
Wayne State University

Wayne State University Dissertations

1-1-2015

Efficient Algorithms And Optimizations For
Scientific Computing On Many-Core Processors
Kamel Rushaidat
Wayne State University,

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Rushaidat, Kamel, "Efficient Algorithms And Optimizations For Scientific Computing On Many-Core Processors" (2015). Wayne
State University Dissertations. 1408.
https://digitalcommons.wayne.edu/oa_dissertations/1408

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/1408?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1408&utm_medium=PDF&utm_campaign=PDFCoverPages

EFFICIENT ALGORITHMS AND OPTIMIZATIONS

FOR SCIENTIFIC COMPUTING ON MANY-CORE

PROCESSORS

by

KAMEL RUSHAIDAT

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

 2015

 MAJOR: COMPUTER SCIENCE

 Approved By:

 Advisor Date

© COPYRIGHT BY

KAMEL RUSHAIDAT

2015

All Rights Reserved

ii

DEDICATION

I dedicate this work to my parents, Ibrahim Rushaidat and Samar Al-Ajouz. To my

wife, Areej, who helped through all hardship and provided me with inspiration and

strength. Without her, I could not do this work. And to my kids, Naser and Judy, who

have given me the motivation to finish this work.

iii

ACKNOWLEDGMENTS

I would start with thanking God almighty for giving me the chance and strength to

do my Ph.D. and for all the blessings that happened to me in my life. Also, I want to

thank my advisor, Dr. Loren Schwiebert for all the inspiration and guidance during

this trip. He was always there for me to provide mentorship through all these years.

Finally, I would like to thank Dr. Jeffrey Potoff, Dr. Robert Reynolds, Dr. Daniel

Grosu, and Dr. Zhi-Feng Huang for serving on my dissertation defense committee.

iv

TABLE OF CONTENTS

DEDICATION ... ii

ACKNOWLEDGMENTS ... iii

LIST OF TABLES .. viii

LIST OF FIGURES ... ix

CHAPTER 1 INTRODUCTION ... 1

1.1 PC Coprocessors .. 1

1.2 Programming Coprocessors ... 5

1.3 GPU Technology Development ... 6

1.3.1 GPU Architecture .. 7

1.3.2 GPU Programming .. 15

1.4 Research Contributions .. 20

CHAPTER 2 RELATED WORK .. 23

2.1 Monte Carlo (MC) Simulations .. 23

2.1.1 Statistical Thermodynamics Ensembles .. 24

2.1.2 Lennard-Jones Potential .. 30

2.1.3 Calculating Force Interactions... 30

2.1.4 Molecular Simulation Engines .. 32

2.2 Grain Growth ... 34

CHAPTER 3 GPU OPTIMIZED MONTE CARLO (GOMC) ... 38

3.1 System Description .. 38

v

3.1.1 GOMC Simulation Flowchart ... 38

3.1.2 Data Structures and System Classes .. 38

3.1.3 I/O ... 40

3.1.4 Initialization .. 40

3.1.5 Random Number Generation .. 41

3.2 Main System Functionality .. 41

3.2.1 Energy Interactions ... 41

3.2.2 Ensemble Moves ... 43

3.3 Brute Force GPU Implementation and Optimizations ... 44

3.3.1 Data Load and Movement ... 44

3.3.2 Calculating the Total System Inter-Molecular Energy .. 45

3.3.3 Ensemble Moves ... 46

3.4 Cell List Implementations and Optimizations .. 48

3.4.1 Conventional Cell List .. 49

3.4.2 Proposed Cell List Algorithm and Optimizations ... 52

3.5 Hybrid Cell List Implementations .. 54

3.5.1 Hybrid MPI+OpenMP Cell List Implementations .. 55

3.5.2 Hybrid MPI+CUDA Cell List Implementations ... 56

3.6 Testing and results .. 56

3.6.1 Cell list testing ... 57

3.6.2 Testing of Hybrid Implementations .. 63

vi

3.7 Summary .. 72

CHAPTER 4 PFC GRAIN GROWTH .. 73

4.1 PFC GPU Implementation ... 73

4.1.1 System Functionality ... 73

4.1.2 Orientational Correlation Function (g6)... 75

4.1.3 Correlation Length .. 79

4.2 PFC Other Properties ... 79

4.2.1 Number and Density of Disclinations and Dislocations.. 79

4.2.2 Structure Factor ... 81

4.2.3 Moments .. 82

4.2.4 Grain Boundary Detection... 85

4.2.5 Average Curvature and Maximum Curvature of Grain Boundaries........................ 91

4.2.6 Average and Maximum Velocity of Grain Boundary ... 92

4.2.7 Grain Angle Misorientation .. 94

4.3 Experiments and Discussion of Results ... 94

4.3.1 Software and Hardware Setup ... 94

4.3.2 Performance Analysis ... 95

4.4 Summary .. 98

CHAPTER 5 CONCLUSION AND FUTURE WORK .. 99

REFERENCES ... 101

ABSTRACT ... 113

vii

AUTOBIOGRAPHICAL STATEMENT .. 115

viii

LIST OF TABLES

Table 1: List of major specifications of the parallel processors for the experiments 57

Table 2: Runtime results for cell list implementations for molecule intermolecular energy

interactions in microseconds for a simulation box size of 65536 methane molecules (one

interaction site in each molecule) .. 58

Table 3: Runtime results for cell list implementations for system intermolecular energy

interactions in milliseconds for octane systems (8 interaction sites, rcut = 2.5σ) 59

Table 4: Runtime results for cell list implementations for System intermolecular energy

interactions in milliseconds for octane systems (8 interaction sites). (rcut = 4.0σ) 60

Table 5: Multicore CPU runtime results (in milliseconds) for the conventional cell List method 65

Table 6: Multicore CPU runtime results (in milliseconds) for the microcell list method 65

Table 7: Intel Xeon Phi runtime results (in milliseconds) for the conventional cell list method .. 66

Table 8: Intel Xeon Phi results (in milliseconds) for the microcell list method 67

Table 9: GPU runtime results (in milliseconds) for the conventional cell list method 70

Table 10: GPU runtime results (in milliseconds) for the microcell list method 70

Table 11: Speedup of the GPU runtimes over the multicore CPU runtimes for the best

configurations at each problem size .. 71

Table 12: Speedup of the GPU runtimes over the Intel Xeon Phi coprocessor runtimes for the best

configurations at each problem size .. 72

Table 13: List of major specifications of the parallel processors for the experiments 95

Table 14: g6 runtime results (seconds), average of 20 runs ... 95

Table 15: PFC simulation run time (seconds), total simulation time .. 95

Table 16: Correlation length function run time (seconds), average of 20 runs 96

ix

LIST OF FIGURES

Figure 1: Floating point comparison between the GPU and CPU [6] ... 2

Figure 2: GPU and CPU memory bandwidth historical comparison [6] ... 2

Figure 3: Program word division between the CPU and the GPU .. 3

Figure 4: High performance GPUs NVIDIA’s Tesla (left) and AMD’s FireStream (right) [77] 4

Figure 5: Intel’s Xeon Phi coprocessor [83] .. 5

Figure 6: GPU hardware architecture for the Fermi platform . There are 16 SMs (vertical

rectangular blocks) [45] ... 8

Figure 7: Fermi SM architecture [45] .. 8

Figure 8: Kepler GPU hardware architecture [46] .. 11

Figure 9: Kepler SMX hardware architecture [46] .. 12

Figure 10: Maxwell SMM hardware architecture [79, 87] .. 14

Figure 11: Nvidia’s Kepler vs. Maxwell [87].. 15

Figure 12: CUDA kernel compilation process .. 16

Figure 13: CUDA memory model [36] ... 18

Figure 14: Particle exchange in the Grand Canonical Simulation ... 26

Figure 15: Gibbs ensemble moves .. 28

Figure 16: High and low angle grain boundaries .. 35

Figure 17: (a) A hexagonal lattice (b) A pentagonal and heptagonal lattice; each forms a

disclination .. 37

Figure 18: GOMC flowchart ... 39

Figure 19: GOMC I/O compatibility with file formats used by other simulation engines 40

Figure 20: Radial cutoff (rcut) in a displacement move ... 42

Figure 21: Energy calculation mapping algorithm across threads ... 47

Figure 22: Reduction algorithm for partial summation of the energy in the shared memory 47

x

Figure 23: 2D View of a Conventional Cell List... 50

Figure 24: Using a microcell data structure reduces the total volume being processed 53

Figure 25: Speedup of cell list implementations over the 1 core CPU brute force implementation

 ... 59

Figure 26: Speedup of microcell list over conv. cell list for molecule intermolecular interactions

 ... 60

Figure 27: Speedup for cell list implementations for system intermolecular energy interactions

over 1 core CPU brute force for octane systems (8 interaction sites, rcut = 2.5σ) 61

Figure 28: Speedup for microcell list for system intermolecular energy interactions over

conventional cell list for octane systems. (rcut = 2.5σ) ... 61

Figure 29: Speedup for cell list codes for system intermolecular energy interactions over CPU

brute force for octane systems (8 interaction sites, rcut = 4.0σ) ... 62

Figure 30: Speedup for microcell list for system intermolecular energy interactions over

conventional cell list for octane systems (8 interaction sites, rcut = 4.0σ) 62

Figure 31: Execution time in milliseconds for the best configurations of the conventional and

microcell lists when running on a Phi cluster .. 69

Figure 32: Execution Time in milliseconds for the best configurations of the conventional and

microcell lists when running on a multicore CPU cluster ... 69

Figure 33: Execution time in milliseconds for the best configurations of the conventional and

microcell lists when running on a GPU cluster ... 71

Figure 34: PFC system flowchart .. 74

Figure 35: (a) ψ array plot representation using HDF (b) Regions (white) generated by the

connected component algorithm (c) Final atom representation .. 76

Figure 36: Delaunay triangulations for detected atoms. The figure also shows a hexagonal lattice

and two disclinations ... 77

Figure 37: (θ) angle for a hexagonal lattice computed against a reference line 77

xi

Figure 38: Circular average mechanism .. 79

Figure 39: Correlation length .. 80

Figure 40: Dislocation and disclination count ... 80

Figure 41: Dislocation and disclination density .. 81

Figure 42: structure factor ... 81

Figure 43: Moments vs. Time ... 84

Figure 44: Log-scale plot of moments_0 vs. Time .. 84

Figure 45: Log-scale plot of moments_x vs. Time .. 85

Figure 46: Extended area of the grains .. 87

Figure 47: Original area of the grains .. 87

Figure 48: Atom orientation .. 88

Figure 49: Grain identification and region buffers .. 88

Figure 50: Example on grain detection for a system of size 512
2
 at time 10000 (a) ψ plot (b)

detected grains (c) grain boundaries detection .. 89

Figure 51: Grain identification for a system size of 512
2
at time 15000 90

Figure 52: Grain identification for a system size of 512
2
 at time 20000 90

Figure 53 : Triple junction count ... 91

Figure 54: Average and maximum curvature of grain boundaries .. 92

Figure 55: Average and maximum velocity for grain boundaries ... 93

Figure 56: Average and maximum velocity for triple junctions.. 93

Figure 57: Average and maximum angle misorientation of neighboring grain angles 94

Figure 58: Log-scale run time comparison for the g6 function .. 96

Figure 59: Log-scale runtime comparison for the PFC iterator simulation 97

Figure 60: Log-scale runtime comparison for the correlation length function 97

1

CHAPTER 1 INTRODUCTION

This chapter will introduce coprocessors and their role in scientific research, focusing on

GPUs as they are the main coprocessors used in this work. In addition, this chapter will give an

introduction to the contributions presented in this work.

1.1 PC Coprocessors

For the last 40 years, microchip manufacturers have been developing computer processors that

are designed to offload intensive calculations from the main processor to accelerate the system’s

performance. Those processors are called coprocessors or sometimes accelerators. Coprocessors

can be used to help process large floating point arithmetic, encryption, signal processing, and

graphics. Many of the early coprocessors were designed to accelerate floating point tasks, such as

the Intel 8087 coprocessor, and the Motorola 68881/68882 coprocessors [83].

The high competition in the gaming and movie industries resulted in the introduction of high

performance graphics cards that provide superior processing capabilities while being affordable at

the same time. Graphics processors were considered as coprocessors for generating visual output;

however, with all these processing capabilities, researchers have been interested in using them in

applications that were infeasible in the past because of their long execution times and the unavail-

ability of inexpensive supercomputers.

To render movies and game scenes, pixels are drawn in parallel by creating a multithreaded

program that uses each thread to render different pixels [1]. This parallel architecture was the

foundation for using the graphics processors for more general applications or what is commonly

called GPGPU (General-Purpose Graphics Processing Unit) programming [1]. Along with the

introduction of GPGPU programming came the development of specialized programming lan-

guages and APIs that provide a clear and flexible framework to write programs that run on

graphics processors such as CUDA (Compute Unified Device Architecture), which was created

by NVIDIA [2].

2

Figure 1: Floating point comparison between the GPU and CPU [6]

Figure 2: GPU and CPU memory bandwidth historical comparison [6]

3

GPUs offer unprecedented performance and they are designed to have high throughput. The

GPU performance is rapidly increasing compared to CPU performance. Figure 1 shows a histori-

cal comparison between different types of CPUs and NVIDIA GPUs in terms of floating point

operations per second (FLOPS/s) [6]. In addition, the memory bandwidth of GPUs is also increas-

ing rapidly compared to CPUs as depicted in Figure 2 [6].

GPUs are now becoming a preferred choice to accelerate simulations in many fields of science

as they are available and cheap relative to other types of high-performance computing options.

GPUs have hundreds or thousands of processing cores compared to only a few in most CPUs, and

this is why GPUs have high computational throughput [2]. Many GPU programming research

projects have been conducted in different science fields [78]. GPUs are developing very quickly,

as it can be noticed from Figures 1 and 2, and in the near future more features will be added to

them to help in producing more energy efficient programs and to ease the conversion from se-

quential codes to parallel codes [107].

Figure 3: Program word division between the CPU and the GPU

4

Figure 4: High performance GPUs NVIDIA’s Tesla (left) and AMD’s FireStream (right) [77]

GPUs offer high performance if there is sufficient parallelism for them to be used to process

the most computationally intensive portions of the application. CPU code is generally going to

handle other portions of the application, such as I/O and program flow control because GPUs do

not have direct access to I/O devices, and the CPU has more complicated cache management and

control prediction than GPUs. Figure 3 shows how an application can be divided between the

CPU and GPU.

While there are many hardware manufacturers for GPUs, the main two GPU manufacturers

are NVIDIA and AMD. GPUs manufactured by those two companies are used now in all kinds of

computers, from smartphones all the way up to supercomputers. Examples of supercomputers that

are using GPUs are Titan at Oak Ridge National Laboratory, which has 18,688 NVIDIA K20X

GPUs providing a theoretical peak performance of 27 petaflops [3]. Both companies produce high

end GPUs for scientific applications. Figure 4 shows an Nvidia Tesla and an AMD FireStream

GPUs, where both GPUs are designed to run high demanding scientific applications.

5

Early GPUs used programming languages such as OpenGL and Microsoft’s DirectX [1].

However, many GPU programming languages were hard to learn and use, and lacked the repre-

sentation of many operations that are needed, such as arithmetic operations. Modern GPUs are

being programmed mainly by two programming frameworks, the open cross-platform OpenCL

[4], and Compute Unified Device Architecture (CUDA) from NVIDIA [5].

In 2012, Intel introduced the Xeon Phi coprocessor. This coprocessor is an SMP (Symmetric

multiprocessing) on a chip [83] that runs Linux OS. The Knights Corner Phi coprocessor has 61

cores, and 4 hardware threads per core. Phi coprocessors can run single and double precision cal-

culations. The Cores have also L1 and L2 caches, vector processing unit, and scaler unit [83]. The

super computer Tianhe-2 has 48,000 Xeon Phi 31S1P coprocessors [84]. Figure 5 shows an active

Xeon Phi processor (left) and a passive one that is cooled externally (right).

Figure 5: Intel’s Xeon Phi coprocessor [83]

1.2 Programming Coprocessors

There are many frameworks that are used to program accelerators, such as OpenCL [4],

OpenACC [86], CUDA [6], and OpenMP [85]. Message Passing Interface (MPI) is language in-

dependent standard that is used to pass data between connected coprocessors or CPUs. There are

6

many implementations of MPI standards, and some are free and open source [105]. MPI has

many functions to do data collection and synchronization [105]. MPI can be used with other ac-

celerator programming standards to program heterogeneous accelerator clusters [85, 105].

OpenCL can be used to program parallel applications that can run across heterogeneous sys-

tems. Many hardware manufacturers adopted this open standard, such as Nvidia, AMD, Apple,

IBM, and Samsung [4]. OpenCL provides a low-level programming framework that can achieve

good performance, but using OpenCL can produce less portable code when it is used to write ap-

plications for a specific hardware.

OpenMP (Open Multi-Processing) is another framework that provides a set of APIs to be used

to parallelize programs [85]. A main thread usually forks into a number of sub threads that can be

used to process the work load simultaneously. There are APIs to identify threads, sum data from

threads, and synchronize threads.

OpenACC (Open Accelerator) [86] is a new programming standard that aims to provide more

support for programming heterogeneous platforms. OpenACC has high-level directives that can

be used to parallelize loops and optimize data locality.

CUDA (Compute Unified Device Architecture) [6] is a proprietary parallel programming

framework that is developed by Nvidia. CUDA can only be used to program Nvidia’s GPUs.

Nvidia designed CUDA to work with C, C++, and FORTRAN, which makes it easier to use. As it

can only run on Nvidia’s GPUs, CUDA has many functions that could be used to exploit the

hardware features of those GPUs.

1.3 GPU Technology Development

Before GPUs, many computer hardware manufacturers introduced graphics controllers that

were used to accelerate graphics drawing. Some of the graphics controllers had general purpose

languages that can be used to write general purpose programs; however, they were very hard to

learn and use.

7

Throughout the 1980s and 1990s, graphics controllers continued to evolve, and 3D graphics

cards were introduced to meet the increasing demand for more realistic and high resolution games

and movies [3, 6]. In 1999, NVIDIA introduced the GeForce 256 graphics card, which is consid-

ered to be the first consumer-level graphics processing unit (GPU) [1, 2] that had integrated the

capabilities of rendering 3D images in real time, and a programmable framework for parallel pro-

gramming in a single chip.

With the introduction of the GeForce 256, the term GPU became popular and other manufac-

turers adopted the name or introduced similar terms. After that, GPU technologies continue to

evolve, and new GPUs are consistently introduced that have better capabilities than before in

terms of number of processing cores, memory, bus speed, and core clock rate.

1.3.1 GPU Architecture

The latest architecture introduced by NVIDIA is the Maxwell [79, 87] architecture, which was

released in February 2014. However, many of the current GPUs are still built on the previous

Kepler [46] and Fermi [45] architectures.

1.3.1.1 Fermi Architecture

The Fermi architecture was introduced in 2010 [45], and came with many major improve-

ments over the earlier Tesla architecture. Figure 6 shows the main hardware components for the

Fermi GPUs, while Figure 7 shows the Streaming Multiprocessor (SM) architecture.

The basic building blocks for a Fermi GPU are:

1- Streaming Multiprocessors (SMs):

The SMs are the main processing blocks on the Fermi GPU. Each SM has 32 CUDA cores

in hardware revision 2.0, and 48 cores in the hardware revision 2.1. A CUDA core is a proces-

sor that is equipped with a pipelined arithmetic logic unit (ALU) and a floating-point unit

(FPU).

