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1

CHAPTER 1 INTRODUCTION

1.1 Background and Main Issues

This dissertation focuses on new characterizations of Sobolev spaces . It encompasses an

in-depth study of Sobolev spaces on Heisenberg groups, as well as Carnot groups, second order

and high order Sobolev spaces on Euclidean spaces. In this introductory chapter, we present the

motivation of the study, outline of our approaches, and certain results.

Roughly speaking, a Sobolev space is a space containing functions with adequately many deriva-

tives and endowed with a norm that judges both the size and regularity of a function. Here, the

derivatives are in a suitable weak sense to form the space as a Banach space. There are many ways

to define a Sobolev space: by the delicate and abstract theory of distributions; by consideration as

the natural expansion of monotone, absolutely continuous and BV functions; etc. The most com-

mon one is to describe a Sobolev space W k,p as a vector space of functions equipped with a norm

that is a combination of Lp-norms of the function itself as well as its weak derivatives up to a given

order k.

Since Sobolev spaces appear and play important roles in many branches of modern mathematics

such as partial differential equations, calculus of variations, differential geometry, complex analysis,

probability theory, optimization and control theory, etc, there has been a substantial effort to

characterize Sobolev spaces in many different directions. In his paper [19], Gagliardo used the

semi-norm

|f |W s,p(Ω) = (

ˆ

Ω

ˆ

Ω

|f(x)− f(y)|p

|x− y|N+sp
dxdy)1/p, p > 1.

to characterize functions in W s,p. However, when s→ 1−, we have that |f |W s,p(Ω) does not converge

to the semi-norm

|f |W 1,p(Ω) = (

ˆ

Ω

|∇f(x)|pdx)1/p.
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In their recent paper [5], Bourgain, Brezis and Mironescu investiaged this situation and found that

the scaling (1− s)1/p in front of |f |W s,p(Ω) reclaims the question.This discovery drove them to a

new characterization of the Sobolev space. Indeed, Bourgain, Brezis and Mironescu proved that

Theorem 1.1. Let Ω ⊂ RN be a smooth, bounded domain, 1 < p <∞, ρn be a sequence of radial

mollifiers in RN and f ∈ Lp (Ω). Then

lim
n→∞

ˆ

Ω

ˆ

Ω

|f(x)− f(y)|p

|x− y|p
ρn (x− y) dxdy = Kp,N |f |W 1,p(Ω) (1.1)

with the convention that |f |W 1,p(Ω) =∞ if f /∈W 1,p (Ω) . Here Kp,N depends only on p and N .

We note here that ρn is a sequence of radial mollifiers in RN , i.e.

ρn(x) = ρn (|x|) , ρn ≥ 0,

ˆ
RN
ρn(x)dx = 1

and

lim
n→∞

∞̂

δ

ρn (r) rN−1dr = 0 for every δ > 0.

The case p = 1 is more elegant. Indeed, it’s interesting to note that though the left hand side of

(1.1) is finite, we may still not have f ∈ W 1,1 (Ω). Nevertheless, if f ∈ W 1,1 (Ω), then (1.1) holds.

In fact, the following result was showed in [5]:

Theorem 1.2. Let Ω ⊂ RN be a smooth, bounded domain and ρn be a sequence of radial mollifiers

in RN . Then there exists constants C1, C2 > 0 such that for every f ∈ L1 (Ω) :

C1 |Df | (Ω) ≤ lim inf
n→∞

ˆ

Ω

ˆ

Ω

|f(x)− f(y)|
|x− y|

ρn (x− y) dxdy (1.2)

≤ lim sup
n→∞

ˆ

Ω

ˆ

Ω

|f(x)− f(y)|
|x− y|

ρn (x− y) dxdy ≤ C2 |Df | (Ω)

where |Df | (Ω) is the total variation of the measure Df , the distributional derivative of f , and

|Df | (Ω) =∞ if f /∈ BV (Ω) .

Thus the BV semi-norm is really the limiting case of the characterization of W 1,p (Ω) as p→ 1.

The fact that C1 = C2 = K1,N was proved by Bourgain, Brezis and Mironescu in one dimensional

case, and by Dávila in [14]. This can be stated as follows:

Theorem 1.3. Let Ω ⊂ RN be an open, bounded domain with Lipschitz boundary and ρn be a
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sequence of radial mollifiers in RN . Then for f ∈ L1 (Ω) :

lim
n→∞

ˆ

Ω

ˆ

Ω

|f(x)− f(y)|
|x− y|

ρn (x− y) dxdy = K1,N |Df | (Ω) (1.3)

where |Df | (Ω) =∞ if f /∈ BV (Ω) .

Thus the BV semi-norm is really the limiting case of the characterization of W 1,p (Ω) as p→ 1.

We can see that the above results contribute to the new characterizations of the Sobolev spaces

W 1,p (Ω) , 1 < p <∞, and the space BV (Ω) when Ω is a smooth domain. We note here that there

are statements similar to those in Theorem 1.1 and Theorem 1.3 when the smooth bounded domain

Ω is replaced by RN . However, these characterizations are in general false for arbitrary open and

bounded sets, by a construction of Brezis in [7].

In 2006, H-M. Nguyen [34] studied some new characterizations of Sobolev spaces that are closely

related to those of Bourgain, Brezis and Mironescu [5]. Indeed, the following two theorems were

conjectured by Brezis and confirmed in [34]:

Theorem 1.4. Let 1 < p <∞.Then

(a) There exists a constant CN,p depending only on N and p such that
¨

|g(x)−g(y)|>δ

δp

|x− y|N+p
dxdy ≤ CN,p

ˆ

Ω

|∇g (x)|p dx, ∀δ > 0, g ∈W 1,p
(
RN
)

(b) If g ∈ Lp
(
RN
)

satisfies

sup
0<δ<1

¨

|g(x)−g(y)|>δ

δp

|x− y|N+p
dxdy <∞

then g ∈W 1,p
(
RN
)
.

(c) Moreover, for any g ∈W 1,p
(
RN
)
,

lim
δ→0

¨

|g(x)−g(y)|>δ

δp

|x− y|N+p
dxdy =

1

p
KN,p

ˆ

RN

|∇g (x)|p dx

where

KN,p =

ˆ

SN−1

|e · σ|p dσ for any e ∈ SN−1.

Theorem 1.5. Let 1 < p <∞.Then
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(a) There exists a constant CN,p depending only on N and p such that

sup
0<ε<1

¨

|g(x)−g(y)|≤1

ε |g(x)− g(y)|p+ε

|x− y|N+p
dxdy +

¨

|g(x)−g(y)|>1

1

|x− y|N+p
dxdy

≤ CN,p
ˆ

RN

|∇g (x)|p dx, ∀g ∈W 1,p
(
RN
)
.

(b) If g ∈ Lp
(
RN
)

satisfies

sup
0<ε<1

¨

|g(x)−g(y)|≤1

ε |g(x)− g(y)|p+ε

|x− y|N+p
dxdy +

¨

|g(x)−g(y)|>1

1

|x− y|N+p
d <∞

then g ∈W 1,p
(
RN
)
.

(c) Moreover, for any g ∈W 1,p
(
RN
)
,

lim
ε→0

¨

|g(x)−g(y)|≤1

ε |g(x)− g(y)|p+ε

|x− y|N+p
dxdy = KN,p

ˆ

RN

|∇g (x)|p dx.

Moreover, the delicate case p = 1, the case of bounded domain with smooth boundary and other

variants and generalizations were also demonstrated in [34]. These results were generalized further

by Bourgain and H-M. Nguyen [6] and H-M. Nguyen [35].

Attempting to achieve similar characterizations for higher order Sobolev spaces, Borghol studied

in [8] some properties of high order Sobolev spaces W k,p (Ω) where 1 < p <∞ and BV k (Ω) when

p = 1 where k ≥ 2 and Ω is a bounded smooth domain of RN in the spirit of Bourgain, Brezis and

Mironlescu [5] using k − th differences. More precisely, Borghol verified that

Theorem 1.6. Assume Ω is a convex smooth domain. Let 1 < p <∞ and let f be a p−integrable

function in Ω. Then f ∈W k,p (Ω) iff

lim inf
ε→0

ˆ

Ω

ˆ

Ω

∣∣∣∣∣∣
k∑
j=0

(−1)j
(
k
j

)
f
(
k−j
k x+ j

ky
)∣∣∣∣∣∣
p

|x− y|kp
ρε (x− y) dxdy <∞.

Moreover, when f ∈W k,p (Ω), we have

lim
ε→0

ˆ

Ω

ˆ

Ω

∣∣∣∣∣∣
k∑
j=0

(−1)j
(
k
j

)
f
(
k−j
k x+ j

ky
)∣∣∣∣∣∣
p

|x− y|kp
ρε (x− y) dxdy =

ˆ

Ω

 ˆ

SN−1

∣∣∣Dkf(x) (σ, ..., σ)
∣∣∣p dσ

 dx.
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Theorem 1.7. Assume Ω is a convex smooth domain and let f ∈ L1 (Ω) . Then f ∈ BV k (Ω) iff

lim inf
ε→0

ˆ

Ω

ˆ

Ω

∣∣∣∣∣∣
k∑
j=0

(−1)j
(
k
j

)
f
(
k−j
k x+ j

ky
)∣∣∣∣∣∣

|x− y|k
ρε (x− y) dxdy <∞,

and in this case we have

lim
ε→0

ˆ

Ω

ˆ

Ω

∣∣∣∣∣∣
k∑
j=0

(−1)j
(
k
j

)
f
(
k−j
k x+ j

ky
)∣∣∣∣∣∣

|x− y|k
ρε (x− y) dxdy =

1

|SN−1|

ˆ

SN−1

ˆ
Ω

∣∣∣Dkf(x) (σ, ..., σ)
∣∣∣ dx

 dσ.

In 2011, Bojarski, Ihnatsyeva and Kinnunen [4] used a Taylor (k − 1)−remainder to consider

the higher order Sobolev spaces in the sense of Bourgain, Brezis and Mironlescu [5]. Indeed, if we

denote

T ky f(x) =
∑
|α|≤k

Dαf(y)
(x− y)α

α!

Rkf(x, y) = f(x)− T ky f(x)

then Bojarski, Ihnatsyeva and Kinnunen could set up the following results:

Theorem 1.8. Let Ω be an open set in RN , 1 < p < ∞, k be a positive integer and let f ∈

W k−1,p (Ω). Then f ∈W k,p (Ω) iff

lim inf
ε→0

ˆ

Ω

ˆ

Ω

∣∣Rk−1f(x, y)
∣∣p

|x− y|kp
ρε (x− y) dxdy <∞,

and in this case

lim
ε→0

ˆ

Ω

ˆ

Ω

∣∣Rk−1f(x, y)
∣∣p

|x− y|kp
ρε (x− y) dxdy

=

ˆ

Ω

ˆ

∂B(0,1)

∣∣∣∣∣∣
∑
|α|=k

Dαf(x)

α!
vα

∣∣∣∣∣∣
p

dvdx.

We note here that the pointwise characterization of the Sobolev space in the spirit of Hajlasz [20]

was made by Bojarski [2].

There have also been definitions and characterizations of Sobolev spaces in metric measure

spaces (namely, homogeneous spaces in the sense of Coifman-Weiss [11]). To describe this, we need

to introduce some preliminaries on metric spaces.
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Let (S, ρ, µ) be a metric space with a metric ρ and a doubling measure µ, namely, for all

x, y, z ∈ S, ρ satisfies

ρ(x, y) ≤ ρ(x, z) + ρ(z, y),

and the measure µ satisfies the condition

µ(B(x, 2r)) ≤ Aµµ(B(x, r)), x ∈ S, r > 0,

for an absolute constant Aµ, where by definition B(x, r) = {y ∈ S : ρ(x, y) < r}, and µ(B(x, r))

denotes the µ-measure of B(x, r). Such a metric space is usually called as a metric space of ho-

mogeneous type in the sense of Coifman and Weiss. As usual, we refer to B(x, r) as the ball with

center x and radius r, and, if B is a ball, we write xB for its center, r(B) for its radius and cB

for the ball of radius cr(B) having the same center as B. We always assume that (S, ρ) is locally

compact and µ is doubling.

A notion of first order Sobolev space in an metric space using the pointwise estimates was first

given by Hajlasz [20]. Another definition of Sobolev spaces of first order on metric spaces using the

Poincaré inequalities seemed to have first appeared in the work by Franchi, Lu and Wheeden in [17].

This is in turn based on the equivalence of the representation formulae (pointwise estimates) and

the Poincaré inequalities established in [17]. In the article by Lu and Wheeden [30], the authors

introduce the notion of polynomials in metric spaces (S, ρ, µ) and prove a relationship between

high order Poincaré inequalities and representation formulas involving fractional integrals of high

order (see also [32]). Motivated by this and the definitions of Sobolev spaces of first order in metric

spaces, Liu, Lu and Wheeden define in [25] Sobolev spaces of high order in such metric spaces

(S, ρ, µ). They prove that several definitions are equivalent if functions of polynomial type exist.

In the case of stratified groups, where polynomials do exist and high order Poincaré inequalities do

hold (see [27], [28], [32], [10]), we show that our spaces are indeed equivalent to the Sobolev spaces

defined by Folland and Stein in [15]. Our results also give some alternate definitions of Sobolev
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spaces in the classical Euclidean spaces and the relevant notions of Sobolev spaces or gradients in

metric spaces in Hajlasz [20], Cheeger [9], Korevaar and Schoen [23], Franchi, Lu and Wheeden [17],

Franchi, Hajlasz and Koskela [16], Heinonen and Koskela [21] to high order Sobolev spaces.

To explain in more details what we have described above on Sobolev spaces on metric spaces,

we now define what we will mean by polynomial functions on S following [30] (see [30], [25] for

more details of the exposition).

Let (S, ρ, µ) be a metric space of homogeneous type, and let Ω be an open set in S. Our results

rely on the existence of a linear class of functions P (x) (called polynomial functions) which satisfy

both

(P1) For every metric ball D ⊂ Ω,

ess supx∈D|P (x)| ≤ C1(µ)

µ(D)

ˆ
D
|P (y)|dµ(y),

where the essential supremum is taken with respect to µ;

(P2) If D is any metric ball in Ω and E is a subball of D with µ(E) > γµ(D), γ > 0, then

‖ P ‖L∞µ (E)≥ C2(γ, µ) ‖ P ‖L∞µ (B) .

In stratified groups, including standard Euclidean space, (P1) and (P2) are known to be true

for polynomials in those settings (see [15] and [27]), with constants C1(µ), C2(γ, µ) which depend

additionally only on the degree of the polynomial.

The role of degree of a polynomial is replaced by an exponent which measures the order of

smoothness of a given locally integrable function f in the sense of assuming that the following

Poincaré estimate holds for f and a positive integer k: there exist q ≥ 1 and a function g such that

for every ball B ⊂ Ω and some function Pk(B, f),

1

µ(B)

ˆ
B
|f − Pk(B, f)| dµ ≤ Cr(B)k

(
1

µ(B)

ˆ
B
|g|qdµ

)1/q

, (1.4)

with C independent of B. Pk(B, f) in (1.4) may be thought of as an approximation to f . In (1.4),

g and q are allowed to depend on f but not on B. The function Pk(B, f) may also depend on g, q
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and µ, and we sometimes write Pk(B, f) = Pk(B, f, g, q, µ). The important assumption for us will

be that (P1) and (P2) hold for a linear class that contains Pk(B, f) for all B ⊂ Ω, with constants

C1(µ), C2(γ, µ) depending additionally only on k.

When (1.4) holds for a given f , we will say that f satisfies an Lq to L1 Poincaré inequality of

order k for every ball B ⊂ Ω. For a stratified group, every smooth function f satisfies (1.4) with

q = 1 and g = |Xkf | for several choices of polynomials of degree k − 1 by the results in [27], [28].

Thus, using the notion of polynomials, several equivalent definitions of high order Sobolev classes

on a domain Ω in a metric space (S, ρ, µ) with a doubling measure µ are given in [25]. We will use

´
E f(x)dµ(x) to denote 1

µ(E)

´
E f(x)dµ(x), and ||f ||Lpµ(E) to denote the Lp norm of f on E with

respect to µ. We now recall two definitions of Sobolev classes given in [25].

Definition 1.9. Given a positive integer m and 1 < p < ∞, we define the Sobolev class Am,p(Ω)

to be the set of functions f ∈ Lp(Ω) so that for each k = 1, · · · ,m, there exist qk with 1 ≤ qk < p,

functions gk(x) with 0 ≤ gk ∈ Lp(Ω), and polynomials Pk(B, f) with
ˆ
B
|f(x)− Pk(B, f)(x)|dµ(x) ≤ r(B)k

( ˆ
B
gqkk (x)dµ(x)

)1/qk

(1.5)

for every ball B ⊂ Ω. The polynomials Pk(B, f) are assumed to belong to a linear class which

satisfies (P1) and (P2) with constants depending only on k, γ, µ. If f ∈ Am,p(Ω), we define

||f ||Am,p(Ω) = ||f ||Lp(Ω) + inf
{gk}

m∑
k=1

||gk||Lp(Ω),

where the infimum is taken over all sequences such that (1.5) holds for f for k = 1, . . . ,m.

It is easy to see that Am,p(Ω) is a linear space; moreover, || · ||Am,p(Ω) is a norm if all qk = 1.

Definition 1.10. Given a positive integer m and 1 < p <∞, we define the Sobolev class Bm,p(Ω) to

be the set of functions f ∈ Lp(Ω) so that for each k = 1, · · · ,m there exist functions 0 ≤ gk ∈ Lp(Ω)

and polynomials Pk(B, f) such that

|f(x)− Pk(B, f)(x)| ≤ r(B)kgk(x) (1.6)

for µ−a.e. x ∈ B for every metric ball B ⊂ Ω. The polynomials Pk(B, f) are assumed to belong to a
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linear class which satisfies (P1) and (P2) with constants depending only on k, γ, µ. If f ∈ Bm,p(Ω),

let

||f ||Bm,p(Ω) = ||f ||Lp(Ω) + inf
{gk}

m∑
k=1

||gk||Lp(Ω).

The class Bm,p(Ω) is a Banach space with norm || · ||Bm,p .

Then by a result of [25], we have

Theorem 1.11. Definition 1.9 and Definition 1.10 are equivalent.

In the spirit of H-M. Nguyen’s paper [34], I will establish the similar results on Heisenberg

groups and Carnot groups in this thesis.

1.2 Preliminary of Heisenberg group and Carnot group

Let H = Cn × R be the n-dimensional Heisenberg group whose group structure is given by

(z, t) · (z′ , t′) = (z + z
′
, t+ t

′
+ 2Im(z · z′)),

for any two points (z, t) and (z
′
, t
′
) in H. The Lie algebra of H is generated by the left invariant

vector fileds

T =
∂

∂t
,Xi =

∂

∂xi
+ 2yi

∂

∂t
, Yi =

∂

∂yi
− 2xi

∂

∂t

for i = 1, . . . n. These generators satisfy the non-commutative relationship

[Xi, Yj ] = −4δijT.

with the Lie bracket given by the commutator

([X,Y ]f)(x)
.
= (X(Y f))(x)− (Y (Xf))(x),

where X,Y are lie algebras onHeisenberg groups. Moreover, all the commutators of length greater

than two vanish, and thus this is a nilpotent, graded, and stratified group of step two.

For each real number r ∈ R, there is a dilation naturally associated with Heisenberg group

structure which is usually denoted as

δr(z, t) = (rz, r2t)

However, for simplicity we will write ru to denote δru. The Jacobian determinant of δr is rQ, where
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Q = 2n+ 2 is the homogeneous dimension of H.

We use ξ = (z, t) to denote any point (z, t) ∈ H and ρ(ξ) = (|z|4 + t2)
1
4 to denote the homoge-

neous norm of ξ ∈ H. With this norm, we can define a Heisenberg ball centered at ξ = (z, t) with

radius R : B(ξ,R) = {v ∈ H : |ξ−1v| < R}. The volume of such a ball is σQ = CQR
Q for some

constant depending on Q. We also use ∇Hf to express the horizontal subgradient of the function

f : H→ R:

∇Hf (z, t) =
n∑
j=1

(Xjf)Xj + YjfYj)

Let Ω be an open set in H. We use W 1,p
0 (Ω) to denote the completion of C∞0 (Ω) under the norm

‖f‖W 1,p(Ω) = (
´

Ω(|∇Hf |p + |f |p)du)1/p.

In fact, Heisenberg group is an explicit example of Carnot groups.

Definition 1.12. A Carnot group G is a simply connected Lie group with a stratified Lie algebra

g, i.e. a nilpotent Lie algebra that can be decomposed into a direct sum of linear subspaces called

layers,{Wj}kj=1, in such a way that the first layer generates the whole algebra:

g = ⊕
j=1

Wj ,Wj+1 = [W1,Wj ],∀j < k,Wj = 0,∀j > k.

The postive integer k is called the step of g.

We now introduce some basic properties of such groups.

Definition 1.13. let γX,x(t) the integral curve of X ∈ g passing through x ∈ G

γ′X,x(t) = X(γX,x(t))

γX,x(0) = x.

Then we define the exponential map on g as

exp(X)
.
= γX,e(1) ∈ G
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and it is a local diffeomorphism of a neighborhood of 0 ∈ g to a neighborhood of e ∈ G:d exp(0) =

11g,which extends to a global diffeomorphism if G is simply connected.

Definition 1.14. Given a stratified Lie algebra g, we can define algebra dilations as a 1-parameter

group {∆λ}λ>0 of automorphisms of g which act on layers as

∆λ(X) = λjX,∀X ∈Wj .

We can deduce algebra dilations on G by the exponential mapping. We call a 1-parameter group

of automorphisms of G group dilations{δλ}λ>0:

δλ(δµ(x)) = δλµ(x), δλ(x · y) = δλ(x) · δλ(y), ∀x, y ∈ G, ∀λ, µ > 0.

The quantity Q =
∑
j dim(Wj) is called the homogeneous dimension of G.

IDENTIFICATION WITH RN : we can identify G with RN endowed with the induced group

law since the exponential map is a global diffeomorphism. If we set mj = dim(Wj), then
∑
mj = N ,

which differs fromQ if g has more than one layer. Given a basis {X1, ...., Xm1 , Xm1+1, ..., Xm1+m2 , ..., XN}

of g, the action of group dilations reads

δλ(x1, ..., xN ) = (λx1, ..., λxm1 , λ
2xm1+1, ..., λ

2xm1+m2 , ..., λ
kxN ).

SUB-RIEMANNIAN STRUCTURE: the first layer of the algebra g can be identified with a

linear subspace of the tangent space of G at the origin and defines, by left invarients, a canonical

subbundle HG of the tangent bundle TG, whose fibers at point x ∈ G will be denoted by HxG.

Definition 1.15. For a smooth function f : G→ R, we define its horizontal gradient as

∇Xf =

m1∑
j=1

(Xjf)Xj

The map ∇Xf defines a horizontal vector field. The coordinates of ∇Xf(x) in HxG with respect

to the chosen orthonomal basis {X1(x), · · · , Xm1(x)} are given by {X1f(x), · · · , Xm1f(x)}

Definition 1.16. A homogeneous norm is a continuous function | · |G : G → R+ with the
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following properties:

(1)|x|G = 0⇔ x = 0;

(2)|x−1|G = |x|G;

(3)|δλ(x)|G = λ|x|G.

A homogeneous norm induces a left-invarient homogeneous distance by

d(x, y) = |y−1 · x|G

with x, y ∈ G. We define the ball centered at x with radius r in Carnot group G by B(x, r) =

{y ∈ G such that d(x, y) < r}.

The following corollary states three basic properties of the measure under changes of variables.

Corollary 1.17. Let G be a Carnot group and f : G → R an integrable function on G, then the

Harr measure of G

1 . is invariant under left and right translations:
ˆ
G
f(y · x)dx =

ˆ
G
f(x · y)dx =

ˆ
G
f(x)dx ∀y ∈ G

2 . scales under group dilations by the homogeneous dimension of G:
ˆ
G
f(x)dx = λQ

ˆ
G
f(x)dx ∀λ > 0;

3 . is affected by G-changes of basis as the Lebesgue measure on (RN ,+), i.e. putting ξ =

φA(x) = (Ax′, x′′)with x′ ∈ Rm1 we have:
ˆ
G
f(x)dx =

ˆ
G
f(ξ)|detA|dξ ∀A ∈ GL(m1,R).

Definition 1.18. A continuous function f : G → R is said to be in C1
G(G,R) if Xjf : G → R

exist and are continuous for j = 1, · · · ,m1.

Definition 1.19. (Sobolev space W 1,p
G (G)) Let G be a Carnot group and let p ≥ 1 be fixed. We

denote by W 1,p
G (G) the set of functions f ∈ Lp(G) such that Xjf ∈ Lp(G) for j = 1, · · · ,m1,
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endowed with the norm

‖f‖W 1,p(G) = (

ˆ
G
|f(x)|pdx)1/p + (

ˆ
G
|∇Xf(x)|pXdx)1/p.

In particular, the classical density result of smooth functions still holds, see [18].

1.3 Outline of the Dissertation

The rest of the dissertation is arranged as follows. In Chapter 2, the new characterizations

of Sobolev spaces on Heisenberg groups are studied. We consider the case for p > 1 and p = 1. It’s

worthy to note that one of the main techniques in the proof of Theorem 1.4 is to use the uniformity

in every directions of the unit sphere in the Euclidean spaces. More precisely, to deal with the

general case σ ∈ SN−1, it is often to be assumed that σ = eN = (0, ..0, 1) and hence, one just needs

to work on 1-dimensional case. This can be done by using the rotation in the Euclidean spaces. In

the case of Heisenberg groups, this type of property is not available because of the structure of the

Heisenberg groups, in particular, the dilation. Hence, we need to find a different approach to these

characterizations.

In Chapter 3, we study the new characterizations of Sobolev spaces on Carnot groups which is

a more general case than the Heisenberg groups. In fact, the Carnot groups have more complicated

group structure than the Heisenberg groups. Even the main idea in this project is similar to the

characterizations of Sobolev spaces on Heisenberg groups, there are still several lemmas we use in

this chapter which are different from Chapter 2.

In Chapter 4, we consider the new characterizations of Sobolev spaces on second order Sobolev

spaces on Euclidean spaces. We will present here several types of characterizations: by second

order differences and by the Taylor remainder, and by the differences of the first order gradient.

