of the spine. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

The spine is the central axis of the human body, with im- 

ortant functions like weight-bearing, shock absorption, protection 

nd movement. It is normally made up of 33 bones called verte- 

rae, which are subdivided into five regions from top to bottom: 
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ervical (7 vertebrae), thoracic (12 vertebrae), lumbar (5 vertebrae), 

acrum (5 vertebrae), and coccyx (4 vertebrae). The upper twenty- 

our are articulating and separated from each other by interverte- 

ral discs, and the lower nine are fused in adults ( Kenneth, 2017 ). 

Scoliosis is a spine condition, characterized by a sideways curve 

f the spine, accompanied by a rotation of the vertebrae. A nor- 

al spine should be straight when viewed from behind and cen- 

ered on the pelvis. When suffering from scoliosis, the curve is 

sually “S”- or “C”-shaped over three dimensions (shown in Fig. 1 ) 

 Illés et al., 2019 ). Between 1% and 4% of adolescents have scoliosis, 

https://doi.org/10.1016/j.media.2021.102115
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102115&domain=pdf
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Fig. 1. Examples of scoliosis. (a) “C”-shaped curve, (b) “S”-shaped curve. 

Table 1 

Scoliosis cases with Cobb angles. 

Severity Cobb angle 

Not scoliosis < 10 ◦ ( Lau, 2013 ) 

Mild scoliosis 10 − 30 ◦ ( Bloch et al., 2012 ) 

Moderate scoliosis 30 − 45 ◦ ( Bloch et al., 2012 ) 

Severe scoliosis > 45 ◦ ( Bloch et al., 2012 ) 
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Fig. 2. Cobb angle measurement. α represents the Cobb Angle. First, determine the 

curved segment and find the top and bottom vertebrae of this curve. The top and 

bottom vertebrae refer to the vertebrae with the largest inclination toward the con- 

cave side of the curved segment. The convex side has a wider intervertebral space, 

and the first vertebra that begins to widen on the concave side is considered not 

part of the curve segment (i.e., A, D), so its adjacent first vertebra is considered to 

be the curved end vertebra (i.e., B, C). Draw a horizontal line on the top edge of 

the top vertebra (line1), and also draw a horizontal line on the bottom edge of the 

bottom vertebra (line2). Make a vertical line for each of the two horizontal lines. 

The angle of the intersection of two vertical lines is the Cobb angle α. 

T

p

w

“

a

fi

o

t

2

j

r

a

a

p

t

A

o

d

w

w

d

b

2

a

e

I

t

T

1 https://aasce19.grand-challenge.org/Home/ 
2 https://aasce19.grand-challenge.org/Home/ 
nd appears most often during the growth spurt just before pu- 

erty ( Cheng et al., 2015 ). Untreated scoliosis may cause long-term 

equelae, such as curve progression, back pain, cardiopulmonary 

ssues, and psychosocial concerns ( Barton and Weinstein, 2018 ). 

linically, the diagnosis of scoliosis can be confirmed by x-ray 

nd a subsequent Cobb angle analysis of the images. The Cobb 

ngle is the most common quantification of scoliosis, proposed 

riginally by the American orthopedic surgeon John Robert Cobb 

 Cobb, 1948 ). Cobb angle can describe the severity of scoliosis, as 

hown in Table 1 . A Cobb angle between 10 and 30 degrees de-

otes mild scoliosis. Scoliosis cases with Cobb angles in the range 

f 30 to 45 degrees are moderate scoliosis. A Cobb angle greater 

han 45 degrees denotes severe scoliosis. Moreover, people with a 

obb angle greater than 60 ◦ usually have respiratory complications 

 Bloch et al., 2012 ). 

The current gold standard of scoliosis evaluation is the manual 

obb angle measurement endorsed by the Scoliosis Research Soci- 

ty. Clinicians identify the upper and lower endplates of the most 

ilted vertebrae, then measuring the Cobb angles between them, as 

hown in Fig. 2 . Manual measurement is time-consuming and un- 

eliable. Variations occur between people who do the measuring, 

s well as between tools used in the process (specifically, the pro- 

ractor). Thus, accurate automated quantitative estimation of spinal 

urvature is an essential task for the clinical evaluation and treat- 

ent planning of scoliosis. 

There have been many challenges in computational methods 

nd clinical applications for spine imaging during the past years 

e.g., xVertSeg, IVDM3Seg, and computational challenges on CSI). 
2 
hese challenges have allowed objective evaluation and com- 

arison for the methods proposed by participants around the 

orld. For example, the MICCAI-CSI2014 hosted two challenges on 

Spine and Vertebrae Segmentation“ and “Vertebrae Localization 

nd Identification“. These challenges mainly focus on the identi- 

cation of vertebrae or the analysis of vertebral fractures. To date, 

nly a few studies focused on accurate automated spinal curva- 

ure estimation ( Wang et al., 2019; Zhang et al., 2019; Sun et al., 

017; Aubert et al., 2017 ). In the AASCE-2019 challenge, in con- 

unction with MICCAI2019, the objective of the challenge was that 

esearchers were invited to participate with their (semi-)automatic 

lgorithms to accurately automated spinal curvature estimation 

nd error correction from x-ray images. This paper aims to re- 

ort results of the AASCE-2019 challenge 1 . At the time of writing 

his paper, more than 12 teams had submitted their results on the 

ASCE-2019 website 2 . In this paper, we focus only on those meth- 

ds proposed by eight top-ranked teams. 

The paper is arranged as follows. We first present the challenge 

ataset, rules for evaluation, and the established validation frame- 

ork in Section 2 . Each submitted method and its implementations 

ill be summarized in Section 4 . The validation results and their 

iscussion of each method will be presented in Section 5 , followed 

y conclusion in Section 6 . 

. Data 

There are in total of 707 spinal anterior-posterior x-ray im- 

ges for training and testing collected from London Health Sci- 

nces Center in Canada using EOS medical imaging system. The 

RB approval of our data has been obtained together with our 

wo previous publications ( Wang et al., 2019; Chen et al., 2019 ). 

he training and testing datasets consist of 609 and 98 x-ray im- 

https://aasce19.grand-challenge.org/Home/
https://aasce19.grand-challenge.org/Home/
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Fig. 3. Examples use landmarks (yellow points in subfigure (a), (b), and (c)) to measure Cobb angles. The most tilted vertebral endplates selected are drawn in red lines. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 2 

Statistics of AASCE dataset. 