8

Figure 6: GPU hardware architecture for the Fermi platform . There are 16 SMs (vertical rectangular

blocks) [45]

Figure 7: Fermi SM architecture [45]

9

Each SM can perform up to 16 double-precision operations per clock cycle, which is a

considerable improvement over the previous architecture. This improvement helps in doing

more accurate simulations.

Load/Store (LD/ST) units are responsible for calculating the source and destination ad-

dresses for the memory. Having sixteen of those (LD/ST) units on board a Fermi GPU will

enable threads to do sixteen (load/store) address calculations per clock cycle [45]. In addition,

each SM has four special function units (SFU) that can be used to execute some math func-

tions such as sine, cosine, and square root [45].

To handle thousands of threads, the GPU follows the single instruction multiple data

(SIMD) model. Threads are scheduled in batches of 32s called warps [3]. To organize the exe-

cution of thread warps, the Fermi GPU has a dual warp scheduler. At each clock cycle, each

scheduler will select an instruction from a warp and assign it to a group of 16 processors or the

four SFUs. Integer, float, load/store, and SFU instructions can be dual issued, while double

precision instructions cannot be dual issued.

Another improvement over the previous architecture is having a full hierarchy memory,

with shared memory and an L1 cache that share 64K on each SM.

2- Memory Hierarchy:

There are different types of memory that can be used in CUDA. Memory types differ in

bandwidth, access rate, and size. The main types of memory in CUDA are:

a. Global memory: The global memory is the largest memory on the GPU; however, it

is the slowest memory. The global memory can be used to share data between all

threads on the device. To achieve efficient memory accesses, data reads and writes

should be coalesced.

b. Shared memory: The shared memory is an on-chip memory that is faster than the

global memory. Shared memory can be used to share data between threads in the

same thread block. However, bank conflicts can decrease the access speed to data in

10

shared memory. Bank conflicts can be reduced by distributing the values in shared

memory so that each thread in a warp either accesses the same shared memory value

or values in different banks. Since memory is allocated among the banks in 4-byte in-

crements, a double spans two adjacent shared memory banks.

c. Registers: Registers are the fastest memory type on the GPU; however, they are lim-

ited in number and size. Registers are used to store local variables in a kernel, but if

there are not enough registers to store all the local variables, global memory will be

used to store those variables.

d. Constant memory: Constant memory is a 64 KB read-only memory that is used to

store constants. Only 8 KB is cached on an SM.

e. Texture memory: Texture memory is a cached read-only memory that is optimized

for 2D spatial locality. Threads that belong to the same warp that access nearby tex-

ture memory locations will get better memory access performance.

3- Error Correcting Code (ECC):

Data inside memory can be altered by outer factors such as radiation, so the Fermi archi-

tecture added an ECC unit that detects and corrects such errors.

4- GigaThread Thread Scheduler:

At the chip level, Fermi schedules threads at a global level by distributing thread blocks to

different SMs. Fermi GPUs also introduced many more improvements such as faster atomic

operations, enhanced reductions, faster context switching, support for concurrent kernel exe-

cution, and improved branch prediction.

1.3.1.2 Kepler Architecture

Kepler came with many improvements over the Fermi architecture in terms of throughput,

memory bandwidth, and power consumption [46]. Figure 8 shows the Kepler GPU architecture.

New features of the Kepler GPUs include:

11

1- The new Streaming Multiprocessor (SMX) Architecture:

SMs in the Kepler architecture have far more cores and capabilities than the Fermi ar-

chitecture. Figure 9 shows the Kepler SMX architecture. The first thing to be noticed is

the number of CUDA cores per SMX has been increased to 192. A major improvement in

the double-precision support is an increase in double-precision units. Now, there are 64

double-precision units in each SM. In addition, there is an 8-fold increase in SFU units,

and a 4-fold increase in LD/ST units [46].

Figure 8: Kepler GPU hardware architecture [46]

12

Figure 9: Kepler SMX hardware architecture [46]

Another major improvement is the introduction of two more warp schedulers, which

means that four warps can be issued and executed concurrently. Moreover, each Kepler

warp scheduler is now equipped with two instruction dispatching units, allowing for more

concurrent execution. In addition, double-precision instructions can now be dual issued.

Other improvements include the introduction of the shuffle instruction that allows

threads belonging to the same warp to share registers, an increase in the number of regis-

ters per thread, the ability to configure shared memory for 8-byte banks for increased

bandwidth and better support for double-precision numbers, the expansion and accelera-

tion of atomic operations, and an increase of the GPU texture memory throughput.

2- Dynamic Parallelism:

13

In Fermi, the GPU cannot generate new work unless the CPU does that for it. In other

words, all kernels are launched by the CPU. In Kepler, a new concept called dynamic

parallelism was introduced to enable the GPU to launch kernels by itself, independent of

the CPU. By using dynamic parallelism, the GPU can adapt the flow of the kernel execu-

tions and launch the required number of threads directly.

3- Memory Enhancements:

Kepler has a similar memory hierarchy to Fermi; however, Kepler enables the use of

the read-only 48 KB data cache that was only accessible by the Texture Unit in Fermi. In

addition, shared memory and L2 cache bandwidths are doubled.

Additional Kepler improvements include support for multiple CPU cores to launch work on

the same GPU by introducing Hyper-Q, and direct GPU access through the network without go-

ing through the CPU memory by introducing GPUDirect [46].

1.3.1.3 Maxwell Architecture

The latest architecture from NVIDIA is the Maxwell architecture [79]. The main goals of in-

troducing this new architecture are to develop GPUs for smaller computer platforms, and to in-

crease performance while consuming less power. Figure 11 shows that the performance per Watt

doubled compared to the previous Kepler architecture, and the performance per core is 35% more

than in Kepler. To achieve those goals, NVIDIA introduced a new streaming multiprocessor ar-

chitecture called SMM [79]. The new SMM is designed with more L2 cache and shared memory

to improve performance; in addition to a group of architecture design changes that enable the

Maxwell architecture to achieve double the performance for the same amount of power compared

the Kepler architecture [79]. For instance, the new SMM uses four control logic units to dispatch

the instructions, as shown in Figure 10, and the number of active threads per block increased from

16 in Kepler to 32 in Maxwell. In addition, new improved algorithms are designed to enhance the

scheduling process. However, there are no high-end GPUs manufactured on the Maxwell archi-

tecture yet. More information on the Maxwell architecture can be found in [79, 87].

14

Figure 10: Maxwell SMM hardware architecture [79, 87]

15

Figure 11: Nvidia’s Kepler vs. Maxwell [87]

1.3.2 GPU Programming

While OpenCL is used to program different GPU architectures, CUDA runs only on NVID-

IA’s GPUs. CUDA also provides a large number of libraries [6] that are optimized for its GPUs

such as:

- cuFFT: Library for Fast Fourier Transformations.

- cuBLAS: GPU accelerated BLAS library.

- cuSPARSE: GPU functions for sparse matrix operations.

- Thrust: Open source library of different data structures.

- cuRAND: GPU accelerated random number generator.

In addition, CUDA provides more built-in features and functions, supports templates, and has

more support for developers. A showcase of CUDA libraries can be viewed at [7]. The main

drawback of CUDA is that it is not an open standard. Since OpenCL is an open standard, it can be

used on AMD GPUs, NVIDIA GPUs, and Intel Xeon Phi co-processors, along with other multi-

core platforms.

16

CUDA simplifies many operations that were very hard to implement using earlier GPU pro-

gramming languages, and provided a list of instructions to support parallel programming, thread

management, synchronization, and memory management [6]. Figure 12 shows how CUDA com-

piles the CPU and GPU integrated codes.

1.3.2.1 Synchronization in CUDA

Synchronization is an important feature in any parallel programming framework. As threads

execute in parallel, there is no guarantee on the order in which they will be executed. Hence, syn-

chronization is needed to organize the execution of parallel programs. CUDA provides a set of

synchronization tools for programmers.

Figure 12: CUDA kernel compilation process

CUDA kernels are launched asynchronously; thus, after the host launches a kernel, the CPU

will continue with the program execution. In some cases, results from the kernel are necessary for

making decisions or generating output. As a result, CUDA has a statement called cudaDevic-

17

eSynchronize() [6]. cudaDeviceSynchronize will block the host until the kernel is finished exe-

cuting. However, memory copy statements after the kernel launch will also block the host without

requiring an explicit synchronization statement.

To synchronize threads in a thread block, CUDA has the __syncthreads() [6] statement.

CUDA did not implement a function for cross-block synchronization because it can be costly in

terms of performance. There are ways to do it programmatically by using atomic operations as

locks, but again it can degrade performance.

CUDA also provides memory fence functions such as __threadfence() [6] and

_threadfence_block() [6]. When a thread calls the __threadfence() function, it will block until all

its previous writes to global memory and shared memory are visible to all other threads. The

__threadfence_block() [6] instruction works the same way as __threadfence(), but on a block lev-

el.

1.3.2.2 Kernels and Device Functions

The main units of code execution on the GPU are called kernels. Kernels are created by put-

ting the __global__ directive before the function definition. An example of a kernel function def-

inition is:

__global__ void MyKernel(parameters)

Kernels cannot have a return type because they cannot return values directly. The only way of

returning values is to use memory copy functions. To launch a kernel, the programmer should

specify the number of threads per block and the number of blocks, and provide the function ar-

guments. In some cases, kernels may have dynamic shared memory, so the programmer must also

provide the size for that memory space. A kernel call would look like this:

MyKernel<<<Grid Size, Block Size>>> (arguments)

CUDA threads are organized into thread blocks, and blocks are organized into a grid. Threads

inside a thread block can be organized into one, two, or three dimensions, with a limit of 1024

threads per block on most GPUs. Blocks within a grid can be organized into one, two, or three

18

dimensions. This flexibility in thread and block organization can be very useful in applications

that have multidimensional data. Figure 13 gives a view of how threads, thread blocks, and grids

relate to each other. By having threads divided into thread blocks, the hardware can scale the exe-

cution of the kernels to any GPU without the need to change the code.

When a kernel is launched, the grids are assigned to SMs to be executed. A thread block is as-

signed to one SM, and an SM can have more than one block assigned to it depending on how

many threads are in that thread block. Registers and shared memory are also partitioned among

threads and thread blocks.

Figure 13: CUDA memory model [36]

19

1.3.2.3 CUDA Memory Model

Threads inside a thread block can communicate using shared memory. Shared memory pro-

vides a fast way for threads to share data. Each thread can store local variables inside registers.

However, shared memory and registers are limited in size, so to store large data structures; the

GPU uses the global DRAM memory, which is the slowest type of memory on the device. Care-

ful planning of the use of the memory types and how data is partitioned among them can enhance

performance. Figure 13 shows the CUDA memory model and how it is related to threads and

thread blocks.

1.3.2.4 GPU-CPU Communication

Data is transferred into and out of the GPU by using memory calls [2]. Those memory calls

can affect performance if not used carefully. Data can also be moved asynchronously between the

GPU and CPU by using asynchronous memory calls. Data transfer between the CPU and the

GPU is very time consuming, and thus should be reduced to a minimum.

1.3.2.5 Functions and Libraries

CUDA provides many libraries that are GPU optimized. In addition, CUDA provides a set of

alternative math functions called intrinsic functions [28]. Intrinsic functions are faster than stand-

ard math functions in CUDA; however, they are less accurate. These functions may be used in

calculations that can tolerate some loss in accuracy to gain more speedup. In addition, there is a

set of atomic instructions that can be used to provide locks on data when it is modified. Examples

of atomic functions are atomicAdd, atomicSub, atomicDec, and atomicAnd [28].

1.3.2.6 Compute Capability

In CUDA, the compute capability specifies the architecture of the GPU, described in terms of

major and minor revision numbers. When two GPUs have the same major revision number, then

this indicates that they have same architecture. The current major revision numbers are one, two,

three, and five corresponding to Tesla, Fermi, Kepler, and Maxwell architectures, respectively.

20

The minor revision number specifies improvements that are made on the same architecture. More

details on what capabilities each one of the CUDA compute capabilities have can be found in [6].

1.3.2.7 CUDA Streams

One of the powerful concurrency features of CUDA is CUDA streams. A stream is a sequence

of instructions that are executed in the order that they are issued on the GPU [2, 28]. By default,

there is one stream that the kernels are launched through. CUDA streams are used to achieve con-

currency beyond the multithreading level. Instead of executing one kernel at a time on the device,

CUDA streams can be used to execute a number of kernels concurrently on the device, which can

be used to introduce more speedup. However, the ability to run multiple kernels concurrently de-

pends on the device, which in this case should be of compute capability 2.0 and up. Another fac-

tor that is important is the availability of resources on the device. If each kernel uses a lot of

hardware resources, then there will not be enough resources to run multiple kernels concurrently.

1.4 Research Contributions

The two research projects presented in this dissertation are: the development of an open-

source Monte Carlo GPU code for thermodynamic ensemble interactions called GPU Optimized

Monte Carlo (GOMC) [70], and the development of a GPU code for accelerating the computation

of polygrain growth in the Phase-Field Crystal (PFC) [112, 113] model.

GOMC is an NSF-funded interdepartmental project with Professor Jeffrey Potoff’s research

group from the Department of Chemical Engineering and Materials Science. The GPU PFC pro-

ject is also a joint project with Professor Zhi-Feng Huang from the Department of Physics and

Astronomy. The enhancement of their software to run on the GPU is an important step for in-

creasing the problem size and features of the systems, both of which allow deeper scientific un-

derstanding of the behavior of these systems.

Monte Carlo (MC) simulation has been used to study many problems in statistical physics and

statistical mechanics that are not possible to simulate using Molecular Dynamics (MD) [8]. One

21

example is the simulation of adsorption of gases in porous materials [8]. While there are a fair

number of well-known and widely used GPU Molecular Dynamics codes, such as LAMMPS [9],

NAMD [10], AMBER [11], and HOOMD Blue [12], the existing Monte Carlo ensemble simula-

tions are relatively slow and so are not practical for simulating large systems. In addition, those

Monte Carlo codes are not yet ported to the GPU, which makes it almost impossible for research-

ers to run large systems in a reasonable amount of time. GOMC is created to address these short-

comings of existing Monte Carlo ensemble codes.

There are many challenges I faced when developing the GOMC GPU Monte Carlo molecular

simulation. For instance, data structures need to be designed to enable memory coalescing for

GPUs, the use of different techniques to optimize the ways to calculate energy interactions for the

GPU, when and what data needs to be copied from and to the GPU, how to enable the code to

scale when executed on more than one device, and the ability of the code to simulate systems

with different types of molecules. Through this work, I introduced many optimizations that tar-

geted those challenges.

The GPU PFC modeling is motivated by recent research efforts devoted to the understanding

of the properties of crystalline materials, both their design and control. Recent developments in-

clude the introduction of new models to simulate system behavior, and novel properties that are

of significant experimental and theoretical interest. One of those models is the Phase-Field Crys-

tal (PFC) model [112, 113]. The PFC model has enabled researchers to simulate 2D and 3D crys-

tal structures and study defects such as dislocations and grain boundaries. In this work, the Multi-

core Computing Lab carries out large-scale computer studies on GPUs to examine various dy-

namic properties of polycrystals in the 2D PFC model. Some properties, such as the Orientational

Correlation function (g6) [26, 35], require taking the circular average over different radii for every

atom. This is very compute intensive when the system has hundreds of thousands of atoms.

This thesis reviews related work on both the GOMC and PFC projects in Chapter 2. Chapter 3

will describe the GOMC main components, flowchart, data structures, how energy interactions

22

are implemented and optimized using the cell list structure, and finally present and discuss the

results. Chapter 4 will go over the PFC model, how the model was implemented and optimized

for running on GPUs, the calculation of different PFC related properties, and finally present and

analyze the performance of the PFC solver and different properties that run on the GPU. Finally,

Chapter 5 will present the overall conclusions from this work, and what are the future contribu-

tions that I am planning for the two research projects.

23

CHAPTER 2 RELATED WORK

This chapter will present an overview of the Monte Carlo simulations, giving details on the

ensembles programmed in this work, and how they are calculated. In addition, the chapter will go

over grain growth, while focusing on the PFC model that is used in this work. The chapter will

also present related work on some well-known Monte Carlo molecular simulation engines.

2.1 Monte Carlo (MC) Simulations

MC methods are a set of stochastic methods that use random numbers and probability statis-

tics for problem investigation [16]. Through the use of repetitive random sampling on the input

domain, then processing the selected inputs, MC methods try to converge to a steady-state solu-

tion. There are many applications of MC methods in the fields of physics, finance, artificial intel-

ligence, and biology [8, 17, 19].

One of the applications of the MC method is the simulation of molecular systems. A popular

MC model that is used to simulate such systems is called the Metropolis method [17]. The Me-

tropolis method is used to evolve the system through multiple iterations that consist of selecting

particles or molecules, performing a type of interaction with that selected particle or molecule,

calculating the energy change, and then deciding based on a random value whether or not to ac-

cept that interaction. The Metropolis main steps are:

1- Generate initial system configuration.

2- Perform a move, such as particle displacement. The particle should be chosen and dis-

placed randomly.

3- Calculate the energy change (ΔE) for the displaced coordinates.

4- Decide whether to accept the move or not:

a. If ΔE < 0, accept the move, save the new coordinates, then go to step 2.

24

b. Else, calculate 𝑒
(−

𝛥𝐸

𝑘𝑇
)
, and draw a random number R from the [0,1) range. If R >

𝑒
(−

𝛥𝐸

𝑘𝑇
)
 then accept the new coordinates. Else, reject the move and keep the old

coordinates. In either case, return to step 2.

2.1.1 Statistical Thermodynamics Ensembles

One of the MC applications of molecular systems is the thermodynamic ensemble simulation

[8, 19]. Ensembles represent the thermodynamic properties of a system. This work focused on the

following three main ensembles, canonical ensemble, grand canonical ensemble, and Gibbs en-

semble.

2.1.1.1 Canonical Ensemble

Canonical ensemble is one common ensemble in which the number of molecules or particles

(N), box volume (V), and temperature (T) are fixed, so sometimes it is referred to as NVT [18].

NVT can simulate two moves, molecule or particle displacement, and molecule rotation.

Acceptance criteria are measured by using the Boltzmann factor given by:

 𝑒−𝛽∆𝐸 (2.1)

where ΔE is the energy change between two states, and β is equal to 1 (𝑘𝐵𝑇)⁄ , where kB is the

Boltzmann constant and T is the temperature in kelvin [18].

To calculate the Boltzmann factor for a move, ΔE needs to be calculated, which represents the

change in energy between the old and new positions. After the Boltzmann factor is calculated, the

result will be compared against a random number drawn uniformly from the [0,1) range. If the

Boltzmann factor result is larger than the drawn random number, the move will be accepted, and

the new coordinates are committed. NVT pseudo-code is shown in algorithm 1.