Such characterizations are inspired by the works of Bourgain, Brezis and Mironescu [5] and H.M.

Nguyen [34,35] on characterizations of first order Sobolev spaces in the Euclidean space.

In Chapter 5, we extend the results of Chapter 4 to the high order Sobolev spaces Wm,p(RN ) for
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m > 2 on Euclidean spaces. We also establish several types of characterizations: by mth differences

and by the m− 1th Taylor remainder.

In Chapter 6, we give a new approach for the characterization of Sobolev space on Heisenberg

group by considering Lp differentiability of Sobolev functions. In this section, we introduce a variant

of the notion of Lp differentiability introduced by Calderón and Zygmund and prove that functions in

a Sobolev space on Heisenberg group posses this type of Lp-derivative. We show that our formulation

in fact characterizes the Sobolev space on Heisenberg group.

Finally in Chapter 7, concluding remarks are given, and several possible directions are proposed

for future study.

1.4 Notation Index

Before proceeding further, we compile the following list of notation index to be used in the

entire dissertation.

Cn n-dimensional complex spaces, where n is a positive integer

H n-dimensional Heisenberg group

G Carnot group

R+ {z ∈ R : z > 0}

|x| Euclidean norm of x ∈ RN

∇f gradient of f(x) w.r.t. x

a.e. almost everywhere

end of proof

GL(m1,R) the group of m1 ×m1 invertible matrices of real numbers

g lie algebra of Carnot group

| · |H homogeneous norm of Heisenberg group
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CHAPTER 2 NEW CHARACTERIZATIONS OF SOBOLEV SPACES

ON HEISENBERG GROUPS

2.1 Some Useful Lemmas

The following elementary lemma was proved and used in [34]. For the sake of completeness, we

include a proof.

Lemma 2.1. Let Ω be a measurable set in Rm, Φ and Ψ be two measurable nonnegative functions

on Ω, and α > −1. Then
1ˆ

0

ˆ

Φ(x)>δ

δαΨ (x) dxdδ =

ˆ

Φ(x)≤1

1

α+ 1
Φα+1 (x) Ψ (x) dx+

ˆ

Φ(x)>1

1

α+ 1
Ψ (x) dx.

Proof. Using Fubini’s theorem, we get
1ˆ

0

ˆ

Φ(x)>δ

δαΨ (x) dxdδ

=

ˆ

Φ(x)>1

1ˆ

0

δαΨ (x) dδdx+

ˆ

Φ(x)≤1

Φ(x)ˆ

0

δαΨ (x) dδdx

=

ˆ

Φ(x)>1

1

α+ 1
Ψ (x) dx+

ˆ

Φ(x)≤1

1

α+ 1
Φα+1 (x) Ψ (x) dx.

The proof is now completed.

Next lemma is crucial in establishing our new characterizations of Sobolev spaces on the Heisenberg

group H. In the Euclidean spaces, H.M. Nguyen [34] used the property that every two points can

be connected by a line-segment and then used the mean-value theorem to control the difference of

|f(x) − f(x + he)| (where h ∈ RN and e ∈ SN−1) by the Hardy-Littlewood maximal function of

the partial derivative of f in the direction of e. Such an argument does not work on the Heisenberg

group. Therefore, we need to adapt a new argument by using the representation formula on the

Heisenberg group H [26].
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Lemma 2.2. Let g ∈W 1,p (H) , 1 < p <∞. Then we have
¨

|g(u)−g(v)|>δ

δp

|u−1v|Q+p
dudv ≤ CQ,p

ˆ

H

|∇Hg(u)|p du, ∀δ > 0

where CQ,p is a positive constant depending only on Q and p.

Proof. First, we recall the following pointwise estimate on stratified groups proved in [26], for any

metric ball B in H and every u ∈ B, we have

|f(u)− fB| ≤ C
ˆ
cB

|∇Hf(v)|
|u−1v|Q−1

dv

where fB is the average of f over B and c is a positive uniform constant bigger than or equal to 1.

Then we can show that

|f(u)− f(v)| ≤ AQ,pρ
(
u−1 · v

)
(M(|∇Hf |)(u) +M(|∇Hf |)(v)) for a.e. u, v ∈ H (2.1)

where M denoted the Hardy-Littlewood maximal function

M(f)(u) = sup
r>0

1

|B (u, r)|

ˆ
B(u,r)

f(v)dv

and AQ,p is the universal constant depending only on Q and p.

Now noting that by (2.1):

{|f(u)− f(v)| > δ} ⊂
{
AQ,pρ

(
u−1 · v

)
(M(|∇Hf |)(u) +M(|∇Hf |)(v)) > δ

}
⊂
{
ρ
(
u−1 · v

)
M(|∇Hf |)(u) >

δ

2AQ,p

}
∪
{
ρ
(
u−1 · v

)
M(|∇Hf |)(v) >

δ

2AQ,p

}
,

we get
ˆ

H

ˆ

H
|f(u)−f(v)|>δ

δp

ρ (u−1 · v)Q+p
dudv

≤
ˆ

H

ˆ

H
ρ(u−1·v)M(|∇Hf |)(u)> δ

2AQ,p

δp

ρ (u−1 · v)Q+p
dudv +

ˆ

H

ˆ

H
ρ(u−1·v)M(|∇Hf |)(v)> δ

2AQ,p

δp

ρ (u−1 · v)Q+p
dudv.
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Denote

I1 :=

ˆ

H

ˆ

H
ρ(u−1·v)M(|∇Hf |)(u)> δ

2AQ,p

δp

ρ (u−1 · v)Q+p
dudv,

I2 :=

ˆ

H

ˆ

H
ρ(u−1·v)M(|∇Hf |)(v)> δ

2AQ,p

δp

ρ (u−1 · v)Q+p
dudv.

Now, we estimate I1.

Set

v = u · hσ

where

σ ∈ Σ = {u ∈ H : |u| = 1} ,

h ∈ [0,∞)

then

I1 =

ˆ

Σ

ˆ

H

∞̂

0

hM(|∇Hf |)(u)> δ
2AQ,p

δp

hp+1
dhdudσ

≤
ˆ

Σ

ˆ

H

∞̂

δ
2AQ,pM|∇Hf|(u)

δp

hp+1
dhdudσ

=
1

p

ˆ

Σ

ˆ

H

[2AQ,pM |∇Hf | (u)]p dudσ

≤
(2AQ,p)

p

p

ˆ

Σ

ˆ

H

[M |∇Hf | (u)]p dudσ

≤ CQ,p
ˆ

H

|∇Hf(u)|p du.

Similarly, to estimate I2, we put

u = v · hσ

Noting that ρ
(
u−1 · v

)
=
∣∣v−1u

∣∣, we still can get

I2 ≤ CQ,p
ˆ

H

|∇Hf(u)|p du.
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The proof now is completed.

Before we state and prove the next lemma, we like to make the following remark. Let f ∈

W 1,p (H) , 1 < p <∞. We denote

I (δ) =

ˆ

H

ˆ

H
|f(u)−f(v)|>δ

δp

ρ (u−1 · v)Q+p
dudv.

By Lemma 2.2, lim inf
δ→0

I (δ) does exist. In the setting of Euclidean spaces [34], this limit is rather

easy to evaluate. More precisely, by polar coordinates and the rotations in the Euclidean spaces,

it is often assumed in [34] that σ = eN = (0, ..0, 1). Thus, to deal with the general case σ ∈

SN−1, the author in [34] just needs to consider the one-dimensional case. Then, using real analysis

techniques such as the Maximal function, Lebesgue’s dominated convergence theorem, Hoai-Minh

Nguyen finds successfully the exact value of lim inf
δ→0

I (δ) . In our setting of Heisenberg group H,

this approach is not available because of the underlying geometry. Hence, we need to propose a

new method in order to calculate lim inf
δ→0

I (δ). Indeed, our main idea is that we will first study the

relations of I (δ) and the following quantity:

J (ε) =

ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv.

In fact, we can prove the following results:

Lemma 2.3. Let f ∈W 1,p (H) , 1 < p <∞. There hold

lim inf
ε→0

J (ε) ≥ 1

p
lim inf
δ→0

I (δ)

lim sup
ε→0

J (ε) ≤ 1

p
lim sup
δ→0

I (δ) .

Proof. By Lemma 2.2, lim inf
δ→0

I (δ) and lim sup
δ→0

I (δ) exist. Assume that

lim inf
δ→0

I (δ) = C

lim sup
δ→0

I (δ) = D.
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We first prove that

lim inf
ε→0

1ˆ

0

(p+ ε) εδε−1I (δ) dδ ≥ pC. (2.2)

Indeed, since

lim inf
δ→0

I (δ) = C,

for every τ > 0, we can find a number X (τ) ∈ (0, 1) such that

I (δ) > C − τ for all δ ∈ (0, X (τ)) .

Then

lim inf
ε→0

1ˆ

0

(p+ ε) εδε−1I (δ) dδ

= lim inf
ε→0

 X(τ)ˆ

0

(p+ ε) εδε−1I (δ) dδ +

1ˆ

X(τ)

(p+ ε) εδε−1I (δ) dδ


≥ lim inf

ε→0

X(τ)ˆ

0

(p+ ε) εδε−1I (δ) dδ

≥ lim inf
ε→0

X(τ)ˆ

0

(p+ ε) εδε−1 (C − τ) dδ

≥ p (C − τ) .

Since τ is arbitrary, we now can conclude that

lim inf
ε→0

1ˆ

0

¨

|f(u)−f(v)|>δ

(p+ ε) εδp+ε−1

ρ (u−1 · v)Q+p
dudvdδ ≥ pC.

Using Lemma 2.1 with α = p+ ε− 1, Φ (u, v) = |f(u)− f(v)| , Ψ (u, v) = 1

ρ(u−1·v)Q+p , we obtain

lim inf
ε→0


ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv +

ˆ

H

ˆ

H
|f(u)−f(v)|>1

ε

ρ (u−1 · v)Q+p
dudv

 ≥ pC.
Noting that

lim
ε→0

ˆ

H

ˆ

H
|f(u)−f(v)|>1

ε

ρ (u−1 · v)Q+p
dudv = 0,
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we have

lim inf
ε→0

ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv ≥ pC.

Similarly, since

lim sup
δ→0

I (δ) = D,

for every τ > 0, we can find a number X (τ) ∈ (0, 1) such that

I (δ) < D + τ for all δ ∈ (0, X (τ)) .

Then

lim sup
ε→0

1ˆ

0

(p+ ε) εδε−1I (δ) dδ

= lim sup
ε→0

 X(τ)ˆ

0

(p+ ε) εδε−1I (δ) dδ +

1ˆ

X(τ)

(p+ ε) εδε−1I (δ) dδ


≤ lim sup

ε→0

 X(τ)ˆ

0

(p+ ε) εδε−1 (D + τ) dδ + (p+ ε) εX (τ)ε−1CQ,p

ˆ

H

|∇Hf(u)|p du
1ˆ

X(τ)

1dδ


≤ lim sup

ε→0

X(τ)ˆ

0

(p+ ε) εδε−1 (D + τ) dδ

≤ p (D + τ) .

Since τ is arbitrary, we now can conclude that

lim sup
ε→0

1ˆ

0

¨

|f(u)−f(v)|>δ

(p+ ε) εδp+ε−1

ρ (u−1 · v)Q+p
dudvdδ ≤ pD.

Using Lemma 2.1 with α = p+ ε− 1, Φ (u, v) = |f(u)− f(v)| , Ψ (u, v) = 1

ρ(u−1·v)Q+p , we obtain

lim sup
ε→0


ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv +

ˆ

H

ˆ

H
|f(u)−f(v)|>1

ε

ρ (u−1 · v)Q+p
dudv

 ≤ pD.
Noting that

lim
ε→0

ˆ

H

ˆ

H
|f(u)−f(v)|>1

ε

ρ (u−1 · v)Q+p
dudv = 0,
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we have

lim sup
ε→0

ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv ≤ pD.

Lemma 2.4. There holds

1

p
KQ,p

ˆ

H

|∇Hf(u)|p du ≤ lim inf
δ→0

ˆ

H

ˆ

H
|f(u)−f(v)|>δ

δp

ρ (u−1 · v)Q+p
dudv,

for any f ∈W 1,p (H) , 1 < p <∞.

Proof. First, we notice by the change of variable that
ˆ

H

ˆ

H
|f(u)−f(v)|>δ

δp

ρ (u−1 · v)Q+p
dudv =

ˆ

Σ

ˆ

H

∞̂

0∣∣∣ f(u·δhσ)−f(u)δh

∣∣∣h>1

1

hp+1
dhdudσ.

Now, fix σ = (σ′, σ2n+1) ∈ Σ, with σ′ ∈ Cn, we will show that

1

p

ˆ

H

∣∣∇Hf(u) · σ′
∣∣p du ≤ lim inf

δ→0

ˆ

H

∞̂

0∣∣∣ f(u·δhσ)−f(u)δh

∣∣∣h>1

1

hp+1
dhdu. (2.3)

Indeed, since for a.e. (h, u) ∈ (0,∞)×H :

1

hp+1
χ{∣∣∣ f(u·δhσ)−f(u)δh

∣∣∣h>1
} (h, u)

δ→0→ 1

hp+1
χ{|〈∇Hf(u),σ′〉|h>1} (h, u) ,

by Fatou’s lemma, we have

lim inf
δ→0

ˆ

H

∞̂

0∣∣∣ f(u·δhσ)−f(u)δh

∣∣∣h>1

1

hp+1
dhdu ≥

ˆ

H

∞̂

0

1

hp+1
χ{|〈∇Hf(u),σ′〉|h>1} (h, u) dhdu

=
1

p

ˆ

H

∣∣〈∇Hf(u), σ′〉
∣∣p du.
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Now, again by the Fatou’s lemma, we obtain

lim inf
δ→0

¨

|f(u)−f(v)|>δ

δp

ρ (u−1 · v)Q+p
dudv = lim inf

δ→0

ˆ

Σ

ˆ

H

∞̂

0∣∣∣ f(u·δhσ)−f(u)δh

∣∣∣h>1

1

hp+1
dhdudσ

≥
ˆ

Σ

lim inf
δ→0

ˆ

H

∞̂

0∣∣∣ f(u·δhσ)−f(u)δh

∣∣∣h>1

1

hp+1
dhdudσ

≥ 1

p

ˆ

Σ

ˆ

H

∣∣〈∇Hf(u), σ′〉
∣∣p dudσ

=
1

p
KQ,p

ˆ

H

|∇Hf(u)|p du.

Lemma 2.5. Let f ∈ C1
0 (H). Then

lim sup
ε→0

ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv ≤ KQ,p

ˆ

H

|∇Hf(u)|p du.

Proof. By setting v = u · hσ, we have
ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv =

ˆ

Σ

ˆ

H

∞̂

0
|f(u·hσ)−f(u)|≤1

ε |f(u · hσ)− f(u)|p+ε

hp+1
dudhdσ.

In the following, C will be a constant independent of u, h, σ, ε.

Since f ∈ C1
0 (H), by triangle inequality and Taylor expansion [31], we have

|f(u · hσ)− f(u)| ≤
∣∣∇f (u) .hσ′

∣∣+ Ch2 for (σ, u, h) ∈ Σ×BA × (0, R) .

Also, we can find M > 0 such that |∇f (u) .σ′| ≤M for all (σ, u) ∈ Σ×BA.

Hence

|f(u · hσ)− f(u)|p+ε ≤
[∣∣∇f (u) .hσ′

∣∣+ Ch2
]p+ε

≤
∣∣∇f (u) .hσ′

∣∣p+ε + Chp+ε+1.
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Thus

lim sup
ε→0

ˆ

Σ

ˆ

BA

R̂

0

|f(u·hσ)−f(u)|≤1

ε |f(u · hσ)− f(u)|p+ε

hp+1
dhdudσ

≤ lim sup
ε→0

ˆ

Σ

ˆ

BA

R̂

0

ε |∇f (u) .hσ′|p+ε + Cεhp+ε+1

hp+1
dhdudσ

≤ lim sup
ε→0

ˆ

Σ

ˆ

BA

R̂

0

ε |∇f (u) .hσ′|p+ε

hp+1
dhdudσ

≤ lim sup
ε→0

ˆ

Σ

ˆ

BA

R̂

0

ε |∇f (u) .σ′|p+ε

h1−ε dhdudσ

≤ lim sup
ε→0

Rε
ˆ

Σ

ˆ

BA

∣∣∇f (u) .σ′
∣∣p+ε dudσ

≤ lim sup
ε→0

RεM ε

ˆ

Σ

ˆ

BA

∣∣∇f (u) .σ′
∣∣p dudσ

≤ KQ,p

ˆ

H

|∇Hf(u)|p du.

2.2 Main Results

The first aim of this chapter is to prove the following estimates for functions in the Sobolev

space W 1,p (H) :

Theorem 2.6. Let 1 < p <∞ and f ∈W 1,p (H). Then

(a) There exists a positive constant CQ,p depending only on Q, p such that

sup
0<ε<1

ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv +

ˆ

H

ˆ

H
|f(u)−f(v)|>1

1

ρ (u−1 · v)Q+p
dudv ≤ CQ,p

ˆ

H

|∇Hf(u)|p du.

(b) There holds

lim
ε→0

ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv = KQ,p

ˆ

H

|∇Hf(u)|p du.
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where KQ,p is a constant defined as follows

KQ,p =

ˆ

Σ

∣∣〈e, σ′〉∣∣p dσ =

ˆ

Σ

|〈(e, 0), σ〉|pdσ

for any (e, 0) ∈ Σ.

(c) There exists a positive constant CQ,p such that
ˆ

H

ˆ

H
|f(u)−f(v)|>δ

δp

ρ (u−1 · v)Q+p
dudv ≤ CQ,p

ˆ

H

|∇Hf(u)|p du, ∀δ > 0.

(d) Moreover

lim inf
δ→0

ˆ

H

ˆ

H
|f(u)−f(v)|>δ

δp

ρ (u−1 · v)Q+p
dudv =

1

p
KQ,p

ˆ

H

|∇Hf(u)|p du.

Using Theorem 2.6, we set up new characterizations of the Sobolev space W 1,p (H) which is the

main purpose of this paper. More precisely, we prove that

Theorem 2.7. Let 1 < p <∞ and f ∈ Lp (H). Then the following are equivalent:

(1) f ∈W 1,p (H).

(2)

sup
0<ε<1

ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv +

ˆ

H

ˆ

H
|f(u)−f(v)|>1

1

ρ (u−1 · v)Q+p
dudv <∞.

(3)

sup
0<δ<1

ˆ

H

ˆ

H
|f(u)−f(v)|>δ

δp

ρ (u−1 · v)Q+p
dudv <∞.

(4) There exists a nonnegative function F ∈ Lp (H) such that

|f(u)− f(v)| ≤ ρ
(
u−1 · v

)
(F (u) + F (v)) for a.e. u, v ∈ H.

(5) The L1 to Lp Poincaré inequalities hold for every metric ball B in H. Namely, there exists

a function g ∈ Lploc(H) and an absolute constant C > 0 independent of the ball B such that

1

|B|

ˆ
B
|f(u)− fB|du ≤ Cr(B)

(
1

|B|

ˆ
B
|g|qdu

) 1
q

for some 1 ≤ q < p, where r(B) is the radius of the ball B.

The following remarks are in order. First, the proofs of the main theorems (e.g., Theorem B)
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in [34] rely on the underlying geometry of the Euclidean spaces, such as that any two points can

be connected by a line segment. Second, it’s worthy to note that one of the main techniques in the

proof of Theorem B is to use the uniformity in every directions of the unit sphere in the Euclidean

spaces. More precisely, to deal with the general case σ ∈ SN−1, it is often to be assumed that

σ = eN = (0, ..0, 1) and hence, one just needs to work on 1-dimensional case. This can be done by

using the rotation in the Euclidean spaces. In the case of Heisenberg groups, this type of property is

not available because of the structure of the Heisenberg groups, in particular, the dilation. Hence,

we need to find a different approach to this characterization. In fact, we will use the representation

formula on the Heisenberg group proved in [26] to obtain estimate (4.1). This estimate will allow

us to establish a useful lemma (Lemma 2.2 in Section 2.1. Third, as we have shown in [25], (1), (4)

and (5) are all equivalent. Therefore, the new ingredient here is that (1), (2) and (3) are equivalent.

2.3 Proof of Main Results

Proof of Theorem 2.6:

(a) First, by Lemma 2.2, we have
ˆ

H

ˆ

H
|f(u)−f(v)|>δ

δp

ρ (u−1 · v)Q+p
dudv ≤ CQ,p

ˆ

H

|∇Hf(u)|p du, ∀δ > 0. (2.4)

As consequences, we get
ˆ

H

ˆ

H
|f(u)−f(v)|>1

1

ρ (u−1 · v)Q+p
dudv ≤ CQ,p

ˆ

H

|∇Hf(u)|p du, (2.5)

Now, multiplying (2.4) by εσε−1, 0 < ε < 1 and integrating the expression obtained with respect

to σ over (0, 1), we can deduce that
1ˆ

0

ˆ

H

ˆ

H
|f(u)−f(v)|>δ

εδp+ε−1

ρ (u−1 · v)Q+p
dudvdδ ≤ CQ,p

ˆ

H

|∇Hf(u)|p du.
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Using Lemma 2.1 with α = p+ ε− 1, Φ (u, v) = |f(u)− f(v)| , Ψ (u, v) = 1

ρ(u−1·v)Q+p , we obtain
ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv +

ˆ

H

ˆ

H
|f(u)−f(v)|>1

ε

ρ (u−1 · v)Q+p
dudv ≤ CQ,p

ˆ

H

|∇Hf(u)|p du.

Thus,
¨

|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv ≤ CQ,p

ˆ

H

|∇Hf(u)|p du. (2.6)

By (2.5) and (2.6), we get the assertion (a).

(b) From Lemma 2.3, 2.4, 2.5 and the density argument, we have (b).

(c) This is Lemma 2.2.

(d) This is a consequence of Lemma 2.3, 2.5, 2.4 and the density argument.

Proof of Theorem 2.7:

The proof is divided into 6 steps.

Step 1: (1) ⇒ (2). This is a consequence of part (a) of Theorem 2.6 and the fact that f ∈

W 1,p (H) .

Step 2: (2)⇒ (1). First, we will assume further that f ∈ L∞ (H) . Then from the assumption

sup
0<ε<1

ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv +

ˆ

H

ˆ

H
|f(u)−f(v)|>1

1

ρ (u−1 · v)Q+p
dudv <∞,

it’s easy to deduce that

L(f) = sup
0<ε<1

ˆ

H

ˆ

H

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv <∞.

Now, let (γk) be a sequence of smooth mollifiers on H and set

fk := f ∗ γk.
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Since fk ∈ Lp(H) ∩ C∞(H), so fk ∈W 1,p(H). By using Theorem 2.6 (b), we can conclude that

KQ,p

ˆ

H

|∇Hfk(u)|p du ≤ lim inf
ε→0

ˆ

H

ˆ

H
|fk(u)−fk(v)|≤1

ε |fk(u)− fk(v)|p+ε

ρ (u−1 · v)Q+p
dudv

≤ lim inf
ε→0

ˆ

H

ˆ

H

ε |fk(u)− fk(v)|p+ε

ρ (u−1 · v)Q+p
dudv

From Jensen’s inequality and the convexity of the function xp+ε, we can obtain
ˆ

H

ˆ

H

ε |fk(u)− fk(v)|p+ε

ρ (u−1 · v)Q+p
dudv ≤

ˆ

H

ˆ

H

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv ≤ L(f).

Hence,

KQ,p

ˆ

H

|∇Hfk(u)|p du ≤ lim inf
ε→0

ˆ

H

ˆ

H

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv ≤ L(f).

Thus, with an extra assumption f ∈ L∞ (H) , we have that (2)⇒ (1).

For the general case, we make use of the truncated function. For R > 0, define

fR (u) =

 f(u) , if |f(u)| < R

Rf(u)
|f(u)| , otherwise

.

It’s clear that fR ∈ L∞ (H) and fR (u)
R→∞→ f(u) pointwise for a.e. u ∈ H. Moreover, it can be

checked that

|fR (u)− fR (v)| ≤ |f (u)− f (v)| for all u, v ∈ H.

As a consequence, one has
ˆ

H

ˆ

H
|fR(u)−fR(v)|≤1

ε |fR(u)− fR(v)|p+ε

ρ (u−1 · v)Q+p
dudv

=

ˆ

H

ˆ

H
|fR(u)−fR(v)|≤1

|f(u)−f(v)|≤1

ε |fR(u)− fR(v)|p+ε

ρ (u−1 · v)Q+p
dudv +

ˆ

H

ˆ

H
|fR(u)−fR(v)|≤1

|f(u)−f(v)|>1

ε |fR(u)− fR(v)|p+ε

ρ (u−1 · v)Q+p
dudv

≤
ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv +

ˆ

H

ˆ

H
|f(u)−f(v)|>1

ε

ρ (u−1 · v)Q+p
dudv.

Also,
ˆ

H

ˆ

H
|fR(u)−fR(v)|>1

1

ρ (u−1 · v)Q+p
dudv ≤

ˆ

H

ˆ

H
|f(u)−f(v)|>1

1

ρ (u−1 · v)Q+p
dudv.
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Thus, we have fR ∈W 1,p (H) . Moreover, by part (b) of Theorem 2.6, one has

KQ,p

ˆ

H

|∇HfR(u)|p du ≤ lim inf
ε→0

ˆ

H

ˆ

H
|fR(u)−fR(v)|≤1

ε |fR(u)− fR(v)|p+ε

ρ (u−1 · v)Q+p
dudv

≤ lim inf
ε→0


ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv +

ˆ

H

ˆ

H
|f(u)−f(v)|>1

ε

ρ (u−1 · v)Q+p
dudv


= lim inf

ε→0

ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv.

Since R > 0 is arbitrary, we can deduce that f ∈W 1,p (H) .

Step 3: (1) ⇒ (3). This is a consequence of part (c) of Theorem 2.6 and the fact that f ∈

W 1,p (H) .