Specification Train Test 

Number of images 609 98 

Physical units (Dots Per Inch, DPI) 72 72 

Pixels dimensions (SI units, micron) 144 144 

Length of images (pixel) [min-max] [973-3755] [985-7316] 

Width of images (pixel) [min-max] [355-1427] [273-2748] 

Value of the Cobb angle ( ◦) [min-max] [0-156.39] [0-60.93] 

Number of not scoliosis ( < 10 ◦) 20 11 

Number of mild scoliosis (10 ◦ - 30 ◦) 190 58 

Number of moderate scoliosis (30 ◦ - 45 ◦) 205 26 

Number of severe scoliosis ( > 45 ◦) 194 3 

Number of some steel nails 53 4 
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ges with landmarks provided by two professional doctors in Lon- 

on Health Sciences Center and are available on the SpineWeb 3 

ataset 16). Since the cervical vertebrae are seldom involved in 

pinal deformity ( O’Brien et al., 2008 ), 17 vertebrae consisting of 

he thoracic and lumbar vertebrae were selected as part of the 

pinal curvature evaluation. Each vertebra is marked by four land- 

arks with respect to four corners resulting in 68 points per 

pinal image. The Cobb angles for training were calculated us- 

ng these landmarks. Given the landmarks, the code for calcu- 

ating the Cobb angle based on landmarks was implemented by 

atlab and is available on http://spineweb.digitalimaginggroup.ca/ . 

ig. 3 shows an example of spine images with landmarks and the 

ost tilted vertebral endplates selected by the code. For any 4 

oints (x 1 , y 1 ) , (x 2 , y 2 ) , (x 3 , y 3 ) , (x 4 , y 4 ) , form two vectors A and

 , A = (x 2 − x 1 , y 2 − y 1 ) , B = (x 4 − x 3 , y 4 − y 3 ) . The angle of the two

ectors can be calculated as: 

= arccos ( 
A · B 

|| A |||| B || ) (1) 

This code calculates the pairwise vectors’ angles at all points 

sing Eq. (1) , finds the largest angle value and its corresponding 

ndplates, and then finds the other two angles above and below. 

he details of this dataset are given in Table 2 . 

. Evaluation 

To evaluate the performance of different methods, we use the 

ollowing metrics: symmetric mean absolute percentage (SMAPE), 

 circular mean absolute error (CMAE), Euclidean distance (ED), 

anhattan distance (MD), and Chebyshev distance (CD). 
3 http://spineweb.digitalimaginggroup.ca/ 

w  

(  

s

3 
The SMAPE metric is defined as Eq. (2) : 

MAP E = 

1 

N 

N ∑ 

i =1 

SUM| X i − Y i | 
SUM(X i + Y i ) 

× 100% (2) 

here X i is the estimated Cobb angles, Y i is the ground truth, X i =
αi 1 , αi 2 , αi 3 ) and Y i = (βi 1 , βi 2 , βi 3 ) , N is the number images (the

maller, the better). 

The CMAE metric is defined as Eq. (3) : 

MAE = 

1 
N 

∑ N 
i =1 CMEAN(X i − Y i ) 

 i − Y i = (αi 1 − βi 1 , αi 2 − βi 2 , αi 3 − βi 3 ) = (θ1 , θ2 , θ

MEAN(θ1 , θ2 , θ3 ) = arctan ( y 
x 
) 

 = 

1 
3 
(cos (θ1 ) + cos (θ2 ) + cos (θ3 )) 

 = 

1 
3 
(sin (θ1 ) + sin (θ2 ) + sin (θ3 )) 

(3) 

here X i is the estimated Cobb angles, Y i is the ground truth, X i =
αi 1 , αi 2 , αi 3 ) and Y i = (βi 1 , βi 2 , βi 3 ) , N is the number images (the

maller, the better). 

http://spineweb.digitalimaginggroup.ca/
http://spineweb.digitalimaginggroup.ca/
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Fig. 4. (a) Cobb angles and hand-crafted landmarks of the spine, (b) continuous 

boundary of the spine. 
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F

t

The Euclidean distance is defined as Eq. (4) : 

D = 

1 

N 

N ∑ 

i =1 

√ 

(αi 1 − βi 1 ) 2 + (αi 2 − βi 2 ) 2 + (αi 3 − βi 3 ) 2 (4) 

here (αi 1 , αi 2 , αi 3 ) is the estimated Cobb angles, (βi 1 , βi 2 , βi 3 ) is 

he ground truth, N is the number images (the smaller, the better) 

The Manhattan distance is defined as Eq. (5) : 

D = 

1 

N 

N ∑ 

i =1 

(| αi 1 − βi 1 | + | αi 2 − βi 2 | + | αi 3 − βi 3 | ) (5) 

here (αi 1 , αi 2 , αi 3 ) is the estimated Cobb angles, (βi 1 , βi 2 , βi 3 ) is 

he ground truth, N is the number images (the smaller, the better) 

The Chebyshev distance is defined as Eq. (6) : 

D = 

1 

N 

N ∑ 

i =1 

max (| αi 1 − βi 1 | , | αi 2 − βi 2 | , | αi 3 − βi 3 | ) (6) 
ig. 5. The workflow of Team XMU’s method. In stage 1, the boundary segmentation net

he angle regression network combines the X-ray image with the previous spine boundar

4 
here (αi 1 , αi 2 , αi 3 ) is the estimated Cobb angles, (βi 1 , βi 2 , βi 3 ) is 

he ground truth, N is the number images (the smaller, the better) 

. Methods and implementations 

A total of more than 12 teams successfully submitted their re- 

ults to AASCE2019 before the official deadline. Here we analyze 

he results of eight top ranked teams. 

.1. XMU: Xiamen University 

Intuition 

4 Team XMU extended the landmarks to the contin- 

ous spine boundary (shown in Fig. 4 (b)) to introduce attention 

nformation for better feature extraction, and they used a convolu- 

ional neural network to regress angles directly. 

