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GENERAL INTRODUCTION 

Gram-positive streptococcal pathogens are the causative agent of a large number of 

infections that result in morbidity and mortality, representing a significant burden to the health 

care system (105, 134).  Among these pathogens are streptococci that typically reside as 

commensal colonizers of the human body, but upon introduction to certain host sites cause 

opportunistic infections.  Streptococcus agalactiae and Streptococcus pneumoniae represent two 

such streptococcal species. A variety of diseases can result from bacterial displacement to other 

host sites, with systemic infection the cause for greatest concern.  Systemic infection entails 

entry of streptococci into the host bloodstream where dissemination to a number of host organs 

as well as the cerebrospinal fluid can occur.  Ultimately, systemic infection can result in 

endocarditis (60) or meningitis (25, 64) which can both proceed rapidly to a fatal disease. 

Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a commensal 

colonizer of the human gut and genitourinary tract (15), with up to 30% of women experiencing 

vaginal colonization (7).  GBS is a leading cause of sepsis and meningitis in newborns (144), 

with both vertical and horizontal transmission of GBS to neonates occurring (146).  Recent 

reports have highlighted a decline in incidence of neonatal disease due to GBS (117), but have 

also documented an increase in invasive disease in elderly patients with at least one underlying 

medical condition (117, 141), illustrating that GBS remains a systemic pathogen of medical 

importance. 

Streptococcus pneumoniae is a commensal colonizer of the human nasopharynx (86) and 

is a significant cause of pneumonia, otitis media, sepsis and meningitis in the young and 

immunocompromised (71).  Current vaccines have shown efficient coverage of the most 

prevalent disease-causing serotypes (166), but an increase in infections caused by serotypes not 
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covered by vaccination has been observed (61).  Additionally, antibiotic resistance of non-

vaccine serotypes appears to be increasing over time (41), highlighting the challenges faced in 

overcoming systemic streptococcal pathogens. 

In the laboratory setting, the aquatic systemic pathogen Streptococcus iniae (45), is often 

used to model systemic disease in a natural host, the zebrafish (Danio rerio).  Many of the 

virulence factors that contribute to systemic disease caused by GBS and S. pneumoniae are 

conserved in S. iniae, allowing investigation of virulence in an in vivo setting.  While S. iniae 

only causes a relatively mild opportunistic sepsis or cellulitis in humans (45), disease within an 

aquatic host mirrors what is seen for human specific pathogens, providing a powerful tool for 

analysis of pathogenesis.  

The ability of GBS, S. pneumoniae, and S. iniae to cause systemic disease is dependent 

on the production of a polysaccharide capsule that shields the bacteria from clearance by host 

immune components such as complement deposition (88) and phagocytosis (67).  Alteration of 

the capsular polysaccharide composition within a single species results in different serotypes that 

are able to evade an immune response generated by other serotypes, making it difficult to 

generate a comprehensive vaccine that covers all serotypes of a given species. 

 

Streptococcus iniae 

 The β-hemolytic aquatic pathogen Streptococcus iniae was initially isolated from the 

abscess foci of an Amazon freshwater dolphin, Inia geoffrensis, in 1976 (118).  Antisera to 

antigens from Streptococcus groups A to U did not crossreact with S. iniae and therefore it was 

designated as a new non-Lancefield Streptococcus species (118).  Subsequent to its 

identification, S. iniae was later observed to spread from diseased wild fish to cultured marine 
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fish, representing a threat to aquaculture (174).  A wide number of fish species have 

demonstrated infection with S. iniae (2), including tilapia, trout (39),  and hybrid striped bass 

(140), with an estimated annual financial impact on aquaculture of $10 million in the US and 

$100 million globally (140).   

 In 1995 an S. iniae specific vaccine was introduced for farmed rainbow trout, which 

reduced mortality from greater than 50% to less than 5% (40).  However, by 1997 massive 

outbreaks of S. iniae infection in immunized fish were reported, with the eventual determination 

that a new serotype able to evade the vaccine triggered immune response was responsible (5). 

The vaccine escape observed with varying serotype of S. iniae is reminiscent of what has been 

observed for S. pneumoniae, with non-vaccine serotypes filling the void left by vaccination to 

more prevalent serotypes (61).  

 Recent work has characterized a live-attenuated strain of S. iniae lacking the 

phospoglucomutase gene, which provokes a robust immune response and has promise as a 

vaccine candidate (16).  However, it is not apparent how this strain would overcome the 

serological diversity that has provided vaccine escape previously (5).  Other vaccine strategies 

are currently being employed (2), but a better understanding of what regulates serological 

diversity in S. iniae, or the generation of a serotype-independent vaccine, is necessary to 

comprehensively protect aquaculture from S. iniae infection. 

