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CHAPTER 1

INTRODUCTION

From early pocket-sized devices to modern mobile devices, battery life is a critical issue to

address when designing a new mobile system. If this problem is not properly treated, it will

significantly influence both the functionality and user experience of mobile devices. Generally

speaking, the battery life of modern mobile devices is inadequate because the power consump-

tion of hardware devices increases with performance. Moreover, existing power management

systems cannot work effectively to restrict the redundant application activities (computation

tasks). In this dissertation, we designed a user-centric power management system to dynami-

cally customize the energy-saving strategies based on user behavior. We designed the UCASS

strategy to save the energy wasted by unnecessary application activities. Furthermore, we op-

timized the energy consumption of location service and wakelock mechanism.

1.1 Motivations

The battery life of modern mobile devices is inadequate. Most users are not satisfied

with the battery life of their smartphones. From the device usage traces of 14 users, we

found that users charged the experiment devices (Nexus 4) about 1.7 times per day. The

poor battery life significantly impacts user experience. Sometimes we cannot play our fa-

vorite games on the smartphones as long as we expected. Many reasons cause the poor

battery life of modern mobile devices. Even though the power consumption was globally

analyzed by previous publications [1, 2, 3, 4, 5, 6, 7, 8] and many optimization methods

[3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] were proposed

to optimize battery life, we still cannot expect the battery life problem be solved economically

soon. All aspects of operating systems must be revisited for energy-efficiency [29].

Different with old-styled mobile devices, modern mobile devices have more high-performance

hardware components, which are also much more power-hungry. Besides, more third-party

mobile applications, which were developed in different quality, are available and installed by
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users. The power management systems of modern mobile operating systems can hardly main-

tain a satisfied battery life because of these new characteristics. The battery drain is mainly

because existing power management systems were not functioning effectively. Usually, these

power management systems were implemented based on the ACPI (advanced configuration

and power interface) specification [30, 31, 32, 33]. Application activities frequently block de-

vice components to work in low-power mode. Background applications generate most of these

activities. In general, most background tasks are unnecessary, redundant and even unconscious

to users.

Among these application activities, many of them are related to the usage of power-hungry

system services, such as location service. The information supplied by some system services

is usually consistent in the same context. For example, our analysis result and several previous

publications [34, 35] all found user behavior is location-dependent, and many location requests

are, in fact, duplicated. These system services should be optimized to eliminate the battery

drain caused by repeated usage.

Some power optimization techniques introduced in new-generation mobile operating sys-

tems also fail to decrease the power consumption of applications. For example, many previous

works [36, 37, 38, 39, 40] found that wakelocks were not correctly used by some applications.

This phenomenon causes the opportunistic suspending mechanism fails to function properly.

The opportunistic suspending technique [41, 42] was introduced to suspend the entire device

to memory when there are no meaningful tasks to execute. Otherwise, the whole system will

stay in the active state. In the suspend-to-memory state, only memory and several components

that monitor wake-up events are always active.

In summary, the work of this dissertation has the following motivations:

1. The battery life of modern mobile devices is inadequate. Many aspects of mobile oper-

ating systems should be revisited for energy-efficiency.

2. Existing power management systems cannot work effectively to save battery energy
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wasted by redundant application activities. New power management systems are strongly

needed to restrict unimportant application activities and decrease the wasted battery en-

ergy.

3. Some system services are aggressively used by applications. Many of these requests are

redundant, and can be optimized to save battery energy.

4. Some mechanisms proposed in the new-generation mobile operating systems also fail to

work efficiently because the misuse and abuse in applications. We should make them

more energy-efficiency.

1.2 Objectives

Based on the previous observations of the current power management systems, we aim to

design a new power management system to dynamically control application status, such that the

energy used by unimportant application activities can be saved. Moreover, we want to make

the location service more energy-efficient and make the opportunistic suspending technique

functions as expected. Through these power-optimization work, we finally want to extend the

battery life of mobile devices.

Background application activities is one of the primary sources of battery energy drain.

From our analysis in Chapter 2, we found that most of these activities are unimportant, unnec-

essary or even unknown to the user. To save battery energy, we need to restrict these application

activities. Both EcoSystem [43] and Cinder [44] tried to control the power consumption of ap-

plications accurately through managing battery energy as one kind of system resources. These

methods assume the estimated application power represents applications’ real requirement.

However, it is neither accurate nor reasonable. Moreover, we also noticed that new generation

mobile operating systems use energy adaptation, task grouping and computation techniques

to dynamically change application status. For example, the latest iOS operating system uses

the energy adaptation technique to extend battery life. When the battery level is lower than
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20%, the system can work in low-power mode, which alters system behavior, such as visual ef-

fects, and application behavior, such as background application refresh, to save battery energy.

However, this kind of uniform energy-saving strategies cannot satisfy all the users. Limiting

application activities should not influence important applications. Otherwise, user experience

will be significantly impacted. We need to design a new application-level power management

system that can balance user experience and battery life.

The other objective of this dissertation is to optimize the power consumption of location

service and probabilize location characterized real-time user behavior sensing. We found ap-

plications aggressively use location service. These applications either request locations too

frequently (most requests were repeated), or fail to release the location service timely, or re-

quest locations that beyond their real accuracy requirement. We plan to propose a new location

provider to eliminate duplicated location requests.

Finally, we plan to optimize the opportunistic suspending mechanism of the Android sys-

tem and also restrict wakelock abuse. Our analysis result, as well as previous publications

[36, 37, 38, 39, 40], found wakelocks were commonly misused and abused. The phenomenon

usually makes the opportunistic suspending mechanism fails to suspend the device to low-

power mode. Some applications, often, fail to release wakelocks timely, or never release wake-

locks.

1.3 Our Approaches

As illustrated in Figure 1.1, our approach includes four parts. In this section, we generally

describe them.

1.3.1 User Behavior Sensing and Analysis

To optimize the power consumption of applications without influencing user experience

too much, we need to understand the preferences of users and customize the energy-saving

strategies for them. In this dissertation, we define user behavior as the interactions between

users and applications. We use statistical and data mining algorithms to analyze the usage
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Figure 1.1: The overview of our approaches.

pattern of users from the sensed user behavior. The usage pattern includes a group of pattern

items, each of which shows how frequently the user used an application at the given period

and location. A pattern item also means the user will probably use the same application at

the specified location and time in the near future, thus we can use usage pattern to distinguish

which application activity is important.

1.3.2 Energy-efficient Location Service

User behavior is location-dependent. To decrease the power consumption of location ser-

vice and probabilize location-marked user behavior sensing, we use location caching to solve

the problem. In our user behavior analysis result, we found users frequently used the devices

at some dedicated locations; most location requests were, in fact, duplicated. Based on this

phenomenon, we combine location with the context, which is marked by the wireless access

point, and cache the received location as well as the information of the wireless access point to

data storage. When an application requests location in the same context, the cached location is

returned without start the hardware component to pinpoint the location.

1.3.3 Application Activity Sieving and Scheduling

Application activities frequently cause hardware components work in high-power mode.

Most background application activities are redundant to the user and can be optimized to de-
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crease the power consumption. To restrict background application activities without influence

user experience too much, we use user’s usage pattern to distinguish critical application ac-

tivities from regular application activities. If an application has a pattern item in the current

context (a combination of time and location), we can say it is an important application. Thus,

the activity of this application should not be altered.

We use the task grouping technique to reschedule the tasks of background applications.

Based on usage pattern, these tasks may be scheduled to execute immediately, in the active

period or charging period of the device. In this way, we can significantly decrease the battery

drain. In the charging state, we see application power consumption as zero, a similar method

was also used in [45]. When the system executes tasks in groups, the tail power consumption

of hardware components can be saved [44]. The usage pattern is also helpful to design other

energy-aware strategies. To facilitate researchers to concentrate on the design of policies, we

propose the UPS system, which is a framework that bridges user behavior and energy-saving

strategies. It senses user behavior, analyzes the usage pattern of users, and listens a group of

system events to trigger energy-saving strategies.

1.3.4 Wakelock Filtering

A wakelock or suspend blocker is used to guarantee the execution of an important task.

Developers, however, rarely considered the energy consumption of applications, and applica-

tions often failed to release wakelocks on time. Furthermore, they use wakelocks aggressively

in applications. To solve the problem, we applied the energy adaptation technique to the power

management system. In the energy adaptation state (when battery level is low), applications

and system services should change their behaviors accordingly to save energy [46, 47]. We uti-

lize usage pattern to distinguish critical applications and unimportant applications, and assign

a different priority to their wakelocks. In the energy adaptation state, we ignore low-prioritized

wakelocks such that fewer wakelocks block the device to sleep.
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1.4 Contributions

In this dissertation, we claim that we have the following contributions:

1. We found the user behavior of users is both time-dependent and location-dependent

through the analysis of 14 users’ user behavior. In the contexts that marked by time and

location, users are inclined to use a particular group of applications. These observations

are helpful for designing user-centric systems.

2. Based on the analysis result of device power consumption, we found background appli-

cation activities consumed a considerable amount of battery energy in both the idle state

and active state of the device. Most of these background tasks are unimportant, unnec-

essary or even unknown to users. We designed the UCASS energy-saving strategy to

optimize this situation. Our experiment result shows the UCASS strategy can save about

25.62 percent of the energy consumed by background application activities, and extends

battery life for about 25 minutes per day on average.

3. From the analysis result, we also observed that many location requests were redundant

because applications requested them in the same context. We proposed the LocalLite

location provider to eliminate the redundant location requests. The experiment results

show that LocalLite can efficiently reduce 98.51 percent of the energy consumed by

location requests. It also enables location-marked consecutive user behavior sensing.

4. Finally, we found that applications aggressively use wakelocks. The opportunistic sus-

pending mechanism of Android system cannot work as expected because application

generated wakelocks frequently blocked the device to sleep. We proposed the Wake-

Filter strategy to filter low-priority wakelocks in energy adaptation mode, such that de-

vices can change to the deep-sleeping state. Our experiment result shows WakeFilter

decrease about 65.55% of device-blocked time, and it can extend battery life for about

1.58 hours per day in the best case.
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1.5 Outline

The following chapters of the dissertation is organized as follows:

In Chapter 2, we analyze the device usage traces of 14 users. We try to find out how

users interact with devices; how users interact with applications; and how battery energy was

consumed in both the device idle and active state; and how background applications consume

energy. We found background application activities consume a considerable amount of battery

energy. These background activities are either unnecessary or unimportant to the user. Be-

sides, we analyze the existing power management systems and discuss the limitation of these

systems. Finally, we summarize commonly used techniques to optimize application power

consumptions. These analysis results motivate us to propose user-centric power management

systems in Chapter 5.

Chapter 3 describes the power models and discusses our experience in designing and cal-

ibrating power models. We implemented these power models in the simulator described in

Chapter 5, and use it to simulate application power consumptions in different scenarios.

Chapter 4 describes the statistical and data mining algorithms that we proposed to analyze

the interest points, active periods and usage patterns. With these algorithms, we analyzed

the usage traces of users. The experiment result shows most users interact with their devices

more frequent at some specific locations (interest points) and periods (active period). This

observation proves user behavior is both time-dependent and location-dependent. Based on

these two contextual elements, we analyzed the usage pattern of users. The usage pattern is

used in the design of the UPS system, described in Chapter 5, and the WakeFilter energy-saving

strategy, described in Chapter 7. Also, the design of LocalLite, described in Chapter 6, is based

on our observations of interest points.

In Chapter 5, we describe the design and implementation of the UPS system, which is

an open framework that bridges user behavior with energy-saving strategies. Based on the

framework, we can quickly develop new energy-saving strategies. Also, we designed a default
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energy-saving strategy named UCASS, which decreases battery energy consumed by back-

ground applications through rescheduling and grouping tasks to execute in device charging or

device active state. It utilizes usage pattern to make scheduling decisions. Based on the UPS

power management framework, we also optimized the power consumption of location service

in Chapter 6 and optimized the wakelock mechanism of Android in Chapter 7 to make the

device get more chances to sleep.

Chapter 6 describes the design and implementation of LocalLite, which is an energy-

efficient location provider. It is designed based on the observation that we found in Chapter 4.

From our analysis, we found many wakelock requests generated in the same location are redun-

dant and thus should be optimized for energy-efficiency. We cache location with the contextual

information. When the user requests location again in the same context, the cached location is

returned.

In Chapter 7, we found wakelocks are abused and misused by applications in mobile sys-

tems. To solve the problem, we propose WakeFilter, which filters low-priority wakelocks in the

energy adaptation state to make the devices work more in the suspend-to-memory state. The

priority of wakelocks is assigned based on user behavior that supplied by the UPS system we

designed in Chapter 5.

We conclude the work of this dissertation in Chapter 8. Finally, we discuss future works

about how to improve the UPS system, designed in Chapter 8.
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CHAPTER 2

BACKGROUND

Many reasons cause the poor battery life of mobile devices. In this section, we describe the

background information, such as power dissipation, power management systems and power

optimization techniques, of this problem.

2.1 Where Does Power Go in Mobile Devices?

When we talk about where does power go in mobile devices, the first impression to this

question is hardware components consume battery energy. Many previous work [3, 11, 48, 49,

50, 51, 52, 53, 54, 55, 56, 57] analyzed the power consumption of various hardware compo-

nents. It is true that hardware components draw power, but it is not completely true because

application activities make hardware components active. Dynamically controlling the power

state of hardwares is a passive way of power management. This method cannot effectively save

battery energy consumption when applications generate two many redundant activities. In this

section, we analyze how mobile devices consume battery energy based on the device power

consumption and application information we monitored from 14 volunteers.

2.1.1 Device Power Consumption

We modified the Android system to record user-app interactions, system events, application

activities, wakelock request information, location service usage, and real-time device power.

The experiment platforms (Nexus 4), which were flashed with the modified system image,

were given to 14 users (their age ranges from 22 to 35) to monitor these data during their daily

usage. Half these 14 users are graduate students, the other half of users are employees that

working on technical jobs; 5 of them are female users. Each user used the device for about a

week. Since the active time (screen on) caused by applications, such as the desk clock, that

can wake up the device are very short, we see all the active time as caused by user operations

in the analysis. In this dissertation, we define the active state of the device as when the screen

is on, and define the idle state of the device as when the screen is off.
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Figure 2.1: The percentage of time that the device was active during the data collecting period

of the 14 users.

Device Active and Charging

We first analyzed the POWER CONNECT ED and POWER DISCONNECTED events

(device charging state) and the SCREEN ON and SCREEN OFF events. From Figure 2.1,

we can see that the device active time of all users is less than 15% during the experiment.

The devices were active for only about 10.09% of the time on average. However, the average

charging interval was about 15.31 hours, shown as Figure 2.2. Users charge the devices about

11.94 times per week on average, which means users had to charge the devices more than once

a day. This observation shows the battery life of our experiment devices is very poor. Where

does power go in the mobile devices? To answer this question, we need to analyze both the

active period (screen on) and idle period (screen off) power consumption of the device.

Active State Power Consumption

Figure 2.3 shows the device power dissipation of user 5 during the whole experiment pe-

riod, and Figure 2.4 shows how the charging state and screen state changed during same period.
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Figure 2.2: The average charging interval of all the 14 users during the data collecting period.

Because the device power were calculated from sampled battery voltage and current, the power

value is negative (shown as 0 milliwatts in the figure) when the device was charging. In Fig-

ure 2.3, the high power dissipation was generated when the device was active. On the one

hand, hardware components that work in high-power mode caused the power dissipation. On

the other hand, application activities also cannot be ignored.

Even though the power consumption was very high in the active state, the device stayed

in this state for only about 11.89 percent of the time. The device became active for about

18.62 times per day, and each active period lasts for about 9.19 minutes on average. In some

situations, the device power dissipation was more than 3000 milliwatts.

Which applications caused the power consumption when the device is active? To answer

this question, we analyzed the CPU time consumed by applications. When the device is active,

system applications (root, android, media server, sensors and systemui) are the main consumers

of CPU time. Their CPU time accounts for about 62.7 percent, shown as Figure 2.5, and non-

system applications used about 37.3 percent. However, we know that some system applications
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Figure 2.4: The screen state and charging state of user 5 during the whole data collecting

period.
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like android are a group of system services that support the execution of non-system applica-

tions. If the activities generated by non-system applications decrease, the CPU time consumed

by system applications will also decrease accordingly. In fact, only 20.57% CPU time was

directly used by foreground applications, and background application generated activities used

as much as 16.73% CPU time.

For the other users, the situation is similar, as shown of Figure 2.6. Foreground applications

used less than 30 percent of CPU time. In this figure, the experiment result of user 8 and user 11

shows that non-system applications only used a very small amount of CPU time. After careful

analysis, we found the root system application (uid is 0) consumes most of CPU time. In the

data-monitoring period, the root application handles low-level I/O operations (read system files

and write logs). A large amount of CPU time was consumed by non-system applications that

executed in the background. Based on our knowledge, most background applications’ activities

are not useful, unnecessary or even unknown to users. Thus, the battery energy consumed by

them and the corresponding system services were wasted.

Idle State Power Consumption

From Figure 2.3, we can see that the idle period of the device was much longer than the

active time. The idle state power dissipation (power consumption when the screen is off) of the

device was much lower than the active power dissipation (power consumption when the screen

is on). In some idle period, as shown of Figure 2.7, the device consumed a large amount of

power to process background application activities. In this period, the average power of the

device was about 431.21 milliwatts. From this figure, we can see that the device was not really

in sleeping state but periodically waked up. All the users’ idle state power consumption is more

than 15%, shown as Figure 2.8.

Again, we use user 5 as the example to analyze application power consumption in the idle

state. From figure 2.9, we found that about 69.27% of CPU time is consumed by system appli-
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Figure 2.5: The percentage of CPU time consumed by applications when the device was active.

The data is based on the usage trace of user 5.
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Figure 2.9: The percentage of CPU time consumed by applications when device was idle.

cations, such as android, root, sensors, media server and so on. The top five non-system appli-

cations (Google Play Service, WeChat, Tencent News, Baidu and QQ) only account for about

25.13 percent. However, system applications’ activities are generated with non-system appli-

cations. For example, media server runs with audio player or video player. Most non-system

applications periodically wake up the system to synchronize with cloud services. Based on our

knowledge, most of these application activities are not necessary or not required to perform

frequently. We think most of the energy consumed by background activities are wasted.

2.2 Problems of Traditional Power Management System

No matter, the device is in the idle state or active state, non-system applications run in the

background generated plenty of activities and consume a considerable amount of battery en-

ergy. These activities are either unimportant, unnecessary or unknown to users. They are not

generated by or related to the direct user operations. Previous publications [58, 59, 30, 60, 31,

61, 17, 62, 18] that tried to optimize the power management systems, which were implemented

based on the ACPI specification [63], cannot effectively tackle this problem because they tried
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to control the power state of hardware components. However, the redundant background activ-

ities cause these hardware components keep in the active state much longer than we expected.

To make ACPI-based power management systems work effectively, we need to filter, restrict

or reschedule background tasks. We name this kind of power management as application-level

power management, and the traditional power management as component-level power man-

agement.

Furthermore, foreground applications should also be changed to optimize power consump-

tion, especially when the battery level is low. For example, is playing high-resolution video

necessary to users on smartphones? Because the limitation of screen size, high-resolution

videos cannot greatly increase user experience. If we can control video players to decrease the

resolution requirement, much less network transmission will be generated, and much less CPU

time will be used to decode video. This kind of technique named energy adaptation [46, 47],

which was already implemented in the latest iOS 9 operating system. When the battery level is

low, the user will be notified to disable background application refresh. Also, the iOS system

alters itself, such as turning off the visual effects, to save power. But, this kind of uniform

energy-saving strategies can not satisfy all the users. For same users, user experience may be

significantly impacted if an important application was restricted to refresh in the background.

In the future, many aspects of the system and applications should be optimized to improve the

energy adaptation technique.