Method The proposed algorithm workflow is shown in Fig. 5 . 

he workflow consists of two stages: 1) the boundary segmenta- 

ion network and 2) the angle regression network. The boundary 

egmentation network takes an X-ray image as input and gener- 

tes a spine boundary prediction map. The segmentation network 

pplies a symmetrical encoder-decoder structure and consists of 

ots of residual blocks. Inspired by U-Net ( Ronneberger et al., 2015 ), 

here are two long-distance skip connections at different resolution 

evels to aggregate the shallow and deep features. At the bottom 

f the network, the Pyramid Pooling Block (PP block) ( Zhao et al., 

017 ) is used to collect global information. The angle regression 

etwork takes the X-ray image and the spine boundary prediction 

ap as inputs to predict the Cobb angle. Due to the effect of Dense 

et ( Huang et al., 2017 ), DenseNet121 is selected as the backbone 

f the regression network and directly predicts three Cobb angles 

t the last layer. 

Implementation In the implementation, Team XMU connected 

ll landmark points in an image and refined the two coarse bound- 

ries by dilation operation to obtain ground truths for the bound- 

ry segmentation network. Team XMU trained the segmentation 

nd regression networks independently and applied the Dice loss 

nd MSE loss as supervision in two supervised tasks, respectively. 

oreover, two networks are both optimized by the Adam opti- 

izer with the learning rate of 1 × 10 −4 . 
work generates the spine boundary prediction map from X-ray images. In stage 2, 

y prediction map to predict the Cobb angles. 

https://github.com/wangshuxinxinxin/SCG-Net
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Fig. 6. The framework proposed by Team Tencent for automated spine curvature estimation. 
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.2. Tencent: Tencent YouTu Lab 

Intuition 

5 Team Tencent regarded the vertebrae and interver- 

ebral space segmentation as an intermediate state and ensembles 

ultiple networks to produce angles. 

Method Their proposed framework (shown in Fig. 6 ) consists 

f two subnets: one for segmentation and the other for regression. 

he first stage modifies PSPNet ( Zhao et al., 2017 ) to segment the

ertebrae and intervertebral space. The ResNet-101 ( He et al., 2016 ) 

s used as a feature extractor to leverage high-level convolutional 

eatures and the global pyramid pooling layer is used to combine 

he local and global clues. Furthermore, the dilated convolution is 

ppended with 2, 4, and 6 dilation rates to further capture var- 

ous receptive fields. The objective function of the segmentation 

ask is the combination of cross-entropy loss and the dice coef- 

cient loss. In the second stage, Team Tencent utilized recent pop- 

lar networks, including ResNet ( He et al., 2016 ) series, DenseNet 

 Huang et al., 2017 ) series and EfficientNet ( Tan and Le, 2019 ) se-

ies to perform the regression task, and all of the results are com- 

ined to reduce generalization error. The objective function is de- 

ned as Eq. (7) : 

 (X, Y, θ ) = 

c ∑ 

i 

| Y i − F (X ) + ε| 
| Y i + F (X ) + ε| + λ

k ∑ 

i 

| θi | (7) 

here c is the number of angles, X is the input segmentation 

ask, Y is the ground-truth mask, F (X ) is the predicted angles, 

nd θ is the set of model parameters. In addition, considering the 

omain shift between the training and testing distributions, they 

ollow the instruction of Ganin and Lempitsky (2015) for domain 

daptation with a gradient reversal layer. 

Implementation Team Tencent pre-processed the X-ray data 

efore inputting it to their network. First, they apply histogram 

qualization to ease the domain shift problem. Then, they conduct 

ugmentations for training data, including random rescaling be- 

ween [0 . 85 , 1 . 25] and random rotation between [ −45 ◦, 45 ◦] . Team

encent tried to add Gaussian noise to the input images, but it 

id not help. The whole network was randomly initialized from 

 Gaussian distribution N(0 , 0 . 01) , and the learning rate was ini-

ialized as 3 × 10 −3 with cosine decay schedule. They used Adam 

ptimizer where the λ and β are set to 0.9 and 0.999, respectively. 

he input was resized to 1024 × 512 and 512 × 256 for segmen- 

ation and regression network, respectively. Team Tencent imple- 

ented their method in the PyTorch framework using 4 NVIDIA 

40 GPUs. 

.3. iFLYTEK: iFLYTEK research South China, computer vision group 

Intuition 

6 Team iFLYTEK only focused on landmarks detection, 

nd the Cobb angles measurement is handed over to the Matlab 
5 https://github.com/hust-linyi/Seg4Reg 
6 https://github.com/YJY-CV/Spine 

v

5 
ode provided. As the spinal keypoint detection can be divided 

nto rough vertebra/keypoint detection and fine keypoint detection, 

eam iFLYTEK introduced traditional detection methods RetinaNet 

 Lin et al., 2017 ) to vertebra detection as Method-1 and Simple 

aseline ( Xiao et al., 2018 ) and HR-Net ( Sun et al., 2019 ) to spinal

eypoint detection as Method-2. 

Method As shown in Fig. 7 , their method can be seen as two 

arallel processes. Method-1 can work for the vertebrae’s unfixed 

umber, but difficult to model the scene sequentiality and hard 

o balance the precision and recall. Method-2 can grasp the global 

mplicit sequentiality of keypoints through generating correspond- 

ng heatmaps simultaneously with a fixed order. 

In Method-1, RetinaNet ( Lin et al., 2017 ) is provided to detect 

ndividual vertebrae in a spine and generate corresponding bound- 

ng boxes, while HR-Net ( Sun et al., 2019 ) is designed to detect 4

ey points in a bounding box. For RetinaNet, they follow ( Lin et al.,

017 ) to experiment with ResNet-50-FPN backbone. The model is 

rained for 180 k iterations with a total of 8 images per minibatch. 

ollowing ( Sun et al., 2019 ), they use HRNet-W48 with an input 

ize of 384 × 288 , and the training process is terminated within 30 

pochs. 

Method-2, which follows the workflow shown in Fig. 7 , is ro- 

ust and adequate for diverse shapes of the spine. Firstly Simple 

aseline I is trained with spinal images to detect all 68 key points 

irectly. The predicted keypoints can smoothly trace the curvature 

f most spines. Thus, the predicted keypoints are used as the out- 

ine sketches of spines to generate patches. 

