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CHAPTER 1: INTRODUCTION

1.1 The Standard Model

The Standard Model, the highly successful theory that describes fundamental interactions

of forces and particles on subatomic scales, is the crowning achievement of 20th century

physics. Its development, which we will cover briefly, mirror the development of perhaps the

greatest theory of the 19th century: Atomic Theory. This will not be exhaustive; there are

several texts that cover the topic [1] as well as Quantum Field Theory more generally [2] [3]. A

more in depth coverage of the development of the Standard Model can be found elsewhere [4].

Humankind has concerned itself with the most basic makeup of the physical world since at

least the Greek Hellenistic period. Adopting ideas from earlier writing, the famed philosopher

Democritous proposed a universe consisting of the vacuum and small indivisible objects called

atoms [5]. Though this proposal was complete speculation, without the specifics necessary

to be useful, its broad outline is prescient of a theory that will appear around the turn of

the 19th century.

By 1805, it was becoming clear some underlying material structure existed. Antoine

Lavoisier had found no measurable change in mass between reactants and their products

in a sealed container. Additionally, Joseph Louis Proust found that different samples of a

material contained its constituent elements in constant proportion. It was in this climate that

John Dalton proposed Atomic Theory. Elements consist of atoms, of which a given element

are identical; compounds consist of atoms of two or more elements in integer numbers [5].

During the 1860s, Atomic Theory received a major boost due to efforts to relate elements

based on similar characteristics. Though there were several chemists working on the problem

including Julius Meyer, John Newlands, and Dmitri Mendeleev, it was Mendeleev’s Periodic

Table of the Elements that is most widely known. He noticed that elements can be arranged

by atomic mass, and into groups. Elements of the same group exhibited similar chemical

behavior, and periods could be arranged into orderly increases in mass. Much of the modern
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periodic table was unknown in Mendeleev’s time, but armed with high degree of order, his

table was able to make several predictions about elements that should appear in empty places.

Among his predictions, Mendeleev predicts the elements ekaaluminum and ekasilicon, which

were later discovered and named gallium and germanium respectively. There is power in

patterns; the ability to anticipate unobserved phenomena based on what’s been seen before

is both the goal and core feature of the scientific endeavor.

The number of particles discovered by the mid 1950s and 1960s requires a similar under-

lying theory. The discoveries of the electron, the proton, and the neutron set Atomic Theory

on solid footing, as well as explain the presence of isotopes. The discovery of the muon

together with Fermi’s postulate of the near–massless neutrino, which was discovered much

later, established the first two lepton generations. The pion and what we now call the kaon

were the first of many mesons found. Prior to discovery of the Λ0 and several other hyperons,

the proton and neutron were the only known strongly interacting, high–mass particles. Due

to their similar mass and similar strong interaction, the proton and neutron were considered

two states of the same “nucleon”. In order to account for the difference between the two

nucleon states, the property of “isospin” was assigned. This is a close analogy to intrinsic

spin.

The discovery of hyperons introduced problems with this interpretation. Λ0, whose mass

is comparable to the nucleons and is produced in strong interactions, has a lifetime that is

much longer than expected. Strong interactions that produce this, the Σ±, and Ξ± (“Cas-

cade”) hyperons also produce kaons; such particles have never been seen outside of this

associated production. The solution to these and other problems was the introduction of the

“strangeness” by Gell-Mann and independently by Nishijima. As an example, by arranging

the mesons of spin-0 by I3, the “3” projection of isospin similar to Sz, and strangeness one

can create an octet as seen in Fig. 1.1, suggesting that there exists some underlying structure.

The quark model posits that quarks are the core constituents in protons, neutrons, and

other strongly interacting particles. This theory successfully predicts the existence of a
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Figure 1.1: A grouping of spin 0 mesons, organized by I3 (horizontal axis) and strangeness
(vertical axis) [6]. Particles sharing a top-left to bottom-right diagonal have the same electric
charge. M. Gell-Mann referred to this and other hadron octets by the phrase “Eightfold
Way.”
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bound state containing three strange quarks; this particle, dubbed the Ω−, was discovered

in 1964. Quarks are now a major component of the Standard Model, which describes our

best understanding of the fundamental particles and forces in nature. The Standard Model

includes six quarks (Table 1.1) and six leptons (Table 1.2) in three generations, along with

their respective antiparticles. It also describes the particles that mediates fundamental

subatomic forces. These exchange particles, as seen in Table 1.3, are the photon, three

Weak bosons, and gluons. The particle mediating the force of gravity is noticeably absent

here. Gravity is hypothesized to be mediated by a massless spin-2 boson called the graviton.

However, because it is orders of magnitude weaker than the other forces, not well accounted

for in the Standard Model, and has yet to be directly observed, we can safely omit the

graviton here.

Table 1.1: Standard Model quarks.

Symbol Name Electric Charge Approximate Mass (MeV) [8]

u Up +2/3 4 (lattice simulation)
d Down −1/3 4 (lattice simulation)
c Charm +2/3 1240 (continuum extraction)
s Strange −1/3 95 (lattice simulation)
t Top +2/3 172600 (CDF/D0 [7])
b Bottom −1/3 4200 (continuum extraction)

Table 1.2: Standard Model leptons.

Symbol Name Electric Charge Approximate Mass (MeV) [8]

νe Electron Neutrino 0 < 0.003
e Electron -1 0.511
νµ Muon Neutrino 0 < 0.19
µ Muon -1 107
ντ Tau Neutrino 0 < 18.2
τ Tau -1 1777

Both quarks and leptons are spin-1/2 fermions and have the property of “flavor”, which



5

Table 1.3: Standard Model gauge bosons.

Name Force Electric Charge Approximate Mass (GeV) [8]

photon γ Electromagnetic 0 0
gluon Strong 0 0
W± Weak ±1 80
Z0 Weak 0 91

describes the difference in species for quarks and generation for leptons. Each flavor has its

own quantum number; here isospin differentiates up and down quarks. Strange quarks have

“strangeness”, charm has “charmness”, and so on. Similarly, electrons and electron neutrinos

have electron lepton number, muons and muon neutrinos have muon lepton number, etc.

Besides the obvious mass differences, quarks and leptons also differ by the absence of baryon

number for leptons, as well as which forces they interact with. Quarks experience strong,

weak, and electromagnetic forces; leptons do not interact strongly. Furthermore, neutrinos

only interact weakly.

Table 1.4: Fundamental forces important in the Standard Model [1].

Force Range (m) Relative Strength Interacts With

Strong 10−15 1 Quarks, gluons
Electromagnetic infinite 10−2 Any electrically charged particle

Weak 10−18 10−5 Quarks, leptons

Of the three forces seen in Table 1.4, the Weak force is the appropriately named weakest.

As opposed to the electromagnetic and strong forces, the Weak force is not involved in the

formation of bound states. Aside from general momentum conservation requirements, it is

also not the source of any push or pull. Instead it can best be understood as the force

mediating flavor–changing and some leptonic interactions. A familiar example of a Weak

process is the following neutron decay:
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n→ p+ e− + ν̄e (1.1)

Known as β− decay, the process evolves as seen in Figure 1.2. One of the down quarks within

a neutron emits a W− and becomes an up quark. The W− then converts immediately into

an electron and a neutrino. Electromagnetic and strong forces both conserve species, so the

weak force is the only available decay channel. Eventually all higher generation particles

decay into the first generation quarks and leptons via Weak decays. This explains why the

visible universe is composed of the first generation particles and their constructs.

A different example of weak decay can be found in the comparison of the ∆+ and Σ+.

Both are positively charged particles around 1.2GeV. Both also prominently decay to n+π+.

When we observe the lifetimes of these similar particles, we find a major difference. The

∆+ → n + π+ decay proceeds rapidly, on the order of 10−23s, whereas Σ+ → n + π+ takes

∼ 10−10s. Comparing the quark content before and after the decay, we can clearly discern

what forces can allow the respective decays.

The ∆+ → n + π+ involves uud → udd + ud̄. This only requires the production of a

down/antidown pair, which the strong force can provide. Σ+ → n+π+ requires more. With

uus → udd + ud̄, in addition to creating a down/antidown pair as in ∆+, the decay must

also replace a strange quark with another down. This flavor change is only possible within

a Weak decay.

The electromagnetic force is well understood, being the force responsible for the elec-

tromagnetic spectrum, charged pith balls and other miscelaneous experiments common to

introductory physics classes, and most chemical interactions including the formation of chem-

ical bonds. Charged bodies interact with each other and extraneous electromagnetic fields

via the exchange of photons. Quantum Electrodynamics (QED) is the theoretical framework

for understanding such interactions at their most fundamental. QED is a perturbative field

theory whose development foreshadowed Quantum Chromodynamics (QCD), the theory of

strong interactions.
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Figure 1.2: A diagram of beta decay (Eq. 1.1). A d quark decays via the weak force to result
in a u quark still bound in the hadron, an electron, and an antielectron neutrino [9].
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QCD describes the force responsible for the formation of protons and neutrons, their

binding within nuclei, and the decay of very short–lived particles, such as the previously

mentioned ∆+. Similar to QED, the strong force acts on objects that carry a “color” charge.

Each quark carries a “red”, “green”, or “blue” charge, and each anitquark an anticolor. It

should be noted the colors associated with the strong force are only state labels — convenient

analogies to the colors in the visual EM spectrum. A particle is said to be “white”, or

colorless, if the constituent quarks contain equal amounts of red, green, and blue or color

and anticolor in equal measure. The strong force operates under color confinement, which

forbids the observation of a net color charge; hadrons are observable colorless quark states.

Hadrons containing three quarks equal amounts of the three color or anticolor charges are

called baryons, which include the nucleons and the discussed hyperons. Mesons, e.g. pions,

kaons, and η’s, are hadrons composed of a quark with color and an antiquark with anticolor

charge.

The requirement of colorless observable states is due to a key difference between the

electromagnetic and strong forces: the gluon itself carries color charge. Though the photon

carries the electromagnetic force between charged particles, it does not have its own charge.

Thus the electric force between charged particles is nearly constant at large distances, but

increases as the particles get closer. With strong interactions, however, as color charged

particles get closer, such as quarks colliding in high energy interactions, the effective strong

force decreases. The strong force increases as two quarks within a hadron are separated,

making it more difficult to pull the two apart. If enough energy is put into dividing a pair

quarks in a hadron another pair of quarks will appear from the strong field, creating two

colorless hadrons that allow the original pair of quarks to separate.

1.2 An Introduction to Dalitz Plots

Describing hadron formation is generally intractable through analytic means. Outside the

realm of peturbative QCD, the same features that produce hadronic observable states quickly

overwhelm all but numerical approximations and high performance computing. These meth-
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ods, including most prominently Lattice QCD, require more than the experimental verifi-

cation necessary of all theoretical predictions. A review of Lattice QCD can be found in

the PDG [8]. Properties such as exclusive charm branching fractions generally cannot be

accurately predicted and must be found experimentally.

The D meson has proven to be an ideal system to study strong sector dynamics. Unlike

the proton, D states are relatively free of the gluon “sea” that heavily populates protons.

It also has advantages over its heavier analog, the B meson. Much of the strong dynamics

vital to the understanding of B decays are larger in D. In addition to decay tagging being

easier [10], certain analyses are impossible [11] in decays other than two D mesons decaying

from a common parent.

Many of the decay channels available to the D meson consist of three or more body

final states; these are predicted to primarily proceed through the production of a interme-

diate resonance [12]. For Weak nonleptonic three-body decays, the primary technique for

analyzing this intermediate structure is the Dalitz Plot. This method was first used by its

namesake R. H. Dalitz [13] to study the τ − θ puzzle, the resolution of which found both

were different parity decays of the same basic meson, what we now reference as the kaon.

For a given resonance, there are three primary results derived from a Dalitz plot analysis:

relative amplitudes, phases, and branching fractions.

The quantum description of the decay rate of a particle of mass M into n bodies is given

by the formula

dΓn =
(2π)4

2M
|M|2dΦ(M ; pi . . . pn) (1.2)

where

dΦ(M ; pi . . . pn) = δ4(M −
n
∑

i=1

pi)
n
∏

i=1

d3pi
(2π)32Ei

is the general invariant phase space, and |M|2 is the Lorentz invariant amplitude. For a
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psuedoscalar such as a D or B meson decaying into three psuedoscalars, the phase space

is much more simple. The three final state particles each has a 4-momentum, representing

twelve degrees of freedom. However not all of these degrees are independent. As summarized

in Table 1.5, because our knowledge of the system, we can eliminate all but two degrees of

freedom. If we combine massesm2
12 = (m1+m2)

2 andm2
23, thenm

2
13 is completely determined

and we have an ideal phase space to see resonances. Making the necessary integrations, we

derive

dΓn =
|M|2

32(2π)3M3
dm2

12dm
2
23 (1.3)

which is the standard form of the decay rate on the Dalitz Plot. As seen in Figure 1.3, the

limits of the Dalitz plot are kinematically determined. Additionally, the shape of the plot

will also be different if there are identical particles in the final state, e.g. D± → K0
sK

0
sK

±.

If there are no resonances in the final state, events will populate the Dalitz plot evenly; any

increased or decreased density of events on the plot are primarily due to the presence of

resonances.

Table 1.5: Daltiz Plot Degrees of Freedom.

Constraint DOF Notes

3 Final State 4-Momenta 12 Each final particle has a 4-momentum
Euler Angles - 3 Pseudoscalar Parent has no Preferred

Angle
Conservation of Momentum - 3 ~p3 = −(~p1 + ~p2)
Conservation of Energy - 1 E3 =MD −E1−E2 (In D Rest Frame)

Known Masses - 3 mD = m1 +m2 +m3, mD = (MD;~0)
Remaining D.O.F. 2 Can use m2

12 = (m1 +m2)
2, m2

23, etc.