Step 4: (3) ⇒ (1). Suppose that f ∈ Lp (H) and there is a constant C > 0 such that for all

δ ∈ (0, 1) :
ˆ

H

ˆ

H
|f(u)−f(v)|>δ

δp

ρ (u−1 · v)Q+p
dudv ≤ C. (2.7)

Multiplying (2.7) by εδε−1, 0 < ε < 1, and integrating with respect to δ over (0, 1), by Lemma

2.1 with α = p+ ε− 1, Φ (u, v) = |f(u)− f(v)| , Ψ (u, v) = 1

ρ(u−1·v)Q+p , one has
ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv ≤ C (p+ 1) .

Also, by Fatou’s lemma, we also get
ˆ

H

ˆ

H
|f(u)−f(v)|>1

1

ρ (u−1 · v)Q+p
dudv <∞.

As a consequence of Step 2, we have f ∈W 1,p (H) .

The proof is now completed.

2.4 The Case p = 1

In this section, we will investigate the special case p = 1. First, we recall the definition of

the space BV (Ω) of functions with bounded variation in Ω ⊂ H.
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Definition 2.8 (Horizontal vector fields). The space of smooth sections of HΩ, the horizontal

subbundle on Ω, is denoted by Γ (HΩ). The space Γc (HΩ) denotes all the elements of Γ (HΩ) with

support contained in Ω. Elements of Γ (HΩ) are called horizontal vector fields.

Definition 2.9 (H−BV functions). We say that a function u ∈ L1 (Ω) is a function of H−bounded

variation if

|DHu| (Ω) = sup


ˆ

Ω

udiv φdξ : φ ∈ Γc (HΩ) , |φ| ≤ 1

 <∞,

where the symbol div denotes the Riemannian divergence. We denote by BV (Ω) the space of all

functions of H−bounded variation.

In this section, we will prove the following property:

Theorem 2.10. Let f be a function in L1 (H) satisfying

sup
0<δ<1

ˆ

H

ˆ

H
|f(u)−f(v)|>δ

δ

ρ (u−1 · v)Q+1
dudv <∞.

Then f ∈ BV (H) .

Proof. Assume that f ∈ L1 (H) and
ˆ

H

ˆ

H
|f(u)−f(v)|>δ

δ

ρ (u−1 · v)Q+1
dudv < C (2.8)

for some positive constant C > 0.

Proceeding similarly as in Step 4 of the proof of Theorem 2.7, multiplying (2.8) by εδε−1, 0 <

ε < 1, integrating with respect to δ over (0, 1) , and then using Lemma 2.1, we have
ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|1+ε

ρ (u−1 · v)Q+1
dudv ≤ 2C.

By Fatou’s lemma, from (2.8), we also get
ˆ

H

ˆ

H
|f(u)−f(v)|>1

1

ρ (u−1 · v)Q+1
dudv < C.

Now, we also split the proof into 2 steps:

Step 1: We suppose further that f ∈ L∞ (H) . Now, we define fk as in Step 2 of the proof of
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Theorem 2.7. Noting that the function t1+ε is still convex on R+, we can also have
ˆ

H

ˆ

H

ε |fk(u)− fk(v)|1+ε

ρ (u−1 · v)Q+1
dudv ≤

ˆ

H

ˆ

H

ε |f(u)− f(v)|1+ε

ρ (u−1 · v)Q+1
dudv

≤
ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|1+ε

ρ (u−1 · v)Q+1
dudv

+

ˆ

H

ˆ

H
|f(u)−f(v)|>1

ε |f(u)− f(v)|1+ε

ρ (u−1 · v)Q+1
dudv

≤ 2C + ε [2 ‖f‖∞]1+εC.

Now, we can repeat the proofs of (b) in Theorem 2.6 and Step 2 in Theorem 2.7 to conclude that

fk ∈ BV (H) and

KQ,1 ‖∇Hfk‖ ≤ lim inf
ε→0

ˆ

H

ˆ

H

ε |fk(u)− fk(v)|1+ε

ρ (u−1 · v)Q+1
dudv

≤ lim inf
ε→0

{2C + ε [2 ‖f‖∞]1+εC}

= 2C.

Hence f ∈ BV (H) .

Step 2: The general case. Similarly, we also introduce the truncated function

fR (u) =

 f(u) if |f(u)| < R

Rf(u)
|f(u)| otherwise

for R > 0.

Then one has fR ∈ L∞ (H), fR (u)
R→∞→ f(u) pointwise for a.e. u ∈ H, and

|fR (u)− fR (v)| ≤ |f (u)− f (v)| for all u, v ∈ H.
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As a consequence, one gets
ˆ

H

ˆ

H
|fR(u)−fR(v)|≤1

ε |fR(u)− fR(v)|1+ε

ρ (u−1 · v)Q+1
dudv

=

ˆ

H

ˆ

H
|fR(u)−fR(v)|≤1

|f(u)−f(v)|≤1

ε |fR(u)− fR(v)|1+ε

ρ (u−1 · v)Q+1
dudv +

ˆ

H

ˆ

H
|fR(u)−fR(v)|≤1

|f(u)−f(v)|>1

ε |fR(u)− fR(v)|1+ε

ρ (u−1 · v)Q+1
dudv

≤
ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|1+ε

ρ (u−1 · v)Q+1
dudv +

ˆ

H

ˆ

H
|f(u)−f(v)|>1

ε

ρ (u−1 · v)Q+1
dudv.

Also,
ˆ

H

ˆ

H
|fR(u)−fR(v)|>1

1

ρ (u−1 · v)Q+1
dudv ≤

ˆ

H

ˆ

H
|f(u)−f(v)|>1

1

ρ (u−1 · v)Q+1
dudv.

Thus, we have fR ∈ BV (H) . Moreover,

KQ,1 ‖∇HfR‖ ≤ lim inf
ε→0

ˆ

H

ˆ

H
|fR(u)−fR(v)|≤1

ε |fR(u)− fR(v)|1+ε

ρ (u−1 · v)Q+1
dudv

≤ lim inf
ε→0


ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|1+ε

ρ (u−1 · v)Q+1
dudv +

ˆ

H

ˆ

H
|f(u)−f(v)|>1

ε

ρ (u−1 · v)Q+1
dudv


= lim inf

ε→0

ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|1+ε

ρ (u−1 · v)Q+1
dudv.

Since R > 0 is arbitrary, we can deduce that f ∈ BV (H) .

Using Theorem2.10, we can also have the following Lipschitz type characterization of BV space:

Theorem 2.11. Let f ∈ L1 (H) be such that there exists a nonnegative function F ∈ L1 (H)

satisfying

|f(u)− f(v)| ≤ ρ
(
u−1 · v

)
(F (u) + F (v)) for a.e. u, v ∈ H. (2.9)

Then f ∈ BV (H) .

Before we begin our proof of this theorem, we like to make some remarks. We note that in the
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paper [20], the author defined the Sobolev spaces W 1,p(H) for p > 1 if the above estimate (2.9)

holds for F ∈ Lp(H). But that definition does not hold for p = 1. Therefore, our theorem can be

viewed as the borderline case of the Sobolev space when p = 1 on the Heisenberg group H.

Proof. First, we note here that for all δ ∈ (0, 1) :

{|f(u)− f(v)| > δ} ⊂
{
ρ
(
u−1 · v

)
(F (u) + F (v)) > δ

}
⊂
{
ρ
(
u−1 · v

)
F (u) >

δ

2

}
∪
{
ρ
(
u−1 · v

)
F (v) >

δ

2

}
.

Hence, one receives
ˆ

H

ˆ

H
|f(u)−f(v)|>δ

δ

ρ (u−1 · v)Q+1
dudv

≤
ˆ

H

ˆ

H
ρ(u−1·v)F (u)> δ

2

δ

ρ (u−1 · v)Q+1
dudv +

ˆ

H

ˆ

H
ρ(u−1·v)F (v)> δ

2

δ

ρ (u−1 · v)Q+1
dudv.

We denote

I1 :=

ˆ

H

ˆ

H
ρ(u−1·v)F (u)> δ

2

δ

ρ (u−1 · v)Q+1
dudv,

I2 :=

ˆ

H

ˆ

H
ρ(u−1·v)F (v)> δ

2

δ

ρ (u−1 · v)Q+1
dudv.

We now estimate I1.

Setting

v = u · hσ

where

σ ∈ Σ = {u ∈ H : |u| = 1} ,

h ∈ [0,∞)



33

one has

I1 =

ˆ

Σ

ˆ

H

∞̂

0

hF (u)> δ
2

δ

h2
dhdudσ

≤
ˆ

Σ

ˆ

H

∞̂

δ
2F (u)

δ

h2
dhdudσ

= 2

ˆ

Σ

ˆ

H

F (u)dudσ

= CQ

ˆ

H

F (u)du.

Similarly, by noting that ρ
(
u−1 · v

)
=
∣∣v−1u

∣∣, we also have

I2 ≤ CQ
ˆ

H

F (u)du.

Hence, we have

sup
0<δ<1

ˆ

H

ˆ

H
|f(u)−f(v)|>δ

δ

ρ (u−1 · v)Q+1
dudv <∞.

By Theorem 2.10, we obtain f ∈ BV (H) .

2.5 Some generalizations and variants

In this section, we will study some generalizations of the above results. The next Theorem

is a generalized result of Theorem 2.7:

Theorem 2.12. Let f ∈ Lp (H) , 1 < p <∞ and F : [0,∞)→ [0,∞) be continuous such that
∞̂

0

F (t) t−p−1dt = 1.

Set

Fδ (t) = δpF

(
t

δ

)
, δ > 0.

Then we have

(a) If

sup
0<δ<1

ˆ

H

ˆ

H

Fδ (|f(u)− f(v)|)
ρ (u−1 · v)Q+p

dudv <∞
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and
ˆ

H

ˆ

H
|f(u)−f(v)|>δ

1

ρ (u−1 · v)Q+p
dudv <∞, ∀δ > 0,

then g ∈W 1,p (H) .

(b) If g ∈W 1,p (H) and
∞̂

0

Fδ (t) t−p−1dt <∞, ∀δ > 0,

then
ˆ

H

ˆ

H

Fδ (|f(u)− f(v)|)
ρ (u−1 · v)Q+p

dudv ≤ CQ,p

∞̂

0

Fδ (t) t−p−1dt

ˆ

H

|∇Hf(u)|p du, ∀δ > 0.

Proof. (b) Setting

D1(f) = {(u, v) ∈ H×H : M(|∇Hf |)(u) ≥M(|∇Hf |)(v)}

D2(f) = {(u, v) ∈ H×H : M(|∇Hf |)(u) < M(|∇Hf |)(v)} ,

then
ˆ

H

ˆ

H

Fδ (|f(u)− f(v)|)
ρ (u−1 · v)Q+p

dudv =

¨

D1(f)

Fδ (|f(u)− f(v)|)
ρ (u−1 · v)Q+p

dudv +

¨

D2(f)

Fδ (|f(u)− f(v)|)
ρ (u−1 · v)Q+p

dudv.

Now, we will first concern

I1 =

¨

D1(f)

Fδ (|f(u)− f(v)|)
ρ (u−1 · v)Q+p

dudv.

Using (4.1), (i) and noting that on the domain D1(f), one has

M(|∇Hf |)(u) ≥M(|∇Hf |)(v),

we get

I1 ≤
ˆ

H

ˆ

H

Fδ
(
2AQ,pρ

(
u−1 · v

)
M(|∇Hf |)(u)

)
ρ (u−1 · v)Q+p

dudv.

Now, by the change of variables and Fubini’s theorem, we obtain

I1 ≤
ˆ

Σ

ˆ

H

∞̂

0

Fδ (2AQ,phM(|∇Hf |)(u))

hp+1
dhdudσ.
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Now, for every σ ∈ Σ, we can have the following estimate:
ˆ

H

∞̂

0

Fδ (2AQ,phM(|∇Hf |)(u))

hp+1
dhdu =

ˆ

H

[2AQ,pM(|∇Hf |)(u)]p du

∞̂

0

Fδ (t) t−p−1dt

≤ CQ,p

∞̂

0

Fδ (t) t−p−1dt

ˆ

H

|∇Hf(u)|p du.

Similarly, by noting that ρ
(
u−1 · v

)
=
∣∣v−1u

∣∣ , we can also receive

I2 ≤ CQ,p

∞̂

0

Fδ (t) t−p−1dt

ˆ

H

|∇Hf(u)|p du.

Hence, we can conclude that
ˆ

H

ˆ

H

Fδ (|f(u)− f(v)|)
ρ (u−1 · v)Q+p

dudv ≤ CQ,p

∞̂

0

Fδ (t) t−p−1dt

ˆ

H

|∇Hf(u)|p du.

(a) The assumptions on F , we can find four positive constants m,M, λ and σ with m < M such

that

|{t ∈ [m,M ] : F (t) ≥ λ}| ≥ σ.

Since F is continuous on [0,∞), there exists an interval A 6= ∅ such that

A ⊂ {t ∈ [m,M ] : F (t) ≥ λ} .

Sincw,

sup
0<δ<1

ˆ

H

ˆ

H

Fδ (|f(u)− f(v)|)
ρ (u−1 · v)Q+p

dudv <∞,

we get

sup
0<δ<1

ˆ

H

ˆ

H

δpχA

(
|f(u)−f(v)|

δ

)
ρ (u−1 · v)Q+p

dudv <∞.

This implies

sup
0<ε<1

1ˆ

0

ˆ

H

ˆ

H

εδε+p−1χA

(
|f(u)−f(v)|

δ

)
ρ (u−1 · v)Q+p

dudvdδ <∞.

By Fubini’s theorem,

sup
0<ε<1

ˆ

H

ˆ

H
|f(u)−f(v)|≤m

1ˆ

0

εδε+p−1χA

(
|f(u)−f(v)|

δ

)
ρ (u−1 · v)Q+p

dδdudv <∞.

Since

|f(u)− f(v)|
δ

≤M,
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we have

δε+p−1 ≥M−p−ε+1 |f(u)− f(v)|ε+p−1 .

Hence

sup
0<ε<1

ˆ

H

ˆ

H
|f(u)−f(v)|≤m

ε |f(u)− f(v)|ε+p−1

ρ (u−1 · v)Q+p

1ˆ

0

χA

(
|f(u)− f(v)|

δ

)
dδdudv <∞. (2.10)

Moreover, since A ⊂ [m,M ] ,
1ˆ

0

χA

(
t

δ

)
dδ =

∞̂

0

χA

(
t

δ

)
dδ = t

∞̂

0

χA

(
1

δ

)
dδ = C (A) t, t ≤ m. (2.11)

Here

C (A) =

∞̂

0

χA

(
1

δ

)
dδ > 0.

From (2.10) and (2.11), we get

sup
0<ε<1

ˆ

H

ˆ

H
|f(u)−f(v)|≤m

ε |f(u)− f(v)|ε+p−1

ρ (u−1 · v)Q+p
dudv <∞.

Also,
ˆ

H

ˆ

H
|f(u)−f(v)|>m

1

ρ (u−1 · v)Q+p
dudv <∞.

Setting

f̃ =
f

m
,

and using Theorem 2.7, we get f̃ ∈W 1,p (H) . Hence f ∈W 1,p (H) .

The second result in this section is to weaken the statement (3) in Theorem 2.7. More precisely,

we will prove that

Theorem 2.13. Let 1 < p <∞ and f ∈ Lp (H) be such that

sup
n∈N

ˆ

H

ˆ

H
|f(u)−f(v)|>δn

δpn

ρ (u−1 · v)Q+p
dudv <∞.
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Here (δn)n∈N is some arbitrary sequence of positive numbers with

δ0 = 1

δn ≤ δn−1 ≤ 2δn

lim
n→∞

δn = 0.

Then f ∈W 1,p (H).

We notice that one could replace number 2 in the condition of the sequence (δn) by an arbitrary

number c > 1.

Proof. Setting

sup
n∈N

ˆ

H

ˆ

H
|f(u)−f(v)|>δn

δpn

ρ (u−1 · v)Q+p
dudv < C,

then, it’s clear that
ˆ

H

ˆ

H
|f(u)−f(v)|>1

1

ρ (u−1 · v)Q+p
dudv < C. (2.12)

So we just need to prove for all ε ∈ (0, 1) ,
ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv ≤ CQ,p

since by Theorem 2.7, we get the assertion.

Now, for every ε ∈ (0, 1), since
ˆ

H

ˆ

H
|f(u)−f(v)|>δn

δpn

ρ (u−1 · v)Q+p
dudv < C,

we get for every n ≥ 0 :

ε (δn − δn+1) δε−1
n

ˆ

H

ˆ

H
|f(u)−f(v)|>δn

δpn

ρ (u−1 · v)Q+p
dudv ≤ Cε (δn − δn+1) δε−1

n .

Hence ∑
n≥0

ˆ

H

ˆ

H
|f(u)−f(v)|>δn

ε (δn − δn+1) δε+p−1
n

ρ (u−1 · v)Q+p
dudv ≤ C

∑
n≥0

ε (δn − δn+1) δε−1
n . (2.13)

Now, if we denote h (δ) = εδε−1, then we have by the Lebesgue Dominated Convergence Theorem
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and noting that h is a decreasing function:

1 =

1ˆ

0

h (δ) dδ (2.14)

=
∑
n≥0

δnˆ

δn+1

h (δ) dδ

≥
∑
n≥0

(δn − δn+1)h (δn)

=
∑
n≥0

ε (δn − δn+1) δε−1
n .

Thus, from (2.13), one has∑
n≥0

ˆ

H

ˆ

H
|f(u)−f(v)|>δn

ε (δn − δn+1) δε+p−1
n

ρ (u−1 · v)Q+p
dudv ≤ C (2.15)

Noting that ∑
n≥0

ˆ

H

ˆ

H
|f(u)−f(v)|>δn

ε (δn − δn+1) δε+p−1
n

ρ (u−1 · v)Q+p
dudv (2.16)

≥
ˆ

H

ˆ

H
|f(u)−f(v)|≤1

∑
n≥0

ε (δn − δn+1) δε+p−1
n

ρ (u−1 · v)Q+p
χ{|f(u)−f(v)|>δn} (u, v) dudv.

Now, fix (u, v) such that

0 < |f(u)− f(v)| ≤ 1

and denote n(u,v) the smallest integer number such that

δn(u,v)
< |f(u)− f(v)|

Then ∑
n≥0

ε (δn − δn+1) δε+p−1
n

ρ (u−1 · v)Q+p
χ{|f(u)−f(v)|>δn} (u, v) (2.17)

=
∑

n≥n(u,v)

ε (δn − δn+1) δε+p−1
n

ρ (u−1 · v)Q+p
χ{|f(u)−f(v)|>δn} (u, v) .

=
∑

n≥n(u,v)

ε (δn − δn+1) δε+p−1
n

ρ (u−1 · v)Q+p
.

We claim that

|f(u)− f(v)|
2

≤ δn(u,v)
< |f(u)− f(v)| . (2.18)
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Indeed, we could suppose by contradiction that

δn(u,v)
<
|f(u)− f(v)|

2
< |f(u)− f(v)| ≤ δn(u,v)−1,

then

δn(u,v)−1 − δn(u,v)
> |f(u)− f(v)| − |f(u)− f(v)|

2

=
|f(u)− f(v)|

2

> δn(u,v)

which is impossible by the assumption of the sequence (δn) .

Set

k (δ) =
εδε+p−1

ρ (u−1 · v)Q+p
on the interval 0 ≤ δ < |f(u)− f(v)| .

Noting that this function is increasing, arguing as (2.14), we obtain by (2.18):

1

(p+ 1) 2p+1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
≤ 1

(p+ ε)2p+ε
ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p

=

|f(u)−f(v)|
2ˆ

0

k (δ) dδ

≤

δn(u,v)ˆ

0

k (δ) dδ

=
∑

n≥n(u,v)

δnˆ

δn+1

k (δ) dδ

≤
∑

n≥n(u,v)

(δn − δn+1) k (δn)

=
∑

n≥n(u,v)

ε (δn − δn+1) δε+p−1
n

ρ (u−1 · v)Q+p
. (2.19)
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Hence, by (2.15), (2.16), (2.17) and (2.19), we get

C ≥
∑
n≥0

ˆ

H

ˆ

H
|f(u)−f(v)|>δn

ε (δn − δn+1) δε+p−1
n

ρ (u−1 · v)Q+p
dudv

≥
ˆ

H

ˆ

H
|f(u)−f(v)|≤1

∑
n≥0

ε (δn − δn+1) δε+p−1
n

ρ (u−1 · v)Q+p
χ{|f(u)−f(v)|>δn} (u, v) dudv

=

ˆ

H

ˆ

H
|f(u)−f(v)|≤1

∑
n≥n(u,v)

ε (δn − δn+1) δε+p−1
n

ρ (u−1 · v)Q+p
dudv

≥
ˆ

H

ˆ

H
|f(u)−f(v)|≤1

1

(p+ 1) 2p+1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv.

Thus we can conclude the assertion

sup
0<ε<1

ˆ

H

ˆ

H
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv <∞.

By Theorem 2.7 (statement 2), we have f ∈W 1,p (H).
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CHAPTER 3 NEW CHARACTERIZATIONS OF SOBOLEV SPACES

ON CARNOT GROUPS

3.1 Some Useful Lemmas

In this section, we will introduce several useful lemmas which are used to prove the main

results.

Lemma 3.1. Let f ∈W 1,p (G) , 1 < p <∞. Then we have
¨

|f(u)−f(v)|>δ

δp

|u−1v|Q+p
G

dudv ≤ CQ,p
ˆ

G

|∇Hf(u)|p du, ∀δ > 0

where CQ,p is a positive constant depending only on Q and p.

The proof is similar to the proof of Lemma 2.2.

Lemma 3.2. Let f ∈W 1,p (G) , 1 < p <∞. We denote

I (δ) =

ˆ

G

ˆ

G
|f(u)−f(v)|>δ

δp

|u−1 · v|Q+p
G

dudv

J (ε) =

ˆ

G

ˆ

G
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

|u−1 · v|Q+p
G

dudv.

Then

lim inf
ε→0

J (ε) ≥ plim inf
δ→0

I (δ)

lim sup
ε→0

J (ε) ≤ plim sup
δ→0

I (δ) .

The proof of this lemma is similar to Lemma 4.3.

Remark: In the setting of Euclidean spaces, lim inf
δ→0

is rather easy to evaluate. However, in our

setting of Carnot group, the similar approach is not available because of the underlying geometry.

That is why we try to find the relations of I(δ) and J(ε).

The following is from [1]

Lemma 3.3. If f ∈ C1
G(G,R) then



42

ωx(h)
.
= |f(x · h)− f(x)− 〈∇Xf(x), h′〉X |

is such that

i) ωx(h)
|h|G → 0 as h→ 0, uniformly for x on compact sets;

ii) ωx(h)
|h|G ≤ CK ∀x ∈ Kcompact, ∀|h|G < 1.

Lemma 3.4. There holds

1
pKQ,p

´
G
|∇Xf(u)|pdu ≤ lim inf

δ→0
I(δ),

for any f ∈ C1
G(G,R), 1 < p <∞ and KQ,p =

´
Σ

|〈v′, y′〉|pdy with y′, v′ ∈ Rm1 and |v′|m1
R = 1.

Proof. First, we notice by the change of variable that

´
G
´
G

|f(u)−f(v)|>δ

δp

|u−1·v|Q+p
G

dudv =
´∑ ´

G
´∞

0

| f(u·δhσ)−f(u)
δh

|h>1

1
hp+1dhdudσ.

Now, fix σ = (σ′, σ′′) ∈
∑

, with σ′ ∈ Rm1 , we will show that

1
p

´
G
|〈∇Xf(u), σ′〉X |pdu ≤ lim inf

δ→0

´
G

∞́

0

| f(u·δhσ)−f(u)
δh

|h>1

1
hp+1dhdδ.

Here, 〈·, ·〉 is the inner product in Rm1 . Indeed, since for a.e. (h, u) ∈ (0,∞)×G, by lemma 3.3 :

1

hp+1
χ{∣∣∣ f(u·δhσ)−f(u)δh

∣∣∣h>1
} (h, u)

δ→0→ 1

hp+1
χ{|〈∇Xf(u),σ′〉X |h>1} (h, u) ,

by Fatou’s lemma, we have

lim inf
δ→0

ˆ

G

∞̂

0∣∣∣ f(u·δhσ)−f(u)δh

∣∣∣h>1

1

hp+1
dhdu ≥

ˆ

G

∞̂

0

1

hp+1
χ{|〈∇Xf(u),σ′〉X |h>1} (h, u) dhdu

=
1

p

ˆ

G

∣∣〈∇Xf(u), σ′〉X
∣∣p du.
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Now, again by the Fatou’s lemma, we obtain

lim inf
δ→0

¨

|f(u)−f(v)|>δ

δp

ρ (u−1 · v)Q+p
dudv = lim inf

δ→0

ˆ

Σ

ˆ

G

∞̂

0∣∣∣ f(u·δhσ)−f(u)δh

∣∣∣h>1

1

hp+1
dhdudσ

≥
ˆ

Σ

lim inf
δ→0

ˆ

G

∞̂

0∣∣∣ f(u·δhσ)−f(u)δh

∣∣∣h>1

1

hp+1
dhdudσ

≥ 1

p

ˆ

Σ

ˆ

G

∣∣〈∇Xf(u), σ′〉X
∣∣p dudσ

=
1

p
KQ,p

ˆ

G

|∇Xf(u)|p du.

Here, KQ,p =
´
Σ

|〈v′, y′〉|pdy with y′, v′ ∈ Rm1 and |v′|m1
R = 1.

This expression does not depend on v′, since by an orthogonal G-change of basis which does not

alter the measure nor the homogeneous norm(so that also the domain of integration does not

change), it is possible to choose any other unitrary vector of Rm1 by rotation: set A ∈ O(m1,R)

and u′ = AT v′,then
´
Σ

|〈v′, y′〉|pdy =
´
Σ

|〈v′, Ay′〉|pdy =
´
Σ

|〈u′, y′〉|pdy.

Lemma 3.5. Let f ∈ C1
G with compact support in G. Then

lim sup
ε→0

J(ε) ≤ KQ,p

ˆ

G

|∇Xf(u)|p du.

The proof of this lemma is similar to Lemma 2.5.