25

Algorithm 1: Canonical ensemble pseudo-code

Canonical Ensemble Algorithm

input: steps, Number of particles , Volume, Temperature

// Calculate the system’s initial energy

// Main Loop

for i := 1 to steps do

// Randomly select a particle to move

s ← rand()

Old_particle_loc := particle_location(s)

// Randomly move to a new location

New_particle_loc := randCoords()

// Calculate the selected particle’s energy for the old and new locations

for k := 1 to number of particles do

if k!=s then

old_energy_contrib += calculate_pairwise_energy(Old_particle_loc, k)

new_energy_contrib += calculate_pairwise_energy(New_particle_loc, k)

 end if

end for

deltaE := new_energy_contrib–old_energy_contrib.

calculate_acceptance_rule()

if accepted then

total_energy += deltaE

current_config := new_config

update_system_status()

end if

updateMoveStatistics()

//Solve if the system in equilibrium state

// Periodically write system status to disk

end for

// End Algorithm

26

2.1.1.2 Grand Canonical Ensemble

The grand canonical ensemble extends the canonical ensemble by defining temperature, vol-

ume, and the chemical potential as constants [18]. A reservoir is connected to the simulated sys-

tem, allowing the particles and energy to be exchanged freely between them. Through this ex-

change of particles, the system and the reservoir will reach an equilibrium state, which can be

determined by using the fixed values of the temperature and the chemical potential.

Figure 14 gives an example of a grand canonical simulation that has the simulated system with

V volume (N particles), and the reservoir with V0-V volume (M-V particles). Particles can inter-

act with each other only when they exist inside the simulated system. The grand canonical pseu-

do-code is shown in algorithm 2.

Figure 14: Particle exchange in the Grand Canonical Simulation

27

Algorithm 2: Grand canonical ensemble pseudo-code

2.1.1.3 Gibbs Ensemble

Gibbs ensemble is used to simulate phase equilibria in vapor-liquid coexistence systems. In

addition, Gibbs ensemble can be used to simulate many more systems such as solid-fluid equilib-

ria, solid-vapor equilibria, adsorption equilibria, and membrane equilibria [36].

To model coexistence systems, we need to have two boxes. A series of moves can then be per-

formed on those boxes, which include:

1. Particle or molecule displacement within a box:

Grand Canonical Ensemble Algorithm

Input: steps, Number of particles, Volume, Temperature, Infinite Reservoir

//Initialize particles’ coordinates inside the box randomly

// Calculate the system’s initial energy

//Main simulation loop

for i= 1 to steps do

//Randomly select a move type

R ← rand()

if (R < DisplacePercent) then

 //Attempt particle displacement

 else

 //Attempt particle transfer (Insertion/Deletion)

 //Choose a random source (Box or Reservoir)

 Source ← rand()

 if (Source < 0.5) then

 //Source box is the Box remove a random particle)

 else

 //Source box is the reservoir (Insertion a new particle to the box)

end if

 end if

 //Solve if the system in equilibrium state

 //Periodically update system status to disk

 end for

// End Algorithm

28

This move is the same move used in canonical and grand canonical ensembles.

2. Volume transfer:

Transfer an amount of volume from one box to the other.

3. Molecule or particle transfer:

An particle or molecule can be transferred from one box to another. However, there are

different ways to do this.

Figure 15 shows an illustration of the Gibbs ensemble moves. Algorithm 3 gives the Gibbs en-

semble pseudo-code.

Figure 15: Gibbs ensemble moves

2.1.1.4 Configurational Bias

Sampling chain-molecules in MC simulations is a very important issue to achieve configura-

tional equilibrium. A great deal of research has been devoted to the development of efficient

methods to sample different structures for chain molecules; however, many of those methods will

not work in dense systems [19]. One way to address the sampling problem is to completely re-

29

build the whole molecule or parts of it, while biasing the build toward preferable configurations.

This method was proposed by Siepmann and Frenkel [19], and it was named configurational bias

MC (CBMC). CBMC is based on the self-avoiding random walk algorithm that was proposed by

Rosenbluth.

CBMC starts by choosing different random positions for the next particle to build. Those posi-

tions must not be occupied by any other existing particle in the system. For each generated trial

position, one needs to calculate the Rosenbluth weight [19].

Algorithm 3: Gibbs ensemble pseudo-code

Gibbs Ensemble Algorithm

Input: steps, Temperature, Two boxes of volume (V1,V2) and number of particles (N1,N2)

//Main simulation loop

for i = 1 to steps do

// Select a move type randomly

 R← rand()

if (R < disp_percentage) then

//Attempt particle displacement move

//Select a box randomly

selectedBox← rand()

 // Attempt to displace an particle in the selected box

 else if (R < (disp_percentage + vol_percentage)) then

 // Attempt Volume Transfer

 else

 //Attempt particle transfer

 //Randomly select a source box

 sourceBox ← rand()

 // perform an particle transfer move to the other box

end if

 //Solve if the system is in equilibrium state

 //Periodically write system status to disk

 end for

// End Algorithm

30

 To achieve detailed balance [19], the trials are done at both boxes, where the trials at the

source box are referred as old trials. As we build new sites, old and new trial weights are accumu-

lated and used in the end to accept or reject the move. More on CBMC can be found in [19, 27].

2.1.2 Lennard-Jones Potential

The Lennard-Jones potential is a mathematical approximation used to compute the energy in-

teraction between a pair of particles or molecules that incorporates the attractive and repulsive

forces [8, 36]. The Lennard-Jones potential calculation is done using the following equation:

𝑉𝐿𝑗 = 4𝜖 [(

𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] (2.2)

where σ is the particle diameter, ϵ is the well depth, and r is the distance between the two par-

ticles.

2.1.3 Calculating Force Interactions

Other simulation techniques, such as molecular dynamics, typically require significantly more

computation for each step of the simulation, and so are better-suited for parallel implementation.

Even so, some previous simulations have used the GPU to implement the MC method [51]. Their

implementation depends on an embarrassingly parallel algorithm that runs several concurrent

simulations with small systems of 128 particles. Instead, this work uses the energy decomposition

method (farm algorithm), which enables us to support configurations with over a million parti-

cles. In [61], a parallelization method for the canonical MC simulations via domain decomposi-

tion technique has been presented, where each domain can be assigned to a separate processor

and multiple moves can be simulated in parallel. Interprocess communication is required only

when moving particles near the edge of a domain, since this requires interactions between adja-

cent domains. To limit this communication, each domain is partitioned into three subdomains.

The size of the middle subdomain is chosen as large as possible to minimize interprocess com-

munication. Although well suited for a multicore CPU, this approach does not expose the fine-

31

grained parallelism required for an efficient GPU implementation. Each time a particle is dis-

placed in, removed from, or inserted into the simulation region, energetic decomposition requires

that pairwise energy be calculated between this particle and all other particles. A radial cutoff,

denoted as rcut, is typically chosen to reduce the execution time by limiting the calculation of in-

ter-molecular forces to only those particles within the cutoff. The forces due to interactions with

particles outside of the cutoff can be approximated using tail corrections [18]. Since interactions

within only a small radius are considered, it is possible to create either a cell list or a neighbor list

to organize particles based on their relative locations and ignore particles that are beyond the cut-

off. In this way, not only are the energy and pressure computations of more distant pairwise inter-

actions avoided, but also the calculation of distances between these particles.

 Another approach to calculating force interactions between particles is based on reducing or

eliminating the interactions with particles that are beyond the cutoff by constructing a neighbor

list or a cell list. One common example of the neighbor list is the Verlet list [89]. Verlet lists

maintain a list of neighboring particles for each particle, where those neighboring particles all fall

within the cutoff. While this list reduces the number of interactions that must be computed, it re-

quires more frequent updating. For MD, the Verlet list is a good option, as all particles move

simultaneously and the system is closed in terms of adding or deleting particles [90]. In contrast

to MD, the MC system is open, and particles can be displaced for relatively large distances,

which may sometimes require rebuilding the whole Verlet list.

In the conventional cell list approach [91], the simulation box is divided into cells (squares in

2D, cubes in 3D) such that the dimensions of each cell are greater than or equal to the cutoff.

Here, the cells will limit the number of interacting particles by only considering interactions

across adjacent cells. However, adjacent cells may still have particles that are outside the cutoff,

thus there is a need to check all pairwise interactions in adjacent cells. When compared to Verlet

lists, cell lists require less effort to maintain, especially when displacing or deleting particles. To

reduce the number of extraneous processed interactions in the cell list approach, cell dimensions

32

may be selected to be smaller than the cutoff, or in some cases, make the cell small enough to fit

only a few particles [92]. However, this approach will generate many fine-grained cells that need

to be examined, and in sparse boxes, many of those cells will be empty [92]. MC simulations per-

form much less computation at each step when compared to MD, so approaches that show good

performance for MD simulations using cell lists and Verlet lists did not yield performance gains

when simulating small systems for MC interactions [92].

There are many examples of using a cell list implementation for the MD simulations [18, 47,

65, 93, 94]. On early GPUs, an efficient implementation of cell list on the GPU was not viable

due to the lack of atomic operations on the GPU [51]. Instead, implementations such as [65, 93,

94] use the CPU to construct the cell list and then copy it to the GPU. These cell lists are then

used to construct a neighbor list. Note that in molecular dynamics simulations, all molecules are

moved in each step, requiring the cell list to be updated after nearly every simulation step. The

frequency of updates depends on how far a molecule moves in each step, how much extra dis-

tance beyond the cutoff is used in defining the neighbors, and how much inaccuracy can be toler-

ated in the computations. A state-of-the-art implementation is described in [12].

A third option is to use both a Verlet list and a cell list [95]. For instance, Proctor et al. [90]

show cell lists on the GPU allow a fast approximation of whether or not two particles are within

the cutoff, which performs better than immediately traversing the neighbor list. They do not cre-

ate or maintain a cell list, but calculate the cell of each particle based on its coordinates, with cell

dimensions larger than the cutoff, and use this calculation to determine whether or not two parti-

cles are in neighboring cells.

2.1.4 Molecular Simulation Engines

Molecular Dynamics (MD) and Monte Carlo (MC) computer simulations are the most widely

used simulations in materials science.MD codes have been considered as better candidates for

parallel implementation because each simulation step in a MD simulation requires considerably

huge computation effort when compared to MC simulations. For this reason, many molecular dy-

33

namics codes have been developed, some of which have been modified to utilize the GPU, in-

cluding LAMMPS [9], NAMD [10], AMBER [11], and HOOMD-Blue [12]. On the other hand,

there is a class of problems that cannot be simulated using the current methodologies. For exam-

ple, adsorption in porous materials is the sort of problem that requires the simulation of an open

system, which requires a methodology that allows for fluctuation in the number of molecules in

the system.

While MD simulations have been studied well by other researchers, other systems are impos-

sible to simulate using these MD codes, such as the simulation of multicomponent adsorption in

porous solids [97], which will open the door for solutions such as the development of novel po-

rous materials for the sequestration of CO2 and the filtration of toxic industrial chemicals. In par-

ticular, molecular dynamics (MD) codes cannot be used to simulate an open system without using

a hybrid MC-MD approach [89, 99] because of the fluctuation property of MC that MD does not

utilize.

Another general purpose molecular simulation is the HOOMD-Blue (Highly Optimized Ob-

ject-Oriented Many-Particle Dynamics) simulation engine that is developed in Michigan State

University. HOOMD-Blue is programmed to use GPUs to accelerate MD simulations, and it can

scale up to thousands of GPUs, thus enabling it to perform very large simulations [12]. There is

MC extension for HOOMD-Blue that is called Simpatico [100] that supports some MC algo-

rithms. Another extension for HOOMD-Blue is called Hard Particle MC (HPMC) [41], which

supports doing MC hard particle simulations [41].

Sandia National Labs started developing an open source simulation engine for MD simulation

in 1995, which has the capability to run on parallel processors. The simulation engine is called

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) [9]. LAMMPS can be

run on many modern parallel accelerators, such as GPUs and Phi coprocessors. To improve effi-

ciency and enhance performance, LAMMPS uses neighbor lists to track of close particles [9].

34

Loyens et al. [57] developed a parallel MC Gibbs ensemble simulation that specifies algo-

rithms to parallelize each movement type of the MC simulation. For displacement, the system can

be divided into regions, provided that the range of the interactions is short, so that the displace-

ment of particles in one region does not affect other regions’ energy interactions. Using the re-

gions scheme, different processors can be responsible for calculating energy interactions in dif-

ferent regions. However, this scheme will fail if the system has long range interactions, or mole-

cules that can span more than one region. For the volume move, each processor can calculate the

energy interactions for a group of particles. Particle exchange can be parallelized by having dif-

ferent processors calculate a number of the trials that are used to select the best position when

building the new molecule in the destination box [57].

Monte Carlo for Complex Chemical Systems (MCCCS) Towhee [102] is an open source sim-

ulation engine for Gibbs MC simulations. However, the code does not support running on modern

accelerators. There is a parallel version that uses MPI to distribute the work load, which cannot

guarantee to achieve huge speedups. Another MC molecular simulation engine is Cassandra that

is developed by the Maginn Group [116]. Cassandra uses OpenMP to accelerate the simulation.

Another MC simulation engine has been created by the research group that developed

HOOMD [41]. In this simulation, the simulation box is divided into cells. Particles are represent-

ed by circle disks. In a trial move, a disk is displaced to a random place. If the disk does not over-

lap with another one, the move gets accepted [41]. When compared to other MC molecular simu-

lations, this simulation requires less computation as it does not have to check if the two particles

fall within the radial cutoff.

2.2 Grain Growth

Polycrystalline materials are composed of grains of different crystal orientation. Those materi-

als can be found everywhere around us such as in metals, alloys, and ceramics [14]. The behavior

and properties of polycrystalline materials are determined by the shape, arrangement, and size of

the grains [16]. Thus, a great deal of research is devoted to the understanding of those materials.

35

Grain boundaries are regions that separate two crystal structures with different orientations

[13]. There could be different types of grain boundaries depending on how much misorientation

there is between two grains. One type is called low-angle grain boundary, in which the misorien-

tation is only a few degrees, at most ten degrees. If the misorientation is more than that, the

boundary is called a high-angle grain boundary [14]. Figure 16 shows an illustration of the previ-

ously mentioned grain boundary types.

Figure 16: High and low angle grain boundaries

State of the art imaging technology enables scientist to take images of materials at the atomic

level. Those images can show defects in the crystalline structure of those materials. However,

those images can be large, and it is not easy to use them to detect defects just by looking at them.

In addition, there can be a huge number of images that are generated for a material that is studied

for a time period. As a result, a number of simulation models were developed to simulate the

crystalline materials’ behavior.

36

To simulate and model grain growth, the simulation model should include features for simu-

lating multiple crystal orientations and simulating deformations. One way to simulate such sys-

tems is the use of Molecular Dynamics [14]; however, MD has some limitations regarding time

scaling and the size of the simulation [19, 34].

Another model used to simulate grain growth is the Phase-Field Crystal (PFC) model. The

PFC model can be used to simulate 2D and 3D grain growth simulations. In addition, the PFC

model can be used to study defects, elasticity, and grain boundaries [16]. There are different

equations that are used to describe the dynamics of atom movement and grain boundary migra-

tion.

The PFC model is an extension to the phase-field model [112, 113, 114]. In this extension, the

system’s atomic density evolution is described by the dissipative dynamics [112, 113]. In addi-

tion, the atomic density in the PFC model is periodic, thus minimizing the solid’s phase free en-

ergy functional denoted by F [112, 113]. The periodic atomic density also allows the model to

show elastic effects and crystal orientations [112, 113]. To minimize F, we need to calculate:

 𝜕𝜓 𝜕𝑡 = ∇2[−𝜖 𝜓 + (∇2 + 𝑞0
2)2 − 𝑔𝜓2 + 𝜓3]⁄ (2.3)

where = (3 𝐵𝑆⁄)1 2⁄ /2 , q0 is equal to 1 [114] and 𝜓 is the atomic number density field.

As mentioned before, one of the applications of the PFC model is the study of grain growth

and grain boundaries. There are many ways to detect grain boundaries, and one way is by detect-

ing defects in the hexagonal lattices in the PFC simulation. A hexagonal lattice represents an at-

om and its six neighbors [14]. If the lattice has five or seven neighboring atoms, then it is called a

disclination [15]. A pair of five and seven disclinations forms a dislocation. In some cases, a dis-

clination can be identified as free and not bonded with another disclination. Figure 17 gives an

illustration of a hexagonal lattice and two disclinations.

37

There are different properties that can be measured to study the grain size such as the density

of correlation lengths and moments. As for grain growth, there is a different group of properties

that are examined such as triple junctions, velocity of grain boundaries, and curvature [109, 110].

Figure 17: (a) A hexagonal lattice (b) A pentagonal and heptagonal lattice; each forms a disclination

a

b

38

CHAPTER 3 GPU OPTIMIZED MONTE CARLO (GOMC)

This chapter will present an overall description of the GOMC serial and GPU implementa-

tions, including the approaches, procedures, software, and hardware. In this chapter, the serial

code will also be referred to as the host or CPU code, while the GPU code can be referred to

sometimes as the device or parallel code.

3.1 System Description

GOMC is a Gibbs ensemble Monte Carlo simulation engine developed specifically for the

simulation of phase equilibria for systems that contain 10,000-100,000+ interaction sites. This

simulation engine is designed to simulate different types of molecules that may have different

sizes and shapes. Chapter 2 presented Gibbs ensemble and described its structure and simulation

flow. To design an open-source framework that can be expanded to simulate more complicated

systems, accommodate new I/O formats, and introduce new move types, GOMC is designed us-

ing software engineering concepts, such as classes, inheritance, and polymorphism.

3.1.1 GOMC Simulation Flowchart

The flowchart of the GOMC execution pipeline is shown in Figure 18. As seen in the

flowchart, some parts are done on the CPU and other parts on the GPU. Mainly, the CPU code is

responsible for I/O, molecule selection and move acceptance, initialization, and data communica-

tion between the CPU and the GPU. The GPU is responsible for the computationally demanding

parts, especially the energy interactions.

3.1.2 Data Structures and System Classes

The GOMC simulation engine architecture follows object-oriented principles, and all main

functions and variables are enclosed in classes. CUDA does not support enclosing the global

functions in classes, so the GPU functions are written outside the program classes.

To ease the process of data copying from and into the GPU, and to make the threads access

data in a coalesced way, the data was stored in arrays in which each entry has no complex struc-

39

tures like structure or class objects. In other words, data is stored as structures or classes of arrays.

For example, to store the X, Y, and Z coordinates of the molecules’ particles, three arrays are

used to represent the corresponding X, Y, and Z coordinates of each particle in each molecule.

Figure 18: GOMC flowchart

40

3.1.3 I/O

As an open source software engine, GOMC is designed to use standardized input and output

file formats, allowing users to work seamlessly between GOMC and other simulation engines

such as NAMD [10], and analysis and visualization tools such as VMD [74]. Figure 19 shows the

compatibility between GOMC, NAMD, and VMD.

Figure 19: GOMC I/O compatibility with file formats used by other simulation engines

For input, the Protein Structure File (PSF) [75] format describes the structure of the system

molecules, such as the bonds, angles, and dihedrals that make up each molecule. Protein Data

Bank (PDB) [76] file formats are used to describe the 3D structure of molecules, such as the par-

ticles of the molecules and the coordinates of those particles. Application-specific file types are

used to specify simulation parameters such as temperature, volume, and number of steps.

3.1.4 Initialization

Molecules’ coordinates, angles, dihedrals, random number generators, and system parameters

are initialized at the start of the simulation. The coordinates are initialized by reading the PDB,

while the PSF files are used to initialize the structure of each molecule, including the angles and

dihedrals.

41

System parameters are read from the input configuration file. The configuration file specifies

most of the system variables such as initial box dimensions, move percentages, number of simula-

tion steps, input and output file names, output frequency, temperature, cutoff distance, and ran-

dom number seed specification.