 Fish infected with S. iniae exhibit multisystem organ involvement and diffuse 

hemorrhaging (5), and dissemination to the heart, brain, and spleen is observed as early as 15 

minutes after intramuscular injection during experimental infection of zebrafish (79).  Infection 

with S. iniae is overwhelmingly fatal in zebrafish, with 92% of fish succumbing to disease 4 days 

post infection (dpi) at an infectious dose of 1 x 105 CFU (79).  Conversely, human infections 
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caused by S. iniae are limited in severity, and typically consist of bacteraemic cellulitis from 

patients who suffered a puncture wound while preparing contaminated fish (2).  Many patients 

presenting with S. iniae infection were elderly and had one or more underlying medical condition 

concurrent with infection, indicating that zoonotic infection with S. iniae is primarily 

opportunistic and limited to immunocompromised individuals (2). 

 Phylogenetically, S. iniae is closely related to GBS when comparing the 16S ribosomal 

RNA sequence (68).  A number of virulence determinants are also shared between S. iniae  and 

GBS, including homologs of a C5a peptidase, enolase, and CAMP factor (6).  Additionally, S. 

iniae  also contains virulence factors homologous to those utilized by Streptococcus pyogenes, 

including an M-like protein and the cytolysin streptolysin S (6).  Perhaps most important, the 

production of a polysaccharide capsule is highly conserved between S. iniae and GBS, with an 

alignment of the first four genes giving greater than 70% similarity at the translated amino acid 

sequence level.  These first four genes are associated with regulation of capsule synthesis, and 

the high degree of homology between S. iniae and GBS is suggestive of a conserved regulatory 

mechanism.  The importance of capsule in virulence was recently highlighted in a large scale 

signature-tagged random transposon mutagenesis (STM) study that identified S. iniae mutants 

incapable of surviving within the zebrafish host, with a large percentage of mutants containing 

transposon insertions in genes of the capsule operon (94). 

 

Streptococcus agalactiae or GBS 

 Streptococcus agalactiae are β-hemolytic cocci that contain the Group-B Lancefield 

carbohydrate and are comprised of nine distinct serotypes (Ia, Ib, and II-VIII), with serotypes Ia, 

Ib, II, III, and V primarily responsible for invasive disease (63).  GBS was originally associated 
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with bovine mastitis (12), and only recently has it become associated with invasive neonatal 

disease.  Beginning in the 1960s GBS was identified as a causative agent of neonatal sepsis and 

meningitis, as well as adult bacteraemia (19, 38), and by the 1970s became the leading cause of 

neonatal infection in the developed world (30, 56, 91).  At this time it is unclear whether GBS 

had a bovine origin and crossed the species barrier to become a colonizer and pathogen of 

humans (12), or rather that GBS was originally associated with humans and crossed in the other 

direction (15).   

 In the context of invasive neonatal disease, two distinct clinical manifestations are 

routinely observed.  Early onset disease is due to intrapartum transmission of GBS from the 

genitourinary tract and occurs prior to 7 days of age (117).  Late-onset disease occurs on or after 

day 7 and may be caused by horizontal transmission to the newborn (117).  Developed countries 

routinely use a combination of antenatal culture screening of pregnant women and intrapartum 

antibiotic prophylaxis to prevent invasive GBS neonatal disease (133).  However, this represents 

a significant cost to the health care system, and is economically untenable in developing 

countries (134).  In this age of antibiotic resistance, the constant use of antibiotic prophylaxis is 

also a concern, and the need for an efficient comprehensive solution to GBS infection of 

neonates is great. 

 Humans are typically asymptomatically colonized by GBS (7, 15), and it is only 

introduction of bacteria to the bloodstream in immunocompromised or immune-incompetent 

individuals that results in disease.  Transmission of GBS to the normally sterile circulatory 

system requires a dynamic shift in functional goals for the bacterium, as they move from a site 

associated with an acidic environment (genitourinary tract) to one with a more neutral pH 

(blood), encounter differing levels of nutrients, and enter into an environment under intense 
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immunological scrutiny.  This requires an efficient switch from a form that promotes 

colonization to one that enhances survival, and while not mutually exclusive, these two states 

entail a number of differentially regulated genes.  This has recently been demonstrated in two 

separate studies in which GBS was incubated ex-vivo in human whole blood, global gene 

expression analyzed, and demonstrated extensive changes to the GBS transcriptome when 

introduced to human blood (92, 93).  A significant drawback to these studies was that they used a 

single clinical isolate of GBS for transcriptome studies, and they observed that expression data 

from the bacteria as well as cytokine levels in response to bacteria differed greatly for blood 

taken from different individuals.   

 Once in the host bloodstream, GBS utilizes a variety of virulence factors to survive and 

propagate.  A number of these factors were identified by using STM in conjunction with a 

neonatal rat sepsis model to identify mutants unable to survive in vivo (65).  The authors report 

the identification of gene classes associated with virulence, including binding and transport of 

small molecules, two-component signaling systems (TCSSs), metabolism, cell envelope 

regulation, adherence, protein secretion, and a number of genes of unknown function (65).  

Taken together with transcriptomic studies in human blood, it is evident that GBS pathogenesis 

is a multifaceted process that currently is not well understood. 

