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A B S T R A C T   

Psychiatric symptoms are interrelated and found to be largely captured by a general psychopathology factor 
(GPF). Although epigenetic mechanisms, such as DNA methylation (DNAm), have been linked to individual 
psychiatric outcomes, associations with GPF remain unclear. Using data from 440 children aged 10 years 
participating in the Generation R Study, we examined the associations of DNAm with both general and specific 
(internalizing, externalizing) factors of psychopathology. Genome-wide DNAm levels, measured in peripheral 
blood using the Illumina 450K array, were clustered into wider co-methylation networks (‘modules’) using a 
weighted gene co-expression network analysis. One co-methylated module associated with GPF after multiple 
testing correction, while none associated with the specific factors. This module comprised of 218 CpG probes, of 
which 198 mapped onto different genes. The CpG most strongly driving the association with GPF was annotated 
to FZD1, a gene that has been implicated in schizophrenia and wider neurological processes. Associations be
tween the probes contained in the co-methylated module and GPF were supported in an independent sample of 
children from the Avon Longitudinal Study of Parents and Children (ALSPAC), as evidenced by significant 
correlations in effect sizes. These findings might contribute to improving our understanding of dynamic mo
lecular processes underlying complex psychiatric phenotypes.   

1. Introduction 

Psychiatric disorders and their symptoms co-occur more often than 
expected by chance (Angold et al., 1999; Kessler et al., 2005) and show 
continuity across development (Wichstrom et al., 2017). Although 
psychiatric symptoms typically cluster in broadly defined internalizing 
and externalizing domains, those domains are in themselves correlated 
as well (Achenbach et al., 2016). There is growing evidence that the 
shared versus specific variance between psychiatric disorders and their 
symptoms may be usefully represented by a general psychopathology 
factor (GPF) (for studies in childhood and early adolescence, see: Lahey 
et al., 2015; Neumann et al., 2016; Olino et al., 2014; Patalay et al., 

2015; Rijlaarsdam et al., 2021). According to recent research, GPF 
shows structural temporal stability in childhood (Rijlaarsdam et al., 
2021) throughout adulthood (Gluschkoff et al., 2019). Furthermore, 
GPF in childhood has been found to predict the course and severity of a 
multitude of psychiatric outcomes in adolescence, over and above spe
cific psychopathology dimensions (Pettersson et al., 2018). 

Previous research found evidence for both genetic and environ
mental influences on GPF. For example, GPF has demonstrated a sig
nificant single nucleotide polymorphism (SNP) heritability of 38% 
(Neumann et al., 2016). Furthermore, it has been repeatedly shown that 
common genetic risk variants associated with childhood psychiatric 
outcomes, as indexed by polygenic risk scores (PRS), underlie GPF 
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(Brikell et al., 2018; Riglin et al., 2019). This is supported by studies 
showing that genetic influences are often pleiotropic, simultaneously 
affecting multiple psychiatric outcomes.(Cross-Disorder Group of the 
Psychiatric Genomics Consortium, 2013; Cross-Disorder Group of the 
Psychiatric Genomics Consortium, 2019) Similarly, environmental fac
tors such as childhood maltreatment have been associated with a wide 
range of psychiatric outcomes, ranging from anxiety and depression to 
rule-breaking and aggression (Vachon et al., 2015). Interestingly, 
childhood maltreatment was found to associate most strongly to GPF as 
opposed to symptom-specific factors (e.g., internalizing, externalizing) 
(Brodbeck et al., 2018; Caspi et al., 2014). These genetic and environ
mental factors are known to interact, for example with strongest effects 
of maltreatment on mental health shown for those children at high ge
netic risk (Jaffee et al., 2005). 

