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CHAPTER 1: INTRODUCTION

1.1 The Standard Model

The Standard Model, the highly successful theory that describes fundamental interactions
of forces and particles on subatomic scales, is the crowning achievement of 20th century
physics. Its development, which we will cover briefly, mirror the development of perhaps the
greatest theory of the 19th century: Atomic Theory. This will not be exhaustive; there are
several texts that cover the topic [1] as well as Quantum Field Theory more generally [2] [3]. A
more in depth coverage of the development of the Standard Model can be found elsewhere [4].

Humankind has concerned itself with the most basic makeup of the physical world since at
least the Greek Hellenistic period. Adopting ideas from earlier writing, the famed philosopher
Democritous proposed a universe consisting of the vacuum and small indivisible objects called
atoms [5]. Though this proposal was complete speculation, without the specifics necessary
to be useful, its broad outline is prescient of a theory that will appear around the turn of
the 19th century.

By 1805, it was becoming clear some underlying material structure existed. Antoine
Lavoisier had found no measurable change in mass between reactants and their products
in a sealed container. Additionally, Joseph Louis Proust found that different samples of a
material contained its constituent elements in constant proportion. It was in this climate that
John Dalton proposed Atomic Theory. Elements consist of atoms, of which a given element
are identical; compounds consist of atoms of two or more elements in integer numbers [5].

During the 1860s, Atomic Theory received a major boost due to efforts to relate elements
based on similar characteristics. Though there were several chemists working on the problem
including Julius Meyer, John Newlands, and Dmitri Mendeleev, it was Mendeleev’s Periodic
Table of the Elements that is most widely known. He noticed that elements can be arranged
by atomic mass, and into groups. Elements of the same group exhibited similar chemical

behavior, and periods could be arranged into orderly increases in mass. Much of the modern



periodic table was unknown in Mendeleev’s time, but armed with high degree of order, his
table was able to make several predictions about elements that should appear in empty places.
Among his predictions, Mendeleev predicts the elements ekaaluminum and ekasilicon, which
were later discovered and named gallium and germanium respectively. There is power in
patterns; the ability to anticipate unobserved phenomena based on what’s been seen before
is both the goal and core feature of the scientific endeavor.

The number of particles discovered by the mid 1950s and 1960s requires a similar under-
lying theory. The discoveries of the electron, the proton, and the neutron set Atomic Theory
on solid footing, as well as explain the presence of isotopes. The discovery of the muon
together with Fermi’s postulate of the near—-massless neutrino, which was discovered much
later, established the first two lepton generations. The pion and what we now call the kaon
were the first of many mesons found. Prior to discovery of the A° and several other hyperons,
the proton and neutron were the only known strongly interacting, high-mass particles. Due
to their similar mass and similar strong interaction, the proton and neutron were considered
two states of the same “nucleon”. In order to account for the difference between the two
nucleon states, the property of “isospin” was assigned. This is a close analogy to intrinsic
spin.

The discovery of hyperons introduced problems with this interpretation. A°, whose mass
is comparable to the nucleons and is produced in strong interactions, has a lifetime that is
much longer than expected. Strong interactions that produce this, the ¥*, and Z* (“Cas-
cade”) hyperons also produce kaons; such particles have never been seen outside of this
associated production. The solution to these and other problems was the introduction of the
“strangeness” by Gell-Mann and independently by Nishijima. As an example, by arranging
the mesons of spin-0 by I3, the “3” projection of isospin similar to S., and strangeness one
can create an octet as seen in Fig. 1.1, suggesting that there exists some underlying structure.

The quark model posits that quarks are the core constituents in protons, neutrons, and

other strongly interacting particles. This theory successfully predicts the existence of a



0

g=—1 qg=0

Figure 1.1: A grouping of spin 0 mesons, organized by I3 (horizontal axis) and strangeness
(vertical axis) [6]. Particles sharing a top-left to bottom-right diagonal have the same electric
charge. M. Gell-Mann referred to this and other hadron octets by the phrase “Eightfold
Way.”



bound state containing three strange quarks; this particle, dubbed the 27, was discovered
in 1964. Quarks are now a major component of the Standard Model, which describes our
best understanding of the fundamental particles and forces in nature. The Standard Model
includes six quarks (Table 1.1) and six leptons (Table 1.2) in three generations, along with
their respective antiparticles. It also describes the particles that mediates fundamental
subatomic forces. These exchange particles, as seen in Table 1.3, are the photon, three
Weak bosons, and gluons. The particle mediating the force of gravity is noticeably absent
here. Gravity is hypothesized to be mediated by a massless spin-2 boson called the graviton.
However, because it is orders of magnitude weaker than the other forces, not well accounted
for in the Standard Model, and has yet to be directly observed, we can safely omit the

graviton here.

Table 1.1: Standard Model quarks.

Symbol  Name  Electric Charge Approximate Mass (MeV) [8]

u Up +2/3 4 (lattice simulation)
d Down —1/3 4 (lattice simulation)
c Charm +2/3 1240 (continuum extraction)
S Strange —1/3 95 (lattice simulation)
/ Top +2/3 172600 (CDF /DO [7))
b Bottom —1/3 4200 (continuum extraction)

Table 1.2: Standard Model leptons.

Symbol Name Electric Charge Approximate Mass (MeV) [§]
Ve Electron Neutrino 0 < 0.003
e Electron -1 0.511
v, Muon Neutrino 0 < 0.19
1 Muon -1 107
7 Tau Neutrino 0 < 18.2
T Tau -1 1777

Both quarks and leptons are spin-1/2 fermions and have the property of “flavor”, which



Table 1.3: Standard Model gauge bosons.

Name Force Electric Charge Approximate Mass (GeV) [§]
photon v Electromagnetic 0 0
gluon Strong 0 0
W= Weak +1 80
Z° Weak 0 91

describes the difference in species for quarks and generation for leptons. Each flavor has its
own quantum number; here isospin differentiates up and down quarks. Strange quarks have
“strangeness”, charm has “charmness”, and so on. Similarly, electrons and electron neutrinos
have electron lepton number, muons and muon neutrinos have muon lepton number, etc.
Besides the obvious mass differences, quarks and leptons also differ by the absence of baryon
number for leptons, as well as which forces they interact with. Quarks experience strong,
weak, and electromagnetic forces; leptons do not interact strongly. Furthermore, neutrinos

only interact weakly.

Table 1.4: Fundamental forces important in the Standard Model [1].

Force Range (m) Relative Strength Interacts With

Strong 1071 1 Quarks, gluons
Electromagnetic infinite 1072 Any electrically charged particle

Weak 1018 1075 Quarks, leptons

Of the three forces seen in Table 1.4, the Weak force is the appropriately named weakest.
As opposed to the electromagnetic and strong forces, the Weak force is not involved in the
formation of bound states. Aside from general momentum conservation requirements, it is
also not the source of any push or pull. Instead it can best be understood as the force
mediating flavor—changing and some leptonic interactions. A familiar example of a Weak

process is the following neutron decay:



n—pte +1, (1.1)

Known as 8~ decay, the process evolves as seen in Figure 1.2. One of the down quarks within
a neutron emits a W~ and becomes an up quark. The W~ then converts immediately into
an electron and a neutrino. Electromagnetic and strong forces both conserve species, so the
weak force is the only available decay channel. Eventually all higher generation particles
decay into the first generation quarks and leptons via Weak decays. This explains why the
visible universe is composed of the first generation particles and their constructs.

A different example of weak decay can be found in the comparison of the A" and X.
Both are positively charged particles around 1.2GeV. Both also prominently decay to n+m*.
When we observe the lifetimes of these similar particles, we find a major difference. The
AT — n + 7t decay proceeds rapidly, on the order of 10~%s, whereas ¥* — n + 7T takes
~ 107%%. Comparing the quark content before and after the decay, we can clearly discern
what forces can allow the respective decays.

The At — n 4+ 7 involves wud — udd + ud. This only requires the production of a
down/antidown pair, which the strong force can provide. ¥+t — n+ 7" requires more. With
uus — udd + ud, in addition to creating a down/antidown pair as in A%, the decay must
also replace a strange quark with another down. This flavor change is only possible within
a Weak decay.

The electromagnetic force is well understood, being the force responsible for the elec-
tromagnetic spectrum, charged pith balls and other miscelaneous experiments common to
introductory physics classes, and most chemical interactions including the formation of chem-
ical bonds. Charged bodies interact with each other and extraneous electromagnetic fields
via the exchange of photons. Quantum Electrodynamics (QED) is the theoretical framework
for understanding such interactions at their most fundamental. QED is a perturbative field
theory whose development foreshadowed Quantum Chromodynamics (QCD), the theory of

strong interactions.
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Figure 1.2: A diagram of beta decay (Eq. 1.1). A d quark decays via the weak force to result
in a u quark still bound in the hadron, an electron, and an antielectron neutrino [9].



QCD describes the force responsible for the formation of protons and neutrons, their
binding within nuclei, and the decay of very short-lived particles, such as the previously
mentioned AT. Similar to QED, the strong force acts on objects that carry a “color” charge.
Each quark carries a “red”, “green”, or “blue” charge, and each anitquark an anticolor. It
should be noted the colors associated with the strong force are only state labels — convenient
analogies to the colors in the visual EM spectrum. A particle is said to be “white”, or
colorless, if the constituent quarks contain equal amounts of red, green, and blue or color
and anticolor in equal measure. The strong force operates under color confinement, which
forbids the observation of a net color charge; hadrons are observable colorless quark states.
Hadrons containing three quarks equal amounts of the three color or anticolor charges are
called baryons, which include the nucleons and the discussed hyperons. Mesons, e.g. pions,
kaons, and n’s, are hadrons composed of a quark with color and an antiquark with anticolor
charge.

The requirement of colorless observable states is due to a key difference between the
electromagnetic and strong forces: the gluon itself carries color charge. Though the photon
carries the electromagnetic force between charged particles, it does not have its own charge.
Thus the electric force between charged particles is nearly constant at large distances, but
increases as the particles get closer. With strong interactions, however, as color charged
particles get closer, such as quarks colliding in high energy interactions, the effective strong
force decreases. The strong force increases as two quarks within a hadron are separated,
making it more difficult to pull the two apart. If enough energy is put into dividing a pair
quarks in a hadron another pair of quarks will appear from the strong field, creating two

colorless hadrons that allow the original pair of quarks to separate.

1.2 An Introduction to Dalitz Plots
Describing hadron formation is generally intractable through analytic means. Outside the
realm of peturbative QCD, the same features that produce hadronic observable states quickly

overwhelm all but numerical approximations and high performance computing. These meth-



ods, including most prominently Lattice QCD, require more than the experimental verifi-
cation necessary of all theoretical predictions. A review of Lattice QCD can be found in
the PDG [8]. Properties such as exclusive charm branching fractions generally cannot be
accurately predicted and must be found experimentally.

The D meson has proven to be an ideal system to study strong sector dynamics. Unlike
the proton, D states are relatively free of the gluon “sea” that heavily populates protons.
It also has advantages over its heavier analog, the B meson. Much of the strong dynamics
vital to the understanding of B decays are larger in D. In addition to decay tagging being
easier [10], certain analyses are impossible [11] in decays other than two D mesons decaying
from a common parent.

Many of the decay channels available to the D meson consist of three or more body
final states; these are predicted to primarily proceed through the production of a interme-
diate resonance [12]. For Weak nonleptonic three-body decays, the primary technique for
analyzing this intermediate structure is the Dalitz Plot. This method was first used by its
namesake R. H. Dalitz [13] to study the 7 — 6 puzzle, the resolution of which found both
were different parity decays of the same basic meson, what we now reference as the kaon.
For a given resonance, there are three primary results derived from a Dalitz plot analysis:
relative amplitudes, phases, and branching fractions.

The quantum description of the decay rate of a particle of mass M into n bodies is given

by the formula

(27T)4 2
dr, = dD(M;p; ... pn 1.2
S MR pi . py) (1.2)
where
] n n dgpl
i=1 i=1 t

is the general invariant phase space, and |M|? is the Lorentz invariant amplitude. For a
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psuedoscalar such as a D or B meson decaying into three psuedoscalars, the phase space
is much more simple. The three final state particles each has a 4-momentum, representing
twelve degrees of freedom. However not all of these degrees are independent. As summarized
in Table 1.5, because our knowledge of the system, we can eliminate all but two degrees of
freedom. If we combine masses mi, = (m;+ms)? and m3,, then m?, is completely determined
and we have an ideal phase space to see resonances. Making the necessary integrations, we

derive

[M]?

ar, = —-L__
32(2m )3 M3

dm?3,dm3, (1.3)

which is the standard form of the decay rate on the Dalitz Plot. As seen in Figure 1.3, the
limits of the Dalitz plot are kinematically determined. Additionally, the shape of the plot
will also be different if there are identical particles in the final state, e.g. D* — K'K?K=.
If there are no resonances in the final state, events will populate the Dalitz plot evenly; any

increased or decreased density of events on the plot are primarily due to the presence of

resonances.
Table 1.5: Daltiz Plot Degrees of Freedom.