 Current efforts at controlling GBS infection are focused on vaccine design, with vaccines 

to surface proteins (111, 127, 145) and pilus (87, 104) currently being investigated.  Promising 

results have been obtained thus far using a combination of pan-genome reverse vaccinology and 

structural vaccinology.  Pan-genome reverse vaccinology entails the collation of whole genome 

sequences for a large number of strains of a given organism, allowing identification of vaccine 

targets that would provide protective immunity to a broad contingent of the organism (137).  
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Structural vaccinology pertains to the identification of antigenically unique structures, and the 

synthetic combination of these structures into a single molecule for multivalent protection for a 

given organism (104, 131).  Both of these strategies have been utilized relatively successfully for 

GBS, by showing that all GBS strains sequenced so far contain at least one of three different 

pilus islands encoding the genes necessary for pilus assembly (87).  While two of the pili are 

highly conserved amongst different strains of GBS, antigenic variation exists for one of the pilus 

islands (104).  However, using pan-genome reverse vaccinology, variable regions corresponding 

to all sequenced strains were identified, and using structural vaccinology were combined into a 

chimeric protein that elicited protection for all strains carrying the variable pilus subset in a 

mouse-challenge model (104). 

 Despite these promising advances in vaccine design for GBS, more work is needed to 

characterize the immune responses elicited by pili-based vaccines as well as the efficacy of the 

immune responses.  Further characterization of the pilus encoding islands is necessary to 

determine contributions to variability that may arise under selective pressure, and any 

implications this may have on vaccine escape.  There are a number of lessons to be learned from 

the relatively successful adoption of a multi-valent S. pneumoniae vaccine (168), and subsequent 

escape by various strains (61). 

 

Capsule and its regulation 

 The importance of the polysaccharide capsule of streptococcal pathogens capable of 

causing systemic disease is well established (23, 69, 79, 80, 82, 94, 107, 143, 165, 173).  The 

capsular polysaccharide (CPS) consists of repeat polysaccharide units that are typically species 

and strain specific, with most of the enzymes required for generating CPS encoded within a 
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single genetic locus (173) (Fig. 1).  All nine serotypes of GBS utilize differing linkages of 

glucose, galactose, and N-acetylneuraminic acid in the CPS repeat unit (26).  N-

acetylglucosamine is also used in all serotypes but type VI and type VIII, and type VIII also uses 

rhamnose in the CPS repeat unit (26).  The structural variability observed for CPS in different 

serotypes of GBS has been attributed to genetic differences within the CPS synthesis locus, with 

en bloc replacement of glycosyltransferase genes putatively occurring through horizontal gene 

transfer, leading to different enzyme linkage specificities (26).  As protective antibodies can be 

made to GBS CPS, these events were likely influenced by selective pressures exerted by the host 

immune system, necessitating the adaptation of alternative CPS structures for immune evasion.  

Despite the genetic diversity in the CPS synthesis locus, a subset of highly conserved genes is 

present in all serotypes, including cpsA, cpsB, cpsC, cpsD, cpsE, cpsL, neuB, neuD, neuA, and 

neuC (26).  This conservation suggests that these genes are integral to success of GBS in the face 

of selective pressure by the host immune system.   

 In contrast to the nine serotypes currently identified for GBS, S. pneumoniae 

demonstrates a much larger repertoire of polysaccharide repeat units, with 93 individual 

serotypes identified thus far (173).  This is primarily attributed to the natural competence 

exhibited by S. pneumoniae, allowing for increased acquisition of foreign DNA contributing to 

genetic variability within the CPS synthesis locus.  Despite the large degree of serotype 

variability observed for S. pneumoniae, the first four genes of the CPS synthesis locus are 

conserved amongst serotypes, with cpsB, cpsC, and cpsD divided into two major clusters, and 

cpsA highly conserved amongst all serotypes (173). 
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Figure 1:  Organization of genes in the polysaccharide capsule synthesis operon of GBS 
serotype Ia (26) with putative promoter elements (171) indicated with directed arrows.  
Functional assignments of capsule operon genes are shown below.  Asterisks indicate genes with 
significant sequence variance between serotypes. 
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 Currently, S. iniae has only two known serotypes, I  and II, which are biochemically 

identified by arginine dihydrolase activity, with serotype I positive for enzyme activity and 

serotype II negative (10).  Additionally, S. iniae of serotype II appear to produce more CPS than 

serotype I (10), which may explain the heightened severity of disease manifested by infection 

with serotype II in fish (5).  This observation is also consistent with the determination that the 

avirulent commensal S. iniae strain 9066 is missing genes cpsF through cpsL of the capsule 

operon, supporting the notion that capsule is required to initiate disease (79).  As with GBS, it 

appears that horizontal gene transfer has contributed to the presence and diversity of the S. iniae 

CPS locus (79). 