Implementation A patch includes n points, 

 n | n = 4 , 6 , 8 , 10 , 12 } , for 1 to 3 vertebrae. Half of the verte- 

ra is allowed, but there must be at least two halves of the 

ertebra in a patch. Patches are randomly captured multiple 

imes within a certain vertebrae range. Such Patch Process not 

nly makes it much easier to match a template for any adjacent 

ertebrae but also makes it easy to augment a large amount of 

ata, so that the following Simple Baseline II becomes a highly 

obust model. The uncertain number of keypoints detected by 

imple Baseline II are as shown in Fig. 7 (f). Adding a PostProcess 

elps remove outliers, handle the squeezed vertebrae, and cluster 

he final 68 key points from 4 vertex groups by DBSSCAN and 

-means. Following ( Xiao et al., 2018 ), the ResNet-152 is utilized 

s the encoder network in both Simple Baselines I and II, with 

LAHE enhancement. For Simple Baseline I, the training ends 

ithin 200 epochs with a batch size of 32 and the same input size 

s HR-Net. As for Simple Baseline II, the input size is 256 × 192 

ith 130 images per batch, and the training lasts for 70 epochs. 

.4. XDU: school of electronic engineering, Xidian University 

Intuition 

7 Team XDU proposed an algorithm for accurate land- 

ark detection, and Cobb angles are produced by Matlab code pro- 

ided with landmark coordinates. The method followed the coarse- 
7 https://github.com/zzs95/AASCE2019_code 

https://github.com/hust-linyi/Seg4Reg
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Fig. 7. Illustration of Team iFLYTEK’s parallel framework that propagates two proposed methods. (a) is the input image, the blue bounding boxes in (b) and key points in 

(c) are prediction from RetinaNet and HR-Net in Method-1. The bottom workflow shows the Method-2, including (d) rough points generation, (e) patch selection, (f) patch 

points generation and (g) clustering. (h) is the final image that shows the process of spine curvature estimation, with the red and blue keypoints respectively representing 

ground truth and prediction. The lines show which vertebrae are selected to calculate the Cobb angles. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 8. Team XDU’s framework. Peeling Crop is the data pre-process shown in (a). A schematic illustration of the proposed 2-stage regression method, consisting of (b) the 

Mask RCNN in the global stage and (c) the multi-channels heatmaps regression in the local stage. 
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o-fine pipeline, which can inform the global locations for verte- 

rae and then obtain the 4 corner coordinates for each vertebra in 

he local stage. 

Method The framework is shown in Fig. 8 , including pre- 

rocess stage Peeling Corp, Global Stage and Local Stage. Peel- 

ng Corp is progressive, gradually narrowing the unwanted mar- 

ins, similarly to peeling onion piece by piece. Three trained U- 

et ( Ronneberger et al., 2015 ) models regress 3 kinds of heatmaps, 

hich are Whole Spine Mask (WSM), Target Spine Mask (TSM), 

nd Box Masks. The WSM and TSM indicate the location of the 

pine to filter out the false-positive regions while inferring. The 
6 
rst 17 channels of Box Masks highlight separately for the verte- 

rae. The input image multiplies with WSM, to regress TSM and 

ox Masks. To obtain the main target spine region, the TSM mul- 

iplies with the first 17 channels of the Box Masks. Each channel 

btains the highlight location. Based on these two endplates lo- 

ation, the detected region box (the red dotted box) is extended 

ith a fixed height-width ratio in the over cropping in the target 

pine. In the extended box (the cyan dotted box), the next itera- 

ion crops the input image. The Peeling Crop iterates the cropping 

nd the predicting and stops with the minimal narrowing distance 

nd the maximum iteration numbers. The Peeling Crop processes 
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Fig. 9. Team NAAMII’s two-step framework: An object detector first detects the 17 vertebrae from the input images. These bounding box patches are fed separately to a 

landmark detector that regresses the four corners of the vertebra. Cobb angles are calculated using the landmarks that are mapped back to the original image. Faster-RCNN 

and DenseNet are used for object detection and landmark detection respectively. 
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he testing data once, before the inferring in the global and local 

tage. 

In the global stage, Mask R-CNN is used as backbone. The pre- 

rocessed images are inputted to U-net A, then multiply with the 

SM and inputted to the backbone model. The trained Mask R- 

NN ( He et al., 2017 ) predicts the box masks, bounding boxes and

ag labels. Then the model extracts global information for guiding 

he local stage detection. The local stage obtains the landmarks for 

ach vertebra in the coarse bounding box. As shown in Fig. 8 (b), 

he local stage consists of U-net D and U-net E. These two mod- 

ls are trained with the region images to regress the box heatmaps 

nd the point heatmaps. The first 4 channels of the point heatmaps 

ith 2D Gaussian distributions at the center of the landmark are 

asked separately by the box heatmaps. The overlapping region of 

he first 4 channels contains the locations of the landmarks. Each 

oordinate is obtained as the mean position of the pixels whose 

alues are greater than the threshold of 0.5. The 4 coordinates of 

 vertebra are obtained in the first 4 overlapping channels. The lo- 

al stage procedure traverses the bounding boxes and obtains the 

hole spine landmarks. At the post-processing, the 2 sets of co- 

rdinates from bounding boxes and box masks are used to fit the 

pine curve to finetune these error predictions, filter out error pre- 

ictions far from the curve and rotate the coordinate pairs on their 

ntersections closing to the vertical lines. 

Implementation The proposed method was implemented in 

ython on a desktop with 4.0 GHz Intel@i7 CPU and a TITAN X 

ascal graphics card with 12 GB GPU memory. The U-net models 

ere implemented in PyTorch, and reused in the framework. The 

odels regress an additional shared background channel to handle 

he class-imbalance problem. The Mask RCNN was implemented in 

XNet with the default settings. The Whole Spine Mask, the Target 

pine Mask, the Box Masks, and the bounding boxes were derived 

rom the coordinates data. The models were trained separately, and 

he modular framework is easy to implement. 

.5. NAAMII: NepAl applied mathematics and informatics institute for 

esearch 

Intuition 

8 Team NAAMII also presented a direct landmark de- 

ection algorithm. Cobb angles were calculated using the MATLAB 

ode provided. The difficulty in vertebra landmarks compared to 

ther anatomical landmarks is the presence of a large number of 

imilar-looking vertebrae. 

Method Team NAAMII proposed a two-step novel framework 

onsisting of two separately trained networks for a) vertebra de- 

ection followed by b) landmarks detection. Fig. 9 shows the over- 

ll pipeline. In each image, the 17 vertebrae are detected using a 

ounding box object detector. Each of the predicted bounding box 

atches is then fed as individual images to a landmark detector 
8 https://github.com/Bidur-Khanal/SpineCurvEst 

7 
etwork. The four corner landmarks predicted for each bounding 

ox patch are mapped back to the original image, generating 68 

andmarks per image. The outliers are removed from the predicted 

andmarks using post-processing techniques, after which the three 

obb angles are calculated. 