3.1.5 Random Number Generation

Random numbers have an essential role in the MC method. Random numbers are used to se-

lect moves and determine the acceptance of them. There are many algorithms to generate uniform

pseudorandom numbers. GOMC uses Mersenne Twister algorithm to generate the different ran-

dom sequences used in GOMC. Mersenne Twister is one of the most commonly used pseudoran-

dom number generators due to its long period (2
19937

 – 1), fast random number generation, and its

statistical randomness [33].

In the GPU version of GOMC, the random numbers are also generated on the CPU. When

calling functions on the GPU, the required random numbers are passed to the GPU as parameters.

In addition, if the random numbers are generated and moved to the GPU, there will be overhead

of tracking how many random numbers are used, then when that stream is consumed, the CPU

must generate another sequence and move it to the GPU. Although the cuRand package can be

used to generate random numbers, this will not generate the same random stream of random

numbers on both the serial and GPU versions of GOMC.

3.2 Main System Functionality

This section will focus on describing how energy calculations are done in GOMC and how

different Monte Carlo ensembles work in GOMC.

3.2.1 Energy Interactions

Energy interactions are the main functions in the simulation, as they are a key factor in deter-

mining the acceptance of moves. Energy interactions may involve all the system molecules, such

as when calculating the system’s total energy, or a certain molecule interaction, or even a single

42

particle energy interaction. Figure 20 shows a particle interaction move, where the energy is cal-

culated for the old position within the radial cutoff, and the new energy is calculated for the new

position in the radial cutoff. The most computationally intensive energy function is the total sys-

tem energy function, as it calculates energy interactions of each molecule with all other molecules

in the same box within a radial cutoff.

Figure 20: Radial cutoff (rcut) in a displacement move

At the start of the simulation, the system’s total energy is calculated by combining the energy

of inter-molecular interactions, intra-molecular interactions, and tail corrections. Intra-molecular

interactions involve only interactions among particles within the same molecule. This energy cal-

culation depends on the number of particles in the molecule, angles, and dihedrals within the

molecule. Because the molecule structure does not change throughout the simulation, unless the

molecule is moved to another box and re-grown there, there will be no need to update or calculate

the intra-molecular energy frequently.

Inter-molecular energy interactions are the most computationally demanding part of the total

energy calculations as it is of order O(N
2
). Unique pairwise energy interactions of particles from

different molecules are examined by determining first if the pair falls within the cutoff before cal-

culating the Lenard Jones potential. All unique pairwise energy interactions are then added up for

each box, then each boxes’ energies are combined to give the final system inter-molecular energy.

43

Inter-molecular interactions are also used in determining the acceptance of the volume inter-

change moves, as it is recalculated for the system after scaling the molecules.

When displacing or rotating a molecule within the same box, the old and new inter-molecular

energy interactions need to be calculated for that molecule. This energy interaction involves only

the selected molecule and other molecules in the same box. Single particle energy interactions are

calculated when a molecule is re-grown in the destination box. As the molecule is re-grown one

particle at a time, particle interactions are used to decide whether to accept this new location or

not.

3.2.2 Ensemble Moves

The Gibbs ensemble in GOMC includes the simulation of four main move types. Based on the

specified move percentages, the simulation selects a move at each step. In the displacement

move, a box, a molecule kind, and then a molecule of the chosen kind are selected at random.

After that, the new location is generated by shifting the particles and the center of mass to a new

location within the box. Periodic boundary checks are used to handle coordinates that cross box

boundaries.

The rotation move is handled almost the same way as the displacement move, except that

when a molecule has only one particle, the rotation move is replaced with a displacement move.

The rotation of the molecule coordinates is done by using the center of mass as the pivot point,

where rotation matrices are used to do the transformation.

The volume move is the most computationally demanding move as it involves calculating the

total system inter-molecular energy interactions for the scaled coordinates. The first step of this

move is to select source and destination boxes, and then calculate the new temporary dimensions

for the boxes. After that, the coordinates and center of masses are scaled depending on the

amount of volume exchanged. Upon the energy calculations for the new volumes, the old and

new inter-molecular energies are used to determine the move acceptance. If the move is accepted,

the new coordinates are committed as the current coordinates of the system molecules.

44

The last move type is the molecule transfer. As in displacement and rotation, a box, a mole-

cule kind and a molecule are selected. However, the transfer is done using the configurational

bias method to re-grow the molecule in the destination box. The linear CBMC implementation in

GOMC is designed to re-grow linear alkanes in the destination box.

The linear CBMC starts by growing the first particle in the destination box. The number of tri-

als for the first particle is specified in the input file. In the source box, the first particle trials will

have the first particle location of the moved molecule as one of the trials. For each trial, the

weight is calculated for each trial and then used to choose the winning trial position.

After the first particle location is chosen, the second particle trial position will depend on the

location of that first particle. The trial positions are found by generating random positions on a

sphere that surrounds the first particle. The radius of the sphere is the bond length between the

two particles. After the second particle, angles and dihedrals are included in choosing trial posi-

tions for the remaining particles in the molecule. After the re-growth is done, the weights of the

old and new molecule are used to determine the acceptance of the whole move.

3.3 Brute Force GPU Implementation and Optimizations

The GPU implementation for GOMC is focused on the code parts that are the most computa-

tionally intensive. Some parts of the code will remain on the CPU, mainly those parts related to

I/O, adjustments, program flow control, and decision making.

3.3.1 Data Load and Movement

To process the data on the GPU, it should be first allocated on the GPU and then copied to that

allocated place. At the start of the simulation, the simulation loads all the data necessary to per-

form the different GPU kernels. Data structures allocated and moved to the GPU include:

1- Molecule coordinates and centers of mass in each box.

2- Force field arrays used in energy interactions.

3- Molecule and particle kinds.

45

4- Temporary arrays used in scaling for volume moves.

5- Molecule start indices and lookup arrays.

Some data is just passed as parameters when the kernels are launched, such as the random

numbers used to shift molecules. Some temporary arrays are necessary to hold the scaled coordi-

nates of molecules when doing a volume move. Data needs to be moved back to the CPU for out-

put depending on the output frequency set in the input file.

The molecule lookup arrays are not moved to the GPU because they introduce a second level

of indirection when accessing coordinates, which will slow the performance. The only move that

requires the shifting of the coordinates is the molecule transfer move.

3.3.2 Calculating the Total System Inter-Molecular Energy

Energy interactions are the places where the GPU can be used to achieve significant speedups,

especially for calculating the total system inter-molecular energy. For the initial version of the

total system inter-molecular energy, each thread is responsible for calculating a unique pair of

molecule interactions. Although the total number of possible interactions is N
2
, there are only N ×

(N-1)/2 unique pairwise interactions. If N
2
 threads are launched, some blocks will have more

skipped threads than the other, which can cause an imbalanced workload. To achieve workload

balance, the pairwise interactions are re-mapped so that the number of skipped threads will be

reduced. Figure 21 shows the re-mapping method.

In the remapping process, a thread goes over each unique pair of particles, and decides if they

fall within the radial cutoff. If two particles fall within the cutoff, the Lenard Jones potential is

used to calculate the energy and then it is stored in shared memory. The use of shared memory

will speed the reduction operation later.

Threads in a thread block are synchronized so that they wait for each other to finish calculat-

ing the inter-molecular energy for their assigned pair. Then, the reduction method begins [36].

The reduction process works by having threads in a thread block sum the values from other

threads in the same block. Here, half of the threads in the thread block will do the summation, and

46

then when they are done, half of the threads used in the previous step will do the next step of the

summation, and so on. This reduction will continue until there is 64 values to add up. After that,

loop unrolling is used to sum the rest. Special cases such as having an odd number of threads are

resolved in the code. Atomic operations are used to synchronize this summation across thread

blocks. Figure 22 shows how the loop unrolling is done.

The single molecule and single particle energy calculations are done in the same fashion as the

total energy interactions, however, they are less computationally intensive as there are O(N) in-

teractions. Other GPU functions that are used include functions for scaling molecule coordinates

and calculating the Boltzmann factor on the GPU.

3.3.3 Ensemble Moves

The different moves of the Gibbs ensemble have some or all parts done on the GPU. The se-

lection of the move parameters is done mostly on the CPU, and then they are moved to the GPU

when the kernels are launched.

For the displacement move, the kernel has three main tasks; the first one is to do the shifting

for the old molecule position. All threads that are launching the kernel will do the energy calcula-

tions depending on that shifted molecule, so the coordinates should be stored and be available to

each and every thread. To provide fast access to the shifted coordinates, shared memory is used to

store them. For each block, the first N threads are used to process the shift of the selected mole-

cule particles, where N is equal to the molecule number. After that, those threads will store the

shifted coordinates in shared memory to be used later. While those N threads are shifting coordi-

nates, the rest of the threads in the block will be waiting for the process to complete before mov-

ing forward to calculate the energy interactions.

After the shifted coordinates are stored in shared memory, each thread will calculate the pair-

wise energy interactions for the old and shifted molecules. Next, the energy is summed across all

thread blocks using reduction and loop unrolling. Finally, the acceptance phase is done by the

first thread in the last executed block. The rotate move is done in the same fashion as the dis-

47

placement move, except that it uses a different procedure to generate the new molecule trial posi-

tion.

Figure 21: Energy calculation mapping algorithm across threads

Figure 22: Reduction algorithm for partial summation of the energy in the shared memory

The volume moves is done in a different way than the displacement and rotate moves as it will

involve all the system’s molecules. The first step of the volume move is the scaling of the mole-

48

cules in both boxes. Here, the scaling is done on the GPU by launching a kernel for each box and

passing the scale to each kernel. As the scaling is independent for each box, each kernel is

launched on a separate stream so they can be executed in parallel if there are enough resources on

the GPU.

Because the system inter-molecular energy interactions are of order O(N
2
), they need more

threads than the scaling kernels, which are of order O(N). For that reason, the scaling and the en-

ergy interactions are done on a separate kernel. For each box, the inter-molecular energy interac-

tions are calculated by launching a kernel for each one. Using the same technique as in the scaling

part, the kernels will be launched on two separate streams.

The last step of determining the volume move acceptance is done on the CPU, after copying

back the source and destination box energy interactions. If the move is accepted, the new coordi-

nates are committed by performing a device-to-device copy, where the new coordinates are cop-

ied from the temporary arrays to the current coordinates array.

In the molecule transfer move, the CBMC method is used to re-grow the new molecule. Be-

cause the molecule is grown particle by particle, the GPU will be used only to calculate the parti-

cle energy interactions for the trial position at each stage. To generate the trial positions, the co-

ordinates are copied back from the GPU to the CPU because the CPU does not have the current

coordinates of the system, as they are not copied back after performing a displacement, rotate, or

a volume move. After the CPU generates the trial positions, the GPU is used to calculate the en-

ergy interactions. After finishing the re-growth process, if the move is accepted, the shift is done

on the CPU, and then the coordinates are moved to the GPU.

3.4 Cell List Implementations and Optimizations

This section will present the design and implementations for the conventional cell list method

and the modified cell list method, called the microcell list, using OpenMP and CUDA. The focus

here is on doing single molecule energy calculations and the entire system’s energy calculations,

49

as they are the main overhead in the simulation. The implementation and results are also shown in

[96, 101].

3.4.1 Conventional Cell List

As shown in Figure 23, the simulation box is partitioned into square cells, where the cell

length of each dimension (S) is greater than or equal to rcut. Coordinates are used to assign parti-

cles to cells. A particle can have interactions with other particles that fall within the volume of

interest, which will be the current cell and the adjacent 26 neighboring cells. The cell dimension

is calculated by maximizing the integer (L/S), where L is the box’s dimension length. For in-

stance, if rcut equals 2.5 and L equals 23.9, then S is selected to be 2.656 with 9 cells per dimen-

sion. If L < 3 rcut, S will be set to L/3. Cell construction is done at the start of the simulation, or

when a volume changes in the volume transfer, as molecules’ positions will change.

3.4.1.1 OpenMP Implementation

In the OpenMP implementation of the cell list, the simulation uses the default scheduling. Here, if

the program runs with T threads and the loop has N iterations, thread 0 will process the first N/T

iterations, and then thread 1 will process the second N/T iterations and so on. OpenMP has other

modes of scheduling, such as the static mode, where the loop iterations are divided into specified

chucks of equal sizes [85, 115]. Threads will process this specified number of iterations until all

iterations are done. In the dynamic scheduling mode, iterations are assigned to threads in chunks,

and when a thread is done processing the assigned chunk, it will take another one and start pro-

cessing it [115].

Cell Construction

To provide fast access, the neighboring 26 cells of each cell are cached in a list that can be

used later to find particles in the volume of interest. Linked lists are used to store the particle in-

dices of each cell. The reason for using linked lists is that they provide flexibility in terms of add-

ing and removing particles from cells.

50

Intermolecular force interactions

The calculation of intermolecular force of a particle starts by finding to which cell that particle

belongs. Next, the cached list of neighboring particles is accessed to get the indices of all the

neighboring 26 cells. After accessing the list of neighboring cells, a list of all particles that belong

to those 26 cells, along with the particles in the cell that has the particle of interest, is constructed.

This will give us a neighbor list of all particles in the volume of interest. Then, each thread will

process the energy interactions of one or more particles in the list with the particle of interest.

Each thread will process almost the same number of particles. Before doing the summation of

final energy interactions, the threads are synchronized, and then a reduction operation is used to

sum up the energy interactions calculated by the OpenMP threads.

Figure 23: 2D View of a Conventional Cell List

Calculating the system’s total intermolecular energy interactions has more overhead, so here

each thread will be responsible for calculating the force interactions of particles in one or more

cells. For each cell, an OpenMP thread will first construct the neighbor list of particles for a cell,

as done when calculating the interactions of a single particle, then use the same list to calculate

the interactions for each particle in the selected cell, as they all have the same list.

3.4.1.2 GPU Implementation

Memory access is a major design factor in writing code for GPUs. Using linked lists can lead

to an increase of memory reads, thus limiting the speedup. As a result, the arrays are used to store

51

the adjacency list of the neighboring cells. In addition to limiting the memory access, arrays can

provide coalesced memory access, thus reducing memory access overhead.

The size of the arrays that store the list of neighboring cells can be determined, as it will be the

number of cells in the box multiplied by 26. However, the size of the array used to store the parti-

cle indices of each cell is harder to guess. Therefore, the array’s size should be selected to be

large enough to accommodate all particles, but some factors such as the radial cutoff, the mini-

mum distance between particles, and the density can help in selecting an appropriate size. In addi-

tion, the simulation tests for overflow when assigning particles to cells.

The process of assigning particles to cells, or binning, starts first with creating an adjacency

list of neighboring cells. A GPU kernel will be responsible for the creation of this list by assign-

ing one thread to find the 26 adjacent cells for each cell, then storing them. This scheme will

eliminate the need for any atomic operations.

Binning of particles is also done on the GPU, where each thread will be responsible for bin-

ning one or more particles. Atomic increment is used to increment the counter of particles in the

cell to prevent race conditions. Since the use of these atomic operations is limited to the cell ini-

tialization operation, and the fact that those atomic operations have become faster with the newer

GPU architectures, the overhead is minimal.

Assigning work to blocks and threads depends on many factors, including the move type. To

calculate the particle’s intermolecular energy, there can be different ways for assigning cells to

blocks, such as using one block to process all the 27 cells in the volume of interest, or using 3

blocks, where each block processes 9 adjacent cells, or using 9 blocks, where each block process-

es 3 cells, and finally, using 27 blocks, where each block processes one cell. Previous experi-

ments [88] show that the best performance is obtained by using 27 blocks. Here, each block will

process the interactions of all particles in the assigned cell with the target particle. To calculate

the system’s intermolecular energy, each block will process the interactions of all particles in its

52

designated cell with all particles in the center cell. The coordinates of the particles in the center

cell are stored in shared memory to reduce memory access time.

The same optimized summation method is used throughout all of GPU implementations in this

work [88]. The first phase will sum all the interactions of the threads in that block, which are

stored in shared memory, then store them in a global memory location so that they can be ac-

cessed by threads from other blocks. Atomic operations are used to achieve synchronization, as

there is no explicit synchronization function in CUDA to synchronize thread blocks. The last exe-

cuting thread block will be responsible for the second phase of summation, which is summing the

energy interaction across the thread blocks. Finally, the total sum for the energy interactions is

stored in the first thread of the last executing thread block.

3.4.2 Proposed Cell List Algorithm and Optimizations

As many researchers have shown, a conventional cell list outperforms brute force energy cal-

culations [57]; however, there are some drawbacks to the conventional cell list approach, such as

encompassing more volume than the volume of interest and the cost of maintaining this list.

In this work, I evaluate a modified cell list approach that divides the simulation box into what

is called microcells, where the dimension of each axis of each cell is equal to 1σ, except for

boundary cells, which can be smaller. For example, if the volume of the simulation is equal to

60.34σ
3
, then the boundary cell along an axis will have a length of 0.34σ. An illustration of the

microcell list is shown in Figure 24.

The use of this microcell is based in part on the fact that a cell with a smaller size can accom-

modate only a few particles. In addition, the use of this fine-grained approach will reduce the pro-

cessed volume significantly. Another advantage is that the microcell list structure allows a more

efficient mapping of the computation to the many-core architecture of the GPU, leading to better

load balancing.

53

Figure 24: Using a microcell data structure reduces the total volume being processed

3.4.2.1 OpenMP Implementation

The OpenMP implementation of the microcell list uses the same method used for the conven-

tional cell list as described in section 3.4.1.1, as it has good load balancing properties. The main

advantage of using the microcell list is that it results in fewer particles in the constructed neighbor

list, which should lead to fewer computations.

3.4.2.2 GPU Implementation

The initialization of the microcells is required at the start of the simulation and after a volume

transfer is executed. Resizing the cells is one option to address the volume change; however, the

GPU is used to initialize the cells, which takes almost negligible time (less than 200 microsec-

onds for a system of 131072 methane molecules using NVIDIA’s Tesla K40c). This is achieved

by taking directly the integer portion of each coordinate and using it to determine the appropriate

cell. For example, if a particle is centered at location [23.5, 12.3, 14.9], then it will be placed in

cell [23, 12, 14].

Tracking the contents of each cell requires two arrays; one stores the number of particles in

each cell and the other holds the particle indices of the particles in each cell. Instead of storing the

particle indices of a cell in consecutive memory locations, they are organized such that the first

particle of each cell is stored in the array, followed by the second particle of each cell and so on.

This scheme will improve memory coalescing.

54

In the microcell list implementation, an adjacency list for cell neighbors is not constructed, as

it will be huge due to the large number of small cells. Instead, each thread will calculate which

cell it is accessing. To map the threads of a thread block to the neighboring cells of a particle, a

3D thread block is defined to ease the mapping process and make it more efficient. Here,

threadIdx.x, threadIdx.y, and threadIdx.z are used to map threads to a unique cell in the cube of

microcells. An offset is needed to further map the threads to the actual cells in the system. For

instance, for a cube of microcells of size 7
3
, when processing a particle in cell (7, 6, 5), neighbor-

ing cell (4, 3, 2) is assigned to thread (0, 0, 0) and cell (10, 9, 8) is assigned to thread (6, 6, 6). A

block of 512 threads is set to be the maximum block size, which can cover up to 8
3
 unique micro-

cells for a block. In the case of larger cutoffs, threads will need to iterate over more than one mi-

crocell to process all the microcells in the cell cube.