2.3 Design Rules of User-Centric Power Management Systems

Based on these observations, we can optimize system power consumption from two di-

rections: (1) optimize the power consumption of system services; (2) decrease application

activities, so that system services also generate fewer activities. For the first direction, we

need to revisit each system service of mobile operating systems and make them more energy-

efficient. This part of work is directly related to the specific operating system. In this paper,

we improved the power consumption of location service and wakelock usage. The second
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direction is much more generic. Even though we implemented our UPS system in Android,

the solution can easily be applied to other mobile operating systems. Following this direction,

we proposed the UPS system and designed the UCASS energy-saving strategy to optimize the

power consumption of mobile operating systems.

The energy-saving strategies of application-level power management directly change the

behavior of applications. Thus, they must be carefully designed. Otherwise, user experience

will be significantly influenced. A power management strategy that is good at energy-saving

but significantly reduces the quality of user experience will not be accepted, vice versa. In this

dissertation, the energy-saving strategies we introduced follow several design rules:

1. A power optimization solution should not influence the execution of foreground appli-

cation. Interacting with the foreground application is the most important operation for

users.

2. The system services that support the current foreground application should not be in-

fluenced by power management. Otherwise, the foreground application cannot run as

normal.

3. A power-saving strategy must not restrict the main functions, such as phone call and text

message, of the smartphone. No matter how we design the power management system,

we should always ensure the key functions of the smartphone. Even though modern mo-

bile phones provide various functionalities, communication is still the primary function.

To obey these rules, we need to know which application is important to the user at different

situations or context. Previous publications [64, 65, 66, 35, 67, 68, 69, 34], as well as our ex-

periment in Chapter 4, found that the user behavior of most users follows a pattern. Moreover,

the usage pattern of users is both time-dependent and location-dependent. The usage pattern is

represented as association rules between usage context and application. Some of the previous

work [66, 35, 67, 68] already utilized user’s usage pattern to assist system design. For example,
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Shin et al. proposed a method anticipate the next application that the user will use from the

user’s usage pattern [35]. In this dissertation, we apply the usage pattern to design user-centric

energy-saving strategies. Since we can distinguish significant applications (applications that

the user probably will use soon) from normal applications in the different context, important

applications’ behavior will not be influenced in the design of the energy-saving strategy. Such

that, we can effectively balance user experience and energy saving. We named our user-centric

power management system as the UPS system and implemented in on the Android system. We

will talk more about it Chapter 5.

2.3.1 Commonly Used Energy-Saving Techniques

Application developers rarely consider the energy-efficiency of their applications; energy-

aware design may increase the complexity of the application and the cost of the development.

From the system side, we can design strategies to manage application activities as well as their

power consumption. In this section, we discuss three commonly used techniques for optimizing

application power consumption.

Energy Adaptation

The first commonly used energy-saving technique is energy adaptation. Usually, we de-

cides the energy adaptation state based on battery level. When the system switches to energy

adaptation mode (battery level is lower than a threshold), both system and applications should

dynamically change their state to save battery energy. This technique was proposed because

researchers found the great potential to save battery energy through altering application be-

haviors. For example, downloading and playing a low-resolution video consumes much less

energy than a high-resolution video. This latest iOS system [70] implemented this technique.

The system turns off background application update when the battery level is lower 20%, and

resumes to normal state when device power is more than 80%.

In our previous work [47], we proposed the Anole framework to support energy-aware de-
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sign for applications. This design assumes users are willing to sacrifice part of user experience

to extend battery life. In [43], the EcoSystem proposed by Zeng et al. also utilized the idea

of energy adaptation. They assume the expected battery life is known, and then a limited

amount of battery energy is allocated to applications in each epoch to guarantee the expected

battery life. In the Cinder operating system [44], battery energy consumed by applications is

also strictly controlled. If an application does not have sufficient allocated energy to perform

an energy-intensive operation, it has to be suspended and waits until there is enough battery

energy allocated to it. Anand et al. proposed a dynamic adaptation method to decrease the

power consumption of Games [20]. They save display power consumption through exploiting

the Gama function of games to dim LCD backlight.

This energy-saving technique obviously influences user experience. To use it, we need

to trade carefully off between user experience and energy saving. Otherwise, it is hard for

the users to accept it. To mitigate the impact on the quality of user experience, we should

distinguish important applications from normal applications and guarantee the execution of

important applications.

Task Grouping

Task grouping is another commonly used power-saving technique. As we know that most

device components were designed based on the ACPI specification. A device component is

not changed to lower power state immediately if all the tasks are processed. That’s because

changing the power states of components takes time. For example, after radio finishes all the

data transmission, it will stay in the high-power state for a tail time T. In the tail time, it resumes

transmitting data when new data transmission tasks arrive.

Based on this phenomenon, researchers proposed to group similar tasks. In Cinder [44],

Roy et al. proposed the idea of cooperation. Applications that use the same device, such as

WiFi, can work with each other to activate the device and execute their tasks together. Bal-
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asubramanian et al. proposed TailEnder to reschedule delay-tolerant applications’ network

requests [51]. In the UPS system, we also use the task grouping technique to reschedule some

background application’s activities to execute together. Different with them, we use the user’s

usage patterns to schedule application background tasks to decrease the impact on user experi-

ence.

Computation Offloading

Even though the performance of mobile devices improves very fast, we cannot move too

many computation-intensive tasks to the client-side because of the battery life problem. On

the contrary, offloading part of heavy computation tasks to the server-side is more energy-

efficient. Chen et al. proposed to offload compilation tasks to the server-side [71]. They

consider communication, computation and compilation energy consumption, and automatically

decide where to compile and execute a method is more energy efficient. Similarly, Cuervo et

al. also proposed a framework named MAUI to decide which method should be offloaded to

the cloud.

Liu et al. [21] proposed to move the location computation to the server side, in this way,

only a very limited amount of raw GPS signals are needed to pinpoint the location. It reduces

the sensing time of GPS signal. Chun et al. developed a system to support application par-

tition and execution on cloud and local [72]. They used both the static analysis and dynamic

profiling techniques to partition applications into fine-grained parts, and optimize the energy

consumption for the computation. Segata et al. researched the power models of various net-

work devices used for trading off computation offloading and local execution [73]. In [74],

Qian et al. presented the Jade system to dynamically adjust offloading strategy based on work-

load and communication cost.
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2.4 Summary

In this chapter, we analyzed the device power consumption and application power con-

sumption in the idle state and active state. From the analysis, we found background application

activities make the mobile device active frequently and consume a considerable amount of bat-

tery energy. Moreover, we discussed the problem with existing power management systems

and listed the rules to design user-centric power-saving strategies. Finally, we talked about

three commonly used energy-saving techniques that save energy through altering application

activities.

In the next chapter, we discuss our experience in designing power models. We used these

models to estimate application power consumption and utilized it in the evaluate of the energy-

saving strategies we proposed.
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CHAPTER 3

POWER PROFILING WITH PTOP

Understanding the power dissipation of mobile applications is essential for developing

energy-efficient applications and optimizing the energy consumption of mobile systems. In this

dissertation, we use application power information to simulate the power management system

and evaluate the energy-saving strategies. Because we cannot generate exactly the same user

activities and fairly compare the energy consumption of different scenarios, thus we use the

simulation method to do the experiment. In this chapter, we talk about the method that we used

to estimate the power consumption of applications.

3.1 Power Profiling

The dynamic power that caused by software activities dominates the power consumption

of modern mobile systems. This phenomenon is mainly because the global usage of dynamic

voltage and frequency scaling (DVFS) and clock throttling techniques. Understanding appli-

cation power consumption is not only important to investigate power issues but also critical to

evaluate energy-saving strategies. Power modeling is commonly used to calculate the power

consumption of hardware components, processes, and applications. In our previous research

[75, 76], we constructed process-level power models, and developed the profiling tool (pTop)

to estimate application power consumption. In this chapter, we revisit these power models and

calibrate them for the experiment device we used in this dissertation.

To build the power models, we have to find a group of power indicators, each of which

is correlated with one or several hardware components’ power dissipation. For example, in

some previous publications [56, 77, 55], a group of hardware performance counters (HPC)

were used to build power models. In addition, a bunch of power models for different hardware

components [49, 52, 54, 57] were proposed, and several power profiling applications [78, 36,

53] were developed. Similar to them, we build power models in two steps: (1) construct power

models for hardware components based on the state of power indicators; (2) allocate the power
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of components to applications based on the percentage of resource utilization.

3.2 Methodology

To find the suitable power indicators for each hardware component, we need to isolate the

power consumption of hardware components with a group of micro-benchmark applications.

Each micro-benchmark only stresses one hardware component, thus we can analyze the cor-

relation between the measured power and the power indicators. Good power indicators are

usually highly correlated with the power dissipation of hardware components. In this section,

we talk about the experiment platform and method that we used to build power models.

3.2.1 Experiment Platform

As illustrated in Figure 3.1, we use Nexus 4 ( flashed with Android 4.4.2 and Linux kernel

3.4.0), BK Precision programmable power supply and a laptop to set up the power measure-

ment platform. The anode of Nexus 4 is only connected to the anode of the power supply to

bypass the battery. The cathode of Nexus 4 is connected with the cathode of battery and also

the power supply. In the experiment, the power supply was set to 3.8 volts, and we set the

maximum current to 3 amperes. The power supply samples current four times per second, and

the computer collects the sampled data. Table 3.1 lists the specification of the smartphone.

Component Specification

OS Android 4.4.2; kernel version 3.4.0

Chipset Qualcomm Snapdragon APQ8064 S4 Pro

Processor Quad-core Krait; 384 - 1512 MHz;

RAM 2G ; Dual-channel 533 MHz LPDDR2

Display 4.7 in diagonal IPS; 1280768 px; 320 dpi

GPU Adreno 320

Radio Integrated 3G/4G World/multimode

Wi-Fi Integrated digital core 802.11n (2.4/5GHz)

Table 3.1: The specification of Nexus 4.

3.2.2 Benchmarks

Since our experiment platform can only measure the total power of the device, we devel-

oped a set of micro-benchmarks, shown as Table 3.2, to stress several main hardware compo-
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Figure 3.1: The power measurement platform.

nents. While each micro benchmark is executing, only part of the hardware components are

active (CPU and memory are always active). So that, we can isolate the power consumption of

each device, and use the subtraction method to calculate the power of them. For example, the

prime benchmark, which searches for prime numbers, can be fully loaded to cache. Thus, all

the active power is mainly caused by CPU.

3.2.3 Experiment Method

For each component, we did a lot of experiments to find out the suitable power indicators

and the base power to calibrate its power model. Because CPU, screen and memory are always

active when we run each benchmark, we built power models to estimate their powers first,

and then calibrate the power models of other components. When we did the experiment for a

component, all the other unrelated components were turned off. For example, when we execute

3G/4G targeted benchmarks, we turned off WiFi, GPS, Bluetooth, etc.
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Benchmark Description

Prime Search for prime numbers.

Cache Force to read data from the specified level of mem-

ory system.

Pi Calculate the number π of the specified digits.

Math Make integer and float computations.

Screen Set the screen to different brightness level and fore-

ground colors.

SensorHub Read different sensors.

Socket Upload and download the specified size of messages

to socket server via cellular network or wireless net-

work.

Location Locating with GPS or network location providers.

Table 3.2: The micro benchmarks we used to stress hardware components.

3.3 Power Models

In this section, we discuss how to choose power indicators for several power-hungry com-

ponents, which consumes around 70% of the total device power [3].

3.3.1 CPU

Previous research generally use CPU state information, such as frequency and utilization,

and hardware performance counters(HPCs) to build power models. HPCs are unsuitable to be

used in OS-layer services because they consume a large amount of CPU cycles.

CPU Utilization

Many previous publications use Equation 3.1 to calculate CPU utilization. However, the

idle time and I/O wait time used in this equation may be wrong in the tickless kernel. When

a core enters into the C3 state, the local APIC(Advanced Programmable Interrupt Controller)

timers and the timer interrupt for scheduling will also be shut down. Then, wrong idle time and

I/O wait time will be reported when the number of active core changes. To solve the problem,

we use a different Equation 3.2, in which ∆T is the interval between two consecutive system

state sampling, to calculate CPU utilization.
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U = (∆Tsys +∆Tuser)/(∆Tsys +∆Tuser +∆Tidle +∆Tiowait) (3.1)

U = (∆Tsys +∆Tuser)/(∆T ∗CoreNumber) (3.2)

To verify the correlation between CPU utilization and power, we run the Prime benchmark

with a different number of threads. From Figure 3.2, we can clearly see the linear relationship

between them. The correlation coefficient is 0.9945. Moreover, the dynamic power ranges

from about 52 milliwatts to 3560 milliwatts. Partial wakelock was acquired to keep CPU

active while the screen was turned off.
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Figure 3.2: CPU utilization VS Power.

Frequency

Some of the prededing work, as well as our previous publications [76, 75], use the CPU

frequency to decide the range of dynamic power. In the current mobile systems that use the
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default ondemand CPU frequency governor, frequency has much less influence to power dis-

sipation. The ondemand governor increases CPU frequency to the maximum if the workload

increases a little. Then, if the workload abates, it will step back slowly. This means that CPU

frequency influences power consumption only when the workload is very low. In one of the

experiments, we set CPU governor to userspace1 and gradually increase CPU frequency from

the minimum to the maximum. We observed that the power only increased about 41.8 milli-

watts. Figure 3.3 does not show us a direct relationship between power and frequency. The

correlation coefficient between CPU frequency and power is only 0.0892 in this experiment.
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Figure 3.3: The power of the device and CPU frequency when we executed different bench-

marks. Screen was on in the experiment.

Power Model

We construct CPU power model as Equation 3.3 based on the previous analysis. Then, we

allocate the estimated CPU power to processes and applications based on their CPU utilization

in each sampling period.

1The userspace governor allows users to manually set up CPU frequency.
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Pcpu = Pstatic
cpu +Pmax

cpu ∗U (3.3)

Low overhead is the main merit of this power model. The drawback is that it cannot ac-

curately estimate the power when part subsystems of the processor, such as L1 and L2 cache,

is heavily stressed. When we execute the cache benchmark to stress L1 cache, L2 cache, and

memory, the corresponding measured CPU power is about 1444 milliwatts, 1064 milliwatts,

and 912 milliwatts. However, the CPU utilization in these tests is about the same. We think this

type of extreme case rarely happens and will stay with the power model in our implementation.

3.3.2 Radio

The power model of radio should consider both the voice module and the data module. In

this section, we talk about the power indicators of these two modules.

Voice Module

The power of the voice module depends on the state of this module. It can work in several

states, such as the call state, radio service state, SIM card state and radio signal strength. As

shown in Figure 3.4, when we turn on the radio (data service is disabled), the radio service start

signal scanning. After the device had registered to the carrier’s network, the radio was in the

idle state most of the time. Based on the difference of signal strength, the idle power of voice

module changes between 4.4 milliwatts and 8.17 milliwatts. The radio is in the active state

when the call state is either ringing or offhook. The significant power fluctuation when ringing

is caused by CPU activities, media (play ring sound) and vibrate motor. The power model of

the voice module is shown as Equation 3.3.2. We add the power of the voice module to the

Phone application.
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Figure 3.4: The device power when turned on radio (without data module) and then made a

phone call.
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Figure 3.5: The device power and throughput when we uploaded 5 megabytes and downloaded

5 megabytes of data. The carrier is AT&T and network type is HSPA+.

The power consumption of the data module depends on the network type, the carrier, which
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defines the tail times, and the data communication state. A common problem with previous

work is that they divide the network types into 3G or 4G and then design a power model for

each network type. However, the power model of two network types that in the same class may

be different. In this section, we only talked about the power model of HSPA evolution, which

is technically seen as a 4G network.

Figure 3.5 shows the power consumption and throughput when uploading 5 megabytes

of data and then downloading 5 megabytes of data. We notice that different with the power

dissipation of LTE network power observed by Huang et al. in [48], throughput does not decide

the power of the data module. Similar to 3G network type, the power is still related to the RRC

state of the data module. The difference is that, when uploading and downloading (in both

situations, the data module is in DCH state), the power is significantly different. Moreover,

after uploading and downloading, there is a 10-second tail time (in FACH state). Finally, when

the data module changes from idle mode to connected mode, there is a delay time of 2 seconds.

Based on this information, we can maintain a state machine to tell the power state of the data

module. When the data module has data to send or receive, the state changes from IDLE state

to DCH state after 2 seconds delay. Based on the uplink throughput and downlink throughput,

we can decide the data module works on high power or low power. If there is no data received

or transmitted, the data module changes from DCH to FACH state with no tail time. If the link

continues inactive for 10 seconds, the data module changes to IDLE state. Otherwise, if the

transmit queue size or receive queue size are higher than a threshold, the data module will be

changed to DCH state. However, a common problem with current 3G power models is that they

use the bytes received and transmitted in the last interval to decide if the power state should be

switched from FACH state to DCH state because queue size is not available at the application

layer.
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3.3.3 Display

Display is the most power hungry component in mobile devices, which is inevitably used

during user interactions. There are two parameters that influence the power of display: bright-

ness and pixel color. For old LCD technology, brightness determines the power. For the new

OLED display, different pixel colors also affect the display power [50]. We evaluated the ac-

curacy and overhead of the two parameters. In the experiment, the brightness level, which is a

value range from 0 to 255 (the value of zero means the screen is off), was set from 1 to 255.

For each 5-level increase, we measured the power of the system in the idle state. The pixel

color is fixed. We observed that the power consumption changed from 336 milliwatts to 1028

milliwatts, and it is linearly correlated to the brightness level. For pixel color aspect, we tested

the power of five colors with different brightness levels, as shown in Figure 3.6. For Nexus

4, the power consumption of pixel color follows the order that G > R > B. The powers of

blue and red are very close. The maximum difference of power consumption is between black

and white, and it increases with the brightness level. If the brightness level is under 87 (bright

enough for most users), the difference of power is around 60 milliwatts.
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Figure 3.6: The power of different colors with increasing of brightness.
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From the overhead point of view, the brightness level is directly read from system file,

pixel color information is gathered from a bitmap of the screen shot. We spat 1280x768-pixel

resolution display into 500 pieces and got the pixel information of central points. It costs

16 ms to calculate display power with pixel information while sampling the whole system

state and application-level resource usage without pixel information takes about 50 ms. Then,

collecting pixel information will increase the overhead for about 32%, while the maximum

gain of accuracy is about 16.45%. Pixel colors are not improper be used for building OS-layer

power profiling service. We consider display power consumption as static power consumption,

but not allocate it to the foreground application.

3.3.4 WiFi

Similar to radio, WiFi state decides the power of WiFi. In current mobile systems, WiFi

can work in several modes: full mode, high-performance mode, and scan-only mode. In Fig-

ure 3.7, we set WiFi to the scan-only mode to generate continuous scan state. In the scan

state, the average power of WiFi is about 150 milliwatts. When WiFi is used in full mode and

high-performance mode, the time of signal scanning depends on the environment, such as the

Internet speed and the number of access points.

The power of WiFi is significantly different when downloading and uploading period. WiFi

power is related to the throughput. In the experiment, we gradually increase the upload mes-

sage size from 5 kilobytes to 1 megabyte. Figure 3.8 shows that the power of WiFi increases

from 14.21 milliwatts to 542.84 milliwatts. When there is data transmission, the device power

increases while CPU power does not fluctuate too much. In the download case, the trend of

CPU power is similar to the trend of packets rate, and the power of WiFi changes from 22.55

milliwatts to 115.82 milliwatts with the same data sizes. The relationship of packets rate and

WiFi power in uploading cases is illustrated in Figure 3.9. The power is linearly correlated

with packets rate when it is higher than a threshold(e.g. 25 packets/s in the Figure). Since

the power difference in uploading and downloading, we distinguish them by comparing the
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Figure 3.7: The power of the device in WiFi scanning state. WiFi was set to scan only mode.

received packets and the transmitted packets. We allocate the WiFi power to applications and

processes based on the percent of data transmitted.
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Figure 3.8: The system power and throughput when increasing upload message size from 5KB

to 1M.