 The production of CPS is canonically associated with protection from immune clearance, 

but an indirect role for CPS in controlling adhesion and invasion of epithelium has also been 

observed.  The acapsular commensal S. iniae strain 9066 demonstrated increased adherence to, 

and invasion of, human brain microvascular endothelial cell (BMEC) monolayers when 

compared to the encapsulated virulent 9117 strain (45).  Additionally, an acapsular isogenic 

mutant of the type III GBS strain COH-1 demonstrated increased invasion of human umbilical 

vein endothelial (HUVE) cell monolayers compared to the encapsulated parent strain (47).  

Consistent with these results is the observation that S. pneumoniae strains with reduced levels of 

CPS or no CPS were better able to adhere to and invade the human lung alveolar carcinoma 

epithelial cell line A549 (51).  Subsequently, it was determined that encapsulated strains of S. 

pneumoniae actively reduce levels of CPS when coming into contact with epithelial cells (51), 

which may represent a physiological adaptation prior to colonization.  Taken together, these 

observations suggest that these bacterial pathogens tend to exist in one of two dynamically 

regulated states, with production of CPS enhancing survival during dissemination from a site of 
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commensal colonization, and reduction of CPS to enhance colonization when a suitable host site 

is encountered.  Supporting this hypothesis is the recent determination that the GBS 

transcriptional regulator RogB coordinately regulates the CPS synthesis locus and genes that 

facilitate adherence.  The authors demonstrated that a rogB null mutant had increased levels of 

transcript from the CPS locus and decreased levels of fbsA (50), which encodes a fibrinogen-

binding protein that contributes to GBS adherence (135).  RogB, or upstream effectors, may act 

to manage these opposing functions in response to environmental signals at specific sites within 

the host to promote protection from immune clearance or colonization appropriately. 

 Regulation of CPS production by systemic streptococcal pathogens is not well 

understood, especially in the context of host interactions that can be either commensal or 

pathogenic.  Current understanding of CPS regulation is predicated on its polymerization, export, 

and ligation to the cell wall, and involves the genes cpsB, cpsC, and cpsD, which are highly 

conserved amongst S. iniae, GBS, and S. pneumoniae.  In this regulatory scheme, CpsD acts as 

an autophosphorylating tyrosine-protein kinase (100), and is tightly associated with CpsC which 

acts to anchor CpsD to the cell membrane (22).  Structural studies of CpsC and CpsD 

homologues in Staphylococcus aureus indicate that unphosphorylated CpsD forms an octameric 

ring structure in conjunction with CpsC, and upon autophosphorylation CpsD dissociates into a 

monomeric form while remaining associated with the intact CpsC octamer (109).  In this system, 

CpsB is a manganese-dependent protein-phosphotyrosine phosphatase (98), and acts to 

dephosphorylate CpsD to recycle the system to its original state.  The conformational changes 

induced by phosphorylation appear to regulate the length of CPS polymer exported to the cell 

surface as well as the amount of CPS that is exported (11).  Deletion of cpsB is accompanied by 

an increase in phosphorylated CpsD with a concomitant increase in capsule, demonstrating a 
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positive correlation between phosphorylated CpsD and levels of CPS (11).  Deletion of either 

cpsC or cpsD results in a severe reduction in CPS polymer length and export (11), consistent 

with their predicted role as regulators of this process.  Taken together, the data suggests a model 

in which the CpsC and CpsD complex exists in either an “open” or “closed” state, with the open 

conformational state induced by CpsD phosphorylation leading to increased CPS chain length 

and export, and the closed conformational state induced by CpsB dephosphorylation of CpsD 

leading to decreased CPS chain length and export.  The signals or upstream effectors that 

contribute to promoting either an open or closed conformation are unclear, but may involve 

environmental signals encountered within the host.  This hypothesis is supported by the 

observation that the decrease in CPS observed for S. pneumoniae interacting with epithelial cells 

was not transcription dependent (51), and may have been coordinated through the CpsB, CpsC, 

and CpsD regulatory network. 

 Transcriptional regulation of the CPS synthesis locus has not been studied as extensively 

as the CpsB, -C, -D phosphorelay system, and it is still unclear what transcriptional control 

mechanisms are utilized by streptococcal pathogens to determine expression of CPS genes.  As 

mentioned previously, RogB appears to contribute to this regulation in GBS, likely as a repressor 

(50), but the exact way in which this occurs has not been described.  In S. iniae, the TCSS 

SivS/R regulates a number of virulence genes (14), and appears to contribute to transcriptional 

regulation of the CPS synthesis locus, with deletion of sivS/R leading to reduced levels of CPS 

and a decrease in transcript from the CPS synthesis locus (13).  However, upon testing this same 

strain in our lab we were unable to confirm a decrease in CPS level (B.H. and M.N., unpublished 

data), leaving these findings contentious in our view.  In S. pneumoniae, a homologue of 

catabolite control protein A (CcpA) called RegM was shown to directly influence transcriptional 
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regulation of the CPS synthesis operon, with deletion of regM leading to reduced levels of CPS 

expression when grown in the presence of glucose or sucrose, and thereby indicating regM is 

normally an activator of CPS expression (46).  These findings are further supported by recent 

work in S. suis, with deletion of ccpA resulting in reduced levels of CPS, and again implicating 

CcpA related proteins as transcriptional activators of the CPS synthesis locus (167).  CcpA 

proteins act to control sugar metabolism networks such that polysaccharides are utilized most 

efficiently under specific nutrient availabilities, and the involvement of a CcpA homologue in 

regulation of capsule is consistent with the presence of CPS synthesis substrates within 

interrelated sugar regulatory networks.   