Constraint DOF Notes

3 Final State 4-Momenta 12 Each final particle has a 4-momentum

Euler Angles -3 Pseudoscalar Parent has no Preferred
Angle

Conservation of Momentum -3 p3 = —(p1 + p3)

Conservation of Energy -1 E3= Mp— E; — E5 (In D Rest Frame)

Known Masses -3 mp=mq+mg+ms, mp= (MD;ﬁ)

Remaining D.O.F. 2 Can use mi, = (my + ma)?, mi, ete.

The invariant amplitde |M|? encapsulates all of the dynamics of the decay of M into a
given set of final daughters. Each resonant decay channel has its own matrix element, an
imaginary phase term, and an amplitude that is positve real by construction. Thus the total

invariant amplitude takes the form
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Figure 1.3: A diagram of a Dalitz plot. The shape of the plot is determined by the kinematics
of the decay. A more complete discussion of particle kinematics can be found in the PDG [8].

M(D = abe) = a, €97 + > aper A, (1.4)

where a,, ¢,, and A, are the amplitude, relative phase, and dynamics matrix element of
the mth resonance, respectively. The a,,.e®" term is for a nonresonant D° decay. The

normalization of [M|? is arbitrary, so we set it to

/|/\/l|2dD73 =1 (1.5)

whose integral is over the Dalitz plot. This means the analysis is only sensitive to relative
phases and amplitudes. In practice, one resonance is set to a = 1, ¢ = 0, and the rest
allowed to float against this fixed value. In the next section I will discuss previous attempts
to deal with this normalization. Since different analyses are free to choose different resonance
models and fixed resonances, we require a result that are independent of such details. Thus

I also calculate the fit fraction [12] over the plot for each resonance,
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_J |ae™r A(abelr)|*dDP
- [ 1Z;a5e%5 A(abelj) |2 dDP

(1.6)

Fit Fraction,

In general the sum over the fit fractions is not equal to one due to interference between
resonances.

The observation of resonance interference is another feature of Dalitz analysis, but it is
not without complication. In decays involving a K™K~ final state, such as D° — K'KTK~,
multiple resonances appear at the same place on the Dalitz Plot. ¢(1020) is a well known
“strangeonium” meson with s5 composition and narrow width that appears near 1GeV?2.
Two more, a((980) and f,(980), are both wide resonances with largely unknown structure
that should also contribute to this decay channel at the same mass; see the f;(500) Note in
the PDG [8]. As seen in Table 1.6, while both have a secondary decay in K™K~ they have
two different dominant decay channels. If we can utilize any of the information from the
fit of a non-interfering channel on the D — K°K* K~ plot, we can attempt to accurately

measure the contribution of these two resonances to the specific final state.

Table 1.6: Wide Scalar Mesons a((980) and f,(980) Compared [8].

Property ao(980) £0(980)
Mass 980 £ 20MeV 990 4+ 20MeV
Width 50-100MeV  40-100MeV
IG(JPC) 1—(0++) O—I—(O—H-)
Dominant Decay nm T
Next Largest Decay KK KK

So what properties are unchanged between the differing decay channels? There are two
approaches that suggest themselves. Assuming a resonance with at least two channels “1”
and “2” share a common amplitude, we can create a fitting “penalty term” that forces the
amplitude in an interfering channel to the value found in the non-interfering channel. In the
Dalitz method, amplitudes and phases are relative; we fix one resonance, often the largest,

and fit the rest with respect to this. This in practice means the amplitudes, or more properly
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the absoulte value of |a|?, must first be normalized to be compared. We must also note |a|?

represents

BF1 * BF powithmode1 = |a1|2 (1-7)

Thus the fit amplitude of a resonance into its “1” channel can be equated to its “2” channel
amplitude by scaling each by the branching fraction of the resonance into that channel, and
the fraction of the parent into a mode containing the channel. We can adjust for the relative
fit by dividing by the sum of amplitudes in the channel as seen in Eq. 1.8. In equating

amplitudes, we are oblivious to the interference on the plot.

cl|a1|2 02|a2|2

BflngOwithmodel BI2BFDOwithmode2

(1.8)

where

is the normailiztion factor.
If instead we equate the Fit fraction of the shared resonance, we explicitly deal with
interference. Eq. 1.9 includes the scaling by branching fraction for the resonance mode and

parent mode.

FF - FF
BlefDOwithmodel Bf2BfD0withmode2

(1.9)

1.3 Current Experimental Status and Theoretical Predictions
The CLEO collaboration previously attempted to tackle the discrepancy between f;(980)

as it appears in D' — K7t7rT versus D° — K°KTK~ [14]. Since it was noted that

D — K°K*™K~ should have an a¢(980)K? mode that is difficult to separate from the

f0(980) contribution, CLEO set out to study a(980) in a non—interferring mode. CLEO in
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its II.V configuration, which will be discussed in the next chapter, was able to perform a
Dalitz analysis on D° — K%, extract its branching fraction relative to D° — K%Y and
find the two leading resonance candidates ag(980)K? and K*(892)n. Though this analysis
adds to the knowledge of three body charm decays, question of how to separate f,(980) from
ao(980) was left unresolved.

The BABAR collaboration later performed a Daltiz plot analysis on D — KOKtK—,
also seeking information on charm three body decays as well as hoping to discover more
information on f,(980) from a((980), both of which are possible exotic strong states [15].
BABAR did not consider an f,(980) contribution, reasoning from a comparison between
K?K* and K~ K™ that the lack of excess events in K~ Kt made an f,(980) component
unlikely. They calculate an upwards value for the contribution and omit amplitude and
phase values. The possibility of interference between ay(980) and f,(980) is not considered.

In contrast to the BABAR study of KOK*K~, the FOCUS collaboration’s “Study of the
D° — K™K~ 7mnt™ decay” [16] includes the fy(980)7 7T channel in their overall fit, but ex-
plicitly exclude the corresponding ay(980)7* 7" mode. FOCUS finds a relative lack of statis-

tics and the fact ag(980) primarily decays into nm are reasons for excluding ao(980)7 7.
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CHAPTER 2: THE CLEO-C EXPERIMENT

Knowledge of an experimental apparatus is nearly as important as the data it produces.
Here I will describe in brief the device used in this thesis. A more detailed description can

be found elsewhere [17].

2.1 CESR

The Cornell Electron Storage Ring (CESR) is the source of colliding electrons and
positrons at Cornell University. It has a circumference of 768 meters, extending from Wilson
Laboratory through the tunnels underneath the adjacent athletic facilities and parking lots.
CESR began operation in 1979.

Electrons begin the process. Emitted from a heated filament, these electrons are accel-
erated by special 30 meter long linear accelerator (LINAC). The LINAC uses microwave
electric fields to bring the electrons up to 150 MeV at an intermediate point, at which time
they strike a tungsten fixed target. More electrons, along with positrons and x-rays emerge
from the interaction. The positrons are selected, and accelerated to energies between 150
and 300 MeV before being injected into the second acceleration stage: the synchrotron.

A synchrotron consists of cells to accelerate particles to the desired energies, and various
magnets to selectively focus the particle beams. CESR’s synchrotron has four 10-foot long
radio frequency accelerating cells. The positrons make about 4000 clockwise orbits before
being injected into CESR. This occurs at a rate of about 60 injections per second. Once
CESR has the proper positron beam current, electrons take the analogous path in the system.
Collected after the tungsten collision, electrons are accelerated through the system like the
positrons before them, except in a counterclockwise direction. At current, CESR maintains
both an electron and positron beam in the same tunnel, travelling in opposite directions.
The beam is not a continuous object; a normal beam consists of up to nine “trains”, each
containing between three and five “bunches”.

Each beam travels very close to the speed of light, with half of the total energy re-
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quired for experimentation. CESR, like other storage rings, are specialized synchrotrons
that maintain beams at experimental energy versus accelerating to energy. All charged par-
ticles, electrons/positrons in particular, lose energy as they circulate around the ring due
to synchrotron radiation. CESR has superconducting RF cavities to replace energy lost to
radiation, plus liquid cooling to remove heat deposited in the ring. In two stations, this syn-
chrotron radiation is extracted, and used for various material science studies. These stations
make up the Cornell High Energy Synchrotron Source (CHESS).

Since CESR stores beams for up to an hour, care must be taken to keep a well main-
tained vacuum and focusing to prevent collisions with the chamber walls. Beams consist of
bunches of electrons and positrons, which introduces its own focus concerns. Like charged
particles repel, spreading a given bunch. CESR counteracts this spread using quadrapole

and sextapole focusing magnets.

2.2 Electron/Positron Collisions

When bunches of positrons and electrons coincide at the interaction point, there is a
probability they will collide. When they collide they will annihilate, creating a virtual
massive photon, v*, which will immediately decay to a product that depends on the center
of mass energy.

In the CLEO-c experiment, the beams are tuned to three primary energies: ~ 3680MeV,
~ 3770MeV, and =~ 4770MeV. These correspond to 1, ¢, and D*Dj, respectively. As an

example, if the center of mass energy is 3774MeV, the reaction event is

e et =yt = (2.1)

The choice of energy depends on what the CLEO collaboration wishes to study. The "
decays to D°D® and D* D~ (52 4+ 5)% and (41 & 4)% of the time, respectively [8]. The D
mesons are produced back to back nearly at rest.

CESR operation data is divided into “runs” and “datasets”. A run consists of a single
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ete~ fill, which can contain up to 10* events. A dataset contains a series of runs that
are related by machine conditions, including the center of mass energy. This analysis is
performed on datasets 31-33, 35-37, and 43-46. These data sets represent a total of 818 pb~!
of integrated luminosity taken at the ¢” energy. When we multiply the luminosity by the
cross section of e~e™ — DYDP [18], we determine we have data on about three million D°D°

pairs.

2.3 Previous Incarnations of CLEO

CLEO, so named to compliment CESR, was built along with CESR in the late 1970s [10].
It was constructed in the south hall of Wilson Laboratory, centered around one of two
interaction points. A second experiment, the now defunct CUSB, was housed in the smaller
north hall. Among CLEQ’s first tasks were to verify the then-recently discovered Y states:
T(19), T(2S), and Y(35), as well as discover a fourth, Y(45), near the BB threshold.
Various studies surrounding T and B mesons continued throughout the 1980s with a short
shutdown in 1986 to improve resolution and particle identification. CLEO II came online in
1989 after a yearlong shutdown. Of the many upgrades, two of the most notable were the
installation of the cesium iodide (Csl) calorimeter and the new muon chambers.

1995 saw the beginning of CLEO I1.V operation. A new silicon detector near the interac-
tion point allowed for better vertex resolution. A major focus in this era was measuring the
bottom-related Cabibbo-Kobayashi-Maskawa matrix (CKM) matrix elements. Five years
later, CLEO III came online, bringing with it an improved silicon detector, a new drift
chamber, and a ring imaging Cherenkov (RICH) detector. It too was focused on B mesons,

primarily from Y (45).

2.4 The CLEO-c Detector

Faced with the advent of high-luminosity B-Factories and the need for a better under-
standing of strong interaction effects, the CLEO collaboration decided to change focus to
the lower energy charm sector. In order to better serve this new priority, the silicon vertex

detector was replaced by an inner drift chamber and the magnetic field strength reduced
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from 1.5T to 1.0T. This new detector was dubbed CLEO-c [17]. For a diagram, see Figure
2.1.

D mesons decay within the radius of the interaction region, producing a shower of particles
that will survive to be detected in different layers. Electrons, positrons, and other charged
particles will deposit energy in the drift chambers and either end their flight or decay by the
time they are detected in the calorimeter. K-short (K?) will most often decay to a 77~ pair
in the drift chambers. Photons will go largely unnoticed by the drift chambers and deposit
energy in the calorimeter. Neutral pions (7°) and etas (1) will similarly go undetected by the
drift chambers, being detected by their decay into a photon pair. Muons will deposit energy
in all layers of the detector including the appropriately named Barrel Muon Chambers. K-
long (K}) and neutrinos mostly escape detection, and must be reconstructed from missing
energy and momentum.