The invariant amplitde |M|2 encapsulates all of the dynamics of the decay of M into a

given set of final daughters. Each resonant decay channel has its own matrix element, an

imaginary phase term, and an amplitude that is positve real by construction. Thus the total

invariant amplitude takes the form
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Figure 1.3: A diagram of a Dalitz plot. The shape of the plot is determined by the kinematics
of the decay. A more complete discussion of particle kinematics can be found in the PDG [8].

M(D → abc) = anre
iϕnr +

∑

n

ane
iϕnAn (1.4)

where an, ϕn, and An are the amplitude, relative phase, and dynamics matrix element of

the nth resonance, respectively. The anre
iϕnr term is for a nonresonant D0 decay. The

normalization of |M|2 is arbitrary, so we set it to

∫

|M|2dDP = 1 (1.5)

whose integral is over the Dalitz plot. This means the analysis is only sensitive to relative

phases and amplitudes. In practice, one resonance is set to a = 1, φ = 0, and the rest

allowed to float against this fixed value. In the next section I will discuss previous attempts

to deal with this normalization. Since different analyses are free to choose different resonance

models and fixed resonances, we require a result that are independent of such details. Thus

I also calculate the fit fraction [12] over the plot for each resonance,
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Fit Fractionr ≡
∫

|areiϕrA(abc|r)|2dDP
∫

|ΣjajeiϕjA(abc|j)|2dDP (1.6)

In general the sum over the fit fractions is not equal to one due to interference between

resonances.

The observation of resonance interference is another feature of Dalitz analysis, but it is

not without complication. In decays involving a K+K− final state, such as D0 → K0
sK

+K−,

multiple resonances appear at the same place on the Dalitz Plot. φ(1020) is a well known

“strangeonium” meson with ss̄ composition and narrow width that appears near 1GeV2.

Two more, a0(980) and f0(980), are both wide resonances with largely unknown structure

that should also contribute to this decay channel at the same mass; see the f0(500) Note in

the PDG [8]. As seen in Table 1.6, while both have a secondary decay in K+K−, they have

two different dominant decay channels. If we can utilize any of the information from the

fit of a non-interfering channel on the D0 → K0
sK

+K− plot, we can attempt to accurately

measure the contribution of these two resonances to the specific final state.

Table 1.6: Wide Scalar Mesons a0(980) and f0(980) Compared [8].

Property a0(980) f0(980)

Mass 980± 20MeV 990± 20MeV
Width 50–100MeV 40–100MeV
IG(JPC) 1−(0++) 0+(0++)

Dominant Decay ηπ ππ̄
Next Largest Decay KK̄ KK̄

So what properties are unchanged between the differing decay channels? There are two

approaches that suggest themselves. Assuming a resonance with at least two channels “1”

and “2” share a common amplitude, we can create a fitting “penalty term” that forces the

amplitude in an interfering channel to the value found in the non-interfering channel. In the

Dalitz method, amplitudes and phases are relative; we fix one resonance, often the largest,

and fit the rest with respect to this. This in practice means the amplitudes, or more properly
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the absoulte value of |a|2, must first be normalized to be compared. We must also note |a|2

represents

BF1 ∗ BFD0withmode1 = |a1|2 (1.7)

Thus the fit amplitude of a resonance into its “1” channel can be equated to its “2” channel

amplitude by scaling each by the branching fraction of the resonance into that channel, and

the fraction of the parent into a mode containing the channel. We can adjust for the relative

fit by dividing by the sum of amplitudes in the channel as seen in Eq. 1.8. In equating

amplitudes, we are oblivious to the interference on the plot.

c1|a1|2
BF1BFD0withmode1

=
c2|a2|2

BF2BFD0withmode2

(1.8)

where

c =

(

∑

i

|ai|2
BF i

)−1

is the normailiztion factor.

If instead we equate the Fit fraction of the shared resonance, we explicitly deal with

interference. Eq. 1.9 includes the scaling by branching fraction for the resonance mode and

parent mode.

FF1

BF1BFD0withmode1

=
FF2

BF2BFD0withmode2

(1.9)

1.3 Current Experimental Status and Theoretical Predictions

The CLEO collaboration previously attempted to tackle the discrepancy between f0(980)

as it appears in D0 → K0
sπ

+π+ versus D0 → K0K+K− [14]. Since it was noted that

D0 → K0K+K− should have an a0(980)K
0
s mode that is difficult to separate from the

f0(980) contribution, CLEO set out to study a0(980) in a non–interferring mode. CLEO in



14

its II.V configuration, which will be discussed in the next chapter, was able to perform a

Dalitz analysis on D0 → K0
sπ

0η, extract its branching fraction relative to D0 → K0
sπ

0, and

find the two leading resonance candidates a0(980)K
0
s and K∗(892)η. Though this analysis

adds to the knowledge of three body charm decays, question of how to separate f0(980) from

a0(980) was left unresolved.

The BABAR collaboration later performed a Daltiz plot analysis on D0 → K̄0K+K−,

also seeking information on charm three body decays as well as hoping to discover more

information on f0(980) from a0(980), both of which are possible exotic strong states [15].

BABAR did not consider an f0(980) contribution, reasoning from a comparison between

K0
sK

+ and K−K+ that the lack of excess events in K−K+ made an f0(980) component

unlikely. They calculate an upwards value for the contribution and omit amplitude and

phase values. The possibility of interference between a0(980) and f0(980) is not considered.

In contrast to the BABAR study of K̄0K+K−, the FOCUS collaboration’s “Study of the

D0 → K+K−π+π+ decay” [16] includes the f0(980)π
+π+ channel in their overall fit, but ex-

plicitly exclude the corresponding a0(980)π
+π+ mode. FOCUS finds a relative lack of statis-

tics and the fact a0(980) primarily decays into ηπ are reasons for excluding a0(980)π
+π+.
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CHAPTER 2: THE CLEO-C EXPERIMENT

Knowledge of an experimental apparatus is nearly as important as the data it produces.

Here I will describe in brief the device used in this thesis. A more detailed description can

be found elsewhere [17].

2.1 CESR

The Cornell Electron Storage Ring (CESR) is the source of colliding electrons and

positrons at Cornell University. It has a circumference of 768 meters, extending from Wilson

Laboratory through the tunnels underneath the adjacent athletic facilities and parking lots.

CESR began operation in 1979.

Electrons begin the process. Emitted from a heated filament, these electrons are accel-

erated by special 30 meter long linear accelerator (LINAC). The LINAC uses microwave

electric fields to bring the electrons up to 150 MeV at an intermediate point, at which time

they strike a tungsten fixed target. More electrons, along with positrons and x-rays emerge

from the interaction. The positrons are selected, and accelerated to energies between 150

and 300 MeV before being injected into the second acceleration stage: the synchrotron.

A synchrotron consists of cells to accelerate particles to the desired energies, and various

magnets to selectively focus the particle beams. CESR’s synchrotron has four 10-foot long

radio frequency accelerating cells. The positrons make about 4000 clockwise orbits before

being injected into CESR. This occurs at a rate of about 60 injections per second. Once

CESR has the proper positron beam current, electrons take the analogous path in the system.

Collected after the tungsten collision, electrons are accelerated through the system like the

positrons before them, except in a counterclockwise direction. At current, CESR maintains

both an electron and positron beam in the same tunnel, travelling in opposite directions.

The beam is not a continuous object; a normal beam consists of up to nine “trains”, each

containing between three and five “bunches”.

Each beam travels very close to the speed of light, with half of the total energy re-
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quired for experimentation. CESR, like other storage rings, are specialized synchrotrons

that maintain beams at experimental energy versus accelerating to energy. All charged par-

ticles, electrons/positrons in particular, lose energy as they circulate around the ring due

to synchrotron radiation. CESR has superconducting RF cavities to replace energy lost to

radiation, plus liquid cooling to remove heat deposited in the ring. In two stations, this syn-

chrotron radiation is extracted, and used for various material science studies. These stations

make up the Cornell High Energy Synchrotron Source (CHESS).

Since CESR stores beams for up to an hour, care must be taken to keep a well main-

tained vacuum and focusing to prevent collisions with the chamber walls. Beams consist of

bunches of electrons and positrons, which introduces its own focus concerns. Like charged

particles repel, spreading a given bunch. CESR counteracts this spread using quadrapole

and sextapole focusing magnets.

2.2 Electron/Positron Collisions

When bunches of positrons and electrons coincide at the interaction point, there is a

probability they will collide. When they collide they will annihilate, creating a virtual

massive photon, γ⋆, which will immediately decay to a product that depends on the center

of mass energy.

In the CLEO-c experiment, the beams are tuned to three primary energies: ≈ 3680MeV,

≈ 3770MeV, and ≈ 4770MeV. These correspond to ψ′, ψ′′, and D⋆
sD̄s, respectively. As an

example, if the center of mass energy is 3774MeV, the reaction event is

e−e+ → γ⋆ → ψ′′ (2.1)

The choice of energy depends on what the CLEO collaboration wishes to study. The ψ′′

decays to D0D̄0 and D+D− (52 ± 5)% and (41 ± 4)% of the time, respectively [8]. The D

mesons are produced back to back nearly at rest.

CESR operation data is divided into “runs” and “datasets”. A run consists of a single
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e+e− fill, which can contain up to 104 events. A dataset contains a series of runs that

are related by machine conditions, including the center of mass energy. This analysis is

performed on datasets 31-33, 35-37, and 43-46. These data sets represent a total of 818 pb−1

of integrated luminosity taken at the ψ′′ energy. When we multiply the luminosity by the

cross section of e−e+ → D0D̄0 [18], we determine we have data on about three million D0D̄0

pairs.

2.3 Previous Incarnations of CLEO

CLEO, so named to compliment CESR, was built along with CESR in the late 1970s [10].

It was constructed in the south hall of Wilson Laboratory, centered around one of two

interaction points. A second experiment, the now defunct CUSB, was housed in the smaller

north hall. Among CLEO’s first tasks were to verify the then-recently discovered Υ states:

Υ(1S), Υ(2S), and Υ(3S), as well as discover a fourth, Υ(4S), near the BB̄ threshold.

Various studies surrounding Υ and B mesons continued throughout the 1980s with a short

shutdown in 1986 to improve resolution and particle identification. CLEO II came online in

1989 after a yearlong shutdown. Of the many upgrades, two of the most notable were the

installation of the cesium iodide (CsI) calorimeter and the new muon chambers.

1995 saw the beginning of CLEO II.V operation. A new silicon detector near the interac-

tion point allowed for better vertex resolution. A major focus in this era was measuring the

bottom-related Cabibbo-Kobayashi-Maskawa matrix (CKM) matrix elements. Five years

later, CLEO III came online, bringing with it an improved silicon detector, a new drift

chamber, and a ring imaging Cherenkov (RICH) detector. It too was focused on B mesons,

primarily from Υ(4S).

2.4 The CLEO-c Detector

Faced with the advent of high-luminosity B-Factories and the need for a better under-

standing of strong interaction effects, the CLEO collaboration decided to change focus to

the lower energy charm sector. In order to better serve this new priority, the silicon vertex

detector was replaced by an inner drift chamber and the magnetic field strength reduced
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from 1.5T to 1.0T. This new detector was dubbed CLEO-c [17]. For a diagram, see Figure

2.1.

D mesons decay within the radius of the interaction region, producing a shower of particles

that will survive to be detected in different layers. Electrons, positrons, and other charged

particles will deposit energy in the drift chambers and either end their flight or decay by the

time they are detected in the calorimeter. K-short (K0
s ) will most often decay to a π+π− pair

in the drift chambers. Photons will go largely unnoticed by the drift chambers and deposit

energy in the calorimeter. Neutral pions (π0) and etas (η) will similarly go undetected by the

drift chambers, being detected by their decay into a photon pair. Muons will deposit energy

in all layers of the detector including the appropriately named Barrel Muon Chambers. K-

long (K0
l ) and neutrinos mostly escape detection, and must be reconstructed from missing

energy and momentum.

Before we continue, we should make note of our coordinate convention. We use cylindrical

coordinates, with our origin at the interaction point. The z axis coincides with the beam

line in the direction of the positron beam, with r the distance from the beam line and φ the

angle about the beam line. The Cartesian y axis is normal to the ground.

2.4.1 TRACKING

As charged particles emerge from the interaction region, their trajectories are curved by

the magnetic field maintained within the detector. By measuring this track in a fixed field

strength, we have a measure of the particle momentum.

The two innermost layers of CLEO-c, the inner and outer drift chambers, are designed

to detect these tracks. An image of the inner drift chamber is shown in Fig. 2.2. A par-

tial schematic of the outer drift chamber is shown in Fig. 2.3. Both chambers consist of

cylindrical wires stretched between metal endcaps, contained in a helium-propane (60:40)

gas mixture. There are two types of wire. Sense wires are gold-plated tungsten 20µm in

diameter, maintained at a voltage difference of about 2000V relative to the second type.

Field wires are gold-plated aluminum with a diameter of 110µm. These wires are used to
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Figure 2.1: A diagram of the CLEO-c detector [19].
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Figure 2.2: A picture of the inner drift chamber (ZD) at CLEO-c. The reflections show the
stereo twist [20].

shape the electric field in the chamber in order to create cells, with a single sense wire to

each cell. As seen in Fig. 2.3, each cell is roughly square.