3.4 Related Work

In previous publications, many power models were proposed to estimate hardware compo-

nent as well as application power consumption. Most early stage power models were built with

hardware performance counters (HPC), which directly related to the state change of hardware

components. With a group of HPCs, Isci et al. built a power model for process. Bircher et

al. uses performance counters to build power models for CPU, memory, chipset, I/O, disk, and
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Figure 3.9: The Wi-Fi power and packet rate relationship when uploading data.

GPU [56].

In [52], Zhang et al. proposed PowerBooter to automatically construct power models with

build-in voltage sensors and charging behavior. This tool builds power models based on hard-

ware power states and resource utilizations. They also developed PowerTutor to estimating

application power consumption with the power models found by PowerBooter. In [48], Huang

et al. built power models for 4G LTE networks based on hardware state. In [50], Dong et al.

built power models for OLED displays based on screen brightness and pixel colors.

System call, which is the interface between application and kernel, is directly related to

hardware states and power. Pathak et al. constructed power models based on the traces of

system calls [57]. They also introduced Eprof to instrument applications’ binary code and help

developers to analyze the energy consumption per routine in [36]. Similarly, Aggarwal et al.

as well used traces of system call invocations to estimate hardware power consumptions [79].

Yoon et al. monitored kernel activities for hardware component requests to get the us-

age statistics for the component models [53]. Then, they build power models based on kernel

activity. Mittal et al. built an energy emulation tool that allows developers to estimate the
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energy consumption on their development workstation under various configurations [78]. Ma

et al. leveraged resource usage statistics patterns and energy information to detect abnormal

battery drain issues and suggested corresponding resolutions [80]. Jung et al. introduced De-

vScope [54] to automatically construct power models based on the changes of power state.

In [78], Mittal et al. built a simulation tool to estimate different hardware components’ power

as well as application power. The application developer can use this tool to estimate the power

consumption of their application on devices of different hardware configuration and environ-

ments. Kim et al. proposed an event-driven power analysis framework - FEPMA [81]. They

collect system events that are related to the power states of hardware components when an

application is running on the processor.

3.5 Summary

Application-level power information is essential for evaluating the energy efficiently of

energy-saving strategies. In this chapter, we discuss our previous experience about construct-

ing and calibrating power models. We revisited the power models proposed previously and

evaluated the effectiveness of the power indicators on our device. The power models were

specifically calibrated for Nexus 4 to support our simulation experiment in Chapter 5. In next

chapter, we discuss the findings of analyzing 14 users’ user behavior. Furthermore, we will

talk about how do we analyze the usage pattern of users.
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CHAPTER 4

USER BEHAVIOR ANALYSIS

In the early stage of the computer, people used punched cards to tell computers what to do.

In the whole process, computers know nothing about the user. Nowadays, however, the way of

human-machine interaction significantly changes. Nearly all mobile devices are equipped with

various sensors, which are capable of sensing how the user behaves physically or virtually.

Moreover, the high computation performance of mobile devices enables systems to analyze

and understand users’ traits and activities. In our research, we targeted on the interactions be-

tween users and applications (user-app interaction). From the monitored user-app interactions,

we want to find out the importance of applications in different situations, so that we can dy-

namically control the state of applications without impacting user experience. In this section,

we describe the methods we used to analyze user behavior and discuss our analysis result.

4.1 Introduction

User behavior is a broad concept. As defined in [82], user behavior includes users’ attitude,

preferences, personality, social relationships, activities, routines and lifestyles. Researchers

may concentrate on different aspects of user behavior. For example, Banerjee et al. studied

the battery usage and charging behavior of users [61]. User interactions, application usage,

network traffic and energy drain were researched by Falaki et al. through analyzing the usage

traces of more than 200 users [64].

In application-level power management, we want to distinguish important applications, so

that the power optimization strategies do not influence the execution of these application. Thus,

we chose the interactions between users and applications as the research target in this chapter.

In [64], the authors classified user activities into two categories: intentional user activity and

the impact of user activity. Intentional user activity is directly related to the operations of

users. In this chapter, we mainly concentrate on intentional user activities, which represent

the subjective consciousness of users. From of this kind of user activities, we can understand
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users’ preference in applications.

Previous publications [34, 67, 35, 65, 83, 66, 69] proved user behavior is both time-dependent

and location-dependent. Thus, we also tried to understand the time distribution and location

distribution of user behavior. In the first stage of our research, we monitored the user-app in-

teractions of the first group of users. Based on the sensed user behavior, we found most users

frequently used a group of particular application in the specific contexts that marked by time

and location. We represent this usage pattern as a group of association rules (or pattern items)

between contexts and applications. A pattern item shows how frequently an application was

used by the user at the given time and location, and also tells us how confident that similar

interactions will happen again. Thus, the related application activities should not be suspended

because their results are needed in the following interactions.

4.2 User Behavior Sensing

User behavior sensing is the first step for all the user behavior research. People may use

physical or virtual methods to sense user activities. Physical methods use one or several sen-

sors, such as location sensor, gravity sensor, temperature sensor, humidity sensor, the geo-

magnetic field sensor, and accelerometer, to sense the required information. However, these

sensors are usually power-intensive, and improper for continuous sensing. To probabilize con-

tinuous location sensing, we proposed an energy-efficient location provider named LocalLite

in Chapter 6.3.

4.2.1 Method

We modified Android 4.4.2 to record application usage information. Whenever an applica-

tion switches to foreground (resume) or switches to background (pause), the system will record

the time, uid1 of the application, package name and location to a log file. We built the Android

system and flashed the new system image to Nexus 4. In our first stage research, we given the

devices to 14 users to use. These users (and their serial numbers) are not totally the same as

1The unique identifier number assigned to each application in the Android system.
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the users that we chose in the second stage data collecting. To distinguish with the users in the

other chapters, we label these users as U1, U2, ..., U14 in this chapter. In the second stage, we

monitored more data about the system and applications to analyze the power consumption and

run the simulation. Chapter 5 describes more details about this.

In the data collecting of both stages, we asked the users to transfer their usage activities to

the experiment devices. Before starting to monitor a user’s activity, we always reset the system

and ask the user to install and setup the applications they used on their personal smartphones.

Each user used the device for about a week. When the data collecting of one user finished,

we copied the log files from the smartphone. During the experiment, the privacy of users were

highly concerned. The serial numbers of users were randomly allocated after collecting all

the users’ data. The users were also agreed us to use the application usage information in this

dissertation.

4.3 Pattern Analysis

In [64], Falaki et al. proved the significant difference between the user behavior of users.

This observation shows that energy-saving strategies must adapt to the usage pattern of each

user, otherwise user experience will be impacted. In this section, we analyze the characteristics

of user-app interactions and describe our pattern analysis algorithms.

4.3.1 User-App Interaction

User-device interactions are coarse-grained user activities while user-app interactions en-

ables us to understand application usage. Thus, we use user-app interactions to represent user

activities. Our analysis result also shows the significant different between individual user ac-

tivities. The average number of user-app interactions varies from 21.95 to 223.35 times per

day, shown as Figure 4.1.

Even though the great difference between individual user’s behavior, we also observed that

most users’ user-app interactions follow a pattern. For example, Figure 4.2 shows the user-app

interactions of user U10 were distributed in 19 locations. The user interacted with applications
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Figure 4.1: The average number of user-app interactions per day of all the users (based the data

monitored in the first stage).

periodically and frequently at location 9 and location 17 (The location serial numbers of one

user have no relationship with that of the other users). Figure 4.3 shows that user U1, even

though generate fewer interactions than user U10, also has a clear usage pattern at location 1.

Different to user U10, most of the activities of user U1 were occurred at a single location.

4.3.2 Interest Point

Interest points are locations, such as home and office, that the users use mobile devices

frequently. Location can significantly influence user behavior. For example, a user may often

use entertainment applications at home while less frequently use them in the office. Thus,

location is a fundamental element of usage pattern. The location-dependent characteristic of

user behavior was also proved by several previous publications [35, 67, 68, 69, 34]. In this

section, we analyze the interest points of users and verify that most users’ application usage

activities are location-dependent.

To analyze the interest points of users, we developed an algorithm, shown as Listing A.1,

with the statistical method. We discover interest points in three steps: (1) count the number

user-app interactions occurred at each location; (2) calculate the density of the user-app interac-

tions at each location; (3) calculate the value of core density density
ip
core, which is the threshold
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Figure 4.2: The time sequence of the user-app interactions of user U10 at different locations.
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Figure 4.3: The time sequence of user-app interactions user U1 at different locations.
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value to identify the location as an interest point, and remove interest points whose density is

less than the core density. We use Equation 4.1 to calculate the core density. Equation 4.1a

calculates the average density; Npoint is the number of interest points. In Equation 4.1b, the

parameter δ , ranges from 0 to 1, is used to regulate the value of core density. The value of core

density ranges from density
ip
avg to density

ip
max.

The experiment result shows the number of locations varies from 5 to 30, as illustrated in

Figure 4.4. Even though some users’ activities is distributed in many places, all the users have

at least one interest point, shown as Figure 4.4. In terms of location, the result shows that

each user’s behavior follows a pattern of their own. If the value of δ is smaller, some of the

users have more interest points. Also, the system gets more chances to apply energy-saving

strategies. However, user experience will be decreased because more low-quality patterns are

used. For example, user U13 has two more interest points when δ is 0 than when δ is 0.5.

However, from Figure 4.5 we can see that these two interest points only account for about

20.78% of user activities. Furthermore, when δ is 0.5, almost all the users have one or two

interest points, and the density of these interest points accounts for more than 32.97%.

densityip
avg =

∑
Npoint

i=1 density
ip
i

Npoint

(4.1a)

densityip
core = densityip

avg +(densityip
max−densityip

avg)∗δ (4.1b)

4.3.3 Active Period

Except usage location, the other aspect of user behavior we concentrated on is the active

period of users. In an active period, the user interacts with applications much more frequently

than in other periods. From Figure 4.2 and Figure 4.3 we can see that both users have several

dense user-app interactions groups. Besides, we notice that the occurrence of the user-app

interaction group is periodical at some locations. This observation proves that usage location
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Figure 4.4: The number of locations and interest points of the users (based the data monitored

in the first stage).
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and active period of users are interrelated.

We used the DBSCAN (density-based spatial clustering of applications with noise) [84]

algorithm to find the active periods. The DBSCAN algorithm is a density-based clustering

algorithm that groups together tightly packed points (in our case, a point is a time slice in the

sensing time unit). The sensing time unit can be one day or one week. A few sensing time units

comprise a sensing period. We equally split the time unit into multiple 10-minute time slices.

If a user-app interaction occurs in a time slice, we add 1 to the interaction number of this time

slice. If a user-app interaction crosses several time slices, we add 1 to the interaction number

of all the crossed time slices.

Listing A.2 shows the implementation of this algorithm. It analyzes active periods in sev-

eral steps:

1. Equally split the time unit (a day or a week) into 10-minute time slices.

2. Iterate each user-app interaction, and count the number of user-app interactions in each

time slice (or point). If an user-app interaction spans several time slices, the interaction

number of each time slice increases 1.

3. Calculate the density of time slices and mark the time slices as core point, border point

or noise point based on two threshold values density
t p
border and density

t p
core. We use the

Equations 4.2 to calculate these two thresholds.

4. Iterate all time slices. If a time slice is a core point, we allocate it to a new cluster. If a

time slice is a border point, we find the nearest core point within 1 hour and assign this

point to the core point’s cluster.

5. Iterator all points again. Group all consecutive points that belong to a cluster into a new

cluster. If the start time of the current new cluster is 30 minutes larger than the end time

of the previous cluster, we merge them together.
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Figure 4.6: The density of the time slices of user U3 and the corresponding clusters.

Different with the regular implementation of DBSCAN algorithm, we merge consecutive

clusters that are within 30 minutes to decrease the number of small clusters. This design not

only decreased the number of usage patterns but also helpful to user-centric system design

because user experience gets more chances to be considered (when applying mechanisms).

Figure 4.6 and Figure 4.7 show the density of each time slice of user U3 and user U8. In

Figure 4.6, four time slices are labeled as core points, and all of them are categorized to cluster

1. The user-app interactions are scattered very evenly in the other time slices, and thus none

of the time slices is labeled as core points. Because there are no core points, the algorithm did

not find any active periods except cluster 1. Different to user U3, the core points of user U8

are distributed in three different periods, shown as Figure 4.7. According, the algorithm found

three active periods for user U8. In these two figures, we found some of the noise points are

counted into the clusters, which is caused by the last step of the algorithm. In this way, we can

effectively decrease short active periods.

Figure 4.8 shows that each user has at least one active period. The active period of some

users, such as user U6 and user U9, is very short. That is either because they are not using the

device frequently, or because their user-app interactions distributed very evenly. We notice that
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Figure 4.7: The density of the time slices of user U8 and the corresponding clusters.

nearly all the users’ active periods are different with each other. This observation shows us that

the system should be designed based on user behavior. Only in this way, we can satisfy both

user experience and battery life.

densityborder =
1

Nts

α (4.2a)

densitycore = densityborder +(densitymax −densityborder)∗β (4.2b)

4.3.4 Usage Pattern

In the previous two sections, we described the method of analyzing interest points and

active periods of users. The usage pattern of a user is composed by a group of pattern items,

each of which includes an interest point, an active period and the application. Except that, we

need to evaluate the quality of the pattern item. We use Equation 4.3 to calculate the support

(the usage frequency of the application) of the pattern item. The support shows how frequently

the user interacts with an application at the given location and active period. However, the
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Figure 4.8: The active periods of all the users (based the data monitored in the first stage).

usage pattern of some users may change a lot with time. In the real usage case, the time

window of data used to analyze the usage pattern should not last too long. Otherwise, the

usage pattern may fail to distinguish which application is important.

support pattern = daysoccured/daystotal (4.3)

After we know interest points, active periods, and applications, we find out each combina-

tion of these three elements and count the number of user-app interactions of each combina-

tion. The computation is not CPU-intensive because the number of interest points and active

periods are limited. Finally, we calculate the support of each pattern. We use a threshold

T Hp(0 < T Hp < 1) to filter unqualified usage pattern. Listing A.3 shows the algorithm to an-

alyze the usage pattern. Table 4.1 displays the usage pattern of user U1. From this table, we

can see that this user uses more applications frequently in the morning. In the afternoon and

evening, the user uses fewer applications often.
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Table 4.1: The usage pattern of user U1.

Apps

Context 6:20AM - 12:00PM 12:50PM - 16:10PM 18:10PM - 19:30PM

Loc 1 Loc 2

Seetings 33.3%

Launcher 100% 50% 66.7%

Google Play Store 33.3%

QQ 50%

Chrome 66.6%

Facebook 66.6%

Weather 33.3%

USA Today 66.6%

Weishi 100% 33.3%

Youtube 83.3%

4.4 Related Work

Mobile devices, such as smartphones and wearable devices, have become an indispensable

accessory in our daily life. Our mobile devices know the places we visited, applications used,

network/cellular data used, phone calls made and so on. Thus, we can collect a considerable

amount of user behavior metadata with them. Many previous publications [64, 65, 66, 35,

67, 68, 69, 34] used this metadata to analyze the pattern of individual user’s behavior or user

groups’ behavior. Most patterns are either represented as the occurrence frequency of an event

or the association rules of several events.

In [64], Falaki et al. collected the traces of 255 users to study their smartphone usage

behavior. This research was mainly concentrated on internal user-device interactions, user-

app interactions, and the impact of these interactions on energy usage and network usage.

They found the vast diversity between the individual user among nearly all aspects of research.

For example, the cellular data usage per day varies from 1 MB to 1000 MB. Depending on

their experiment result, they proposed to improve user experience and energy consumption

from adapting to user behaviors. Rahmati et al. collected the usage activities of 14 teenage

users [65]. Their research targeted at smartphone usage, application usage, and usage behavior

evolution. They found these users’ usage is highly mobile and location-dependent, and the
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usage pattern changes with location. Moreover, the experiment shows the social purpose is the

main driving force of the smartphone usage, and most users’ usage behavior converges after

they get familiar with the functions of the devices and applications.

Srinivasan et al. proposed a system service named MobileMiner [66] for tracking user be-

havior and analyzing usage patterns. They developed a weighted mining algorithm - WeMiT

to examine the association rules of user behavior related events. With this algorithm, they ana-

lyzed the user behavior data collected from 106 users and observed several interesting patterns,

such as the outgoing phone call pattern and cellular network usage pattern. They describe the

usage scenarios of several patterns to improve user experience. For example, the outgoing

phone call pattern can be used to predict the next user to call, which is helpful for the UI design

of the contact application. In [35], Shin et al. analyzed the correlation between application us-

age and its related context. They tried to predict the probability that the user uses an application

in the current context. So that, they can organize the order of application icons on the home

screen and improve user experience. In [67], Parate et al. proposed the APPM (App Prediction

by Partial Match) model to predict the next application the user will be most likely to use.

Further, they introduced the TTU (Time Till Usage) model to estimate the appropriate time to

prefetch content. Different with other works, their method does not require any power-hungry

contextual data.

Nath et al. developed ACE [68] to sense user context. They used the speculative sensing

technique to learn the relationship between context attributes, such that low energy require-

ment context attributes can be used to speculate high energy requirement context attributes.

Böhmer et al. made a large-scale deployment-based research with more than 4,100 Android

users [69]. The logged the detailed application usage information of these users, and found

several interesting group usage patterns, such as News applications are popular in the morning

and games are popular at night. In [34], Do et al. researched two key contextual cues, location

and proximity, of users, and found several import patterns that are helpful for understanding
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how users use their smart phones.

Most of these previous works tried to understand how users interact with mobile devices

and the evolution of their usage pattern. Even though some publications [64, 65, 66, 35] pro-

pose to utilize user behavior to improve user experience (e.g. help the user to find the next

application to use quickly), not too much work are done to improve the battery life of mobile

devices. Different with previous user behavior related research, we use the usage pattern to

make the energy-saving decision.

4.5 Summary

The user behavior we are interested is how the user interacts with applications. The location

and time of the user-app interaction are two of the key characters of user behavior. In this

section, we use statistical and data mining techniques to analyze the interest points, active

periods and usage pattern of users. The analysis result shows that even though individual user’s

user behavior may be significantly different with each other, most users’ behavior follows their

pattern.

From the usage pattern of users, we can distinguish redundant and unimportant application

activities. In the next chapter, we propose a user-centric power management and an energy-

saving strategy that used the task grouping technique to optimize the power consumption of

background applications.
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CHAPTER 5

USER-CENTRIC POWER MANAGEMENT SYSTEM

In the previous chapters, we analyzed the deficiencies of current power management sys-

tems and discussed the important observations that motivated us to design the user-centric

power management system. In this chapter, we describe the design and implementation of the

UPS system and the UCASS strategy in detail.

5.1 Overview

The power management systems of most traditional operating system were implemented

based on the ACPI (Advanced Configuration and Power Interface) specification [33]. Device

components can work in different performance states, each of which requires a different power

consumption. The power managers of the operating system dynamically change the states

of device components based on the performance requirement of tasks. Usually, the power

managers use performance metrics, such as CPU utilization, to represent the performance re-

quirement of tasks. For example, the CPUIdle mechanism [15] decides the sleep state (C state)

of the processor based on how long the CPU had worked in the idle state (CPU utilization is

zero), and the CPUFreq mechanism [12] dynamically set the frequency and voltage of the the

processor based on the workload of the CPU.