Implementation To create GT bounding boxes for training ob- 

ect detector, Team NAAMII connected the four landmark corners of 

ach vertebra, creating a box whose width and height were then 

ncreased symmetrically by 50 and 10 pixels respectively. Faster- 

CNN ( Ren et al., 2015 ), a widely used two-stage object detector, 

s used for object detection. The base network used for Faster- 

CNN is ResNet V1 101 with pre-trained weights on Imagenet data, 

hich was fine-tuned after block 2. Since the vertebrae are rela- 

ively small and do not have extreme aspect ratios, the selected 

cale and aspect ratio for the anchor boxes of Faster-RCNN were: 

he scale of 64 2 and 128 2 pixels and aspect ratios of 1 : 1 and

 : 1 . The other training details included training of around 180 k 

teps, batch size 1, SGD optimizer with momentum 0.9, learning 

ate 0.0 0 03, and early stopping. The implementation was adopted 

rom Luminoth 

9 in Tensorflow framework 10.1. Data augmentation 

ncluded random Gaussian noise ( μ = 0 , σ = 0 . 005 ), and vertical

nd horizontal flips with a probability of 0.5. Rescaling of the im- 

ges was done preserving the aspect ratio such that its sizes re- 

ained within 60 0–10 0 0 pixels as much as possible. 

Densely Connected Convolutional Neural Network (DenseNet) 

 Huang et al., 2017 ) are used for landmark regression. Team 

AAMII used 5 blocks with a growth rate of 8, where the growth 

ate is the number of output feature maps of each layer. After 5 

locks, a 2D Global Average Pooling is used, which is followed by a 

ense layer. The linear activation function is used in the final layer 

onsisting of 8 output units. All the input images were resized to 

00 × 120 pixels. Some falsely detected vertebrae away from spine 

urvature were rejected as outliers. They also smoothed the spine 

urvature with the order 6 polynomial fit on detected landmarks. 

.6. UC: University of California, San Francisco 

Intuition 

10 Team UC proposed an end-to-end network to pre- 

ict Cobb angles, and used an additional dataset Chest X-rays 

 Irvin et al., 2019 ). Their approach estimates Cobb angles from 

pine radiographs via a data-efficient method based on transfer 

earning, wherein the final model is fine-tuned over a pre-trained 

heckpoint from another closely related domain. 

Method Fig. 10 illustrates the three stages of training; first, pre- 

raining on a much larger chest x-ray dataset, followed by two 

tages of fine-tuning - for landmark detection and Cobb angle es- 

imation, respectively. 
9 https://github.com/tryolabs/luminoth 
10 https://github.com/radiology- guru/cobb- angles/tree/main/cobb _ angles 

https://github.com/Bidur-Khanal/SpineCurvEst
https://github.com/tryolabs/luminoth
https://github.com/radiology-guru/cobb-angles/tree/main/cobb_angles
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Fig. 10. Team UC’s framework. 

Fig. 11. Team ErasmusMC’s framework. Left to right: input X-ray scan ( X-ray ); spine and centerline segmentation with cascaded U-Net networks; thresholding of the cen- 

terline segmentation; removing small connected components; extraction of the spine centerline curve ( Centerline ); centerline smoothing using heat equation ( Smoothed ); 

computing the derivative of the centerline ( Derivative ), computation of Cobb angles. 
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The following approach is adopted for detecting vertebral land- 

arks: 1) A CNN feature extractor (DenseNet-121) is trained on 

he CheXpert dataset ( Irvin et al., 2019 ). 2) Fully connected lay- 

rs are added to the pre-trained DenseNet-121 model for predict- 

ng landmarks. 3) The new network is fine-tuned with labeled ex- 

mples from the AASCE training dataset. Cobb angle estimation is 

 regression problem, with the three angles being the target val- 

es for prediction. An L1 loss is used along with the direct opti- 

ization of the SMAPE metric. The DenseNet-121 feature extractor 

rom landmark detection is used as the initial checkpoint, which 

s then fine-tuned to predict the Cobb angles by introducing addi- 

ional fully-connected layers in the DenseNet model. 

Implementation The model was implemented entirely in Py- 

orch using torchvisions DenseNet-121 module and trained on a 

ingle NVIDIA K80 GPU. Standard data augmentation such as ran- 

om flip, crop, and resize, were also used for training the models. 

.7. ErasmusMC: Department of radiology and nuclear medicine 

Intuition 

11 Team ErasmusMC used another form of cobb an- 

le calculation and designed an end-to-end algorithm. Cobb angles 

ere measured directly from the centerline of the spine, which 

as automatically segmented from X-ray scans using cascaded 

eural networks optimized end-to-end ( Fig. 11 ). 

Method Team ErasmusMC first extracted the centerline of the 

pine by using two cascaded U-Nets ( Ronneberger et al., 2015 ). 

he architecture of each U-net has fewer feature maps and batch 

ormalization layers ( Ioffe and Szegedy, 2015 ) before each pooling 

ayer. The X-ray scan is given as input to the first network. The first 

etwork is optimized to compute the segmentation of the spine, 
11 https://github.com/fpgdubost/aasce _ emc 

t

t

(

8 
nd the second network is optimized to compute the segmentation 

f the spine centerline alone. The networks are optimized end-to- 

nd, simultaneously, using Adadelta optimizer ( Zeiler, 2012 ). The 

oss function is the mean squared error over voxel intensities be- 

ween the binary ground truth and predicted segmentation. Input 

-ray scans are augmented at random on-the-fly during training, 

ith rotation, translation, and horizontal flipping, the addition of 

aussian noise, and varying brightness and contrast. 

To ensure continuity of the centerline, the centerline pseudo- 

robability map at the output the network – before the sigmoid 

ctivation – is binarized using a low threshold (0.25). This pro- 

ess also creates small connected components, which removed by 

ltering. Team ErasmusMC detected the two borders of the cen- 

erline segmentation and chose the points located halfway in be- 

ween to model the centerline curve. Because of local noise due 

o either the low image resolution or errors in the segmentation, 

he derivative of the centerline can be substantially perturbated. To 

void this issue, Team ErasmusMC smoothed the centerline curve 

sing the heat equation, solved with the Euler method. Team Eras- 

usMC set the heat transfer coefficient to 0.01, and the number of 

terations in Euler’s method set to 650 0 0. They tuned the number 

f iterations on the training set. 