To process the system’s intermolecular energy interactions of a box, this work extended the

microcell algorithm [88] used to process molecule energy interactions by launching a number of

thread blocks equal to the number of single particles to process. However, for large systems, this

may result in launching a large number of thread blocks. To overcome this, the system can be

configured so that each thread block is responsible for processing the energy interactions of more

than one particle. Throughout all this work’s experiments, it has been found that the best results

are achieved when each thread block processes the cell energy interactions of four particles. The

algorithm will only calculate the energy interactions of unique pairs of particles.

3.5 Hybrid Cell List Implementations

This section will present the implementations for the conventional cell list algorithm using

two parallel implementations, a hybrid MPI+OpenMP code and a hybrid MPI+CUDA code, and

evaluate their scalability across nodes of multicore CPUs, Intel Xeon Phi coprocessors, and

GPUs. In addition, the section will present a modified cell list implementation for calculating the

system’s total intermolecular force interactions that is based on reducing the dimensions of the

55

cell in order to reduce the whole volume of interest in which the energy interactions are evaluat-

ed. The MPI+CUDA version runs on GPU nodes, while the MPI+OpenMP version runs on mul-

ticore CPU and Phi processors.

3.5.1 Hybrid MPI+OpenMP Cell List Implementations

This section will go over the hybrid MPI+OpenMP Cell list implementations, showing how

the work is distributed among different processing nodes.

3.5.1.1 Conventional Cell List

The master MPI process (id=0) is responsible for constructing the cell list and distributing the

workload among the other MPI processes (id≠0). After completing the cell list construction, other

MPI processes will start processing their assigned cells, where each node will process approxi-

mately the same number of cells. In this work, the total energy calculation functions are calculat-

ed on multiple processes, which is mainly used in volume moves, as other moves have much less

computation to benefit from distributing the work on other processors.

At each MPI process, which will be running one parallel device or CPU, the calculation of the

system’s total intermolecular energy interactions of its assigned cells is done using OpenMP.

Here, each OpenMP thread will be responsible for calculating the interactions of particles in one

or more cells. As all particles in a cell share the same adjacent cells, a neighbor list of all particles

in adjacent cells and the current cell is constructed first by combining the particle lists of all those

cells in the volume of interest that has 27 cells. After constructing the list, the thread will then

iterate over the interactions of each particle in the center cell with all particles in the neighbor list.

After all threads finish processing all cells, a reduction operation is used to sum the partial inter-

molecular energies.

After all MPI processes are done calculating the energy interactions of their assigned cells, an

MPI_Gather [105] operation is executed to compute the system’s total intermolecular energy. At

this point, the master MPI process will sum those results and then use the final sum to determine

the acceptance of the volume move.

56

The initialization and maintenance of the cell list causes major overhead that needs to be ad-

dressed in order to use the cell list efficiently. For small systems, this overhead may eclipse the

advantages of using the cell list in the first place. In MD, the large volume of computation re-

quired for each move may mask this overhead, but in MC, this is still a major concern, especially

for small systems.

3.5.1.2 Microcell List

For the OpenMP implementation of the microcell list, the same method is used to calculate the

total energy as described in section 3.5.1.1, as it has good load balancing properties. The main

advantage of using the microcell list is that it results in fewer particles in the constructed neighbor

list, which should lead to less computation.

3.5.2 Hybrid MPI+CUDA Cell List Implementations

As some nodes may have more than one GPU, CUDA streams [6] are used to distribute work

among those GPUs, where each stream can execute a kernel asynchronously on different GPUs.

The master MPI process is responsible for distributing the work to other MPI processes.

CUDA 5.0 and later releases introduced GPUDirect Remote Direct Memory Access (RDMA)

[6], which allows network devices to access data in the GPU device memory without going

through the host’s memory. After initializing the cells, the master MPI process will distribute the

workload on other GPUs in other MPI processes, where each GPU will processes almost the same

number of cells.

3.6 Testing and results

In all the results presented in this dissertation, the standard speedup metric is used for perfor-

mance comparisons of the GPU codes and the serial codes. The total elapsed execution time

measurement starts with the input of the parameters, and ends with the final output. The follow-

ing well-known formula is used to calculate the speedup ratio (𝑆):

57

𝑆 =

𝑇𝑆

𝑇𝑃
 (3.1)

where Ts is the serial code execution time, and Tp is the GPU code execution time.

3.6.1 Cell list testing

 In this section, performance evaluations of the cell list implementations are presented on dif-

ferent parallel architectures. The base for all comparisons will be the single core CPU runs that

use the brute force method. The brute force CPU code does not use OpenMP. All reported results

are the average of three trial runs; the difference in performance among these three runs was neg-

ligible. All the energy results from the two cell list methods match on all parallel processors. Ta-

ble 1 shows the specifications for the CPU, GPU, and the Intel Xeon Phi coprocessor (MIC) par-

allel hardware used in the experiments. All interactions are done using double precision. The In-

tel® compiler (icpc v15) for Linux is used to compile the OpenMP code for the MC CPU and the

MIC, while CUDA 7.0 was used to compile the CUDA GPU code. All codes are compiled with

the 64-bit and the full optimization (-O3) flags.

Table 1: List of major specifications of the parallel processors for the experiments

 CPU MIC GPU

Model
Intel® Xeon ® E5-

2680 v2

Intel® Xeon

Phi™ 7120P

Nvidia Tesla

K40

Micro Architec-

ture
Ivy Bridge (EP) Knights Corner Kepler

Number of cores
10 (Hyper thread-

ed)
61

2880 (15

×192)

Clock Frequency 2.85 GHz 1.238 GHz 0.745 GHz

3.6.1.1 Molecule Intermolecular Energy Evaluations

This set of experiments evaluates the performance of the molecule intermolecular Lennard

Jones force interactions. For small systems, it can be observed that there is slight or almost no

improvement by using the cell list over a single core CPU brute force approach because of the

overhead of processing the cells, data reduction, and the low utilization of the parallel hardware.

58

For large systems, and when testing with different cutoffs, the cell list on all parallel platforms

outperforms the single core CPU implementation for both conventional and microcell list as

shown in Table 2 and Figure 25. It can also be noticed that the microcell list outperforms the con-

ventional cell list on all parallel platforms, with the multicore CPU achieving the highest

speedups while the MIC achieving the lowest. The best results on the multicore CPU and MIC

were achieved using 8 threads. Figure 26 shows that the GPU had the highest speedup gain of the

microcell list over the conventional cell list approach compared to the other parallel platforms.

The reason for this is that only one thread block is needed to do all the calculations, so there is no

need for inter-block communication to do data reduction.

Table 2: Runtime results for cell list implementations for molecule intermolecular energy interactions in

microseconds for a simulation box size of 65536 methane molecules (one interaction site in each molecule)

Brute

force
Conv. Cell List Microcell List

Radial

cutoff

Single

CPU core

Multicore

CPU
MIC GPU

Multicore

CPU
MIC GPU

2.5σ 1025 31 456 63 30 430 35

3.0σ 1033 34 680 104 28 433 36

3.5σ 1047 42 747 154 29 440 65

4.0σ 1059 60 757 241 40 442 72

3.6.1.2 System Intermolecular Energy Evaluations

I first experimented with the conventional cell list and the microcell list using a cutoff of 2.5σ.

Table 3 shows the execution time in milliseconds for each of the parallel architectures for calcu-

lating the system’s intermolecular function using the two cell list methods. Figure 27 shows

speedup gains over the single core CPU brute force code. The best performance was achieved

using 16 threads for the CPU (by using hyper threading) and 128 for the MIC. The density is

0.0177 particles per σ
3
 for all systems.

For the multicore CPU implementation, it can be notice from Figure 28 that the microcell list

was faster than the conventional up to a box size of 1024 octane molecules. For larger systems,

the overhead of having many small cells in the microcell list makes the conventional cell list

59

more efficient. As for the MIC, it can be noticed that the microcell list performed better than the

conventional cell list for all sizes, but less speedup is gained for larger sizes.

Table 3: Runtime results for cell list implementations for system intermolecular energy interactions in

milliseconds for octane systems (8 interaction sites, rcut = 2.5σ)

Brute force Conv. Cell List Microcell List

Number Of

Mols.

Single CPU

core

Multicore

CPU
MIC GPU

Multicore

CPU
MIC GPU

128 9.61 1.323 7.131 0.597 1.055 2.284 1.816

256 29.07 2.871 7.743 0.956 2.175 3.646 3.92

512 97.94 3.61 9.597 1.885 3.579 7.431 7.72

1024 350.99 7.059 12.691 3.48 6.778 9.215 15.063

2048 1330.21 14.12 26.048 6.894 14.684 23.032 29.014

4096 5170.72 22.05 40.506 14.394 26.801 36.447 56.788

8192 20282.57 42.83 71.371 28.5 48.342 63.214 113.04

In the GPU evaluations, the conventional cell list performed better than the microcell list. The

reason for this is that the conventional cell list uses far fewer threads to process the volume of

interest. In the microcell list GPU code, each block will calculate the intermolecular energy for

one or more particles, while in the conventional cell list, each of the 27 blocks processes the in-

teractions of one or more cell. This scheme works fine with the conventional cell list as most of

the cells will not be empty.

Figure 25: Speedup of cell list implementations over the 1 core CPU brute force implementation

60

Figure 26: Speedup of microcell list over conv. cell list for molecule intermolecular interactions

I also ran the same tests with a relatively large cutoff of 4σ. Table 4 shows the runtime results

in milliseconds for each of the parallel architectures for the system’s intermolecular function us-

ing the two cell list methods. Figure 29 shows the speedup of the cell list codes on the different

parallel platforms over the CPU for a radial cutoff of 4.0σ. Figure 30 shows the speedup of the

Microcell list code over the conventional cell list code for all parallel platforms used in the exper-

iments.

Table 4: Runtime results for cell list implementations for System intermolecular energy interactions in

milliseconds for octane systems (8 interaction sites). (rcut = 4.0σ)

Brute force Conv. Cell List Microcell List

Number

Of Mols.
Single CPU core

Multicore

CPU
MIC GPU Multicore CPU MIC GPU

128 21.946 2.879 10.998 1.866 2.125 3.296 3.946

256 58.613 9.24 36.903 2.377 4.398 5.974 8.485

512 150.447 24.228 51.542 3.579 8.705 9.782 16.996

1024 436.459 28.738 77.121 7.776 17.405 15.68 33.717

2048 1455.622 53.862 135.137 16.938 32.427 36.368 64.8

4096 5163.027 110.678 232.186 31.719 59.881 58.21 125.54

8192 19093.304 185.628 351.178 62.678 109.566 84.077 251.27

61

Figure 27: Speedup for cell list implementations for system intermolecular energy interactions over 1

core CPU brute force for octane systems (8 interaction sites, rcut = 2.5σ)

Figure 28: Speedup for microcell list for system intermolecular energy interactions over conventional

cell list for octane systems. (rcut = 2.5σ)

62

Figure 29: Speedup for cell list codes for system intermolecular energy interactions over CPU brute

force for octane systems (8 interaction sites, rcut = 4.0σ)

Figure 30: Speedup for microcell list for system intermolecular energy interactions over conventional

cell list for octane systems (8 interaction sites, rcut = 4.0σ)

63

As observed from Figure 29, the microcell list performs better than the conventional cell list

for all box sizes on the multicore CPU and the MIC, and achieves more speedup compared to

runs with smaller cutoffs. For the GPU, the conventional cell list still performs better than the

microcell list. It can be observed from Figures 27 and 29 that the GPU conventional cell list per-

formed the best compared to the other parallel architectures.

3.6.2 Testing of Hybrid Implementations

This section will show the assessment the performance of the conventional cell list and the

microcell list implementations on three different parallel cluster platforms. Three trial runs are

made for each presented result; the difference in performance among these three runs is negligi-

ble. In addition, the difference between energy results from the two cell list algorithms on all par-

allel devices is negligible.

The clusters’ hardware specifications for the multicore CPU, GPU, and the Phi coprocessor

are shown in Table 1. All energy calculations are done using double precision. The cluster used

for all the experiments has a total of 8 nodes, where 4 of them have a total of 8 GPUs (2 GPUs on

each node). Two of the 8 GPUs are NVIDIA’s Tesla K40X, and the other 6 are NVIDIA’s Tesla

K20X. The other 4 nodes have a total of 8 Phi coprocessors (2 Phi devices on each node). All 8

nodes have the same CPU described in Table 1. In the set of experiments for the GPU and Phi,

the difference in execution time of running the codes on devices that are on the same node or dif-

ferent nodes is negligible, such as in the case of using 4 GPUs on two nodes versus using 4 GPUs

on 4 different nodes. The cluster used in all experiments has InfiniBand and Gigabit Ethernet

networking.

The hybrid MPI+OpenMP implementations are compiled using the Intel compiler (icpc v15)

for Linux, while CUDA 6.0 is used to compile the MPI+CUDA GPU code. The MVAPICH2 2.0

[105] CUDA-Aware version of MPI is used to compile the MPI codes, as it has support for

GPUDirect. Tests are done using different numbers of devices that will each run an individual

MPI process. For the multicore CPU and Phi coprocessor experiments, I also experimented with

64

different numbers of OpenMP threads. The Phi codes are compiled in native mode. All tests are

done using systems of octane molecules; in which each molecule has 8 interaction sites (parti-

cles). A radial cutoff of 2.5σ is used in all experiments, and the density for all boxes is 0.0105

particles per σ
3
, which equilibrated systems may have.

3.6.2.1 Hybrid MPI+OpenMP

The first set of experiments is designed to evaluate the performance of the hybrid

MPI+OpenMP implementations of the conventional cell list and the microcell list using different

numbers of devices and OpenMP threads. First, a review the results of running the total intermo-

lecular energy calculations on the multicore CPU nodes will be presented. Figure 32 and Tables 5

and 6 show runtime results using different numbers of OpenMP threads and MPI processes, high-

lighting the configurations that achieved the best performance for each problem size. OpenMP

threads will be referred to as “threads” throughout the results’ section.

For the conventional cell list results, observe that increasing the number of devices does not

always give the best result, as can be seen from the performance results of problem sizes less than

2048 molecules. This is due mainly to the communication overhead. As the problem size grows,

the best performance is achieved when using 8 CPUs with 8 threads running on each CPU. For a

problem size of 8192 molecules, using 8 CPUs with 8 threads each achieves more than 26 times

speedup over using a single CPU running one thread.

The microcell list results show that for problem sizes that are less than 1024, the best perfor-

mance is achieved when using 8 CPUs and 4 threads per CPU. Simulation runs on boxes of size

1024 and more show that the best results are achieved using 8 CPUs with 8 threads per CPU. It

can be observed that running more than 8 threads per CPU results in slower execution times for

most problem sizes and MPI process counts.

65

Table 5: Multicore CPU runtime results (in milliseconds) for the conventional cell List method

 Number of Devices (MPI Processes)

of Mols # of threads 1 2 4 8

128

1 10.197 6.431 4.174 2.667

4 4.832 3.288 2.866 4.695

8 4.54 4.168 7.128 8.921

256

1 16.54 9.63 6.485 3.705

4 7.44 4.541 4.414 3.564

8 9.442 8.799 7.707 10.151

512

1 24.903 13.478 9.09 5.063

4 9.478 5.553 4.669 3.763

8 7.59 9.106 6.266 6.616

1024

1 54.26 28.408 16.937 9.04

4 17.855 9.477 7.06 6.791

8 10.191 7.707 6.883 7.08

2048

1 107.757 56.221 35.566 19.456

4 37.051 20.76 12.133 9.633

8 22.052 17.1 10.112 8.714

4096

1 195.793 100.577 57.98 29.39

4 58.384 30.727 17.627 10.571

8 32.992 21.378 20.89 9.681

8192

1 392.983 200.762 111.023 58.115

4 114.901 58.528 32.116 18.746

8 60.034 48.159 32.739 15.462

Table 6: Multicore CPU runtime results (in milliseconds) for the microcell list method

 Number of Devices (MPI Processes)

of Mols # of threads 1 2 4 8

128

1 8.298 5.31 3.75 2.327

4 4.452 2.94 2.635 2.121

8 4.413 4.559 8.056 13.249

256

1 15.365 8.718 6.665 3.876

4 6.975 4.504 3.644 3.041

8 9.589 8.414 7.424 11.231

512

1 31.051 17.158 11.275 6.474

4 11.594 7.178 4.458 3.381

8 13.481 8.612 8.356 6.613

1024

1 59.013 31.789 19.557 11.151

4 19.59 11.814 6.917 8.768

8 25.631 20.576 7.574 5.702

2048

1 123.268 63.033 42.033 22.326

4 41.585 23.591 12.927 10.096

8 24.168 19.392 12.377 9.537

4096

1 250.367 128.164 75.386 39.086

4 74.298 40.07 22.711 13.839

8 45.582 25.972 19.515 12.073

8192

1 502.473 258.901 143.795 74.067

4 142.367 74.569 38.715 21.429

8 79.063 44.528 25.352 20.277

66

Table 7: Intel Xeon Phi runtime results (in milliseconds) for the conventional cell list method

 Number of Devices (MPI Processes)

of Mols

Mols

of threads 1 2 4 8

128

1 110.514 79.09 56.459 46.914

4 64.478 53.651 45.999 43.25

8 61.667 54.702 50.14 48.032

16 60.608 60.968 58.853 54.072

32 73.494 69.583 68.842 63.571

64 74.534 74.616 73.549 71.244

256

1 183.572 158.621 84.375 59.888

4 89.748 105.442 59.493 52.059

8 70.578 111.739 93.232 60.293

16 70.893 66.481 63.41 60.708

32 89.956 101.026 101.563 97.759

64 97.248 103.352 102.198 170.623

512

1 275.703 199.897 170.566 79.199

4 121.437 123.406 110.726 93.432

8 74.242 67.565 62.664 62.277

16 76.592 68.365 68.478 62.414

32 84.697 78.897 119.987 104.293

64 103.157 104.162 170.538 179.84

1024

1 561.946 297.994 192.096 154.121

4 198.89 115.059 87.585 77.371

8 166.839 136.731 110.579 73.029

16 101.129 82.57 72.644 71.217

32 103.352 92.573 89.081 85.604

64 109.335 103.768 102.774 99.197

2048

1 1141.71 626.289 389.655 268.059

4 448.743 229.902 148.137 140.078

8 236.496 150.271 149.252 87.213

16 158.216 148.057 131.691 75.855

32 155.927 137.513 133.755 112.034

64 131.12 117.991 109.036 173.266

4096

1 2067.47 1125.947 674.253 330.087

4 688.341 383.991 240.949 170.527

8 342.847 244.267 177.639 108.021

16 262.245 196.752 151.39 131.148

32 206.152 160.072 149.609 129.24

64 240.78 200.075 193.123 187.18

8192

1 3956.38 2204.27 1243.334 650.784

4 1215.15 702.108 418.35 248.169

8 694.48 404.519 268.099 159.101

16 423.201 295.124 195.426 161.073

32 305.056 220.267 183.715 131.12

64 279.508 245.362 199.214 189.868

67

Table 8: Intel Xeon Phi results (in milliseconds) for the microcell list method

 Number of Devices (MPI Processes)

of Mols # of threads 1 2 4 8

128

1 78.57 99.786 87.075 40.906

4 94.487 86.56 81.672 35.149

8 95.222 92.194 90.022 58.966

16 96.265 94.495 98.564 102.464

32 107.951 107.15 116.172 112.156

64 134.045 139.146 162.684 166.415

256

1 130.368 69.975 50.451 92.286

4 122.332 96.257 90.551 86.808

8 62.476 55.808 50.094 60.656

16 97.698 99.423 103.945 101.238

32 114.801 114.925 110.845 103.939

64 139.236 131.478 205.249 164.484

512

1 337.043 213.603 123.167 118.289

4 162.57 123.609 102.465 93.155

8 131.634 107.247 99.404 64.758

16 115.731 107.772 105.751 106.643

32 121.008 115.252 110.186 108.974

64 144.65 142.099 169.601 171.258

1024

1 455.556 304.862 226.032 150.338

4 223.035 155.237 127.497 101.342

8 163.451 123.899 113.641 95.872

16 144.317 118.828 115.728 103.704

32 133.591 119.158 116.312 115.485

64 143.779 160.709 178.434 150.984

2048

1 1075.143 575.527 409.94 250.004

4 404.38 266.414 181.949 135.412

8 253.697 182.867 129.88 120.353

16 188.236 146.471 130.888 119.556

32 160.616 151.538 143.406 114.82

64 167.689 188.399 184.024 172.811

4096

1 1989.131 1063.011 642.327 373.816

4 645.778 373.279 238.608 160.693

8 392.485 246.706 180.403 152.292

16 266.783 201.959 156.7 142.564

32 228.128 197.778 144.881 139.714

64 215.566 231.837 210.317 219.453

8192

1 3957.847 2114.066 1189.278 664.164

4 1181.601 669.13 388.684 239.494

8 656.358 390.26 244.342 151.171

16 385.959 265.922 199.024 162.898

32 263.511 243.613 195.732 155.327

64 284.107 252.832 249.387 240.962

68

When compared to the conventional cell list results, it can observed that the best configura-

tions of MPI processes and threads for the microcell list are faster than the best configurations for

the conventional cell list for problem sizes up to 1024. However, the difference in performance is

slight, achieving at most a speedup of 19% for the problem size of 1024 molecules per box. For

larger problem sizes, the overhead of maintaining and processing many small empty cells makes

conventional cell lists perform better.