Before we continue, we should make note of our coordinate convention. We use cylindrical
coordinates, with our origin at the interaction point. The z axis coincides with the beam
line in the direction of the positron beam, with r the distance from the beam line and ¢ the

angle about the beam line. The Cartesian y axis is normal to the ground.

2.4.1 TRACKING

As charged particles emerge from the interaction region, their trajectories are curved by
the magnetic field maintained within the detector. By measuring this track in a fixed field
strength, we have a measure of the particle momentum.

The two innermost layers of CLEO-c, the inner and outer drift chambers, are designed
to detect these tracks. An image of the inner drift chamber is shown in Fig. 2.2. A par-
tial schematic of the outer drift chamber is shown in Fig. 2.3. Both chambers consist of
cylindrical wires stretched between metal endcaps, contained in a helium-propane (60:40)
gas mixture. There are two types of wire. Sense wires are gold-plated tungsten 20pm in
diameter, maintained at a voltage difference of about 2000V relative to the second type.

Field wires are gold-plated aluminum with a diameter of 110pm. These wires are used to
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Figure 2.1: A diagram of the CLEO-c detector [19].
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Figure 2.2: A picture of the inner drift chamber (ZD) at CLEO-c. The reflections show the
stereo twist [20].

shape the electric field in the chamber in order to create cells, with a single sense wire to
each cell. As seen in Fig. 2.3, each cell is roughly square.

As a charged particle passes through the drift chambers, it deposits energy in the gaseous
medium, creating electron-ion pairs. As the electron is attracted to the sense wire it collides
with more of the medium, creating more electrons. This cascade of electrons produce a
current in the sense wire that is read out at the end of the chamber. The charged particle
will continue this ionization process for the duration of its flight in the drift chambers. The
current readouts, or hits, are turned into position measurements in the ¢ plane.

Most of the cells are axial; they are strung parallel to the beam line. However some are
set at a stereo angle, which allows us to resolve position in the z axis as well. In software, we
combine these hits to reconstruct the three dimensional path, or “track”, the particle took
through the detector. The direction of the curvature of the track tell us whether the charge

was positive or negative. The magnitude of curvature tells us its momentum.
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Figure 2.3: A schematic of the outer drift chamber (DR) at CLEO-c, showing the placement

of field and sense wires [21].
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2.4.2 PARTICLE IDENTIFICATION

The drift chambers’ function in track reconstruction complement their other important
function: particle identification. As a charged particle traverses the drift chamber, it loses
energy as a function of velocity due to interaction with the chamber gas and wires. This
specific energy loss, dE/dx, will change as a function of velocity. As we see in Fig. 2.4,
beyond approx. 700MeV, dE /dx becomes less useful in differentiating K=, 7=, and protons.
At these energies we need the next outer layer of CLEO-c, the Ring Imaging CHerenkov
(RICH) detector.

The RICH chamber (see Fig. 2.5) itself contains several layers. After leaving the outer
drift chamber, the charged particle enters a layer of lithium fluoride (LiF) radiators, which
have a high index of refraction. The particle is still traveling slower than the speed of light
in vacuum (c), but faster than the speed of light in LiF. As it enters the radiators, the
particle emits very ultraviolet photons in a cone similarly to a supersonic object creating a
sonic boom in air. Since we need to detect the opening angle, which depends on the particle
velocity, the cone is allowed to expand in a layer of pure nitrogen gas. Past this expansion
gap, they are detected as a circle in the third layer, which consists of multiwire proportional
chambers immersed in methane-triethylamine (TEA) gas mixture. The radius of this circle
determines velocity. Combined with a momentum measurement from the tracking system,

the particle is identified by calculating its mass.

24.3 CALORIMETRY AND MUON DETECTION

Beyond the RICH detector, the cesium iodide (Csl) electromagnetic calorimeter is tasked
with determining the energy of EM showering particles and photons. The calorimeter consists
of 7800 CslI crystals, each 5 x 5 x 30cm, with silicon photodiodes for detection. The crystals
are arranged such that a 5 x 5cm face is directed at the interaction region. As the target
particle enters a crystal, it initiates a shower of photons that travel to the opposite end to be
detected by the photodiodes. The light intensity is proportional to the energy of the incident

particle.
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Figure 2.4: dE/dx plots from CLEO III. The bottom stripe of points consists of charged
pions, the stripe in the middle consists of charged kaons, and the upper and faintest stripe
consists of protons [17].
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Figure 2.6: A cross section diagram of the CLEO-c Barrel Muon Chambers [23].

The final layer of CLEO-c consist of several layers of iron that serve as flux return
for the superconducting magnet. Interspersed between magnet iron are the Barrel Muon
Chambers. Like the drift chambers, the Barrel Muon Chambers consist of wires immersed
in gas mixture that detect the trajectory of passing charged particles. As seen in Figure 2.6,
instead of multiple field and sense wires occupying a common chamber, each anode wire
is contained in graphite-coated extruded PVC tubes in a 50% argon and 50% ethane gas
mixture [22]. The graphite of the plastic tubes acts in a similar fashion to the field wires of
the drift chambers. 8cm copper cathode strips run perpendicular to the tubes to properly

determine position.

2.4.4 TRIGGERING, DATA ACQUISITION, AND EVENT
RECONSTRUCTION

A given ete™ collision run contains far more results than can be saved to storage for
study. Coupled with our inability to analyze decays in real time, we require a means to
quick assess how interesting the given event is. This evaluation is called triggering, and it
has several components.

Beginning with the drift chambers, the readouts are checked against signatures of events
with objects that travel far enough in the detector to be useful. Triggering also requires that
three of the four stereo layers in the outer drift chamber receive hits. The tracking trigger

rejects interesting events fewer than 1% of the time. The calorimeter data is gathered next,
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Figure 2.7: The event display for a CLEO-c event. Tracks, RICH response, and showers are
shown.

locating showers by grouping adjacent crystals into overlapping tiles.

Tracking and calorimeter data are fed into the global trigger which decides if the event
fits into one of eight categories of interesting events. If it matches one, the rest of detector
information is gathered. This coincides with a period of about 20ps during which the detector
is blind to additional events. Event displays generate for interesting events, which show the
transverse plane in the detector. Figure 2.7 shows an example display, with responses from
all affected layers.

The data acquisition system (DAQ) digitizes about 400,000 readouts from all of CLEO-
c. Depending on the event, this can represent more than 5MBps. As the DAQ operates,

CLEO-c resumes data taking. If another interesting event passes triggering, the readouts for
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this new event is placed in buffer for later processing by the DAQ. More software triggers
downstream are used to do additional background minimization before data is stored to disk
or tape.

The collaboration has a mature and robust set of software libraries written in C++
that allow us to turn hits and showers into physics “objects” that can be analyzed. This
is done after triggering and DAQ, and is not casually related to data taking. From there,
collaboration members write code in various compiled and scripting languages, commonly
C++ along with shell scripts, to build our analyses. If the raw readout information is
required, this too is available.

Most of the work of event reconstruction is performed by “pass2”, which builds tracks,
showers, and does loose particle identification. D meson analysis is of such importance to the
collaboration that many studies, including our own, use data that has been pre-searched for
D candidates. This “D Skim” [25, 26] takes pass2 objects to make combinations, looking for
potential D “tags”. If one combination passes the skim’s cuts, the whole event is included
in the skim for that dataset. Pass2 reconstructs anything it can, including any secondary
decays, so the skimmer cannot determine what might be important without further analysis.
A researcher can look for a specific decay(s) by invoking one of over 70 tagged DD or D,D,
modes.

Since pass2 only performs basic selections, D Skim makes additional requirements. Tracks
must be well reconstructed, originating close to the interaction point. The track’s momentum
must also be within bounds. Table 2.1 lists all of the track requirements. In order to
differentiate between pions and kaons, we can utilize information from both dE/dz and

RICH. Given the dF /dx information is availible, we calculate a x? for the particle hypothesis

(2.2)

o; =
h o

2 (dE/d'rmeasured - dE/dmpredicted)

where h is either a pion or kaon. In the case of valid RICH information, the liklihoods L and
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L, are calculated based on the locations of the Cherenkov photons and track information [36].
We combine theses particle hypothesis tests in a log-likelihood calculation, whose value for

a pion test is

L=0}—0>+Lg— L, (2.3)

where £ > 0. For a kaon, Eq. 2.3 is used with the K and 7 subscripts switched. If the RICH
gives an obviously wrong output, Lx and L, will be omitted. The RICH outputs will also
be omitted if the track momentum is below 700MeV or | cosf| > 0.8. These rejections are

due to the optimum momentum resolution and physical coverage of the RICH detector.

Table 2.1: Track quality cuts used by D Skim.

Cut Description
0.050 < p < 2.0 GeV p: track momentum
|db| < 0.005 m db: closest dist. from track to interaction point
|20 < 0.050 m 20: same as db, except along beam axis (z-axis)
x2 < 100000 x?: measure of how well raw output fits to shape of a track
hitfrac > 0.5 (Actual # of tracking hits)/(expected # of tracking hits)
| cos 0] < 0.930 6: angle track makes with the beam axis

Neutral particles, in particular K9, 7°, and 7, also receive extra selections. K? candidates
are reconstructed using pairs of tracks that make a “vee”, where both come from approx-
imately the same vertex in the drift chambers. These tracks, which are not subjected to
particle identification, must also have a total energy that is within 30MeV of the K? mass,
0.4976GeV. 7° and 7 candidates are built from photon showers in the calorimeter. Among
the cuts, as seen in Table 2.2, is photon minimum energy, which must be at least 30MeV
and 50MeV for the 7¥ and 7 respectively. i’ are also built, but are not used in this analysis.

In order to build a D tag, the D Skim takes a list of these lighter reconstructed particles
and tries to make D candidates from a list of known decay modes. Candidates that survive

the D selections in Table 2.3 are included in the skim. Incuded D skim tracks, showers, and
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Table 2.2: 7% and 1 quality cuts used by D Skim.

Cut Description

E > 30(50) MeV Shower energy: minimum for 7°(n)

Mmeasured Mexpected < 3
ag

Pull Mass, where o is the resolution

0 <m <1000 GeV  Unconstrained Mass: to remove pathological
shower combinations

x? < 100000 % how well raw output fits to 7°(n) originating
from the interaction point

Omaz < 10000 Maximum deviation from 7°(n) hypothesis

overall D candidates are also kinematically fit using the FitEvt [29] package; the fit results

are stored along with the candidate.

Table 2.3: D candidate cuts used by D Skim. FEje,,, is one half the total energy of the eTe™
collision.

Cut Description
M. > 1.83 GeV  Beam constrained mass; My, = \/EZ .. — ph
|AE| < 0.1 GeV AE = ED - Ebeam

2.5 Monte Carlo Simulations

Monte Carlo (MC) simulation [30] is an important application in the physics analysis
tool set. This toolkit allows us to generate simulated events to test analysis techniques as
well as determine efficiencies. Unlike actual data, simulated MC decays can be determined
from the initial eTe™ collision through to the final detected daughters.

MC simulation begins with the EvtGen program. Beginning with ee™ — ~*, EvtGen
uses either the master file, called DECAY.DEC, or a user created file to simulate a random decay
to the final daughters. DECAY .DEC contains the branching fractions and masses of every decay

at CLEO energies known to the collaboration. These decay chains are processed through
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cleog, a Geant4-based' software package that simulates how the detector behaves including
random detector noise. What emerges from cleog are showers and other detector hits that
can be run through the same pass2, etc. that are used for actual data. We emphasize MC
must be treated carefully; EvtGen does not accurately represent every fine nuance of the
Standard Model, let alone nature. Additionally, cleog is not a perfect model of the detector.
Taken together they are, however, good tools that are often used to determine how often
fake data seeps into signal.

There are two types of pre-generated MC. “generic MC” is simulated to only include
DD events. This is also D skimmed, so users can readily use D tags from MC and data.
The other variety is “continuum MC”, which models the non-DD decays that are present in
data, but not in generic. Each dataset has set of DD, continuum, and the other varieties,
each with several luminosities. The MC is generated with the specific detector conditions
recorded the given dataset. For analyses that require a subset of decay channels, a user can

create his or her own decay.dec, and specify what decays are modeled. This type is “signal

MC”.