As a charged particle passes through the drift chambers, it deposits energy in the gaseous

medium, creating electron-ion pairs. As the electron is attracted to the sense wire it collides

with more of the medium, creating more electrons. This cascade of electrons produce a

current in the sense wire that is read out at the end of the chamber. The charged particle

will continue this ionization process for the duration of its flight in the drift chambers. The

current readouts, or hits, are turned into position measurements in the r–φ plane.

Most of the cells are axial; they are strung parallel to the beam line. However some are

set at a stereo angle, which allows us to resolve position in the z axis as well. In software, we

combine these hits to reconstruct the three dimensional path, or “track”, the particle took

through the detector. The direction of the curvature of the track tell us whether the charge

was positive or negative. The magnitude of curvature tells us its momentum.
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Figure 2.3: A schematic of the outer drift chamber (DR) at CLEO-c, showing the placement
of field and sense wires [21].
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2.4.2 PARTICLE IDENTIFICATION

The drift chambers’ function in track reconstruction complement their other important

function: particle identification. As a charged particle traverses the drift chamber, it loses

energy as a function of velocity due to interaction with the chamber gas and wires. This

specific energy loss, dE/dx, will change as a function of velocity. As we see in Fig. 2.4,

beyond approx. 700MeV, dE/dx becomes less useful in differentiating K±, π±, and protons.

At these energies we need the next outer layer of CLEO-c, the Ring Imaging CHerenkov

(RICH) detector.

The RICH chamber (see Fig. 2.5) itself contains several layers. After leaving the outer

drift chamber, the charged particle enters a layer of lithium fluoride (LiF) radiators, which

have a high index of refraction. The particle is still traveling slower than the speed of light

in vacuum (c), but faster than the speed of light in LiF. As it enters the radiators, the

particle emits very ultraviolet photons in a cone similarly to a supersonic object creating a

sonic boom in air. Since we need to detect the opening angle, which depends on the particle

velocity, the cone is allowed to expand in a layer of pure nitrogen gas. Past this expansion

gap, they are detected as a circle in the third layer, which consists of multiwire proportional

chambers immersed in methane-triethylamine (TEA) gas mixture. The radius of this circle

determines velocity. Combined with a momentum measurement from the tracking system,

the particle is identified by calculating its mass.

2.4.3 CALORIMETRY AND MUON DETECTION

Beyond the RICH detector, the cesium iodide (CsI) electromagnetic calorimeter is tasked

with determining the energy of EM showering particles and photons. The calorimeter consists

of 7800 CsI crystals, each 5× 5× 30cm, with silicon photodiodes for detection. The crystals

are arranged such that a 5 × 5cm face is directed at the interaction region. As the target

particle enters a crystal, it initiates a shower of photons that travel to the opposite end to be

detected by the photodiodes. The light intensity is proportional to the energy of the incident

particle.
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Figure 2.4: dE/dx plots from CLEO III. The bottom stripe of points consists of charged
pions, the stripe in the middle consists of charged kaons, and the upper and faintest stripe
consists of protons [17].
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Figure 2.5: A cutaway diagram of the CLEO-c RICH detector, showing the LiF radiator
(left), expansion gap, and detector apparatus (right) [24].
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Figure 2.6: A cross section diagram of the CLEO-c Barrel Muon Chambers [23].

The final layer of CLEO-c consist of several layers of iron that serve as flux return

for the superconducting magnet. Interspersed between magnet iron are the Barrel Muon

Chambers. Like the drift chambers, the Barrel Muon Chambers consist of wires immersed

in gas mixture that detect the trajectory of passing charged particles. As seen in Figure 2.6,

instead of multiple field and sense wires occupying a common chamber, each anode wire

is contained in graphite–coated extruded PVC tubes in a 50% argon and 50% ethane gas

mixture [22]. The graphite of the plastic tubes acts in a similar fashion to the field wires of

the drift chambers. 8cm copper cathode strips run perpendicular to the tubes to properly

determine position.

2.4.4 TRIGGERING, DATA ACQUISITION, AND EVENT

RECONSTRUCTION

A given e+e− collision run contains far more results than can be saved to storage for

study. Coupled with our inability to analyze decays in real time, we require a means to

quick assess how interesting the given event is. This evaluation is called triggering, and it

has several components.

Beginning with the drift chambers, the readouts are checked against signatures of events

with objects that travel far enough in the detector to be useful. Triggering also requires that

three of the four stereo layers in the outer drift chamber receive hits. The tracking trigger

rejects interesting events fewer than 1% of the time. The calorimeter data is gathered next,
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Figure 2.7: The event display for a CLEO-c event. Tracks, RICH response, and showers are
shown.

locating showers by grouping adjacent crystals into overlapping tiles.

Tracking and calorimeter data are fed into the global trigger which decides if the event

fits into one of eight categories of interesting events. If it matches one, the rest of detector

information is gathered. This coincides with a period of about 20µs during which the detector

is blind to additional events. Event displays generate for interesting events, which show the

transverse plane in the detector. Figure 2.7 shows an example display, with responses from

all affected layers.

The data acquisition system (DAQ) digitizes about 400,000 readouts from all of CLEO-

c. Depending on the event, this can represent more than 5MBps. As the DAQ operates,

CLEO-c resumes data taking. If another interesting event passes triggering, the readouts for
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this new event is placed in buffer for later processing by the DAQ. More software triggers

downstream are used to do additional background minimization before data is stored to disk

or tape.

The collaboration has a mature and robust set of software libraries written in C++

that allow us to turn hits and showers into physics “objects” that can be analyzed. This

is done after triggering and DAQ, and is not casually related to data taking. From there,

collaboration members write code in various compiled and scripting languages, commonly

C++ along with shell scripts, to build our analyses. If the raw readout information is

required, this too is available.

Most of the work of event reconstruction is performed by “pass2”, which builds tracks,

showers, and does loose particle identification. D meson analysis is of such importance to the

collaboration that many studies, including our own, use data that has been pre-searched for

D candidates. This “D Skim” [25, 26] takes pass2 objects to make combinations, looking for

potential D “tags”. If one combination passes the skim’s cuts, the whole event is included

in the skim for that dataset. Pass2 reconstructs anything it can, including any secondary

decays, so the skimmer cannot determine what might be important without further analysis.

A researcher can look for a specific decay(s) by invoking one of over 70 tagged DD̄ or DsD̄s

modes.

Since pass2 only performs basic selections, D Skim makes additional requirements. Tracks

must be well reconstructed, originating close to the interaction point. The track’s momentum

must also be within bounds. Table 2.1 lists all of the track requirements. In order to

differentiate between pions and kaons, we can utilize information from both dE/dx and

RICH. Given the dE/dx information is availible, we calculate a χ2 for the particle hypothesis

σ2
h =

(

dE/dxmeasured − dE/dxpredicted
σ

)

(2.2)

where h is either a pion or kaon. In the case of valid RICH information, the liklihoods LK and
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Lπ are calculated based on the locations of the Cherenkov photons and track information [36].

We combine theses particle hypothesis tests in a log-likelihood calculation, whose value for

a pion test is

L = σ2
K − σ2

π + LK − Lπ (2.3)

where L ≥ 0. For a kaon, Eq. 2.3 is used with the K and π subscripts switched. If the RICH

gives an obviously wrong output, LK and Lπ will be omitted. The RICH outputs will also

be omitted if the track momentum is below 700MeV or | cos θ| > 0.8. These rejections are

due to the optimum momentum resolution and physical coverage of the RICH detector.

Table 2.1: Track quality cuts used by D Skim.

Cut Description

0.050 ≤ p ≤ 2.0 GeV p: track momentum
|db| ≤ 0.005 m db: closest dist. from track to interaction point
|z0| ≤ 0.050 m z0: same as db, except along beam axis (z-axis)
χ2 ≤ 100000 χ2: measure of how well raw output fits to shape of a track
hitfrac ≥ 0.5 (Actual # of tracking hits)/(expected # of tracking hits)
| cos θ| ≤ 0.930 θ: angle track makes with the beam axis

Neutral particles, in particular K0
S, π

0, and η, also receive extra selections. K0
s candidates

are reconstructed using pairs of tracks that make a “vee”, where both come from approx-

imately the same vertex in the drift chambers. These tracks, which are not subjected to

particle identification, must also have a total energy that is within 30MeV of the K0
s mass,

0.4976GeV. π0 and η candidates are built from photon showers in the calorimeter. Among

the cuts, as seen in Table 2.2, is photon minimum energy, which must be at least 30MeV

and 50MeV for the π0 and η respectively. η′ are also built, but are not used in this analysis.

In order to build a D tag, the D Skim takes a list of these lighter reconstructed particles

and tries to make D candidates from a list of known decay modes. Candidates that survive

the D selections in Table 2.3 are included in the skim. Incuded D skim tracks, showers, and
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Table 2.2: π0 and η quality cuts used by D Skim.

Cut Description

E > 30(50) MeV Shower energy: minimum for π0(η)

mmeasured−mexpected

σ
< 3 Pull Mass, where σ is the resolution

0 ≤ m ≤ 1000 GeV Unconstrained Mass: to remove pathological
shower combinations

χ2 ≤ 100000 χ2: how well raw output fits to π0(η) originating
from the interaction point

σmax ≤ 1000σ Maximum deviation from π0(η) hypothesis

overall D candidates are also kinematically fit using the FitEvt [29] package; the fit results

are stored along with the candidate.

Table 2.3: D candidate cuts used by D Skim. Ebeam is one half the total energy of the e+e−

collision.

Cut Description

Mbc > 1.83 GeV Beam constrained mass; Mbc ≡
√

E2
beam − p2D

|∆E| < 0.1 GeV ∆E ≡ ED −Ebeam

2.5 Monte Carlo Simulations

Monte Carlo (MC) simulation [30] is an important application in the physics analysis

tool set. This toolkit allows us to generate simulated events to test analysis techniques as

well as determine efficiencies. Unlike actual data, simulated MC decays can be determined

from the initial e+e− collision through to the final detected daughters.

MC simulation begins with the EvtGen program. Beginning with e+e− → γ∗, EvtGen

uses either the master file, called DECAY.DEC, or a user created file to simulate a random decay

to the final daughters. DECAY.DEC contains the branching fractions and masses of every decay

at CLEO energies known to the collaboration. These decay chains are processed through



30

cleog, a Geant4–based1 software package that simulates how the detector behaves including

random detector noise. What emerges from cleog are showers and other detector hits that

can be run through the same pass2, etc. that are used for actual data. We emphasize MC

must be treated carefully; EvtGen does not accurately represent every fine nuance of the

Standard Model, let alone nature. Additionally, cleog is not a perfect model of the detector.

Taken together they are, however, good tools that are often used to determine how often

fake data seeps into signal.

There are two types of pre-generated MC. “generic MC” is simulated to only include

DD̄ events. This is also D skimmed, so users can readily use D tags from MC and data.

The other variety is “continuum MC”, which models the non-DD̄ decays that are present in

data, but not in generic. Each dataset has set of DD̄, continuum, and the other varieties,

each with several luminosities. The MC is generated with the specific detector conditions

recorded the given dataset. For analyses that require a subset of decay channels, a user can

create his or her own decay.dec, and specify what decays are modeled. This type is “signal

MC”.

2.6 Software

The CLEO collaboration has developed mature software tools that allow members to

bootstrap an analysis quickly. In particuler, the mkproc tool in conjuntion with 14 optional

modifiers builds a fully functional C++ analysis package, a “processor”, capable of tasks

from modified particle reconstrution to D Skim with full DD̄ pair identification (so-called

“double tags”).

Processors are run in the suez framework, so named to complement the Caesar/Cleopatra

naming scheme. Using scripts written in the TCL scripting language, suez handles any

shared libraries, data/MC, and preprocessing tasks required for a given analysis. Small

analysis tasks can be run on CLEO workstations. Large tasks, including large MC generation,

can be handed off to the server farm using the Grid Engine queuing system.

1http://http://geant4.cern.ch/
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2.7 Notable Results

As of 2014, the CLEO collaboration has published over 500 articles, many of great impor-

tance in high energy physics. Besides its inaugural bottom quarkonia studies [31] [32], CLEO

has greatly contributed to the understanding of other quark/anitquark bound states[33] [34].

Measurements of charmless Bmeson decays are sensitive to the Cabibbo-Kobayashi-Maskawa

(CKM) matrix element |Vub|, and CLEO has discovered many forms of these decays [35].

CLEO has also produced one of the most comprehensive studies of the hadronic branching

fractions of D mesons [36] [37].
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CHAPTER 3: EXPERIMENTAL TECHNIQUE

3.1 Formalism

The matrix element |M|2 contains all of the resonance dynamics; with no resonances the

events would uniformly populate the Dalitz plot subject to kinematic limits. In general the

matrix element Mr for D0 → rc, r → ab, as seen in Fig. 3.1, takes the form

Mr =
∑

λ

< ab|rλ > Tr(mab) < crλ|D0 > (3.1)

where the sum is taken over the λ helicity states of r and Tr(mab) is the dynamical function

describing the decay of r. Generally the matrix element depends on the total angular mo-

mentum of parent, the orbital angular momentum between r and c, the orbital momentum

between a and b, and the momenta of c and either a or b in the r rest frame. A more complete

overview of the formalism can be found in the Dalitz Formalism note in the PDG [8].