However, the molecular mechanisms underlying these genetic and 
environmental influences on GPF remain unclear. Epigenetic mecha
nisms that regulate gene expression, such as DNA methylation (DNAm), 
have emerged as promising candidates. Studies have shown that DNAm 
(i) responds to both genetic and environmental factors (Meaney, 2010) 
and (ii) associates with psychiatric outcomes across the genome (Cecil 
et al., 2018; Neumann et al., 2020; Walton et al., 2017). As such, DNAm 
may represent a potential molecular mechanism that could explain 
psychiatric disease susceptibility across the life span. However, while 
shown to associate to separate psychiatric outcomes (e.g., 
attention-deficit/hyperactivity disorder symptoms, conduct problems), 
DNAm has not been examined in relation to GPF. Consequently, it is not 
known yet whether the identified associations are specific to these 
psychiatric outcomes or shared between them. 

Using data from 440 children aged 10 years participating in the 
Generation R Study, a population-based sample, we examined the as
sociations of genome-wide DNAm with both general and specific factors 
of psychopathology. Given how little we know of the underlying biology 
of general psychopathology, our aim was to investigate epigenetic cor
relates to help identify targets for future research. Specifically, identified 
targets could be followed up in future to establish the potential utility of 
DNAm as a non-causal biomarker versus a potential mechanistic un
derpinning of general psychopathology. Because DNAm levels have 
been shown to correlate substantially between CpG sites (Kuan and 
Chiang, 2012), we examined wider biological networks (so called 
‘modules’) of co-methylated DNAm sites. Modules that significantly 
associated with general psychopathology were followed-up using bio
informatics tools and online databases to characterize (i) CpG sites in the 
module driving the associations, (ii) enriched biological pathways, (iii) 
potential genetic influences (e.g., methylation quantitative trait loci 
[mQTLs]), (iv) cross-tissue correspondence of DNAm levels, and (v) the 
relationship with gene expression in peripheral and neural tissue. We 
further examined major life events from birth to age 10, including 
maltreatment, as a potential environmental factor that may influence 
DNAm levels of any module associated with GPF. The replicability of our 
findings was tested in an independent cohort, the Avon Longitudinal 
Study of Parents and Children (ALSPAC). 

2. Methods 

2.1. Participants 

This study is embedded in the Generation R Study, an ongoing 
population-based study of children born to pregnant women residing in 
Rotterdam, the Netherlands, with expected delivery dates between April 
2002 and January 2006 (Kooijman et al., 2016). For this cross-sectional 
research, we included 10-year-old children of European ancestry who 
had available data on DNA methylation (DNAm) and general psycho
pathology (N = 440, 50.7% male). Written informed consent was ob
tained from all parents. The study was conducted in accordance with the 
guidelines proposed in the World Medical Association Declaration of 
Helsinki and was approved by the Medical Ethical Committee of the 

Erasmus MC, University Medical Center, Rotterdam. 

2.2. Measures 

2.2.1. DNA methylation 
Five-hundred nanograms of genomic DNA from blood was bisulfite 

converted using the EZ-96 DNA Methylation kit (Shallow) (Zymo 
Research Corporation, Irvine, USA). Samples were plated onto 96-well 
plates in no specific order. DNAm was quantified using the Illumina 
Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, 
USA). For further information on the preparation and normalization of 
the HumanMethylation450 BeadChip array, see Supplementary Infor
mation 1. 

In this study we examined networks of co-methylated DNAm sites 
that have been previously extracted and characterized in Generation R 
based on all children with DNAm data at age 10 (Koopman-Verhoeff 
et al., 2020), using a weighted gene co-expression network analysis in R 
(WGCNA package; Langfelder and Horvath, 2008). Utilizing the corre
lation patterns between the individual sites, WGCNA is a system-level 
data reduction approach that reduces the dimensionality of the data 
and may provide insight into wider DNAm networks (so called ‘mod
ules’) associated with a phenotype of interest. Block-wise network 
construction was run using default settings (power threshold of 6; 
minimal module size of 30 sites; merge cut height of 0.25). Each derived 
module was colored by size automatically and summarized by a ‘module 
eigengene’ (ME) value, the first principal component of the given 
module. CpG sites that did not co-methylate were assigned to an ‘un
classified’ module. We ordered and numbered the modules according to 
their strength of association with GPF for simplicity. WGCNA identified 
64 co-methylated modules, containing between 30 and 65,804 CpG 
sites. The majority of sites (n = 261,374) were unclassified, suggesting 
that their inter-correlations were too low to constitute modules. 