Ideally, the system uses as much power as the tasks need. However, it is nearly impossi-

ble to predict the performance requirement accurately; power managers normally set the new

power states of device components based on the instantaneous values of one or several per-

formance metrics. These values usually cannot comprehensively represent the performance

requirement of device components. Modern mobile operating systems, such as Android, have

the same problem because most of them are running on top of the Linux kernel. Moreover,

application and system activities cause these power managers cannot work effectively. Our

previous analysis found that a considerable amount of background activities were not gener-

ated by the proactive user operations or even not subjectively required by the user. These activ-
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ities wasted a large amount of battery energy. Existing power management systems, however,

cannot eliminate the energy loss caused by these redundant activities.

To solve the power problem of mobile operating systems, we need to manage power con-

sumption at application-level. We name this kind of method as application-level power man-

agement, which is a necessary supplementary of traditional power management systems. Application-

level power management uses power optimization techniques, such as energy adaptation, task

grouping and computation offloading, to dynamically change the state of applications and the

system. For example, the latest iOS operating system uses the energy adaptation technique to

extend battery life. When the battery level is lower than 20%, the system can work in low-

power mode, which alters system behavior, such as visual effects, and application behavior,

such as background application refresh, to save battery energy. However, this kind of uniform

energy-saving strategies cannot satisfy all the users. It may significantly impact user expe-

rience. How to balance user experience and energy-saving is the main issue for designing

energy-saving strategies.

In this dissertation, we solved this problem with the usage pattern of users. From the

analysis result of user behavior in Chapter 4, we found the behavior of the individual user was

significantly different, and but the user behavior of most user are time-dependent and location-

dependent. All the users have a usage pattern of their own. Other publications [64, 65, 66,

35] also observed these phenomenons. We can take advantage of the characteristics of user

behavior to dynamically customize the energy-saving strategies for users. The strategies that

adapted to the usage pattern of each user can effectively balance user experience and battery

life. We name this kind of power management as user-centric power management. Similar

to the procedure of pervasive computing [85], user-centric power management also tracks,

analyzes and utilizes user behavior. The difference is that we use it to eliminate the wasted

energy and supply a better battery life to users.

We designed and implemented our idea in the UPS system. It monitors user behavior
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and analyzes the usage pattern of users. As a user-centric power management framework, it

bridges user behavior with energy-saving strategies. It notifies these strategies whenever the

system state (battery state, charging state, screen state), active period or usage pattern changes.

Such that, researchers can concentrate on designing power-optimization policies. We also

designed the UCASS strategy to handle the redundant application activities, and integrated it

into the UPS system. This strategy eliminates the wasted battery energy caused by background

applications through task grouping and rescheduling. In this chapter, we elaborate the design,

implementation and evaluation of the UPS system as well as the UCASS strategy.

5.2 Background

We propose the UPS system and the UCASS energy-saving strategy based on several key

observations about user behavior, mobile devices, and mobile applications. In this section, we

describe these observations and discuss why these observations are important to optimize the

battery drain of mobile devices.

5.2.1 Characteristics of User Behavior

The first observation of user behavior is that user-app interactions are time-dependent.

From the analysis in Section 4.3.3 of Chapter 4, we found users used the device and inter-

acted with applications much more frequently during some active periods. This observation is

an important hint for designing the system energy-efficiently. We can setup the energy-saving

strategies to behave differently when the current time is inside or outside an active period. For

example, we can dynamically set the display timeout time to a larger value during the active

periods, and set it to smaller value during other periods. In this way, we can save the energy

consumption of display without influence user experience too much.

Moreover, we found users frequently generated user-app interactions in several dedicated

locations (interest points), most which are WiFi available. When the user uses his or her device

at the same location, the information acquired from some system services, such as location

service, is consistent or inter-related. Thus, we can optimize the power consumption of these
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services through eliminating the duplicated computations. The design of the LocalLite location

provider, described in Chapter 6, follows this observation.

The users were also inclined to use a particular group of applications in some contexts that

are marked by active period and location. This usage pattern can form a group of association

rules in the form of Equation 5.1. The support of these rules shows us how frequently the

user used the application or how significant the application is to the user in the context. Based

on this phenomenon, we can distinguish important applications and unimportant applications

and treat them differently, such that energy-saving strategies do not impact user experience

significantly. Furthermore, it is helpful for user-centric system design, such as improving the

UI of the system [35]. So that, the user can quickly find out the application that he or she will

use next.

(location,active period)
support
⇒ application (5.1)

5.2.2 Characteristics of Mobile Devices and Applications

The availability of plenteous applications, the majority of which are developed by third-

party developers, is one of the most conspicuous characteristics of modern mobile devices.

Compared with old-styled mobile devices, users usually installed more applications on the

new-generation devices. Besides, nearly all the mobile devices are integrated with multi-core

processors and support real multi-task processing. Normally, one application runs in the fore-

ground and occupies the whole screen, while most other applications run in the background.

The tasks of the foreground application are the most important tasks to the user since the user

usually expects to see the result immediately. For example, a web page loading task is expected

to display the web pages on the screen as soon as possible. This kind of user-app interactions,

in which the result of the task blocks the user to take other operations, is synchronous.

On the contrary, the interactions of all the background applications are asynchronous. Usu-

ally, the user will be notified to check the result when a background task finishes or the user
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gets the result during a synchronous user-app interactions in the future. However, in most of

the other cases, the results of the background tasks are even not noticed by the user. Only a

small part of background tasks are expected by the user while most others are a waste of en-

ergy. This situation can be improved through either suspending the execution of these tasks or

rescheduling these tasks to the next device charging or active time.

The other significant characteristic of modern mobile devices is the new-generation high-

performance communication modules (3G/4G or LTE). These hardware components supply

much faster network speed than old-styled devices. Besides, wireless networks are more com-

monly deployed. Connecting to the network through various wireless networks is much more

convenient and economic than ten years ago. These new techniques promote the development

of mobile computing. Nowadays, majority mobile application, such as social networking ap-

plications, video players, and email clients, have to retrieve data from and upload data to cloud

services. However, these wireless communication modules are usually very power-hungry, and

network communication consumes a large amount of battery energy. Thus, many previous

work try to optimize the power consumption of communication components.

Normally, these communication components are designed with several power states, and

the components drain much more power when the device is active. The communication com-

ponents usually have a tail time (Ttail) after processing all the data transmission tasks. The

hardware component is switched to a lower power state if the inactive time is longer than the

tail time. On the contrary, whenever a new network activity occurs during the tail time, the

component switches back to active mode immediately. The power consumption in the tail pe-

riod is also extremely high such that the state-switching time is very short. Task grouping can

effectively decrease the tail time power consumption of the device.

5.3 System Design

Based on the previous analysis, many aspects of the mobile system can be optimized for

energy-efficiency. A user-centric power management system is strongly needed to save battery
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energy white at the same time decrease the impact on user experience. In this section, we

propose a User-centric Power management System (UPS) for mobile operating systems. The

UPS system is an open power management framework that bridges the space between user

behavior and energy-saving strategies.

5.3.1 Architecture

From the point of data processing, we can divide the task of the UPS system into three

subtasks. First, it monitors user-app interactions, each of which includes the corresponding

time, location and application information, and saves this information into a dataset. Then,

it uses statistical and data mining algorithms, that we discussed in Chapter 4, to find out the

usage pattern of the user from the dataset. Finally, the usage pattern is applied in energy-saving

strategies to make power optimization decisions. Since the strategies consider the user behavior

of individual user, they can effectively trade off energy-saving against user experience. Figure

5.2 shows the time windows that perform these three subtasks. We will discuss the relationship

of them in the following sections.

As illustrated in Figure 5.1, the UPS system is composed of four main components: user

behavior monitor, usage pattern analyzer, UPS power manager and energy-saving strategies.

The user behavior monitor listens to user-app interaction events, and stores the information of

the event into database. The usage pattern analyzer uses the monitored user behavior as input

and analyzes the usage pattern of the user. The UPS power manager works as the central con-

troller of the system. It not only schedules the pattern analysis task, but also listens to several

system events and triggers the corresponding methods of energy-saving strategies. Whenever

an energy-saving strategy receives a system event, it makes energy-saving decisions based on

the usage pattern.

5.3.2 User Behavior Monitor

Monitoring user activities is the first task of designing all kinds of user-centric systems.

As shown of Figure 5.1, the user behavior monitor listens to user behavior events that are



58

Figure 5.1: The architecture of the UPS system.

Figure 5.2: The time windows of the three steps in the data processing procedure of the UPS

system.
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emitted by the system and then saves the corresponding information to the database. In the

UPS system, user behavior is represented as user-app interaction. More specifically, we care

about when and where the user opens an application and closes an application because the

time distribution and location distribution are two significant characteristics of user behavior.

Previous publications [65, 66, 35, 69] also proved user behavior is time-dependent and location-

dependent.

A user-app interaction event contains the information such as the event type (RESUME or

PAUSE), time information, location information, and application information. Existing mobile

operating systems do not supply this event; we implemented it in Android for the UPS system.

We will discuss the implementation in Section 5.4. The RESUME event will be received when

an application is opened (a user-application interaction starts). On the contrary, the PAUSE

event occurs when the application is closed or moved to the background (the user-app interac-

tion finishes). A RESUME event and the followed PAUSE event of the same application define

a user-app interaction.

Because the user behavior monitor collects the location of user-app interactions, we de-

signed a light-weight location provider to optimize the power consumption of location service.

We will discuss the design of this location provider in Chapter 6. Besides, all the events re-

ceived by the user behavior monitor are asynchronous, and the frequency of the events is very

limited compared to other system events. Such that, user behavior monitor does not cause too

much energy consumption in the system.

We only keep the most recent data, illustrated in Figure 5.2, because the usage pattern of

users may change with time. Outdated user activities are much less relevant to the current usage

pattern of users than new user activities. The user behavior monitor deletes these outdated

records periodically. Besides, we can safely assume the usage pattern does not change in a

short time. In the time window Y, the usage pattern analyzer uses the data recorded in the time

window X to get the current usage pattern. In the existing design, we set the length of time
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window X as a month. In the future, longer user behaviors should be monitored and analyzed

to find the better time window for each user.

5.3.3 Usage Pattern Analyzer

In Chapter 4, we designed several statistical and data mining algorithms to analyze usage

pattern. The usage pattern analyzer implements these algorithms, and periodically executes

the analysis task. It uses the user-app interactions occurred in the time window X as inputs,

and generates a group of pattern items. Each pattern item represents how frequently the user

used an application in the specified period and at the specified location; it also denotes the

confidence that similar user-app interactions will occur again. We can formally define it as an

association rule, as shown of Equation 5.1. After the new pattern is generated, it notifies the

UPS power manager to update its state with the new usage pattern, which will be used in the

following time window Z. Moreover, other system services can also listen to the update event

of usage pattern and utilize it in user-centric system design. The user behavior analyzer saves

the result in the database, such that it can load the usage pattern and notify the listeners when

the system starts.

The UPS power manager schedules the analysis task based on the scheduling policy we

defined. From the previous analysis of user behavior, we found most users charge their devices

at least once a day. The scheduling policy only schedules the analysis task while the device

is charging. Scheduling the task when charging only slightly extends the charging time; it

rarely has any influence on the user experience. When we design energy-saving strategies, we

also utilize this characteristic of mobile devices. Moreover, we assume the usage pattern will

not change significantly during the time interval Ts (default value is 24 hours), which is the

average pattern analysis interval. Overall, the UPS power manager schedules the analysis task

whenever the following two rules are satisfied.

1. The device is connected to the power supply.

2. The time interval between the current time and last scheduling time is larger than Ts.
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5.3.4 UPS Power Manager

The UPS power manager is the central unit of the UPS system. It listens to various events

and triggers energy-saving strategies to update state. For example, when the device connects

to the power supply, an energy-saving strategy may be turned off. These events include not

only system events, such as the charging state event and the screen state event, but also internal

events of the UPS system, such as the update event of usage pattern and active period. The

UPS manager supplies a group of user-level APIs for users to set up the UPS system and to

retrieve the status information of the UPS system. For example, users can enable or disable an

energy-saving policy through the setStrategyStatus API, and the getStrategies API returns the

available energy-saving strategies.

void setPowerManagerStatus(boolean status)

Set the status (On or Off) of the UPS power manager service.

boolean getPowerManagerStatus()

Retrieve the status (On or Off) of the UPS power manager service.

ArrayList getStrategies()

Return the list of available energy-saving strategies.

void setStrategyStatus(String component, boolean status)

Set the status (On or Off) of an energy-saving strategy specified by the “component”

variable.

boolean getStrategyStatus(String target)

Get the current status of an energy-saving strategy specified by the “component” variable.

void setParameters(in ParameterSet paramSet)

Set the parameters of a component of the UPS system, which is specified by the “com-

ponent” field of the ParameterSet object. The input “paramSet” includes a group of
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Parameter objects, each of which defines a system parameter of the specified compo-

nent.

ParameterSet getParameters(String component)

Retrieve the parameters of a component specified by the “component” variable.

void setParameter(String component, in Parameter param)

This method sets a parameter of the specified target. The Parameter class includes a

key-value pair, and the key specifies the parameter to set.

Parameter getParameter(String component, String key)

This method returns the a parameter of the specified component and key.

long getLastScheduleTime()

Return the last scheduling time of the user behavior analyzer.

The UPS power management system is triggered by system events. When the power man-

ager receives an event, the state energy-saving strategies may also have to be updated. To hook

up energy-saving strategies and the power manager, we defined the following two APIs for the

strategies.

boolean listensToEvent(Event event)

Returns true if the strategy needs to update itself when this event is received. Otherwise,

returns false.

void update(Event event)

Energy-saving strategy implements the power-aware policy in this method. It makes

different operations based on the new event received.

When the power manager receives a new event, it iterates the registered energy-saving

strategies. First, it invokes the listensToEvent method to check whether the strategy listens to
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the event. If a strategy listens to this event, the power manager invokes the update method of

the strategy to trigger the energy-aware operations.

5.3.5 User-Centric Application Sieving and Scheduling

In the UPS system, we designed a default energy-saving strategy - UCASS (user-centric ap-

plication sieving and scheduling), which saves energy through task grouping and rescheduling.

Different to the previously mentioned task grouping methods [44, 45, 51], it utilizes the usage

pattern of users to decide how to reschedule the tasks. We designed the application sieving

rules to check applications and handle the tasks of these applications energy-efficiently. In the

different situation, we may choose to schedule the tasks of an application at a different time,

such as device charging period or device active period.

The UCASS strategy groups and reschedules tasks based on user behavior. In Chapter 4, we

use statistical, and data mining techniques to analyze the usage pattern of the user. The usage

pattern tells us how frequently each application was used at a specific location and time. Since

the usage pattern of most users does not change frequently. Thus, the usage pattern implies

postponing which applications’ background tasks cause less impact on user experience. Based

on this hint, the UCASS strategy categorizes background tasks into several groups and decides

when to reschedule the tasks in each group.

Task Scheduling

As described in Section 4.3, we use the support of the pattern item to represent the con-

fidence that similar interactions will happen again. The support of a pattern item shows how

frequently an application was used in a context. An application may have multiple pattern

items, each of which has a different context. If the support of a pattern item is larger than the

threshold T Hp, we mark this pattern item as valid. In this section, the usage pattern we talked

about are all valid because the user behavior analyzer filters invalid pattern items with T Hp.

Based on the support of pattern item and a threshold values T Hs, we defined three scheduling
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strategies:

1. Scheduling the task immediately.

2. Scheduling the task when the device is active. Add the task to the AE queue.

3. Scheduling the task when the device is charging. Add the task to the CE queue.

Figure 5.3 illustrates the flowchart of making scheduling decisions. From this figure, we

can see that the UCASS strategy also considers device status and application status. When the

device is charging, all tasks will be scheduled immediately. When the device is in charging

state, the power consumption of the tasks can be ignored. Then, it checks whether the screen

is on (device active state). When the device is active, the tasks of the foreground application

will be execute immediately. The tasks of background applications will either be scheduled

when the device is charging or scheduled immediately based on whether a pattern item exists

for the application in the current context. If the screen is turned off (device idle state), it checks

whether the pattern item exists and whether the support is smaller than T Hs. If the pattern item

does not exist, it schedules the task to execute in the charging state. If the support is smaller

than T Hs, it schedules the task to execute when the device is active. On the contrary, the task

is executed immediately.

Trigger Events

The following listed events trigger UCASS.

• SCREEN ON: The device becomes active. It schedules the tasks in the AE queue to

execute.

• SCREEN OFF: The device becomes idle. If the AE queue is not empty, it stops to

schedule the remaining tasks in the AE queue.
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Figure 5.3: The flowchart of the UCASS strategy.



66

• POWER CONNECTED: It schedules the tasks in both the AE queue and the CE queue

to execute.

• POWER DISCONNECTED: It stops to schedule the tasks in the CE queue and stops to

execute the tasks in the AE queue if screen is off.

• USAGE PATTERN UPDATE: It retrieves the pattern items from the new usage pattern

based on the current active period and location, and then reschedules the tasks in AE and

CE queue based on the retrieved pattern items.

• ACTIVE PERIOD UPDATE: It reschedules the tasks in the AE queue and CE queue.

• LOCATION UPDATE: Also, it reschedules the tasks in the AE queue and CE queue.

• APP STATE: It schedules this task based on the scheduling policy we defined in the

flowchart 5.3.

5.4 Implementation

We implemented the UPS system in Android 4.4.2 as a new Service1 of the application

framework layer. This section describes the implementation in detail.

5.4.1 UPS Power Manager Service

The same as other Services of the Android system, the UPS power manager Service in-

cludes a framework layer interface (defined in the UPSPowerManager class) and a background

service (implemented as the UPSPowerManagerService class). We defined the framework

layer APIs in an AIDL (Android Interface Definition Language) file and implemented the real

operations in the UPSPowerManagerService class. When the Android system is booting, Sys-

temServer2 creates an instance of the UPSPowerManagerService class and registers it to the

Android system with the service name “ups pm”. Other Services or applications can get a

1In Android system, a Service is an application component that can perform long-running operations in the

background.
2SystemServer is a special framework layer Service of Android system. It manages other Services.
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reference of this Service with the registered service name. After the system is booted, the Sys-

temServer invokes the systemReady method of the UPS power manager Service to initialize it.

In this method, it creates the user behavior monitor, the system event listener, and a worker

thread. The user behavior monitor and system event listener are broad receivers3. The worker

thread handles heavy tasks in a different thread.

The system event listener listens to system events such as SCREEN ON, SCREEN OFF ,

POWER CONNECT ED, etc.. Moreover, it listens to the UPS system generated internal

events, such as USAGE PAT T ERN UPDATE, LOCAT ION UPDATE, etc.. Whenever it

receives an event, it iterates the registered energy-saving strategies in the updatePowerSav-

ingStrategies method. In this method, the listensToEvent method of the strategies is invoked to

check if the strategy listens to this event. If the result is true, it invokes the update method of the

strategy to update its state based on the received event. The system event listener also checks if

we should schedule the user behavior analysis task when receives the POWER CONNECT ED

event. The shouldScheduleUBAnalysis method of the SchedulePolicyProvider class is invoked

to perform this operation. If the result is true, it invokes the performAnalyzation method of the

UserBehaviorAnalyzer class to start the analysis task.

The worker thread is hooked up with the message queue of the Android system. It com-

municates with the other parts of the UPS power management system through asynchronous

messages. The worker thread runs in an independent thread; thus it can be used to process

heavy tasks such as loading usage pattern.

5.4.2 User Behavior Monitoring

We modified the Android system to fire the APP STAT E event when an application switches

to foreground or background. As we know that an Android application is composed by a group

of Activities 4. We tracked the life cycle of Activities to monitor when an application goes

3In Android system, BroadcastReceiver is a basic component that listens to system events.
4Activity is a basic component of applications in Android system. Each Activity class creates a window, which

could be a full-screen window, an embedded window or a floating window.
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to foreground or background. When a user-app interaction occurs, it invokes the LocalLite

API to get the current location and fires an APP STAT E event. This event includes applica-

tion state (RESUME or PAUSE), application id, application package name, location and time.