3.2 Main Results

Theorem 3.6. Let 1 < p <∞ and f ∈W 1,p (G). Then

(a) There exists a positive constant CQ,p depending only on Q, p such that

sup
0<ε<1

ˆ

G

ˆ

G
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

|u−1 · v|Q+p
G

dudv +

ˆ

G

ˆ

G
|f(u)−f(v)|>1

1

|u−1 · v|Q+p
G

dudv ≤ CQ,p
ˆ

G

|∇Xf(u)|p du.

(b) There holds

KQ,p

ˆ

G

|∇Gf(u)|p du = lim
ε→0

ˆ

G

ˆ

G
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

ρ (u−1 · v)Q+p
dudv.

where KQ,p is a constant defined as follows
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KQ,p =
´
Σ

|〈v′, y′〉|pdy

with y′, v′ ∈ Rm1 and |v′|m1
R = 1.

(c) There exists a positive constant CQ,p such that
ˆ

G

ˆ

G
|f(u)−f(v)|>δ

δp

|u−1 · v|Q+p
G

dudv ≤ CQ,p
ˆ

G

|∇Xf(u)|p du, ∀δ > 0.

(d) Moreover

1

p
KQ,p

ˆ

G

|∇Xf(u)|p du = lim inf
δ→0

ˆ

G

ˆ

G
|f(u)−f(v)|>δ

δp

|u−1 · v|Q+p
G

dudv.

Theorem 3.7. Let 1 < p <∞ and f ∈ Lp (G). Then the following are equivalent:

(1) f ∈W 1,p (G).

(2)

sup
0<ε<1

ˆ

G

ˆ

G
|f(u)−f(v)|≤1

ε |f(u)− f(v)|p+ε

|u−1 · v|Q+p
G

dudv +

ˆ

G

ˆ

G
|f(u)−f(v)|>1

1

|u−1 · v|Q+p
G

dudv <∞.

(3)

sup
0<δ<1

ˆ

G

ˆ

G
|f(u)−f(v)|>δ

δp

|u−1 · v|Q+p
G

dudv <∞.

(4) There exists a nonnegative function F ∈ Lp (G) such that

|f(u)− f(v)| ≤ |u−1 · v|G (F (u) + F (v)) for a.e. u, v ∈ G.

The proofs of Theorem 3.6 and 3.7 are similar to Theorem 2.6 and 2.7.

3.3 The Case p = 1

In this section, we will investigate the special case p = 1. At the beginning, we recall the

definition of the space BV (Ω) of functions with bounded variation in Ω ⊂ G.

Definition Let Ω ⊆ G be open and f ∈ L1(Ω). Then, f has bounded G-variation in Ω if

|∇Gf |(Ω)
.
= sup{

´
Ω fdivG(ψ)dLn : ψ ∈ C1

0 (Ω, HG), |ψ| ≤ 1} <∞
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where |∇Gf |(Ω) is called G-variation of f in Ω. We denote by BVG(Ω) the vector space of functions

of bounded G-variation in Ω.

Theorem 3.8. Let f be a function in L1 (G) satisfying

sup
0<δ<1

ˆ

G

ˆ

G
|f(u)−f(v)|>δ

δ

|u−1 · v|Q+1
G

dudv <∞.

Then f ∈ BV (G) .

The proof of this theorem is similar to Theorem 2.10.

Using Theorem 3.8, we can also have the following Lipschitz type characterization of BV space:

Proposition 3.9. Let f ∈ L1 (G) be such that there exists a nonnegative function F ∈ L1 (G)

satisfying

|f(u)− f(v)| ≤ |u−1 · v|G (F (u) + F (v)) for a.e. u, v ∈ G.

Then f ∈ BV (G) .

The proof of this proposition is similar to Theorem 2.11.

3.4 Some generalizations and variants

In this section, we will study some generalizations of the above results. The next Theorem

is a generalized result of Theorem 3.7:

Theorem 3.10. Let f ∈ Lp (G) , 1 < p <∞ and F : [0,∞)→ [0,∞) be continuous such that
∞̂

0

F (t) t−p−1dt = 1.

Set

Fδ (t) = δpF

(
t

δ

)
, δ > 0.

Then we have

(a) If

sup
0<δ<1

ˆ

G

ˆ

G

Fδ (|f(u)− f(v)|)
|u−1 · v|Q+p

G
dudv <∞
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and
ˆ

G

ˆ

G
|f(u)−f(v)|>δ

1

|u−1 · v|Q+p
G

dudv <∞, ∀δ > 0,

then g ∈W 1,p (G) .

(b) If g ∈W 1,p (G) and
∞̂

0

Fδ (t) t−p−1dt <∞, ∀δ > 0,

then
ˆ

G

ˆ

G

Fδ (|f(u)− f(v)|)
|u−1 · v|Q+p

G
dudv ≤ CQ,p

∞̂

0

Fδ (t) t−p−1dt

ˆ

G

|∇Hf(u)|p du, ∀δ > 0.

The proof of this Theorem is similar to Theorem 2.12.
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CHAPTER 4 NEW CHARACTERIZATIONS OF SECOND OR-

DER SOBOLEV SPACES ON EUCLIDEAN SPACES

4.1 Main Results

The first purpose of this chapter is to prove the following estimates for functions in the

Sobolev spaces W 2,p(RN ).

Theorem 4.1. Let g ∈W 2,p
(
RN
)
, 1 < p <∞. Then there exists a constant CN,p such that

(1)
ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>δ

δp

|x− y|N+2p
dxdy ≤ CN,p

ˆ

RN

|∆g|p dx, ∀δ > 0.

(2)

lim
δ→0

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>δ

δp

|x− y|N+2p
dxdy =

1

22p+1p

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ.

(3)

sup
0<ε<1

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|≤1

ε
∣∣g(x) + g(y)− 2g

(x+y
2

)∣∣p+ε
|x− y|N+2p

dxdy

+

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>1

1

|x− y|N+2p
dxdy

≤ CN,p
ˆ

RN

|∆g|p dx.

(4)

lim
ε→0

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|≤1

ε
∣∣g(x) + g(y)− 2g

(x+y
2

)∣∣p+ε
|x− y|N+2p

dxdy

=
1

22p+1

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ.

Here we have used the notation∣∣D2g (x) (σ, σ)
∣∣ =

∑
1≤i1,i2≤N

σi1σi2
∂2g

∂xi1∂xi2
(x) .
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We will use this notation frequently throughout this chapter..

Theorem 4.2. Let g ∈W 2,p(RN ), 1 < p <∞. Then there exists a constant CN,p such that

1.
ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|>δ

δp

|x− y|N+2p
dxdy ≤ CN,p

ˆ
RN
|4g|pdx,∀δ > 0.

2.

lim
δ→0

ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|>δ

δp

|x− y|N+2p
dxdy =

1

2p+1p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ.

3.

sup
0<ε<1

ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|≤1

ε|g(x)− g(y)−∇g(y)(x− y)|p+ε

|x− y|N+2p
dxdy

+

ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|>1

1

|x− y|N+2p
dxdy ≤ CN,p

ˆ
RN
|4g|pdx.

4.

lim
ε→0

ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|≤1

ε|g(x)− g(y)−∇g(y)(x− y)|p+ε

|x− y|N+2p
dxdy

=
1

2p+1

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ.

Using Theorems 4.1 and 4.2, We can set up the new characterizations of the Sobolev space

W 2,p(RN ) using the method of second order differences and the Taylor remainder of first order

which are our main aims of this chapter. Indeed, we prove the following two theorems:

Theorem 4.3. Let g ∈ Ap(RN ), 1 < p <∞ where Ap(RN ) is the set of all g ∈ Lp
(
RN
)

such that

∃ {gn} and A (g) > 0:

1) ‖ gn‖p ≤ A (g) ;

2)

∣∣∣∣gn(x) + gn(y)− 2gn

(
x+ y

2

)∣∣∣∣ ≤ A (g) ;

3)

∣∣∣∣gn(x) + gn(y)− 2gn

(
x+ y

2

)∣∣∣∣ ≤ A (g)

∣∣∣∣g(x) + g(y)− 2g

(
x+ y

2

)∣∣∣∣ a.e. x, y ∈ RN ;

4)gn → g a.e.
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Then the following are equivalent:

(1) g ∈W 2,p
(
RN
)
.

(2)

sup
0<δ<1

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>δ

δp

|x− y|N+2p
dxdy <∞.

(3)

sup
0<ε<1

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|≤1

ε
∣∣g(x) + g(y)− 2g

(x+y
2

)∣∣p+ε
|x− y|N+2p

dxdy

+

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>1

1

|x− y|N+2p
dxdy

<∞.

Theorem 4.4. Let g ∈ Bp(RN ), 1 < p <∞ where Bp(RN ) is the set of all g ∈ Lp
(
RN
)

such that

∃ {gn} and B (g) > 0:

1) ‖ gn‖p ≤ B (g) ;

2) |gn(x)− gn(y)−∇gn (y) (x− y)| ≤ B (g) ;

3) |gn(x)− gn(y)−∇gn (y) (x− y)| ≤ B (g) |g(x)− g(y)−∇g (y) (x− y)| a.e. x, y ∈ RN ;

4)gn → g a.e.

Then the following are equivalent:

(1) g ∈W 2,p(RN )

(2)

sup
0<δ<1

ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|>δ

δp

|x− y|N+2p
dxdy <∞

(3)

sup
0<ε<1

ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|>1

ε|g(x)− g(y)−∇g(y)(x− y)|p+ε

|x− y|N+2p
dxdy
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+

ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|>1

1

|x− y|N+2p
dxdy <∞

Next, we will also study the characterizations of W 2,p
(
RN
)

by the differences of the first order

gradient in the spirit of Bourgain, Brezis and Mironescu [5] and H.M. Nguyen [34,35]. More precisely,

we will prove that

Theorem 4.5. Let g ∈W 1,p
(
RN
)
, 1 < p <∞. Then g ∈W 2,p

(
RN
)

iff
ˆ

RN

ˆ

RN

|(∇g(x)−∇g(y)) · (x− y)|p

|x− y|2p
ρn (|x− y|) dxdy ≤ C, ∀n ≥ 1,

for some constant C > 0. Moreover,

lim
n→∞

ˆ

RN

ˆ

RN

|(∇g(x)−∇g(y)) · (x− y)|p

|x− y|2p
ρn (|x− y|) dxdy =

ˆ

RN

ˆ

SN−1

∣∣D2g (x) (σ, σ)
∣∣p dσdx.

Here (ρn)n∈N is a sequence of nonnegative radial mollifiers satisfying

lim
n→∞

∞̂

τ

ρn (r) rN−1dr = 0, ∀τ > 0,

lim
n→∞

∞̂

0

ρn (r) rN−1dr = 1.

Theorem 4.6. Let g ∈ Cp(RN ), 1 < p <∞ where Cp(RN ) is the set of all g ∈ Lp
(
RN
)

such that

∃ {gn} and C (g) > 0:

1) ‖ gn‖p ≤ C (g) ;

2) |(∇gn (x)−∇gn (y)) · (x− y)| ≤ C (g) ;

3) |(∇gn (x)−∇gn (y)) · (x− y)| ≤ C (g) |(∇g (x)−∇g (y)) · (x− y)| a.e.x, y ∈ RN ;

4)gn → g a.e.

Then the following are equivalent:

(1) g ∈W 2,p(RN )

(2)

sup
0<δ<1

ˆ
RN

ˆ
RN

|(∇g(x)−∇g(y))·(x−y)|>δ

δp

|x− y|N+2p
dxdy <∞
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(3)

sup
0<ε<1

ˆ
RN

ˆ
RN

|(∇g(x)−∇g(y))·(x−y)|>1

ε| (∇g (x)−∇g (y)) · (x− y)|p+ε

|x− y|N+2p
dxdy

+

ˆ
RN

ˆ
RN

|(∇g(x)−∇g(y))·(x−y)|>1

1

|x− y|N+2p
dxdy <∞

It is worthy noting that if we use the term |∇g (x)−∇g (y) | instead of | (∇g (x)−∇g (y))·(x−y)|,

then Theorem 4.5 is just a easy consequence of Theorem 1.1. Indeed, if
ˆ

RN

ˆ

RN

|(∇g(x)−∇g(y))|p

|x− y|p
ρn (|x− y|) dxdy ≤ C, ∀n ≥ 1,

then
ˆ

RN

ˆ

RN

∣∣∣( ∂g
∂xi

(x)− ∂g
∂xi

(y)
)∣∣∣p

|x− y|p
ρn (|x− y|) dxdy ≤ C, ∀n ≥ 1, ∀i = 1, ..., N.

Hence, by Theorem 1.1, ∂g
∂xi
∈W 1,p

(
RN
)
∀i = 1, ..., N which means that g ∈ W 2,p

(
RN
)
. However,

in our case, we have
ˆ

RN

ˆ

RN

|(∇g(x)−∇g(y)) · (x− y)|p

|x− y|2p
ρn (|x− y|) dxdy

≤
ˆ

RN

ˆ

RN

|(∇g(x)−∇g(y))|p

|x− y|p
ρn (|x− y|) dxdy.

4.2 Characterizations Using the Second Order Differences

In this section, we will investigate the characterizations of second order Sobolev spaces

W 2,p
(
RN
)

in terms of the second order differences, namely Theorems 4.1 and 4.3.

In order to prove the above two theorems, we will study the following useful lemmas. First of

all, we will need to use the following basic lemma from Fourier analysis.

Lemma 4.7. Let 1 < p <∞. Then there exists a constant CN,p > 0 such that for every 1 ≤ i ≤ N

we have for every g ∈ Lp(RN )

|| ∂
2

∂2xi
g||Lp(RN ) ≤ CN,p|| 4 g||Lp(RN ).

Proof. It suffices to prove that the operator T = ∂2

∂2xi
·4−1 is bounded on Lp(RN ). It is easy to see

that the operator T is a multiplier operator with the symbol
ξ2i
|ξ|2 which is a Marcinkiewicz multiplier
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which is known to be bounded on Lp(RN ). The operator T can also be viewed as a composition of

two Riesz transforms and is known to be bounded on Lp(RN ). We refer to Stein’s book [38].

Lemma 4.8. There exists a constant CN,p > 0 such that for all δ > 0, all g ∈W 2,p
(
RN
)

:
ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>δ

δp

|x− y|N+2p
dxdy ≤ CN,p

ˆ

RN

|∆g|p dx. (4.1)

Proof. First, using the polar coordinates, we get
ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>δ

δp

|x− y|N+2p
dxdy =

ˆ

SN−1

ˆ

RN

∞̂

0

|g(x)+g(x+hσ)−2g(x+h
2
σ)|>δ

δp

h2p+1
dhdxdσ.

Hence, to prove (4.1), it’s enough to prove that for every σ ∈ SN−1, we can obtain

ˆ

RN

∞̂

0

|g(x)+g(x+hσ)−2g(x+h
2
σ)|>δ

δp

h2p+1
dhdx ≤ CN,p

ˆ

RN

|∆g|p dx. (4.2)

Because of the rotation, we now can assume without loss of generality that σ = eN = (0, ..., 0, 1).
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By the mean value theorem, one has∣∣∣∣g(x) + g(x+ heN )− 2g

(
x+

h

2
eN

)∣∣∣∣
=

∣∣∣∣[g(x+ heN )− g
(
x+

h

2
eN

)]
−
[
g

(
x+

h

2
eN

)
− g(x)

]∣∣∣∣
=

∣∣∣∣∣∣∣∣
xN+hˆ

xN+h
2

∂g

∂xN

(
x′, s

)
ds−

xN+h
2ˆ

xN

∂g

∂xN

(
x′, s

)
ds

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
xN+h

2ˆ

xN

[
∂g

∂xN

(
x′, s+

h

2

)
− ∂g

∂xN

(
x′, s

)]
ds

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
xN+h

2ˆ

xN

 s+h
2ˆ

s

∂2g

∂x2
N

(
x′, t

)
dt

 ds

∣∣∣∣∣∣∣
≤

xN+hˆ

xN

xN+hˆ

xN

∣∣∣∣ ∂2g

∂x2
N

(
x′, t

)∣∣∣∣ dtds
≤

xN+hˆ

xN

hMN

(
∂2g

∂x2
N

)
(x) ds

≤ h2MN

(
∂2g

∂x2
N

)
(x) .

Thus,
ˆ

RN

∞̂

0

|g(x)+g(x+hσ)−2g(x+h
2
σ)|>δ

δp

h2p+1
dhdx ≤

ˆ

RN

∞̂

0

h2MN

(
∂2g

∂x2
N

)
(x)>δ

δp

h2p+1
dhdx

=

ˆ

RN

∞̂

√√√√ δ

MN

(
∂2g

∂x2
N

)
(x)

δp

h2p+1
dhdx

=
1

2p

ˆ

RN

∣∣∣∣MN

(
∂2g

∂x2
N

)
(x)

∣∣∣∣p dx
≤ CN,p

ˆ

RN

|∆g|p dx.

The proof of Lemma 4.8 is now completed.
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Lemma 4.9. There holds

lim
δ→0

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>δ

δp

|x− y|N+2p
dxdy =

1

22p+1p

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ

for all g ∈W 2,p
(
RN
)
, 1 < p <∞.

Proof. Again, by changing of variables, we obtain
ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>δ

δp

|x− y|N+2p
dxdy =

ˆ

SN−1

ˆ

RN

∞̂

0∣∣∣∣∣ g(x)+g(x+
√
δhσ)−2g(x+h2

√
δσ)

h2δ

∣∣∣∣∣h2>1

1

h2p+1
dhdxdσ.

Define gδ : SN−1 → R by

gδ (σ) =

ˆ

RN

∞̂

0∣∣∣∣∣ g(x)+g(x+
√
δhσ)−2g(x+h2

√
δσ)

h2δ

∣∣∣∣∣h2>1

1

h2p+1
dhdx.

We first prove that for all σ ∈ SN−1, ∀δ > 0 :

gδ (σ) ≤ CN,p
ˆ

RN

|∆g|p dx. (4.3)

Indeed, again, without loss of generality, we assume that σ = eN = (0, ..., 0, 1). Hence, we need

to verify that
ˆ

RN

∞̂

0∣∣∣∣∣ g(x′,xN )+g(x′,xN+
√
δhσ)−2g(x′,xN+h2

√
δσ)

h2δ

∣∣∣∣∣h2>1

1

h2p+1
dhdx ≤ CN,p

ˆ

RN

|∆g|p dx. (4.4)

Similar to what is done in Lemma 4.8, we have∣∣∣∣∣∣
g(x′, xN ) + g(x′, xN +

√
δhσ)− 2g

(
x′, xN + h

2

√
δσ
)

h2δ

∣∣∣∣∣∣ ≤MN

(
∂2g

∂x2
N

)
(x) .

Thus,
ˆ

RN

∞̂

0∣∣∣∣∣ g(x′,xN )+g(x′,xN+
√
δhσ)−2g(x′,xN+h2

√
δσ)

h2δ

∣∣∣∣∣h2>1

1

h2p+1
dhdx ≤

ˆ

RN

∞̂

0

h2MN

(
∂2g

∂x2
N

)
(x)>1

1

h2p+1
dhdx

≤ CN,p
ˆ

RN

|∆g|p dx.
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Next, we will show that

gδ (σ)→ 1

22p+1p

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dx as δ → 0 for every σ ∈ SN−1 (4.5)

where ∣∣D2g (x) (σ, σ)
∣∣ =

∑
1≤i1,i2≤N

σi1σi2
∂2g

∂xi1∂xi2
(x) .

Again, without loss of generality, we suppose that σ = eN = (0, ..., 0, 1). We write

gδ (σ) =

ˆ

RN

∞̂

0

Gδ (x, h) dhdx

where

Gδ (x, h) =
1

h2p+1
χ{∣∣∣∣∣ g(x)+g(x+

√
δhσ)−2g(x+h2

√
δσ)

h2δ

∣∣∣∣∣h2>1

} (x, h) .

Noting that for all σ ∈ SN−1 :

Gδ (x, h)→ 1

h2p+1
χ{|D2g(x)(σ,σ)|h2>4} (x, h) as δ → 0 for a.e. (x, h) ∈ RN × [0,∞) ,

and

Gδ (x, h) ≤ 1

h2p+1
χ{

h2MN

(
∂2g

∂x2
N

)
(x)>1

} (x, h) ∈ L1
(
RN × [0,∞)

)
.

Hence, by Lebesgue’s dominated convergence theorem, we get (4.5).

Using (4.3) and (4.5) and the Lebesgue dominated convergence theorem again, we can conclude

that

lim
δ→0

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>δ

δp

|x− y|N+2p
dxdy =

1

22p+1p

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ.

Proof of Theorem 4.1:

(1) and (2) are consequences of Lemma 4.8 and Lemma 4.9.

Now we will prove (3). By (1), we get
ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>δ

δp

|x− y|N+2p
dxdy ≤ CN,p

ˆ

RN

|∆g|p dx, ∀δ > 0. (4.6)
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In particular,
ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>1

1

|x− y|N+2p
dxdy ≤ CN,p

ˆ

RN

|∆g|p dx. (4.7)

Now, from (4.6), one has
1ˆ

0

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>δ

εδp+ε−1

|x− y|N+2p
dxdydδ ≤ CN,p

ˆ

RN

|∆g|p dx.

Using Lemma 2.1, we deduce
ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|≤1

ε
∣∣g(x) + g(y)− 2g

(x+y
2

)∣∣p+ε
|x− y|N+2p

dxdy +

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>1

ε

|x− y|N+2p
dxdy

(4.8)

≤ CN,p
ˆ

RN

|∆g|p dx.

From (4.7) and (4.8), we get the assertion (3).

Now, set

G (δ) =

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>δ

δp

|x− y|N+2p
dxdy.

So by the previous results, we have

G (δ) ≤ CN,p
ˆ

RN

|∆g|p dx, ∀δ > 0

and

lim
δ→0

G (δ) =
1

22p+1p

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ.

Now, we claim that

lim
ε→0

1ˆ

0

(p+ ε) εδε−1G (δ) dδ =
1

22p+1

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ. (4.9)

Indeed, for every ε > 0, we can find a number X (ε) ∈ (0, 1) such that∣∣∣∣∣∣G (δ)− 1

22p+1p

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ

∣∣∣∣∣∣ < ε for all δ ∈ (0, X (ε)) .
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Now, we have:

lim
ε→0

∣∣∣∣∣∣∣
1ˆ

X(ε)

(p+ ε) εδε−1

G (δ)− 1

22p+1p

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ

 dδ
∣∣∣∣∣∣∣

≤
1ˆ

X(ε)

lim
ε→0

(p+ ε) εδε−1

∣∣∣∣∣∣G (δ)− 1

22p+1p

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ

∣∣∣∣∣∣ dδ
≤

1ˆ

X(ε)

lim
ε→0

(p+ ε) εX (ε)ε−1

CN,pˆ
RN

|∆g|p dx

 dδ
= 0.

Moreover,

lim
ε→0

∣∣∣∣∣∣∣
X(ε)ˆ

0

(p+ ε) εδε−1

G (δ)− 1

22p+1p

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ

 dδ
∣∣∣∣∣∣∣

≤ lim
ε→0

X(ε)ˆ

0

(p+ ε) εδε−1

∣∣∣∣∣∣G (δ)− 1

22p+1p

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ

∣∣∣∣∣∣ dδ
≤ lim

ε→0

X(ε)ˆ

0

(p+ ε) εδε−1εdδ

≤ pε.

Thus,

lim
ε→0

∣∣∣∣∣∣
1ˆ

0

(p+ ε) εδε−1

G (δ)− 1

22p+1p

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ

 dδ
∣∣∣∣∣∣ ≤ pε, ∀ε > 0.

Hence we can get

lim
ε→0

1ˆ

0

(p+ ε) εδε−1G (δ) dδ = lim
ε→0

1ˆ

0

(p+ ε) εδε−1

 1

22p+1p

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ

 dδ
=

1

22p+1

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ.

Consequently, we have

lim
ε→0

1ˆ

0

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>δ

(p+ ε) εδp+ε−1

|x− y|N+2p
dxdydδ =

1

22p+1

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ.

Now, using Lemma 2.1 with α = p + ε − 1, Φ (x, y) =
∣∣g(x) + g(y)− 2g

(x+y
2

)∣∣ , Ψ (x, y) =
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1
|x−y|N+2p , we obtain

lim
ε→0



¨

|g(x)+g(y)−2g(x+y2 )|≤1

ε|g(x)+g(y)−2g(x+y
2

)|p+ε
|x−y|N+2p dxdy

+

¨

|g(x)+g(y)−2g(x+y2 )|>1

ε
|x−y|N+2pdxdy


=

1

22p+1

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ.

Noting that

lim
ε→0

¨

|g(x)+g(y)−2g(x+y2 )|>1

ε

|x− y|N+2p
dxdy = 0,

we have

lim
ε→0

¨

|g(x)+g(y)−2g(x+y2 )|≤1

ε
∣∣g(x) + g(y)− 2g(x+y

2 )
∣∣p+ε

|x− y|N+2p
dxdy =

1

22p+1

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ.

We have the statement (4).

Proof of Theorem 4.3:

First, it is clear that statements (1) =⇒ (2) and (1) =⇒ (3) are consequences of Theorem 4.1.

Now, we will prove (3) =⇒ (1) :

First, we assume further that
∣∣g(x) + g(y)− 2g(x+y

2 )
∣∣ is bounded by M (g) on RN ×RN . Then

since

sup
0<ε<1

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|≤1

ε
∣∣g(x) + g(y)− 2g

(x+y
2

)∣∣p+ε
|x− y|N+2p

dxdy

+

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>1

1

|x− y|N+2p
dxdy

<∞

we get

sup
0<γ<1

ˆ
RN

ˆ
RN

γ|g(x) + g(y)− 2g(x+y
2 )|p+γ

|x− y|N+2p
dxdy = C (g,M (g)) <∞.

Let ηε be any sequence of smooth mollifiers and set gε = g ∗ ηε. Then we can get gε ∈ Lp(RN ) ∩
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C∞(RN ) ⊆W 2,p(RN ).

Using (4) of Theorem 4.1, we can have

CN,p

ˆ
SN−1

ˆ
RN
|D2gε(x)(σ, σ)|pdxdσ

≤ sup
0<γ<1

ˆ
RN

ˆ
RN

|gε(x)+gε(y)−2gε(x+y
2

)|≤1

γ|gε(x) + gε(y)− 2gε(x+y
2 )|p+γ

|x− y|N+2p
dxdy

≤ sup
0<γ<1

ˆ
RN

ˆ
RN

γ|gε(x) + gε(y)− 2gε(x+y
2 )|p+γ

|x− y|N+2p
dxdy

= sup
0<γ<1

ˆ
RN

ˆ
RN

γ|
´
RN {g(x− z) + g(y − z)− 2g(x+y

2 − z)}η
ε(z)dz|p+γ

|x− y|N+2p
dxdy.