2.2.2. General psychopathology 
Psychopathology symptoms were assessed with the Child Behavior 

Checklist 6–18 (CBCL/6–18; Achenbach and Rescorla, 2001), a vali
dated and widely used parental assessment of a child’s behavioral and 
emotional problems. Mothers completed questions about a range of 
emotional and behavioral problems of the child in the past six months on 
a three-point scale (0 = not true, 1 = somewhat true, 2 = very true). See 
statistical analysis section for details on the GPF model. 

2.2.3. Covariates 
All analyses were adjusted for sex, sample plate, and estimates of cell 

type proportions (Houseman et al., 2012). In sensitivity analyses, we 
additionally controlled for a range of potential factors that may influ
ence general psychopathology or have been typically adjusted for in 
birth cohorts (Dunn et al., 2020). These extended covariates included: 
age at the assessment of general psychopathology (mean = 9.69 ± 0.25), 
maternal smoking during pregnancy (never smoked in pregnancy 
[78.8%]; smoked until pregnancy was known [10.0%]; continued 
smoking [11.2%]), maternal age at intake (mean = 32.19 ± 4.00), 
maternal educational level (higher vocational education and university: 
yes [67.3%] or no [32.7%]), marital status (married or cohabiting 
[95.4%] versus single [4.6%]), and maternal psychopathology symp
toms (mean = 0.15 ± 0.19) measured at 20 weeks of pregnancy, using 
the Global Severity Index derived from the Brief Symptom Inventory, a 
self-report mental health symptom scale (Derogatis, 1993). 

2.2.4. Major life events 
To investigate major life events as a potential environmental factor 

that may influence DNAm levels of any module associated with GPF, we 
used a major life events inventory (Amone-P’Olak et al., 2009; Brown 
and Harris, 1978) encompassing the intervening years from birth to age 
10. Mothers were asked to indicate whether their 10-year-old child had 
ever experienced specific life events (e.g., exposure to physical or sexual 
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violence, serious illness or dead in the family, family economic pressure 
or conflict). 

2.3. Statistical analysis 

Statistical analyses were performed in R (R Core Team, 2017). GPF 
scores were winsorized at ±3 SD and standardized. The analyses pro
ceeded in three main steps. 

2.3.1. Step 1: general psychopathology factor 
In the first step, we used confirmatory factor analysis (CFA) to fit a 

hierarchical general psychopathology model with the Lavaan statistical 
package (Rosseel, 2012) in the full sample with CBCL data available (N 
= 4954). Whereas a single general factor loaded on all CBCL problem 
subscales, two specific factors loaded on internalizing (anxious/de
pressed, withdrawn/depressed, somatic complaints) versus external
izing (rule-breaking behavior, aggressive behavior, attention problems) 
subscales. Three subscales (social problems, thought problems, other 
problems) were indicators of the general factor but not of the specific 
factors because the CBCL did not group them into any higher order 
domain. The internalizing and externalizing factors were allowed to 
correlate with each other but not with the general factor. Consequently, 
the general factor represents a common vulnerability across a broad 
range of both internalizing and externalizing problems (i.e., explaining 
the shared variance among all problem scales) that is independent of the 
more specific internalizing and externalizing factors. 

We performed a correlated two-factors model for further validation 
(see Supplementary Figure 1). Specifically, internalizing and external
izing factors were again (i) each indicated by a subset of psychopa
thology domains and (ii) assumed to be correlated. However, no general 
factor was modeled. Model fit was established using the robust 
comparative fit index (CFI; acceptable fit ≥ 0.90), root-mean-square 
error of approximation (RMSEA: acceptable fit ≤ 0.08), standardized 
root mean square residual (SRMR: acceptable fit ≤ 0.08) and the 
bayesian information criterion (BIC; lower levels indicating better fit) 
(Hu and Bentler, 1999; Raftery, 1995). 