 The first gene of the capsule operon, cpsA, has been described as a putative 

transcriptional regulator of the CPS synthesis operon in S. iniae (54), GBS (27), and S. 

pneumoniae (49, 98, 100).  This was initially based on protein sequence homology of a C-

terminal portion of CpsA with the LytR family of proteins, which are associated with 

transcriptional attenuation of autolysin genes (24, 58, 62, 74, 110).  However, deletion of cpsA in 

GBS results in a decrease in transcription from the CPS synthesis locus and CPS levels, 

suggesting that CpsA is a transcriptional activator of the CPS synthesis locus (27).  CpsA is an 

integral membrane protein, and was recently shown to have three transmembrane domains 

conferring a distinct membrane topology to the protein in which the majority of the protein 

resides extracellularly and only a small N-terminal portion of the protein is within the cytoplasm 

(Fig. 2) (54).  Unlike CpsA, LytR proteins have only a single transmembrane domain, but it was 

recently established that similar to CpsA, the majority of the LytR protein is extracellular with a 

small N-terminal cytoplasmic domain (58).  CpsA also differs from LytR proteins with the 

presence of a second protein domain, termed the DNA Polymerase Processivity Factor  
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Figure 2:  Membrane topology and conserved domains of the Streptococcal CpsA protein, with 
the CpsA protein of Streptococcus iniae shown as an example. 
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(DNA_PPF) domain, which is typically associated with sliding clamp function that enhances 

processivity of DNA replication and repair (97, 138).  However, extensive protein sequence 

divergence from traditional sliding clamp structures, as well as the determination that the 

DNA_PPF domain resides extracellularly (54), indicates that the DNA_PPF domain of CpsA 

likely contributes to some other unrelated function.  Although CpsA has been suggested as a 

transcriptional regulator of the CPS synthesis locus, many considerations are unclear, including 

how CpsA contributes to regulation, whether the conserved DNA_PPF and LytR domains play a 

role in this regulation, and the overall contribution of CpsA to virulence during systemic 

infection with streptococcal pathogens. 

 

Pleiotropism and constituents of the cell surface 

 Gram-positive pathogens utilize complex defense mechanisms in response to 

extracellular stress, be it environmental or host-derived.  One such defense mechanism involves 

modification of individual molecules of the cell surface. Unlike Gram-negative bacteria, Gram-

positive species have only a single cell membrane composed of the well-characterized 

phospholipid bilayer (Fig. 3).  Protection for the membrane is provided by the adjacent thick 

peptidoglycan layer, which also acts as a scaffold for other components of the cell surface.  

Interspersed throughout the multilayered peptidoglycan are the anionic teichoic acid molecules 

that provide cell wall integrity as one of their many functions, as well as supplying the major 

portion of the overall negative charge of the cell surface.  Cell surface-exposed proteins are 

attached to the cell wall and function in multiple interactions with the extracellular environment. 

Lastly, a polysaccharide capsule serves as the outer most layer of the cell surface, providing 

additional protection from extracellular assaults. This highly structured consortium functions 
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cooperatively to provide stability and protection from the external environment.   Recent work 

on individual structural components of the cell surface has demonstrated that disturbance of a 

single factor can result in pleiotropic effects, underscoring the interdependence of each 

component to the overall function of the cell surface. Consequently, loss or disturbance of any 

one of these closely associated factors may affect the regulation or ultimate function of another 

factor, resulting in a change in the equilibrium in which the cell surface typically exists. 

 Although a complete understanding of the cell surface network is currently unrealized, 

recent work has provided important new insights into the complex associations occurring 

between multiple elements that contribute to overall pathogen survival. Consideration of these 

distinctions is important to our understanding of bacterial pathogen virulence, as the cell surface 

remains an extremely important target for future antimicrobial therapy (17, 77, 132).  
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Figure 3:  Simplified overview of the cell surface of Gram-positive bacteria, excluding proteins, 
with the lipid membrane (LM), peptidoglycan (PG), lipoteichoic acid (LTA), capsular 
polysaccharide (CPS), and wall teichoic acid (WTA). 
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Peptidoglycan 

 The cell surface of Gram-positive pathogens is a highly complex assembly consisting of a 

lipid bilayer, cell wall peptidoglycan (PG) (155), cell wall associated teichoic acids (WTA) 

(148), membrane associated lipoteichoic acids (LTA) (130), capsular polysaccharide (CPS) 