The dynamics function Tr(mab) derives from the S-Matrix formalism. An initial state i

couples to a final state f by Sfi =< f |S|i >, where S is the unitary scattering operator that

satisfies S†S = SS† = I. The Lorentz invariant transition T̂ is derived by separating the

probability that the final state f is not equal to the intial state i

A

B

C

D0

FD FR
AB Resonance

*

3111100-009

Figure 3.1: A diagram depicting a D0 resonantly decaying to the ABC final state.
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S = I + 2iT = I + 2iρ1/2T̂ ρ1/2 (3.2)

where ρ is the diagonal phase space matrix, ρii = 2qi/m, and qi is the momentum of a in

the r rest frame for the decay channel i. For the single channel S-wave, S = e2iδ satisfies

unitarity and T̂ is

T̂ =
1

ρ
eiδ sin δ (3.3)

We can use this single channel as a model of non-resonant decays.

There are three common formulations of the dynamical function: the Breit-Wigner, the

Flatté and the K-Matrix formulations. In practice we utilize the first two; the K-matrix

formulation is described elsewhere [38]. For a resonance r decaying into two spin-0 daughters

a and b, the Breit-Wigner is

Tr(mab) =
1

m2
r −m2

ab − imrΓab

(3.4)

The “mass-dependent width” Γab depends on the invariant mass of ab (mab), the momentum

pab of either daughter in the ab rest frame, the momentum pr of either daughter in the r rest

frame, the spin J of the resonance, and the width Γr. This is expressed as

Γab = Γr

(

pab
pr

)2J+1(
mr

mab

)

F 2
r (3.5)

Fr is a Blatt-Weisskopf penetration factor, also described in the Dalitz formalism note [8],

which attempts to model the underlying quark structure. The factors as seen in Table 3.1,

which separately model both the resonance and D0, are normalized to 1 when mab = mr.

To be consistent with other experiments [39], we have chosen the radius, R, to be 5GeV−1

and 1.5GeV−1 for the D0 and resonances, respectively.

The Flatté formulation is useful when two resonance channels open close to one another.



34

Table 3.1: Blatt-Weisskopf Penetration Factors

Spin Form Factor F

0 1

1

√
1+R2p2r√
1+R2p2

ab

2

√
(R2p2r−3)2+9R2p2r√
(R2p2

ab
−3)2+9R2p2

ab

It takes the form

T̂ (mab) =
1

m2
r −m2

ab − i(ρ1g21 + ρ2g22)
(3.6)

where g21 + g22 = mrΓr. The coupling constants g1 and g2 couple a resonance to the two

channels. For a0(980), g1 = gπη and g2 = gKK̄. The phase space terms are ρ1 = ρπη and

ρ2 = ρKK̄ where

ρab =

√

√

√

√

[

1−
(

ma −mb

mab

)2
][

1 +

(

ma −mb

mab

)2
]

(3.7)

For f0(980), the coupling constants are g1 = gππ, and g2 = gKK̄ ; the phase space terms are

ρ1 = ρππ and ρ2 = ρKK̄ . Since the mK± 6= mK0 , the charged and neutral kaon channels are

taken to have the same coupling constant but different phase space factors. Therefore

ρKK̄ =
1

2





√

1−
(

2mK±

mKK̄

)2

+

√

1−
(

2mK0

mKK̄

)2


 (3.8)

The simplest matrix element is a scalar resonance; it has the form

A0(abc|r) = FDTr(mab)Fr (3.9)

where FD and Fr are the same barrier penetration factors for the production of rc and ab
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found in Table 3.1. The matrix element for a vector resonance is

A1(abc|r) = FD(pD0 + pc)µTr(mab)
∑

λ

εµ∗λ ε
ν
λ(pa − pb)νFr (3.10)

where p is momentum and the sum is over the spin states of r. This sum evaluates to

∑

λ

εµ∗λ ε
ν
λ = −gµν + pµabp

ν
ab

m2
ab

(3.11)

We relax the transversality requirement on the vector resonance in Eq. 3.11 and divide by

m2
r instead of m2

ab. This substitution will result in a small spin zero component when the

resonance is off mass-shell. This behavior occurs with the W boson; it is also expected in

the resonance behavior herein.

With this substitution, we insert the spin sum into Equation 3.10 and sum over repeated

indices. The result gives the Lorentz invariant matrix element for a vector particle as a

function of position on the Dalitz plot:

A1(abc|r) = FDFrTr(mab)

(

m2
ac −m2

bc +
(m2

D −m2
c)(m

2
b −m2

a)

m2
r

)

(3.12)

As a matter of completeness, we will also look at the case of a tensor (spin 2) particle.

We begin with

A2(abc|r) = FD(pD0 + pc)µ(pD0 + pc)νTr(mab)
∑

λ

εµν∗λ εαβλ (pa − pb)α(pa − pb)βFr (3.13)

The spin sum has been calculated [8] to be

∑

λ

εµν∗λ εαβλ =
1

2
(T µαT νβ + T µβT να)− 1

3
T µνT αβ (3.14)

where
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T µν = −gµν + pµpν

m2
(3.15)

Inserting this expression into Eq. 3.13 and performing the sum, the final element is

A2(abc|r) = FDTr(mab)Fr

[

(

m2
bc −m2

ac +
(m2

D −m2
c)(m

2
a −m2

b)

m2
r

)2

−1

3

(

m2
ab − 2m2

b − 2m2
c +

(m2
D −m2

c)
2

m2
r

)(

m2
ab − 2m2

a − 2m2
b +

(m2
a −m2

b)
2

m2
r

)]

(3.16)

At this point we must state our phase conventions. Examining Eq. 3.12 we see that if

we switch the labels a and b, we will generate an overall minus sign, changing the phase

by 180◦. To be consistent with previous results, we choose the phase convention the E687

Collaboration [39] uses.

We are now in a position to discuss the total dynamics matrix. For a D0 Dalitz decay

with a nonresonant (nr) component and n resonances, we express the total dynamics matrix

as

M(D0 → abc) = anre
iφnr +

∑

n

ane
iφnAsn (3.17)

where an and φn are the amplitude and relative phase of the n’th component respectively.

The normalization is arbitrary, so is generally chosen to be

∫

|M|2dDP = 1 (3.18)

where dDP denotes an integral over the Dalitz Plot. In practice this means we are only sen-

sitive to relative phases and amplitudes, therefore we are free to fix one phase and amplitude

in Eq. 3.17. The standard prescription is to fix the amplitude and phase of the largest mode

to one and zero respectively.

The choice of normalization, amplitude formulation, and phase convention are often
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inconsistent between experimental results. It is therefore more common for fit fractions to

be reported as well, since this allows a more meaningful comparison. The fit fraction is

defined as the integral over the Dalitz plot of one resonance, divided by the integral of the

coherent sum of all of the components:

Fit Fractionr ≡
∫

|areiφrA(abc|r)|2dDP
∫

|ΣjajeiφjA(abc|j)|2dDP (3.19)

The sum of fit fractions for all components will generally not equal one due to interference.

3.2 The Dalitz Fitter

I use a maximum likelihood Dalitz plot fitter developed by Mikhail Dubrovin [40]. Written

in C++, the fitter uses both standard libraries as well as Root1 libraries. Graphical output

is also handled in Root. This software is robust; among its features, it can fit multiple

simultaneous Dalitz plots, choose from several minimization methods including unbinned

LogL, binned LogL and χ2, as well as calculate fit fractions with statistical errors. It can

also perform separate Efficiency and Background fitting using samples of my choosing. It

uses MINUIT2 to perform the multi-parameter minimization.

For a single event i, the probability distribution function at the (m2
ab, m

2
bc) position on a

Dalitz Plot can be described by

Li = fi(m
2
ab, m

2
bc;α1, α2, . . . , αk)

where αk represent the k parameters that are to be determined. For N events on the plot,

the total likelihood is given by the product of Li,

L =
N
∏

i=1

Li =
N
∏

i=1

fi(m
2
ab, m

2
bc;α1, α2, . . . , αk) (3.20)

The maximum lilkelihood is the set of parameters α1, . . . , αk that maximize L over the Dalitz

1http://root.cern.ch
2http://seal.web.cern.ch/seal/snapshot/work-packages/mathlibs/minuit/
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plot. In practice, we can maximize L by minimizing the negative log of the function

F = −2 logL = −2

N
∑

i=1

logLi (3.21)

For N events on the Dalitz plot described by |M|2, with efficiency ε(m2
ab, m

2
bc) and background

B(m2
ab, m

2
bc), the minimized fuction is [12]

F = −2

N
∑

i=1

log

(

fε(m2
ab, m

2
bc)|M|2

Nsignal
+

(1− f)B(m2
ab, m

2
bc)

Nbackground

)

i

+ χ2
penalty (3.22)

where f is the signal fraction, and Nsignal, Nbackground are

Nsignal =

∫

ε(m2
ab, m

2
bc)|M|2dDP (3.23)

and

Nbackground =

∫

B(m2
ab, m

2
bc)dDP (3.24)

respectively. I will discuss the details of the two separate penalty terms in the next chapter.

The fit parameters αk correspond to phases and amplitudes for the matrix components,

signal fraction, efficiency and background coefficients, as well as coefficients of any back-

ground resonances. The coupling terms, decay radii, and particle masses are all fixed, but

can be floated as needed.

3.3 Event Selection

Event selection is mostly common to both decay channels. I process over the D Skim of

each relevant dataset, choosing the decay channel in question. Since I am not performing

a double tag reconstruction, charge conjugation should be assumed throughout. In events

with fewer than ten candidates, I count the number of candidates and select for the smallest

∆E to reduce combinatoric background. Events with ten or more candidates are rejected.

As seen in Figure 3.2, roughly 75% of K0
sK

+K− events contain only one candidate. In the
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Figure 3.2: A plot of the number of D0 → K0
sK

+K− candidates per event, counted during
best candidate selection.

K0
sπ

0η channel, Figure 3.3 roughly 75% of events contain either one or two candidates, most

of which are one candidate events. In order to better select events on K0
sπ

0η, I also cut on

the probability of a good D0 fit (Figure 3.4), where 1−P (χ2, 4) is defined as the probability

that χ2, calculated for the overall D0 hypothesis by the D skim, exceedes the value χ2 by

chance, and 4 is the number of degrees of freedom.

I use beam-constrained mass (mbc) and ∆E as my primary selection variables, since the

beam energy is accurately known and the DD̄ pair produced from ψ(3770) are created nearly

at rest. Therefore mbc and ∆E serve as convenient proxies for invariant mass and momentum

respectively. I create a 2D histogram of these variables (Figures 3.5 and 3.6) to discern any
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clear signal regions. When found, I fit each variable using the root package roofit3, which

has several physics-inspired fit functions. The region containing a peak is fit to either a

single or double Gaussian signal function convolved with a background function that will

best describe the non-signal portion of the histogram. I choose candidates that lie within

±3σ of the K0
sK

+K− signal mean of both mbc (Figure 3.7) and ∆E (Figure 3.8) fits. For

K0
sπ

0η candidates, I select within ±2σ of mbc (Figure 3.9) and ∆E (Figure 3.10) fits. The

background samples chosen are different and will be covered in their respective sections.

3http://roofit.sourceforge.net/
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Figure 3.9: Beam–Constrained Mass Fit of D0 → K0
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0η under ∆E Cut
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3.4 Efficiency

Candidate particles up to and including the D can be mis–reconstructed despite our best

efforts. This means our observation will not generally be uniform over the Dalitz plot. In

order to characterize my ability to “see” events on the plot, I generate 50,000 signal Monte

Carlo events in each channel according to the previously discussed method and fit them to

the Efficiency. On the Dalitz plot, the efficiency is described as a 2D, 3rd degree polynomial

ε(x, y) = 1+Exx+Eyy+Exyxy+Exxx
2+Eyyy

2+Exxyx
2y+Exyyxy

2+Eyyyy
3+Exxxx

3 (3.25)

where En are coefficients fit to a suitable Monte Carlo sample. I decay D0 → K0
sK

+K−

without any intermediate resonances, and similarly D0 → K0
sπ

0η. The resultant candidate

signal MC events are filtered through the same selections as signal events, including ∆E

and mbc ranges set by the signal fit to variables. The efficiency Dalitz plots are shown in

Fig. 3.13 and Fig. 3.14. Table 3.2 contains Efficiency coefficients for both channels.

Table 3.2: Efficiency Fit Results forD0 → K0
sK

+K− (x = m2(K++K−), y = m2(K0
s+K

+))
and D0 → K0

sπ
0η (x = m2(π0 + η), y = m2(K0

s + π0)).

Efficiency Coefficient D0 → K0
sK

+K− D0 → K0
sπ

0η

Ex −0.1468± 0.1272 0.2880± 0.1070

Ey −0.1530± 0.1182 0.5025± 0.1223

Exy −2.5060± 0.3033 −0.3697± 0.1819

Exx −0.7467± 0.2291 0.3167± 0.1992

Eyy −2.4399± 0.2010 0.4350± 0.1560

Exxy 21.5383± 2.3304 −1.1803± 0.5101

Exyy 20.9594± 2.2701 −0.7567± 0.5525

Eyyy 2.0926± 1.1163 −0.4858± 0.4303

Exxx 7.5073± 1.2527 −0.9533± 0.3618
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3.5 Background Selection

As with the efficiency, the basic model for the background on the Dalitz plot is also a

2D, 3rd degree polynomial

B(x, y) = 1+Bxx+Byy+Bxyxy+Bxxx
2+Byyy

2+Bxxyx
2y+Bxyyxy

2+Byyyy
3+Bxxxx

3 (3.26)

where Bn are fit coefficients. Though the shapes of the background sideband selections seen

in Figs. 3.5 and 3.6 are different, all are 7σ away from the signal mean in order to minimize

signal pollution. The polynomial in Eq. 3.26 attempts to capture the shape of the background

events underlying the signal region, using sideband events. Absent some structure indicative

of resonances, this is all the description needed for background. If, however, we find a

peak in the sidebands, we have one or more resonances present and must model them using

generic Monte Carlo. Once we determine what resonances appear in background, we can

add (const. ∗ |a|2) for each to Eq. 3.26.