Implementation Cobb angles are computed following the for- 

ula presented by Horng et al. (2019) , and adapted to the Eq. (8) :

= 

180 

π

∣∣∣∣arctan 

(
T (p R,M 

) − T (p R,m 

) 

1 + T (p R,M 

) · T (p R,m 

) 

)∣∣∣∣, (8) 

here T (p) is the tangent slope of the centerline at point p, p R,M 

s the point with the maximum slope in the region R , and p R,m 

is

he point with the minimum slope in R . To obtain the tangents, 

he derivative of the centerline in every point is first computed 

“Derivative” in Fig. 11 ). Then, values of the slope of the tangent are 

https://github.com/fpgdubost/aasce_emc
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Fig. 12. The pipeline of the proposed method. Team PAT uses a combination of ResNet50 and FPN as the backbone for multiscale feature extraction. 
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Table 3 

Source codes from top-ranked teams. 

Team Link 

XMU https://github.com/wangshuxinxinxin/SCG-Net 

Tencent https://github.com/hust-linyi/Seg4Reg 

iFLYTEK https://github.com/YJY-CV/Spine 

XDU https://github.com/zzs95/AASCE2019code 

NAAMII https://github.com/Bidur-Khanal/SpineCurvEst 
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onsidered, T (p) , only in 19 points evenly spaced over the center- 

ine as an approximation of the location of the interstices between 

he 17 annotated vertebrae. The entire centerline is used as the re- 

ion of interest R in the equation above to compute the major an- 

le. The upper and lower angles are computed in the regions above 

nd below the highest curvature region, defined as the region be- 

ween p R,m 

and p R,M 

. 

To improve generalization performance, ensembles of networks 

re used. Those networks are optimized on different random sub- 

ets of the training set, and their predictions are averaged at two 

tages of the pipeline: 1) centerline segmentation maps of several 

odels are averaged pixel-wise, before the computation of Cobb 

ngles, and 2) Cobb angles predicted by several ensembles are also 

veraged. 

.8. PAT: PingAn technology 

Intuition 

12 Team PAT proposed a two-stage automated spinal 

andmarks detection network based on rotational regional propos- 

ls of vertebrates. Their method addresses the problem that hori- 

ontal rectangular vertebrate proposals cannot be suitable for se- 

ere spinal curvature estimation, since vertebrates are heavily ti- 

led, and accuracy of both two sub-tasks can be affected due to 

ertebrate proposal misalignment. Cobb angles calculation is given 

o the provided Matlab code. 

Method In stage one, the proposed network detects the location 

f vertebrates using rotated rectangular regions. In stage two, each 

ertebrate region undergoes rotation co-registration using a rota- 

ion angle from the previous stage. Landmarks detection is then 

erformed on aligned proposals. Finally, they estimate the Cobb 

ngle using detected vertebrate landmarks. 

The backbone of their approach is the feature pyramid network 

FPN) (see Fig. 12 ). FPN performs multi-scale feature extraction and 

ives regional proposals on each scale. For training, the ground 

ruth of each rectangular vertebrate bounding box is defined as 5 

arameters (x, y, w, h, θ ) . Especially, (x, y ) describes the center lo-

ation of the bounding box, and (w, h ) describes the dimension of 

he bounding box. The rotation angle θ is about the angle of the 

nclined bounding box with respect to the x-axis, and the rotation 

enter is fixed at (x, y ) , ranging from −π
2 to π

2 . Besides, rotational

nchors are designed at 5 scales, 3 ratios, and 3 rotational angles. 

he rotation align is shown in Fig. 12 . After obtaining 5 parame- 

ers (x, y, w, h, θ ) , rotated vertebrate proposals are adjusted using 

. Then region of interest (ROI) alignment is adopted to the pro- 
12 https://github.com/PASpine/Xspine 

X

F

t

9 
osals for getting a fix-size feature map as stated in ( He et al.,

017 ). Finally, a fully convolutional network (FCN) are used for 

andmarks segmentation. 

To reduce the impact of dataset differences, Team PAT proposes 

 standardized image preprocessing program. First, in order to re- 

ove the head and pelvis floor, Team PAT uses horizontal intensity 

rojection to separate the spine region. The statistical evaluation of 

he entire data set determines the intensity thresholds for different 

ody parts. Second, after obtaining the spine region, they perform 

pinal cord segmentation and midline extraction for spinal cord co- 

egistration and false-positive key points suppression. Finally, the 

pine area is further refined with an aspect ratio of 3.5 locked be- 

ween the image height and width. 

Implementation The optimization of network parameters is 

erformed using Adam optimizer with a learning rate of 1 × 10 −4 . 

or stage one, Team PAT use minimum mean square error loss for 

otation angle regression, a smooth L1 loss for bounding box re- 

ression. For stage two, Team PAT use binary cross entropy loss 

ombined with dice loss for landmarks segmentation. 

. Discussion 

Open code is necessary and fair for reproducibility. We have 

onvinced all teams to make their code open. By far, we have five 

eams provided their GitHub code, as shown in Table 3 , including 

he ranking #1 and #2 teams. We believe these codes will give key 

nformation on how the challenge is solved and implemented for 

eaders. 

Based on Section 4 , all mentioned teams employed deep learn- 

ng based algorithms. Morphological information of the spine is 

onsidered in their methods. Therefore, these algorithms can be 

ummarized into two categories: the first category detecting the 

egion of interest (ROI) and the second category estimating the 

obb angle. For ROI detecting, three methods (Team iFLYTEK, Team 

DU, Team NAAMII and Team PAT) used vertebra detection (with 

aster R-CNN, Mask R-CNN, or FPN) followed by landmarks detec- 

ion. Two methods (Team XDU and Team UC) estimate the spine 

https://github.com/PASpine/Xspine
https://github.com/wangshuxinxinxin/SCG-Net
https://github.com/hust-linyi/Seg4Reg
https://github.com/YJY-CV/Spine
https://github.com/zzs95/AASCE2019code
https://github.com/Bidur-Khanal/SpineCurvEst
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Fig. 13. SMAPE boxplot of spine images. The cross represents the average values of the scores. Red lines inside the boxes represent medians. Separate dots show scores of 

each case. 