The second set of the hybrid MPI+OpenMP cell list implementations is done on Xeon Phi ac-

celerators. There are many ways to program those accelerators. Here, I tried running the

MPI+OpenMP code on those accelerators to observe the performance compared to multi core

CPUs. Figure 31 and Tables 7 and 8 show the execution times for these two cell list algorithms.

For the conventional cell list, note that the best performance for the first two problem sizes is

achieved when using 8 Phi processors with 4 threads each. As the problem size grows, the best

performance is achieved when using 8 Phi devices and 8 and 16 threads for problem sizes 1024

and 2048 respectively, then for the remaining sizes, the best performance is achieved when using

8 Phi devices and 32 threads. Also note that for the largest problem size, 8192, the simulation

achieved more than 30 times speedup for the best performing configuration over using one Phi

coprocessor with 1 thread.

Microcell list results show that for the first two problem sizes, using 8 Phi devices running 8

threads each will actually be slower than just using one Phi running one thread. For problem sizes

that are larger than 1024, the best performance is achieved using 8 Phi coprocessors with 32

threads each. For the largest problem size of 8192, the best configuration achieved more than 25

times speedup over using a single Phi device running one thread.

69

Figure 31: Execution time in milliseconds for the best configurations of the conventional and microcell

lists when running on a Phi cluster

Figure 32: Execution Time in milliseconds for the best configurations of the conventional and microcell

lists when running on a multicore CPU cluster

3.6.2.2 Hybrid MPI+CUDA

This section presents the results of running the two different cell list implementations on

GPUs. Table 9 shows the conventional cell list runtime results. Note that for problem sizes of 128

and 256, using two GPUs gave the best performance results. As the problem size grows, the best

execution time was achieved when using all 8 GPUs. For the largest problem size of 8192, using

70

eight GPUs achieved almost 3.45 times speedup over using a single GPU. Table 10 shows the

runtime results for the microcell list. It can be seen that with the exception of the smallest prob-

lem size, the best performance results are achieved using all 8 GPUs. It can also be noticed that

for problem sizes 128, 256, and 512, the microcell list code is faster than the execution times of

the best configurations in the conventional cell list runs. As the problem size grows, having many

small cells will have more overhead compared to the overhead of having larger cells in the con-

ventional cell list approach. Figure 33 shows run time for the best configurations for the two cell

list algorithms on the GPU.

Table 9: GPU runtime results (in milliseconds) for the conventional cell list method

 Number of Devices (MPI Processes)

Number of Mols 1 2 4 8

128 1.165 1.022 1.149 1.557

256 1.658 1.258 1.395 1.495

512 2.974 1.94 1.8 1.736

1024 5.291 3.046 2.763 2.291

2048 10.268 5.872 4.266 4.018

4096 20.913 11.269 7.574 6.548

8192 41.249 21.317 13.408 11.88

Table 10: GPU runtime results (in milliseconds) for the microcell list method

 Number of Devices (MPI Processes)

Number of Mols 1 2 4 8

128 1.605 1.445 0.75 0.91

256 3.279 2.021 1.795 1.209

512 6.469 2.768 1.931 1.53

1024 12.652 5.368 3.076 2.591

2048 23.439 9.873 5.667 4.404

4096 46.066 19.412 16.49 10.384

8192 91.712 38.355 16.929 16.764

For large systems, the processing of many small microcells requires launching many threads.

In the case of sparse systems, most of those threads will do little work. In the conventional cell

list, larger systems will require launching fewer threads compared to the microcell list, where

those threads will have work to do, as larger cells will have particles to process, even in the case

of sparse systems.

71

Figure 33: Execution time in milliseconds for the best configurations of the conventional and microcell

lists when running on a GPU cluster

3.6.3.3 Parallel Platform comparisons

When all three parallel platforms are compared, multicore CPUs, Phi coprocessors, and GPUs,

it can be observed that the best performance is achieved using GPUs. Tables 11 and 12 show

speedups of the GPU platform over the Phi and multicore CPU clusters for both the conventional

and the microcell lists. It can be noticed that the Phi accelerators that ran the MPI+OpenMP code

are the slowest of all three platforms. Major factors that contributed to the GPU’s best perfor-

mance include using of the GPUDirect technology that reduces the communication overhead be-

tween GPUs, and having good mapping of the work load to the GPU’s threads and thread blocks.

Table 11: Speedup of the GPU runtimes over the multicore CPU runtimes for the best configurations at

each problem size

Number of Mols Conv. Cell list Microcell List

128 2.610 2.828

256 2.833 2.515

512 2.168 2.210

1024 2.964 2.201

2048 2.169 2.166

4096 1.478 1.163

8192 1.302 1.210

72

Table 12: Speedup of the GPU runtimes over the Intel Xeon Phi coprocessor runtimes for the best con-

figurations at each problem size

Number of Mols Conv. Cell list Microcell List

128 42.319 46.865

256 41.382 41.434

512 35.874 42.325

1024 31.086 37.002

2048 18.879 26.072

4096 19.737 13.455

8192 11.037 9.018

3.7 Summary

This chapter focused on presenting the GOMC simulation’s design and challenges that were

faced when optimizing the code to run on the GPU. The optimizations included the remapping of

energy interactions to produce a more balanced workload for the brute force GPU code. In addi-

tion, the chapter went over the cell list code implementations and optimizations for the OpenMP

and the GPU code. The optimizations for the GPU microcell list code show that efficiently map-

ping the problem to the GPU hardware can lead to better performance, such as using 3D thread

blocks and only using one thread block to eliminate the need for block synchronization. While the

microcell list achieved better performance compared to the conventional cell list for the particle

interactions, the need to launch many threads to calculate the system’s total energy made the mi-

crocell list slower.

73

CHAPTER 4 PFC GRAIN GROWTH

This chapter will present the overall description of the PFC grain growth implementation. It

explains the approach, procedures, software, and hardware used to realize the implementation. In

this chapter, the serial code may also be referred as the host or CPU code, while the GPU code

will be referred to sometimes as the device or parallel code.

4.1 PFC GPU Implementation

This section describes the PFC simulation and properties that are ported to the GPU and how

they were implemented. The grain growth simulation for the PFC model simulates 2D hexagonal

crystals. By using the GPU, large systems can run for longer simulated time periods in a reasona-

ble amount of time. The CPU code is responsible for initialization, I/O, and launching kernels.

Because the PFC mainly processes the ψ array and transforms it throughout the simulations steps,

the ψ array will not be copied back to the CPU except when output is performed. The flowchart

of the simulation is shown in Figure 34.

4.1.1 System Functionality

The most computationally intensive parts of the PFC simulation are the processing of the ψ ar-

ray and the other auxiliary arrays used in the simulation, and the fast Fourier transforms (FFTs)

[59, 72]. FFTs are used to compute discrete Fourier transforms (DFTs). The ψ array and some

arrays are of size lx × ly, which is demanding to compute since they are processed several times

in each step. Different kernels are written to handle different processing operations on the ψ and

auxiliary arrays. A thread can process one or more positions. In each time step, there are several

FFT calls, some are forward, in which they transform double to complex arrays, and others are

backward.

74

Figure 34: PFC system flowchart

For the serial code, the FFTW library [72] is used to implement the FFT functions. FFTW is

the fastest publically available implementation of the FFT functions [72]. The cuFFT library,

available from NVIDIA, is used for the GPU code, which is the fastest GPU FFT library [59].

75

4.1.2 Orientational Correlation Function (g6)

The g6 function can be calculated in different ways. One way is described in equation 4.1

 𝒈𝟔(𝒓) = 〈𝒄𝒐𝒔 (𝟔 (𝜽𝒊 − 𝜽𝒋))〉 (4.1)

where r is the distance between two atoms, and θ is the local lattice orientation [14, 26, 35].

To calculate the g6 function on the GPU, the following steps are executed:

1. The ψ array values are examined to detect atoms. When ψ reaches a local maxima value

in any spatial point that means this location represents an atom. One way to do the detec-

tion is by using the connected component labeling algorithm [81]. First, a threshold is set

for the ψ values, and thereby excludes all ψ values that represent vacancies. Within a

connected component, the local maximum value of ψ is detected and marked as an atom.

Atoms are then stored in a list sorted by the x-coordinate of its position, because they are

detected in a row-by-row fashion. Figure 35 gives an illustration of the atom detection

method.

2. Using Delaunay triangulations, the nearest neighbors are located for each atom. Delaunay

triangulations are the dual of Voronoi diagrams [29, 30]. A Voronoi diagram for a group

of points is constructed of what is called Voronoi cells. For each point, there will be a

corresponding cell that contains all the points that are the closest to that point. From the

Voronoi diagram, the Delaunay triangulations can be extracted and used to find the clos-

est neighbors for each atom.

76

 (a) (b)

(c)

Figure 35: (a) ψ array plot representation using HDF (b) Regions (white) generated by the connected

component algorithm (c) Final atom representation

77

The serial code implementation used a Delaunay triangulation algorithm called Trian-

gle, which is considered the fastest serial implementation for the Delaunay triangulation

[29, 30, 82]. For the GPU code, the GPU-DT library is used for 2D Delaunay triangula-

tions, which is the fastest 2D Delaunay triangulation on the GPU [29, 30]. In all simula-

tions, each atom will represent the center of a hexagonal lattice as shown in Figure 36.

Figure 36: Delaunay triangulations for detected atoms. The figure also shows a hexagonal lattice and

two disclinations

Figure 37: (θ) angle for a hexagonal lattice computed against a reference line

78

3. The local lattice orientation (θ) [16] is calculated for each atom. The θ angle is calculated

by determing how the hexagonal lattice deviates from the reference horizontal line

inserted at the start of the simulation. Figure 37 shows an example. The θ angle gives an

idea of the orientation of hexagons in grains. Hexagons in the same grain should have

almost the same orientation.

4. For each atom, the circular average of θ angles is to be calculated next. The circular

average can be calculated over different radii by constructing a ring area of radii r+dr/2

and r-dr/2, where r is equal to dr × k , dr is equal to 4𝜋 √3⁄ , and k represents the order

number for the circular average. For example, when k is equal to 1, this means that it will

be the first search ring surrounding the atom. The sorted list of atoms can be useful for

finding atoms that fall within the search ring. To calculate the circular average of θ

angles, a tangent square is constructed over the search ring to mark the search area. After

that, each thread will perform a binary search to locate the starting and finishing atoms in

the atom list by using the upper left and lower right corner x-coordinate, and thereby

establishing a search region that is constructed of a strip of rows that has within them the

search area. A thread can process one or more atoms. Most g6 calculations require the

calculation to be done for several k values, which means that almost all the points inside

the search square of the largest k will be included for some value of k. Figure 38 gives an

illustration of the search method.

5. The last step is to calculate the arithmetic mean of the circular averages for every

specified radii. This procedure of calculating the g6 is used for the GPU and serial codes.

Disclinations can be counted using the first two steps of the procedure used in the g6 cal-

culation.

79

Figure 38: Circular average mechanism

4.1.3 Correlation Length

The correlation length function specifies how g6 varies over time [109, 110]. To determine the

correlation length, we need to pick r where the g6 is equal to e
-1

. To do that, we keep calculating

g6 for increasing values of k until we get two values of log(g6) that are log(g6(k)) ≤ -1 ≤

log(g6(k+1)). After that, we do a linear interpolation to get the correlation length. Figure 39 shows

the result of the correlation length over time for a 512
2
 system size.

4.2 PFC Other Properties

This section will go over some of the properties done in this work that are not yet ported to the

GPU. The algorithms specified here will be used as a guide to the planned GPU implementation.

4.2.1 Number and Density of Disclinations and Dislocations

To calculate the disclinations and dislocations, we first determine the atoms that have 5 or 7

neighbors using the same procedure that is used in calculating the g6. After determining those

atoms, we can determine the number of 5 and 7 disclinations, which is just a matter of counting

80

them. To determine the number of dislocations, we find the pairs of 5 and 7 disclinations and

count each pair as one dislocation. Figures 40 and 41 show the count and density of disclinations

and dislocations for a system of 512
2
 over time.

Figure 39: Correlation length

Figure 40: Dislocation and disclination count

81

Figure 41: Dislocation and disclination density

4.2.2 Structure Factor

Code listing 1 shows the code that is used to calculate the structure factor. In crystallography,

the structure factor is used to describe how a crystal structure scatters radiation and reflects it

[108]. Figure 42 shows the structure factor calculated at different time steps for a system of 512
2
.

Figure 42: structure factor

82

Code Listing 1: Structure factor code

As it can be noticed from the code listing, the for loops can be easily ported to the GPU by

creating kernels where each thread processes one or more entry of the arrays.

4.2.3 Moments

To calculate the moments for the structure factor, we first calculate the structure factor, and

then use the code segment in code listings 2 and 3 to calculate different moments [110]. Figures

43, 44, and 45 show different moment results for a system of size 512
2
. Again, the code listings

show that the porting to the GPU is straightforward.

void structure_factor(double q0, double time, double dx, double dy)

{

int i=0, j=0,n=0 ;

 int w = DATA_DIMENSION/2+1;

for (i=0;i< lx; i++)

for (j=0 ; j< ly/2+1 ; j++)

{

sq1[i*w+j] = pow(cabs (psiq[i*w+j]) ,2);

sq1[i*w+j] = sq1[i*w+j] * scale2d_b;

}

for (i=0;i< lx/2; i++)

{

Sq[i] = 0.0;

total [i] = 0.0;

 }

 for (i=1;i<lx;i++)

 for (j=1;j<ly/2+1;j++)

 for (n=0;n<lx/2;n++)

 {

if ((sqrt(q2[i*w+j])>=dq1[n]) && (sqrt(q2 [i*w+j])

<dq2[n]))

 {

 Sq[n]=Sq[n]+sq1[i*w+j];

 total[n]=total[n]+1;

 }

 }

for (n=0;n<lx/2;n++)

 if (total[n] >0.0)

 Sq[n] = Sq[n]/total[n];

}

83

Code Listing 2: Moments and Moments_0 code

Code Listing 3: Moments_x code

for (n=0;n<lx/2;n++)

 { sumSq=sumSq+Sq[n];

 m1=m1+qq[n]*Sq[n] ;

 m2=m2+pow(qq[n],2)*Sq[n];

 m3=m3+pow(qq[n],3)*Sq[n];

 m1_0=m1_0+fabs(qq[n]-q0)*Sq[n];

 m2_0=m2_0+pow((qq[n]-q0),2)*Sq[n];

 m3_0=m3_0+pow(fabs(qq[n]-q0),3)*Sq[n];

 }

if(sumSq > .00001)

 { m1=m1/sumSq;

 m2=m2/sumSq;

 m3=m3/sumSq;

 m1_0=m1_0/sumSq;

 m2_0=m2_0/sumSq;

 m3_0=m3_0/sumSq;

 }

for (n=0;n< lx/2;n++)

 {

 sumSq=sumSq+Sq[n];

 m1_x=m1_x+fabs(qq[n]-qq[qIndex])*Sq[n];

 m2_x=m2_x+pow((qq[n]-qq[qIndex]),2)*Sq[n];

 m3_x=m3_x+pow(fabs(qq[n]-qq[qIndex]),3)

*Sq[n];

 }

 If (sumSq > .00001)

 {

 m1_x=m1_x/sumSq;

 m2_x=m2_x/sumSq;

 m3_x=m3_x/sumSq;

 }

84

Figure 43: Moments vs. Time

Figure 44: Log-scale plot of moments_0 vs. Time

85

Figure 45: Log-scale plot of moments_x vs. Time

4.2.4 Grain Boundary Detection

Grain boundary detection is a complicated procedure because misorientations can occur within

the grain itself, which increases the difficulty of detecting the separation lines between grains. In

this work, grain boundaries are detected by using a method that combines different strategies used

in a number of grain detection methods [16, 68]. Using more information on misorientations can

give a more accurate estimation of grain boundaries. To get an accurate grain detection of grains

at the boundaries of the system, the system is extended, and then the detection process is done on

the extended area. After the detection process is done, only the grains within the original system

boundaries are considered. This process is illustrated in Figures 46 and 47.

By using the same first two steps from the g6 calculations, three types of information can be

calculated:

1. The location of dislocations.

2. The form of each hexagon.

86

3. The orientation of atoms.

As defined, grain boundaries separate grains that have different orientations, however; it is

very difficult to rely on this alone as the orientation of each atom within the same grain can also

vary. Figure 48 shows the orientations within the grains for a sample system. To reduce the varia-

tions of orientation within a grain, the local mean is calculated for orientation angles for each at-

om and then use this mean for the orientation angle.

The grain detection method works as follows:

1. To identify atoms that may lie on a grain boundary, all disclinations are marked as a po-

tential grain boundary atom. After that, atoms that have neighbors with an orientation dif-

ference of more than 10 degrees are marked.

2. After the initial boundary points are marked, we mark atoms that have one or more

boundary marked neighboring atoms as potential boundary atoms. By doing this, a buffer

of potential boundary points will surround potential grains. Next, other atoms in the sys-

tem will be considered as grain atoms, and atoms within an enclosed boundary buffer

point strip will be considered as one grain. Figure 49 illustrates this step.

3. After identifying grains, the grains are expanded one layer at a time until we have no

more boundary points. Here, each atom of the boundary points will be joined with the

grain that most of its neighbors are marked with. Figure 50b shows an illustration of this

step for the system shown in Figure 50a.