3.5.1 D0 → K0
S
π0η

Examining Fig. 3.15, background events seem to be piling up in the low side ofm2(π0+η).

Looking at the projections in Figs. 3.16, 3.17, and 3.18, we fail to find a clear signal. The

resultant background fit coefficients are shown in Table 3.3.

3.5.2 D0 → K0
S
K+K−

The background Dalitz plot in Fig. 3.19 shows a much more prominent peak. A back-

ground resonance is obvious in the K+ + K− projection as seen in Fig. 3.20. Using the

generic Monte Carlo that corresponds to datasets 44 and 45, I examine the K+ +K− pro-

jection and determine the candidate parents, Fig 3.21. Below 1.2GeV2 in K++K−, φ(1020)

is the largest charged K parent that will appear in the given projection. The location of the

background peak in both signal and generic MC conforms to this.

Besides φ(1020), we also attempt the charged and uncharged versions of a0(1450) due to

a numbering bug in Monte Carlo that labels a0(980) with the numerical label for a0(1450).
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Figure 3.15: Dalitz plot of D0 → K0
sπ

0η in Background region.

Table 3.3: Background Fit Results for D0 → K0
sπ

0η (x = m2(π0 + η), y = m2(K0
s + π0)).

Background Coefficient Value ± Statistical Error

Bx −0.3362± 0.1045

By −0.0446± 0.1253

Bxy 1.1340± 0.2333

Bxx 3.8821± 0.3033

Byy 2.5816± 0.2114

Bxxy −0.9074± 0.5779

Bxyy −3.0517± 0.6321

Byyy 0.0039± 0.4537

Bxxx −3.5671± 0.4199
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+K− in Background region.

Despite this, we find a significant background contribution from a0(1450)
0. Fits contain-

ing a0(1450)
± failed to converge and thus these background resonances are omitted. Both

φ(1020) and a0(1450)
0 are modeled as Breit-Wigners. The final values are shown in Table 3.4.



57

BkgM23
Entries  13271

Mean    1.402

RMS    0.2413

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.90

50

100

150

200

250

300

350

400

BkgM23
Entries  13271

Mean    1.402

RMS    0.2413

) under Background Selection+ + K-(K2Mass

Figure 3.20: K+K− Projection of D0 → K0
sK

+K− in Background region.



58

1 1.2 1.4 1.6 1.81 1.2 1.4 1.6 1.80

200

400

600

800

) under Background Selection+ + K-(K2Generic MC Mass

Bad MC  
0 D/

0D +/-D
+/-

(892)0
*K

 
0(892)0

* K/
0(892)0

*K Everything Else

+/-
(980)0

a
+/-

(1270)
1

K

(1430)
0
* K/

0
(1430)

0

*K (1270)
1

KBad MC  
0 D/

0D +/-D
+/-

(892)0
*K

 
0(892)0

* K/
0(892)0

*K Everything Else

+/-
(980)0

a
+/-

(1270)
1

K

(1430)
0
* K/

0
(1430)

0

*K (1270)
1

K

1

10

210

310

410

2) < 1.2GeV- + K+(K2 Parents under Background Selection, Ms
0K

 
0 D/0D

 
0(892)0

* K/0
(892)0

*K (1020)
φ

+/-
(892)0
*K Everything Else

+/-
(1270)

1
K (980)0

f Bad MC 0(980)0
a

(1430)
0
* K/

0
(1430)

0

*K

 K/
0

(1270)
1

K (980)0
a

 
0 D/0D

 
0(892)0

* K/0
(892)0

*K (1020)
φ

+/-
(892)0
*K Everything Else

+/-
(1270)

1
K (980)0

f Bad MC 0(980)0
a

(1430)
0
* K/

0
(1430)

0

*K

 K/
0

(1270)
1

K (980)0
a

10

210

310

2) < 1.2GeV- + K+(K2 Parents under Background Selection, M-K

 
0 D/0D

 
0(892)0

* K/0
(892)0

*K (1020)
φ

+/-
(892)0
*K Everything Else

+/-
(1270)

1
K (980)0

f Bad MC 0(980)0
a

(1270)
1

 K/
0

(1270)
1

K

 K/
0

(1430)
0

*K (980)0
a

 
0 D/0D

 
0(892)0

* K/0
(892)0

*K (1020)
φ

+/-
(892)0
*K Everything Else

+/-
(1270)

1
K (980)0

f Bad MC 0(980)0
a

(1270)
1

 K/
0

(1270)
1

K

 K/
0

(1430)
0

*K (980)0
a1

10

210

310

2) < 1.2GeV- + K+(K2 Parents under Background Selection, M+K

Figure 3.21: Generic Monte Carlo Figures of D0 → K0
sK

+K− in Background region. “Bad
MC” are reconstructed events that do not correspond to generated MC particles.
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Table 3.4: Background Fit Results for D0 → K0
sK

+K− (x = m2(K+ +K−), y = m2(K0
s +

K+)).

Background Coefficient Value ± Statistical Error

φ(1020) 0.0133± 0.0029

a0(1450)
0 195.5119± 38.3029

Bx −587.7579± 125.8467

By −0.3509± 33.3037

Bxy −803.8348± 168.3564

Bxx −402.7109± 106.0521

Byy −651.6636± 130.6239

Bxxy 6409.6281± 1573.2437

Bxyy 5046.2398± 1311.2251

Byyy −5.8627± 314.1654

Bxxx 113.0786± 382.2512
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CHAPTER 4: RESULTS

4.1 D0 → K0
sπ

0η Initial Dalitz Analysis

With the efficiency and background in place, I perform the Signal fit of K0
sπ

0η. I rely

on the previous results [14] to guide the choice of resonances that appear in the plot. We

include the following resonances in our model: K0
sa0(980), K

∗(892)η, κη, K∗(1430)0η, and

K∗(1430)0π0 . All but the a0(980) resonance are modeled as standard Breit-Wigners; the

a0(980) is modeled as a Flatté. We also attempt a non-resonant component, which we find

to be consistent with zero.

This fit, as seen from the X (π0η) projection in Fig. 4.1 appears complete. However,

an unmodeled peak at 0.6GeV2 in the Y (K0
sπ

0) projection, shown in Fig. 4.2, suggests an

additional resonance is needed. After several attempts, we are unable to find a suitable

resonance that is of the appropriate mass and final state. Following a suggestion from the

members of the CLEO Collaboration, we instead explore the possibility of a decay involving

a π0π+π−. The ω(782) is best candidate for this peak, having a large branching fraction to

π0π+π−, the correct mass for this peak, with the π+π− masquerading as a K0
s . As I discuss

in the Appendix, we do in fact observe the decay D0 → ωη in CLEO-c data.

4.2 Improved D0 → K0
sπ

0η Background

The ω(782) peak doesn’t appear in our background samples, thus I attempt a simul-

taneous signal and background fit. I model this misidentified ω(782)η contribution as a

Guassian contribution to the background with a size determined relative to the background

shape described above. That is, I fix the shape of the background contribution in ω(782)η to

the expected background from our simulation described above plus a single Guassian, with

amplitude 8.5 × 10−5 times the overall normalization of the background. I arrive at this

value after various starting values, choice of floating parameters, and parameter limits fail

to properly fit the ω(782)η peak. From the closest floating Gaussian result, I fix the peak at

several values until the background peak comports with signal statistics.
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4.3 D0 → K0
sπ

0η Dalitz Analysis

The complete Daltiz fit of D0 → K0
sπ

0η, including the ω(782) background, is shown in

Fig. 4.3. For more detail of the fit components, see Fig. 4.4. Table 4.1 summarizes the Signal

parameters. The previous CLEO result for this mode fixed the K0
sa0(980) contribution; I

instead fix κη to avoid an over–determined system when combining this a0(980) with the

a0(980) found on K0
sK

+K−. As we see in Fig. 4.5, we again have a good fit in the X

projection. As seen better in Fig. 4.6, we now have a reasonable grasp of the peak structure

in the Y projection.

Table 4.1: Dalitz Fit Results for D0 → K0
sπ

0η. Errors are statistical.

Parameter Amplitude Phase Fit Fraction

κη 1 0 0.323± 0.044

K0
sa0(980) 1.14± 0.13 −103.7± 8.4 1.255± 0.023

K∗
0 (1430)π

0 0.132± 0.070 111± 32 0.0066± 0.0050

K∗(892)η 0.231± 0.030 312.6± 9.3 0.231± 0.054

K∗
0(1430)η 1.12± 0.36 −156± 18 0.059± 0.018

Signal Fraction (f) 0.299± 0.020

4.4 D0 → K0
sK

+K− Dalitz Analysis

Along similar lines, I perform a Dalitz fit on the D0 → K0
sK

+K− channel. We model the

decay using the folowing channels: K0
sa0(980), K

0
sφ(1020), K

0
sf0(1370), a0(980)±K∓, and

we test a non-resonant K0
sK

+K−. The decay channel K0
sf0(980) should appear on this plot,

but including it keeps the fit from converging, thus we exclude it. The previous BABAR

work[15] in this channel include all of the resonances contained herein, but does not include

a non-resonant component. Additionally, we fix the φ(1020) on the Dalitz plot to avoid an

over-determined system in the combined fit.

While Figs. 4.8 and 4.9 are good convergent fits containing a non-resonant contribution,

we also recieive a convergent fit without the non-resonance. Looking at Table 4.2, we see that

the fit wihout a non-resonant component broadly agrees with BABAR. When we compare
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Figure 4.3: The main D0 → K0
sπ

0η Dalitz Plots. Top row from left: Plot statistics, To-
tal PDF, Efficiency. Bottom Row from left: X, Y, and Z Projections. Total, signal, and
background are represented by blue, green, and red lines respectively.
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Figure 4.4: Detailed D0 → K0
sπ

0η Dalitz Plot PDF Components. Top Row: 3D View.
Bottom Row: 2D View. From left: Signal, Efficiency, Background.
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0η Dalitz Plot.
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Figure 4.8: The main D0 → K0
sK

+K− Dalitz Plots. Top row from left: Plot statistics,
Total PDF, Efficiency. Bottom Row from left: X, Y, and Z Projections. Total, signal, and
background are represented by blue, green, and red lines respectively. *(error calculated
manually)

the fit with and without the non-resonance, as seen in Figs. 4.10 through 4.12, we find the

non-resonant model becomes the dominant contribution, interfering with the resonsnaces and

contradicting the good result from BABAR. The resultant values are shown in Table 4.3.

We do not believe the fit containing the non-resonance it real, thus we use the fit without it.

Table 4.2: Dalitz Fit Results for D0 → K0
sK

+K− . Errors are statistical.

Parameter Amplitude Phase Fit Fraction

K0
sa0(980)

0 4.97± 0.20 280 1.176± 0.039

K0
sφ(1020) 1 0 0.556± 0.024

a0(980)
+K− 1.78± 0.17 72.2± 5.4 0.183± 0.019

a0(980)
−K+ 1.39± 0.15 280.1± 9.8 0.112± 0.026

K0
sf0(1370) 4.40± 0.36 201.3± 6.2 0.442± 0.037
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Figure 4.9: Detailed D0 → K0
sK

+K− Dalitz Plot PDF Components. Top Row: 3D View.
Bottom Row: 2D View. From left: Signal, Efficiency, Background.
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Figure 4.10: Detailed X-projection of D0 → K0
sK

+K− Dalitz Plot. (a) X-projection with
and (b) without the non-resonant model.
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Figure 4.11: Detailed Y-projection of D0 → K0
sK

+K− Dalitz Plot. (a) X-projection with
and (b) without the non-resonant model.
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Figure 4.12: Detailed Z-projection of D0 → K0
sK

+K− Dalitz Plot. (a) X-projection with
and (b) without the non-resonant model.
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Table 4.3: Dalitz Fit Results for D0 → K0
sK

+K− with the Non-resonant Contribution.
Errors are statistical.

Parameter Amplitude Phase Fit Fraction

K0
sa0(980)

0 4.78± 0.24 247 1.031± 0.020

K0
sK

+K− 27.02± 0.92 230.0± 2.5 8.32± 0.11*

K0
sφ(1020) 1 0 0.526± 0.034

a0(980)
+K− 3.18± 0.18 304.4± 4.0 0.555± 0.045

a0(980)
−K+ 3.93± 0.19 285.0± 2.8 0.85± 0.14

K0
sf0(1370) 3.79± 0.30 339.6± 5.7 0.310± 0.030

4.5 Techniques of Joint Dalitz Analysis of D0 → K0
sπ

0η and D0 →

K0
sK

+K−

Equations 1.8 and 1.9 are two methods that I suggest to combine the information from

one Dalitz plot analysis to constrain the results in another Dalitz analysis, specifically when

there is evidence of strong interference. Equation 1.8 assumes that the amplitudes to a

common resonance are the same in the two Dalitz plots and thus I call a methodology to

implement Equation 1.8 the Amplitude Penalty Dalitz Analysis. Equation 1.9 assumes that

the fit fraction divided by decay mode branching fraction to a common resonance is the same

in the two Dalitz plots and I call this methodology the Fit Fraction Penalty Dalitz Analysis.