(173), and a variety of proteins associated with the cell membrane (72, 123, 147) or covalently 

attached to the PG of the cell wall (89, 114, 151).   Peptidoglycan of the cell surface exists as 

alternating repeats of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) with 

peptide side chains attached to the NAM residue. Although made up of simple repeating 

subunits, a complex association network of PG with multiple cell surface components occurs 

through cross-linking and covalent and non-covalent interactions.  Although a number of 

methods have been employed to arrive at current models of peptidoglycan macromolecular 

structure, including atomic force microscopy (AFM), nuclear magnetic resonance (NMR), and 

cryo-transmission electron microscopy (TEM) (156),  major obstacles still exist, including the 

structural diversity of PG between different organisms.  Future strategies will likely focus on not 

just PG structures, but the full complement of interactions between PG, WTAs, LTAs, and CPS, 

with subsequent comparisons to surface structures in which one or more components are missing 

or altered by targeted mutations. 

 The importance of elucidating the actual structure of PG is highlighted by recent studies 

involving the deletion of genes with homology to lytR, a member of the lytR_cpsA_psr family, 

which is associated with transcriptional attenuation of PG hydrolases, their processing and 

transport.  The interruption of LytR function results in pleiotropic effects, such as defective cell 

division, asymmetric septation, and altered antimicrobial sensitivity (24, 62, 110).  Furthermore, 

the production of multiple phenotypes can be difficult to reconcile, as shown in Streptococcus 
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mutans, where deletion of lytR resulted in longer chain length despite an increase in autolysis 

(24), two traits typically considered to be the product of opposing processes.  A similar 

phenomenon has been observed with insertional inactivation of cpsA, the putative regulator of 

the capsule locus in S. iniae, resulting in much longer chains of cocci (79) and increased 

autolysis when treated with non-ionic detergents or when grown in culture (B.H. and M.N., 

unpublished data).  These seemingly contradictory findings emphasize the complexity of the PG 

cell wall network and its regulation by a number of factors, and indicate that unidentified targets 

of regulation likely exist for LytR family members beyond the PG hydrolase system that has 

been described thus far.  A better understanding of the structural form of PG under conditions in 

which regulatory elements such as LytR are disrupted may provide insight on mechanisms 

responsible for controlling cell wall integrity. 

 In addition to regulation of synthesis and recycling of PG, a number of modifications can 

be made to PG, resulting in altered function.  These include O-acetylation of NAM residues 

catalyzed by the protein OatA, and N-deacetylation of NAG through the functions of the PgdA 

protein.  Both of these modifications confer resistance to lysozyme cleavage of the glycosidic 

bond between NAM and NAG residues (31).  Regulation of OatA appears to be enacted through 

two-component systems that sense cell wall stress resulting in upregulation of oatA expression 

(66).  Importantly, WTA is covalently attached to the same C-6 atom of NAM that is O-

acetylated, suggesting there may be some cross-regulation of these processes (148).  Expression 

of pgdA has been shown to be induced by oxidative stress in the Gram-negative pathogen 

Helicobacter pylori (158), and similar regulation may exist for PgdA homologues recently 

identified in Gram-positive pathogens (4). Taken together, a number of regulatory schemes 
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involved in PG synthesis, turnover through autolysin activity, and modification of PG residues 

converge to provide bacteria with a stable and functional cell wall.  

 

Lipoteichoic acids and wall-teichoic acids 

 Teichoic acids of Gram-positive species represent an interesting subset of the cell 

surface. They exhibit a wide variety of functions including invasion of host tissue (36, 139), 

regulation of autolysis (3, 108, 115), and regulation of cell division (108, 128, 148).  Cell wall-

associated teichoic acid (WTA) and lipoteichoic acid (LTA) differ in overall structure, with 

WTA covalently attached to NAM (148) and LTA anchored to the membrane via a glycolipid 

(42).  However, similar modifications are made to both WTA and LTA, such as D-alanylation 

(169), which has been shown to facilitate resistance to cationic antimicrobial peptides, 

glycopeptides, lytic enzymes produced by neutrophils (148) and reduced autolytic activity (115).  

The similar processing of WTA and LTA appears to provide some functional redundancy as 

disruption of both pathways simultaneously is lethal (108), but the phenotypes exhibited by 

individual disruption of LTA or WTA vary considerably. Disruption of LTA has been associated 

with a decrease in autolysis in S. aureus, and this seems to be associated with reduced levels of 

cell wall-associated hydrolases (108).  This is consistent with the prediction that LTA actively 

recruits autolysins to septal regions during cell division to facilitate daughter cell separation 

(170).  The relationship between LTA and autolysins is not currently known, but could include 

direct binding of autolysins to LTA, or enhanced substrate accessibility for autolysins in the 

presence of LTA. 