Table 4 

Average performance of each team on five metrics. Symbol (1) means the best score 

under the metric, Symbol (2) means the second-best score under the metric. 

Team SMAPE (%) CMAE ( ◦) ED ( ◦) MD ( ◦) CD ( ◦) 

Tencent 21.71 (1) 4.85 (1) 11.17 (1) 14.55 (1) 10.16 (1) 

XMU 22.18 4.91 (2) 11.23 (2) 14.74 (2) 10.17 (2) 

ErasmusMC 22.96 5.69 12.12 17.07 10.52 

iFLYTEK 22.17 (2) 5.48 12.14 16.45 10.74 

XDU 24.8 6.28 13.18 18.83 11.27 

NAAMII 25.7 6.69 14.14 20.08 12.32 

PAT 25.48 6.58 14.37 19.76 12.94 

UC 45.99 17.13 32.01 51.41 24.09 
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urve (boundary or centerline). The rest of all methods directly 

stimate landmark coordinates or get a spine segmentation map 

rstly. For Cobb angle estimating, four teams (Team iFLYTEK, Team 

DU, Team NAAMII and Team PAT) directly used the Matlab code 

e provided to calculate the Cobb angle by landmarks coordinates. 

he other three teams regard it as a regression problem, with the 

hree angles directly estimated. One team (Team ErasmusMC) uses 

he tangent slope of the centerline to calculate the Cobb angle, as 

hown in Eq. (8) . This form of calculating the Cobb angle can get

he same results as the clinical Cobb angle calculation, but in a 

ifferentiable form. 

In this section, we provide more analysis for each team in dif- 

erent scoliosis levels and insightful discussions to inspire readers. 

.1. Evaluation in terms of all scoliosis ranges 

We first evaluate the performance of all scoliosis ranges. Table 4 

hows the average performance of each team with five metrics. 

t can be seen that Team Tencent is the best in all metrics, and

eam XMU ranks second-best in the four metrics. Both teams use 

n end-to-end network and consider the Cobb angle calculation as 

 regression problem. Figs. 13 and 14 show boxplots of in total 

f 98 images of each method on SMAPE and CMAE, respectively. 

esides medians, the means are also indicated by the black cross. 

eam Tencent performed best overall as shown in boxplots, but it 

s more scattered than Team iFLYTEK. In Fig. 13 , first 4/5 teams 

ave pretty similar results because they used similar network ar- 

hitecture and also considered the Cobb angle calculation as a 

egression problem that can reflect the scoliosis deformation pa- 

ameters. Therefore, they get similar training results. Furthermore, 

hese teams use the end-to-end networks in which all parameters 
10 
f the model can be simultaneously trained for one loss function, 

nd it turned out to be very effective in vertebra detection and 

egmentation. It can be clearly seen from Fig. 14 that all teams 

ave some outliers, that is, cases of failure. For further analysis, we 

alculated Wilcoxon signed-rank test, as shown in Tables 5 and 6 . 

nterestingly, we did not find any method of achieving robust and 

tatistically significant better performances compared to all other 

ethods. For example, we found that the results from Team Ten- 

ent present the highest mean in terms of SMAPE and CMAE. Nev- 

rtheless, their differences with the results obtained from Team 

rasmusMC are not strongly statistically significant. To better re- 

ect the accuracy of the eight methods, we further measured the 

orrelation coefficients of the max angle. Correlation coefficients 

re used to measure the strength of the relationship between the 

round truth and the angle predicted by the proposed methods. A 

orrelation coefficient with a value of 0.9 or higher would repre- 

ent a very strong positive relationship. As shown in Fig. 15 , ex- 

ept for Team UC, the other methods have obtained values greater 

han 0.9. It shows that these methods achieve a high correlation 

oefficient with manual measurement. In summary, no team can 

ank first in all evaluation metrics, suggesting that we can further 

hoose or design evaluation metrics according to clinics in the fu- 

ure study. 

.2. Evaluation in terms of not scoliosis and mild scoliosis 

Besides evaluation in terms of all scoliosis range, we further 

valuate the performance based on not scoliosis and mild scolio- 

is. Those with Cobb angle of less than 10 ◦ usually think that there 

s no scoliosis. A total of 11 subjects have no scoliosis. As shown 

n Fig. 18 (see Appendix 1), we can see that Team ErasmusMC 

chieved a correlation coefficient with the highest value of 0.70, 

nd Team NAAMII got the second-highest value of 0.62. It shows 

hat Team ErasmusMC’s method is more sensitive to very mild sco- 

iosis, which may be caused by their centerline curve prediction 

nd the way Cobb angle calculated. Team NAAMII can get a more 

ccurate landmark prediction for scoliosis that is not so deformed. 

he performances based mild scoliosis is shown in Fig. 19 (see Ap- 

endix 1). Team XMU and Team Tencent got a similar highest value 

f 0.81, and their method performed best with Cobb angle between 

0 and 30 degrees. In addition to Team UC, other teams also got a 

ood value in this range. 
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Fig. 14. CMAE boxplot of spine images. The cross represents the average values of the scores. Red lines inside the boxes represent medians. Separate dots show scores of 

each case. 

Table 5 

The p -values by performing the Wilcoxon signed-rank test on SMAPE of any two teams among the eight teams. Single un- 

derline denotes weak statistical significance ( p -value < 0 . 05 ). Double underline denotes strong statistical significance ( p -value 

< 0 . 01 ). 

Tencent iFLYTEK XDU NAAMII UC Erasm-usMC PAT 

XMU 4.69 ×10 −1 5.36 ×10 −1 1.10 ×10 −1 1.14 ×10 −1 1.70 ×10 −12 5.62 ×10 −1 1.28 ×10 −1 

Tencent – 4.26 ×10 −1 6.99 ×10 −2 7.32 ×10 −2 1.62 ×10 −12 4.28 ×10 −1 8.41 ×10 −2 

iFLYTEK – – 2.57 ×10 −2 1.15 ×10 −3 2.21 ×10 −15 1.47 ×10 −1 5.48 ×10 −5 

XDU – – – 2.93 ×10 −1 2.46 ×10 −14 5.78 ×10 −2 2.92 ×10 −1 

NAAMII – – – – 1.91 ×10 −13 1.04 ×10 −2 6.69 ×10 −1 

UC – – – – – 2.15 ×10 −15 7.00 ×10 −16 

Erasm-usMC – – – – – – 1.87 ×10 −3 

Table 6 

The p -values by performing the Wilcoxon signed-rank test on CMAE of any two teams among the eight teams.single underline 

denotes weak statistical significance ( p -value < 0 . 05 ). Double underline denotes strong statistical significance ( p -value < 0 . 01 ). 