In order to create a penalty term, we form a psuedo-χ2

χ2 =





Pi − Pj
√

σ2
i + σ2

j





2

(4.1)

where Pi/j are the fit fraction or amplitude ratios in Eqns. 1.8 and 1.9. Our σ values are

relative uncertainties of the input branching fractions. We use the PDG average branching

fraction for BF(a0(980) → ηπ), expressed as Γ(ηπ)× Γ(γγ)/Γ(Total) = 0.21 + 0.08− 0.04.

It should be reiterated that we equate the amplitude or fit fraction of a resonance common

to both decay channels, and use this as the basis of our psuedo-χ2 penalty. Thus the
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Figure 4.13: The main D0 → K0
sK

+K− Dalitz Plots. Amplitude Penalty. Top row from
left: Plot statistics, Total PDF, Efficiency. Bottom Row from left: X, Y, and Z Projections.
Total, signal, and background are represented by blue, green, and red lines respectively.

K0
sa0(980) resonance on D0 → K0

sπ
0η is used to constrain the same resonant channel on

D0 → K0
sK

+K−. We fix the entire K0
sπ

0η fit, which gives us the “true” a0(980) values.

The psuedo-χ2 forces the a0(980) → K+K− in D0 → K0
sK

+K− to comport with this “true”

value.

4.6 Joint Dalitz Analysis of D0 → K0
sK

+K− and D0 → K0
sπ

0η with

Amplitude Penalty

The result of the Dalitz fit using the amplitude penalty is shown Fig. 4.13, with the details

of the fit components shown in Fig. 4.14. Figs.4.15-4.17 show the x, y, and z projections along

with the individual resonant components. We don’t include the non-resonant component.

With the penalty term in place we are able to include both K0
sf0(980) and K

0
sa0(980). As

we see in Table 4.4, both resonances have large fit fractions, but with relative phases that

are nearly 180◦ apart.
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Figure 4.14: Detailed D0 → K0
sK

+K− Dalitz Plot PDF Components. Amplitude Penalty.
Top Row: 3D View. Bottom Row: 2D View. From left: Signal, Efficiency, Background.

Table 4.4: Dalitz Fit Results for D0 → K0
sK

+K− with the Amplitude “Penalty” Term.
Errors are statistical.

Parameter Amplitude Phase Fit Fraction

K0
sa0(980)

0 16.8± 1.0 271.6± 3.5 17.9± 4.6

K0
sφ(1020) 1 0 0.54± 0.13

K0
sf0(980) 23.7± 1.3 108.3± 3.5 26.3± 5.1

a0(980)
+K− 1.84± 0.14 335.1± 4.9 0.251± 0.076

a0(980)
−K+ 2.06± 0.14 296.3± 4.3 0.317± 0.090

K0
sf0(1370) 1.98± 0.40 84± 13 0.087± 0.014
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Figure 4.15: Detailed X-projection of D0 → K0
sK

+K− Dalitz Plots. Amplitude Penalty.
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Figure 4.16: Detailed Y-projection of D0 → K0
sK

+K− Dalitz Plots. Amplitude Penalty.
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Figure 4.17: Detailed Z-projection of D0 → K0
sK

+K− Dalitz Plots. Amplitude Penalty.
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Figure 4.18: The main D0 → K0
sK

+K− Dalitz Plot. Fit Fraction Penalty. Top row from
left: Plot statistics, Total PDF, Efficiency. Bottom Row from left: X, Y, and Z Projections.
Total, signal, and background are represented by blue, green, and red lines respectively.

4.7 Joint Dalitz Analysis of D0 → K0
sK

+K− and D0 → K0
sπ

0η with

Fit Fraction Penalty

We replace the Amplitude penalty term with a Fit Fraction version; the resultant main

plots are shown in Fig. 4.18. The detail plots are shown in Fig. 4.19. The projection plots

in Figs. 4.20–4.22 also show large K0
sa0(980)

0 and K0
sf0(980) components, with phase angles

in Table 4.5 comparable to those of the Amplitude penalty.

When we compare the Amplitude and Fit Fraction methods, we find important sim-

ilarities and potentially important differences. The final fit fractions are identical within

uncertainty, yet we have almost mirror image fits in the Y– and Z–projections. The Am-

plitude projections underrepresent the higher mass lobe of the φ(1020) in the Y–projection

while simultaneously underreporting the low mass lobe in Z. The Fit Fraction method does

the opposite in Y and Z.
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Figure 4.19: Detailed D0 → K0
sK

+K− Dalitz Plot PDF Components. Fit Fraction Penalty.
Top Row: 3D View. Bottom Row: 2D View. From left: Signal, Efficiency, Background.

Table 4.5: Dalitz Fit Results for D0 → K0
sK

+K− with the Fit Fraction “Penalty” Term.
Errors are statistical.

Parameter Amplitude Phase Fit Fraction

K0
sa0(980)

0 13.05± 0.87 80.5± 6.6 11.1± 3.4

K0
sφ(1020) 1 0 0.55± 0.16

K0
sf0(980) 18.6± 1.1 280.2± 6.7 16.6± 4.5

a0(980)
+K− 1.71± 0.16 112.2± 6.5 0.223± 0.071

a0(980)
−K+ 1.46± 0.17 153.6± 5.1 0.163± 0.056

K0
sf0(1370) 1.77± 0.44 239± 17 0.071± 0.022
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Figure 4.20: Detailed X-projection of D0 → K0
sK

+K− Dalitz Plot. Fit Fraction Penalty.
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Figure 4.21: Detailed Y-projection of D0 → K0
sK

+K− Dalitz Plot. Fit Fraction Penalty.
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Figure 4.22: Detailed Z-projection of D0 → K0
sK

+K− Dalitz Plot. Fit Fraction Penalty.
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CHAPTER 5: CONCLUSIONS

5.1 Best Fit Method and Systematic Uncertainties

From the data in the preceding chapter, we find two competing pseudo–χ2 methods that

give similar results. Using the a0(980) found in the Dalitz fit of D0 → K0
sπ

0η to constrain

that found in D0 → K0
sK

+K−, we find a significant f0(980) component not found in the

“non-penalty” fit. Whether we construct our penalty from constraining Fit Fractions of

amplitudes, we find the f0(980) and a0(980) are dominant in the K0
sK

+K− Dalitz decay.

Both show these two resonances with near complete destructive interference, and the presence

of a small, wide component also generally agrees with the BABAR result.

So which is superior? Though the Amplitude penalty method requires less computing

power and has smaller statistical uncertainty, we find the Fit Fraction method the best

overall. Its errors better comport with the statistics of the data sample. Additionally, when

we compare Figs. 4.13 and 4.18, the Fit Fraction result more closely captures the shape of

the data, particularly in the Y projection. If we compare fit fractions, we also see that the

FF method has smaller values for the interferring f0(980) and a0(980) fractions.

Accepting the Fit Fraction penalty results as central values, we relegate the Amplitude

method to one of several systematic errors. All of our systematics arise from the assumptions

“cooked” into the final values; the best case scenario will find systematic errors that are small

and symmetric about the respective central values.

For each systematic error, we change a property of the central method and re-fit. Table 5.1

contains the central result along with the systematic fits modifying fixed widths and other

properties. Each systematic value shown is the difference (Central Result - Systematic

Result). For f0(1370) and φ(1020), we adjust the width ±0.2GeV and ±0.8MeV respectively.

In lieu of a width adjustment, we adjust the ratio rKK/ηπ and the gηπ Flatté coupling of the

a0 terms ±0.14 and ±0.05GeV1/2 respectively. This assumes the coupling constants for all of

the a0 charge states are identical. Similarly, the f0(980) coupling constants are both adjusted
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by ±0.05GeV1/2.

Table 5.2 again contains the central value, along with “protocol” systematics followed

by the total systematic errors. As discussed before, having chosen the Fit Fraction penalty

as the central value, we relegate the Amplitude method result to a systematic. In the Fit

Fraction penalty we simultaneously fit ε, |M|2, and B of the dynamics matrix. Thus the

final two systematics test the efficacy of fixing the Efficiency or Background.



84

Table 5.1: Dalitz Fit Results for D0 → K0
sK

+K− with Statistical and Systematic Contributions: f0(1370) γ ±0.2GeV, φ γ
±0.8MeV, a0 rKK/ηπ(a0) ± 0.14, gηπ(a0) ± 0.05GeV1/2, gππ(f0) ± 0.05GeV1/2, gKK(f0) ± 0.05GeV1/2. Each systematic value
shown is the difference (Systematic Result - Central Result).

Parameter Fit Frac. Stat. f0(1370) γ φ γ rKK/ηπ(a0) gηπ(a0) gππ(f0) gKK(f0)

aa0(980)0 13.05 ±0.87 7.1
0

6.2
0

4.8
0

22
−3.5

27
−0.41

5.4
0

ϕa0(980)0 80.5 ±6.6 8.3
−0.0052

5.8
0

18
−5.6

5.0
−6.3

8.4
0

17
−4.4

af0(980) 18.6 ±1.1 10
0

8.7
0

6.8
0

20
−0.73

27
0

9.7
0

ϕf0(980) 280.2 ±6.7 3.0
−3.1

0.78
−0.32

14
−170

9.1
−18

4.7
−5.7

12
−9.0

aa0(980)+ 1.71 ±0.16 0.54
0

0.63
0

0.47
0

0.94
0

0.53
0

0.54
0

ϕa0(980)+ 112.2 ±6.5 5.3
−8.0

1.5
−5.9

2.2
−0.77

7.8
−8.8

0
−0.63

0
−1.7

aa0(980)− 1.46 ±0.17 0.34
0

0.56
0

0.38
0

0.88
−0.057

0.37
0

0.40
0

ϕa0(980)− 153.6 ±5.1 0
−21

0
−18

0
−15

0
−21

0
−18

0
−16

af0(1370) 1.77 ±0.44 3.2
−1.2

0.58
0

1.1
−0.34

1.3
−0.25

0.97
−0.028

1.1
0

ϕf0(1370) 239 ±17 35
0

14
0

25
0

68
0

25
0

19
0

FFa0(980)0 11.1 ±3.4 15
0

16
0

7.2
0

51
−3.7

90
−1.0

11
0

FFf0(980) 16.6 ±4.5 22
0

22
0

13
0

53
−1.8

100
0

18
0

FFφ(1020) 0.55 ±0.16 0
−0.015

0.011
−0.044

0
−0.018

0
−0.017

0
−0.018

0
−0.017

FFa0(980)+ 0.223 ±0.071 0.15
0

0.17
0

0.15
0

0.21
0

0.15
0

0.15
0

FFa0(980)− 0.163 ±0.056 0.080
0

0.083
0

0.097
0

0.17
0

0.085
0

0.094
0

FFf0(1370) 0.071 ±0.022 0.19
−0.044

0.077
0

0.11
−0.025

0.13
−0.019

0.093
−0.0033

0.10
0

Signal Frac. (f) 0.798 ±0.017 0
−0.013

0
−0.012

0
−0.025

0
−0.025

0
−0.017

0
−0.016
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Table 5.2: Dalitz Fit Results for D0 → K0
sK

+K− with Statistical and Systematic Contribu-
tions: Amplitude Method, Fixed Efficiency, Fixed Background, and Total Systematic Error.
The Total Systematic Error includes the values from Table 5.1.

Parameter Fit Frac. Stat. Amp. Eff. Bkgd. Tot. Sys.

aa0(980)0 13.05 ±0.87 ±4.2 1× 10−4 0.0013 +37
−5.5

ϕa0(980)0 80.5 ±6.6 ±190 2× 10−4 0.0008 +190
−190

af0(980) 18.6 ±1.1 ±5.9 1× 10−4 0.0019 +39
−5.9

ϕf0(980) 280.2 ±6.7 ±170 1× 10−3 54 +180
−180

aa0(980)+ 1.71 ±0.16 ±0.13 0 0.0013 +1.5
−0.13

ϕa0(980)+ 112.2 ±6.5 ±220 1× 10−4 0.072 +220
−220

aa0(980)− 1.46 ±0.17 ±0.62 1× 10−3 0.0018 +1.4
−0.62

ϕa0(980)− 153.6 ±5.1 ±140 3.8× 10−3 0.020 +140
−150

af0(1370) 1.77 ±0.44 ±0.30 0 0.0029 +3.9
−1.3

ϕf0(1370) 239 ±17 ±160 4.9× 10−3 0.060 +180
−160

FFa0(980)0 11.1 ±3.4 ±7.5 1.2× 10−4 0.0055 +110
−8.4

FFf0(980) 16.6 ±4.5 ±11 1× 10−5 0.0083 +120
−11

FFφ(1020) 0.55 ±0.16 ±0.025 0 0.00016 +0.027
−0.069

FFa0(980)+ 0.223 ±0.071 ±0.023 2× 10−5 0.00028 +0.40
−0.023

FFa0(980)− 0.163 ±0.056 ±0.15 1× 10−5 0.00034 +0.30
−0.15

FFf0(1370) 0.071 ±0.022 ±0.022 1× 10−5 0.00026 +0.30
−0.059

Signal Frac. (f) 0.798 ±0.017 ±0.0041 0 0.0007 +4.2×10−3

−0.045

In the process of compiling the systematics, we notice that the a0(980) amplitudes and

fit fractions are always smaller than their f0(980) counterparts, regardless of the given fit.

When we graph either the amplitudes (Fig. 5.1) or fit fractions (Fig. 5.2), we unsurprisingly

find a strong linear correlation. This is confirmed upon examining the correlation matrix in

Table 5.3. Additionally, we find a strong correlation between ϕa0(980)0 and ϕf0(980).