2.6 Software

The CLEO collaboration has developed mature software tools that allow members to
bootstrap an analysis quickly. In particuler, the mkproc tool in conjuntion with 14 optional
modifiers builds a fully functional C++ analysis package, a “processor”, capable of tasks
from modified particle reconstrution to D Skim with full DD pair identification (so-called
“double tags”).

Processors are run in the suez framework, so named to complement the Caesar/Cleopatra
naming scheme. Using scripts written in the TCL scripting language, suez handles any
shared libraries, data/MC, and preprocessing tasks required for a given analysis. Small
analysis tasks can be run on CLEO workstations. Large tasks, including large MC generation,

can be handed off to the server farm using the Grid Engine queuing system.

http://http://geant4.cern.ch/
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2.7 Notable Results

As of 2014, the CLEO collaboration has published over 500 articles, many of great impor-
tance in high energy physics. Besides its inaugural bottom quarkonia studies [31] [32], CLEO
has greatly contributed to the understanding of other quark/anitquark bound states[33] [34].
Measurements of charmless B meson decays are sensitive to the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element |V,|, and CLEO has discovered many forms of these decays [35].
CLEO has also produced one of the most comprehensive studies of the hadronic branching

fractions of D mesons [36] [37].



32

CHAPTER 3: EXPERIMENTAL TECHNIQUE

3.1 Formalism
The matrix element | M|? contains all of the resonance dynamics; with no resonances the
events would uniformly populate the Dalitz plot subject to kinematic limits. In general the

matrix element M, for D — rc, r — ab, as seen in Fig. 3.1, takes the form

M, = Z < ablry > T,(ma) < cry|D° > (3.1)
A

where the sum is taken over the A helicity states of r and T,.(m,) is the dynamical function
describing the decay of r. Generally the matrix element depends on the total angular mo-
mentum of parent, the orbital angular momentum between r and c, the orbital momentum
between a and b, and the momenta of ¢ and either a or b in the r rest frame. A more complete
overview of the formalism can be found in the Dalitz Formalism note in the PDG [8].

The dynamics function 7).(mg,) derives from the S-Matrix formalism. An initial state i
couples to a final state f by Sy =< f|S|i >, where S is the unitary scattering operator that
satisfies S1S = S8t = I. The Lorentz invariant transition T is derived by separating the

probability that the final state f is not equal to the intial state ¢

3111100-009

*
% 8 4 c
==l A

AB Resonance

Do B

Figure 3.1: A diagram depicting a D resonantly decaying to the ABC final state.
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S =1+2T =1+ 2ip'*Tp"? (3.2)

where p is the diagonal phase space matrix, p; = 2¢;/m, and ¢; is the momentum of a in

24,

the 1 rest frame for the decay channel 7. For the single channel S-wave, S = €?° satisfies

unitarity and Tis

A 1 .
T = -e“sind (3.3)
P

We can use this single channel as a model of non-resonant decays.

There are three common formulations of the dynamical function: the Breit-Wigner, the
Flatté and the K-Matrix formulations. In practice we utilize the first two; the K-matrix
formulation is described elsewhere [38]. For a resonance r decaying into two spin-0 daughters

a and b, the Breit-Wigner is

1

2 .
m2 —mz2, —im,Lg

Tr(mab) - (34)

The “mass-dependent width” Ty, depends on the invariant mass of ab (mg), the momentum
Pap Of either daughter in the ab rest frame, the momentum p, of either daughter in the r rest

frame, the spin J of the resonance, and the width I',. This is expressed as

I 2J+1 m
Ty =T, <—b) <—> F? (3.5)
DPr Map

F, is a Blatt-Weisskopf penetration factor, also described in the Dalitz formalism note [8],
which attempts to model the underlying quark structure. The factors as seen in Table 3.1,
which separately model both the resonance and D°, are normalized to 1 when mg, = m,.
To be consistent with other experiments [39], we have chosen the radius, R, to be 5GeV~!
and 1.5GeV~! for the D" and resonances, respectively.

The Flatté formulation is useful when two resonance channels open close to one another.
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Table 3.1: Blatt-Weisskopf Penetration Factors

Spin  Form Factor F
0 1

1 v/ 1+R2p?2
V 1+R2pZ,

(R?p?—3)2+9R?p?
V/(R?p2,~3)2+9R?p2,

It takes the form

. 1
T(mab) = .
m2 —m2, — i(p1g; + p293)

(3.6)

where ¢? + g2 = m,I',. The coupling constants g; and g, couple a resonance to the two
channels. For a((980), g1 = g, and g2 = gxx. The phase space terms are p; = p,, and

p2 = pri Where

2 2
o — [1 . (M) - (u) ] 57
Map Map

For f,(980), the coupling constants are g; = g, and go = gx; the phase space terms are

P1 = prr and ps = pri. Since the myg+ # myo, the charged and neutral kaon channels are

taken to have the same coupling constant but different phase space factors. Therefore

1 Impes \ om0 \
PKE = = 1—( K)+ 1—( K) (3.8)
2 Mgk Mg

The simplest matrix element is a scalar resonance; it has the form

AO(CLbC‘T) = FDTT(mab)Fr (39)

where Fp and F, are the same barrier penetration factors for the production of rc and ab
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found in Table 3.1. The matrix element for a vector resonance is

Ai(abe|r) = Fp(ppo + pe)Tr (M) ZeA 5 (pa — po)u B (3.10)

where p is momentum and the sum is over the spin states of r. This sum evaluates to

o v

* _ UV v papa
Zag‘ el = —ghv 4 —bab (3.11)

My

We relax the transversality requirement on the vector resonance in Eq. 3.11 and divide by
m? instead of m?2,. This substitution will result in a small spin zero component when the
resonance is off mass-shell. This behavior occurs with the W boson; it is also expected in
the resonance behavior herein.

With this substitution, we insert the spin sum into Equation 3.10 and sum over repeated

indices. The result gives the Lorentz invariant matrix element for a vector particle as a

function of position on the Dalitz plot:

Ai(abelr) = FpFT,(mg) (mic—m§c+(m2 ) (m, ?‘)) (3.12)

As a matter of completeness, we will also look at the case of a tensor (spin 2) particle.

We begin with

Az (abelr) = Fp(ppo + pe) (oo + pe)u T (Mab Z 8 (Da — )alpa — po)sFr  (3.13)

The spin sum has been calculated [8] to be

1

Z 8;}\11/*833\66 TMOlTVﬁ + TMﬁTVOC) gT“VTaB (314)

where
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pHp”
m2

TH = —gh (3.15)

Inserting this expression into Eq. 3.13 and performing the sum, the final element is

Ag(ab0|’f’) - FDTT’(mab)FT’

(mi, —me)(mg — m?))2

2
ms

2 2

1 2 . 2y2 _2)2
-3 (mzb —2mj — 2m? + (mDm_;nC)) (mzb —2m? —2m} + %)] (3.16)

At this point we must state our phase conventions. Examining Eq. 3.12 we see that if
we switch the labels a and b, we will generate an overall minus sign, changing the phase
by 180°. To be consistent with previous results, we choose the phase convention the E687
Collaboration [39] uses.

We are now in a position to discuss the total dynamics matrix. For a D° Dalitz decay

with a nonresonant (nr) component and n resonances, we express the total dynamics matrix

as

M(D° = abe) = a,, ¢+ " a,en Ay, (3.17)

n

where a,, and ¢, are the amplitude and relative phase of the n’th component respectively.

The normalization is arbitrary, so is generally chosen to be

/\MPdDP =1 (3.18)

where dDP denotes an integral over the Dalitz Plot. In practice this means we are only sen-
sitive to relative phases and amplitudes, therefore we are free to fix one phase and amplitude
in Eq. 3.17. The standard prescription is to fix the amplitude and phase of the largest mode
to one and zero respectively.

The choice of normalization, amplitude formulation, and phase convention are often
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inconsistent between experimental results. It is therefore more common for fit fractions to
be reported as well, since this allows a more meaningful comparison. The fit fraction is
defined as the integral over the Dalitz plot of one resonance, divided by the integral of the
coherent sum of all of the components:

[ |aqe*r A(abe|r)|2dDP

Fit Fraction, = . 3.19
O = TS a6 A(abel ) [2dDP (3.19)

The sum of fit fractions for all components will generally not equal one due to interference.

3.2 The Dalitz Fitter

I use a maximum likelihood Dalitz plot fitter developed by Mikhail Dubrovin [40]. Written
in C++, the fitter uses both standard libraries as well as Root! libraries. Graphical output
is also handled in Root. This software is robust; among its features, it can fit multiple
simultaneous Dalitz plots, choose from several minimization methods including unbinned
LogL, binned LogL and x?, as well as calculate fit fractions with statistical errors. It can
also perform separate Efficiency and Background fitting using samples of my choosing. It
uses MINUIT? to perform the multi-parameter minimization.

For a single event i, the probability distribution function at the (m?2,, m2.) position on a

Dalitz Plot can be described by

Li = fi(mib, mgc, aq,09,. .. ,Oék)

where «y, represent the k parameters that are to be determined. For N events on the plot,

the total likelihood is given by the product of L;,

N N
L=11L =] Ff0memi;an a0, ) (3.20)
i=1 i=1
The maximum lilkelihood is the set of parameters aq, ..., a; that maximize £ over the Dalitz

http://root.cern.ch
2http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/
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plot. In practice, we can maximize £ by minimizing the negative log of the function

N
F=-2logL=-2) logL (3.21)

i=1
For N events on the Dalitz plot described by |M|?, with efficiency (m?,, m2.) and background

B(m?,, m%.), the minimized fuction is [12]

N
fe(mi,, mp)IM? (1= f)B(ma, m )) 2
F=-2) lo m + T+ Xpena 3.22
iz_; & < -/\/’signal Mackground i Xp ity ( )
where fis the signal fraction, and Nyignar, Noackground are
Nena = [ ety )| MPaDP 329
and
Mackground - /B(mzb,mgc)dDP (324)

respectively. I will discuss the details of the two separate penalty terms in the next chapter.

The fit parameters «;, correspond to phases and amplitudes for the matrix components,
signal fraction, efficiency and background coefficients, as well as coefficients of any back-
ground resonances. The coupling terms, decay radii, and particle masses are all fixed, but

can be floated as needed.

3.3 Event Selection

Event selection is mostly common to both decay channels. I process over the D Skim of
each relevant dataset, choosing the decay channel in question. Since I am not performing
a double tag reconstruction, charge conjugation should be assumed throughout. In events
with fewer than ten candidates, I count the number of candidates and select for the smallest
AFE to reduce combinatoric background. Events with ten or more candidates are rejected.

As seen in Figure 3.2, roughly 75% of K K™K~ events contain only one candidate. In the
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| The Number of D Candidates | NdCand
Entries 39801

F Mean 1.193
I RMS 0.523

10* 3

10° 3 B

102 3 )

10 =

1 1 1 1 | 1 1 | 1 Il 1 | 1 1 1 H 1 |_I| 1 | 1

0 2 4 6 8 10

Figure 3.2: A plot of the number of D* — KKK~ candidates per event, counted during
best candidate selection.

K?%7%) channel, Figure 3.3 roughly 75% of events contain either one or two candidates, most
of which are one candidate events. In order to better select events on K%, I also cut on
the probability of a good D° fit (Figure 3.4), where 1 — P(x?,4) is defined as the probability
that x?2, calculated for the overall D° hypothesis by the D skim, exceedes the value x? by
chance, and 4 is the number of degrees of freedom.

I use beam-constrained mass (my.) and AE as my primary selection variables, since the
beam energy is accurately known and the DD pair produced from 1(3770) are created nearly
at rest. Therefore my,. and AFE serve as convenient proxies for invariant mass and momentum

respectively. I create a 2D histogram of these variables (Figures 3.5 and 3.6) to discern any
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The Number of D Candidates

Figure 3.3: A plot of the number of D — K%7% candidates per event, counted during best
candidate selection.
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1-P(x? 4)

Figure 3.4: A plot of D° — K% Fit Probability. The red line shows the cut Fit Probability
> 0.1.
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A E vs. Mass; bdEmbc

Entries 39801

Mean x 1.856
i Meany 0.003242
0.1— IRMSx 0.01428
L RMSy  0.05043
0.05_—
< |
v |
C o-
Wk
< L
-0.05__
-0.1_—
_I|IIII|IIII|IIII|IIII|IIII|IIII
1.83 1.84 1.85 1.86 1.87 1.88 1.89

Mg (GeV/c?)