4. Finally, for each grain, the grain boundaries will be identified by selecting atoms that

have more than one neighbor of a different grain. In this step, triple junction points can

also be identified, in which each one has neighbors belonging to three different grains.

Figure 53 shows the number of triple junctions over time for a system of 512
2
. Figure 50c

shows the final grains and their boundaries. Figures 51 and 52 give examples of grain

boundary detection at different time steps.

87

Figure 46: Extended area of the grains

Figure 47: Original area of the grains

Original area

88

Figure 48: Atom orientation

Figure 49: Grain identification and region buffers

89

 (a) (b)

 (c)

Figure 50: Example on grain detection for a system of size 512
2
 at time 10000 (a) ψ plot (b) detected

grains (c) grain boundaries detection

90

 (a) (b)

Figure 51: Grain identification for a system size of 512
2
at time 15000

 (a) (b)

Figure 52: Grain identification for a system size of 512
2
 at time 20000

91

Figure 53 : Triple junction count

4.2.5 Average Curvature and Maximum Curvature of Grain Boundaries

Curvature is used to study the migration of grain boundaries and grain growth, as they migrate

toward the center of that curvature [110, 111]. After determining the grain boundaries, we can use

equation 4.2 to calculate the curvature of the grain boundaries:

𝜅(𝑥, 𝑡) = −
𝜕2ℎ 𝜕𝑥2⁄

[1 + (𝜕ℎ 𝜕𝑥⁄)2]3 2⁄
 (4.2)

where the (x,y) coordinate at a time t can be rewritten as y= κ(x,t)

The derivatives can be calculated using the following equations:

𝜕ℎ 𝜕𝑥⁄ |𝑖 =
ℎ(𝑖 + 1) − ℎ(𝑖 − 1)

2∆𝑥
 𝑓𝑜𝑟 2 ≤ 𝑖 ≤ 𝑁 − 1 (4.3)

𝜕2ℎ 𝜕𝑥2⁄ |𝑖 =
ℎ(𝑖 + 1) − 2ℎ(𝑖) + ℎ(𝑖 − 1)

(∆𝑥)2
𝑓𝑜𝑟 2 ≤ 𝑖 ≤ 𝑁 − 1

(4.4)

where N is the number of boundary atoms, and ℎ is the grain boundary interface height. Figure

54 shows the maximum and average curvature of grain boundary atoms for a system of size 512
2
.

92

Figure 54: Average and maximum curvature of grain boundaries

4.2.6 Average and Maximum Velocity of Grain Boundary

To calculate the velocity of grain boundaries and triple junctions of grain boundaries, we need

to know the current and the previous coordinates of atoms. This is very challenging as there is no

way to track specific atoms between time steps. In addition, only the approximate location of

each atom is known. To do this, we try to match the atoms in intervals of 10 time steps to increase

the accuracy. After determining the pairs of atoms (x1,y1), (x2,y2), we calculate the velocity for

each pair using the following calculations:

 vx = (x2-x1)/dt (4.5)

 vy = (y2-y1)/dt (4.6)

 v = √(𝑣𝑥
2 + 𝑣𝑦

2)

(4.7)

Figures 55 and 56 show the average and maximum velocities of grain boundary atoms and tri-

ple junction atoms, respectively.

93

Figure 55: Average and maximum velocity for grain boundaries

Figure 56: Average and maximum velocity for triple junctions

94

4.2.7 Grain Angle Misorientation

Here, we calculate the absolute difference of the grain angles between neighboring grains. The

angle for each grain is the average of the theta angle for all of its atoms. Figure 57 shows the an-

gle misorientation for a system of size 512
2
.

Figure 57: Average and maximum angle misorientation of neighboring grain angles

4.3 Experiments and Discussion of Results

As in section 3.6, I used the standard speedup metric for performance comparisons of the GPU

codes and the serial codes. The total elapsed execution time measurement starts with the input of

the parameters and ends with the final output.

4.3.1 Software and Hardware Setup

The PFC serial simulation is written in C++. The GPU version is written using CUDA 7.0. For

the output, I used the HDF [73] software to generate the system’s state figures as in Figure 50a.

Results have been generated using the NVIDIA K40c. Table 13 gives the hardware specifications

for the K40c GPU used in the preliminary experiments, and the CPU used to run the serial code.

95

Table 13: List of major specifications of the parallel processors for the experiments

 CPU GPU

Model
Intel® Xeon ® E5-2680

v2
Nvidia Tesla K40

Micro Architecture Ivy Bridge (EP) Kepler

Number of cores 10 (Hyper threaded) 2880 (15 ×192)

Clock Frequency 2.85 GHz 0.745 GHz

4.3.2 Performance Analysis

To analyze the performance of the GPU and the serial codes, I conducted three experiments;

one for the g6 function, the second experiment is for the PFC grain growth simulation, and the

third for the correlation length function. The three experiments ran for 10000 time steps, and used

128 threads per block. To evaluate the systems’ performance, I ran the codes according to the

specified parameters, and then generated the speedup plots shown in Figures 58, 59 and 60, and

Tables 14, 15 and 16.

The first experiment is used to compute the execution time of the g6 function. As can be ob-

served from Figure 58 and Table 14, for a system size of 8192
2
,

the speedup is almost 21 times.

The main bottleneck is the circular average step, as the search is conducted by each and every

atom in the system.

Table 14: g6 runtime results (seconds), average of 20 runs

System size Serial execution time GPU execution time Speedup

512
2
 1.11 0.225 4.933

1024
2
 5.3 0.43 12.326

2048
2
 28.69 1.97 14.563

4096
2
 173.7 8.325 20.865

8192
2
 1174.04 56.001 20.965

Table 15: PFC simulation run time (seconds), total simulation time

System size Serial execution time GPU execution time Speedup

512
2
 760.03 47.1 16.137

1024
2
 4185.6 150.3 27.848

2048
2
 18101.56 540.62 33.483

4096
2
 85900.1 2230.4 38.513

8192
2
 395260.87 8536.604 46.302

96

Table 16: Correlation length function run time (seconds), average of 20 runs

System size Serial execution time GPU execution time Speedup

512
2
 0.77 0.225 3.42

1024
2
 1.99 0.43 4.63

2048
2
 11.5 1.97 5.84

4096
2
 68.83 8.325 8.27

8192
2
 540.3 56.001 9.65

For the PFC grain growth simulation experiment, Figure 59 and Table 15 show that the

speedup is more than 46 times for a system size of 8192
2
. This system size requires a huge

memory size (more than 10 GB of memory) for the cuFFT plans, so I only conducted the results

on the K40c, as it has 12 GB of RAM.

Figure 58: Log-scale run time comparison for the g6 function

The correlation length function is implemented by using the g6, but it does not need to calcu-

late it for all r values for the serial code, but the GPU code calculates all the values of g6 for all

the r values, and then finds the correlation length. Table 16 and Figure 60 show the runtime and

speedup for the correlation length function codes.

97

The ψ array and other auxiliary arrays are always on the GPU and they are only copied back to

the CPU for output purposes. In this way, the overhead of memory communication between the

CPU and the GPU is reduced significantly.

Figure 59: Log-scale runtime comparison for the PFC iterator simulation

Figure 60: Log-scale runtime comparison for the correlation length function

98

4.4 Summary

In this chapter, I presented how I implemented and optimized the crystal growth simulation

using the PFC model. One of the most challenging aspects of this simulation is that the atoms are

represented by a periodic function, where local maxima represent atom centers. As the simulation

runs, the atom centers change, and the code needs to detect them at any time we need to calculate

any property related to atom positions. I faced many other challenges during this research, such as

designing different GPU kernels to solve the differential equations, calculating the g6 property,

grain detection, dislocation and disclination detection, and running the system with large problem

sizes. For the PFC simulation, most of the data structures and arrays were placed on the GPU to

reduce the memory transfer overhead, and only copy them back to do I/O. Currently only three

properties have been ported to the GPU, although I plan to do port more in the near future.

99

CHAPTER 5 CONCLUSION AND FUTURE WORK

Designing efficient algorithms for a parallel architecture can offer significant performance ad-

vantages over just porting an existing sequential algorithm. In addition, exploiting the design fea-

tures of modern coprocessors can help in achieving even more speedups.

This dissertation has shown how the microcell list helped in achieving speedups over the con-

ventional cell list for the MC CPU and Intel’s Xeon Phi coprocessor for both the molecule and

the system intermolecular interactions. For the GPU, the microcell list was better than the con-

ventional cell list only for the molecule intermolecular energy interactions, and it did not show

any speedup for calculating the system’s intermolecular energy. The main reason is that many

threads are created to calculate the interactions of this large number of small cells, which many of

them can be empty in a sparse system. This issue was not visible in the OpenMP implementation

because those empty cells were not processed, as a neighbor list was constructed from the

nonempty cells. As for storage, the microcell list requires more space to store and maintain all of

the small cells compared to the large cells of the conventional cell list.

This dissertation also introduced two scalable cell list implementations for calculating the sys-

tem’s intermolecular force interactions for the Gibbs ensemble using two hybrid parallel plat-

forms, MPI+OpenMP and MPI+CUDA. Experiments were run on different parallel architectures,

including multicore CPUs, Phi coprocessors, and GPUs. I also studied the effect of increasing the

number of threads and devices for the MPI+OpenMP code, and the number of devices for the

MPI+CUDA code. The presented results show that both algorithms scale well on all platforms.

The GPU results were the best compared to the multicore CPU and Phi results. The microcell list

achieves better results on small to medium sized systems, while the optimized conventional cell

list performs better on large systems. The main reason for that is the overhead of maintaining and

processing a large number of small cells. The microcell list achieves better results on small sys-

tems, while the optimized conventional cell list performs better on large systems.

100

For the grain growth simulation, the code has reached the stage where I implemented a serial

and a GPU version that calculate many properties. This will enable us to produce results and ana-

lyze them to be ready for publication. The code now can run large simulations of 8192
2
 that

achieve a speedup of more than 46 times over the serial code for the PFC simulation.

At this stage, the two projects have reached a mature state. For the last 18 months, the GOMC

group and I have released 9 beta releases GOMC code, and in October/ 2015 we plan to release

version 1.0 of GOMC. The next stage is going to be the implementation of the Ewald code.

Future work will include further research into tuning the microcell list for the GPU implemen-

tation, in which the processing of empty cells needs to be reduced, and introduce better load bal-

ancing, and also tune it for different box densities. In addition, further work will be conducted on

how to improve the microcell list and tune it for larger problem sizes. I will also study the

MPI+OpenMP implementation on the Phi coprocessors to see if we can improve its performance.

Furthermore, I will implement other MPI reduction methods to be used for larger clusters. Final-

ly, I plan to evaluate other spatial indexing algorithms that may be able to further reduce the

number of unnecessary pairwise energy calculations. As for the PFC work, I plan to port all the

calculated properties to the GPU, and work on the 3D PFC simulation.

101

REFERENCES

[1] J. Nickolls and W. J. Dally, "The GPU Computing Era," IEEE Micro, vol. 30, no. 2, pp. 56-

69, 2010.

[2] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors: A Hands-on

Approach, 2nd ed., Elsevier Inc., 2012.

[3] "Oak Ridge Computing Facility," [Online]. Available: https://www.olcf.ornl.gov/titan/.

[Accessed Jan 2015].

[4] "OpenCL," [Online]. Available: https://www.khronos.org/opencl/. [Accessed Jan 2015].

[5] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs,

Elsevier, 2013.

[6] NVIDIA, "CUDA C PROGRAMMING GUIDE v7.5," 2015.

[7] "NVIDIA GPU-ACCELERATED LIBRARIES," [Online]. Available:

https://developer.nvidia.com/gpu-accelerated-libraries. [Accessed Feb 2015].

[8] J. Mick, E. Hailat, V. Russo, K. Rushaidat, L. Schwiebert and J. Potoff, "GPU-accelerated

Gibbs ensemble Monte Carlo simulations of Lennard-Jonesium," Computer Physics

Communications, vol. 184, no. 12, pp. 2662–2669, 2013.

[9] "LAMMPS," [Online]. Available: http://lammps.sandia.gov/. [Accessed Feb 2015].

[10] "NAMD," [Online]. Available: http://www.ks.uiuc.edu/Research/namd/. [Accessed Oct

2015].

[11] "Amber," [Online]. Available: http://ambermd.org/. [Accessed Feb 2015].

[12] "HOOMD-blue," [Online]. Available: http://codeblue.umich.edu/hoomd-blue/. [Accessed

Jan 2015].

[13] M. Bjerre, J. M. Tarp, L. Angheluta and J. Mathiesen, "Rotation-induced grain growth and

102

stagnation in phase-field crystal models," Physical Review E, vol. 88, no. 2, pp. 020401-

020404, 2013.

[14] S. Wang, "Molecular Dynamics Simulation Study of Grain Boundary Migration in

Nanocrystalline Pd," B.S. Thesis, Department of Mechanical Engeering, University of

Science and Technology, Beijing, China, 2006.

[15] R. Backofen, K. Barmak, K. Elder and A. Voigt, "Capturing the complex physics behind

universal grain size distributions in thin metallic films," Acta Materialia, vol. 64, pp. 72-77,

2014.

[16] J. M. Castillo, J. Gross, H.-J. Wunderlich, C. Braun and S. Holst, "Acceleration of Monte-

Carlo molecular simulations on hybrid computing architectures," in Proceedings of the

2012 IEEE 30th International Conference on Computer Design (ICCD), Montreal, QC,

Canada, 2012.

[17] I. Beichl and F. Sullivan, "The metropolis algorithm," Computing in Science Engineering,

vol. 2, no. 1, pp. 65-69, 2000.

[18] D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to

Applications, 2nd ed., Academic Press, 2001.

[19] J. I. Siepmann and D. Frenkel, "Configurational bias Monte Carlo: a new sampling scheme

for flexible chains," Molecular Physics: An International Journal at the Interface Between

Chemistry and Physics, vol. 75, no. 1, pp. 59-70, 1992.

[20] C.-T. Yang, C.-L. Huang and C.-F. Lin, "Hybrid CUDA, OpenMP, and MPI parallel

programming on multicore GPU clusters," Computer Physics Communications, vol. 182,

no. 1, pp. 266-269, 2011.

[21] L. Wolf, "The GPU Revolution," Chemical & Engineering News, vol. 88, no. 44, pp. 27-29,

2010.

103

[22] C. M. Wittenbrink, E. Kilgariff and A. Prabhu, "Fermi Gf100 GPU Architecture," IEEE

Micro, vol. 31, no. 2, pp. 50-59, 2011.

[23] N. Wilt, The CUDA Handbook: A Comprehensive Guide to GPU Programming, Addison-

Wesley Professional, 2013.

[24] D. A. Vega, C. K. Harrison, D. E. Angelescu, M. L. Trawick, D. A. Huse, P. M. Chaikin

and R. A. Register, "Ordering mechanisms in two-dimensional sphere-forming block

copolymers," Physical Review E, vol. 71, no. 6, pp. 061803-061815, 2005.

[25] O. Vaulina and E. Vasilieva, "Orientational order and formation of topological defects in

two-dimensional systems," Journal of Experimental and Theoretical Physics, vol. 117, no.

1, pp. 169-176, 2013.

[26] P. J. Steinhardt, D. R. Nelson and M. Ronchetti, "Bond-orientational order in liquids and

glasses," Physical Review B, vol. 28, no. 2, pp. 784-805, 1983.

[27] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU

Programming, Addison-Wesley Professional, 2010.

[28] G. Rong, T.-S. Tan, T.-T. Cao and Stephanus, "Computing two-dimensional Delaunay

triangulation using graphics hardware," in Proceedings of the 2008 symposium on

Interactive 3D graphics and games, Redwood City, CA, USA, 2008.

[29] M. Qi, T.-T. Cao and T.-S. Tan, "Computing 2D Constrained Delaunay Triangulation

Using the GPU," IEEE Transactions on Visualization and Computer Graphics, vol. 19, no.

5, pp. 736-748, 2013.

[30] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone and J. C. Phillips, "GPU

Computing," Proceedings of the IEEE, vol. 96, no. 5, pp. 879-899, 2008.

[31] J. O'Rourke, Computational Geometry in C, Cambridge University Press, 1998.

[32] M. Matsumoto and T. Nishimur, "Mersenne twister: a 623-dimensionally equidistributed

104

uniform pseudo-random number generato," ACM Transactions on Modeling and Computer

Simulation (TOMACS), vol. 8, no. 1, pp. 3-30, 1998.

[33] W. Liu, B. Schmidt, G. Voss and W. Müller-Wittig, "Accelerating molecular dynamics

simulations using Graphics Processing Units with CUDA," Computer Physics

Communications, vol. 9, no. 1, pp. 634-641, 2008.

[34] C. Harrison, D. E. Angelescu, M. Trawick, Z. Cheng, D. A. Huse, P. M. Chaikin, D. A.

Vega, J. M. Sebastian, R. A. Register and D. H. Adamson, "Pattern coarsening in a 2D

hexagonal system," Europhysics Letters, vol. 67, no. 5, pp. 800-806, 2004.

[35] E. Hailat, V. Russo, K. Rushaidat, J. Mick, L. Schwiebert and J. Potoff, "Parallel Monte

Carlo simulation in the canonical ensemble on the graphics processing unit," International

Journal of Parallel, Emergent and Distributed Systems, vol. 29, no. 4, pp. 379-400, 2014.

[36] E. Hailat, K. Rushaidat, L. Schwiebert, J. R. Mick and J. J. Potoff, "GPU-based Monte

Carlo simulation for the Gibbs ensemble," in Proceedings of the High Performance

Computing Symposium, San Diego, CA, USA, 2013.

[37] J. Ghorpade, J. Parande, M. Kulkarni and A. Bawaskar, "GPGPU Processing in CUDA

Architecture," Advanced Computing, vol. 3, no. 1, pp. 105-120, 2012.

[38] B. Garzon and M. E. Costas, "Shape of hexatic domains of a two-dimensional Lennard-

Jones system," The Journal of Physical Chemistry, vol. 97, no. 51, pp. 13860–13863, 1993.

[39] A. R. Brodtkorb, T. R. Hagen and M. L. Sætra, "Graphics processing unit (GPU)

programming strategies and trends in GPU computing," Journal of Parallel and Distributed

Computing, vol. 73, no. 1, pp. 4-13, 2013.

[40] M. Arora, S. Nath, S. Mazumdar, S. B. Baden and D. M. Tullsen, "Redefining the Role of

the CPU in the Era of CPU-GPU Integration," IEEE Micro, vol. 32, no. 6, pp. 4-16, 2012.

[41] J. A. Anderson, E. Jankowski, T. L. Grubb, M. Engel and S. C. Glotzer, "Massively parallel

105

Monte Carlo for many-particle simulations on GPUs," Journal of Computational Physics,

vol. 254, no. 1, pp. 27-38, 2013.

[42] A. Adland, Y. Xu and A. Karma, "Unified Theoretical Framework for Polycrystalline

Pattern Evolution," Physical Review Letter, vol. 110, no. 26, pp. 265504, 2013.

[43] K. Moreland and E. Angel, "The FFT on a GPU," in Proceedings of

SIGGRAPH/Eurographics Workshop on Graphics Hardware 2003 , San Diego, CA, USA,

2003.

[44] G. J. Tucker and S. M. Foiles, "Molecular dynamics simulations of rate-dependent grain

growth during the surface indentation of nanocrystalline nickel," Materials Science and

Engineering, vol. 571, no. 1, pp. 207-214, 2013.