Examining the systematics and correlation matrix, we can make several conclusions:

• Phase angles are completely unknown. There is non-trivial correlation among the phase

angles and amplitudes, which suggests that the relative angles don’t change even if the

absolute values are arbitrary.
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Figure 5.1: Systematic Amplitudes: a0(980) vs. f0(980).

Figure 5.2: Systematic Fit Fractions: a0(980) vs. f0(980).



87

Table 5.3: Correlation Matrix for the Fit Fraction Method Dalitz Fit of D0 → K0
sK

+K−

af0(980) ϕf0(980) aa0(980)0 ϕa0(980)0 aa0(980)+ ϕa0(980)+ af0(1370) ϕf0(1370) aa0(980)− ϕa0(980)−

af0(980) 1
ϕf0(980) -0.041684 1
aa0(980)0 0.91316 -0.4126 1
ϕa0(980)0 0.10399 0.98669 -0.27779 1
aa0(980)+ 0.18636 0.62131 -0.032166 0.6125 1
ϕa0(980)+ -0.22002 0.66984 -0.37308 0.62766 0.54786 1
af0(1370) 0.44388 -0.055087 0.31948 0.014463 -0.30697 -0.56975 1
ϕf0(1370) -0.010979 0.77653 -0.26612 0.74334 0.87759 0.61962 -0.25617 1
aa0(980)− -0.07061 0.68563 -0.25713 0.64819 0.768 0.69404 -0.58346 0.81658 1
ϕa0(980)− -0.44868 0.33382 -0.49568 0.28386 -0.050605 0.26552 -0.22164 0.0019913 0.2118 1

• The systematics are largely driven by the difference between our pseudo–χ2 terms,

particularly with regard to phase angle. The fit fractions for a0(980)
0 and f0(980) are

unsurprisingly sensitive to both sets of coupling constants.

• A fixed efficiency doesn’t change anything. Once we have sucessfully fit the coefficients,

it is unimportant whether the efficiency floats against signal or not.

• Aside from ϕf0(980), fixing the background is also unimportant.

5.2 Systematics of D0 → K0
sπ

0η

As with the previous section, we modify properties of the central D0 → K0
sπ

0η fit to

determine the systematic error. As shown in Table 5.4, we adjust the widths or similar

values, and record the systematic value of (Central Result - Systematic Result). We adjust

the following widths: K∗
0 (1370) by ±0.240GeV, κ (K0(800)) by ±48MeV, and K∗

0(892) by

±2.7MeV. We assume the K∗
0(1370) width applies to both ηK0 and π0K0 decay channels.

As with the penalty fit, we change the Flatté ratio and coupling constant of a0(980) by

±0.14 and ±0.05GeV1/2 respectively. I also change the magnitude of the ω(782) background

Gaussian by ±1.87 × 10−5. For more details on the ω(782) background, see the Appendix.

Table 5.5 contains the systematics from fixing the background fit with respect to the signal

fit, floating the efficiency with respect to signal, and the total systematic error.
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Table 5.4: Dalitz Fit Results for D0 → K0
sπ

0η with Statistical and Systematic Contributions: K∗
0 (1370) γ ±0.240GeV, κ γ

±48MeV, rKK/ηπ(a0) ± 0.14, gηπ(a0) ± 0.05GeV1/2, K∗
0 (892) ± 2.7MeV, and ω Background Gaussian ±1.87 × 10−5. Each

systematic value shown is the difference (Systematic Result - Central Result).

Parameter Fit Frac. Stat. K∗
0(1430) γ κ γ rKK/ηπ(a0) gηπ(a0) K∗

0(892) Bkg. ω

aK∗
0
(1430)(ηK0) 0.132 ±0.070 0.10

−0.11
0.015
−0.012

0.8
−4

× 10−3 0.037
−0.033

4
−5

× 10−4 4.6
−3.9

× 10−3

ϕK∗
0
(1430)(ηK0) 1112 ±32 0

−35
2.6
−3.0

1.7
−0.16

6.0
−3.7

0.34
−0.25

0.99
−1.6

aK∗
0
(892) 0.23 ±0.03 0.027

−0.006
0.026
−0.022

1.4
−1.9

× 10−3 7.4
−9.2

× 10−3 9.6
−9.7

× 10−3 2.1
−1.8

× 10−3

ϕK∗
0
(892) 312.6 ±9.3 9.5

−12
1.3
−1.1

0.31
−0.24

4.5
−4.4

0.12
−0.12

0.15
−0.145

aa0(980)0 1.14 ±0.13 0.13
−0.019

0.13
−0.11

0.063
−0.060

0.16
−0.16

0.9
−1.1

× 10−3 0.016
−0.013

ϕa0(980)0 256.3 ±8.4 11
−12

1.3
−1.0

4.6
−3.96

4.2
−3.8

0.41
−0.38

0.60
−0.70

aK∗
0
(1430) 1.12 ±0.36 1.1

−0.44
0.084
−0.060

0.13
−0.11

0.22
−0.20

0.013
−0.012

0.027
−0.028

ϕK∗
0
(1430) 204 ±18 11

−14
2.5
−3.1

1.5
−0.24

2.4
−1.7

0.45
−0.41

1.7
−2.2

FFa0(980)0 1.255 ±0.023 0.043
−5.4×10−3

4.9
−7.1

× 10−4 0.012
−0.018

0.090
−0.094

90
−2.8×10−3

8.8
−7.4

× 10−3

FFK∗
0
(892) 0.231 ±0.054 3.3×10−3

0
5.4
−3.5

× 10−4 2.6
−2.2

× 10−3 2.9
−2.2

× 10−3 100
−6.7×10−3

3.9
−5.5

× 10−4

FFK∗
0
(1430) 0.059 ±0.018 0.052

−0.025
5.2
−3.9

× 10−3 0.015
−0.010

0.020
−0.015

1.2
−9.2

× 10−3 4.0
−4.1

× 10−3

FFκ 0.323 ±0.044 0.022
−0.062

0.021
−0.023

2.4
−0.22

× 10−3 0.032
−0.023

0.12
−1.3×10−3

5.6
−6.6

× 10−3

FFK∗
0
(1430)(ηK0)(×10−3) 6.6 ±5.0 0

−4.5
0.05
−0.04

0.07
−0.35

3.4
−2.5

0.02
−3.3

0.32
−0.28

Signal Frac. (f) 0.299 ±0.020 1.5
−7.5

× 10−3 5
−6

× 10−4 0.012
−0.015

7.6×10−3

−0.0104
1
−2

× 10−4 5.6
−4.7

× 10−3
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Table 5.5: Dalitz Fit Results forD0 → K0
sπ

0η with Statistical and Systematic Contributions:
Floated Efficiency, Fixed Background, and Total Systematic Error. The Total Systematic
Error includes the values from Table 5.4.

Parameter Fit Frac. Stat. Eff. Bkgd. Tot. Sys.

aK∗
0
(1430)(ηK0) 0.132 ±0.070 0.003 0 +0.11

−0.12

ϕK∗
0
(1430)(ηK0) 111 ±32 5.2 0.0056 +20

−36

aK∗
0
(892) 0.23 ±0.03 0.0021 0 +0.040

−0.026

ϕK∗
0
(892) 312.6 ±9.3 0.66 0.002 +11

−13

aa0(980)0 1.14 ±0.13 0.010 0 +0.25
−0.20

ϕa0(980)0 256.3 ±8.4 0.98 0.0008 +13
−13

aK∗
0
(1430) 1.12 ±0.36 0.0095 0 +1.1

−0.50

ϕK∗
0
(1430) 204 ±18 0.60 0.0027 +12

−15

FFa0(980)0 1.255 ±0.023 0.0064 0 +0.10
−0.096

FFK∗
0
(892) 0.231 ±0.054 0.0012 0 +0.0083

−0.0075

FFK∗
0
(1430) 0.059 ±0.018 0.0017 0 +0.058

−0.032

FFκ 0.323 ±0.044 0.0040 0.00001 +0.045
−0.071

FFK∗
0
(1430)(ηK0) 0.0066 ±0.0050 0.00021 0 +0.0035

−0.0052

Signal Frac. (f) 0.299 ±0.020 0.0018 0 +0.016
−0.020

5.3 Summary

In this thesis, I present a technique to use one Dalitz of a 3–body D0 decay to constrain

another. To my knowledge this is the first attempt to do this. In this analysis, I model the

decay of D0 → K0
sK

+K− using the folowing channels: K0
sa0(980), K

0
sf0(980), K

0
sφ(1020),

K0
sf0(1370), and a0(980)±K∓. Using the techniques described in Section 4.5 to constrain

K0
sa0(980), I find that both K0

sa0(980) and K
0
sf0(980) are large contributions to the Dalitz

plot that destructively interfere. This interference leaves the K0
sφ(1020) channel as the

dominant contribution to the observed Dalitz plot. Table 5.6 gives a summary of my findings

with total errors.

Persuant to the Dalitz fit of D0 → K0
sK

+K−, I perform the Dalitz plot analysis of

D0 → K0
sπ

0η. I include the following resonances in my model: K0
sa0(980), K

∗(892)η, κη,
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Table 5.6: Summary of Dalitz Fit Results for D0 → K0
sK

+K− using the Fit Fraction
“Penalty” Method. Errors are Total Statistical and Systematic Error.

Parameter Amplitude Phase Fit Fraction

a0(980)
0 13.05 37

−5.6
80.5 190

−190
11.1 110

−9.1

f0(980) 18.6 39
−6.0

280.2 180
−180

16.6 120
−12

a0(980)
+ 1.71 1.5

−0.21
112.2 220

−220
0.223 0.41

−0.075

a0(980)
− 1.46 1.4

−0.64
153.6 140

−150
0.163 0.31

−0.16

f0(1370) 1.77 3.9
−1.4

239 180
−160

0.071 0.30
0.063

φ(1020) 1 0 0.55 0.16
−0.17

Signal Frac. (f) 0.798 0.043
0.034

and two K∗(1430)0 channels, K∗(1430)0η and K∗(1430)0π0. This analysis is an update to an

earlier CLEO II.V result [14]. In the course of this analysis, I find the presence of a peaking

background from D0 → ωη. This background is explored in greater detail in the Appendix.

A summary of my results are shown in Table 5.7.

Table 5.7: Summary of Dalitz Fit Results for D0 → K0
sπ

0η. Errors are Total Statistical and
Systematic Error.

Parameter Amplitude Phase Fit Fraction

K∗
0(1430)(ηK

0) 0.132 0.13
−0.14

111 38
−48

(

6.6 6.1
−7.2

)

× 10−3

K∗
0(892) 0.23 0.050

−0.040
312.6 14

−16
0.231 0.055

−0.055

a0(980)
0 1.14 0.28

−0.24
256.3 15

−15
1.255 0.10

0.099

K∗
0 (1430) 1.12 1.1

−0.61
204 21

−23
0.059 0.061

0.037

κ (K∗(800)) 1 0 0.323 0.063
−0.083

Signal Frac. (f) 0.299 0.026
−0.029

5.4 Possibilities for Future Work

We had hoped that we would be able to make a definitive statement about what is

conserved in 3–body D decays, the amplitude or fit fraction, and shed light on the underlying

quantum structure of D decays. Having found both methods give equally good descriptions

of our data, we are unsuccessful in this effort. The methodologies presented herein can be
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extended to other 3–body D decays to atempt to build a unified picture and give insight on

the nature of the QCD interactions that underlies the formation of the resoances in Charm

decays. Not only do we hope that a clarifying unified picture will emerge, but also that such

clarity will be valuable as a tool for a simplified description of Charm decays.
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APPENDIX A: INITIAL OBSERVATION OF

D0 → ωη

A.1 Introduction

As noted in Chapter 4, an anomalous peak appears in the Dalitz fit of D0 → K0
sηπ

0.

As shown again in Fig. A.1, our fit doesn’t account for the peak at 0.6 ( GeV/c2)2 in the

Y (K0
sπ

0) projection. On the advice of the collaboration member Paras Naik1, we explore

the possibility that this peak is due to an ω(782) → π+π−π0 candidate whose charged

pions are mis-reconstructed as a K0
s . The D0 → ωη decay channel has previously been

predicted[41] to have a BF = (3.3 ± 0.2) × 10−3. This paper also quotes the experimental

value as BF = (2.21± 0.23)× 10−3 from BaBar. BaBar has not yet published or made a

conference proceeding available for this result.

As in the main analysis, we assume charge conjugation throughout. Since the decay can

proceed from both a D0 and a D̄0 and we do no tagging of the D flavor we are actually

measuring the average of the branching fractions of D0 → ωη and D̄0 → ωη.

A.2 Event Selection

This analysis is performed on the full 818pb−1 of ψ(3770) CLEO-c (Section 2.4) data.