Figure 3.5: D — K°K+*K~: AFE Versus M.. Red indicates the Signal selection; Green,
Background

clear signal regions. When found, I fit each variable using the root package roofit®, which
has several physics-inspired fit functions. The region containing a peak is fit to either a
single or double Gaussian signal function convolved with a background function that will
best describe the non-signal portion of the histogram. I choose candidates that lie within
+30 of the K?KTK ™ signal mean of both my,. (Figure 3.7) and AE (Figure 3.8) fits. For
K%7%) candidates, I select within +2¢ of my,. (Figure 3.9) and AE (Figure 3.10) fits. The

background samples chosen are different and will be covered in their respective sections.

Shttp://roofit.sourceforge.net/
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A E vs. Massg.
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Figure 3.7: Beam—Constrained Mass Fit of DY — K'K+K~ under AE Cut
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Figure 3.8: AE Fit of DY — KYK*TK~ under my,. Cut
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Figure 3.9: Beam—Constrained Mass Fit of D® — K%7% under AE Cut
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Figure 3.11: Raw (Unfitted) Dalitz plot of D® — K?K ™K~ in Signal region. Several events
lie outside of the proper kinematic limits and will be discarded by the fitter.
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Figure 3.12: Raw (Unfitted) Dalitz plot of D® — K%7% in Signal region. Several events lie

outside of the proper kinematic limits and will be discarded by the fitter.
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3.4 Efficiency

Candidate particles up to and including the D can be mis—reconstructed despite our best
efforts. This means our observation will not generally be uniform over the Dalitz plot. In
order to characterize my ability to “see” events on the plot, I generate 50,000 signal Monte
Carlo events in each channel according to the previously discussed method and fit them to

the Efficiency. On the Dalitz plot, the efficiency is described as a 2D, 3" degree polynomial
e(z,y) = 1+ B2+ Eyy+ Evy2y+ Erp®® + Eyyy® + Eray 0y + Eryy 09> + By + Erpet® (3.25)

where E,, are coefficients fit to a suitable Monte Carlo sample. I decay D° — KKTK~
without any intermediate resonances, and similarly D° — K%7%. The resultant candidate
signal MC events are filtered through the same selections as signal events, including AFE
and my,. ranges set by the signal fit to variables. The efficiency Dalitz plots are shown in

Fig. 3.13 and Fig. 3.14. Table 3.2 contains Efficiency coefficients for both channels.

Table 3.2: Efficiency Fit Results for D — KYKTK~ (z =m*(KT+K™),y = m*(K°+K™))
and D — K27 (z = m?(7° + 1), y = m*(K? + 7°)).

Efficiency Coefficient | D — KK+ K~ D° — K%
E, —0.1468 £ 0.1272 | 0.2880 £ 0.1070
E, —0.1530 £0.1182 | 0.5025 £ 0.1223
E., —2.5060 £ 0.3033 | —0.3697 £ 0.1819
E,, —0.7467 £0.2291 | 0.3167 £ 0.1992
E,, —2.4399 £+ 0.2010 | 0.4350 £ 0.1560
Eory 21.5383 £2.3304 | —1.1803 £ 0.5101
vy 20.9504 % 2.2701 | —0.7567 % 0.5525
B,y 2.0926 4+ 1.1163 | —0.4858 + 0.4303
J - 7.5073 £ 1.2527 | —0.9533 4+ 0.3618
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Figure 3.13: Efficiency Dalitz plot of D° — KK+ K~ under Signal Selection.
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Figure 3.14: Efficiency Dalitz plot of D° — K97% under Signal Selection.
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3.5 Background Selection
As with the efficiency, the basic model for the background on the Dalitz plot is also a

2D, 3'4 degree polynomial
B(z,y) = 1+BI:L'—|—Byy—|—Bxy:1:y+Bm:L'2+Byyy2—l—Bmyx2y+Bxyyxy2+Byyyy3+Bmxa:3 (3.26)

where B,, are fit coefficients. Though the shapes of the background sideband selections seen
in Figs. 3.5 and 3.6 are different, all are 7o away from the signal mean in order to minimize
signal pollution. The polynomial in Eq. 3.26 attempts to capture the shape of the background
events underlying the signal region, using sideband events. Absent some structure indicative
of resonances, this is all the description needed for background. If, however, we find a
peak in the sidebands, we have one or more resonances present and must model them using
generic Monte Carlo. Once we determine what resonances appear in background, we can
add (const. * |a]?) for each to Eq. 3.26.
3.5.1 D" — Kgn'n

Examining Fig. 3.15, background events seem to be piling up in the low side of m?(7°+n).
Looking at the projections in Figs. 3.16, 3.17, and 3.18, we fail to find a clear signal. The
resultant background fit coefficients are shown in Table 3.3.

3.5.2 D" KKK~

The background Dalitz plot in Fig. 3.19 shows a much more prominent peak. A back-
ground resonance is obvious in the Kt + K~ projection as seen in Fig. 3.20. Using the
generic Monte Carlo that corresponds to datasets 44 and 45, I examine the K™ + K~ pro-
jection and determine the candidate parents, Fig 3.21. Below 1.2GeV? in KT+ K~ ¢(1020)
is the largest charged K parent that will appear in the given projection. The location of the
background peak in both signal and generic MC conforms to this.

Besides ¢(1020), we also attempt the charged and uncharged versions of a¢(1450) due to

a numbering bug in Monte Carlo that labels a((980) with the numerical label for ag(1450).
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Figure 3.15: Dalitz plot of D° — K%7%) in Background region.

Table 3.3: Background Fit Results for D° — K%7%) (z = m?(7° + ), y = m?*(K? + 7°)).

Background Coefficient | Value £ Statistical Error
B, —0.3362 4+ 0.1045
B, —0.0446 £+ 0.1253
By, 1.1340 + 0.2333
B, 3.8821 4+ 0.3033
By, 2.5816 + 0.2114
By —0.9074 + 0.5779
By —3.0517 £ 0.6321
By, 0.0039 + 0.4537
B —3.5671 +0.4199
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Figure 3.16: 7% Projection of D® — K%7%7 in Background region.
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Figure 3.17: K27 Projection of D° — K% in Background region.
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Massz(Kg + 1) under Background Selection
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Figure 3.18: K% Projection of D® — K%7%/ in Background region.
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Figure 3.19: Dalitz plot of D° — KKK~ in Background region.

Despite this, we find a significant background contribution from ag(1450)°. Fits contain-
ing ag(1450)* failed to converge and thus these background resonances are omitted. Both

#(1020) and ag(1450)° are modeled as Breit-Wigners. The final values are shown in Table 3.4.



57

BkgM23
Entries 13271
Mean 1.402
RMS  0.2413

Mass?(K™ + K*) under Background Selection

400

350

300

250
200
150
100

50

8.0

Figure 3.20: K™K~ Projection of D — KKK~ in Background region.
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Figure 3.21: Generic Monte Carlo Figures of D° — K°K* K~ in Background region. “Bad
MC” are reconstructed events that do not correspond to generated MC particles.



Table 3.4: Background Fit Results for D% —
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Background Coefficient

Value £+ Statistical Error

$(1020)
a0(1450)°
B,
By
B,
B,

Y

8

By,
B

Txy

<

B,
B

yyy

B(E(E(E

0.0133 £ 0.0029
195.5119 £ 38.3029
—587.7579 £ 125.8467
—0.3509 £ 33.3037
—803.8348 £ 168.3564
—402.7109 £ 106.0521
—651.6636 £ 130.6239
6409.6281 £ 1573.2437
5046.2398 £+ 1311.2251
—5.8627 £ 314.1654
113.0786 4= 382.2512

K'KTK™ (x =m*(K"+ K7), y = m*(K? +



60

CHAPTER 4: RESULTS

4.1 D" — K97 Initial Dalitz Analysis

With the efficiency and background in place, I perform the Signal fit of K7%n. I rely
on the previous results [14] to guide the choice of resonances that appear in the plot. We
include the following resonances in our model: K%ay(980), K*(892)n, xn, K*(1430)%, and
K*(1430)°7% . All but the ao(980) resonance are modeled as standard Breit-Wigners; the
ao(980) is modeled as a Flatté. We also attempt a non-resonant component, which we find
to be consistent with zero.

This fit, as seen from the X (7°9) projection in Fig. 4.1 appears complete. However,
an unmodeled peak at 0.6GeV? in the Y (K°7Y) projection, shown in Fig. 4.2, suggests an
additional resonance is needed. After several attempts, we are unable to find a suitable
resonance that is of the appropriate mass and final state. Following a suggestion from the
members of the CLEO Collaboration, we instead explore the possibility of a decay involving
a mr+m—. The w(782) is best candidate for this peak, having a large branching fraction to
70747 —, the correct mass for this peak, with the 77~ masquerading as a K. As I discuss

in the Appendix, we do in fact observe the decay D° — wn in CLEO-c data.

4.2 TImproved D° — K7’ Background

The w(782) peak doesn’t appear in our background samples, thus I attempt a simul-
taneous signal and background fit. I model this misidentified w(782)n contribution as a
Guassian contribution to the background with a size determined relative to the background
shape described above. That is, I fix the shape of the background contribution in w(782)n to
the expected background from our simulation described above plus a single Guassian, with
amplitude 8.5 x 107° times the overall normalization of the background. I arrive at this
value after various starting values, choice of floating parameters, and parameter limits fail
to properly fit the w(782)n peak. From the closest floating Gaussian result, I fix the peak at

several values until the background peak comports with signal statistics.
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Figure 4.1: Detailed X-projection of D° — K%'y Dalitz Plot.
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Figure 4.2: Detailed Y-projection of D° — K%7% Dalitz Plot. Note the anomalous peak at
0.6GeV?.
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4.3 D' — K79 Dalitz Analysis

The complete Daltiz fit of D° — K%, including the w(782) background, is shown in
Fig. 4.3. For more detail of the fit components, see Fig. 4.4. Table 4.1 summarizes the Signal
parameters. The previous CLEO result for this mode fixed the K%a((980) contribution; I
instead fix k1 to avoid an over—determined system when combining this a(980) with the
ap(980) found on K?K*TK~. As we see in Fig. 4.5, we again have a good fit in the X
projection. As seen better in Fig. 4.6, we now have a reasonable grasp of the peak structure

in the Y projection.

Table 4.1: Dalitz Fit Results for DY — K%7%. Errors are statistical.

Parameter Amplitude Phase Fit Fraction
KN 1 0 0.323 +0.044
K%a(980) 1.14+0.13 —103.7£84  1.255+0.023
K} (1430)7" 0.132 4+ 0.070 111+ 32 0.0066 £ 0.0050
K*(892)n 0.231+0.030 312.6 +9.3 0.231 4+ 0.054
K§(1430)n 1.12+0.36 —156 £+ 18 0.059 £ 0.018
Signal Fraction (f) | 0.299 + 0.020

4.4 D’ — KYKTK~ Dalitz Analysis

Along similar lines, I perform a Dalitz fit on the D° — KKK~ channel. We model the
decay using the folowing channels: K%a((980), K2¢(1020), K?f,(1370), ao(980) + KF, and
we test a non-resonant K’ K™K ~. The decay channel K?f,(980) should appear on this plot,
but including it keeps the fit from converging, thus we exclude it. The previous BABAR
work[15] in this channel include all of the resonances contained herein, but does not include
a non-resonant component. Additionally, we fix the ¢(1020) on the Dalitz plot to avoid an
over-determined system in the combined fit.

While Figs. 4.8 and 4.9 are good convergent fits containing a non-resonant contribution,
we also recieive a convergent fit without the non-resonance. Looking at Table 4.2, we see that

the fit wihout a non-resonant component broadly agrees with BABAR. When we compare
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the fit with and without the non-resonance, as seen in Figs. 4.10 through 4.12, we find the
non-resonant model becomes the dominant contribution, interfering with the resonsnaces and
contradicting the good result from BABAR. The resultant values are shown in Table 4.3.

We do not believe the fit containing the non-resonance it real, thus we use the fit without it.

Table 4.2: Dalitz Fit Results for D' — K?K ™K~ . Errors are statistical.

Parameter | Amplitude Phase Fit Fraction
K%a(980)° | 4.9740.20 280 1.176 £ 0.039
K%¢(1020) 1 0 0.556 £ 0.024
ag(980)T K~ | 1.78 £ 0.17 72.2+54 0.1834+0.019
ag(980)" Kt | 1.394+0.15 280.1+£9.8 0.112 + 0.026
K%f5(1370) | 4.40+£0.36 201.34+6.2 0.442 4 0.037
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Table 4.3: Dalitz Fit Results for D° — K?KTK~ with the Non-resonant Contribution.
Errors are statistical.