2.3.2. Step 2: associations between DNA methylation and general 
psychopathology 

Second, we regressed the co-methylated modules on the general and 
specific psychopathology factor scores correcting for sex, sample plate, 
and estimates of cell type proportions. Associations were considered 
significant if they survived Bonferroni correction for multiple testing 
[corrected p-value = 0.05/(64 modules*3 outcomes) = 0.0002604]. In 
sensitivity analyses, we reran associations for significant co-methylated 
modules, additionally adjusting for extended covariates. Missing values 
of these extended covariates (range = 0.3–8.2%) were imputed twenty 
times and results were pooled using the MICE software package (van 
Buuren and Groothuis-Oudshoorn, 2011). 

Modules that significantly associated with general psychopathology 
were then followed-up to characterize (i) the individual CpG probes in 
the module driving the associations, (ii) enriched biological pathways, 
(iii) potential genetic and environmental influences, (iv) cross-tissue 
correspondence, and (v) the relationship with gene expression. First, 
the individual CpG probes contained in the modules were regressed on 
GPF using the CpGassoc package (Barfield, Kilaru, Smith and Conneely, 
2012), correcting for sex, sample plate, and estimates of cell type pro
portions. Second, in order to identify enriched biological pathways 
within a module, we used the gene ontology (GO) method from the 
missMethyl R package including genes mapped to CpGs contained in the 
module (Phipson et al., 2016). GO terms were considered significant at a 
false discovery rate (FDR<0.05). Third, we explored potential genetic 
and environmental influences on DNAm. We first used a heritability tool 
characterizing additive genetic influences as opposed to shared and 
non-shared environmental influences on DNAm, based on data from 
monozygotic and dizygotic twins (Hannon et al., 2018). We then used 

the methylation quantitative trait loci database resource (mQTLdb, 
GCTA set, childhood; Gaunt et al., 2016) as a more specific tool for 
identifying genetic influences on DNAm levels in childhood. With 
regards to potential environmental influences, we examined whether 
DNAm levels of any module associated with GPF were also associated 
with major life events. Fourth, we characterized cross-tissue corre
spondence of DNAm using the blood-brain concordance tool (Hannon 
et al., 2015) based on postmortem data from 122 individuals with 
DNAm from whole blood and four brain regions. Finally, for genes 
associated with CpGs contained in significant modules, tissue expression 
was investigated using the Genotype-Tissue Expression (GTEx) data 
resource (GTEx Consortium, 2015). 

2.3.3. Step 3: replication 
In the third step, we used data from the accessible resource for in

tegrated epigenomics studies (ARIES; Relton et al., 2015) (www.ariesepi 
genomics.org.uk) to test the replicability of our findings. ARIES is nested 
within the Avon Longitudinal Study of Parents and Children (ALSPAC), 
an ongoing epidemiological study of children born to 14,541 pregnant 
women residing in Avon, United Kingdom, with an expected delivery 
date between April 1991 and December 1992 (85% of eligible popula
tion; Fraser et al., 2013). Ethical approval for the study was obtained 
from the ALSPAC Ethics and Law Committee and the Local Research 
Ethics Committees. Informed consent was obtained from all ALSPAC 
participants. The original ALSPAC sample is representative of the gen
eral population (Boyd et al., 2013). Please note that the study website 
contains details of all the data that is available through a fully searchable 
data dictionary and variable search tool: http://www.bristol.ac.uk/alsp 
ac/researchers/our-data/. For this study, we included children from 
ARIES who had DNAm data at age 7 measured using the Illumina 450K 
Infinium BeadChip, as well as data on general psychopathology at age 7 
(N = 811, 50.0% male). See supplementary Information 1 and 2 for 
further details on the DNAm data and the general psychopathology 
factor in ALSPAC. 