We modified the resumeTopActivityLocked and completePauseLocked methods of the Activi-

tyStack class, and the startSpecificActivityLocked and startActivityUncheckedLocked methods

of the ActivityStackSupervisor class to fire the event.

The user behavior monitor starts with the UPS power manager service, and is registered

to listen to the APP STATE event. Whenever it receives an event, it retrieves the information

about the user-app interaction and saves it to the appusage table of the database.

5.4.3 User Behavior Analyzer

In the user behavior analyzer, the statistical and data mining algorithms we described in

Chapter 4 are implemented. Because user behavior analysis is a CPU intensive task, we encap-

sulate the computation in an AsyncTask class, which runs in an independent background thread.

Before starting the analysis task, it loads user-app interactions from the appusage table, and

also loads the parameters used by the analysis algorithms from the SharedPreferences data

storage of the UPS power manager service. These parameters can be set by the user through

the setAnalyzerParameter API of the UPS power manager. Then, it follows the three analysis

steps we discussed in Chapter 4 to process the inputs and generate the usage pattern. After

this process is done, it sends a USAGE PATTERN UPDATE Intent message to the UPS power

manager and notifies it to load the new usage pattern from the database.

5.4.4 UCASS

We implemented this strategy into the Android system and integrated it with the UPS sys-

tem. The strategy class maintains two queues, the active-execute (AE) queue and the charging-

execute (CE) queue, to store the information of the tasks to be scheduled as well as the Intent

message to start the task. The strategy listens to the events that we listed in Section 5.3.5,

then the UPS power manager service notifies it when the related messages are received. If the
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device is connected to the power source, it starts to execute the tasks both in the CE queue and

the AE queue. If the device changes to active state, it starts to execute the tasks scheduled in

the AE queue.

To implement this strategy, we need to intercept the starting procedure of Services, such

that the activity manager talks to the UPS power manager service to decide how to handle the

starting service request. We added the startService() method in the IUPSPowerManager inter-

face, and added the realStartService() to the IActivityManager interface. The starting service

work done in the original startService() method of activity method is moved to the new re-

alStartService() method, implemented in the ActivityManagerNative and ActivityManagerSer-

vice classes. In the startService() method of activity manager, it invokes the startService()

method of the UPS power manager to handle the request. The UPSPowerManagerService

sends a START SERVICE event to the UCASS strategy. Based on the previously defined rules,

the UCASS strategy decides when to invoke the realStartService() method of the power man-

ager to really start the service.

5.5 Experiment Method

To understand user behavior and evaluate energy-saving strategies we collected real device

usage traces from 14 volunteers. With these monitored data, we analyzed the usage patterns of

the users. Also, we developed a system simulator and used these datasets to simulate the power

consumption in different scenarios. In this section, we describe the experiment platform, data

collection process and simulation method in detail.

5.5.1 Experiment Platform

Because the Android system is an open source mobile operating system, we can easily

customize it to collect the data we want and implement our user-centric power management

system. Thus, we modified Android 4.4.2 to monitor user-app interactions, battery power,

process status, application status and system events. Then, we flashed the customized Android

system to two Nexus 4 smartphones. We chose this smartphone because its power supply
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module integrates with current and voltage sensors. With these two sensors, we can accurately

calculate the power dissipation of the device without instrumental tools, so that we can monitor

the power of the device during the daily usage. Besides, we also calibrated the power models

discussed in the Chapter 3 specifically for this device.

5.5.2 Data Collecting

We collected data from 14 volunteers. The monitoring period for each user is about a week.

To accurately collect the regular behavior of these users, we asked each of them to reset the

device and install nearly all the applications that they usually use on their own devices before

the data collecting procedure starts. After a user finished the experiment, we retrieved the data

from the device and then gave it the next user to use.

In the log files, user-app interaction records include application uid, package name, time,

location and operation type. A process activity record contains the time, active status, process

id, CPU time used and the corresponding application uid. The system events we monitored in-

clude wakelock usage, location service usage, power supply state, screen state and so on. Also,

we collected the state change of hardware components and resource utilization to estimate the

power. With these data, we can not only analyze the usage pattern of users but also simulate

the power management of the Android system to evaluate energy-saving strategies.

5.5.3 Trace-driven Simulation

Since it is impossible to generate exactly the same user activities in two different periods,

we use the simulation method to compare the energy consumption of different scenarios. We

developed a simulator to compare the power consumption of the system in different scenarios.

For example, the simulator can estimate the energy consumption while enabling the UCASS

strategy, and compares the result with the normal scenario. The simulator takes the log files,

and usage pattern analyzed from user-app interactions as inputs.

In the experiment, we assume the usage pattern does not change. We analyzed the us-

age pattern of each user from their monitored dataset first and then applied the usage pattern
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to the simulation of the same dataset. In the real implementation, the usage pattern is ana-

lyzed based on previous user-app interactions. Most users’ usage pattern does not change very

frequently. Thus, we can safely make this assumption. Then we simulate the system with dif-

ferent strategies were enabled and different system configuration. During the simulation, the

system component models estimate the power of applications based on the power models we

introduced in Chapter 3, and calculate the energy saving of the strategies.

5.5.4 Simulator

We built an event-driven simulator to compare the energy consumption of the system in

different scenarios. The simulator simulates system events, application activities and power

manager of the system. With this simulator, we can setup the system model with different

power managers and different energy-saving strategies. In this section, we relate the design

and implementation of the simulator.

Simulator Design

Because we focus only on the time when some special events occur, we designed the sim-

ulator as an event-driven system. The event we focused on can be an user-app interaction, a

change of system status, a wakelock request, a battery power value, a process state, etc. Each

line of the log files corresponds to an event. During the simulation, we read the log files line

by line and parse each line into event. These events trigger the simulator to move to new states

until the simulation finishes. Finally, the simulator generates the simulation result.

As shown of Figure 5.4, the simulator includes two parts: the simulator framework and the

models. The simulator framework includes four components: configuration loader, log parser,

event listener manager and report generator. The configuration loader loads configuration files,

such as usage pattern and simulation configuration before simulation starts and initializes the

status of the models (e.g. registering some models as event listeners). Then the log parser

parses the log files and converts each line into an event. It gives the events to the event listener
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Figure 5.4: The architecture of the trace-driven simulator.

manager, which sends the event to the registered event listeners. After the file is parsed, the

report generator generates the simulation result.

The models are designed to simulate the behavior of some core parts that are related to the

power management of the mobile operating system. In our simulator, we build power models

for the system, power manager, process, application, battery, wakelock, location service and

energy-saving strategies, shown as Figure 5.4. The top level models, such as system model

and power manager model, implement the EventListener interface, such that they can receive

the event notifications. Then, they propagate the events to low-level models. Whenever a new

event is received, the models that listen to this event update their state accordingly. At the same

time, the battery model evaluate the power consumption of the device. The strategy model

is implemented with the power-saving strategies. We set up which strategy to use before the

simulation starts.

5.6 Evaluation

In the simulator, we implemented the UPS power manager and the UCASS strategy. Dur-

ing the simulation, we did not consider the change of system applications after rescheduling
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non-system applications to other periods because we can not tell how much the system appli-

cation power will decrease. This will be part of our future work. In this section, we compare

the power consumption of these two scenarios:

Scenario 1 The UPS system as well as the UCASS strategy are disabled.

Scenario 2 The UPS system as well as the UCASS strategy are enabled.

In Chapter 2, we had already analyzed the device and application power consumption in

Scenario 1. We found non-system applications generates a considerable amount of activities

while running in the background. Most of these activities are not important to the user, and

we can use the UCASS strategy to reschedule these background activities when the device

is charging or active. Such that, we can decrease the battery power consumption caused by

background application, which has no usage pattern during different active periods, generated

activities. In this section, we mainly analyze the power consumption in Scenario 2.

5.6.1 Power Consumption Analysis

Figure 5.5 shows the percent of saved energy when we enable the UCASS strategy. For

all the users, this energy-saving strategy can save more than 18 percent of battery energy. For

some of users, the energy saving is more than 30 percent. We use the average active power

in Table 5.1 to calculate the extended battery life in Scenario 2. Except user 4, all the other

user’s battery life can be saved for more than 15 minutes; the average extended battery life

is about 25.34 minutes. The result shows the extended battery life when the device is active.

The extended battery life is still considerable when considering the high active state power

consumption of the device.

To further understand which applications’ (non-system applications) power consumption

can be saved, we use the experiment result of user 15 as an example to analyze. From Ta-

ble 5.2, we can see that most top energy consumers’ (non-system applications only) power

consumption can be greatly saved. The power consumption of applications, such as Alipay
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Table 5.1: The average power and the length of the experiment period of users.

User ID Experiment Period (days) Avg Active Power (mw) Avg Idle Power (mw)

1 9.3 1078.93 425.76

2 8.13 543.88 358.9

3 8.67 1273.95 372.1

4 9.37 1071.88 401.98

5 7.04 1178.69 464.48

6 7.87 1075.26 453.01

7 6.97 959.51 437.09

8 7.95 1095.66 496.37

9 5.14 1287.66 375.94

10 11.02 1288.12 419.49

11 12.91 1253.41 392.86

12 16.82 1094.75 233.77

13 15.5 1012.79 335.55

14 7.67 981.66 315.93

and Amazon, can be saved for 100%, that is mainly because the user never used these two

applications. However, they still consume a large amount of battery energy, their activities

can obviously be sieved or rescheduled without influence user experience. Google Play is a

background service that update application information, the developer should optimize the be-

havior of this application to make it more energy efficient. The energy saving of Chrome and

Youtube is less than 13% because they most of the activities were generated when they were in

the foreground. For this kind of applications, we still need to use energy-adaptation techniques

to make them more energy-efficient. For example, we can disable image on the webpages for

Chrome in the energy adaptation state.

5.7 Related Work

In this section, we talk about the related work from two areas: power management through

controlling application states and user-centric system design.

5.7.1 Power Management through Controlling Application States

Traditional power management systems become less effective if users install more mo-

bile applications. That is mainly because the redundant application activities cause the system
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Figure 5.5: The percentage of energy saving when the UCASS strategy is used.

keeps active most of the time. This new situation hastened a group of new power management

systems [43, 44] that aim to limit the power usage of applications. Zeng et al. designed and im-

plemented a new power management system called EcoSystem, which considers battery energy

as one kind of system resource in their proposed Currentcy Model [43]. Currentcy is the com-

mon unit for energy accounting and allocating. In each epoch, an application can only consume

the allocated amount of energy. By limiting the available energy in each epoch, the system can

guarantee the predefined battery life. Similar with EcoSystem, Roy et al. proposed a hierarchi-

cal pattern to control the energy consumption of applications, and implemented the idea into

the Cinder operating system [44]. Moreover, they added the idea of cooperation, which means

applications that use the same hardware device can collaborate to active the device.

In [1], Flinn et al. used the energy adaptation technique to balance battery life and ap-

plication quality. They argued that applications should dynamically modify their behavior to

conserve energy and satisfy the battery life requirement of users. Their experiment result shows

the potential to save battery life through energy adaptation is about 30%. In our previous work,

we also designed an energy adaptation framework for energy-aware application development.

Park et al. proposed a new scheme to reduce non-critical alarms and decrease energy con-
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Figure 5.6: The extended battery life when the UCASS strategy is used.

sumed by applications that generate alarms [27]. In [45], Elmalaki proposed to schedule part

of application activities to the charging period to save battery energy consumed by applications.

In [86], Chen et al. also noticed the improper energy usage of background applications.

They proposed a method to identify unnecessary background activities and suppress them dur-

ing the idle state. In [24, 87], Bolla et al. proposed ASP (application state proxy) to suppress

applications on smartphones. Their method only restart the background activity if a new mes-

sage arrivals.

5.7.2 User-Centric System Design

These methods, however, fail to balance energy-saving and user experience. A new trend

is using user behavior to design energy-saving strategies. User behavior is not only helpful

for eliminating redundant application activities but also useful for optimizing traditional power

managers.

The significant diversity between user behaviors implies traditional system mechanisms,

such as power management system, that work for the average case may not be effective for

most users [64]. Falaki et al. introduced a personalized energy drain predictor and found that

learning and adapting user behavior is more effective than traditional methods. They proposed
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Table 5.2: The power consumption of non-system applications of user 14 in Scenario 1 and 2.

Application
Power Consumption (mj)

Energy Saving (%)
Scenario 1 Scenario 2

Baidu 4414036.79 1353909.64 66.93

Youtube 4403636.81 3834274.98 12.93

Tencent News 3214128.10 1622536.52 49.52

Chrome 1352400.61 1197871.21 11.43

Alipay 1201248.42 0 100.00

Google Play 1109439.46 0 100.00

QQ 902248.45 30159.52 96.66

Amazon 785164.31 0 100.00

WeChat 675128.71 100669.99 85.09

QQ Sports 627178.51 411109.01 34.45

Others 5498340.37 479659.53 91.28

to add a light-weight user behavior monitor to existing mobile operating systems. Lin et al.

proposed an optimized location service named A-loc [88], which uses accuracy models to

estimate the location accuracy requirement of mobile applications. Then, it selects the most

energy-efficient location sensors that can guarantee this accuracy requirement.

Balasubramanian et al. studied the power consumption of 3G, GSM and WiFi, and pro-

posed TailEnder to reduce the tail energy consumption of mobile applications [51]. They used

the task grouping technique to reschedule delay-tolerant applications’ network request, such

as e-mail. In [89], Vishal et al. propose to schedule network access tasks based on predicted

user activity. Khairy et al. proposed the “Smartphone Energizer” [90] to learn user behavior in

various contextual situation and offload computation to the server side.

5.8 Summary

In this section, we describe the design and implementation of the UPS power management

system and the UCASS energy-saving strategy in detail. We used simulation method to compare

the energy consumption of different scenarios. The experiment shows more than 18% of energy

can be saved after using the UCASS strategy and on average the battery life can be extended

for about 25.34 minutes.
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With user’s usage pattern, many aspects of the system should be revisited for energy ef-

ficiency. Many system services can be optimized. In the next two chapters, we present our

solution for optimizing the power consumption of location service and wakelock mechanism.
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CHAPTER 6

LOCALLITE : AN ENERGY-EFFICIENT LOCATION PROVIDER

Nearly all modern smartphones supply location service, which uses some specific hardware

components (GPS, wireless network, and cellular network) to pinpoint user location. Location

service enables mobile applications to provide various kinds of useful functionalities to users.

However, our monitored data of location service usage shows the API of location service was

redundantly used and thus can be optimized for energy-efficiency.

6.1 Introduction

Modern smartphones, which are characterized by the powerful computing capability and

diverse functionalities, are totally different with traditional cell phones. With our smartphones,

we can surf web pages, take pictures, record videos, share personal information with friends

via social networks and navigate when driving. The usage pattern of mobile devices is also

significantly changed because the vast functionality difference. Nowadays, the smartphone is

more like a personal assistant, with which we acquire various information and keep in touch

with others. Generally speaking, we use our mobile phones much more frequently than before.

To support the various new functionalities, current smartphones are usually equipped with

much more hardware components than before. However, some of these new hardware compo-

nents are very power hungry. We cannot equip the smartphone with a large enough battery to

supply a long enough battery lifetime because the size limitation of the mobile device. In fact,

different people have different battery lifetime expectations, and it is hard to please everyone.

Extending battery life will always be one of the main considerations when we design various

aspects of mobile devices. Based on the result of user behavior analysis, we found the user

behavior of most users is location-dependent, which means a large amount of location requests

that started at the same location were redundant.

We did a statistical experiment to stat how many location requests the device generated in

daily use. Users report their location service usage through a web page whenever the applica-
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tion made an observable location request. The result shows that the reported location service

usage ranges from 10 to 71 times per week. However, we found the logged location requests

are much more than the user observed. We propose LocaLite to optimize the energy consump-

tion of location service from user-centric point of view. LocaLite exactly follows this train of

thoughts to eliminate the repeated location requests through caching earlier received locations.

The design of LocaLite naturally embodies the location-dependent characteristic of user behav-

ior. Most end users only use their smartphones in several locations, such that many location

requests initiated at the same place are, in fact, a waste of battery energy.

6.2 Background

In this chapter, we describe the background information about location service, and analyze

how it is used by applications.

6.2.1 Location Service

Location service is widely used by mobile applications for various kinds of purposes. For

example, weather applications and local service applications use the present location of the

user to find context-related information, and social networking applications share user location

to their friends. Location service relies on the hardware components, such as cellular, WiFi, or

GPS, to triangulate the current location of the mobile device. These hardware components are

usually very power hungry. We measured the power dissipation of location service on Nexus 4

when using location service in different ways. On average, the power requirement of acquiring

location with GPS, network and fused provider is 332.06 milliwatts, 312.82 milliwatts and

408.76 milliwatts respectively.

Since different kinds of applications have different requirements, mobile platforms, such

as the iOS platform and the Android platform, usually support two default location providers:

GPS location provider and network location provider. The GPS location provider uses GPS

to determine the location; the network location provider uses cellular radio and WiFi to ac-

quire the location. These two location providers are power-hungry because they directly use
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hardware components to acquire the information.

The Android system supplies two other location providers [91]: fused location provider and

passive location provider. They encapsulate the default location providers and make location

service easier to use. The fused location provider chooses the suitable location provider based

on the accuracy requirement. The passive location provider returns the location received by

other applications. The passive location provider nearly consumes no power, but the location

result is inaccurate if other applications did not request location recently. Similarly, the iOS

platform [92] supports two location services: standard location service and significant-change

location service. For the standard location service, we can configure the desired accuracy of

the location data and the minimum distance before updating a new location. Similar with the

fused location provider of Android, it utilizes all available hardware components to acquire the

location. The significant-change location service uses cellular radio to determine the location

of the mobile device. Thus, it dissipates much less power than the standard location service.

6.2.2 Usage of Location Service

Applications use the location service for several purposes: navigation, tracking the move-

ment, labeling the current position, tagging the content to publish, searching local businesses,

retrieving location-related information and so on. Among all these usage scenarios, only navi-

gation and tracking the movement requires continuous location updates. Other usage scenarios,

however, only need to query the location for just once, and most of them only need a coarse

location.

However, we found that applications aggressively use location service. Figure 6.1 shows

the time serials of the location requests (passive excluded) in about five days. The x-axis of the

figure shows the time in seconds, and each vertical line shows the period of location requests.

From this figure, we can see that Amazon client (amazon), Google Play Service (gms) and

Weather (weather) used location service very aggressively. Besides, improper usage of location

service is also common. For example, Twitter requests user’s current location whenever the



82

!"#$%&'(% )*+,-*-)*.% )*+,-+./01% )*+,*-+0.*% )*+,*2+2.1% )*+,2))10.% )*+,2-.-/,% )*+,220*,*% )*+,2.220-% )*+,20,,/)%

"3'45675#%

6588$79*:%

;$"'<"%

5#5=>3%

67>?@>3%

9$8@%

;5867$$3%

A"B'4$7%

;$"C>%

#"'4%

@7"D$8"3$%

6#'%

#5@'%

'9'4$#%

;$54<$7%

Figure 6.1: The time serials of the usage of location service in about 5 days (passive requests

are not included).

application is switched to the foreground and stopped when it received the location. Foremost,

most applications use location service to get the accurate location, which is not necessary.

Table 6.1 lists the location providers used by several popular applications.

6.2.3 Location Requests Analysis

From the usage traces of 14 users, we found the number of location requests is significantly

different between users, as shown of Figure 6.2. User 1 and user 10 generated much more

location requests than other users during the experiment. User 10, user 11, user 14 and user

15 generate more GPS-based location requests. User 1, user 3, user 5, user 6, user 8 and user

9 generate more network-based location requests. User 4 and user 7 generated much fewer

location requests than others in the experiment. That is not only because they use the device

less frequently than others, but also because they disabled several applications (Google Play

Service and Google News & Weather) that generate a large amount of location requests.