Parameter Amplitude Phase Fit Fraction

K%a,(980)° | 4.78 £0.24 247 1.031 + 0.020
K'K+K~ |27.02+0.92 230.0+25 8.32+0.11%
K2¢(1020) 1 0 0.526 + 0.034

ap(980)* K~ | 3.18+0.18 304.4+£4.0 0.555+0.045
ap(980)" Kt | 3.93+0.19 285.0+28 0.85+0.14
K?f5(1370) | 3.79+0.30 339.6 5.7 0.310 £ 0.030

4.5 Techniques of Joint Dalitz Analysis of D' — K7y and D —
KKK~

Equations 1.8 and 1.9 are two methods that I suggest to combine the information from
one Dalitz plot analysis to constrain the results in another Dalitz analysis, specifically when
there is evidence of strong interference. Equation 1.8 assumes that the amplitudes to a
common resonance are the same in the two Dalitz plots and thus I call a methodology to
implement Equation 1.8 the Amplitude Penalty Dalitz Analysis. Equation 1.9 assumes that
the fit fraction divided by decay mode branching fraction to a common resonance is the same
in the two Dalitz plots and I call this methodology the Fit Fraction Penalty Dalitz Analysis.

In order to create a penalty term, we form a psuedo-y?

2
bi—F
X = . (4.1)

[ +2 2
o; +0;

where P;/; are the fit fraction or amplitude ratios in Eqns. 1.8 and 1.9. Our o values are
relative uncertainties of the input branching fractions. We use the PDG average branching
fraction for BF (ap(980) — nm), expressed as I'(nm) x I'(yy)/T(Total) = 0.21 + 0.08 — 0.04.
It should be reiterated that we equate the amplitude or fit fraction of a resonance common

to both decay channels, and use this as the basis of our psuedo-x? penalty. Thus the
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Figure 4.13: The main D° — KKK~ Dalitz Plots. Amplitude Penalty. Top row from
left: Plot statistics, Total PDF, Efficiency. Bottom Row from left: X, Y, and Z Projections.
Total, signal, and background are represented by blue, green, and red lines respectively.

K?%a((980) resonance on D° — K?7% is used to constrain the same resonant channel on
D — KKTK~. We fix the entire K%7% fit, which gives us the “true” a(980) values.

The psuedo-x? forces the a¢(980) — KTK~ in D — KKK~ to comport with this “true”

value.
4.6 Joint Dalitz Analysis of D' - K'KTK~ and D" — K%' with
Amplitude Penalty
The result of the Dalitz fit using the amplitude penalty is shown Fig. 4.13, with the details
of the fit components shown in Fig. 4.14. Figs.4.15-4.17 show the x, y, and z projections along
with the individual resonant components. We don’t include the non-resonant component.
With the penalty term in place we are able to include both K?f3(980) and K%an(980). As

we see in Table 4.4, both resonances have large fit fractions, but with relative phases that

are nearly 180° apart.
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Figure 4.14: Detailed D° — K°K* K~ Dalitz Plot PDF Components. Amplitude Penalty.
Top Row: 3D View. Bottom Row: 2D View. From left: Signal, Efficiency, Background.

Table 4.4: Dalitz Fit Results for D* — K?K* K~ with the Amplitude “Penalty” Term.
Errors are statistical.

Parameter | Amplitude Phase Fit Fraction
K%, (980)° | 16.8+1.0 271.6+3.5 179+ 4.6
K%$(1020) 1 0 0.54 +0.13

K%f,(980) | 23.7+1.3 1083+£3.5 26.345.1
ag(980)T K~ | 1.84 +£0.14 335.1+4.9 0.251 4+ 0.076
ag(980)" K+ | 2.06 £0.14 296.3+4.3 0.317 4+ 0.090
K?f5(1370) | 1.98 +0.40 84+13  0.087£0.014
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Figure 4.15: Detailed X-projection of D° — K°K* K~ Dalitz Plots. Amplitude Penalty.
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Figure 4.16: Detailed Y-projection of D° — K°K* K~ Dalitz Plots. Amplitude Penalty.
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Figure 4.17: Detailed Z-projection of D — KYKT™ K~ Dalitz Plots. Amplitude Penalty.
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Figure 4.18: The main D° — K?KTK~ Dalitz Plot. Fit Fraction Penalty. Top row from
left: Plot statistics, Total PDF, Efficiency. Bottom Row from left: X, Y, and Z Projections.
Total, signal, and background are represented by blue, green, and red lines respectively.

4.7 Joint Dalitz Analysis of D' - K'K*K~ and D’ — K’z with
Fit Fraction Penalty

We replace the Amplitude penalty term with a Fit Fraction version; the resultant main
plots are shown in Fig. 4.18. The detail plots are shown in Fig. 4.19. The projection plots
in Figs. 4.20-4.22 also show large K%a((980)" and K? f,(980) components, with phase angles
in Table 4.5 comparable to those of the Amplitude penalty.

When we compare the Amplitude and Fit Fraction methods, we find important sim-
ilarities and potentially important differences. The final fit fractions are identical within
uncertainty, yet we have almost mirror image fits in the Y- and Z-projections. The Am-
plitude projections underrepresent the higher mass lobe of the ¢(1020) in the Y—projection

while simultaneously underreporting the low mass lobe in Z. The Fit Fraction method does

the opposite in Y and Z.
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Figure 4.19: Detailed D° — KK+ K~ Dalitz Plot PDF Components. Fit Fraction Penalty.
Top Row: 3D View. Bottom Row: 2D View. From left: Signal, Efficiency, Background.

Table 4.5: Dalitz Fit Results for D — K?K*TK~ with the Fit Fraction “Penalty” Term.
Errors are statistical.

Parameter Amplitude Phase Fit Fraction
K% (980)° | 13.054+0.87 80.5+6.6 11.1+34
K%$(1020) 1 0 0.55 £0.16

K £5(980) 186+1.1 280.2+6.7 16.6 £4.5
ag(980)" K~ | 1.714+0.16 112.2+6.5 0.223+0.071
ag(980)" K+ | 1.464+0.17 153.6+5.1 0.163 4+ 0.056
K%f,(1370) | 1.77£0.44 239417  0.071 £0.022
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CHAPTER 5: CONCLUSIONS

5.1 Best Fit Method and Systematic Uncertainties

From the data in the preceding chapter, we find two competing pseudo—x? methods that
give similar results. Using the a¢(980) found in the Dalitz fit of D° — K%7% to constrain
that found in D' — K°KTK~, we find a significant f,(980) component not found in the
“non-penalty” fit. Whether we construct our penalty from constraining Fit Fractions of
amplitudes, we find the f3(980) and a((980) are dominant in the K? K™K~ Dalitz decay.
Both show these two resonances with near complete destructive interference, and the presence
of a small, wide component also generally agrees with the BABAR result.

So which is superior? Though the Amplitude penalty method requires less computing
power and has smaller statistical uncertainty, we find the Fit Fraction method the best
overall. Its errors better comport with the statistics of the data sample. Additionally, when
we compare Figs. 4.13 and 4.18, the Fit Fraction result more closely captures the shape of
the data, particularly in the Y projection. If we compare fit fractions, we also see that the
FF method has smaller values for the interferring f;(980) and ay(980) fractions.

Accepting the Fit Fraction penalty results as central values, we relegate the Amplitude
method to one of several systematic errors. All of our systematics arise from the assumptions
“cooked” into the final values; the best case scenario will find systematic errors that are small
and symmetric about the respective central values.

For each systematic error, we change a property of the central method and re-fit. Table 5.1
contains the central result along with the systematic fits modifying fixed widths and other
properties. FEach systematic value shown is the difference (Central Result - Systematic
Result). For f3(1370) and ¢(1020), we adjust the width £0.2GeV and +0.8MeV respectively.
In lieu of a width adjustment, we adjust the ratio 7xg/,> and the g,, Flatté coupling of the
ap terms £0.14 and +0.05GeVY/? respectively. This assumes the coupling constants for all of

the ag charge states are identical. Similarly, the f3(980) coupling constants are both adjusted
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by £0.05GeV'/2.

Table 5.2 again contains the central value, along with “protocol” systematics followed
by the total systematic errors. As discussed before, having chosen the Fit Fraction penalty
as the central value, we relegate the Amplitude method result to a systematic. In the Fit
Fraction penalty we simultaneously fit e, [M|?, and B of the dynamics matrix. Thus the

final two systematics test the efficacy of fixing the Efficiency or Background.



Table 5.1: Dalitz Fit Results for DY — K°KTK~ with Statistical and Systematic Contributions: fy(1370) v +0.2GeV, ¢ v
+0.8MeV, ag i i /mr(ao) £ 0.14, gyr(ag) £ 0.05GeV/?, 9rr(fo) £ 0.05GeV?'/2, gxi(fo) & 0.05GeV'/2. Each systematic value
shown is the difference (Systematic Result - Central Result).

Parameter Fit Frac.  Stat. fo(I;’)ZO) 0l ¢é 27 T Kélng(ao) gmz(an) gmz(7 fo) 9k ;5(5 fo)
a, 0 13.05 +0.87 : : i i
0(980) 83 5% % 50 X ¥
Pao(980)° 80.5 +6.6 —0.0052 0 _5.6 —6.3 0 —4.4
& f5(980) 18.6 +1.1 100 867 668 —3973 207 967
¥ £0(980) 280.2 +6.7 3391 _0(.;;;2 —11470 Eils —4;7 —192.0
o, 171 10.16 054 063 0.47 0.04 033 0.54
0(980) 55 1% o ) 8 8
Patsyr | DY W F M W ol
g - 1.46 +0.17 ' ' ' ‘ ' ’
o850 R I A
Pag(980)~ 153.6 +5.1 —21 —18 —15 —21 —18 —16
8, (1370) 177 2044 2 ho ey Covs oo o
o 939 117 35 14 25 68 %5 19
Jo(1370) 1% 15 ' A 3b 1
FFao(980)° 11.1 +3.4 0 0 0 3.7 ~1.0 0
F Fry 050 16.6 145 202 202 103 _5138 180 108
0 0.011 0 0 0 0
sosaom | D95 BN ams B g T e B
FFoy 080 0.223  +0.071 ~ ~ ~ : ~ ~
F Foy 950 0.163 10.056 o.(gso o.g&a 0.(397 0.017 o.gss 0.%94
FFy,as3m0) 0071 £0.022 o, M G ole oooss o
- 0 0 0 0 0 0
Signal Frac. (f) 0.798 +0.017 —0.013 —0.012 —0.025 —0.025 —0.017 —0.016

78
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Table 5.2: Dalitz Fit Results for D° — KK+ K~ with Statistical and Systematic Contribu-
tions: Amplitude Method, Fixed Efficiency, Fixed Background, and Total Systematic Error.
The Total Systematic Error includes the values from Table 5.1.

Parameter Fit Frac.  Stat. Amp. Eft. Bkgd. | Tot. Sys.
Aag (980)0 13.05  £0.87 442  1x107*  0.0013 e
Pao (950)° 80.5 +£6.6  £190  2x 107" 0.0008 | 1%
y(980) 18.6 +1.1  £59  1x107*  0.0019 e
 fo(980) 280.2  £6.7  £170  1x 1073 54 $180
aao(980)+ 1.71 +0.16 +0.13 0 0.0013 j'01153
Pao (950)+ 1122 £65  £220  1x107*  0.072 20
a0 (980)— 1.46 +0.17 +0.62 1x 1073  0.0018 jol.'642
Pao (980) - 153.6 451  £140 3.8 x 107  0.020 1o
a,(1370) 177 £044  £0.30 0 0.0029 o
P fo(1370) 239 +17 +160  4.9x1073  0.060 e

FFap(9s0)0 11.1 +£34  £75  1.2x107* 0.0055 | 9
F Fyy980) 16.6 +4.5 +11 1%x107° 0.0083 t11210
FFy(1020) 0.55  £0.16  +0.025 0 0.00016 |  *ooer

FFa(9s0)+ 0223  £0.071 £0.023 2x107° 0.00028 | 10

FFog050)- 0.163  £0.056 +0.15  1x1075 0.00034 | +0%

EFFys0) 0.071  £0.022 £0.022 1x1075 0.00026 | *%

Signal Frac. (f) | 0.798  +0.017 40.0041 0 0.0007 | 4207

In the process of compiling the systematics, we notice that the ao(980) amplitudes and

fit fractions are always smaller than their f,(980) counterparts, regardless of the given fit.