For each co-methylated module associated with general psychopa
thology in Generation R, probes were extracted in ALSPAC and indi
vidually regressed on the general psychopathology factor, correcting for 
sex, sample plate, and estimates of cell type proportions. To examine 
convergence between the Generation R and ALSPAC samples, the 
Pearson correlation of the effect sizes between the samples was calcu
lated. We also considered the sign of the regression coefficients. 

3. Results 

3.1. Step 1: general psychopathology factor 

As displayed in Supplementary Information 2, both the hierarchical 
(general psychopathology, internalizing, externalizing factors) model 
(CFI = 0.963; RMSEA = 0.088, SRMSR = 0.030; BIC = 178722.864) and 
the correlated two-factors (internalizing, externalizing factors) model 
(CFI = 0.984; RMSEA = 0.063; SRMR = 0.023, BIC = 123497.825) 
showed acceptable model fit. All factor loadings of the internalizing and 
externalizing factors decreased substantially from the correlated-factors 
model to the hierarchical model. Specifically, whereas all factor loadings 
of GPF were well above 0.30 (average loading = 0,69, range =
0.46–0.81), this was not the case for the specific internalizing (average 
loading = 0.31, range = 0.20–0.47) and externalizing (average loading 
= 0.29, range 0.09–0.48) factors. In the hierarchical model, the specific 
internalizing and externalizing factors correlated negatively with each 
other. This is to be expected, as the shared variance is already captured 
by GPF. 

In light of the relatively low factor loadings for the specific factors 
versus GPF in the hierarchical model, GPF will be of primary focus in all 
subsequent analyses. Furthermore, in sensitivity analyses, we addition
ally assessed the internalizing and externalizing factor scores from the 
correlated two-factors model in relation to DNAm. 
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3.2. Step 2: associations between DNA methylation and general 
psychopathology 

As shown in Table 1, one co-methylated module (module 1) was 
significantly associated with GPF after Bonferroni correction, b = 0.0047 
(95%CI = 0.0022–0.0072), β = 0.10, p = 2.33*10–4. Effect estimates 
remained largely unchanged after adjusting for the extended covariates 
in a sensitivity analysis, b = 0.0050, p = 1.81*10–4. No modules were 
associated with the specific internalizing and externalizing factors from 
the hierarchical and the correlated two-factors models after Bonferroni 
correction. Supplementary Table 1 shows the full linear regression 
results. 

Module 1 comprised of 218 CpG probes, of which 198 mapped onto 
different genes located on all 22 autosomal chromosomes. As shown in 
Supplementary Table 2, DNAm levels at the CpG probes within module 1 
were moderately to highly correlated (mean r = 0.42). Linear regression 
showed that 80 (37%) of the 218 individual CpG probes contained in 
module 1 were associated with GPF at a nominal p-value threshold of 
0.05 (see Supplementary Table 3, sorted by p-value). The top 10 indi
vidual CpG probes in module 1 associated with GPF are displayed in 
Table 2. Twenty-seven of the CpG probes included in the module were 
previously identified as polymorphic (i.e., overlapping with SNPs) (Chen 
et al., 2013). These 27 CpGs included two of the top 10 CpGs driving the 
association with GPF. GO analysis revealed no significantly enriched 
common biological processes, cellular components, or molecular func
tions for the genes mapped to the individual CpGs contained in module 1 
(see Supplementary Table 4). 