 The observations for LTA are in striking contrast to those found for WTA in which 

disruption results in increased autolysis (129) and a concomitant decrease in lysozyme resistance 
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(3).  In S. aureus, WTA is hypothesized to indirectly mediate targeting of autolysins to newly 

synthesized PG by excluding its access to older PG where WTA is present, thus promoting its 

access to septal PG where WTA is absent and assisting with daughter cell separation (129).  This 

hypothesis is supported by the observation that loss of WTA results in indiscriminate binding of 

autolysins to the cell surface instead of preferential localization to the septum (129).  In addition 

to spatial regulation of autolysin activity, WTA has been shown to regulate peptidoglycan 

crosslinking in a spatial and temporal manner (3).   Localized synthesis of intermediate forms of 

WTA at the septum appears to indicate the presence of a mature cell wall, and temporally 

triggers penicillin-binding proteins (PBP) to initiate crosslinking.  Temporal regulation of this 

process may be important in permitting the introduction of proteins and glycopolymers that may 

not be able to penetrate a highly crosslinked cell wall (3).   

 Taken together, LTA and WTA appear to exert opposing and complementary functions 

during daughter cell separation with LTA promoting autolysis at the septum while WTA 

selectively blocks autolysis elsewhere on the cell.  WTA intermediates subsequently accumulate 

at the septum, recruiting PBPs which crosslink the PG, forming a mature cell wall.  These 

observations suggest a tight regulatory scheme over the localization of both elements during cell 

division, the mechanism of which is still not fully described.  This principle may explain 

observed abnormalities in Bacillus subtilis morphology (128) and S. aureus cell division (108) 

when LTA is disrupted.   Similarly, CPS and WTA have been demonstrated to have direct effects 

on each other. Phase variation in S. pneumoniae to a form that results in increased virulence 

relies on a switch from relative low levels of CPS and high levels of WTA to relative high levels 

of CPS and low levels of WTA (70).  Whether this results from direct competition for covalent 

attachment to PG, or if it is due to a regulatory pathway that co-regulates levels of both CPS and 
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WTA is not understood. Clearly, WTA and LTA exert a fine tuned control over a number of 

important processes, including cell division and resistance to cell wall reactive antimicrobial 

agents.  The effect that differing levels of CPS has on these traits has not been explored in depth, 

and it may be that the absence or presence of CPS contributes to the dynamic equilibrium 

experienced by components of the cell surface.  Evidence for this is presented in both Chapters 1 

and 2. 

 

Capsule 

 The CPS of Gram-positive organisms can be covalently linked to a variety of surface 

structures, with attachment to the peptide moiety of PG for Bacillus anthracis (21), attachment to 

N-acetylglucosamine of PG for Streptococcus agalactiae (33), and covalent attachment to the PG 

or membrane for S. pneumonia (173).  The enzyme that catalyzes the covalent addition of CPS to 

these locations has not been determined for many Gram-positive species, including S. agalactiae 

and S. pneumoniae (173).  The location of CPS linkage is important to consider in the context of 

the cell surface as WTA may compete for these ligation sites, or experience steric hindrance in 

the presence of CPS (173).  CPS appears to be generally linked to NAG instead of NAM in S. 

agalactiae and S. pneumoniae (173), therefore steric limitation may explain the relative balance 

between WTA and CPS described above for S. pneumoniae.  An understanding of how CPS 

ligation is controlled may shed light on regulation of the other modifications that occur at or near 

this location. 

 Recent reports indicate that the presence or absence of CPS has a significant effect on 

minimum bactericidal activity of a number of cell wall reactive agents for S. suis (149) as well as 

vancomycin resistance in S. pneumoniae (101). Insertional inactivation of cpsA, which encodes 
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the putative regulator of capsule synthesis in S. iniae, results in various changes to antimicrobial 

sensitivity from cell wall-targeted compounds, with the cpsA mutant demonstrating decreased 

capsule levels in conjunction with increased resistance to lysozyme and bacitracin, and decreased 

resistance to ampicillin and methicillin (B.H. and M.N., unpublished data).  These results 

indicate a clear association between expression of CPS and cell wall integrity, which may be 

mediated by the CpsA regulator protein.  The exact mechanism mediating these events is 

unclear, though reasonable suggestions have been proposed based on simple occlusion of 

antibiotics via capsular stereochemistry or its contribution to structural stability (101, 149).  

These effects are most likely the result of more specific actions associated with perturbation of 

the cell surface, and these phenotypes may be explained by considering the relative changes in 

PG, WTA, and LTA and the pleiotropic effects that may occur with loss of CPS.  Whether these 

regulatory events happen in response to the host environment is currently not known; however, 

evidence exists for the regulation of CPS expression in vivo, with the observation that levels of 

CPS are decreased when S. pneumoniae cocci come in contact with the surface of epithelial cells 

(51).  This scenario suggests that bacteria may dynamically regulate levels or processing of CPS, 

WTA, and LTA in response to host signals, essentially altering the cell surface from prevalent 

CPS and immune evasion function to prevalent D-alanylated WTA and LTA with attachment 

and colonization function, as WTA and LTA have been shown to mediate adhesion to host cells 

(159).  Supporting this model is the previously mentioned observation that CPS and WTA levels 

are coordinately altered during phase variation in S. pneumoniae (70). 