Since the function xp+ε is convex on [0,∞), by Jensen’s inequality, we can deduce

sup
0<γ<1

ˆ
RN

ˆ
RN

γ|
´
RN {g(x− z) + g(y − z)− 2g(x+y

2 − z)}η
ε(z)dz|p+γ

|x− y|N+2p
dxdy

≤ sup
0<γ<1

ˆ
RN

ˆ
RN

γ|g(x− z) + g(y − z)− 2g(x+y
2 − z)|

p+γ
´
RN η

ε(z)dz

|x− y|N+2p
dxdy

= sup
0<γ<1

ˆ
RN

ˆ
RN

γ|g(x) + g(y)− 2g(x+y
2 )|p+γ

|x− y|N+2p
dxdy ≤ C (g,M (g)) .

So ‖gε‖W 2,p(RN ) is bounded. Since gε → g a.e, we get g ∈W 2,p(RN ).

In the general case, since g ∈ Ap
(
RN
)
, we can find a sequence {gn} and A (g) > 0 such that∣∣gn(x) + gn(y)− 2gn

(x+y
2

)∣∣ is bounded byA (g) and
∣∣gn(x) + gn(y)− 2gn

(x+y
2

)∣∣ ≤ A (g)
∣∣g(x) + g(y)− 2g

(x+y
2

)∣∣
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a.e. x, y ∈ RN . Then it is clear that gn ∈W 2,p(RN ) since

sup
0<ε<1

ˆ

RN

ˆ

RN∣∣∣ gnA(g)
(x)+ gn

A(g)
(y)−2 gn

A(g)(
x+y
2 )

∣∣∣≤1

ε
∣∣∣ gnA(g)(x) + gn

A(g)(y)− 2 gn
A(g)

(x+y
2

)∣∣∣p+ε
|x− y|N+2p

dxdy

+

ˆ

RN

ˆ

RN∣∣∣ gnA(g)
(x)+ gn

A(g)
(y)−2 gn

A(g)(
x+y
2 )

∣∣∣>1

1

|x− y|N+2p
dxdy

= sup
0<ε<1

ˆ

RN

ˆ

RN∣∣∣ gnA(g)(x) + gn
A(g)(y)− 2 gn

A(g)

(x+y
2

)∣∣∣ ≤ 1∣∣g(x) + g(y)− 2g
(x+y

2

)∣∣ ≤ 1

+

ˆ

RN

ˆ

RN∣∣∣ gnA(g)(x) + gn
A(g)(y)− 2 gn

A(g)

(x+y
2

)∣∣∣ ≤ 1∣∣g(x) + g(y)− 2g
(x+y

2

)∣∣ > 1

ε
∣∣∣ gnA(g)(x) + gn

A(g)(y)− 2 gn
A(g)

(x+y
2

)∣∣∣p+ε
|x− y|N+2p

dxdy

≤ sup
0<ε<1

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|≤1

ε
∣∣g(x) + g(y)− 2g

(x+y
2

)∣∣p+ε
|x− y|N+2p

dxdy

+

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|>1

1

|x− y|N+2p
dxdy

<∞.

Moreover, by (4) in Theorem 4.1, we have
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1

22p+1

ˆ

SN−1

ˆ

RN

∣∣D2gn (x) (σ, σ)
∣∣p dxdσ

= lim
ε→0

ˆ

RN

ˆ

RN

|gn(x)+gn(y)−2gn(x+y2 )|≤1

ε
∣∣gn(x) + gn(y)− 2gn

(x+y
2

)∣∣p+ε
|x− y|N+2p

dxdy

≤ lim
ε→0

C (A (g))

ˆ

RN

ˆ

RN

|g(x)+g(y)−2g(x+y2 )|≤1

ε
∣∣g(x) + g(y)− 2g

(x+y
2

)∣∣p+ε
|x− y|N+2p

dxdy

≤ C (g,A (g)) .

Hence, ‖gn‖W 2,p(RN ) is bounded. Since gn → g a.e. RN , we get g ∈W 2,p(RN ).

4.3 Characterizations Using the Taylor Remainder

The man purpose of this section is to establish Theorems 4.2 and 4.4, namely, characterizing

the second order Sobolev spaces W 2,p(RN ) using the method of the Taylor remainder of first order.

In order to prove these two theorems, we will need to adapt the following useful lemmas:

Lemma 4.10. There exists a constant CN,p > 0 such that for all δ > 0, all g ∈W 2,p
(
RN
)

:
ˆ

RN

ˆ

RN
|g(x)−g(y)−∇g(y)(x−y)|>δ

δp

|x− y|N+2p
dxdy ≤ CN,p

ˆ

RN

|∆g|p dx. (4.10)

Proof. Again, using the polar coordinates, we get
ˆ

RN

ˆ

RN
|g(x)−g(y)−∇g(y)(x−y)|>δ

δp

|x− y|N+2p
dxdy =

ˆ

SN−1

ˆ

RN

∞̂

0

|g(x+hσ)−g(x)−h∇g(x)σ|>δ

δp

h2p+1
dhdxdσ.

Thus, again, to prove (4.10), it’s enough to prove that for every σ ∈ SN−1, we get
ˆ

RN

∞̂

0

|g(x+hσ)−g(x)−h∇g(x)σ|>δ

δp

h2p+1
dhdx ≤ CN,p

ˆ

RN

|∆g|p dx. (4.11)

Because of the rotation, we assume without loss of generality that σ = eN = (0, ..., 0, 1).



62

Now, by the mean value theorem, one has

|g(x+ heN )− g(x)− h∇g(x)eN | =

∣∣∣∣∣∣
1ˆ

0

∂g

∂xN

(
x′, xN + sh

)
hds− h ∂g

∂xN
(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣h
1ˆ

0

[
∂g

∂xN

(
x′, xN + sh

)
hds− ∂g

∂xN
(x′, xN )

]
ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣h
1ˆ

0

xN+shˆ

xN

∂2g

∂x2
N

(
x′, t

)
dtds

∣∣∣∣∣∣
≤ h

1ˆ

0

shMN

(
∂2g

∂x2
N

)
(x) ds

≤ 1

2
h2MN

(
∂2g

∂x2
N

)
(x) .

Thus,
ˆ

RN

∞̂

0

|g(x+hσ)−g(x)−h∇g(x)σ|>δ

δp

h2p+1
dhdx ≤

ˆ

RN

∞̂

0

h2MN

(
∂2g

∂x2
N

)
(x)>δ

δp

h2p+1
dhdx

=

ˆ

RN

∞̂

√√√√ δ

MN

(
∂2g

∂x2
N

)
(x)

δp

h2p+1
dhdx

=
1

2p

ˆ

RN

∣∣∣∣MN

(
∂2g

∂x2
N

)
(x)

∣∣∣∣p dx
≤ CN,p

ˆ

RN

∣∣∣∣ ∂2g

∂x2
N

∣∣∣∣p dx
≤ CN,p

ˆ

RN

|∆g|p dx.

Lemma 4.11. There holds

lim
δ→0

ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|>δ

δp

|x− y|N+2p
dxdy =

1

2p+1p

ˆ
SN

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ

for all g ∈W 2,p(RN ),1 < p <∞.
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Proof. Again, by changing of variables, we obtain
ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|>δ

δp

|x− y|N+2p
dxdy =

ˆ
SN

ˆ
RN

ˆ ∞
0

| g(x+
√
δhσ)−g(x)−

√
δh∇g(x)σ

h2δ
|h2>1

1

h2p+1
dhdxdσ

Define gδ : SN−1 → R by

gδ(σ) =

ˆ
RN

ˆ ∞
0

| g(x+
√
δhσ)−g(x)−

√
δh∇g(x)σ

h2δ
|h2>1

1

h2p+1
dhdx

We first prove that for all σ ∈ SN−1, ∀δ > 0 :

gδ(σ) ≤ CN,p
ˆ
RN
|4g|pdx (4.12)

Indeed, again, without loss of generality, we assume that σ = eN = (0, ..., 0, 1). Hence, we need

to verify that
ˆ
RN

ˆ ∞
0

| g(x
′,xN+

√
δh)−g(x′,xN )−∇g(x′,xN )

√
δheN

h2δ
|h2>1

1

h2p+1
dhdx ≤ CN,p

ˆ
RN
|4g|pdx (4.13)

Similar to the proof of Lemma 4.8, we have

|g(x′, xN +
√
δh)− g(x′, xN )−∇g(x′, xN )

√
δheN

h2δ
| ≤ 1

2
MN (

∂2g

∂x2
N

)(x)

Thus,
ˆ
RN

ˆ ∞
0

| g(x
′,xN+

√
δh)−g(x′,xN )−∇g(x′,xN )

√
δheN

h2δ
|h2>1

1

h2p+1
dhdx ≤

ˆ
RN

ˆ ∞
0

h2MN ( ∂
2g

∂x2
N

)(x)>2

1

h2p+1
dhdx

So we can get
ˆ
RN

ˆ ∞
0

| g(x
′,xN+

√
δh)−g(x′,xN )−∇g(x′,xN )

√
δheN

h2δ
|h2>1

1

h2p+1
dhdx ≤ CN,p

ˆ
RN
|4g|pdx

Next we will show that

gδ(σ)→ 1

2p+1p

ˆ
RN
|D2g(x)(σ, σ)|pdx as δ → 0 for every σ ∈ SN−1 (4.14)

where

|D2g(x)(σ, σ)| =
∑

1≤i1,i2≤N
σi1σi2

∂2g

∂xi1∂xi2(x)
.

Again, with loss of generality, we suppose that σ = eN = (0, ..., 0, 1). We write

gδ(σ) =

ˆ
RN

ˆ ∞
0

Gδ(x, h)dhdx



64

where

Gδ(x, h) =
1

h2p+1
χ
{| g(x+

√
δhσ)−g(x)−∇g(x)

√
δhσ

h2δ
|h2>1}

(x, h).

Noting that for all σ ∈ SN−1:

Gδ(x, h)→ 1

h2p+1
χ{|D2g(x)(σ,σ)|h2>2} as δ → 0 for a.e.(x, h) ∈ RN × [0,∞),

and

Gδ(x, h) ≤ 1

h2p+1
χ
{h2MN ( ∂

2g

∂x2
N

)(x)>2}
(x, h) ∈ L1(RN × [0,∞)).

Hence, by the Lebesgue dominated convergence theorem, we get (3.5) Using (3.3), (3.5) and the

Lebesgue dominated convergence theorem again, we can conclude that

lim
δ→0

ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|>δ

δp

|x− y|N+2p
dxdy =

1

2p+1p

ˆ
SN

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ.

Proof of Theorem 4.2: (1) and (2) are consequences of Lemma 4.10 and Lemma 4.11. Now

we will prove (3). By (1), we get
ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|>δ

δp

|x− y|N+2p
dxdy ≤ CN,p

ˆ
RN
|4g|pdx, ∀δ > 0. (4.15)

In particular,
ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|>1

1

|x− y|N+2p
dxdy ≤ CN,p

ˆ
RN
|4g|pdx, ∀δ > 0. (4.16)

Now, from (3.6), one has
ˆ 1

0

ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|>δ

εδp+ε−1

|x− y|N+2p
dxdydδ ≤ CN,p

ˆ
RN
|4g|pdx (4.17)

Using Lemma 2.1, we deduce
ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|≤1

ε|g(x)− g(y)−∇g(y)(x− y)|p+ε

|x− y|N+2p
dxdy

+

ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|>1

1

|x− y|N+2p
dxdy

≤ CN,p
ˆ
RN
|4g|pdx.
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Hence, we get the assertion (3). Now set

H(δ) =

ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|>δ

δp

|x− y|N+2p
.

So from what we have proved, we have

H(δ) ≤ CN,p
ˆ
RN
|4g|pdx,∀δ > 0.

and

lim
δ→0

H(δ) =
1

2p+1p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ. (4.18)

Indeed, for every θ > 0, we can find a number X(θ) ∈ (0, 1) such that

|H(δ)− 1

2p+1p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ| < θ for all δ ∈ (0, X(θ)).

Now, we have

lim
ε→0
|
ˆ 1

X(θ)
(p+ ε)εδε−1

[
H(δ)− 1

2p+1p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ

]
dδ|

≤ lim
ε→0

ˆ 1

X(θ)
(p+ ε)εδε−1|H(δ)− 1

2p+1p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ|dδ

≤ lim
ε→0

ˆ 1

X(θ)
(p+ ε)εδε−1

[
CN,p

ˆ
RN
|4g|pdx

]
dδ

= lim
ε→0

(p+ ε)(1−X(θ)ε)

[
CN,p

ˆ
RN
|4g|pdx

]
= 0.

Moreover,

lim
ε→0
|
ˆ X(θ)

0
(p+ ε)εδε−1

[
H(δ)− 1

2p+1p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ

]
dδ|

≤ lim
ε→0

ˆ X(θ)

0
(p+ ε)εδε−1|H(δ)− 1

2p+1p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ|dδ

≤ lim
ε→0

ˆ X(θ)

0
(p+ ε)εδε−1θdδ

≤ pθ.

Thus, ∀ sufficiently small θ > 0 :

lim
ε→0
|
ˆ 1

0
(p+ ε)εδε−1

[
H(δ)− 1

2p+1p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ

]
dδ| ≤ pθ.
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Hence we can get

lim
ε→0

ˆ 1

0
(p+ ε)εδε−1H(δ)dδ = lim

ε→0

ˆ 1

0
(p+ ε)εδε−1

[
1

2p+1p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ

]
dδ

=
1

2p+1

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ.

Consequently, we have

lim
ε→0

ˆ 1

0

ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|>δ

ε(p+ ε)δp+ε−1

|x− y|N+2p
dxdydδ =

1

2p+1

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ.

Now, using Lemma 2.1 with

α = p+ ε− 1, Φ(x, y) = |g(x)− g(y)−∇g(y)(x− y)|, Ψ(x, y) =
1

|x− y|N+2p
,

we obtain

lim
ε→0



¨

|g(x)−g(y)−∇g(y)(x−y)|≤1

ε|g(x)−g(y)−∇g(y)(x−y)|p+ε

|x−y|N+2p dxdy

+

¨

|g(x)−g(y)−∇g(y)(x−y)|>1

ε
|x−y|N+2pdxdy


=

1

2p+1

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ.

Noting that

lim
ε→0

ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|>1

ε

|x− y|N+2p
dxdy = 0,

we have

lim
ε→0

ˆ
RN

ˆ
RN

|g(x)−g(y)−∇g(y)(x−y)|≤1

ε|g(x)− g(y)−∇g(y)(x− y)|p+ε

|x− y|N+2p
dxdy

=
1

2p+1

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ.

Proof of Theorem 4.4 is similar to the proof of Theorem 4.3 and will be omitted.

4.4 More Characterizations of Second Order Spaces: Combinations of First

Order Difference and Taylor Remainder

In this section, we will study some other characterizations of the second order Sobolev spaces.

Namely, we will give characterizations motivated by the observation that g ∈W 2,p(RN ) is essentially



67

equivalent to ∇g ∈W 1,p(RN ).

Characterization of Bourgain-Brezis-Mironescu type

Lemma 4.12. Let g ∈W 2,p
(
RN
)
. Then

ˆ

RN

ˆ

RN

|(∇g(x)−∇g(y)) · (x− y)|p

|x− y|2p
ρn (|x− y|) dxdy ≤ C, ∀n ≥ 1, (4.19)

for some constant C > 0. Moreover,

lim
n→∞

ˆ

RN

ˆ

RN

|(∇g(x)−∇g(y)) · (x− y)|p

|x− y|2p
ρn (|x− y|) dxdy =

ˆ

RN

ˆ

SN−1

∣∣D2g (x) (σ, σ)
∣∣p dσdx. (4.20)

Proof. Since g ∈W 2,p
(
RN
)
, ∂g
∂xi
∈W 1,p

(
RN
)
. Using Theorem 1.1 (noting Theorem 1.1 still holds

when Ω = RN ), we get
ˆ

RN

ˆ

RN

∣∣∣ ∂g∂xi (x)− ∂g
∂xi

(y)
∣∣∣p

|x− y|p
ρn (|x− y|) dxdy ≤ C.

Hence,
ˆ

RN

ˆ

RN

|(∇g(x)−∇g(y)) · (x− y)|p

|x− y|2p
ρn (|x− y|) dxdy

≤
ˆ

RN

ˆ

RN

|(∇g(x)−∇g(y))|p

|x− y|p
ρn (|x− y|) dxdy ≤ C

for some constant C > 0.

Now, suppose that g ∈ C∞0
(
RN
)
. Then by Taylor’s formula, we have

|(∇g(x+ h)−∇g(x)) · h| =
∣∣∣∣∑(

∂g

∂xi
(x+ h)− ∂g

∂xi
(x)

)
hi

∣∣∣∣
≤
∣∣D2g (x) (h, h)

∣∣+ c |h|3 .

Hence, for every θ > 0 :

|(∇g(x+ h)−∇g(x)) · h|p ≤ (1 + θ)
∣∣D2g (x) (h, h)

∣∣p + cθ |h|3p .
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Thus,
ˆ

RN

ˆ

RN

|(∇g(x)−∇g(y)) · (x− y)|p

|x− y|2p
ρn (|x− y|) dxdy

=

ˆ

RN

ˆ

RN

|(∇g(x+ h)−∇g(x)) · h|p

|h|2p
ρn (|h|) dhdx

≤ (1 + θ)

ˆ

RN

ˆ

RN

ρn (|h|)
|h|2p

∣∣D2g (x) (h, h)
∣∣p dhdx+ cθ |supp (g)|

ˆ

RN

ρn (|h|) |h|p dh.

Also,
ˆ

RN

ρn (|h|)
|h|2p

∣∣D2g (x) (h, h)
∣∣p dh =

∞̂

0

ρn (r) rN−1dr

ˆ

SN−1

∣∣D2g (x) (σ, σ)
∣∣p dσ.

Now, let n→∞ and then θ → 0, we get
ˆ

RN

ˆ

RN

|(∇g(x)−∇g(y)) · (x− y)|p

|x− y|2p
ρn (|x− y|) dxdy ≤

ˆ

RN

ˆ

SN−1

∣∣D2g (x) (σ, σ)
∣∣p dσdx. (4.21)

Now, for any A > 0, then again by Taylor’s formula:∣∣(∇g(x+ h)−∇g(x)) · h−D2g (x) (h, h)
∣∣ ≤ CA |h|3 a.e. x ∈ B (0, A) ; h ∈ B (0, 1) .

Then∣∣D2g (x) (h, h)
∣∣p ≤ (1 + θ) |(∇g(x+ h)−∇g(x)) · h|p + CA,θ |h|3p a.e. x ∈ B (0, A) ; h ∈ B (0, 1) .

Hence
ˆ

B(0,A)

ˆ

B(0,1)

ρn (|h|)
|h|2p

∣∣D2g (x) (h, h)
∣∣p dhdx

≤ (1 + θ)

ˆ

RN

ˆ

RN

|(∇g(x+ h)−∇g(x)) · h|p

|h|2p
ρn (|h|) dhdx+ CA,θ |B (0, A)|

ˆ

B(0,1)

ρn (|h|) |h|p dh.

Let n→∞ and θ → 0 :
ˆ

B(0,A)

ˆ

SN−1

∣∣D2g (x) (σ, σ)
∣∣p dσdx ≤ lim inf

n→∞

ˆ

RN

ˆ

RN

|(∇g(x+ h)−∇g(x)) · h|p

|h|2p
ρn (|h|) dhdx

= lim inf
n→∞

ˆ

RN

ˆ

RN

|(∇g(x)−∇g(y)) · (x− y)|p

|x− y|2p
ρn (|x− y|) dxdy.

Since A > 0 is arbitrary, we get (4.20) for C∞0
(
RN
)
−functions.

By density argument, we also have (4.20) for W 2,p
(
RN
)
−functions.
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Proof of Theorem 4.5: Assume that
ˆ

RN

ˆ

RN

|(∇g(x)−∇g(y)) · (x− y)|p

|x− y|2p
ρn (|x− y|) dxdy ≤ C (g) , ∀n ≥ 1.

Let gk = g ∗ ηk where ηk is a sequence of smooth mollifiers. Noting that Dα (gk) = Dα (g) ∗ ηk, we

have from the convexity of the function tp on [0,∞) that
ˆ

RN

ˆ

RN

|(∇gk(x)−∇gk(y)) · (x− y)|p

|x− y|2p
ρn (|x− y|) dxdy

≤
ˆ

RN

ˆ

RN

|(∇g(x)−∇g(y)) · (x− y)|p

|x− y|2p
ρn (|x− y|) dxdy ≤ C (g) .

Moreover, since gk is smooth, by Lemma 4.12, we get
ˆ

RN

ˆ

SN−1

∣∣D2gk (x) (σ, σ)
∣∣p dσdx ≤ C (g)

which means that
ˆ

RN

|∆gk (x)|p dx ≤ C1 (g) .

Since gk → g a.e. RN , we can conclude that g ∈W 2,p
(
RN
)
.

Characterization of H.-M. Nguyen type

Lemma 4.13. There exists a constant CN,p > 0 such that for all δ > 0, all g ∈W 2,p
(
RN
)

:
ˆ

RN

ˆ

RN
|(∇g(x)−∇g(y))·(x−y)|>δ

δp

|x− y|N+2p
dxdy ≤ CN,p

ˆ

RN

|∆g|p dx.

Proof. By Lemma 4.10, we have
ˆ

RN

ˆ

RN
|(∇g(x)−∇g(y))·(x−y)|>δ

δp

|x− y|N+2p
dxdy

≤
ˆ

RN

ˆ

RN
|g(x)−g(y)−∇g(y)(x−y)|> δ

2

+

ˆ

RN

ˆ

RN
|g(y)−g(x)−∇g(x)·(y−x)|> δ

2

δp

|x− y|N+2p
dxdy

≤ CN,p
ˆ

RN

|∆g|p dx.
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Lemma 4.14. There holds

lim
δ→0

ˆ
RN

ˆ
RN

|(∇g(x)−∇g(y))(x−y)|>δ

δp

|x− y|N+2p
dxdy =

1

2p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ

for all g ∈W 2,p(RN ), 1 < p <∞.

Proof. By changing of variables, we obtain
ˆ
RN

ˆ
RN

|(∇g(x)−∇g(y))·(x−y)|>δ

δp

|x− y|N+2p
dxdy =

ˆ
SN

ˆ
RN

ˆ ∞
0

| (∇g(x+
√
δhσ)−∇g(x))·

√
δhσ

h2δ
|h2>1

1

h2p+1
dhdxdσ

Define gδ : SN−1 → R by

gδ(σ) =

ˆ
RN

ˆ ∞
0

| (∇g(x+
√
δhσ)−∇g(x))·

√
δhσ

h2δ
|h2>1

1

h2p+1
dhdx

Then by the same argument as in Lemma 4.13 and by Lemma 4.11, we can prove that for all

σ ∈ SN−1, ∀δ > 0 :

gδ(σ) ≤ CN,p
ˆ
RN
|4g|pdx.

Now we will show that

gδ(σ)→ 1

2p

ˆ
RN
|D2g(x)(σ, σ)|pdx as δ → 0 for every σ ∈ SN−1 (4.22)

Indeed, again, with loss of generality, we suppose that σ = eN = (0, ..., 0, 1). We write

gδ(σ) =

ˆ
RN

ˆ ∞
0

Gδ(x, h)dhdx

where

Gδ(x, h) =
1

h2p+1
χ
{| (∇g(x+

√
δhσ)−∇g(x))·

√
δhσ

h2δ
|h2>1}

(x, h).

Noting that for all σ ∈ SN−1:

Gδ(x, h)→ 1

h2p+1
χ{|D2g(x)(σ,σ)|h2>1} as δ → 0 for a.e.(x, h) ∈ RN × [0,∞),

and

Gδ(x, h) ≤ 1

h2p+1
χ
{h2MN ( ∂

2g

∂x2
N

)(x)>1}
(x, h) ∈ L1(RN × [0,∞)).

Hence, by the Lebesgue dominated convergence theorem, we get (4.22). Using the Lebesgue domi-
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nated convergence theorem again, we can conclude that

lim
δ→0

ˆ
RN

ˆ
RN

|(∇g(x)−∇g(y))·(x−y)|>δ

δp

|x− y|N+2p
dxdy =

1

2p

ˆ
SN

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ.

Theorem 4.15. Let g ∈W 2,p(RN ), 1 < p <∞. Then there exists a constant CN,p such that

1.
ˆ
RN

ˆ
RN

|(∇g(x)−∇g(y))·(x−y)|>δ

δp

|x− y|N+2p
dxdy ≤ CN,p

ˆ
RN
|4g|pdx, ∀δ > 0.

2.

lim
δ→0

ˆ
RN

ˆ
RN

|(∇g(x)−∇g(y))·(x−y)|>δ

δp

|x− y|N+2p
dxdy =

1

2p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ.

3.

sup
0<ε<1

ˆ
RN

ˆ
RN

|(∇g(x)−∇g(y))·(x−y)|≤1

ε|(∇g(x)−∇g(y)) · (x− y)|p+ε

|x− y|N+2p
dxdy

+

ˆ
RN

ˆ
RN

|(∇g(x)−∇g(y))·(x−y)|>1

1

|x− y|N+2p
dxdy ≤ CN,p

ˆ
RN
|4g|pdx.

4.

lim
ε→0

ˆ
RN

ˆ
RN

|(∇g(x)−∇g(y))·(x−y)|≤1

ε|(∇g(x)−∇g(y)) · (x− y)|p+ε

|x− y|N+2p
dxdy

=
1

2

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ.

Proof. (3) is just a consequence of (1), the Fatou lemma and Lemma 2.1. So we just have to prove

(4). Set

H(δ) =

ˆ
RN

ˆ
RN

|(∇g(x)−∇g(y))·(x−y)|>δ

δp

|x− y|N+2p
.

So from what we have proved, we get

H(δ) ≤ CN,p
ˆ
RN
|4g|pdx,∀δ > 0
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and

lim
δ→0

H(δ) =
1

2p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ.