A total of 214 (98%) probes in module 1 had twin heritability esti
mates available, which showed low additive genetic influences (mean r 
= 0.04, range = 4.40 E− 18-0.37) versus moderate to strong shared (mean 
r = 0.60, range = 0.13–0.96) and non-shared (mean r = 0.36, range =
0.02–0.86) environmental influences (see Supplementary Table 5), 
suggesting that variation in these CpG probes may be primarily 
explained by environmental influences. This finding was supported by 
the mQTL tool, which showed that only two of the 218 probes in module 
1 were associated with known mQTLs in childhood (see Supplementary 
Table 5). However, the cumulative score of exposure to major life events 
(n = 414, mean = 3.91, SD = 2.45, range 0–14) was unrelated to the co- 
methylated module as a whole, b = 0.0003 (95%CI = − 0.0008–0.0014), 
β = 0.01, p = 0.635149. Regarding cross-tissue correspondence, we 
found that DNAm levels in blood correlated significantly with DNAm 
levels in at least one brain region for 116 (53.2%) of the 218 probes in 
module 1 (see Supplementary Table 6). Based on GTEx data, the genes 
mapped to the top 10 CpGs driving the association with GPF showed 
mixed profiles of expression in peripheral and neural tissue (see Sup
plementary Figure 2). Whereas two genes were specifically expressed in 
peripheral tissue groups, other genes, particularly RPLP2 and DSTN, 
were more broadly expressed. However, none of the genes showed 
specific expression in the brain. 

3.3. Step 3: replication 

As a final step, we tested the replicability of our findings in ALSPAC, 
focusing on corresponding probes after quality control (nmodule 1 = 209). 
In ALSPAC, intercorrelations among the probes within module 1 were 
moderate to high (mean r = 0.60, see Supplementary Table 7). Although 
only 8 (3.8%) of the 209 probes were nominally significantly associated 
with GPF in ALSPAC, we were interested mainly in general convergence 

between effect estimates at the network level. That is, the overall 
concordance in effect sizes between Generation R and ALSPAC (see 
Supplementary Table 8) was significant, r (209) = 0.31, p < 0.001, and 
the direction of associations was mostly (79.9%) consistent across the 
two cohorts. Furthermore, the concordance in effect sizes between the 
cohorts was stronger when restricting to the module 1 probes that were 
nominally associated with the general psychopathology factor in Gen
eration R, r (79) = 0.44, p < 0.001. 

4. Discussion 

This study used a network-based approach to examine associations of 
genome-wide DNAm with both general and specific factors of psycho
pathology in a population-based sample of children aged 10 years. We 
highlight here three key findings. First, we identified one co-methylated 
module associated with GPF after multiple testing correction, but we did 
not observe associations with the specific internalizing and externalizing 
factors. Second, functional characterization of the sites contained in this 
module suggested that variation may be best explained by environ
mental as opposed to genetic influences. Third, associations were sup
ported in an independent sample, as evidenced by significant 
correlations in effect sizes. 

Out of a total of 64 co-methylated modules identified across the 
genome, one was found to associate with the general psychopathology 
factor, after multiple testing correction. This module comprised of 218 
CpGs, 80 (37%) of which nominally associated with the general psy
chopathology factor. The CpG most strongly driving this association was 
annotated to FZD1, a gene involved in the Wnt signaling pathway that (i) 
is essential for neurological development and the maintenance of the 
nervous system, and (ii) has been associated with susceptibility to 
neurological disorders (Okerlund and Cheyette, 2011; Patapoutian and 
Reichardt, 2000). In a recent case-control genome-wide association 
study (GWAS) of schizophrenia (Liu et al., 2020), four of the top five 
signals were located in FZD1. This finding was supported by post-GWAS 
gene-based analyses, showing that multiple markers in FZD1 are 
involved in the susceptibility to schizophrenia. Whereas GTEx data 
suggests that FZD1 is not specifically expressed in the brain but in pe
ripheral tissues (e.g., thyroid, tibial nerve and artery), Pietersen et al. 
(2014) found FZD1 to be upregulated in the superior temporal cortex in 
postmortem schizophrenia brain. Interestingly, in adults, it has been 
found that a thought disorder factor, as indicated by schizophrenia, 
mania, and obsessive-compulsive disorder, was almost perfectly corre
lated with GPF, suggesting that it may represent its core feature (Caspi 
et al., 2014). Also of interest, the second most strongly associated CpG in 
the co-methylated module was annotated to ZBTB16, a protein coding 
gene involved in the cell cycle progression that has been linked to 
various psychiatric outcomes bridging the internalizing and external
izing divide, such as conduct disorder symptoms (Sonuga-Barke et al., 
2008), ADHD (Zayats et al., 2015), and major depressive disorder 
(Spijker et al., 2010). 