We use the result of user 10 to analyze which application generates the location requests.

From Figure 6.3, we found Google News and Weather and Google Play generated much more

location requests than other applications. Their location requests account for about 80.43 per-

cent. Obviously, these two applications are not well-designed. Most of their location requests

are redundant. Fengyun and Youku are video players, they are not supposed to collect user loca-
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Application Used Providers

weather passive, network

google maps gps, network

priceline gps, network, passive

sina weibo gps

flixster network

walgreen gps

yelp gps, network, passive

gms passive, gps

groupon fused

amazon network, gps

Tencent weishi gps

instagram network, gps, passive

gallery3d gps, network

system passive

Table 6.1: The location providers used by several popular Android applications.
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Figure 6.3: The percentage of application generated location requests of user 10.

tions. QQ and Weishi are social network applications, they only need coarse-grained location.

From this analysis, we found the huge potential to save battery energy consumed by location

service.

6.3 LocalLite

In the design of the UPS system, we record the location information of user-app interac-

tions. Existing location providers, however, are very power hungry. Using them will signif-

icantly increase the energy consumption overhead of the UPS system. To solve the problem,

we propose a light-weight location provider - LocalLite.

6.3.1 Design Considerations

We propose LocalLite because of several reasons. First, the UPS system and most mo-

bile applications only need coarse location information. Besides, the location distribution of

user-app interactions shows most users’ activities occurred at a very limited number of loca-
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tions, and in most of these locations the devices were connected to WiFi. This observation

shows most location requests are duplicated, and much energy can be saved from eliminating

the unnecessary location requests. The location-dependent pattern of user behavior was also

observed in the previous publications [34, 35]. The design of LocaLite naturally embodies the

location-dependent characteristic of user behavior.

LocaLite eliminates the repeated location requests through caching earlier received loca-

tions. It uses the information of wireless router to mark each location because most of the

wireless routers are immovable. Whenever the system receives a new location request, Local-

Lite checks whether the device is connected to a wireless router and whether the corresponding

location related with the current network environment exists. If the location exists in the cache,

it returns the location and stops the location request. Otherwise, other location providers will

be used to retrieve the user’s location, and LocalLite caches the new location when it is re-

ceived. Finally, we set an expiration time to each record in case some wireless access points

were moved. By default, we set the expiration time to seven days. Expired records will be

periodically deleted.

6.3.2 Location Caching

The user behavior of one user may be significantly different with other users; the number

of locations cached on mobile devices varies from several to dozens. To improve the perfor-

mance of location retrieving, we designed a two-level location cache structure to store WiFi

and location information. The first level uses local storage to store all recorded information,

and the second level uses memory to store several most recently visited locations. This design

also naturally utilizes the user behavior that most users frequently request the same location

consecutively, and most users only visit a very limited number of places in a short time. Thus,

most of the time, we can find the location from the memory-level cache.

If a location request cannot find the corresponding location with LocalLite or when WiFi

is not available, a normal location request will be generated. When the system receives the
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requested new location, it will check whether the device is connected to WiFi. If WiFi infor-

mation is available, it saves WiFi information and location to storage and memory-level cache.

We use the least recently used algorithm (LRU) [93] to manage the location records of the

memory-level cache. When a new location is received, it also needs to run the LRU algorithm

to replace the least used item with the new location. When WiFi is not connected, LocalLite

does not record the result. The pseudo code of location caching is shown as Listing 6.1.

Listing 6.1: The pseudo code of the location caching Algorithm.

A r r a y L i s t l ocCache ;

i n t c a c h e S i z e ;

vo id c a c h e L o c a t i o n ( L o c a t i o n loc , Wif i w i f i ){

i f ( w i f i . i s A v a i l a b l e ( ) == f a l s e )

r e t u r n ;

L o c a t i o n l a s t = q u e r y L o c a t i o n ( w i f i ) ;

i f ( l a s t == n u l l | |

l a s t . g e t A c c u r a c y ( ) < l o c . g e t A c c u r a c y ( ) ) {

s t o r e L o c a t i o n ( w i f i , l o c ) ;

}

i f ( l ocCache . c o n t a i n s ( l o c ) ) {

l ocCache . remove ( l o c ) ;

l ocCache . i n s e r t ( 0 , l o c ) ;

} e l s e i f ( l ocCache . s i z e ( ) >= c a c h e S i z e ){

l ocCache . remove ( locCache . s i z e ( ) − 1 ) ;

}

l ocCache . i n s e r t ( 0 , l o c ) ;
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}

6.3.3 Location Retrieving

LocaLite uses the information of the connected network to find the current location. Al-

though it’s not as accurate as other location providers, it returns locations that can satisfy most

applications’ requirement without consuming too much battery energy. As shown of List-

ing 6.2, when WiFi is not available, LocalLite will use other location providers to request the

location information. Otherwise, it first searches the memory-level cache. If the correspond-

ing location information cannot be found from the memory-level cache, it then searches the

location from local storage. The location will be returned if the location was saved in ei-

ther memory-level cache or local storage-level cache. Otherwise, a location will be requested

through other location providers.

Listing 6.2: The pseudo code of the locatin retrieving algorithm.

A r r a y L i s t l ocCache ;

i n t c a c h e S i z e ;

L o c a t i o n r e t r i e v e L o c a t i o n O r S t a r t U p d a t e ( Wif i w i f i ){

i f ( w i f i . i s A v a i l a b l e ( ) == f a l s e ){

u p d a t e L o c a t i o n ( w i f i ) ;

r e t u r n n u l l ;

}

/ / que ry from memory cache

L o c a t i o n l o c =

f i n d C a c h e d L o c a t i o n ( new L o c a t i o n ( w i f i . g e t B s s i d ( ) ) ) ;

i f ( l o c != n u l l ){

l ocCache . remove ( l o c ) ;

l ocCache . i n s e r t ( 0 , l o c ) ;
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r e t u r n l o c ;

}

/ / que ry from l o c a l s t o r a g e

l o c = q u e r y L o c a t i o n ( w i f i ) ;

i f ( l o c != n u l l ){

i f ( l ocCache . s i z e ( ) >= c a c h e S i z e )

locCache . remove ( l o c ) ;

l ocCache . i n s e r t ( 0 , l o c ) ;

r e t u r n l o c ;

}

u p d a t e L o c a t i o n ( w i f i ) ;

r e t u r n n u l l ;

}

6.4 Implementation

We implemented the LocalLite location provider in Android 4.4.2. To understand how

location service was used by applications, we modified the requestLocationUpdatesLocked

method and the removeLocationRequestLocked method in the LocationManagerService class

of Android to log location request/release information and WiFi information.

We use a SQLite database to save the location and related WiFi information, such as the

basic service set identifier(BSSID), network id and the service set identifier (SSID). These op-

erations of managing this database are encapsulated in the class LocaLiteOpenHelper. Besides,

we use a list data structure to cache the most recently used locations. We added two functions,

storeLocation and retrieveLocation, in the class LocationManagerService.

The storeLocation method is invoked by the method handleLocationChanged if the re-

turned location is not passive. It follows the process we defined in Listing 6.1 to store the

location with the methods of the class LocaLiteOpenHelper and update the memory-level lo-
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cation cache. The retrieveLocation method is defined as public (we add this method to the

ILocationManager.aidl interface definition file), and it will be invoked by the retrieveOrUp-

dateLocation method that we added to the class LocationManager.

6.5 Evaluation

The monitored datasets include the location request information and WiFi information.

More specifically, we recorded the location provider, start time, end time, and application UID

of each location request. In this section, we analyze how location service was used and simulate

the energy consumption in the following two scenarios:

Scenario 1 All the applications use the location provider they used before.

Scenario 2 All the applications use the LocalLite location provider.

6.5.1 Energy Consumption Analysis

In the simulation, we calculated the energy consumed by location service in these two

scenarios. We use equations 6.1 to calculate the energy consumption of each location request.

The power values in the equation are the average power consumed by location service that we

measured on the experiment device. Besides, we use the average device active power of each

user, shown as Table 5.1, to calculate the battery life consumed by location service.

P(pi) =























312.82mw pi=network

332.06mw pi=gps

408.76mw pi=network,gps

(6.1)

Enormal =
n

∑
i=1

P(pi)× ti (6.2)

Compared with Scenario 1, about 98.5 percent of battery energy consumed by location

service can be saved on average in Scenario 2, as shown of Figure 6.4. Also, we found that

applying LocalLite can save more than 90 percent of battery energy consumed by location ser-

vice for all the 14 users. That is mainly because some applications generated many redundant
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Figure 6.4: The percentage of energy saved in Scenario 2.
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Figure 6.5: The battery life extended per day in Scenario 2.
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location requests. The amount of energy saved by LocalLite is related with user behaviors.

If a user usually uses his or her smartphone in environments that WiFi is available, more en-

ergy will be saved. On the contrary, if a user’s most device usage is in outdoor environments

(without WiFi), then less power can be saved.

Figure 6.5 shows the battery life saved per day after using the LocalLite location provider.

Since location service only consumes about 3.13 percent of battery energy on average in the

experiment of all users, the battery life extended is still considerable. Again, the amount of

energy saving is greatly related to user behavior. From this analysis, we can see that LocalLite

can effectively eliminate the energy waste caused by redundant location requests. This new

service makes location-marked user behavior sensing becomes realistic in real usage.

6.6 Related Work

The main topic of this chapter is optimizing the energy consumption of location service.

In this section, we discuss previous work about improving the energy-efficiency of location

service.

In [94], Zhuang et al. proposed an adaptive location sensing framework. They use context

information to find the best location sensing mechanism and detect the mobility of users with

low-power sensors to suppress unnecessary location sensing. Lin et al. also designed an adap-

tive location service based on the observation that the requirement of location accuracy varies

with location [88]. The service chooses low-power location providers based on the context

information.

In [21], Liu et al. uses the computation offloading technique to optimize the GPS-based

location service. With their solution, the device only needs to sense a very limited amount of

raw GPS signal data and uploads the data to the server. The server side leverages informa-

tion saved in GNSS satellite ephemeris and an Earth elevation database to derive good quality

GPS locations from the raw signal data. Compared with the heavy signal processing on a stan-

dalone GPS receivers, the new solutions can achieve three orders of magnitude lower energy
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consumption.

Huang et al. also found the redundant usage of location service in [95]. They developed

E2A2 (energy efficient and accuracy aware), which uses group location to represent individual

device location. Wang et al. enables continuous outdoor location sensing with WheelLoc [96],

which captures user’s user mobility trace first and then calculating location by time-aware and

speed-aware sensors. It avoids power-hungry sensors and relies on low-power sensors to locate.

6.7 Summary

Location services that use GPS, wireless network or cellular network to pinpoint the loca-

tion of users are power hungry. These services, however, are aggressively used and missed by

applications. To improve the energy-efficiency of location service, and enable location-based

user behavior sensing, we propose a light-weight location provider named LocalLite. LocalLite

combines wireless network access points marked contextual information with the location to

eliminate redundant location requests. Experiment result shows about 98.5 percent of battery

energy consumed by the location service can be saved.

Except location service, there are many other system services of the mobile operating sys-

tem can be optimized based on user’s usage pattern. In the next Chapter, we optimize the

energy-efficiency of the wakelock mechanism.
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CHAPTER 7

WAKEFILTER : MAKE ANDROID FALL ASLEEP THROUGH

WAKELOCK FILTERING

The Android system introduced the opportunistic suspending technique to optimize the

power consumption of mobile devices. This technique uses wake blockers (wakelock) to keep

the system active while executing important tasks. This mechanism, however, fails to work

properly if wakelock is misused or abused by applications. In this chapter, we propose Wake-

Filter to solve this problem and make the system work more in low-power mode.

7.1 Introduction

Traditional power management systems define idle as “CPU utilization is zero”. In the

real case, however, CPU utilization never becomes zero. Android system introduces the op-

portunistic suspending technique [41, 42, 97], which redefines idle as “no important tasks to

execute”. It uses wakelock or suspend blocker to keep the system active while executing sig-

nificant tasks. Both kernel space module and user space applications can apply for wakelocks.

When no wakelocks are held by the system, the entire system (except for the components that

listen to wake-up events) will be suspended to memory, rather than put various system com-

ponents into a low-power state [41]. When the system works in the suspend-to-memory state,

only a very low power dissipation is required for refreshing memory and powering a few de-

vices that can wake up the device. On the contrary, the whole system will keep active to process

important tasks. This technique is helpful to mobile devices. The system can quickly wake up

and resume to active state to handle user interactions or hardware events.

In Android system, any application can apply for different types of wakelocks. Table 7.1

shows the available wakelock types in Android and the status of related device components.

Partial wakelock is a special wakelock that keeps CPU active even after the user presses the

power button or display timeouts. Listing 7.1 shows an example of wakelock usage. Normally,

applications should release the wakelock they requested as soon as the task finishes. However,
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wakelocks are usually not released on time or even failed to be released. Vekris et al. found

that some applications never release wakelocks because the program throws exceptions while

executing the important task, and the program does not handle the exceptions properly [37].

In [38, 39, 40, 98, 99], wakelock misuse is also found by researchers from different research

groups. Except that, we found that wakelock abuse is as well common in Android system

based on the device usage traces of 14 users. We will talk more about our analysis result in

Section 7.2.

Listing 7.1: The example code of wakelock usage.

PowerManager pm = ( PowerManager ) g e t S y s t e m S e r v i c e (POWER SERVICE ) ;

WakeLock wakeLock = powerManager . newWakeLock (

PowerManager . PARTIAL WAKE LOCK, ” WakelockTag ” ) ;

wakeLock . a c q u i r e ( ) ;

e x e c u t e t h e i m p o r t a n t t a s k ( ) ;

wakelock . r e l e a s e ( ) ;

Table 7.1: The available types of wakelocks in Android, and the corresponding status of hard-

ware components when different type of wakelocks are held.

Wakelock Type CPU Screen Keyboard

PARTIAL WAKE LOCK ON OFF OFF

SCREEN DIM WAKE LOCK ON DIM OFF

SCREEN BRIGHT WAKE LOCK ON BRIGHT OFF

FULL WAKE LOCK ON BRIGHT BRIGHT

As more and more third-party applications are developed, wakelock misuse and abuse will

become even more common in Android system. That is mainly because not all the developers

are experienced, many mobile applications are poorly-written. To solve the problem, Kim et

al. [39] proposed PR-wakelock (Predict & self-Release Wakelock), to predict the misuse of

wakelocks and forcibly release these wakelocks. In [40], Alam et al. proposed a data flow

based analysis strategy to determine the placement of wakelock statements. Different with
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Figure 7.1: The percentage of time that the devices were blocked by wakelocks in the idle state.

these methods, we solve the problem from an unusual direction. We combine the idea of

energy adaptation and user-centric system design to intelligently filter wakelocks created by

insignificant applications. Based on the analysis result of user behavior in Chapter 4, we know

that an “important” task may become an “unimportant” task at different context. We propose

the WakeFilter mechanism to detect wakelock misuse and abuse based on the usage pattern of

each user, and forbid the unimportant tasks to keep the system active in the device-idle state.

Such that, the device can work more in the low-power state.

7.2 Wakelock Usage Analysis

When we collected the device usage traces of users, described in Chapter 5, we also saved

the information of the wakelock request and wakelock release events. In this section, we an-

alyze these wakelock usage traces. Because wakelock misuse and abuse only waste battery

energy when the device works in the device-idle state (screen off), we only consider wakelock

events generated when the device is idle. For wakelocks that across both the idle state and the

active state, only the part of time in device-idle state will be considered.
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7.3 How Long Devices Are Blocked by Wakelocks?

We analyzed how long the devices were blocked to sleep during the whole experiment

period. For all the users, greater than 30% of time, the devices were blocked by wakelocks

in the device-idle state, and the average value is 50.83%, as illustrated in Figure 7.1. In some

serious case (user 5 and user 8), the devices were kept active by wakelocks for more than 80%

of time. This result shows applications aggressively used wakelocks, and the opportunistic

suspending technique cannot effectively save battery energy. The situation becomes even worse

if users install more applications on their mobile devices.

7.3.1 Which Applications Blocked Device to Sleep?

To understand whether these wakelocks are necessary to the system, we use the result of

user 6 to analyze which applications generate these wakelocks. From Table 7.2, we found an-

droid, WeChat and Google Play Service generated much more wakelocks than any other appli-

cations. Their wakelocks account for about 93.28% of the total time that the device is blocked

(device-blocked time), shown as Figure 7.2. We know that system applications, such as an-

droid (uid is 1000), includes many system services, which run in the application framework

layer of Android system to support non-system applications (their uid is larger than 10000). If

the activities of non-system applications decrease, system applications’ activities will also de-

crease. WeChat is an instant message application, and it runs in the background to periodically

synchronize with the server. This application, however, generates wakelocks too frequently.

Besides, the wakelocks it created lasted for about 1 minute on average. Obviously, the wake-

locks were not released on time. Google Play service is used to update applications downloaded

from Google Play Store, and synchronize application information. This application also applies

for wakelocks too frequently. Normally, we only need to synchronize application information

with the server a few times a day.

Other applications, such as Google News & Weather, Skype, Books and Calendar, even

though generate fewer wakelocks, their wakelocks last too long. Obviously, Skype always
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blocks the device to sleep when it is running in the background. It has a non-sleeping bug.

The other three applications request wakelocks to synchronize with servers; however, the sync

should not last for several minutes. Wakelocks should be released as soon as the sync task

finishes.

From the previous analysis, the wakelock usage of many applications violates the original

design rule of the opportunistic suspending technique: wakelock is used to protect important

tasks. From Figure 7.2, we can see that non-system applications cause more than half of the

device-blocked time. Wakelock is both misused and abused by these applications. That’s why

we propose WakeFilter to filter unnecessary wakelock requests.

Table 7.2: The number of wakelocks requested by applications and the average wakelock

length. The data is based on the device usage trace of user 6.

Application Wakelock Numbers Average Wakelock Length (s)

android 9214 37.25

WeChat 3558 60.21

Google Play Service 7320 18.11

Google News & Weather 115 262.14

Skype 2 2797.23

Books 25 169.17

Calendar 24 154.32

Facebook 203 10.82

Gmail 106 8.86

QQ Sports 499 1.61

Download Provider 3 94.55

systemui 3 108.40

rild 744 0.15

Deskclock 6 0.19

Others 402 3.24

7.4 System Design

We use the energy adaptation technique to design WakeFilter. It uses battery level as the

trigger. We designed three adaptation levels (from 3 to 1) in WakeFilter. When the battery

level decreases to a predefined threshold, the adaptation level will decrease by 1. As the value

of adaptation level decreases, fewer wakelocks can block the device to sleep. When the device
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Figure 7.2: The percentage of time that the device was blocked by each application during the

data collecting of user 6.

is connected to a power supply, the adaptation level is always set to 3. Accordingly, we also

allocate a priority to wakelocks. The the value of priority ranges from 1 to 3. Table 7.3 shows

the relationship between adaptation level and wakelock priority. Whenever a wakelock, whose

priority is less or equal to the adaptation level, is held, the system will be blocked to sleep.

Table 7.3: The relationship between adaptation level and wakelock priority.

Adaptation level Wakelocks that can block the device to sleep

3 all wakelocks

2 wakelock priority <= 2

1 wakelock priority <= 1

7.4.1 Wakelock Categorization

Before designing the WakeFilter strategy, we analyzed the wakelocks in Android. Based

on the creator of wakelock, we categorized wakelocks into three groups: application wakelock,

system service wakelock, and kernel wakelock. The wakelocks of each group are generated

by the creators in the corresponding layer of the system. For example, kernel wakelocks are

generated by kernel modules, such as hardware drivers that need to keep the system active to

handle important hardware events.