Thus, for every θ > 0, we can find a number X(θ) ∈ (0, 1) such that

|H(δ)− 1

2p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ| < θ for all δ ∈ (0, X(θ)).

Now, we have

lim
ε→0
|
ˆ 1

X(θ)
(p+ ε)εδε−1

[
H(δ)− 1

2p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ

]
dδ|

≤ lim
ε→0

ˆ 1

X(θ)
(p+ ε)εδε−1|H(δ)− 1

2p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ|dδ

≤ lim
ε→0

ˆ 1

X(θ)
(p+ ε)εδε−1

[
CN,p

ˆ
RN
|4g|pdx

]
dδ

= lim
ε→0

(p+ ε)(1−X(θ)ε)

[
CN,p

ˆ
RN
|4g|pdx

]
= 0.

Moreover,

lim
ε→0
|
ˆ X(θ)

0
(p+ ε)εδε−1

[
H(δ)− 1

2p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ

]
dδ|

≤ lim
ε→0

ˆ X(θ)

0
(p+ ε)εδε−1|H(δ)− 1

2p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ|dδ

≤ lim
ε→0

ˆ X(θ)

0
(p+ ε)εδε−1θdδ

≤ pθ.

Thus,

lim
ε→0
|
ˆ 1

0
(p+ε)εδε−1

[
H(δ)− 1

2p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ

]
dδ| ≤ pθ,∀ sufficiently small θ > 0.

Hence we can get

lim
ε→0

ˆ 1

0
(p+ ε)εδε−1H(δ)dδ = lim

ε→0

ˆ 1

0
(p+ ε)εδε−1

[
1

2p

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ

]
dδ

=
1

2

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ.
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Consequently, we have

lim
ε→0

ˆ 1

0

ˆ
RN

ˆ
RN

|(∇g(x)−∇g(y))·(x−y)|>δ

ε(p+ ε)δp+ε−1

|x− y|N+2p
dxdydδ =

1

2

ˆ
SN−1

ˆ
RN
|D2g(x)(σ, σ)|pdxdσ.

Now, using Lemma 2.1 with

α = p+ ε− 1, Φ(x, y) = |(∇g(x)−∇g(y)) · (x− y)|, Ψ(x, y) =
1

|x− y|N+2p
,

we obtain

lim
ε→0



¨

|(∇g(x)−∇g(y))·(x−y)|≤1

ε|(∇g(x)−∇g(y))·(x−y)|p+ε

|x−y|N+2p dxdy

+

¨

|(∇g(x)−∇g(y))·(x−y)|>1

ε
|x−y|N+2pdxdy


=

1

2

ˆ

SN−1

ˆ

RN

∣∣D2g (x) (σ, σ)
∣∣p dxdσ.

We have the statement (4) by noting that

lim
ε→0

ˆ
RN

ˆ
RN

|(∇g(x)−∇g(y))·(x−y))|>1

ε

|x− y|N+2p
dxdy = 0.

Proof of Theorem 4.6 is similar to the proof of Theorem 4.3; Theorem 4.4 and will be

omitted.
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CHAPTER 5 NEW CHARACTERIZATIONS OF HIGH ORDER

SOBOLEV SPACES ON EUCLIDEAN SPACE

5.1 Main Results

Motivated by our work of the new characterizations of the second order Sobolev space, a

natural next step is to study the characterizations of the high order Sobolev spaces Wm,p with

m ≥ 3 which is the main purpose of this paper. Nevertheless, those characterizations are more

complicated than the second order case and we use different methods to handle the high order case.

We write

Tmy f(x) =
∑
|α|≤m

Dαf(y) (x−y)α

α!

and

Rmf(x, y) = f(x)− Tmy f(x)

for the Taylor polynomial of order m and the Taylor remainder of order m, respectively.

If we write 4hf(x) = f(x+h)− f(x),forx, h ∈ RN then the second difference can be written as

4(2)
h f(x) = 4h(4hf)(x) = f(x+ 2h)− 2f(x+ h) + f(x)

Similarly, we can repeat this progress to get m-th difference which is

4(m)
h f(x) = f(x+mh)−

(
m
1

)
f(x+ (m− 1)h) + · · ·+ (−1)m−1

(
m
m−1

)
f(x+ h) + (−1)mf(x)

If we set y = x+mh, then we can rewrite the m-th difference to be

4(m)f(x, y) = f(y)−
(
m

1

)
f(
x+ (m− 1)y

m
) + · · ·+ (−1)m−1

(
m

m− 1

)
f(

(m− 1)x+ y

m
) + (−1)mf(x)

=

m∑
k=0

(−1)k
(
m

k

)
f(
kx+ (m− k)y

m
)

where
(
m
k

)
= m!

(m−k)!k! .

In this paper, we first prove the following two theorems



75

Theorem 5.1. Let f ∈Wm,p
(
RN
)
, 1 < p <∞. Then there exists a constant CN,p such that

(1)
ˆ

RN

ˆ

RN

|4(m)f(x,y)|>δ

δp

|x− y|N+mp
dxdy ≤ CN,p

ˆ

RN

|∇mf(x)|p dx, ∀δ > 0.

(2)

lim
δ→0

ˆ

RN

ˆ

RN

|4(m)f(x,y)|>δ

δp

|x− y|N+mp
dxdy =

1

mmp+1p

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ.

(3)

sup
0<ε<1

ˆ

RN

ˆ

RN

|4(m)f(x,y)|≤1

ε |4mf(x, y)|p+ε

|x− y|N+mp
dxdy +

ˆ

RN

ˆ

RN

|4(m)f(x,y)|>1

1

|x− y|N+mp
dxdy

≤ CN,p
ˆ

RN

|∇mf |p dx.

(4)

lim
ε→0

ˆ

RN

ˆ

RN

|4(m)f(x,y)|≤1

ε
∣∣4(m)f(x, y)

∣∣p+ε
|x− y|N+mp

dxdy =
1

mmp+1

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ.

Here

|Dmf (x) (σ, · · ·, σ)| =
∑

1≤i1,···,im≤N
σi1 · · · σim

∂mf

∂xi1 · · · ∂xim
(x) .

Theorem 5.2. Let f ∈Wm,p
(
RN
)
, 1 < p <∞. Then there exists a constant CN,m,p such that

(1)
ˆ

RN

ˆ

RN
|Rm−1f(x,y)|>δ

δp

|x− y|N+mp
dxdy ≤ CN,m,p

ˆ

RN

|∇mf(x)|p dx, ∀δ > 0.

(2)

lim
δ→0

ˆ

RN

ˆ

RN
|Rm−1f(x,y)|>δ

δp

|x− y|N+mp
dxdy =

1

(m!)pmp

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ.



76

(3)

sup
0<ε<1

ˆ

RN

ˆ

RN
|Rm−1f(x,y)|≤1

ε
∣∣Rm−1f(x, y)

∣∣p+ε
|x− y|N+mp

dxdy +

ˆ

RN

ˆ

RN
|Rm−1f(x,y)|>1

1

|x− y|N+mp
dxdy

≤ CN,m,p
ˆ

RN

|∇mf |p dx.

(4)

lim
ε→0

ˆ

RN

ˆ

RN
|Rm−1f(x,y)|≤1

ε
∣∣Rm−1f(x, y)

∣∣p+ε
|x− y|N+mp

dxdy =
1

(m!)pm

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ.

Here

|Dmf (x) (σ, · · ·, σ)| =
∑

1≤i1,···,im≤N
σi1 · · · σim

∂mf

∂xi1 · · · ∂xim
(x) .

Using Theorems 5.1 and 5.2, we can get the main aims of our paper: the new characterizations

of high order Sobolev spaces Wm,p with m ≥ 3:

Theorem 5.3. Let f ∈ Lp
(
RN
)
∩ L1(RN ), 1 < p <∞. Then the following are equivalent:

(1) f ∈Wm,p
(
RN
)
.

(2)

sup
0<δ<1

ˆ

RN

ˆ

RN

|4(m)f(x,y)|>δ

δp

|x− y|N+mp
dxdy <∞.

(3)

sup
0<ε<1

ˆ

RN

ˆ

RN

|4(m)f(x,y)|≤1

ε
∣∣4(m)f(x, y)

∣∣p+ε
|x− y|N+mp

dxdy +

ˆ

RN

ˆ

RN

|4(m)f(x,y)|>1

1

|x− y|N+mp
dxdy <∞.

Theorem 5.4. Let f ∈Wm−1,p
(
RN
)
∩ L1(RN ), 1 < p <∞. Then the following are equivalent:

(1) f ∈Wm,p
(
RN
)
.

(2)

sup
0<δ<1

ˆ

RN

ˆ

RN
|Rm−1f(x,y)|>δ

δp

|x− y|N+mp
dxdy <∞.
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(3)

sup
0<ε<1

ˆ

RN

ˆ

RN
|Rm−1f(x,y)|≤1

ε
∣∣Rm−1f(x, y)

∣∣p+ε
|x− y|N+mp

dxdy +

ˆ

RN

ˆ

RN
|Rm−1f(x,y)|>1

1

|x− y|N+mp
dxdy <∞.

5.2 Characterization Using mth-Differences

In this section, we will investigate the characterizations of high order Sobolev spacesWm,p
(
RN
)

in terms of the m-th differences. We will study some following useful lemmas to prove Theorems

5.1 and 5.3.

Lemma 5.5. There exists a constant CN,m,p > 0 such that for all δ > 0, all f ∈Wm,p
(
RN
)
,m ≥ 3 :

ˆ

RN

ˆ

RN

|4(m)(x,y)|>δ

δp

|x− y|N+mp
dxdy ≤ CN,m,p

ˆ

RN

|∇mf |p dx. (5.1)

Proof. First, using the polar coordinates, set y = x+mhσ with h > 0 and σ ∈ SN−1,we get
ˆ

RN

ˆ

RN

|4(m)(x,y)|>δ

δp

|x− y|N+mp
dxdy =

1

mmp

ˆ

SN−1

ˆ

RN

∞̂

0

|4(m)(x,x+mhσ)|>δ

δp

hmp+1
dhdxdσ.

Hence, to prove (5.1), it’s enough to prove that for every σ ∈ SN−1, we can obtain
ˆ

RN

∞̂

0

|4(m)(x,x+mhσ)|>δ

δp

hmp+1
dhdx ≤ CN,p

ˆ

RN

|∇mf |p dx. (5.2)

Because of the rotation, we now can assume that σ = eN = (0, ..., 0, 1).We want to prove it by

induction, first we claim for k ≥ 3

4(k)f(x, x+ kheN ) =
´ xN+h
xN

´ s1+h
s1

· · ·
´ sk−1+h
sk−1

∂kf
∂xkN

(x′, sk)dskdsk−1 · · · ds1
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For k=3, by the mean value theorem, one has

4(3)f(x, x+ 3heN ) = f(x+ 3heN )− 3f (x+ 2heN ) + 3f (x+ heN )− f(x)

= [(f(x+ 3heN )− f(x+ 2heN ))− (f(x+ 2heN )− f(x+ heN ))]

− [(f(x+ 2heN )− f(x+ heN ))− (f(x+ heN )− f(x))]

= (

ˆ xN+3h

xN+2h

∂f

∂xN

(
x′, s

)
ds−

ˆ xN+2h

xN+h

∂f

∂xN
(x′, s)ds)

− (

ˆ xN+2h

xN+h

∂f

∂xN
(x′, s)ds−

ˆ xN+h

xN

∂f

∂xN

(
x′, s

)
ds)

=

ˆ xN+h

xN

[
(
∂f

∂xN

(
x′, s+ 2h

)
− ∂f

∂xN

(
x′, s+ h

)
)− (

∂f

∂xN

(
x′, s+ h

)
− ∂f

∂xN

(
x′, s

)
)

]
ds

=

ˆ xN+h

xN

[

ˆ s+2h

s+h

∂2f

∂x2
N

(x′, t)dt−
ˆ s+h

s

∂2f

∂x2
N

(x′, t)dt]ds

=

ˆ xN+h

xN

[

ˆ s+h

s
(
∂2f

∂x2
N

(x′, t+ h)− ∂2f

∂x2
N

(x′, t))dt]ds

=

ˆ xN+h

xN

ˆ s+h

s

ˆ t+h

t

∂3f

∂x3
N

(x′, τ)dτdtds.

Now we assume the claim holds for k = m − 1, we only need to prove the claim also holds for
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k = m. Since

4(m)f(x, x+mheN ) = f(x+mheN )− C1
mf (x+ (m− 1)heN ) + C2

mf (x+ (m− 2)heN )

+ · · ·+ (−1)m−1Cm−1
m f(x+ heN ) + (−1)mf(x)

= (f(x+mheN )− f(x+ (m− 1)heN ))− C1
m−1(f(x+ (m− 1)heN )

− f(x+ (m− 2)heN )) + · · ·+ (−1)m−2Cm−2
m−1 (f(x+ 2heN )

− f(x+ heN )) + (−1)m−1(f(x+ heN )− f(x))

=

ˆ xN+mh

xN+(m−1)h

∂f

∂xN

(
x′, s

)
ds− C1

m−1

ˆ xN+(m−1)h

xN+(m−2)h

∂f

∂xN
(x′, s)ds

+ · · ·+ (−1)m−2Cm−2
m−1

ˆ xN+2h

xN+h

∂f

∂xN
(x′, s)ds+ (−1)m−1

ˆ xN+h

xN

∂f

∂xN

(
x′, s

)
ds

=

xN+hˆ

xN

[
∂f

∂xN

(
x′, s+ (m− 1)h

)
− C1

m−1

∂f

∂xN

(
x′, s+ (m− 2)h

)
+ · · ·+ (−1)m−2Cm−2

m−1

∂f

∂xN

(
x′, s+ h

)
+ (−1)m−1 ∂f

∂xN

(
x′, s

)
]ds

=

ˆ xN+h

xN

[4(m−1)(
∂f

∂xN
)(x̃, x̃+ (m− 1)heN )]ds, with x̃ = (x′, s)

=

ˆ xN+h

xN

ˆ s+h

s

ˆ s1+h

s1

· · ·
ˆ sm−2+h

sm−2

∂m−1f

∂xm−1
N

(
∂f

∂xN
)(x′, sm−1)dsm−1dsm−2 · · · ds1ds

=

ˆ xN+h

xN

ˆ s1+h

s1

· · ·
ˆ sm−1+h

sm−1

∂mf

∂xmN
(x′, sm)dsmdsm−1 · · · ds1.

So

| 4(m) f(x, x+mheN )| ≤
ˆ xN+h

xN

ˆ s1+h

s1

· · ·
ˆ sm−2+h

sm−2

hMN (
∂mf

∂xmN
)(x)dsm−1 · · · ds1

≤ hmMN (
∂mf

∂xmN
)(x)
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Thus,
ˆ

RN

∞̂

0

|4(m)f(x,x+mheN )|>δ

δp

hmp+1
dhdx ≤

ˆ

RN

∞̂

0

hmMN

(
∂mf
∂xm
N

)
(x)>δ

δp

hmp+1
dhdx

=

ˆ

RN

∞̂

( δ

MN

(
∂mf
∂xm
N

)
(x)

)
1
m

δp

h2p+1
dhdx

=
1

mp

ˆ

RN

∣∣∣∣MN

(
∂mf

∂xmN

)
(x)

∣∣∣∣p dx
≤ CN,p

ˆ

RN

∣∣∣∣∂mf∂xmN

∣∣∣∣p dx
≤ CN,p

ˆ

RN

|∇mf |p dx.

The proof of Lemma 5.5 is now completed.

Lemma 5.6. There holds

lim
δ→0

ˆ

RN

ˆ

RN

|4(m)f(x,y)|>δ

δp

|x− y|N+mp
dxdy =

1

mmp+1p

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ

for all f ∈Wm,p
(
RN
)
,m ≥ 3, 1 < p <∞.

Proof. Again, by changing of variables and set y = x+ m
√
δhσ we obtain

ˆ

RN

ˆ

RN

|4(m)f(x,y)|>δ

δp

|x− y|N+mp
dxdy =

ˆ

SN−1

ˆ

RN

∞̂

0∣∣∣∣4(m)f(x,x+
m√
δhσ)

hmδ

∣∣∣∣hm>1

1

hmp+1
dhdxdσ.

Define Fδ : SN−1 → R by

Fδ (σ) =

ˆ

RN

∞̂

0∣∣∣∣4(m)f(x,x+
m√
δhσ)

hmδ

∣∣∣∣hm>1

1

hmp+1
dhdx.

We first prove that for all σ ∈ SN−1, ∀δ > 0 :

Fδ (σ) ≤ CN,p
ˆ

RN

|∇mf |p dx. (5.3)

Indeed, again, without loss of generality, we assume that σ = eN = (0, ..., 0, 1). Hence, we need
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to verify that
ˆ

RN

∞̂

0∣∣∣∣4(m)f(x,x+
m√
δheN )

hmδ

∣∣∣∣hm>1

1

h2p+1
dhdx ≤ CN,p

ˆ

RN

|∇mf |p dx. (5.4)

Similarly as in the Lemma 5.5, we have∣∣∣∣∣4(m)f(x, x+ m
√
δheN )

hmδ

∣∣∣∣∣ ≤MN

(
∂mf

∂xmN

)
(x) .

Thus,
ˆ

RN

∞̂

0∣∣∣∣4(m)f(x,x+
m√
δheN )

hmδ

∣∣∣∣hm>1

1

hmp+1
dhdx ≤

ˆ

RN

∞̂

0

hmMN

(
∂mf
∂xm
N

)
(x)>1

1

hmp+1
dhdx

≤ CN,p
ˆ

RN

|∇mf |p dx.

Next, we will show that

Fδ (σ)→ 1

mmp+1p

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dx as δ → 0 for every σ ∈ SN−1 (5.5)

where

|Dmf (x) (σ, · · ·, σ)| =
∑

1≤i1,···,im≤N
σi1 · · · σim

∂mf

∂xi1 · · · ∂xim
(x) .

Again, without loss of generality, we suppose that σ = eN = (0, ..., 0, 1). We write

Fδ (σ) =

ˆ

RN

∞̂

0

Gδ (x, h) dhdx

where

Gδ (x, h) =
1

hmp+1
χ{∣∣∣∣4(m)f(x,x+

m√
δheN )

hmδ

∣∣∣∣hm>1

} (x, h) .

Noting that for all σ ∈ SN−1 :

Gδ (x, h)→ 1

hmp+1
χ{|Dmf(x)(σ,···,σ)|hm>mm} (x, h) as δ → 0 for a.e. (x, h) ∈ RN × [0,∞) ,

and

Gδ (x, h) ≤ 1

hmp+1
χ{

hmMN

(
∂mf
∂xm
N

)
(x)>1

} (x, h) ∈ L1
(
RN × [0,∞)

)
.

Hence, by the Lebesgue’s dominated convergence theorem, we get (5.5).

Using (5.3) and (5.5), again, using the Lebesgue’s dominated convergence theorem, we can
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conclude that

lim
δ→0

ˆ

RN

ˆ

RN

|4(m)(x,y)|>δ

δp

|x− y|N+mp
dxdy =

1

mmp+1p

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ.

Lemma 5.7. Assume that f ∈ Lp
(
RN
)
∩ C∞

(
RN
)

satisfying

C (f) := sup
0<ε<1

ˆ

RN

ˆ

RN

ε
∣∣4(m)(x, y)

∣∣p+ε
|x− y|N+mp

dxdy <∞.

Then f ∈Wm,p
(
RN
)

and

1

mmp+1

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ ≤ lim inf
ε→0

ˆ

RN

ˆ

RN

ε
∣∣4(m)(x, y)

∣∣p+ε
|x− y|N+mp

dxdy.

Proof. From the assumptions, and set y = x+ tσ we have

sup
0<ε<1

ˆ

SN−1

ˆ

BR

1ˆ

0

ε
∣∣4(m)(x, x+ tσ)

∣∣p+ε
tmp+1

dtdxdσ ≤ C (f) .

By Taylor expansion, since f ∈ Lp
(
RN
)
∩ C∞

(
RN
)
, we can have that

1

mm
|Dmf (x) (tσ, · · ·, tσ)| ≤

∣∣∣4(m)(x, x+ tσ)
∣∣∣+ Ctm+1

for all (σ, x, t) ∈ SN−1 ×BR × (0, 1) . Also, since∣∣∣4(m)(x, x+ tσ)
∣∣∣ ≤ Ctm for all (σ, x, t) ∈ SN−1 ×BR × (0, 1) ,

we have

1

mm(p+ε)
|Dmf (x) (tσ, · · ·, tσ)|p+ε ≤

[∣∣∣4(m)(x, x+ tσ)
∣∣∣+ Ctm+1

]p+ε
≤
∣∣∣4(m)(x, x+ tσ)

∣∣∣p+ε + Ctmp+ε+1,

for all (σ, x, t) ∈ SN−1 ×BR × (0, 1) .

Now, noting that

lim inf
ε→0

ˆ

SN−1

ˆ

BR

1ˆ

0

εtmp+ε+1

tmp+1
dtdxdσ = 0,
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we can deduce

lim inf
ε→0

ˆ

SN−1

ˆ

BR

1ˆ

0

1

mm(p+ε)

ε |Dmf (x) (tσ, · · ·, tσ)|p+ε

tmp+1
dtdxdσ

≤ lim inf
ε→0

ˆ

SN−1

ˆ

BR

1ˆ

0

ε
∣∣4(m)(x, x+ tσ)

∣∣p+ε
tmp+1

dtdxdσ.

As a consequence, we get

1

mmp+1

ˆ

SN−1

ˆ

BR

|Dmf (x) (σ, · · ·, σ)|p dxdσ ≤ lim inf
ε→0

ˆ

RN

ˆ

RN

ε
∣∣4(m)(x, y)

∣∣p+ε
|x− y|N+mp

dxdy.

Hence, we can conclude that f ∈Wm,p
(
RN
)

and

1

mmp+1

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ ≤ lim inf
ε→0

ˆ

RN

ˆ

RN

ε
∣∣4(m)(x, y)

∣∣p+ε
|x− y|N+mp

dxdy.

Proof of Theorem 5.1:

(1) and (2) are consequences of Lemma 5.5 and Lemma 5.6.

Now we will prove (3). By (1), we get
ˆ

RN

ˆ

RN
|4mf(x,y)|>δ

δp

|x− y|N+mp
dxdy ≤ CN,p

ˆ

RN

|∇mf |p dx, ∀δ > 0. (5.6)

As a consequence, by Fatou’s lemma,
ˆ

RN

ˆ

RN
|4mf(x,y)|>1

1

|x− y|N+mp
dxdy ≤ CN,p

ˆ

RN

|∇mf |p dx. (5.7)

Now, from (5.6), one has
1ˆ

0

ˆ

RN

ˆ

RN
|4mf(x,y)|>δ

εδp+ε−1

|x− y|N+mp
dxdydδ ≤ CN,p

ˆ

RN

|∇mf |p dx.

Using Lemma 2.1, we deduce
ˆ

RN

ˆ

RN
|4mf(x,y)|≤1

ε |4mf(x, y)|p+ε

|x− y|N+mp
dxdy +

ˆ

RN

ˆ

RN
|4mf(x,y)|>1

ε

|x− y|N+mp
dxdy ≤ CN,p

ˆ

RN

|∇mf |p dx. (5.8)

From (5.7) and (5.8), we get the assertion (3).
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Now, set

H (δ) =

ˆ

RN

ˆ

RN
|4mf(x,y)|>δ

δp

|x− y|N+mp
dxdy.

So be previous results, we have

H (δ) ≤ CN,p
ˆ

RN

|∇mf |p dx, ∀δ > 0

and

lim
δ→0

H (δ) =
1

mmp+1p

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ.

Now, we claim that

lim
ε→0

1ˆ

0

(p+ ε) εδε−1H (δ) dδ =
1

mmp+1

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ. (5.9)

Indeed, for every ε > 0, we can find a number X (ε) ∈ (0, 1) such that∣∣∣∣∣∣H (δ)− 1

mmp+1p

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ

∣∣∣∣∣∣ < ε for all δ ∈ (0, X (ε)) .

Now, we have:

lim
ε→0

∣∣∣∣∣∣∣
1ˆ

X(ε)

(p+ ε) εδε−1

H (δ)− 1

mmp+1p

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ

 dδ
∣∣∣∣∣∣∣

≤
1ˆ

X(ε)

lim
ε→0

(p+ ε) εδε−1

∣∣∣∣∣∣H (δ)− 1

mmp+1p

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ

∣∣∣∣∣∣ dδ
≤

1ˆ

X(ε)

lim
ε→0

(p+ ε) εX (ε)ε−1

CN,pˆ
RN

|∇mf |p dx

 dδ
= 0.
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Moreover,

lim
ε→0

∣∣∣∣∣∣∣
X(ε)ˆ

0

(p+ ε) εδε−1

H (δ)− 1

mmp+1p

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ

 dδ
∣∣∣∣∣∣∣

≤ lim
ε→0

X(ε)ˆ

0

(p+ ε) εδε−1

∣∣∣∣∣∣H (δ)− 1

mmp+1p

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ

∣∣∣∣∣∣ dδ
≤ lim

ε→0

X(ε)ˆ

0

(p+ ε) εδε−1εdδ

≤ lim
ε→0

1ˆ

0

(p+ ε) εδε−1εdδ

= pε.

Thus,

lim
ε→0

∣∣∣∣∣∣
1ˆ

0

(p+ ε) εδε−1

H (δ)− 1

mmp+1p

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ

 dδ
∣∣∣∣∣∣ ≤ pε, ∀ε > 0.

Hence we can get

lim
ε→0

1ˆ

0

(p+ ε) εδε−1H (δ) dδ = lim
ε→0

1ˆ

0

(p+ ε) εδε−1

 1

mmp+1p

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ

 dδ
=

1

mmp+1

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ.

Consequently, we have

lim
ε→0

1ˆ

0

ˆ

RN

ˆ

RN
|4mf(x,y)|>δ

(p+ ε) εδp+ε−1

|x− y|N+2p
dxdydδ =

1

mmp+1

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ.

Now, using Lemma 2.1 with α = p + ε − 1, Φ (x, y) = |4mf(x, y)| , Ψ (x, y) = 1
|x−y|N+mp , we

obtain

lim
ε→0

 ¨

|4mf(x,y)|≤1

ε |4mf(x, y)|p+ε

|x− y|N+mp
dxdy +

¨

|4mf(x,y)|>1

ε

|x− y|N+mp
dxdy


=

1

mmp+1

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ.