[45] NVIDIA, NVIDIA’s Next Generation CUDA Compute Architecture: Fermi, 2010.

[46] NVIDIA, NVIDIA Next Generation CUDA Compute Architecture: Kepler GK110, 2012.

[47] K. B. Daly, J. B. Benziger, P. G. Debenedetti and A. Z. Panagiotopoulos, "Massively

parallel chemical potential calculation on graphics processing units," Computer Physics

Communications, vol. 183, no. 10, pp. 2054-2062, 2012.

[48] M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A. L.Beberg, D.

L. Ensign, C. M. Bruns and V. S. Pande, "Accelerating molecular dynamic simulation on

graphics processing units," Journal of Computational Chemistry, vol. 30, no. 6, pp. 864-

872, 2009.

[49] M. Garland, S. L. Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips, Y.

Zhang and V. Volkov, "Parallel computing experiences with CUDA," IEEE Micro, vol. 28,

no. 4, pp. 13-27, 2008.

[50] D. Geer, "Taking the Graphics Processor beyond Graphics," Computer, vol. 38, pp. 14-16,

2005.

106

[51] J. Kim, J. M. Rodgers, M. Athnes and B. Smit, "Molecular monte carlo simulations using

graphics processing units: To waste recycle or not?," Journal of Chemical Theory and

Computation, vol. 7, no. 10, pp. 3208-3222, 2011.

[52] R. Farber, CUDA Application Design and Development, Elsevier Inc., 2011.

[53] W.-M. W. Hwu, GPU Computing Gems: Emerald Edition, Elsevier Inc., 2011.

[54] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-

Verlag, 1985.

[55] M. Cosnard and D. Trystram, Parallel Algorithms and Architectures, International

Thomson Computer Press, 1995.

[56] E. Lindholm, J. Nickolls, S. Oberman and a. J. Montrym, "NVIDIA Tesla: A unified

graphics and computing architecture," IEEE Micro, vol. 28, no. 2, pp. 39-55, 2008.

[57] L. Loyens, B. Smit and K. Esselink, "Parallel gibbs-ensemble simulations," Molecular

Physics, vol. 86, no. 2, pp. 171-183, 1995.

[58] D. Luebke and G. Humphreys, "How GPUs Work," Computer, vol. 40, no. 2, pp. 96-100,

2007.

[59] NVIDIA, "CUFFT LIBRARY USER'S GUIDE v5.5," 2013.

[60] J. Fang, A. Varbanescu and H. Sips, "A Comprehensive Performance Comparison of

CUDA and OpenCL," in Proceedings of 2011 International Conference on Parallel

Processing (ICPP), Taipei City, Taiwan, 2011.

[61] C. J. O’Keeffe and G. Orkoulas, "Parallel canonical monte carlo simulations through

sequential updating of particles," The Journal of Chemical Physics, vol. 130, no. 13, pp.

134109, 2009.

[62] A. Z. Panagiotopoulos, "Direct determination of phase coexistence properties of fluids by

monte carlo simulation in a new ensemble," Molecular Physics, vol. 61, pp. 813-826, 1987.

107

[63] J. J. Potoff and D. A. Bernard-Brunel, "Jeffrey J. Potoff and Damien A. Bernard-Brunel.

Mie potentials for phase equilibria calculations:Application to alkanes and

perfluoroalkanes," The Journal of Physical Chemistry B, vol. 113, no. 44, pp. 14725-14731,

2009.

[64] T. Preis, P. Virnau, W. Paul and J. Schneider, "Gpu accelerated monte carlo simulation of

the 2d and 3d ising model," Journal of Computational Physics, vol. 228, no. 12, pp. 4468-

4477, 2009.

[65] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco and K. Schulten,

"Accelerating molecular modeling applications with graphics processors," Journal of

Computational Chemistry, vol. 28, no. 16, pp. 2618-2640, 2007.

[66] S. J. Zara and D. Nicholson, "Grand canonical ensemble monte carlo simulation on a

transputer array," Molecular Simulation, vol. 5, no. 3, pp. 245-261, 1990.

[67] H. Kelly, "Parallel Monte Carlo Simulations of Vapour-Liquid Systems," M.S. Thesis,

Department of Computer Science, The University of Edinburgh, Edinburgh, UK, 2006.

[68] E. Lazar, "Molecular Dynamic Studies in the Fracturing of Metals," B.S. Thesis,

Department of Computer Science, Yeshiva University, New York, NY, USA, 2005.

[69] D. D. Donno, A. Esposito, L. Tarricone and L. Catarinucci, "Introduction to GPU

Computing and CUDA Programming: A Case Study on FDTD," IEEE Antennas and

Propagation Magazine, vol. 52, no. 3, pp. 116-122, 2010.

[70] "GOMC," [Online]. Available: http://gomc.eng.wayne.edu. [Accessed May 2014].

[71] "Charmm," [Online]. Available: http://www.charmm.org/. [Accessed Nov 2013].

[72] "FFTW," [Online]. Available: http://www.fftw.org/. [Accessed Nov 2013].

[73] "HDF," [Online]. Available: http://www.hdfgroup.org/. [Accessed Dec 2013].

[74] "VMD," [Online]. Available: http://www.ks.uiuc.edu/Research/vmd/. [Accessed Jan 2014].

108

[75] "PSF file format," [Online]. Available: http://www.ks.uiuc.edu/Training/Tutorials/namd/

namd-tutorial-win-html/node24.html. [Accessed Nov 2013].

[76] "PDB file format," [Online]. Available: http://www.rcsb.org/pdb/home/home.do. [Accessed

Nov 2013].

[77] "Tesla vs. AMD" [Online]. Available: http://www.eweek.com/. [Accessed Sep 2015]

[78] "CUDA in action," [Online]. Available: http://www.nvidia.com/object/cuda-in-action.html.

[Accessed Mar 2014].

[79] NVIDIA, "NVIDIA GeForce GTX 750 Ti," 2014.

[80] "Cmake," [Online]. Available: http://www.cmake.org/. [Accessed Feb 2014].

[81] L. Di Stefano and A. Bulgarelli, "A simple and efficient connected components labeling

algorithm," in Proceedings of International Conference on Image Analysis and Processing,

Naples, Italy, 1999.

[82] "Triangle," [Online]. Available: http://www.cs.cmu.edu/~quake/triangle.html. [Accessed

Jan 2012].

[83] J. Jeffers and J. Reinders, Intels Xeon Phi Coprocessor High-Performance Programming,

Morgan Kaufmann, 2013.

[84] "Tianhe-2" [Online]. Available: http://www.top500.org/featured/systems/tianhe-2/.

[Accessed Oct 2015].

[85] "OpenMP" [Online]. Available: http://openmp.org/wp/. [Accessed Mar 2015]

[86] "OpenACC" [Online]. Available: http://www.openacc.org/. [Accessed Oct 2015]

[87] "Maxwell Architecture" [Online]. Available: http://devblogs.nvidia.com/parallelforall/5-

things-you-should-know-about-new-maxwell-gpu-architecture/. [Accessed Sep 2015]

[88] L. Schwiebert, E. Hailat, K. Rushaidat, J. Mick, and J. Potoff. "An Efficient Cell List

109

Implementation for Monte Carlo Simulation on GPUs, " CoRR abs/1408.3764. 2014.

[89] L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of

Lennard-Jones Molecules. Physical Reviews, vol. 159, no. 1, pp. 98-103, 1967.

[90] A.J. Proctor, C.A. Stevens, and S.S. Cho, "GPU-Optimized Hybrid Neighbor/Cell List

Algorithm for Coarse-Grained MD Simulations of Protein and RNA Folding and

Assembly," in Proceedings of the International Conference on Bioinformatics,

Computational Biology and Biomedical Informatics (BCB 13), Washington DC, 2013.

[91] M.P. Allen and D. J.Tildesley, Computer Simulation of Liquids. Oxford University Press,

New York, 1987.

[92] W. Mattson, W. and B. M. Rice. "Near-neighbor calculations using a modified cell-linked

list method," Computer Physics Communications, vol. 119, no. 2-3, pp. 135-148, 1998.

[93] J. A. Anderson, C. D. Lorenz, and A. Travesset. "General purpose molecular dynamics

simulations fully implemented on graphics processing units," Journal of Computational

Physics, vol. 227, no. 10, pp. 5342-5359, 2008.

[94] J. van Meel, A. Arnold, D. Frenkel, S. Portegies Zwart, and R. Belleman. "Harvesting

graphics power for MD simulations," Molecular Simulation, vol. 34, no. 3, pp. 259-266,

2008.

[95] G. S. Grest, B. Dünweg, and K. Kremer. "Vectorized link cell Fortran code for molecular

dynamics simulations for a large number of particles," Computer Physics Communications,

vol. 55, no. 3, pp.269-285, 1989.

[96] K. Rushaidat, L. Schwiebert, B. Jackman, J. Mick, and J. Potoff, "Efficient Parallel Cell

List Algorithms for Monte Carlo Simulations," in Proceedings of The 2015 Summer

Simulation Multi-Conference (SummerSim'15), Chicago, IL, July 2015.

110

[97] S. C. Mcgrother and K. E. Gubbins, "Constant pressure gibbs ensemble monte carlo

simulations of adsorption into narrow pores," Molecular Physics, vol. 97, no. 8, pp. 955–

965, 1999.

[98] T. Cagin and B. M. Pettitt, "Grand molecular dynamics: A method for open systems,"

Molecular Simulation, vol. 6, no. 1-3, pp. 5-26, 1991.

[99] A. Papadopoulou, E. D. Becker, M. Lupkowski, and F. van Swol, "Molecular dynamics and

monte carlo simulations in the grand canonical ensemble: Local versus global control," The

Journal of Chemical Physics, vol. 98, no. 6, pp. 4897-4908,1993.

[100] "Simpatico" [Online]. Available: ttp://research.cems.umn.edu/morse/code/simpatico/html/.

 [Accessed Mar 2015]

[101] K. Rushaidat, L. Schwiebert, B. Jackman, J. Mick, and J. Potoff, "Evaluation of Hybrid

Parallel Cell List Algorithms For Monte Carlo Simulation," in Proceedings of The 7th

IEEE International Workshop on Multicore and Multithreaded Architectures and

Algorithms (M2A2 2015), New York, NY, Aug. 2015.

[102] "MCCCS Towhee" [Online]. Available: http://towhee.sourceforge.net/. [Accessed Mar

2015]

[103] K. Rushaidat, Z. Huang, and Loren Schwiebert, "PFC property calculation report", Internal

report, 2014.

[104] "CUDA Toolkit" [Online]. Available: https://developer.nvidia.com/cuda-toolkit. [Accessed

Sep 2015]

[105] "mvapich2" [Online]. Available: http://mvapich.cse.ohio-state.edu/. [Accessed Sep 2015]

[106] J. Mick, M. Barhaghi, B. Jackman, K. Rushaidat, L. Schwiebert and J. Potoff, "Optimized

Mie potentials for phase equilibria: Application to noble gases and their mixtures with n-

alkanes," The Journal of Chemical Physics, vol. 143, pp. 114504, 2015.

111

[107] "Nvidia’s roadmap" [Online]. Available: http://www.extremetech.com/gaming/201417-

nvidias-2016-roadmap-shows-huge-performance-gains-from-upcoming-pascal-architecture.

[Accessed Oct 2015]

[108] "Structure factor" [Online]. Available: http://reference.iucr.org/dictionary/Structure_factor.

[Accessed Oct 2015]

[109] K. R. Edler, J. Viñals, and M. Grant, "Dynamic scaling and quasiordered states in the two-

dimensional Swift-Hohenberg equation," Physical Review A, vol. 46, no. 12, pp. 7618-

7629, 1992.

[110] K. R. Edler, J. Viñals, and M. Grant, "Ordering Dynamics in the Two-Dimensional

Stochastic Swift-Hohenberg Equation," Physical Review Letters, vol. 68, no. 20, pp. 3024-

3027, 1992.

[111] S. Shahandeh and M. Militzer, "Grain boundary curvature and grain growth kinetics with

particle pinning," Philosophical Magazine, vol. 93, no. 24, pp. 3231-3247, 2013.

[112] K. R. Edler, M. Katakowski, M. Hahtaja, and M. Grant, "Modeling Elasticity in Crystal

Growth," Physical Review Letters, vol. 88, no. 24, 2002.

[113] K. R. Edler, N. Provatas, J. Berry, P. Stefanovic, and M. Grant, "Phase-field crystal

modeling and classical density functional theory of freezing," Physical Review B, vol. 75,

no. 6, 2007.

[114] Z.-F. Huang and K. R. Edler, "Mesoscopic and Microscopic Modeling of Island Formation

in Strained Film Epitaxy," Physical Review Letters, vol. 101, no. 15, 2008.

[115] "Scheduling Loop Iterations in OpenMP" [Online]. Available:

https://people.sc.fsu.edu/~jburkardt/c_src/schedule_openmp/schedule_openmp.html.

[Accessed Oct 2015]

[116] J. K. Shah and E. J. Maginn, "A general and efficient Monte Carlo method for sampling

112

intramolecular degrees of freedom of branched and cyclic molecules," The Journal of

Chemical Physics, vol. 135, 2013.

113

ABSTRACT

EFFICIENT ALGORITHMS AND OPTIMIZATIONS

 FOR SCIENTIFIC COMPUTING ON MANY-CORE PROCESSORS

by

KAMEL RUSHAIDAT

December 2015

Advisor: Dr. Loren Schwiebert

Major: Computer Science

Degree: Doctor of Philosophy

Designing efficient algorithms for many-core and multicore architectures requires using dif-

ferent strategies to allow for the best exploitation of the hardware resources on those architec-

tures. Researchers have ported many scientific applications to modern many-core and multicore

parallel architectures, and by doing so they have achieved significant speedups over running on

single CPU cores. While many applications have achieved significant speedups, some applica-

tions still require more effort to accelerate due to their inherently serial behavior.

One class of applications that has this serial behavior is the Monte Carlo simulations. Monte

Carlo simulations have been used to simulate many problems in statistical physics and statistical

mechanics that were not possible to simulate using Molecular Dynamics. While there are a fair

number of well-known and recognized GPU Molecular Dynamics codes, the existing Monte Car-

lo ensemble simulations have not been ported to the GPU, so they are relatively slow and could

not run large systems in a reasonable amount of time. Due to the previously mentioned shortcom-

ings of existing Monte Carlo ensemble codes and due to the interest of researchers to have a fast

Monte Carlo simulation framework that can simulate large systems, a new GPU framework called

GOMC is implemented to simulate different particle and molecular-based force fields and en-

sembles. GOMC simulates different Monte Carlo ensembles such as the canonical, grand canoni-

114

cal, and Gibbs ensembles. This work describes many challenges in optimizing the GPU Monte

Carlo code for such ensembles and how I addressed these challenges. Such challenges include the

optimization of the energy calculations for computationally intensive moves, balancing work

among threads, and utilizing the hardware of the GPU.

This work also describes efficient many-core and multicore large-scale energy calculations for

Monte Carlo Gibbs ensemble using cell lists. Designing Monte Carlo molecular simulations is

challenging as they have less computation and parallelism when compared to similar molecular

dynamics applications. The modified cell list allows for more speedup gains for energy calcula-

tions on both many-core and multicore architectures when compared to other implementations

without using the conventional cell lists. The work presents results and analysis of the cell list

algorithms for each one of the parallel architectures using top of the line GPUs, CPUs, and Intel’s

Phi coprocessors. In addition, the work evaluates the performance of the cell list algorithms for

different problem sizes and different radial cutoffs.

In addition, this work evaluates two cell list approaches, a hybrid MPI+OpenMP approach and

a hybrid MPI+CUDA approach to test for scalability. The cell list methods are evaluated on a

small cluster of multicore CPUs, Intel Phi coprocessors, and GPUs. The performance results are

evaluated using different combinations of MPI processes, threads, and problem sizes.

Another application presented in this dissertation involves the understanding of the properties

of crystalline materials, and their design and control. Recent developments include the introduc-

tion of new models to simulate system behavior and properties that are of large experimental and

theoretical interest. One of those models is the Phase-Field Crystal (PFC) model. The PFC model

has enabled researchers to simulate 2D and 3D crystal structures and study defects such as dislo-

cations and grain boundaries. In this work, I used GPUs to accelerate and optimize the calculation

of various dynamic properties of polycrystals in the 2D PFC model. Some properties require very

extensive computation that may involve hundreds of thousands of atoms. The GPU implementa-

tion has achieved significant speedups of more than 46 times for some large systems simulations.

115

AUTOBIOGRAPHICAL STATEMENT

Mr. Kamel Rushaidat earned his Bachelor and Master degrees in computer science from the

Jordanian University of Science and Technology in Jordan. He worked as a software engineer and

a technical trainer in many software companies before he started his PhD in 2009. As a Ph.D.

Student, he worked in the field of High Performance Computing.

Mr. Kamel is a recipient of the following awards:

1. Thomas Rumble Fellowship, Wayne State (2009).

2. Graduate Teaching Assistant award, Wayne State (2010-2013).

3. Graduate Research Assistant, Wayne State (2013-2015).

4. Third place award for poster presentation, the 5th annual graduate exhibition, Wayne State

University, presented March 18, 2014.

The following are selected publications by Mr. Kamel:

1. K. Rushaidat, L. Schwiebert, B. Jackman, J. Mick, and J. Potoff, "Evaluation of Hybrid

Parallel Cell List Algorithms For Monte Carlo Simulation", In Proc. of The 7th IEEE In-

ternational Workshop on Multicore and Multithreaded Architectures and Algorithms

(M2A2 2015),New York, NY, Aug. 2015.

2. K. Rushaidat, L. Schwiebert, B. Jackman, J. Mick, and J. Potoff, “Efficient Parallel Cell

List Algorithms for Monte Carlo Simulations,” In Proc. of 2015 The Summer Simulation

Multi-Conference (SummerSim'15), Chicago, IL, July 2015.

3. E. Hailat, K. Rushaidat, L. Schwiebert, J. R. Mick, and J. J. Potoff, “GPU-based Monte

Carlo simulation for Gibbs ensemble,” High Performance Computing Symposium, April

2013.

4. J. R. Mick, E. Hailat, V. Russo, K. Rushaidat, L. Schwiebert, and J. J. Potoff, ”GPU-

accelerated Gibbs ensemble Monte Carlo simulations of Lennard-Jonesium,” Computer

Physics Communications, 184 (12): 2662–2669, December 2013.

5. E. Hailat, V. Russo, K. Rushaidat, J. Mick, L. Schwiebert, and J. Potoff, ”Parallel Monte

Carlo Simulation for Canonical Ensemble on the GPU,” International Journal of Parallel,

Emergent, and Distributed Systems, 29 (4): 379-400, October 2013.

6. J. R. Mick, K. Rushaidat, B. Jackman, Y. Li, L. Schwiebert and J. J. Potoff, "Development

of a GPU Optimized Gibbs Ensemble Monte Carlo Simulation Engine". AICHE, 2014.

7. J. R. Mick, K. Rushaidat, E. Hailat, Y. Li, L. Schwiebert and J. J. Potoff, “GPU Accelerat-

ed Configurational Bias Monte Carlo Simulations of Branched Molecules.” AICHE, 2013.

	Wayne State University
	1-1-2015
	Efficient Algorithms And Optimizations For Scientific Computing On Many-Core Processors
	Kamel Rushaidat
	Recommended Citation

	tmp.1458930247.pdf.qjn0_