When we graph either the amplitudes (Fig. 5.1) or fit fractions (Fig. 5.2), we unsurprisingly

find a strong linear correlation. This is confirmed upon examining the correlation matrix in

Table 5.3. Additionally, we find a strong correlation between g, (90)0 and ¢ s, (9so)-

Examining the systematics and correlation matrix, we can make several conclusions:

e Phase angles are completely unknown. There is non-trivial correlation among the phase

angles and amplitudes, which suggests that the relative angles don’t change even if the

absolute values are arbitrary.
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Table 5.3: Correlation Matrix for the Fit Fraction Method Dalitz Fit of D° — K'KTK~

A£0(980) P f0(980) Qap(980)° Pan(980)° Qag(980)F  Pag(980)+  Bf0(1370) Prfo(1370)  2ag(980)=  Pan(980)~
a o (980) 1
Pro(os0) | -0.041684 1
Ay (980)0 0.91316 -0.4126 1
Pag(ozoye | 0.10399 0.98669  -0.27779 1
Ag(980)+ | 0.18636 0.62131  -0.032166  0.6125 1
Pag(og0)+ | -0.22002 0.66984  -0.37308  0.62766 0.54786 1
af,(1370) 0.44388  -0.055087  0.31948  0.014463 -0.30697 -0.56975 1
©ro@sro) | -0.010979  0.77653  -0.26612  0.74334 0.87759  0.61962 -0.25617 1
Agg(080)- | -0.07061 0.68563  -0.25713  0.64819 0.768 0.69404 -0.58346  0.81658 1
Pag(os0)- | -0.44868  0.33382  -0.49568  0.28386 -0.050605 0.26552 -0.22164 0.0019913  0.2118 1

e The systematics are largely driven by the difference between our pseudo—y? terms,
particularly with regard to phase angle. The fit fractions for a¢(980)° and f,(980) are

unsurprisingly sensitive to both sets of coupling constants.

e A fixed efficiency doesn’t change anything. Once we have sucessfully fit the coefficients,

it is unimportant whether the efficiency floats against signal or not.

e Aside from ¢y, (980, fixing the background is also unimportant.

5.2 Systematics of D' — KV7'p

As with the previous section, we modify properties of the central D° — K%' fit to
determine the systematic error. As shown in Table 5.4, we adjust the widths or similar
values, and record the systematic value of (Central Result - Systematic Result). We adjust
the following widths: K (1370) by £0.240GeV, r (K((800)) by £48MeV, and K;(892) by
+2.7MeV. We assume the K7 (1370) width applies to both nK° and 7K decay channels.
As with the penalty fit, we change the Flatté ratio and coupling constant of ay(980) by
+0.14 and £0.05GeV'/? respectively. I also change the magnitude of the w(782) background
Gaussian by +1.87 x 107°. For more details on the w(782) background, see the Appendix.
Table 5.5 contains the systematics from fixing the background fit with respect to the signal

fit, floating the efficiency with respect to signal, and the total systematic error.



Table 5.4: Dalitz Fit Results for D° — K%7%n with Statistical and Systematic Contributions: K;(1370) v £0.240GeV, x v
+48MeV, 7k mr(ao) £ 0.14, gor(ag) £ 0.05GeV'/? Ki(892) + 2.7MeV, and w Background Gaussian £1.87 x 107°. Each

systematic value shown is the difference (Systematic Result - Central Result).

Parameter Fit Frac.  Stat.  K{(1430) v Ky KK o (00) Gnr(ap) K;(892) Bkg. w
AK 5 (1430)(nK°) 0.132 +0.070 —0(')%?1 —()6(.)3152 (ii x 1072 —()6(.)3??3 —45 x 107 —4:;,(.39 x 1077
PK;(1430)(nK°) 1112 +£32 7?35 723(.)‘03 j)..716 fié,(.]7 , 96?35 9.3%

K (892) 0.23 +0.03 —06(.)556 —()69332 —1;.19 x 107° —75.;.12 x 1072 —9{)(.)7 x 1077 —Qi%s x 1072
PE;(892) 312.6 +9.3 ! i52 N fl —06?214 —4254 —0[')%122 —%’.115:15
Bao(950)" L4 4013 g ot Z0.060 Sows S x 1070 So
¥ag(980)° 256.3 +8.4 j112 fli:.‘)o 743..?96 f:fs 70(')4.1?}8 fb??o
a1 (1430) I Zo060 S Zoz0 Co2 Cozs
PK;(1430) 204 +18 —1 114 —2351 —%)‘.524 —2 i%7 —064.121 —lé.72

F Eay980)0 1.255 +0.023 75.04241%;3 :1%?1 x 1071 3(5(?3128 969334 72.851010*3 ,Sfi x 1077

FFK5(892) 0.231 +0.054 3'3X010_ —5;.15 x 107 —2;.52 x 1072 —2;.)2 x 1072 —6.712?0—3 —35?5 x 107

FFic; 1130 0059  £0.018 g P x 1070 S, Soors Jpa X 1070 X 1078

FFE, 0323 +0.044 S, Soos o X 1070 S e e X 107
FFK6(1430)(17K°)(><1073) 6.6 +5.0 —2.5 36?34 —06(.]3?5 —3;15 2'??.% —()6?228
Signal Frac. (f) 0299  +0.020 ' x107% ° x 107 oo rod0 T Ux10t P8 x107?
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Table 5.5: Dalitz Fit Results for D® — K?7% with Statistical and Systematic Contributions:
Floated Efficiency, Fixed Background, and Total Systematic Error. The Total Systematic
Error includes the values from Table 5.4.

Parameter Fit Frac.  Stat. Eft. Bkgd. | Tot. Sys.
AK;(1430)(nKO) 0.132  £0.070  0.003 0 o1l
P (1430)(nK©) 111 +32 5.2 0.0056 o

aK; (892) 0.23 +0.03  0.0021 0 oo
VI (892) 312.6 +9.3 0.66 0.002 o
Aag (980)° 1.14 +0.13  0.010 0 025
Pag(980)° 256.3 +8.4 0.98  0.0008 B
ALK (1430) 1.12 +0.36  0.0095 0 _+01.510
PG (1430) 204 +18 0.60  0.0027 o

FFo,9s0)0 1.255  £0.023  0.0064 0 F010

FFrcg(s92) 0.231  40.054  0.0012 0 +0.0083

F Fier (1430) 0.059  40.018  0.0017 0 +0.08

FFE, 0323 £0.044  0.0040 0.00001 | 0O
FFyrusomxe) | 0.0066  +0.0050 0.00021 0 +0.003
Signal Frac. (f) | 0299  £0.020  0.0018 0 o

5.3 Summary

In this thesis, I present a technique to use one Dalitz of a 3-body D decay to constrain
another. To my knowledge this is the first attempt to do this. In this analysis, I model the
decay of D° — KYKTK~ using the folowing channels: K%a¢(980), KU f,(980), K%4(1020),
K?f,(1370), and a¢(980) + KF. Using the techniques described in Section 4.5 to constrain
K%a(980), I find that both K%ay(980) and K f,(980) are large contributions to the Dalitz
plot that destructively interfere. This interference leaves the K°¢(1020) channel as the
dominant contribution to the observed Dalitz plot. Table 5.6 gives a summary of my findings
with total errors.

Persuant to the Dalitz fit of D — K°KTK~, I perform the Dalitz plot analysis of

DY — K%7r%. T include the following resonances in my model: K%aq(980), K*(892)n, xn,
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Table 5.6: Summary of Dalitz Fit Results for D° — K°K+tK~ using the Fit Fraction
“Penalty” Method. Errors are Total Statistical and Systematic Error.

Parameter Amplitude Phase Fit Fraction
a0(980)0 13.05 —357_6 80.5 —1?80 111 —151)91
$0(980) 18.6 75, 2802 N 16.6 M
ap(980)* | L7L 5 1122 % 0223 GO
ao(980)~ 1.46 _B'.A(ls4 153.6 _1;1500 0.163 —062.))116
fo(1370) | 177 20 239 L 0071 g,
$(1020) 1 0 0.55 %

Signal Frac. (f) | 0.798 {'0ar

and two K*(1430)° channels, K*(1430)%) and K*(1430)°7°. This analysis is an update to an
earlier CLEO IL.V result [14]. In the course of this analysis, I find the presence of a peaking
background from D° — wn. This background is explored in greater detail in the Appendix.
A summary of my results are shown in Table 5.7.

Table 5.7: Summary of Dalitz Fit Results for D° — K%7%. Errors are Total Statistical and
Systematic Error.

Parameter Amplitude Phase Fit Fraction
K3 (1430)(nK®) | 0.132 %% 111 % (6.6 %) x 107°
K;(892) 0.23 %00 3126 ', 0.231 %07
ap(980)° 114 %% 2563 1.255 o
K (1430) 112 gt 204 2, 0.059 (oo
K (K*(800)) 1 0 0.323 %%,

Signal Frac. (f) | 0.299 _069339

5.4 Possibilities for Future Work

We had hoped that we would be able to make a definitive statement about what is
conserved in 3-body D decays, the amplitude or fit fraction, and shed light on the underlying
quantum structure of D decays. Having found both methods give equally good descriptions

of our data, we are unsuccessful in this effort. The methodologies presented herein can be
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extended to other 3—body D decays to atempt to build a unified picture and give insight on
the nature of the QCD interactions that underlies the formation of the resoances in Charm
decays. Not only do we hope that a clarifying unified picture will emerge, but also that such

clarity will be valuable as a tool for a simplified description of Charm decays.
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APPENDIX A: INITIAL OBSERVATION OF
DY — wn

A.1 Introduction

As noted in Chapter 4, an anomalous peak appears in the Dalitz fit of D® — K%n°.
As shown again in Fig. A.1, our fit doesn’t account for the peak at 0.6 ( GeV/c?)? in the
Y (K?7Y) projection. On the advice of the collaboration member Paras Naik!, we explore
the possibility that this peak is due to an w(782) — 77 7° candidate whose charged
pions are mis-reconstructed as a K?. The D — wn decay channel has previously been
predicted[41] to have a BF = (3.3 +0.2) x 1073, This paper also quotes the experimental
value as BF = (2.21 +0.23) x 1073 from BABAR. BABAR has not yet published or made a
conference proceeding available for this result.

As in the main analysis, we assume charge conjugation throughout. Since the decay can
proceed from both a D® and a D° and we do no tagging of the D flavor we are actually

measuring the average of the branching fractions of D — wn and D° — wn.

A.2 Event Selection

This analysis is performed on the full 818pb~! of 1(3770) CLEO-c (Section 2.4) data.
All D°/D° candidates are reconstructed from 7%, 7¥, and 7 that pass the standard CLEO-c
selection criteria for inclusion in D candidates[25, 36], the “D Tags” described in Chapter 2
(2.4.4). Among the selections shown in Table A.1, we require a track momentum p between
50 MeV/c < p <2 GeV/c and consistency with coming from the interaction region. We use
the dF/dx and RICH data described earlier (Section 2.4.2), to identify our selected tracks as
7t If dE/dx is valid we require a 30 consistency with the 7% hypothesis. For p > 0.70 GeV
and |cos@| < 0.8 we can use RICH as well. If both RICH and dE/dx are valid, we require

the combined log-likelihood L, x < 0 where

lparas.Naik@bristol.ac.uk
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Ly x=02—0%+ Ly~ Lg, L =]log-likelihood from RICH Data (A.1)

We reconstruct 7° and 1 as neutral — 7, which respectively have BF = (98.823 +
0.034)% and BF = (39.31 +0.20)% PDG average branching fractions. The unconstrained
mass is calculated under the assumption that the photons originate from the interaction
point. We require this mass to be within 30 of the nominal 7¥/n mass. The subsequent
kinematic fit must not be obviously bad (x? < 10000). In addition to these standard D Tag
selectors we also reject neutral candidates wherein both photons are detected in the endcap

and explicitly reject any photon showers with a matched track. All of the neutral selection
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Table A.1: Charged Track 7% Selection Requirements

Variable Value
p Min 50 MeV/c
p Max 2.0 GeV/c

x-y Closet Approach |db| < 0.005m
z Closest Approach  [20] < 0.050m

Fit Quality 2 < 100000
Min Hit Fraction hitfrac > 0.5
Angle | cos 6] < 0.93

requirements are in Table A.2. Aside from the mass value and Number Sigmas Max selector,

which is not implemented for 7, the selections are identical.