Noting that

lim
ε→0

¨

|4mf(x,y)|>1

ε

|x− y|N+mp
dxdy = 0,



86

we have

lim
ε→0

¨

|4mf(x,y)|≤1

ε |4mf(x, y)|p+ε

|x− y|N+mp
dxdy =

1

mmp+1

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ.

We have the statement (4).

Proof of Theorem 5.3:

First, it is clear that statements (1) =⇒ (2) and (1) =⇒ (3) are consequences of Theorem 5.1.

Now, we will prove (3) =⇒ (1) : Let ηε be any sequence of smooth mollifiers and set

f ε = f ∗ ηε

Then we can get f ε ∈ Lp(RN ) ∩ C∞(RN ) ⊆Wm,p(RN ).

Using the (4) of the Theorem 5.1, we can have

CN,p

ˆ
SN−1

ˆ
RN
|Dmf ε(x)(σ, · · ·, σ)|pdxdσ

≤ sup
0<γ<1

ˆ
RN

ˆ
RN

|4(m)fε(x,y)|≤1

γ| 4(m) f ε(x, y)|p+γ

|x− y|N+mp
dxdy

= sup
0<γ<1

ˆ
RN

ˆ
RN

|4(m)fε(x,y)|≤1

γ|
´
RN {4

(m)f(x− z, y − z)}ηε(z)dz|p+γ

|x− y|N+mp
dxdy

Since the function xp+ε is convex on [0,∞), by Jensen’s inequality, we can deduce

sup
0<γ<1

ˆ
RN

ˆ
RN

|4(m)fε(x,y)|≤1

γ|
´
RN {4

(m)f(x− z, y − z)}ηε(z)dz|p+γ

|x− y|N+mp
dxdy

≤ sup
0<γ<1

ˆ
RN

ˆ
RN

|4(m)fε(x,y)|≤1

γ| 4(m) f(x− z, y − z)|p+γ
´
RN η

ε(z)dz

|x− y|N+mp
dxdy

= sup
0<γ<1

ˆ
RN

ˆ
RN

|
´
RN {4(m)f(x,y)}ηε(z)dz|≤1

γ| 4(m) f(x, y)|p+γ

|x− y|N+mp
dxdy

The last step comes from changing variable and
´
RN η

ε(z)dz = 1. Since

|
ˆ
RN
{4(m)f(x, y)}ηε(z)dz| = | 4(m) f(x, y)|
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Thus,

CN,p

ˆ
SN−1

ˆ
RN
|Dmf ε(x)(σ, · · ·, σ)|pdxdσ

≤ sup
0<γ<1

ˆ
RN

ˆ
RN

|
´
RN {4mf(x,y)ηε(z)dz|≤1

γ| 4m f(x, y)|p+γ

|x− y|N+mp
dxdy

= sup
0<γ<1

ˆ
RN

ˆ
RN

|4mf(x,y)|≤1

γ| 4m f(x, y)|p+γ

|x− y|N+mp
dxdy

≤ ∞from(3)

So ‖f ε‖Wm,p(RN ) is bounded. Then there exists a subsequence of f ε, denoted as f ε, such that

f ε ⇀ g in W 2,p(RN ).

On the other hand, from the property of mollifier, we know

f ε → f a.e.

From the uniqueness of the limit, we get f = g a.e. in Wm,p(RN ). That is , f ∈Wm,p(RN ).

5.3 Characterization Using (m-1)th-Taylor Remainder

In this section, we will investigate the characterizations of high order Sobolev spacesWm,p
(
RN
)

in terms of the Taylor-remainder of order m− 1.

Lemma 5.8. There exists a constant CN,m,p > 0 such that for all δ > 0, all f ∈Wm,p
(
RN
)

:
ˆ

RN

ˆ

RN
|Rm−1f(x,y)|>δ

δp

|x− y|N+mp
dxdy ≤ CN,m,p

ˆ

RN

|∇mf |p dx. (5.10)

Proof. Again, using the polar coordinates, we get
ˆ

RN

ˆ

RN
|Rm−1f(x,y)|>δ

δp

|x− y|N+mp
dxdy =

ˆ

SN−1

ˆ

RN

∞̂

0

|Rm−1f(x+hσ,x)|>δ

δp

hmp+1
dhdxdσ.

Thus, again, to prove (5.10), it’s enough to prove that for every σ ∈ SN−1, we get
ˆ

RN

∞̂

0

|Rm−1f(x+hσ,x)|>δ

δp

hmp+1
dhdx ≤ CN,p

ˆ

RN

|∇mf |p dx. (5.11)

Because of the rotation, we assume without loss of generality that σ = eN = (0, ..., 0, 1). We

claim for any k ≥ 3 ,
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Rk−1f(x+ heN , x) =

hk
´ 1

0 · · ·
´ 1

0
∂kf
∂xkN

(x′, xN + sksk−1sk−2 · · · s1h)sk−1
1 sk−2

2 · · · s2
k−2sk−1dskdsk−1 · · · ds2ds1

We first check the claim holds for k = 3. Now, by the mean value theorem, one has

R2f(x+ heN , x) = f(x+ heN )− f(x)− h∇f(x)eN −
h2

2!

∂2f

∂x2
N

(x)

=

1ˆ

0

∂f

∂xN

(
x′, xN + sh

)
hds− h ∂f

∂xN
(x)− h2

2!

∂2f

∂x2
N

(x)

= h

1ˆ

0

[
∂f

∂xN

(
x′, xN + sh

)
hds− ∂f

∂xN
(x′, xN )

]
ds− h2

2!

∂2f

∂x2
N

(x)

= h

1ˆ

0

xN+shˆ

xN

∂2f

∂x2
N

(
x′, t

)
dtds− h2

2!

∂2f

∂x2
N

(x)

= h2

ˆ 1

0

ˆ 1

0

∂2f

∂x2
N

(
x′, xN + tsh

)
sdtds− h2

ˆ 1

0

ˆ 1

0

∂2f

∂x2
N

(x′, xN )sdtds

= h2

ˆ 1

0

ˆ 1

0

ˆ xN+tsh

xN

∂3f

∂x3
N

(x′, τ)dτsdtds

= h3

ˆ 1

0

ˆ 1

0

ˆ 1

0

∂3f

∂x3
N

(x′, xN + τsth)stdτsdtds.
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By induction, assume it holds for k = m− 1.We want to prove it holds for k = m.Indeed,

Rm−1f(x+ heN , x) = Rm−2f(x+ heN , x)− hm−1

(m− 1)!

∂m−1f

∂xm−1
N

(x)

= hm−1

ˆ 1

0
· · ·

ˆ 1

0

∂m−1f

∂xm−1
N

(x′, xN + sm−1sm−2 · · · s1h)

sm−2
1 sm−3

2 · · · s2
m−3sm−2dsm−1 · · · ds1 −

hm−1

(m− 1)!

∂m−1f

∂xm−1
N

(x)

= hm−1

ˆ 1

0
· · ·

ˆ 1

0

∂m−1f

∂xm−1
N

(x′, xN + sm−1sm−2 · · · s1h)

sm−2
1 sm−3

2 · · · s2
m−3sm−2dsm−1 · · · ds1

− hm−1

ˆ 1

0
· · ·

ˆ 1

0

∂m−1f

∂xm−1
N

(x′, xN )sm−2
1 sm−3

2 · · · s2
m−3sm−2dsm−1 · · · ds1

= hm−1

ˆ 1

0
· · ·

ˆ 1

0
{∂

m−1f

∂xm−1
N

(x′, xN + sm−1sm−2 · · · s1h)− ∂m−1f

∂xm−1
N

(x′, xN )}

sm−2
1 sm−3

2 · · · s2
m−3sm−2dsm−1 · · · ds1

= hm
ˆ 1

0
· · ·

ˆ 1

0

ˆ xN+smsm−1···s1h

xN

∂mf

∂xmN
(x′, sm)dsm

sm−2
1 sm−3

2 · · · s2
m−3sm−2dsm−1 · · · ds1

= hm
ˆ 1

0
· · ·

ˆ 1

0

∂mf

∂xmN
(x′, xN + smsm−1 · · · s1)

sm−1
1 sm−2

2 · · · s2
m−2sm−1dsm · · · ds1

Thus

|Rm−1f(x+ heN , x)| ≤ hm
ˆ 1

0
· · ·

ˆ 1

0
MN (

∂mf

∂xmN
)(x)sm−1

1 sm−2
2 · · · s2

m−2sm−1dsm · · · ds1

=
1

m!
hmMN (

∂mf

∂xmN
)(x).
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Now we can prove 5.11
ˆ

RN

∞̂

0

|Rm−1f(x+heN ,x)|>δ

δp

hmp+1
dhdx ≤

ˆ

RN

∞̂

0
1
m!
hmMN ( ∂

mf
∂xm
N

)(x)>δ

δp

hmp+1
dhdx

=

ˆ
RN

ˆ ∞ δm!

MN (
∂mf
∂xm
N

)(x)

 1
m

δp

hmp+1
dhdx

=
1

(m!)pmp

ˆ
RN

∣∣∣∣MN (
∂mf

∂xmN
)(x)

∣∣∣∣p dx
≤ CN,p

ˆ
RN

∣∣∣∣∂mf∂xmN
(x)

∣∣∣∣p dx
≤ CN,p

ˆ

RN

|∇mf |p dx.

Lemma 5.9. There holds

lim
δ→0

ˆ

RN

ˆ

RN
|Rm−1f(x,y)|>δ

δp

|x− y|N+mp
dxdy =

1

(m!)pmp

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ

for all f ∈Wm,p
(
RN
)
,m ≥ 3, 1 < p <∞.

Proof. Again, by changing of variables and set y = x+ m
√
δhσ we obtain

ˆ

RN

ˆ

RN

|R(m−1)f(x,y)|>δ

δp

|x− y|N+mp
dxdy =

ˆ

SN−1

ˆ

RN

∞̂

0∣∣∣∣R(m−1)f(x,x+
m√
δhσ)

hmδ

∣∣∣∣hm>1

1

hmp+1
dhdxdσ.

Define Fδ : SN−1 → R by

Fδ (σ) =

ˆ

RN

∞̂

0∣∣∣Rm−1f(x,x+
m√
δhσ)

hmδ

∣∣∣hm>1

1

hmp+1
dhdx.

We first prove that for all σ ∈ SN−1, ∀δ > 0 :

Fδ (σ) ≤ CN,p
ˆ

RN

|∇mf |p dx. (5.12)

Indeed, again, without loss of generality, we assume that σ = eN = (0, ..., 0, 1). Hence, we need
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to verify that
ˆ

RN

∞̂

0∣∣∣∣Rm−1f(x,x+
m√
δheN )

hmδ

∣∣∣∣hm>1

1

hmp+1
dhdx ≤ CN,p

ˆ

RN

|∇mf |p dx. (5.13)

Similarly as in the Lemma 5.6, we have∣∣∣∣∣Rm−1f(x, x+ m
√
δheN )

hmδ

∣∣∣∣∣ ≤ 1

m!
MN

(
∂mf

∂xmN

)
(x) .

Thus,
ˆ

RN

∞̂

0∣∣∣∣Rm−1f(x,x+
m√
δheN )

hmδ

∣∣∣∣hm>1

1

hmp+1
dhdx ≤

ˆ

RN

∞̂

0

hmMN

(
∂mf
∂xm
N

)
(x)>m!

1

hmp+1
dhdx

≤ CN,p
ˆ

RN

|∇mf |p dx.

Next, we will show that

Fδ (σ)→ 1

(m!)pmp

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dx as δ → 0 for every σ ∈ SN−1 (5.14)

where

|Dmf (x) (σ, · · ·, σ)| =
∑

1≤i1,···,im≤N
σi1 · · · σim

∂mf

∂xi1 · · · ∂xim
(x) .

Again, without loss of generality, we suppose that σ = eN = (0, ..., 0, 1). We write

Fδ (σ) =

ˆ

RN

∞̂

0

Gδ (x, h) dhdx

where

Gδ (x, h) =
1

hmp+1
χ{∣∣∣∣Rm−1f(x,x+

m√
δheN )

hmδ

∣∣∣∣hm>1

} (x, h) .

Noting that for all σ ∈ SN−1 :

Gδ (x, h)→ 1

hmp+1
χ{|Dmf(x)(σ,···,σ)|hm>m!} (x, h) as δ → 0 for a.e. (x, h) ∈ RN × [0,∞) ,

and

Gδ (x, h) ≤ 1

hmp+1
χ{

hmMN

(
∂mf
∂xm
N

)
(x)>m!

} (x, h) ∈ L1
(
RN × [0,∞)

)
.

Hence, by the Lebesgue’s dominated convergence theorem, we get (5.14).

Using (5.12) and (5.14), again, using the Lebesgue’s dominated convergence theorem, we can
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conclude that

lim
δ→0

ˆ

RN

ˆ

RN
|Rm−1f(x,y)|>δ

δp

|x− y|N+mp
dxdy =

1

(m!)pmp

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ.

Lemma 5.10. Assume that f ∈Wm−1,p
(
RN
)
∩ C∞

(
RN
)

satisfying

C (f) := sup
0<ε<1

ˆ

RN

ˆ

RN

ε
∣∣Rm−1f(x, y)

∣∣p+ε
|x− y|N+mp

dxdy <∞.

Then f ∈Wm,p
(
RN
)

and

1

(m!)pm

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ ≤ lim inf
ε→0

ˆ

RN

ˆ

RN

ε
∣∣Rm−1f(x, y)

∣∣p+ε
|x− y|N+mp

dxdy.

Proof. From the assumptions, and set y = x+ tσ we have

sup
0<ε<1

ˆ

SN−1

ˆ

BR

1ˆ

0

ε
∣∣Rm−1f(x, x+ tσ)

∣∣p+ε
tmp+1

dtdxdσ ≤ C (f) .

By Taylor expansion, since f ∈ Lp
(
RN
)
∩ C∞

(
RN
)
, we can have that

1

m!
|Dmf (x) (tσ, · · ·, tσ)| ≤

∣∣Rm−1f(x, x+ tσ)
∣∣+ Ctm+1

for all (σ, x, t) ∈ SN−1 ×BR × (0, 1) . Also, since∣∣Rm−1f(x, x+ tσ)
∣∣ ≤ Ctm for all (σ, x, t) ∈ SN−1 ×BR × (0, 1) ,

we have

1

(m!)(p+ε)
|Dmf (x) (tσ, · · ·, tσ)|p+ε ≤

[∣∣Rm−1f(x, x+ tσ)
∣∣+ Ctm+1

]p+ε
≤
∣∣Rm−1f(x, x+ tσ)

∣∣p+ε + Ctmp+ε+1,

for all (σ, x, t) ∈ SN−1 ×BR × (0, 1) .

Now, noting that

lim inf
ε→0

ˆ

SN−1

ˆ

BR

1ˆ

0

εtmp+ε+1

tmp+1
dtdxdσ = 0,
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we can deduce

lim inf
ε→0

ˆ

SN−1

ˆ

BR

1ˆ

0

1

(m!)p+ε
ε |Dmf (x) (tσ, · · ·, tσ)|p+ε

tmp+1
dtdxdσ

≤ lim inf
ε→0

ˆ

SN−1

ˆ

BR

1ˆ

0

ε
∣∣Rm−1f(x, x+ tσ)

∣∣p+ε
tmp+1

dtdxdσ.

As a consequence, we get

1

(m!)pm

ˆ

SN−1

ˆ

BR

|Dmf (x) (σ, · · ·, σ)|p dxdσ ≤ lim inf
ε→0

ˆ

RN

ˆ

RN

ε
∣∣Rm−1f(x, y)

∣∣p+ε
|x− y|N+mp

dxdy.

Hence, we can conclude that f ∈Wm,p
(
RN
)

and

1

(m!)pm

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ ≤ lim inf
ε→0

ˆ

RN

ˆ

RN

ε
∣∣Rm−1f(x, y)

∣∣p+ε
|x− y|N+mp

dxdy.

Proof of Theorem 5.2:

(1) and (2) are consequences of Lemma 5.8 and Lemma 5.9.

Now we will prove (3). By (1), we get
ˆ

RN

ˆ

RN
|Rm−1f(x,y)|>δ

δp

|x− y|N+mp
dxdy ≤ CN,m,p

ˆ

RN

|∇mf |p dx, ∀δ > 0. (5.15)

As a consequence, by Fatou’s lemma,
ˆ

RN

ˆ

RN
|Rm−1f(x,y)|>1

1

|x− y|N+mp
dxdy ≤ CN,m,p

ˆ

RN

|∇mf |p dx. (5.16)

Now, from (5.15), one has
1ˆ

0

ˆ

RN

ˆ

RN
|Rm−1f(x,y)|>δ

εδp+ε−1

|x− y|N+mp
dxdydδ ≤ CN,m,p

ˆ

RN

|∇mf |p dx.

Using Lemma 2.1, we deduce
ˆ

RN

ˆ

RN
|Rm−1f(x,y)|≤1

ε
∣∣Rm−1f(x, y)

∣∣p+ε
|x− y|N+mp

dxdy +

ˆ

RN

ˆ

RN
|Rm−1f(x,y)|>1

ε

|x− y|N+mp
dxdy ≤ CN,m,p

ˆ

RN

|∇mf |p dx.

(5.17)

From (5.16) and (5.17), we get the assertion (3).
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Now, set

H (δ) =

ˆ

RN

ˆ

RN
|Rm−1f(x,y)|>δ

δp

|x− y|N+mp
dxdy.

So be previous results, we have

H (δ) ≤ CN,m,p
ˆ

RN

|∇mf |p dx, ∀δ > 0

and

lim
δ→0

H (δ) =
1

(m!)pmp

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ.

Now, we claim that

lim
ε→0

1ˆ

0

(p+ ε) εδε−1H (δ) dδ =
1

(m!)pm

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ. (5.18)

Indeed, for every ε > 0, we can find a number X (ε) ∈ (0, 1) such that∣∣∣∣∣∣H (δ)− 1

(m!)pmp

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ

∣∣∣∣∣∣ < ε for all δ ∈ (0, X (ε)) .

Now, we have:

lim
ε→0

∣∣∣∣∣∣∣
1ˆ

X(ε)

(p+ ε) εδε−1

H (δ)− 1

(m!)pmp

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ

 dδ
∣∣∣∣∣∣∣

≤
1ˆ

X(ε)

lim
ε→0

(p+ ε) εδε−1

∣∣∣∣∣∣H (δ)− 1

(m!)pmp

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ

∣∣∣∣∣∣ dδ
≤

1ˆ

X(ε)

lim
ε→0

(p+ ε) εX (ε)ε−1

CN,pˆ
RN

|∇mf |p dx

 dδ
= 0.
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Moreover,

lim
ε→0

∣∣∣∣∣∣∣
X(ε)ˆ

0

(p+ ε) εδε−1

H (δ)− 1

(m!)pmp

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ

 dδ
∣∣∣∣∣∣∣

≤ lim
ε→0

X(ε)ˆ

0

(p+ ε) εδε−1

∣∣∣∣∣∣H (δ)− 1

(m!)pmp

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ

∣∣∣∣∣∣ dδ
≤ lim

ε→0

X(ε)ˆ

0

(p+ ε) εδε−1εdδ

≤ lim
ε→0

1ˆ

0

(p+ ε) εδε−1εdδ

= pε.

Thus,

lim
ε→0

∣∣∣∣∣∣
1ˆ

0

(p+ ε) εδε−1

H (δ)− 1

(m!)pmp

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ

 dδ
∣∣∣∣∣∣ ≤ pε, ∀ε > 0.

Hence we can get

lim
ε→0

1ˆ

0

(p+ ε) εδε−1H (δ) dδ = lim
ε→0

1ˆ

0

(p+ ε) εδε−1

 1

mmp+1p

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ

 dδ
=

1

(m!)pm

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ.

Consequently, we have

lim
ε→0

1ˆ

0

ˆ

RN

ˆ

RN
|Rm−1f(x,y)|>δ

(p+ ε) εδp+ε−1

|x− y|N+2p
dxdydδ =

1

(m!)pm

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ.

Now, using Lemma 2.1 with α = p+ ε− 1, Φ (x, y) =
∣∣Rm−1f(x, y)

∣∣ , Ψ (x, y) = 1
|x−y|N+mp , we

obtain

lim
ε→0

 ¨

|Rm−1f(x,y)|≤1

ε
∣∣Rm−1f(x, y)

∣∣p+ε
|x− y|N+mp

dxdy +

¨

|Rm−1f(x,y)|>1

ε

|x− y|N+mp
dxdy


=

1

(m!)pm

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ.

Noting that

lim
ε→0

¨

|Rm−1f(x,y)|>1

ε

|x− y|N+mp
dxdy = 0,
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we have

lim
ε→0

¨

|Rm−1f(x,y)|≤1

ε
∣∣Rm−1f(x, y)

∣∣p+ε
|x− y|N+mp

dxdy =
1

(m!)pm

ˆ

SN−1

ˆ

RN

|Dmf (x) (σ, · · ·, σ)|p dxdσ.

We have the statement (4).

Proof of Theorem 5.4:

First, it is clear that statements (1) =⇒ (2) and (1) =⇒ (3) are consequences of Theorem 5.2.

Now, we will prove (3) =⇒ (1) : Let ηε be any sequence of smooth mollifiers and set

f ε = f ∗ ηε

Then we can get f ε ∈Wm−1,p(RN ) ∩ C∞(RN ) ⊆Wm,p(RN ).

Using the (4) of the Theorem 3.1, we can have

CN,m,p

ˆ
SN−1

ˆ
RN
|Dmf ε(x)(σ, · · ·, σ)|pdxdσ

≤ sup
0<γ<1

ˆ
RN

ˆ
RN

|Rm−1fε(x,y)|≤1

γ|Rm−1f ε(x, y)|p+γ

|x− y|N+mp
dxdy

= sup
0<γ<1

ˆ
RN

ˆ
RN

|Rm−1fε(x,y)|≤1

γ|
´
RN {R

m−1f(x− z, y − z)}ηε(z)dz|p+γ

|x− y|N+mp
dxdy

Since the function xp+ε is convex on [0,∞), by Jensen’s inequality, we can deduce

sup
0<γ<1

ˆ
RN

ˆ
RN

|Rm−1fε(x,y)|≤1

γ|
´
RN {R

m−1f(x− z, y − z)}ηε(z)dz|p+γ

|x− y|N+mp
dxdy

≤ sup
0<γ<1

ˆ
RN

ˆ
RN

|Rm−1fε(x,y)|≤1

γ|Rm−1f(x− z, y − z)|p+γ
´
RN η

ε(z)dz

|x− y|N+mp
dxdy

= sup
0<γ<1

ˆ
RN

ˆ
RN

|
´
RN {Rm−1f(x,y)}ηε(z)dz|≤1

γ|Rm−1f(x, y)|p+γ

|x− y|N+mp
dxdy

The last step comes from changing variable and
´
RN η

ε(z)dz = 1. Since

|
ˆ
RN
{Rm−1f(x, y)}ηε(z)dz| = |Rm−1f(x, y)|
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Thus,

CN,p

ˆ
SN−1

ˆ
RN
|Dmf ε(x)(σ, · · ·, σ)|pdxdσ

≤ sup
0<γ<1

ˆ
RN

ˆ
RN

|
´
RN {Rm−1f(x,y)ηε(z)dz|≤1

γ|Rm−1f(x, y)|p+γ

|x− y|N+mp
dxdy

= sup
0<γ<1

ˆ
RN

ˆ
RN

|Rm−1f(x,y)|≤1

γ|Rm−1f(x, y)|p+γ

|x− y|N+mp
dxdy

<∞ from (3)

So ‖f ε‖Wm,p(RN ) is bounded. Then there exists a subsequence of f ε, denoted as f ε, such that

f ε ⇀ g in Wm,p(RN ).

On the other hand, from the property of mollifiers, we know

f ε → f a.e.

From the uniqueness of the limit, we get f = g a.e. in Wm,p(RN ). That is , f ∈Wm,p(RN ).
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CHAPTER 6 LP -DIFFERENTIABILITY OF THE FUNCTIONS

IN SOBOLEV SPACE ON HEISENBERG GROUPS

6.1 main results

Throughout this chapter, Ω will denote an open set of H = (CN ×R, ◦, δλ) whose points we

denote by (z, t) with z ∈ R and z = (z1, ..., zN ) ∈ CN .

The main theorems we want to study in this chapter are

Theorem 6.1. Let1 ≤ p <∞ and f ∈W 1,p(H). Then

lim
ε→0

ˆ
H

(

 
B(e,ε)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pq

|h|pq
dh)

1
q = 0

where 1 ≤ q ≤ Q
Q−p if 1 ≤ p < Q, 1 ≤ q < ∞ if p = Q, and 1 ≤ q < ∞ if p > Q.Here,

e = (0, ..., 0) ∈ H and h = (h′, h2N+1) ∈ H,〈·, ·〉is the inner product on R2N .

Theorem 6.2. Let1 < p <∞ and suppose f ∈ Lp (H). Then the following are equivalent:

(1) f ∈W 1,p (H) .

(2)there exists a v ∈ Lp(H;R2N ) such that

lim
ε→0

ˆ
H

(

 
B(e,ε)

|f(x ◦ h)− f(x)− 〈v(x), h′〉|pq

|h|pq
dh)

1
q = 0

where 1 ≤ q ≤ Q
Q−p if 1 ≤ p < Q, 1 ≤ q < ∞ if p = Q, and 1 ≤ q < ∞ if p > Q.Here,

e = (0, ..., 0) ∈ H and h = (h′, h2N+1) ∈ H.