Of note, the 218 CpGs contained in the co-methylated module were 
not restricted to a specific genomic location, but spanned different genes 
(n = 198) and all 22 autosomal chromosomes. This finding supports 
previous research showing scattered genomic findings for differentially 
methylated probes associated with an increase in psychopathology 
symptoms (low-high CBCL total scores) in youths at a 3-year follow-up 
(Spindola et al., 2019). Future studies are needed to identify any po
tential common characteristic of these CpG sites. For example, 

Table 1 
Associations between DNA methylation patterns and child psychopathology.   

General psychopathology factor  Internalizing factor   Externalizing factor  

Module P-value b SE  P-value b SE  P-value b SE 

1 2.33E-04 0.00473 0.00128  0.026212 0.00292 0.00131  0.343037 − 0.00124 0.00131  
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transcription factors might bind to regulatory sites affecting the 
expression levels of multiple genes, potentially influencing a common 
vulnerability to psychopathology (Tong et al., 2017). Using publicly 
available tools (i.e., twin-based heritability tool, mQTLdb), we found 
little evidence of genetic influences on DNAm levels of the CpGs con
tained in the co-methylated module within childhood. Although it seems 
that these sites are mostly influenced by environmental as opposed to 
genetic factors, the association between the module and the general 
psychopathology factor was robust to adjustment for factors that are 
typically controlled for in birth cohorts (e.g., maternal education and 
psychopathology). Furthermore, a cumulative score of major life events 
(including physical and sexual abuse) encompassing the intervening 
years from birth to age 10 was unrelated to the co-methylated module. 
As such, it is unclear what factors influence methylomic variation within 
this module, and future studies will be needed to identify whether 
specific adversities not included in the present study might be at play. 

We found some support for the associations between the CpGs con
tained in the co-methylated module and GPF in ALSPAC, an independent 
population based cohort. While only few of the individual CpGs con
tained in the co-methylated module nominally associated with GPF in 
ALSPAC, we observed a wider concordance in effect sizes and the di
rection of associations across CpG sites included in the module. 
Although this finding supports our use of clusters of highly co- 
methylated DNAm sites across the genome, several study differences 
should be noted. First, the children in the Generation R Study were on 
average 10 years of age, whereas the ALSPAC sample included 7-year- 
olds. Second, the GPF was fitted to dimensional (CBCL, questionnaire) 
versus more clinically oriented categorical (DAWBA, interview) data in 
Generation R and ALSPAC, respectively. Any of these study differences 
may account for disparity in results. 

The present findings should be interpreted in the light of several 
limitations. First, given that the current study was cross-sectional in 
nature, the direction of the association between DNAm and the GPF 
cannot be inferred. Second, by identifying clusters of highly co- 
methylated DNAm sites across the genome, our analysis was per
formed over wider DNAm networks, and not at the individual CpG-level. 
It remains to be determined, however, whether these networks are 
functionally relevant. In particular, integration of transcriptomic data 
will be important for assessing the functional relevance of DNAm 
changes to gene expression. Third, because DNAm is tissue specific, 
observations in peripheral blood may not reflect other tissues of interest 
(e.g., the brain) that are unavailable for population-based studies of 
living individuals. Fourth, although it is interesting that no associations 
were observed for the specific internalizing and externalizing factors, 
these specific factors also showed the lowest loadings. However, we 
demonstrated that despite acceptable factor loadings, the internalizing 
and externalizing factors from the correlated two-factors model (where 
no general factor was modeled) were also unrelated to DNAm. 

In summary, the current study identified genome-wide DNAm pat
terns that associated to GPF as opposed to specific internalizing and 
externalizing factors. Showing some support for this link between 
DNAm and GPF in an independent sample of children, findings of this 

study might contribute to improving our understanding of dynamic 
molecular processes underlying complex psychiatric phenotypes. 
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