We reviewed the source code of Android and found out each place that creates wakelock.
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For these system libraries and system applications, we assigned a default priority to each of

them, shown as Table 7.4. Third-party application generated wakelocks are set dynamically

based on the usage pattern. We defined the following rules to decide wakelock priority.

• We set the priority of foreground application’s wakelock to 1.

• For applications that have a pattern item in the current context, we set their wakelocks’

priority based on the support of the pattern item and a threshold value T Hw (the default

value is 50%). If the support of the pattern item is greater than T Hw, we set it to 1.

Otherwise, we set it to 2.

• For all other cases, the priority is set to 3.

7.4.2 Assign Priority to Application Requested Wakelocks

Based on application information, system states and usage pattern, WakeFilter decides the

corresponding priority of each wakelock. When the foreground application changes or when

the usage pattern is updated, it resets the priority of wakelocks accordingly. Furthermore, it

listens to the power-connected and power-disconnected event and the battery-level event, and

updates the adaptation level of the system accordingly. Listing 7.2 and 7.3 are the pseudo

code to set the priority of third-party application generated wakelocks and decide the current

adaptation level.

WakeFilter will process the following kinds of wakelock requests at application framework

layer:

1. Application generated wakelock: These wakelocks can be categorized into two cat-

egories: the wakelocks that keep the processor active (partial wakelock) and the wake-

locks that control the power state of the screen and keyboard backlight. These wakelocks

come from the code that was written by application developers, and is usually used to

ensure the execution of a critical part of the program or to keep the screen or backlight

active.
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System Layer Name Functionality Group

Application

Voice dialer Used for voice dialing. 1

Caller Cache Cache caller information to database. 2

Notification

Player

Notify the user by playing sound when a

communication event is received.
1

SMS Transaction Process sending SMS transaction. 1
Exchanger Service Check and receive emails. 2

Framework

Power Command
Control the power manager to stay on

when plugged in.
1

Headset Base Handfree device communication. 1
Async Player Library for playing audio. 2

Location Manager
Manage location providers and issue

location updates and alerts.
2

CDMA Connec-

tion
APIs for CDMA connection. 1

GSM Connection APIs for GSM connection. 1

RIL Service RIL command interface. 1

System

Audio Hardware Audio hardware driver. 1

Audio Policy Ser-

vice

Control the activity and configuration of

audio input and output streams.
1

Input Event Hub Process and dispatch input events. 1
GPS Location

Provider

Location with satellites. Manage

application request conditions.
2

WLAN Loader Wireless network loader. 1

Table 7.4: The wakelock creators in the Android system.

2. Application library generated wakelock: Most of these wakelocks are partial wake-

locks and are used to protect the key part of the library code, such as the operation of

writing caller information into the database. Since system developers wrote libraries, and

higher-level APIs to encapsulate the wakelock operations, this kind of wakelocks rarely

cause problems.

3. System service generated wakelock: System services are used to execute low-level op-

erations, such as locating management. Similar to application libraries, most wakelocks

generated by them are partial wakelocks, except for the power command service, which

request a wakelock to keep the screen bright when the device is charging.
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Listing 7.2: The pseudo code for deciding wakelock priority.

vo id s e t W a k e l o c k P r i o r i t y ( Wakelock w){

i f (w. app == f o r e g r o u n d app ){

w. p r i o r i t y = 1 ;

}

e l s e i f (w. app has a p a t t e r n p ) {

w. p r i o r i t y = ( p . s u p p o r t > thW ) ? 1 : 2 ;

} e l s e {

w. p r i o r i t y = 3 ;

}

}

Listing 7.3: The pseudo code for deciding adaptation level.

i n t g e t A d a p t a t i o n L e v e l ( ) {

i f ( d e v i c e i s c h a r g i n g or b a t t e r y l e v e l > thB1 ){

r e t u r n 3 ;

}

r e t u r n ( b a t t e r y l e v e l > thB2 ) ? 2 : 1 ;

}

7.4.3 Decide When the Device Goes to Sleep

All the kernel managed wakelocks are partial wakelocks, which ensure the processor stays

active. Some of the wakelocks have an expiration time. These wakelocks will be inactive when

they expire regardless whether they were directly released or not. The system will suspend

to memory only when there are no active wakelocks that have no expiration time, and all the

wakelocks with an expiration time are expired. The objects that directly request wakelocks

from kernel include Bluetooth driver, NFC driver, audio service, location service, EventHub,
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sensor service, ril service, system and power manager service.

Different to the original design of Android, the new design does not consider wakelocks

that have a higher priority than the system’s adaptation level. The pseudo code of suspend-

checking is shown as Listing 7.4. From the pseudo code, we can also see that a timer will

be added to trigger the system to check suspend state again if some wakelocks have an expi-

ration time. Otherwise, the power management system will execute the suspend-to-memory

procedure and prepare to sleep. The power management system invokes this procedure when

the power management system receives a wakelock request or release event. After we update

the priority of wakelocks, it also rechecks the suspending state of the system and suspends the

system if all conditions are satisfied.

Listing 7.4: The pseudo code of the suspend-checking procedure.

boo l s u s p e n d c h e c k e r ( ) {

i n t m ax t im eou t = 0 ;

f o r e a c h ( wakelock w i n a c t i v e queue ){

i f (w . p r i v i l e g e > a d a p t a t i o n s t a t e )

c o n t i n u e ;

e l s e i f (w . h a s e x p i r a t i o n t i m e ){

i f (w. t i m e o u t <= 0)

e x p i r e w a k e l o c k (w ) ;

e l s e i f (w. t i m e o u t > m ax t im eou t )

m ax t im eou t = w. t i m e o u t ;

} e l s e {

r e t u r n f a l s e ;

}

}

u p d a t e t i m e r ( m ax t im eou t ) ;
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r e t u r n m ax t im eou t == 0 ;

}

vo id u p d a t e t i m e r ( m ax t im eou t ){

c l o s e i n t e r r u p t s ;

i f ( m ax t im eou t > 0)

m o d i f y e x p i r e t i m e r ( m ax t im eou t ) ;

e l s e {

d e l e t e e x p i r e t i m e r ( ) ;

su spend to m em ory ( ) ;

}

resume i n t e r r u p t s ;

}

7.5 Implementation

We implemented the WakeFilter mechanism in Android 4.4.2 and Linux kernel 3.4.0. We

modified the kernel layer, the native library layer and the application framework layer of An-

droid. In this section, we describe the implementation in detail.

7.5.1 Energy Adaptation Support

In Linux kernel, we added the “adapt level” system attribute to represent the current adap-

tation level of the system, and the corresponding system file “/sys/power/adapt level” as the

interface between kernel space and user space. When we write or read a sysfs file from user

space, the related “store” function or “show” function of this system attribute will be in-

voked. For example, when we write an integer value to the “/sys/power/adapt level” file, the

“adapt level store” function will read this value and update the kernel. In the native library

layer, we added the “set adapt level” function to the legacy power library, it writes the new

adaptation level to the “/sys/power/adapt level” system file. In the application framework
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layer, we defined the “setAdaptLevel” and “getAdaptLevel” APIs in the “IUPSPowerMan-

ager” AIDL interface, and implemented them in the “UPSPowerManager” and “UPSPower-

ManagerService” classes, as well as its corresponding JNI (Java Native Interface) layer. When

a system service or an application invokes the “setAdaptLevel” function, the operation, follows

the implementation in these layers, writes the value to the system file. The “setAdaptLevel”

method not only spreads the new adaptation state to the kernel through the kernel layer inter-

face, but also broadcast an “Intent” message to notify all the energy-aware mechanisms.

To support energy adaptation, we added a new strategy to the UPS system named “Ener-

gyAdaptationStrategy”, and implemented the strategy we described in Listing 7.3 in the “up-

date” method to decide the new adaptation state and invokes the “setAdaptLevel” method of

“UPSPowerManager” to update the adaptation level of system. It listens to update event of

charging state and screen state, and the UPS system invokes its “update” method when one of

them is received. This strategy increases the adaptation level when the battery level reaches a

predefined threshold and resets the adaptation level to 3 when the device is charging.

7.5.2 Prioritized Wakelock Support

To add priority to wakelocks, we changed all the layers of Android. In Linux kernel, we

first added the priority field to the wakelock object. Then we changed the API of the sys-

tem file “/sys/power/wake lock” to take priority as a parameter. We added wakelock prior-

ity to wakelock name in the format “name|priority”, and parsed the wakelock priority in the

“lookup wake lock name” function of the power manager module in Linux kernel. In appli-

cation framework layer, we implemented the strategy to decide wakelock priority, as described

in Listing 7.2, in the “UPSPowerManagementService” class, which receives all the wakelock

operations. Moreover, it listens to the update event of user behavior, which is sent from the

UPS system, and invokes the “acquire wake lock” and “release wake lock” functions of the

legacy power library to communicate with the kernel. Updating the priority of a wakelock is

simply a combination of release and request operations.
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7.5.3 Wakelock Filtering

Wakelock filtering is implemented in the kernel layer and the application framework layer.

In the application framework layer, all the wakelock requests of the application layer are com-

bined to a single wakelock (we name it as AWL). This wakelock will further be transmitted to

the kernel with other wakelock requests generated the by library layer creators. In this way, the

kernel only manages a very limited amount of wakelocks. So that, at the application framework

layer, we update the state of AWL based on the states of all the application wakelocks and re-

quest/release it accordingly. Differing from the original design, we need to add the adaptation

level to the AWL wakelock and update it whenever an application applies or releases a wake-

lock. Finally, we hold it or update its level in the “updateSuspendBlockerLocked” function

through the kernel layer API of wakelock.

For the kernel layer, we modified the “has wake lock locked” function to decide the sus-

pending state by considering the adaptation level system and wakelock. In this way, when the

system enters into the energy adaptation mode, the system gets more chances to suspend to

memory and save a dramatic amount of battery energy. We also added another function called

“update timer”, which will be invoked when the adaptation level changes. This function in-

vokes the “has wake lock locked” function to get the correct expiration time after the system

state changes. Then it updates the timer if the expiration time changes or adds the suspend-

to-memory task to work queue (start to suspend) if no wakelocks with a lower-priority are

held.

In the library layer, we also changed the JNI (Java Native Interface) of the “UPSPower-

ManagementService” and the legacy power hardware layer of Android. They write the power

management commands to the kernel space. In this way, we build a hierarchical system across

the whole four layers of Android.
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Figure 7.3: The power measuring platform with NI cDAQ-9174.

7.6 Evaluation

We used two methods to evaluate the effectiveness of the WakeFilter strategy. First, we

evaluated the energy consumption of four specific usage cases. Second, we simulated the

power consumption of two usage scenarios based on the device usage traces of 14 users.

7.6.1 Method

First of all, we evaluated the power consumption in the device idle state. For all the scenar-

ios, we look at the first 5 minutes after display timeouts. This test includes four scenarios:

Scenario A WakeFilter is enabled. Adaptation level is 3. No third-party applications are

installed on the device.

Scenario B WakeFilter is enabled. Adaptation level is 1. No third-party applications are in-

stalled on the device.
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Scenario C WakeFilter is enabled. Adaptation level is 3. A group of third-party applications,

such as Facebook and Youtube, are installed on the device.

Scenario D WakeFilter is enabled. Adaptation level is 1. The same group of third-party ap-

plications as Scenario C are installed on the device.

In the experiment of these four scenarios, we used NI cDAQ-9174, which samples 100

times per second, to measure the power consumption of the device. We connected a very small

shunt resistor, about 0.005Ω, into the position electrode of the cell phone, and then used the

voltage monitor to measure the voltage of the resistor and the system. Finally, we used the

inputs as parameters to compute the power consumption of the whole device. Figure 7.3 shows

our experiment platform.

Second, we used simulation, the same as that was used in Chapter 5, to evaluate the effective

of WakeFilter based on the usage traces. In the experiment, we compared how long the device

worked in the sleep state and used the average idle power and active power of each user to

estimate the extended battery life. For the following two scenarios, each user installed the

applications they used on their personal device to the experiment device. During the experiment

period, the users used the experiment devices as on their own devices.

Scenario E WakeFilter is enabled. Adaptation level is 3. Use the device usage traces of 14

users as inputs.

Scenario F WakeFilter is enabled. Adaptation level is 1. Use the device usage traces of 14

users as inputs.

7.6.2 Experiment Results Analysis

The WakeFilter strategy saves energy when the device is in the idle state. When the device

is active, our mechanism does not save more energy, because the system holds a full wakelock

to make the device active. In this section, we mainly discuss the power-saving when the system

is idle.
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Idle Usage Case Evaluation

First, we did two experiments to evaluate wakelock usage in scenario A and B. All the

activities were generated by system services and build-in applications. We set the adaptation

level to different values and run at each level for about 5 minutes. Figure 7.4 and Figure 7.5

are the monitored power of these two experiments. We can see that in Figure 7.5 there are

more periods that the system works in the low-power mode. When the adaptation level is 3,

the average power of the device was 1.14 watts; when the adaptation level is 1, the average

power of the device was 0.997 watts. The energy saving is about 12.54%. From Figure 7.5,

we can see that there was still a large amount of time that the system is blocked by wakelocks,

which means that there is still a large space for energy optimization, because most activities

are “meaningless” to users.
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Figure 7.4: The measured power consumption of Nexus 4 after the display was automatically

turned off. The adaptation level of the system is 3. No third-party applications were installed

on the device.

In the second experiment, we started a group of applications (including Facebook, Twitter,

CNN, Gmail, Dropbox, AccuWeather and Amazon Mobile), most of which will generate back-

ground activities. We performed the similar process as the previous experiment. The power

consumption results of Scenario C and D are shown as Figure 7.6 and Figure 7.7 respectively.

First, we can see that at the beginning of both Figures, the power dissipation is high because

after the system sleeps, there were still some tasks to execute. Then, in Figure 7.7 the system
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Figure 7.5: The measured power consumption of Nexus 4 after the display was automatically

turned off. The adaptation level of the system is 1. No third-party applications were installed

on the device.

suspended earlier than in Figure 7.6. Furthermore, in Scenario D, the result shows more low-

power period than in Scenario C. The average power dissipation is 1.02 watts in Scenario D,

and the average power is 1.27 watts in Scenario C. The energy saving is about 18.89%.
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Figure 7.6: The measured power consumption of Nexus 4 after the display was automatically

turned off. The adaptation level of the system is 3. A group of third-party applications were

installed on the device and ran in the background.

Simulation Result Analysis

We implemented the wakelock mechanism in the simulator and analyzed how long wake-

locks block the device to sleep. We enabled WakeFilter in the experiment but set the adaptation

level to 3 and 1 separately. When the adaptation level is 3, all wakelocks can block the device

to sleep. It is the same as the situation without WakeFilter.
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Figure 7.7: The measured power consumption of Nexus 4 after the display was automatically

turned off. The adaptation level of the system is 1. A group of third-party applications were

installed on the device and ran in the background.
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Figure 7.8: Percent of time the devices were blocked by wakelocks per day when WakeFilter

was enable and the adaptation level was 3 and 1.

In the analysis, we did not count the wakelocks in two situations: device charging and

device active. When the device is charging, WakeFilter will be disabled. Wakelocks will

always block the device to sleep when the device is active, it is meaningless to analyze the

wakelocks in this situation. If a wakelock crosses the device active and idle state, we only

count the part of the time in the idle state. We analyze the power saving in the best case, and

ignored the power used to execute the suspended background applications (when the device

becomes active, they will be executed together).

Compared to Scenario E, we found the device-blocked time (the time that the device was

blocked to sleep by wakelocks) was significantly decreased in Scenario F, as shown of Fig-
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Figure 7.9: Battery life saved per day when WakeFilter was enabled and the adaptation level is

1.

ure 7.8. On average, only 27.58% of time the devices were blocked in Scenario F, and as

much as 45.01% of time the devices were blocked by wakelocks in Scenario E. This shows

that WakeFilter can effectively eliminate the unnecessary wakelocks and make the device sleep

much longer. Because WakeFilter can only make the device sleep when the device is idle, we

use the average device idle power of each user, as shown of Table 5.1, to calculate the saved

energy. We use the average device active power to calculate the extended battery life. From

Figure 7.9, we can see that in Scenario F, battery life can be extended for about 1.58 hours per

day on average. For some of the users, it can be extended for more than 2 hours.

7.7 Related Work

In this section, we discuss the previous publications about optimizing the wakelock mecha-

nism. Pathak et al. [36] found the “no-sleep bug” for the first time. Vekris et al. presented a tool

to detect “no-sleep bugs” in [37]. They used an inter-procedural data flow analysis framework

to verify if an application’s wakelock usage has this problem. Jindal et al. found an energy

bug named sleep conflict in [100]. It may happen in device drivers when switching from the

high-power state to the low-power state.

To solve the misuse of wakelocks, Kim et al. [39] proposed PR-wakelock to predict the
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misuse of wakelocks and forcibly release these wakelocks. In their new wakelock mechanism,

the function call analysis was used to analyze the behavior of wakelocks, and to predict possible

of misuse. The improper wakelock will be automatically released to make the system get more

chances to sleep. Similarly, a misused case of wakelocks was detected in [38]. They proposed

WakeScope to monitor wakelock behavior via probing kernel functions. Then, they detected if

a wakelock is misused when the application state changes. In [40], Alam et al. proposed a data

flow based analysis strategy to determine the placement of wakelock statements.

Different with these previous works, we solve the problem with energy adaptation and user-

centric system design. We use the usage patter of users to find out whether the task of each

application is important. If the application has a pattern at the given context, we will set the

priority of this application generated wakelocks to a high priority. Otherwise, the priority of

wakelocks is low, and the wakelock will not block the device to sleep in the device idle state.

7.8 Summary

In this chapter, we analyzed the wakelock usage based on the usage traces of 14 users.

Based on our analysis, we found wakelocks are commonly misused and abused in Android.

On average, about 50.83% of the idle period of the device was blocked by wakelocks. They

make the device cannot work in the low-power state, and consume a considerable amount of

battery energy.

To solve the problem, we propose the WakeFilter strategy to filter low-priority wakelocks

in the energy adaptation state. Such that, these wakelocks generated by applications will not

block the device to sleep in the idle state. We use the usage pattern of the individual user to

decide the priority of application generated wakelocks. So that important application’s tasks

will be guaranteed to execute, and unimportant application’s tasks are suspended to execute.

We used two methods to evaluate the energy consumption in the special usage scenario and

normal device usage scenario. The experiment result shows that WakeFilter can save about

12.54% and 18.89% battery energy consumption in two special usage scenarios. Moreover,
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the simulation result found only about 27.58% idle period is blocked by wakelocks when using

WakeFilter, as corresponded to 45.01% in the normal case. Based on the average idle power

and active power from users’ traces, we found WakeFilter can extend battery life by as much

as 1.58 hours per day on average for these users.
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CHAPTER 8

CONCLUSION

Power management is becoming more and more important when designing mobile sys-

tems. Traditional power management systems use unified power management policies to save

battery energy through controlling the power state of hardware components. However, recent

researches found this method cannot work effectively to optimize the power consumption of

the system because applications activities make hardware components frequently work in high-

power mode. Most of the applications are redundant to the user. New generation power-saving

techniques were also proposed to solve the power problem, but they usually failed to consider

the impact to user experience. In this dissertation, we proposed the user-centric power manage-

ment to dynamically customize the power-optimization strategies based on the user behavior of

individual user. From the analysis of 14 users’ device usage traces, we found the user behavior

of most users follows a pattern, which helps us to distinguish important applications at differ-

ent context. Thus, we can use usage pattern to restrict the power draw of redundant application

activities. In this chapter, we conclude the work we have done in this dissertation.

8.1 Conclusion

The most important and difficult step for user behavior-related research is data collecting.

We modified the Android system to collect user behaviors and the corresponding system events.