6.2 Some Useful Lemmas

In order to prove the above two theorems, we will study the following useful lemma:

Lemma 6.3. Suppose f ∈ W 1,p
0 (H) for some 1 ≤ p < ∞, and that 1 ≤ q ≤ Q

Q−p if 1 ≤ p < Q,

1 ≤ q <∞ if p = Q and 1 ≤ q ≤ ∞ if p > Q. Then there exsits a positive C = C(p, q,Q) such that
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for all 0 < r < 1

1

rQ+pq

ˆ
B(e,r)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pqdh

≤ C(

 
B(e,r)

|∇Hf(x ◦ h)−∇Hf(x)|p)q

+ C(

1ˆ

0

 
B(e,sr)

|∇Hf(x ◦ z)−∇Hf(x)|pdzds)q

Proof. Since f ∈W 1,p
0 (H), then we can first assume that f ∈ C1

0 (H). Then we have for a.e. x ∈ H,

1)lim
r→0

 
B(x,r)

|f(y)− f(x)|pdy = 0

2)lim
r→0

 
B(x,r)

|∇Hf(y)−∇Hf(x)|pdy = 0

Fix such a point x. Select ϕ ∈ C1
0 (B(e, r)) with ‖ϕ‖Lp′ (B(e,r))with 1/p + 1/p′ = 1,1 ≤ p < ∞.We

calculate
 
B(e,r)

ϕ(h)(f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉)dh

=

 
B(e,r)

ϕ(h)(

1ˆ

0

〈∇Hf(x ◦ δs(h)), h′〉ds− 〈∇Hf(x), h′〉)dh

=

 
B(e,r)

ϕ(h)(

1ˆ

0

〈∇Hf(x ◦ δs(h))−∇Hf(x), h′〉ds)dh

=

1ˆ

0

 
B(e,r)

ϕ(h)〈∇Hf(x ◦ δs(h))−∇Hf(x), h′〉dhds

=

1ˆ

0

1

s

 
B(e,sr)

ϕ(δs−1(z))〈∇Hf(x ◦ z)−∇Hf(x), z′〉dzds

The last step above comes from changing variable:z = δs(h),and we can get z ∈ B(e, sr), sh′ = z′,



100

dz = sQdh and |B(e, sr)| = sQ|B(e, r)|. Using hölder’s inequality, we have
 
B(e,r)

ϕ(h)(f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉)dh

=

1ˆ

0

1

s

 
B(e,sr)

ϕ(δs−1(z))〈∇Hf(x ◦ z)−∇Hf(x), z′〉dzds

≤
1ˆ

0

1

s

 
B(e,sr)

|ϕ(δs−1(z))||∇Hf(x ◦ z)−∇Hf(x)||z|dzds

≤ r
1ˆ

0

(

 
B(e,sr)

|ϕ(δs−1(z))|p′dz)
1
p′ (

 
B(e,sr)

|∇Hf(x ◦ z)−∇Hf(x)|pdz)
1
pds

Since

ffl
B(e,sr) |ϕ(δs−1(z))|p′dz =

ffl
B(e,r) |ϕ(y)|p′dy

we obtain

ffl
B(e,r) ϕ(h)(f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉)dh ≤

r(
ffl
B(e,r) |ϕ(y)|p′dy)

1
p′

1́

0

ffl
B(e,sr) |∇Hf(x ◦ z)−∇Hf(x)|pdz)

1
pds

Taking the supremum over all ϕ as above gives there exists a ϕ such that
 
B(e,r)

ϕ(h)(f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉)dh

= (

 
B(e,r)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pdh)
1
p (

 
B(e,r)

|ϕ(y)|p′dy)
1
p′ .

Then we have

(
ffl
B(e,r) |f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pdh)

1
p (
ffl
B(e,r) |ϕ(y)|p′dy)

1
p′ ≤

r(
ffl
B(e,r) |ϕ(y)|p′dy)

1
p′

1́

0

ffl
B(e,sr) |∇Hf(x ◦ z)−∇Hf(x)|pdz)

1
pds.

That is, for any 1 ≤ p <∞, we have

(
ffl
B(e,r) |f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pdh)

1
p ≤ r

1́

0

ffl
B(e,sr) |∇Hf(x ◦ z)−∇Hf(x)|pdz)

1
pds.

Firstly, we consider the case 1 ≤ q ≤ Q
Q−p and 1 ≤ p < Q.

Now we have the claim: There exists a constant C = C(Q, p) such that
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(
ffl
B(x,r) |g|

Qp
Q−pdy)

Q−p
Qp ≤ Cr(

ffl
B(e,r) |∇Hg|pdh)

1
p + C(

ffl
B(e,r) |g|

pdh)
1
p

for all g ∈W 1,p(H).

Apply the claim to g(h) = f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉,we can get

(

 
B(e,r)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|
Qp
Q−pdh)

Q−p
Qp

≤ Cr(
 
B(e,r)

|∇Hf(x ◦ z)−∇Hf(x)|pdz)1/p

+ C(

 
B(e,r)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pdh)
1
p

Now we prove the claim by using Poincare’s inequality and embedding theorem: Since we have

known

‖g‖Lpq(B(e,r)) ≤ C‖g‖Lp∗ (B(e,r)) with 1 ≤ p ≤ Q
Q−p and p∗ = Qp

Q−p

and

(
ffl
B(e,r) |g − gB(e,r)dh|p

∗
)

1
p∗ ≤ Cr(

ffl
B(e,r) |∇Hg|pdh)

1
p with gB(e,r) =

ffl
B(e,r) gdh

Then we have

(

 
B(e,r)

|g|p∗dh)
1
p∗

≤ (

 
B(e,r)

(|g − gB(e,r)dh|+ |gB(e,r)|)p
∗
dh)

1
p∗

≤ C(

 
B(e,r)

|g − gB(e,r)|p
∗

+ |gB(e,r)|p
∗
dh)

1
p∗

= C(

 
B(e,r)

|g − gB(e,r)dh|p
∗
)

1
p∗ + |

 
B(e,r)

gdh|

≤ Cr(
 
B(e,r)

|∇Hg|pdh)
1
p + C(

 
B(e,r)

|g|pdh)
1
p

which completes the claim.
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Finally, we have

(

 
B(e,r)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|
Qp
Q−pdh)

Q−p
Qp

≤ Cr(
 
B(e,r)

|∇Hf(x ◦ z)−∇Hf(x)|pdz)1/p

+ C(

 
B(e,r)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pdh)
1
p

≤ Cr(
 
B(e,r)

|∇Hf(x ◦ z)−∇Hf(x)|pdz)1/p

+ Cr

1ˆ

0

 
B(e,sr)

|∇Hf(x ◦ z)−∇Hf(x)|pdz)
1
pds

≤ Cr(
 
B(e,r)

|∇Hf(x ◦ z)−∇Hf(x)|pdz)1/p

+ Cr(

1ˆ

0

 
B(e,sr)

|∇Hf(x ◦ z)−∇Hf(x)|pdzds)
1
p

Since we have

‖g‖Lpq(B(e,r)) ≤ C‖g‖Lp∗ (B(e,r)) with 1 ≤ p ≤ Q
Q−p and p∗ = Qp

Q−p

So

(

 
B(e,r)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pqdh)
1
pq

≤ C(

 
B(e,r)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|
Qp
Q−pdh)

Q−p
Qp

≤ Cr(
 
B(e,r)

|∇Hf(x ◦ z)−∇Hf(x)|pdz)1/p

+ Cr(

1ˆ

0

 
B(e,sr)

|∇Hf(x ◦ z)−∇Hf(x)|pdzds)
1
p

Take the powerpq to both sides of the inequality above
 
B(e,r)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pqdh

≤ Crpq(
 
B(e,r)

|∇Hf(x ◦ z)−∇Hf(x)|pdz)q

+ Crpq(

1ˆ

0

 
B(e,sr)

|∇Hf(x ◦ z)−∇Hf(x)|pdzds)q
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Divide rpq to both sides of the above inequality and rewrite the left side, than we are done for the

first case.

Secondly, we consider the case1 ≤ q <∞ and p = Q.

For any Q ≤ pq < ∞, we can find a p̃ = Q − εwith a small ε such that p̃∗ = pq , then use the

similar method for the first case, we can get the same conclusion.

Finally, we consider the case1 ≤ q ≤ ∞ and p > Q by using the Morrey’s estimate [29]

Since for a.e x ∈ H, we have

lim
r→0

 
B(x,r)

|∇Hf(y)−∇Hf(x)|pdy = 0

Choose such a point x, and write

g(h) = f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉

for h ∈ B(e, r).

Employing Morrey’s estimate, we deduce

|g(h)− g(e)| ≤ Cr(
 
B(e,r)

|∇Hg(h)|pdh)1/p

Since g(e) = 0, and ∇Hg(h) = ∇Hf(x ◦ h)−∇Hf(x), we have
 
B(e,r)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pqdh

=

 
B(e,r)

|g(h)|pqdh

≤ C
 
B(e,r)

rpq(

 
B(e,r)

|∇Hf(x ◦ z)−∇Hf(x)|pdz)qdh

= Crpq
 
B(e,r)

|∇Hf(x ◦ z)−∇Hf(x)|pdz)q

Thus

1

rQ+pq

ˆ
B(e,r)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pqdh

≤ C(

 
B(e,r)

|∇Hf(x ◦ h)−∇Hf(x)|p)q

Then we are done with all three cases.

Lemma 6.4. Suppose ρz ∈ L1(H) and 1 ≤ p <∞. Then the operator Gρ : W 1,p(H)→ Lp(H;R2N )
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is a bounded operator with the estimate

||Gρf ||Lp ≤ C||ρ||L1 ||∇Hf ||Lp

for all f ∈W 1,p(H). Similarly Gρ : BV (H)→ L1(H;R2N ) with the estimate

||Gρf ||Lp ≤ C||ρ||L1 ||DHf ||Lp

for all f ∈ BV (H). Here, C = C(p,Q) > 0, Gρf(x) = Q
´
H
f(x)−f(y)
|x−1◦y|

(x−1◦y)′

|x−1◦y| ρi(x
−1 ◦ y)dy.

Proof. Applying Hölder’s inequality we have
ˆ
H

(

ˆ
H

|f(x)− f(y)|
|x−1 ◦ y|

ρ(x−1 ◦ y)dy)pdx

≤
ˆ
H

[

ˆ
H

|f(x)− f(y)|p

|x−1 ◦ y|p
ρ(x−1 ◦ y)dy][

ˆ
H
ρ(x−1 ◦ y)dy]p−1dx

||ρ||p−1
L1

ˆ
H

ˆ
H

|f(x)− f(y)|p

|x−1 ◦ y|p
ρ(x−1 ◦ y)dydx

Since we have
ˆ
H

ˆ
H

|f(x)− f(y)|p

|x−1 ◦ y|p
ρ(x−1 ◦ y)dydx ≤ C(p,Q)||ρ||L1 ||∇Hf ||pLp

The we obtain
ˆ
H
|Gρf(x)|pdx ≤ Qp

ˆ
H

(

ˆ
H

|f(x)− f(y)|
|x−1 ◦ y|

ρ(x−1 ◦ y)dy)pdx ≤ QpC(p,Q)||ρ||L1 ||∇Hf ||pLp .

The subsequent statement for BV functions follows from the density of C∞(H) ∩W 1,1(H) in BV

with respect to the strict convergence.

6.3 Proof of main results

Proof of Theorem 6.1:

First, we expand the integrand on concentric rings with 0 < ε < 1
 
B(e,ε)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pq

|h|pq
dh =

∞∑
k=0

1

εQ|B(e, 1)|

ˆ
B(e,

ε)

2k
\B(e, ε

2k+1 )

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pq

|h|pq
dh
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Fix k ∈ N, we make estimates

1

εQ|B(e, 1)|

ˆ
B(e,

ε)

2k
\B(e, ε

2k+1 )

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pq

|h|pq
dh

≤ 1

εQ|B(e, 1)|
(
ε

2k+1
)−pq

ˆ
B(e,

ε)

2k
)\B(e, ε

2k+1 )
|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pqdh

≤ 2pq

|B(e, 1)|
1

2kQ
(
ε

2k
)−Q−pq

ˆ
B(e,

ε)

2k
)
|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pqdh

Applying the lemma we already proved, we have

(
ε

2k
)−Q−pq

ˆ
B(e,

ε)

2k
)
|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pqdh

≤ C(

 
B(e,

ε)

2k
)
|∇Hf(x ◦ h)−∇Hf(x)|pdh)q

+ C(

ˆ 1

0

 
B(e,

sε)

2k
)
|∇Hf(x ◦ z)−∇Hf(x)|pdzds)q

Therefore, summing in k and applying the basic inequality (
∑

k |ak|)
1
q ≤

∑
k |ak|

1
q .

we have

(

 
B(e,ε)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pq

|h|pq
dh)

1
q

≤ C
∞∑
k=0

(
1

2k
)
Q
q

 
B(e,

ε)

2k
)
|∇Hf(x ◦ h)−∇Hf(x)|pdh

+ C

∞∑
k=0

(
1

2k
)
Q
q

ˆ 1

0

 
B(e,

sε)

2k
)
|∇Hf(x ◦ z)−∇Hf(x)|pdzds

Intergrating the preceding inequality over x ∈ H and making use of Tonelli’s theorem we obtain
ˆ
H

(

 
B(e,ε)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pq

|h|pq
dh)

1
q dx

≤ C
∞∑
k=0

(
1

2k
)
Q
q

 
B(e,

ε)

2k
)

ˆ
H
|∇Hf(x ◦ h)−∇Hf(x)|pdxdh

+ C

∞∑
k=0

(
1

2k
)
Q
q

ˆ 1

0

 
B(e,

sε)

2k
)

ˆ
H
|∇Hf(x ◦ z)−∇Hf(x)|pdxdzds

However, since h ∈ B(e, ε)
2k

) and z ∈ B(e, sε)
2k

) with 0 < s < 1, we have

max{
´
H |∇Hf(x ◦ h)−∇Hf(x)|pdx,

´
H |∇Hf(x ◦ z)−∇Hf(x)|pdx} ≤
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sup
η∈B(e,ε)

´
H |∇Hf(x ◦ η)−∇Hf(x)|pdx

and this bound above is independent of k. Thus,
ˆ
H

(

 
B(e,ε)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|pq

|h|pq
dh)

1
q dx

≤ sup
η∈B(e,ε)

ˆ
H
|∇Hf(x ◦ η)−∇Hf(x)|pdx(C

∞∑
k=0

(
1

2k
)
Q
q ).

As the infinite series is summable, the result follows from sending ε → 0 and using the continuity

of invariant in Lp(H).

Proof of Theorem 6.2:

As we have shown that f ∈ W 1,p(H) implies the Lp-convergence in Theorem 6.1, it remains to

show the converse. We first treat the case 1 < p < ∞. Let us therefore suppose that there exists

v ∈ Lp(H;R2n) such that

lim
ε→0

ˆ
H

(

 
B(e,ε)

|f(x ◦ h)− f(x)− 〈v(x), h′〉|pq

|h|pq
dh)

1
q = 0.

We then estimate
ˆ
H

 
B(e,ε)

|f(x ◦ h)− f(x)|p

|h|p
dhdx

≤ 2p−1

ˆ
H

 
B(e,ε)

|f(x ◦ h)− f(x)− 〈v(x), h′〉|p

|h|p
dhdx

+ 2p−1

ˆ
H

 
B(e,ε)

| 〈v(x), h′〉
|h|

|pdhdx

≤ 2p−1

ˆ
H

 
B(e,ε)

|f(x ◦ h)− f(x)− 〈v(x), h′〉|p

|h|p
dhdx

+ 2p−1

ˆ
H

 
B(e,ε)

|v(x)|pdhdx

Now our assumption(we can take q = 1) is that the first term on the right hand side tends to zero

as ε → 0, while the second is bounded by a constant times the Lp norm of v. Take a sequence εn

such that εn → 0 as n→∞ and we have

limsup
n→0

ˆ
H

 
B(e,εn)

|f(x ◦ h)− f(x)|p

|h|p
dhdx <∞
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This left hand side can be rewrite to be
ˆ
H

 
B(e,εn)

|f(x ◦ h)− f(x)|p

|h|p
dhdx =

ˆ
H

ˆ
H

|f(x ◦ h)− f(x)|p

|h|p
ρn(h)dhdx

with ρn(h) =
χB(e,εn)(h)

|B(e,εn)| . We can see ρn(h) : H → R+ ∪ {0} is a family of radial mollifiers with

respect to the norm | · |H satisfies the following properties:

i)

ˆ
H
ρn(h)dh = 1,∀n > 0;

ii)

ˆ
H\B(e,δ)

ρn(h)dh→ 0 as n→∞,∀δ > 0.

Now we prove that if f ∈ Lp(H) and satisfies the inequality

limsup
n→0

ˆ
H

ˆ
H

|f(x ◦ h)− f(x)|p

|h|p
ρn(h)dhdx <∞,

then f ∈W 1,p(H).

We first assume f ∈ C1
H(H) then extends to any f ∈ Lp(H) by density [18]. In order to prove this,

we first prove a claim:

let K be a compact set, B is the unit ball with center e = (0, ...0) ∈ H, and Kn =
´
B
|〈x′,h′〉|p
|h|p ρn(h)dh

with x′ a unit vector of R2N , then
ˆ
K

ˆ
B

|〈∇Hf(x), h′〉|p

|h|p
ρn(h)dhdx = Kn

ˆ
K
|∇Hf(x)|pdx.

and Kn does not depend on x′.

To see this we use a lemma in [ [15], Proposition 1.13]:

Kn =

ˆ
H

(
|〈x′, h′〉|p

|h|p+Q
)ρn(h)|h|Qχ[0,1](|h|)dh

= M(
|〈x′, h′〉|p

|h|p+Q
)

1ˆ

0

ρn(r)rQ−1dr.
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On the other hand,
ˆ
B
|〈x′, h′〉|pdh =

ˆ
H

(
|〈x′, h′〉|p

|h|p+Q
)|h|p+Qχ[0,1](|h|)dh

= M(
|〈x′, h′〉|p

|h|p+Q
)

1ˆ

0

rp+Q−1 =
1

p+Q
M(
|〈x′, h′〉|p

|h|p+Q
)

So that

M(
|〈x′, h′〉|p

|h|p+Q
) = (p+Q)

ˆ
B
|〈x′, h′〉|pdh

This expression does not depend on x′, since by an orthogonal H-change basis which does not alter

the measure nor the homogenous norm, it is possible to choose any other unitary vector of R2N by

rotation: set A ∈ O(2N,R) and call y′ = ATx′ ∈ R2N , then
ˆ
B
|〈x′, h′〉|pdh =

ˆ
B
|〈x′, Ah′〉|pdh =

ˆ
B
|〈y′, h′〉|pdh

Finally, we can see

Kn = (p+Q)

ˆ
B
|〈x′, h′〉|pdh

1ˆ

0

ρn(r)rQ−1dr.

does not depend on x′.

To prove the claim, since
ˆ
K

ˆ
B

|〈∇Hf(x), h′〉|p

|h|p
ρn(h)dhdx =

ˆ
K
|∇Hf(x)|p

ˆ
B

| < νf (x), h′ > |p

|h|p
ρn(h)dhdx

where νf (x) = ∇Hf(x)
|∇Hf(x)| is a unit norm horizontal vector in R2N , so that

´
B
|〈νf (x),h′〉|p
|h|p ρn(h)dh = Kn.

Claim is then proved.

Now, we want to prove f ∈W 1,p(H). Using the triangular inequality, we get

|〈∇Hf(x), h′〉| ≤ |f(x ◦ h)− f(x)|+ |f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|

So that for any p > 1, θ > 0 there exists a Cp,θ > 0 such that

|〈∇Hf(x), h′〉|p ≤ (1 + θ)|f(x ◦ h)− f(x)|p + Cp,θ|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|p.

Combining this relation with the claim we proved, with θ arbitrarily fixed, we get
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Kn

ˆ
K
|∇Hf(x)|pdx ≤ (1 + θ)

ˆ
K

ˆ
B

|f(x ◦ h)− f(x)|p

|h|p
ρn(h)dhdx

+ Cp,θ

ˆ
K

ˆ
B

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|p

|h|p
dhdx

Set

Jn =

ˆ
K

ˆ
B

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|p

|h|p
dhdx

For any δ ∈ (0, 1), we can split the integral into two parts:

Jn =

ˆ
K

ˆ
B(e,δ)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|p

|h|p
dhdx

+

ˆ
K

ˆ
B\B(e,δ)

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|p

|h|p
dhdx

= J1,n + J2,n

By the mean value theorem, there exists a s∗ ∈ (0, 1) such that

f(x ◦ h)− f(x) = 〈∇Hf(x ◦ δs∗(h)), h′〉

so

|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉| = |〈∇Hf(x ◦ δs∗(h))−∇Hf(x), h′〉|

≤ |h′|R2N |∇Hf(x ◦ δs∗(h))−∇Hf(x)|

≤ |h||∇Hf(x ◦ δs∗(h))−∇Hf(x)|

Finally, since f ∈ C1
H(H), we have

1)
|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|

|h|
→ 0, as h→ 0, uniformly for x on compact sets;

2)
|f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉|

|h|
≤ CK ,∀x ∈ K compact , ∀|h| < 1.

Then J1,n is arbitrarily small for any δ sufficiently small by the uniform convergence of |f(x ◦ h)−

f(x)− 〈∇Hf(x), h′〉|. To estimate J2,n, we can control |f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉| and use the

tail property of ρn(h). More precisely,

(1) for any λ > 0 there exists 0 < C(λ,K) < 1 such that |f(x◦h)−f(x)−〈∇Hf(x), h′〉| < ( λ
2|K|)

1/p|h|

for all |h| < C(λ,K) and all x ∈ K. We then have
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J1,n <
λ

2|K|
|K|

ˆ
B(e,δ)

ρn(h)dh <
λ

2
, ∀δ < C(λ,K),∀n;

(2) Since |f(x ◦ h)− f(x)− 〈∇Hf(x), h′〉| ≤ C1/p
K |h| for all x ∈ K, we have

J2,n ≤ CK |K|
ˆ
B\B(e,δ)

ρn(h)dh, ∀δ ∈ (0, 1)

and the integral over the annulus can be made arbitrarily small for n large due to the tail property

of ρn(h), so that

J2,n ≤ CK |K|
λ

2CK |K|
=
λ

2
, ∀n > N(δ, λ,K)

Thus, for any fixed λ > 0, there exists an N(λ,K) such that Jn < λ provided n > N(λ). We then

end up with

Kn

ˆ
K
|∇Hf(x)|pdx ≤ (1 + θ)

ˆ
K

ˆ
B

|f(x ◦ h)− f(x)|p

|h|p
ρn(h)dhdx+ Cp,θλ

Which is true for any n sufficiently large. This provides
ˆ
K
|∇Hf(x)|pdx ≤ 1 + θ

Kn
liminf
n→0

ˆ
H

ˆ
H

|f(x ◦ h)− f(x)|p

|h|p
ρn(h)dhdx

≤ 1 + θ

Kn
limsup
n→0

ˆ
H

ˆ
H

|f(x ◦ h)− f(x)|p

|h|p
ρn(h)dhdx

<∞

Then we get f ∈W 1,p(H) by the density argument.
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CHAPTER 7 CONCLUDING REMARKS AND FUTURE DI-

RECTIONS

In this dissertation, we have discussed new characterizations of Sobolev spaces on both

stratified lie groups and Euclidean spaces. In chapter 2 and 3 , we established several new charac-

terizations of Sobolev spaces on Heisenberg groups and Carnot groups. One difficulties considered

here is to estimate |f(x)− f(y)|. Our results include the cases 1 < p <∞ and p = 1. In the future

study, it will be interesting to study the new characterizations of the high order Sobolev space

Wm,p for m ≥ 2 on Heisenberg goups and Carnot groups. In addition, the study of the high order

BV space on Heisenberg groups and Carnot groups will also be a worthwhile undertaking.

Chapter 4 and Chapter 5 have been devoted to the new characterizations of high order Sobolev

spaces in Euclidean spaces. We used two approaches: by the m-th order differences(m ≥ 2) and

by the m − 1-th Taylor remainder. The question is: can we design a more general function ω in

Chapter 5 and 6 such that ω is convex. With some more additional assumptions of ω, we can have

a new characterizations of high order Sobolev spaces. In fact, If we let ω(t) = tp, we indeed get the

cases of Chapter 5 and 6.
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ABSTRACT

NEW CHARACTERIZATIONS OF SOBOLEV SPACES ON HEISENBERG GROUPS

AND CARNOT GROUPS AND HIGH ORDER SOBOLEV SPACES

ON EUCLIDEAN SPACES

by

XIAOYUE CUI

December 2015

Advisor: Dr. Guozhen Lu

Major: Mathematics

Degree: Doctor of Philosophy

This dissertation concerns the new characterizations of Sobolev spaces on Heisenberg groups,

Carnot groups and high order Sobolev spaces on Euclidean space. It contains two parts. The first

part focus on the characterizations of the Sobolev space on Heisenberg groups and Carnot groups.

Throughout this dissertation, the representation formula of Sobolev functions on Heisenberg goups

and Carnot groups are used to estimate the difference of function values on two different points in

Heisenberg groups and Carnot groups.

In Chapter 1, we introduce the motivation of the dissertation and give a brief review of some

known characterizations of Sobolev spaces in Euclidean spaces. We also give the preliminary of the

Heisenberg groups and Carnot groups which have different groups structures from the Euclidean

spaces.

In Chapter 2 and 3, we study the first order Sobolev spaces on Heisenberg groups and Carnot

groups. It originates from studying the asymptotic behavior of the fractional Sobolev spaceW s,p(0 <

s < 1) as s→ 1. In Euclidean space, one of the main techniques to characterize Sobolev space is to
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use the uniformity in every directions of the unit sphere in the Euclidean spaces. More precisely, to

deal with the general δ ∈ SN−1, it is often to be assumed that δ = eN = (0, · · · , 0, 1) and hence, one

just needs to work on 1-dimensional case. This can be done by using the rotation in the Euclidean

spaces. In the types of Heisenberg groups and Carnot groups, this type of property is not available

because of the group structure of these two types of groups. Therefore we find a different approach

to this characterization. We also study the cases for p = 1 which are the characterizations of BV

space.

In Chapter 4 and Chapter 5, we consider the characterizations of high order Sobolev spaces

Wm,p(m ≥ 2) in Euclidean spaces. Chapter 4 focus on the second order Sobolev space’s charac-

terizations. We present several types of characterizations: by second order differences, by the first

order Taylor remainder and by the differences of the first order gradient. In Chapter 5, we study the

characterizations of high order Sobolev spaces Wm,p(RN ) in Euclidean spaces by the m th order

differences and the m− 1th order Taylor remainder which we define both in Chapter 5.

In Chapter 6, we present that the functions in a Sobolev space possess the type of Lp-derivative

which is introduced by Calderón and Zygumnd. In fact, our construction of the condition charac-

terize the Sobolev functions on Heisenberg groups.
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