Tencent iFLYTEK XDU NAAMII UC Erasm-usMC PAT 

XMU 9.74 ×10 −3 5.46 ×10 −2 7.12 ×10 −3 2.38 ×10 −3 3.48 ×10 −16 9.83 ×10 −2 1.16 ×10 −3 

Tencent – 4.14 ×10 −2 3.21 ×10 −3 1.62 ×10 −3 3.48 ×10 −16 7.39 ×10 −2 7.00 ×10 −4 

iFLYTEK – – 8.87 ×10 −3 1.16 ×10 −4 3.18 ×10 −16 6.44 ×10 −1 2.18 ×10 −6 

XDU – – – 3.41 ×10 −1 1.71 ×10 −15 8.78 ×10 −3 1.52 ×10 −1 

NAAMII – – – – 1.54 ×10 −14 6.40 ×10 −4 5.86 ×10 −1 

UC – – – – – 4.14 ×10 −16 3.91 ×10 −16 

Erasm-usMC – – – – – – 1.63 ×10 −5 
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.3. Evaluation in terms of moderate scoliosis and severe scoliosis 

To better reflect the accuracy of the eight methods, we fur- 

her evaluate the performance based on moderate scoliosis and 

evere scoliosis (see Fig. 20 in Appendix 1). For moderate scolio- 

is, Team PAT got the highest value of 0.76, and Team iFLYTEK got 

he second-highest value of 0.73. Team PAT added an additional 

otation angle parameter θ to the bounding box detection, which 

ay make their method better for relatively large curvature of the 

pine. Team iFLYTEK performs vertebra prediction and keypoint de- 

ection in two lines in parallel, which may also enable a better 

rediction of the severely curved spine. The performances based 

n severe scoliosis is shown in Fig. 21 (see Appendix 1). Basically, 

ll teams except Team UC have achieved good results. 

In general, the algorithm in an end-to-end way is better in 

erms of overall performance. However, for mild spine bending an- 

les, Team ErasmusMC’s method may bring more accurate calcula- 
a

11 
ions. For the spine with large deformation, it is more difficult to 

nd the landmarks accurately. The prediction needs to consider the 

nfluence of the degree of deformation. Furthermore, we evaluated 

he best and worst images predicted by each team on 5 metrics 

SMAPE, CMAE, ED, MD, and CD) and the top 2 images are shown 

n Fig. 16 . We also visualized the best and worst cases in Fig. 17

or two teams. It can be seen that for images with blurry spine 

oundaries and large deformations, it is a difficulty in the current 

lgorithm. For the spine that is basically not deformed, the effect 

f the algorithm is better. 

.4. Limitation and future work 

In terms of challenge evaluation, we only selected SMAPE as the 

hallenge metric, and may not be able to evaluate the performance 

f methods very well. Therefore, we will consider more metrics 

nd provide in the future challenge, such as CMAE, etc. Moreover, 
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Fig. 15. The closeness between the ground truth and the angle predicted by the proposed eight methods in the max angle value of all scoliosis ranges. It can be seen that 

most methods show a high correlation. 

Fig. 16. Best and worst cases in the testing dataset. (a) the worst 2 images, and (b) 

the best 2 images. 
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12 
he testing set only provides the Cobb angles as the ground truth 

or the challenge. Given that each team considers the shape of the 

pine into their methods, we think that assessing the shape of the 

pine is also important. An assessment of the landmark or the cen- 

erline of the spine will be added. 

In terms of data, the testing set and training set we provide are 

omewhat different in distribution, which increases the difficulty 

f the challenge. The teams need to find a way to adapt to the 

ifference. The images we provided are the JPG format, resulting 

n a somewhat lower resolution. In the future, we hope to provide 

igher resolution images. Besides, the number of training and test- 

ng images are small. We are working hard to get more images. 

In the paper, we only reviewed 8 teams. Some works are not in- 

luded due to time limits. We look forward to more scholars join- 

ng the research of automatic spine curve estimation in the future. 
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Fig. 17. Visualization of the worst and best case scenarios for two teams with respect to the algorithmic performance. (a) and (b) are the best and worst cases for the Team 

NAAMII. (c) and (d) are the best and worst cases for the Team XDU. 
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Fig. 18. The closeness between the ground truth and the angle predicted by the proposed eight methods in the max angle value of not scoliosis. It can be seen that most 

methods show a high correlation. 
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Fig. 19. The closeness between the ground truth and the angle predicted by the proposed eight methods in the max angle value of mild scoliosis. It can be seen that most 

methods show a high correlation. 

15 
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Fig. 20. The closeness between the ground truth and the angle predicted by the proposed eight methods in the max angle value of moderate scoliosis. It can be seen that 

most methods show a high correlation. 

16 
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Fig. 21. The correlation coefficients between the ground truth and the angle predicted by the proposed eight methods in the max angle value of severe scoliosis. It can be 

seen that most methods show a high correlation. 

17 



L. Wang, C. Xie, Y. Lin et al. Medical Image Analysis 72 (2021) 102115 

6

o

m

a

m

i

p

s

m

c

f

r

D

A

d

R

A  

B

B  

C  

C  

 

C  

G

H  

H  

H  

H  

I  

I

I  

 

K  

L

L  

O  

R  

R

S  

S  

T

W  

X  

Z

Z  

Z  
. Conclusion 

In this paper, we have elaborated on the details of eight meth- 

ds, including intuition, workflow, and implementation. All eight 

ethods were presented to the AASCE-2019 challenge. We further 

nalyze the performance of these methods under different metrics, 

ost of which can achieve excellent results. A detailed discussion 

s provided with limitations and possible future directions. This pa- 

er will provide possible solutions and insightful discussion for re- 

earchers who want to continue working on the Cobb angle esti- 

ation from x-ray images. Organizers choose not to disclose the 

orresponding ground truth of test data. The challenge will reopen 

or new submissions and can thus be used as a reference for algo- 

ithm performance on spinal curvature estimation. 
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