Table A.2: 7° and 7 Selection Requirements

Variable Value
Pull Mass 3
Number Sigmas Max 1000

Min Unconstrained Mass 0
Max Unconstrained Mass 1000

Max 2 100000
End Cap Neutral False
Use E9025 False

Our D° candidates are reconstructed from 777~ 7% combinations. We make an initial
skim requirement that the invariant mass m (77~ 7%)) be within 100 MeV /c? of the PDG
average D” mass. In the next section we will describe the w(782) reconstruction from 77~ 7°
combinations. For the skim these must have an invariant mass within 50 MeV /c? of the PDG

average w mass. We do not make any best candidate selection allowing multiple per event.

A.3 Analysis

We select w candidates and choose cuts on the beam-constrained mass of wn (My.) and

their AE in an iterative procedure making cuts on two of the three, fitting in the third,
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choosing a cut based on the fit results, and repeating until the cut values do not change. In
all cases the signal is fit to a Gaussian. In My, we fit the background to an Argus function,
and use a 4™ order polynomial in AE and m(7T7~7°). Unlike My, there is no physics-
inspired background shape for these, and we chose the polynomial order to give a reasonable
model of background without adding meaningless nuisance parameters. We use the signal
mean and sigma from one fit to make 3-standard deviation cuts on the other plots. We
generate 50000 signal Monte Carlo (Section 2.5) DY/D° events to measure the efficiency of
our reconstruction and to determine the optimal widths to use in data fitting. We take the
yield from My, shown in Figure A.2, and AE, Figure A.3 as our measurements of the D°

yield in the MC. From the value of My, yield, we find an efficiency of (17.49 + 0.216)%.

Mass,-(wn ), Signal MC

~

L 900
>

argConst =-80.53+ 5.6

q_) bkgdYield = 2351+ 72
O 800

({e]

8

S 700
o

gaussianMean = 1.865174 + 0.000028 GeV/c?
gaussianSigma = 0.002335 + 0.000027 GeV/c?
gaussianYield = 8747+ 108

S
=600

powerCst = 1.57+0.12

500

Events

400

300

200

100

1 1 1 | 1 1 1 1 | 1 1 1
]983 1.84 1.85 1.86 1.87 1.88
Mass, (GeV/c?)

Figure A.2: Signal Monte Carlo: Beam-Constrained Mass Fit.

The same process is performed in data, but with the widths obtained in Signal Monte

Carlo fixed. From the mean found in Figure A.4 and the signal Monte Carlo widths, we
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Figure A.3: Signal Monte Carlo: AE Fit.

choose w(782) candidates which have 0.76016 GeV/c?* < m(rt 7 7%) < 0.80432 GeV /c?.
We note the m (7 "7~ 7°) mass fit is simply used to select w(782) candidates, and not as
measurement of the D yield.

AE is defined as E+r- 70, — Fpeam; the distribution is shown in Figure A.5. From the
fit to this we select —0.03525 GeV < AE < 0.03117 GeV.

The beam-constrained mass, My > = E? — p? , distribution and fit is shown in Figure

Beam
A.6. Table A.3 contains a summary of the cuts we use to define the signal. Table A.4
summarizes the results of the signal yield fits. The M. and AE fit yields can both used as
measurements of the D° — wn yield.

In the proceeding, we assume w(782) is strongly related to the reconstruction of the D°

and its My.. To better visualize this relation, we look at the contour plot of w(782) mass
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Figure A.4: Data: m(r "7~ 7") invariant mass fit after signal cuts in AE and Mj,..

Table A.3: Summary of Signal Cuts

Signal Cuts
0.76016 GeV/c* < m(rtm 7") < 0.80432 GeV /c?
—0.03525 GeV < AE < 0.03117 GeV
1.857675 GeV /c? < My, < 1.871685 GeV /c?

versus My, subject to a 30 AE cut, as seen in Figure A.7. We can clearly see a well-populated
region near the intersection of the D My, and w(782) mass. We also fit the My, below and
above the w cuts in Figure A.8 and Figure A.9 respectively. We find no meaningful D°
presence in these sidebands.

We expect that there should be some K contamination in our w(782) signal; after all we
began with the opposite in K7%. For our signal candidates we observe M(7 "7 ™) in Figure
A.10. There is a clear K peak. This histogram is fit using a Gaussian “signal” and 4%

order polynomial “background” using the signal region cuts found in Table A.3. We can use
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Figure A.5: Data: AE distribution and fit after 3o signal cuts for the w(782) and on My,..

this in two alternate ways. The first and simplest method is to subtract the “signal” yield in
Figure A.10 from our previous results. We determine how many of the 158 4+ 20 K? events
should be subtracted by examining My, in three regions: +30 about the K? mean and the
two sidebands. We fit M, using the previously outlined method, and find the signal and
background yields under the peak. Using the signal fraction in the K? region from Table
A.5, we subtract 43 & 17 from the Table A.4 values. The K? subtraction value includes a
10% uncertainty due to our inability to precisely know how many K? lie in signal versus
background.

In a second method we veto the K% contribution to w(782) by cutting out the K?
region in M(7*7~). Aside from the veto, the analysis is identical to the original description.
The new efficiency fits of M. and AE are shown in Figures A.11 and A.12. From this value

of My, yield, we find an efficiency of (16.13 4+ 0.208)% which represents an 7.8% reduction
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Figure A.6: Data: My, fit after the 30 signal cuts on w(782) and AE.

with respect to the uncut/K?-subtracted efficiency.

Repeating the Data analysis with the K? veto, we use the width found in signal Monte
Carlo and the mean shown in Figure A.13 we make our new w(782) candidate selection.
From the fits of AE in Figure A.14 and M, in Figure A.15 we determine the signal cuts.
Table A.6 contains the K? veto cuts along with all of the new candidate selections. Table
A.T contains the yields from AE and My, corrected by both K? subtraction and veto, as
well as their associated efficiencies and Yield/Efficiency values.

We also attempted a 2D fit in My, and AE. In Figure A.16 we see the projection of
this 2D fit on the AE variable with the signal overwhelmed by the background. We are not
confident that we understand the AE background shape well enough to use this 2D fit to
extract a yield.

The proceeding analysis used the widths from Signal Monte Carlo, fixed in the data fits.
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Table A.4: Signal Yields From Fitting without K? Contamination Corrections

Plot  Signal Signal Monte Carlo
My, 711465 8747 + 108
AE  720£70 8530 + 110

Mass,. vs. w(782) under A E Cut |

0.82

bdEmbc
Entries 69187
Mean x 1.855
Meany 0.7826
RMS x 0.01484
RMSy 0.02196

0.79

w(782) (GeV/c?)
o
>

1.86 1.87 1.88
Mg (GeV/c?)

"'1.83 1.84 1.85

Figure A.7: Data: My, Versus w(782) Mass under 30 AE Cut

When we float the data widths, we find 637 + 89 and 521 4+ 85 for the My, and AE signal
yields, respectively. These values greatly differ from those with fixed widths, and indeed
greatly from each other. We will use the difference between fixed and floating M, yields as

a systematic uncertainty.

We calculate the Branching Fraction using

— NDO—N/.)T] (A.2)
2€D0—>wnND0D0 B]:w_,ﬂ--rﬂ-—ﬂ-o B.Fnﬁv,nyﬁo_w,y

BF

where Npo_,, is the observed yield and Npopo is the total number of D°/ D° events. We
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Figure A.8: Data: My, Fit under 30 AE Cut, w(782) 0.74 — 0.765 GeV /c?

calculate Npopo by multiplying o(ete™ — D°DP) previously reported by CLEO[36] and our
integrated luminosity. Table A.8 contains the Branching Fraction inputs.

Comparing the Yield/Efficiency results in Table A.7 we see the K Subtraction and Veto
are both acceptable methods to deal with the K? signal contamination. Using the Y /e values
we compute a difference of 115, which is 3.0% of the average Y /e, 3816. Though the Y /e
values are larger in the subtraction method, this method also has a conceptual problem. Our
subtraction choice is a best guess; there is no clear way to determine how many K? actually
contribute to the signal rather then the background.

Comparing using M. and AE to extract the yield, we have a +1 systematic uncertainty
from the difference in signal yield and +0.34% from the difference in Efficiency. These
amount to a 2.13% relative uncertainty. We also have +41 systematic due to the difference

in yield between the fixed and floating yields in My,. In order to account for possible peaking
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Figure A.9: Data: My, Fit under 30 AE Cut, w(782) 0.8 — 0.82 GeV /c?

Table A.5: Signal and Background Yields From M,,., Comparing Three M(7 "7~ ) Regions

In Relation to K? Peak
30 My, Below In Above
Signal 347 122 229
Background 1749 327 1649
Sig/Total 16.56% 27.17% 12.19%

backgrounds, we also include +72 systematic uncertainty from the difference between the
subtraction and veto K? methods. The two yield systematics give us the total systematic on
yield. The statistical uncertainty comes exclusively from the statistical uncertainty in the
signal yield. All of the uncertainties are summarized in Table A.9. The contribution from
BF (" — vv) is neglible.

Thus we measure the average of D — wn and D — w(782)7 as

BF po_yy = (1.78 £ 0.19 £ 0.35) x 1077 (A.3)
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Figure A.10: Data M(7 7 ™) Fit.

This agrees well with a result reported by BABAR and is roughly a factor of two smaller
than a theoretical prediciton. This decay mode is a CP—eigenstate, making it a valuable tool

in heavy flavor analysis.
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Figure A.11: Beam-Constrained Mass Fit of Signal Monte Carlo D° — wn with K? Veto.

Table A.6: Summary of Signal Cuts with K Veto

Signal Cuts
M(mF7r™) < 0.48902 GeV/c? or M(n ™) > 0.50672 GeV /c?
0.76010 GeV/c? < m(ntr—n%) < 0.80474 GeV/c?
—0.03551 GeV < AE < 0.03145 GeV
1.857738 GeV /2 < My, < 1.871802 GeV /c?

Table A.7: Signal Yields from Fittings With K? Effects

Type Signal Yield Signal € Yield/e
My, 667167  (17.49+£0.216)% 3819
0 bec
K Events Subtracted  \p' 7 4 79 17.06 + 0.220)% 3969

)%
( )%

K0 Veto Mpe 596 & 62 E16.13 + 0.20835 3694
(]

AE 597 £ 67 15.79 +0.212 3780
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Figure A.12: AE Fit of Signal Monte Carlo D° — wn with K? Veto.
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Figure A.13: Data M(w(782) — 7w 7°) Fit with K? Veto
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Figure A.16: D° — wn: AE Projection of 2D AE vs. M, fit.

Table A.8: Summary of Branching Fraction Inputs. Branching Fractions are PDG[8] values.
Uncertainties are statistical and systematic, respectively.

Quantity Value

Signal Yield 596 £62+1

Efficiency (16.13 £0.208 + 0.34)%
BF(w(782) — ntr—7%)  (89.2+0.7)%

BF(n— ) (39.31 £ 0.2)%

BF(7® — vv) (98.823 4+ 0.034)%
olete” — DDV) (3.66 £ 0.03 & 0.06)nb
Luminosity 818 + 8pb~*

Npopo 2093830
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Table A.9: Summary of the uncertainties on BF po_,,.

Source Value (x1073)
Statistical on Yield +0.19

Signal Yield +0.125
Difference Between K? Methods +0.215

MC Efficiency +0.038
Luminosity +0.0178
Cross Section +0.0326
BF(w(782) — mra—70) +0.0140
BF(n— v7) +0.00906
Total Systematic +0.345

Total Uncertainty +0.39
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Dalitz Plot analysis is a standard technique for the study of weak hadronic 3-body decays.
This technique allows us to extract the relative amplitudes, phases, and fit fractions of the
resonances that are the primary product of such decays. A Dalitz analysis is complicated
by the presence of two or more interfering resonances that appear at the same place on
the plot. In this analysis I attempt to resolve the K?a(980)° and K?f,(980) in the decay
of D° — KYKTK~. Using the K%ay(980)" resonance found in D° — K%7%, T compare
equating a resonance in an interfering decay channel with a non-interfering channel by fit
fraction or amplitude. T use the 818 pb~! of CLEO-c data collected a 1(3770) energies to
perform the Dalitz plot analysis of D — K%7%) and D° — KK+ K. I find large fractions
from both K%ay(980)° and K?f;(980) that destructively interfere to leave the K?4(1020) as

the dominant resonance on the plot.
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