All D0/D̄0 candidates are reconstructed from π±, π0, and η that pass the standard CLEO-c

selection criteria for inclusion in D candidates[25, 36], the “D Tags” described in Chapter 2

(2.4.4). Among the selections shown in Table A.1, we require a track momentum p between

50 MeV/c ≤ p ≤ 2 GeV/c and consistency with coming from the interaction region. We use

the dE/dx and RICH data described earlier (Section 2.4.2), to identify our selected tracks as

π±. If dE/dx is valid we require a 3σ consistency with the π± hypothesis. For p ≥ 0.70 GeV

and | cos θ| < 0.8 we can use RICH as well. If both RICH and dE/dx are valid, we require

the combined log-likelihood Lπ K ≤ 0 where

1Paras.Naik@bristol.ac.uk
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Figure A.1: D0 → K0
sηπ

0 - K0
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0 (y) Projection

Lπ K = σ2
π − σ2

K + Lπ − LK , Lh = log-likelihood from RICH Data (A.1)

We reconstruct π0 and η as neutral → γγ, which respectively have BF = (98.823 ±

0.034)% and BF = (39.31 ± 0.20)% PDG average branching fractions. The unconstrained

mass is calculated under the assumption that the photons originate from the interaction

point. We require this mass to be within 3σ of the nominal π0/η mass. The subsequent

kinematic fit must not be obviously bad (χ2 < 10000). In addition to these standard D Tag

selectors we also reject neutral candidates wherein both photons are detected in the endcap

and explicitly reject any photon showers with a matched track. All of the neutral selection
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Table A.1: Charged Track π± Selection Requirements

Variable Value
p Min 50 MeV/c
p Max 2.0 GeV/c
x-y Closet Approach |db| ≤ 0.005m
z Closest Approach |z0| ≤ 0.050m
Fit Quality χ2 ≤ 100000
Min Hit Fraction hitfrac ≥ 0.5
Angle | cos θ| ≤ 0.93

requirements are in Table A.2. Aside from the mass value and Number Sigmas Max selector,

which is not implemented for η, the selections are identical.

Table A.2: π0 and η Selection Requirements

Variable Value
Pull Mass 3
Number Sigmas Max 1000
Min Unconstrained Mass 0
Max Unconstrained Mass 1000
Max χ2 100000
End Cap Neutral False
Use E9o25 False

Our D0 candidates are reconstructed from π+π−π0η combinations. We make an initial

skim requirement that the invariant mass m(π+π−π0η) be within 100 MeV/c2 of the PDG

average D0 mass. In the next section we will describe the ω(782) reconstruction from π+π−π0

combinations. For the skim these must have an invariant mass within 50 MeV/c2 of the PDG

average ω mass. We do not make any best candidate selection allowing multiple per event.

A.3 Analysis

We select ω candidates and choose cuts on the beam-constrained mass of ωη (Mbc) and

their ∆E in an iterative procedure making cuts on two of the three, fitting in the third,
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choosing a cut based on the fit results, and repeating until the cut values do not change. In

all cases the signal is fit to a Gaussian. In Mbc we fit the background to an Argus function,

and use a 4th order polynomial in ∆E and m(π+π−π0). Unlike Mbc there is no physics-

inspired background shape for these, and we chose the polynomial order to give a reasonable

model of background without adding meaningless nuisance parameters. We use the signal

mean and sigma from one fit to make 3-standard deviation cuts on the other plots. We

generate 50000 signal Monte Carlo (Section 2.5) D0/D̄0 events to measure the efficiency of

our reconstruction and to determine the optimal widths to use in data fitting. We take the

yield from Mbc, shown in Figure A.2, and ∆E, Figure A.3 as our measurements of the D0

yield in the MC. From the value of Mbc yield, we find an efficiency of (17.49± 0.216)%.
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Figure A.2: Signal Monte Carlo: Beam-Constrained Mass Fit.

The same process is performed in data, but with the widths obtained in Signal Monte

Carlo fixed. From the mean found in Figure A.4 and the signal Monte Carlo widths, we
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Figure A.3: Signal Monte Carlo: ∆E Fit.

choose ω(782) candidates which have 0.76016 GeV/c2 ≤ m(π+π−π0) ≤ 0.80432 GeV/c2.

We note the m(π+π−π0) mass fit is simply used to select ω(782) candidates, and not as

measurement of the D0 yield.

∆E is defined as Eπ+π−π0η − EBeam; the distribution is shown in Figure A.5. From the

fit to this we select −0.03525 GeV ≤ ∆E ≤ 0.03117 GeV.

The beam-constrained mass, Mbc
2 ≡ E2

Beam − p2 , distribution and fit is shown in Figure

A.6. Table A.3 contains a summary of the cuts we use to define the signal. Table A.4

summarizes the results of the signal yield fits. The Mbc and ∆E fit yields can both used as

measurements of the D0 → ωη yield.

In the proceeding, we assume ω(782) is strongly related to the reconstruction of the D0

and its Mbc. To better visualize this relation, we look at the contour plot of ω(782) mass
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Figure A.4: Data: m(π+π−π0) invariant mass fit after signal cuts in ∆E and Mbc.

Table A.3: Summary of Signal Cuts

Signal Cuts
0.76016 GeV/c2 ≤ m(π+π−π0) ≤ 0.80432 GeV/c2

−0.03525 GeV ≤ ∆E ≤ 0.03117 GeV
1.857675 GeV/c2 ≤ Mbc ≤ 1.871685 GeV/c2

versus Mbc subject to a 3σ ∆E cut, as seen in Figure A.7. We can clearly see a well-populated

region near the intersection of the D0 Mbc and ω(782) mass. We also fit the Mbc below and

above the ω cuts in Figure A.8 and Figure A.9 respectively. We find no meaningful D0

presence in these sidebands.

We expect that there should be some K0
s contamination in our ω(782) signal; after all we

began with the opposite in K0
sπ

0η. For our signal candidates we observe M(π+π−) in Figure

A.10. There is a clear K0
s peak. This histogram is fit using a Gaussian “signal” and 4th

order polynomial “background” using the signal region cuts found in Table A.3. We can use
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Figure A.5: Data: ∆E distribution and fit after 3σ signal cuts for the ω(782) and on Mbc.

this in two alternate ways. The first and simplest method is to subtract the “signal” yield in

Figure A.10 from our previous results. We determine how many of the 158 ± 20 K0
s events

should be subtracted by examining Mbc in three regions: ±3σ about the K0
s mean and the

two sidebands. We fit Mbc using the previously outlined method, and find the signal and

background yields under the peak. Using the signal fraction in the K0
s region from Table

A.5, we subtract 43 ± 17 from the Table A.4 values. The K0
s subtraction value includes a

10% uncertainty due to our inability to precisely know how many K0
s lie in signal versus

background.

In a second method we veto the K0
sπ

0 contribution to ω(782) by cutting out the K0
s

region in M(π+π−). Aside from the veto, the analysis is identical to the original description.

The new efficiency fits of Mbc and ∆E are shown in Figures A.11 and A.12. From this value

of Mbc yield, we find an efficiency of (16.13 ± 0.208)% which represents an 7.8% reduction
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Figure A.6: Data: Mbc fit after the 3σ signal cuts on ω(782) and ∆E.

with respect to the uncut/K0
s -subtracted efficiency.

Repeating the Data analysis with the K0
s veto, we use the width found in signal Monte

Carlo and the mean shown in Figure A.13 we make our new ω(782) candidate selection.

From the fits of ∆E in Figure A.14 and Mbc in Figure A.15 we determine the signal cuts.

Table A.6 contains the K0
s veto cuts along with all of the new candidate selections. Table

A.7 contains the yields from ∆E and Mbc corrected by both K0
s subtraction and veto, as

well as their associated efficiencies and Yield/Efficiency values.

We also attempted a 2D fit in Mbc and ∆E. In Figure A.16 we see the projection of

this 2D fit on the ∆E variable with the signal overwhelmed by the background. We are not

confident that we understand the ∆E background shape well enough to use this 2D fit to

extract a yield.

The proceeding analysis used the widths from Signal Monte Carlo, fixed in the data fits.
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Table A.4: Signal Yields From Fitting without K0
s Contamination Corrections

Plot Signal Signal Monte Carlo
Mbc 711± 65 8747± 108
∆E 720± 70 8530± 110
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Figure A.7: Data: Mbc Versus ω(782) Mass under 3σ ∆E Cut

When we float the data widths, we find 637 ± 89 and 521 ± 85 for the Mbc and ∆E signal

yields, respectively. These values greatly differ from those with fixed widths, and indeed

greatly from each other. We will use the difference between fixed and floating Mbc yields as

a systematic uncertainty.

We calculate the Branching Fraction using

BF =
ND0→ωη

2ǫD0→ωηND0D̄0BFω→π+π−π0BFη→γγBFπ0→γγ

(A.2)

where ND0→ωη is the observed yield and ND0D̄0 is the total number of D0/D̄0 events. We
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Figure A.8: Data: Mbc Fit under 3σ ∆E Cut, ω(782) 0.74− 0.765 GeV/c2

calculate ND0D̄0 by multiplying σ(e+e− → D0D̄0) previously reported by CLEO[36] and our

integrated luminosity. Table A.8 contains the Branching Fraction inputs.

Comparing the Yield/Efficiency results in Table A.7 we see the K0
s Subtraction and Veto

are both acceptable methods to deal with the K0
s signal contamination. Using the Y/ǫ values

we compute a difference of 115, which is 3.0% of the average Y/ǫ, 3816. Though the Y/ǫ

values are larger in the subtraction method, this method also has a conceptual problem. Our

subtraction choice is a best guess; there is no clear way to determine how many K0
s actually

contribute to the signal rather then the background.

Comparing using Mbc and ∆E to extract the yield, we have a ±1 systematic uncertainty

from the difference in signal yield and ±0.34% from the difference in Efficiency. These

amount to a 2.13% relative uncertainty. We also have ±41 systematic due to the difference

in yield between the fixed and floating yields in Mbc. In order to account for possible peaking
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Figure A.9: Data: Mbc Fit under 3σ ∆E Cut, ω(782) 0.8− 0.82 GeV/c2

Table A.5: Signal and Background Yields From Mbc, Comparing Three M(π+π−) Regions

In Relation to K0
s Peak

3σ Mbc Below In Above
Signal 347 122 229
Background 1749 327 1649
Sig/Total 16.56% 27.17% 12.19%

backgrounds, we also include ±72 systematic uncertainty from the difference between the

subtraction and veto K0
s methods. The two yield systematics give us the total systematic on

yield. The statistical uncertainty comes exclusively from the statistical uncertainty in the

signal yield. All of the uncertainties are summarized in Table A.9. The contribution from

BF(π0 → γγ) is neglible.

Thus we measure the average of D0 → ωη and D̄0 → ω(782)η as

BFD0→ωη = (1.78± 0.19± 0.35)× 10−3 (A.3)
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Figure A.10: Data M(π+π−) Fit.

This agrees well with a result reported by BABAR and is roughly a factor of two smaller

than a theoretical prediciton. This decay mode is a CP–eigenstate, making it a valuable tool

in heavy flavor analysis.
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Figure A.11: Beam-Constrained Mass Fit of Signal Monte Carlo D0 → ωη with K0
s Veto.

Table A.6: Summary of Signal Cuts with K0
s Veto

Signal Cuts
M(π+π−) ≤ 0.48902 GeV/c2 or M(π+π−) ≥ 0.50672 GeV/c2

0.76010 GeV/c2 ≤ m(π+π−π0) ≤ 0.80474 GeV/c2

−0.03551 GeV ≤ ∆E ≤ 0.03145 GeV
1.857738 GeV/c2 ≤ Mbc ≤ 1.871802 GeV/c2

Table A.7: Signal Yields from Fittings With K0
s Effects

Type Signal Yield Signal ǫ Yield/ǫ

K0
s Events Subtracted

Mbc 667± 67 (17.49± 0.216)% 3819
∆E 677± 72 (17.06± 0.220)% 3969

K0
s Veto

Mbc 596± 62 (16.13± 0.208)% 3694
∆E 597± 67 (15.79± 0.212)% 3780
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Figure A.12: ∆E Fit of Signal Monte Carlo D0 → ωη with K0
s Veto.
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Figure A.13: Data M(ω(782) → π+π−π0) Fit with K0
s Veto
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Figure A.14: Data ∆E Fit with K0
s Veto
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Figure A.16: D0 → ωη: ∆E Projection of 2D ∆E vs. Mbc fit.

Table A.8: Summary of Branching Fraction Inputs. Branching Fractions are PDG[8] values.
Uncertainties are statistical and systematic, respectively.

Quantity Value
Signal Yield 596± 62± 1
Efficiency (16.13± 0.208± 0.34)%
BF(ω(782) → π+π−π0) (89.2± 0.7)%
BF(η → γγ) (39.31± 0.2)%
BF(π0 → γγ) (98.823± 0.034)%
σ(e+e− → D0D̄0) (3.66± 0.03± 0.06)nb
Luminosity 818± 8pb−1

ND0D̄0 2993880
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Table A.9: Summary of the uncertainties on BFD0→ωη.

Source Value (×10−3)
Statistical on Yield ±0.19
Signal Yield ±0.125
Difference Between K0

s Methods ±0.215
MC Efficiency ±0.038
Luminosity ±0.0178
Cross Section ±0.0326
BF(ω(782) → π+π−π0) ±0.0140
BF(η → γγ) ±0.00906
Total Systematic ±0.345
Total Uncertainty ±0.39
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Dalitz Plot analysis is a standard technique for the study of weak hadronic 3-body decays.

This technique allows us to extract the relative amplitudes, phases, and fit fractions of the

resonances that are the primary product of such decays. A Dalitz analysis is complicated

by the presence of two or more interfering resonances that appear at the same place on

the plot. In this analysis I attempt to resolve the K0
sa0(980)

0 and K0
sf0(980) in the decay

of D0 → K0
sK

+K−. Using the K0
sa0(980)

0 resonance found in D0 → K0
sπ

0η, I compare

equating a resonance in an interfering decay channel with a non–interfering channel by fit

fraction or amplitude. I use the 818 pb−1 of CLEO-c data collected a ψ(3770) energies to

perform the Dalitz plot analysis of D0 → K0
sπ

0η and D0 → K0
sK

+K−. I find large fractions

from both K0
sa0(980)

0 and K0
sf0(980) that destructively interfere to leave the K0

sφ(1020) as

the dominant resonance on the plot.
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