We selected 14 volunteers as the experiment target and collected their usage traces with the

experiment platform we supplied. We spent about eight months to finish the two-stage data

collecting work and collected about 7GB data from users. Then we implemented data analysis

programs to analyze the charging pattern of users, the application usage pattern, battery power

consumption in different states, application power consumption, location service usage, and

wakelock usage. From this analysis, we found the battery life of our experiment device is

very poor. Users charged the devices more than one times a day, and the charged power can

only support the device to be active for 11.89% of the time during a whole day on average.



115

A significant amount of battery energy was consumed by background application activities,

which are either unnecessary or unneeded to the user.

We also designed and implemented statistical and data mining algorithms to analyze the

usage pattern of users. We used these algorithms to analyze the interest points, active periods,

and usage pattern. From the analysis result, we found user behavior is both time-dependent

and location-dependent. Nearly all users have their personal interest points and active periods.

In these contexts, the users are also inclined a use a specific group of applications, which are

important to the users. The association rules between context and application are valuable

for user-centric system design. We can utilize it to distinguish important application activities

from normal application activities, and then we can take actions to restrict or reschedule the

redundant application activities to save battery energy. Besides, these rules are also helpful for

other aspects of user-centric design, such as improving the UI design of applications.

Based on the observations, we designed and implemented the UPS system to bridge user

behavior and energy-saving strategies. In the UPS system, we narrow down user behavior to

user-app interactions. The UPS system collects user-app interaction events to analyze the usage

pattern of users. As a assistant framework for designing user-centric energy-saving strategies, it

also listens to key system events and interval events to trigger the registered power-optimization

operations defined in the strategies. With this system, researches can concentrate on designing

power optimization policies. Besides, we designed the UCASS strategy to eliminate the power

consumed by redundant application activities. It uses the usage pattern of users to find out

unimportant application. Then, it reschedules the background tasks of these applications to the

following device charging period or the next device active period, such that we can reduce their

power consumption with task grouping. Our experiment result shows the average saved battery

energy consumed by background application activities is about 25.62%.

In addition, we found most location requests were duplicated because users usually used

mobile device very heavily in several dedicated locations. We proposed LocalLite to remove
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the energy waste caused by duplicated requests. The LocalLite location provider combines

location with wireless access points, which are mostly immovable, and caches received loca-

tions. Such that the location requests generated in the same context do no have to power on

hardware components to pinpoint user location. This improvement can significantly reduce the

redundant location requests while at the same time returns accurate location information. On

average, WakeFilter saves about 98.51 percent of energy consumed by location requests. It

also enables location-marked user behavior sensing.

Finally, we proposed the WakeFilter strategy to optimize the opportunistic suspending

mechanism of Android because we found wakelock misuse and abuse are common in An-

droid. Many applications aggressively use wakelocks and some of theme even fail to release

wakelocks. The WakeFilter strategy utilizes user’s usage pattern to decide the priority of ap-

plications’ wakelocks. When the system works in the energy adaptation mode, low-prioritized

wakelocks cannot block the device to sleep. WakeFilter decreases the time that the device was

blocked to sleep from 45.01% to 27.58% when the device is idle. The average extended battery

life is about 1.58 hours per day.
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CHAPTER 9

FUTURE WORK

In the future, we can improve the UPS system several aspects. In this section, we discuss

the future work of this dissertation.

9.1 Future Work

The power management of mobile devices is a tough task as energy-waste exists in different

aspects of the system. There is nearly no way to solve the problem once for all. Besides, with

the improvement of hardware performance and the advancement of application design, new

issues that cause battery energy waste emerge every year. In the future, we still need to do a lot

of work to improve battery life.

First, more work should be done on the research of user behavior. We need to monitor user

behavior in a much longer period, so that we can analyze how frequently user behavior changes

with time. With this result, we can set a more accurate length to the sensing period of the UPS

system. Also, we need to expand the idea of user behavior to other aspects and collect the

corresponding data from real users. Based on the new style of usage pattern, we can observe

more energy waste in the system.

Second, more energy-saving strategies should be developed based on the usage pattern

supplied by the UPS system. We believe that task grouping is not the only way to use the usage

pattern, it can also be used to design other energy-saving strategies to diminish the battery

energy wasted by applications. The usage pattern can also be used to optimize the traditional

power management systems, such as dynamically setup the power-related configurations of

hardware components. For example, we can dynamically set the timeout time of display based

on active period. During the active period, the user uses the device more frequently. We can

set it to a larger value based on the interaction intervals. In other time periods, we can set it to

a smaller value. In this way, the energy consumption of display can be saved without losing

too much user experience.
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Third, other system services’ usage should as well be investigated to find out the redun-

dant usage, and use the usage pattern to optimize it. We noticed that the android application

consumes a large amount CPU time when the device is either active or idle. Thus, there is a

great potential to save energy through optimizing system services. The relationship between

applications and system services should also be investigated, such that we know how services

generates activities while applications are using them. The result is also helpful for developers

to design energy-aware applications.

Finally, the simulator we used should also be optimized to estimate power consumption

of applications in different situations. We should find out how the power of system services

change with applications. Besides, we should expand the simulator to estimate the power con-

sumption for more platforms and more system configurations. In this dissertation, we calibrate

the power consumption of applications, specifically for the experiment device. Afterward, the

power models should be able to self-calibrating. Such that, we can compare the effectiveness

of the energy-saving models for different devices.
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APPENDIX

A.1 User Behavior Analysis Algorithms

A.1.1 Interest Point Analysis Algorithm

Listing A.1: The pseudo code of the interest point analysis algorithm.

A r r a y L i s t< I n t e r e s t P o i n t >

a n a l y z e I n t e r e s t P o i n t s ( A r r a y L i s t<AppUsage> aus ){

Map<I n t e g e r , I n t e r e s t P o i n t > map =

new HashMap<I n t e g e r , I n t e r e s t P o i n t > ( ) ;

i n t i n t e r a c t i o n s = 0 ;

f o r ( AppUsage au : aus ){

I n t e r e s t P o i n t i p = map . g e t ( au . g e t L o c a t i o n H a s h ( ) ) ;

i f ( i p == n u l l ){

i p = new I n t e r e s t P o i n t ( au . l o c a t i o n ) ;

map . p u t ( au . g e t L o c a t i o n H a s h ( ) , i p ) ;

}

i p . a d d I n t e r a c t i o n ( ) ;

i n t e r a c t i o n s ++;

}

L i s t <I n t e r e s t P o i n t > p o i n t s =

new A r r a y L i s t< I n t e r e s t P o i n t > ( ) ;

p o i n t s . addAl l ( map . v a l u e s ( ) ) ;

doub le maxDens i ty = 0 ;

f o r ( I n t e r e s t P o i n t p o i n t : p o i n t s ){

p o i n t . com pu teDens i t y ( i n t e r a c t i o n s ) ;
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i f ( p o i n t . g e t D e n s i t y ( ) > maxDens i ty )

maxDens i ty = p o i n t . g e t D e n s i t y ( ) ;

}

doub le a v g D e n s i t y = 1 0 0 . 0 / p o i n t s . s i z e ( ) ;

doub le c o r e D e n s i t y = a v g D e n s i t y

+ ( maxDensi ty−a v g D e n s i t y )∗ i p S t a n d a r d / 1 0 0 . 0 ;

f o r ( i n t i = p o i n t s . s i z e ( ) − 1 ; i >= 0 ; i −−){

i f ( p o i n t s . g e t ( i ) . g e t D e n s i t y ( ) < c o r e D e n s i t y )

p o i n t s . remove ( i ) ;

}

r e t u r n p o i n t s ;

}

A.1.2 Active Period Analysis Algorithm

Listing A.2: The code of the active period analysis algorithm.

A r r a y L i s t<T i m e I n t e r v a l > a n a l y z e T i m e I n t e r v a l s ( ) {

A r r a y L i s t<T i m e I n t e r v a l > r e s u l t =

new A r r a y L i s t<T i m e I n t e r v a l > ( ) ;

i n t c o u n t = t i m e U n i t ∗ 24 ∗ 6 ;

f o r ( i n t i = 0 ; i < c o u n t ; i ++){

r e s u l t . add (

new T i m e I n t e r v a l ( i ∗10 , ( i +1 )∗10 , t i m e U n i t ) ) ;

}

i n t inumber = 0 ;

f o r ( Map . Ent ry<I n t e g e r , App> e n t r y : map . e n t r y S e t ( ) ) {
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App app = e n t r y . g e t V a l u e ( ) ;

f o r ( AppUsage au : app . getAppUsages ( ) ) {

inumber += m a r k P o i n t s ( au , r e s u l t ) ;

i f ( au . endTime > execu t eT im e )

execu t eT im e = au . endTime ;

i f ( au . beg inTime < s t a t S t a r t T i m e )

s t a t S t a r t T i m e = au . beg inTime ;

}

}

doub le [ ] s t a n d a r d = t p S t a n d a r d [ t i m e U n i t == 7 ? 1 : 0 ] ;

doub le max = 0 , d e n s i t y ;

f o r ( T i m e I n t e r v a l t i : r e s u l t ){

d e n s i t y = t i . c a l c u l a t e D e n s i t y ( inumber ) ;

i f ( d e n s i t y > max ) max = d e n s i t y ;

}

d e n s i t y = s t a n d a r d [ 1 ]

+(max−s t a n d a r d [ 1 ] ) ∗ s t a n d a r d [ 0 ] / 1 0 0 . 0 ;

f o r ( T i m e I n t e r v a l t i : r e s u l t ){

t i . s e t P o i n t T y p e ( inumber , d e n s i t y , s t a n d a r d [ 1 ] ) ;

}

T i m e I n t e r v a l t i , l e f t , r i g h t ;

i n t i n d e x ;

f o r ( i n t i = 0 ; i < r e s u l t . s i z e ( ) ; i ++){
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t i = r e s u l t . g e t ( i ) ;

s w i t c h ( t i . ge tType ( ) ) {

c a s e CORE:

c l u s t e r t i . s e t C l u s t e r ( i ) ;

b r e a k ;

c a s e BORDER:

f o r ( i n t j = 1 ; j <= t p D i s t a n c e ; j ++){

i n d e x = ( i − j + r e s u l t . s i z e ( ) ) % r e s u l t . s i z e ( ) ;

l e f t = r e s u l t . g e t ( i n d e x ) ;

i f ( l e f t . ge tType ( ) == Po in tType . CORE){

t i . s e t C l u s t e r ( i n d e x ) ;

b r e a k ;

}

i n d e x = ( i + j ) % r e s u l t . s i z e ( ) ;

r i g h t = r e s u l t . g e t ( i n d e x ) ;

i f ( r i g h t . ge tType ( ) == Po in tType . CORE){

t i . s e t C l u s t e r ( i n d e x ) ;

b r e a k ;

}

}

b r e a k ;

d e f a u l t :

b r e a k ;

}

}
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A r r a y L i s t<T i m e I n t e r v a l > i n t e r v a l s =

new A r r a y L i s t<T i m e I n t e r v a l > ( ) ;

T i m e I n t e r v a l l a s t = n u l l ;

i n t c l u s t e r S N = 0 ;

f o r ( T i m e I n t e r v a l t i 2 : r e s u l t ){

i f ( t i 2 . g e t C l u s t e r ( ) >= 0){

i f ( l a s t == n u l l ){

l a s t =

new T i m e I n t e r v a l ( t i 2 . s t a r t , t i 2 . end , t i m e U n i t ) ;

l a s t . s e t C l u s t e r ( c l u s t e r S N + + ) ;

} e l s e {

l a s t . end = t i 2 . end ;

}

} e l s e {

i f ( l a s t != n u l l ){

i n t e r v a l s . add ( l a s t ) ;

l a s t = n u l l ;

}

}

}

i f ( l a s t != n u l l ) { i n t e r v a l s . add ( l a s t ) ; }

i f ( i n t e r v a l s . s i z e ( ) == 0) r e t u r n i n t e r v a l s ;

l a s t = i n t e r v a l s . g e t ( i n t e r v a l s . s i z e ( ) − 1 ) ;

f o r ( i n t i = i n t e r v a l s . s i z e ( ) − 2 ; i >= 0 ; i −−){



124

t i = i n t e r v a l s . g e t ( i ) ;

i f ( l a s t . s t a r t − t i . end <= 30){

l a s t . s t a r t = t i . s t a r t ; / / combine

i n t e r v a l s . remove ( i ) ;

} e l s e {

l a s t = t i ;

}

}

r e t u r n i n t e r v a l s ;

}

i n t

m a r k P o i n t s ( AppUsage au , A r r a y L i s t<T i m e I n t e r v a l > t i m e s ){

C a l e n d a r s t a r t = C a l e n d a r . g e t I n s t a n c e ( ) ;

s t a r t . s e t T i m e I n M i l l i s ( au . beg inTime ) ;

i n t m inu t esBe tween =

( i n t ) ( ( au . endTime−au . beg inTime ) / 1 0 0 0 / 6 0 ) ;

i f ( m inu t esBe tween <= 0)

r e t u r n 0 ;

i n t hour = s t a r t . g e t ( C a l e n d a r . HOUR OF DAY ) ;

i n t m inu t e = s t a r t . g e t ( C a l e n d a r . MINUTE ) ;

i n t i = hour ∗ 6 + m inu te / 1 0 ;

i f ( t i m e U n i t == 7){

i n t d a t e = s t a r t . g e t ( C a l e n d a r . DAY OF WEEK ) ;
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i += ( d a t e − 1) ∗ 24 ∗ 6 ;

}

i n t r e s u l t = 0 ;

f o r ( i n t t =0 ; t < m inu tesBe tween ;

i =(++ i )% t i m e s . s i z e ( ) , t +=10){

t i m e s . g e t ( i ) . i n c r e a s e I n t e r a c t i o n ( ) ;

r e s u l t ++;

}

r e t u r n r e s u l t ;

}

A.1.3 Usage Pattern Analysis Algorithm

Listing A.3: The code of the usage pattern analysis algorithm.

A r r a y L i s t<U s a g e P a t t e r n >

a n a l y z e U s a g e P a t t e r n ( A r r a y L i s t<Tim eSl i ce> s l i c e s ,

A r r a y L i s t< I n t e r e s t P o i n t > p o i n t s ){

HashMap<I n t e g e r , U s a g e P a t t e r n > p a t t e r n M a p =

new HashMap<I n t e g e r , U s a g e P a t t e r n > ( ) ;

f o r ( Map . Ent ry<I n t e g e r , App> e n t r y : map . e n t r y S e t ( ) ) {

App app = e n t r y . g e t V a l u e ( ) ;

f o r ( AppUsage au : app . getAppUsages ( ) ) {

I n t e r e s t P o i n t i p = f i n d I n t e r e s t P o i n t ( au , p o i n t s ) ;

i f ( i p == n u l l ) { c o n t i n u e ; }

A r r a y L i s t<Tim eSl i ce> t i s = f i n d I n t e r v a l ( au , s l i c e s ) ;
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f o r ( T i m e S l i c e t i : t i s ){

i n t hash = U s a g e P a t t e r n . hashCode ( t i , ip , app ) ;

U s a g e P a t t e r n p = p a t t e r n M a p . g e t ( hash ) ;

i f ( p == n u l l ) {

p = new U s a g e P a t t e r n ( t i , ip , app ) ;

p a t t e r n M a p . p u t ( hash , p ) ;

}

p . upda t eUsage ( au , execu t eT im e ) ;

}

}

}

i n t s t a t S p a n =

( i n t ) Math . c e i l ( ( ( executeTime−s t a r t T i m e ) / 3 6 0 0 0 0 0 / 2 4 ) ) + 1 ;

A r r a y L i s t<U s a g e P a t t e r n > p a t t e r n s =

new A r r a y L i s t<U s a g e P a t t e r n > ( ) ;

f o r ( Map . Ent ry<I n t e g e r , U s a g e P a t t e r n > e n t r y :

p a t t e r n M a p . e n t r y S e t ( ) ) {

U s a g e P a t t e r n p a t t e r n = e n t r y . g e t V a l u e ( ) ;

i f ( p a t t e r n . g e t S u p p o r t ( s t a t S p a n ) > m inSuppor t )

p a t t e r n s . add ( p a t t e r n ) ;

}

r e t u r n p a t t e r n s ;

}
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A r r a y L i s t<Tim eSl i ce>

f i n d I n t e r v a l ( AppUsage au , A r r a y L i s t<Tim eSl i ce> s l i c e s ){

A r r a y L i s t<Tim eSl i ce> r e s u l t = new A r r a y L i s t<Tim eSl i ce > ( ) ;

i n t [ ] span = au . t im eToMinu tes ( t i m e U n i t ) ;

f o r ( T i m e S l i c e t i : s l i c e s ){

i f ( ! ( span [ 0 ] > t i . end | | span [ 1 ] < t i . s t a r t ) )

r e s u l t . add ( t i ) ;

}

r e t u r n r e s u l t ;

}

I n t e r e s t P o i n t

f i n d I n t e r e s t P o i n t ( AppUsage au ,

A r r a y L i s t<I n t e r e s t P o i n t > p o i n t s ){

f o r ( I n t e r e s t P o i n t i p : p o i n t s ){

i f ( i p . d i s t a n c e B e t w e e n ( au . l o c a t i o n [ 0 ] ,

au . l o c a t i o n [1 ] ) <10){

au . i P o i n t = i p ;

r e t u r n i p ;

}

}

r e t u r n n u l l ;

}
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The power consumption of mobile devices must be carefully managed to provide a satisfied

battery life to users. This target, however, recently has become more and more difficult to

complete. We still cannot expect the battery life problem be solved economically shortly, even

though researchers already addressed many aspects of this problem. Principally, that’s because

existing power management systems, which concentrate on controlling hardware power states,

cannot effectively make these hardware components work in low-power mode. Why is this the

case?

Based on our analysis of 14 users’ device usage trace, we found that background appli-

cations generate too many activities when the device is either idle or active. These activities

are either unimportant or unnecessary for the user. However, a significant amount of CPU

time was consumed by them. Moreover, these application activities cause many system ser-

vices to consume a considerable quantity of battery energy. When we install more applications

on our mobile devices, this situation will become even worse. Most application developers

rarely consider the power consumption of applications. How to control application state and

eliminate redundant application activities become more and more important. Existing power

management systems, apparently, cannot handle this situation.

Some publications already tried to solve the problem several years ago. For example,

EcoSystem and Cinder operating systems try to allocate battery energy precisely to applica-
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tions based on their requirements. However, the problem with their solution is that the es-

timated application power consumption cannot accurately represent its reasonable demand.

Energy-aware adaptation is another solution to decrease application power consumption. In

our previous research, we implemented the Anole framework to supply energy adaptation APIs

to applications. To use this framework, application developers have to implement power-saving

strategies in their program. In the operating system, we need to change application behavior

automatically in energy adaptation mode. We noticed the latest iOS operating system imple-

mented the idea; the system notifies users to turn off background application update when the

battery level is lower than 20%. However, this kind of uniformity in power management can

hardly be accepted by most users, because user habits are different from each other.

We need to customize the power management strategy for each user. Otherwise, the user ex-

perience may be significantly impacted. To solve this problem, we propose user-centric power

management, which utilizes the usage pattern of the individual user to distinguish important

application from regular applications. Energy-saving strategies will not influence important

applications to the user. From the analysis of 14 users’ device usage traces, we found that

most users’ user behavior follows their pattern, which is both time-dependent and location-

dependent. Based on this observation, we propose the UPS power management, which collects

user behaviors and analyzes the usage pattern of users. We can easily use it to bridge usage

behavior to energy-saving strategies. We also proposed three energy-saving strategies, UCASS,

LocalLite and WakeFilter, to optimize the redundancy in background application activities and

location service usage, and the abuse of in wakelock usage. Our simulation result based on

real device usage traces shows that these three strategies can effectively save battery energy

consumed background application activities, location requests, and wakelock requests.
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