 CPS in S. pneumoniae also has a direct effect on the number of bacterial cells present in a 

single chain (8), with the presence of capsule generally leading to longer chains in S. 

pneumoniae.  The observation that this trait varies when secondary mutations are made to genes 
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responsible for regulation of cell division further underscores the complexity of the cell surface 

and its regulation (8, 9).  The disruption of cpsA in S. agalactiae and S. iniae results in decreased 

production of CPS (27, 79) which actually coincides with longer chains (79), (B.H. and M.N., 

unpublished).  Whether this phenotype is a consequence of reduced capsule is unclear, or 

alternatively, CpsA may actively contribute to regulation of cell division.  The discrepancy 

between these observations suggests that fundamental differences exist between S. pneumoniae 

and S. agalactiae concerning regulation of the cell surface, and may relate to the presence of 

multiple cell wall processing enzymes in S. pneumoniae that are absent in S. agalactiae, such as 

the PG hydrolases LytA and LytC.  As with the other components of the cell surface, this 

indicates that the role of CPS and its effects on regulation of the cell surface in Gram-positive 

pathogens may indeed be species-specific.  

 

The future of cell surface analysis 

 Clearly, analysis of the bacterial surfome should include the contributions made by PG, 

WTAs, LTAs, and CPS as each plays an individual role in pathogenicity and can have profound 

effects on the associations occurring in the overall architectural network.  So called 

“fingerprinting” methods for characterizing the cell surface for individual species and strains 

under specific conditions will become increasingly important as the intricate associations 

between cell surface components and the corresponding implications for virulence and 

antimicrobial treatment are unraveled.  Accomplishing this goal necessitates technological 

enhancements in the methods currently used to probe the bacterial cell surface.  The 

determination that PG, LTA, WTA, and CPS have a shared pool of precursors and, with the 

exception of LTA, also share the undecaprenyl-phosphate acceptor (Und-P) for repeat unit 
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synthesis (169, 173) raises interesting questions about how precursor fate and prioritization of 

Und-P for different substrates is controlled.  Ostensibly, this series of interconnected pathways 

has important points of regulation, and work describing regulation of branch points in this 

network or the point at which precursor fate is decided is currently incomplete.  A better 

understanding of how each of these components relates functionally to one another in Gram-

positive bacteria and the coordinated control of the enzymes that facilitate their construction and 

eventual fate remains an exceedingly important task in a future beset by the onset of 

antimicrobial resistance and vaccine escape through serotype diversity. 

 Work presented in the first chapter characterizes the contribution of the streptococcal 

CpsA protein to regulation of CPS in S. iniae, as well as pleiotropic effects associated with 

insertional inactivation of cpsA, which include altered antimicrobial sensitivity and autolysis 

activity.  Work presented in the second chapter characterizes how the different domains of GBS 

CpsA contribute to regulation of CPS and chain length determination, and in turn how these 

observations can be used to impact GBS virulence in a detrimental fashion.  The identification of 

streptococcal CpsA as an anti-virulence therapeutic target indicates that other regulators of the 

pleiotropic cell surface may also be amenable to similar strategies.  The serotype independence 

of targets such as CpsA makes them especially attractive, and future vaccination or elimination 

strategies may hinge on the characterization of these pleiotropic cell surface regulators. 

 

 

 

 

 



26 
 

 

CHAPTER 1 

 

MEMBRANE TOPOLOGY AND REGULATION OF CAPSULE AND CELL WALL BY  

THE CPSA PROTEIN OF STREPTOCOCCUS INIAE  

 

ABSTRACT 

 

Many streptococcal pathogens require a polysaccharide capsule for survival in the host 

during systemic infection. The highly conserved CpsA protein is proposed to be a transcriptional 

regulator of capsule production in streptococci, although the regulatory mechanism is unknown. 

Hydropathy plots of CpsA predict an integral membrane protein with 3 transmembrane domains 

and only 27 cytoplasmic residues, whereas other members of the LytR_cpsA_psr protein family 

are predicted to have a single transmembrane domain. This unique topology, with the short 

cytoplasmic domain, membrane localization and large extracellular domain, suggests a novel 

mechanism of transcriptional regulation. Therefore, to determine the actual membrane topology 

of CpsA, specific protein domains were fused to beta-galactosidase or alkaline phosphatase. 

Enzymatic assays confirmed that the predicted membrane topology for CpsA is correct. To 

investigate how this integral membrane protein may be functioning in regulation of capsule 

transcription, purified full length and truncated forms of CpsA were used in electrophoretic 

mobility shift assays to characterize the ability to bind the capsule operon promoter.  The latter 

assays revealed that full length, purified CpsA protein binds specifically to DNA containing the 

capsule promoter region.  Furthermore, the large extracellular domain was not required for DNA 

binding, but all cytoplasmic regions of CpsA are necessary and sufficient for specific binding to 
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the capsule operon promoter.  This is the first demonstration of a member of this protein family 

interacting with its target DNA.  The conserved protein domains of CpsA have no current 

designated function, so truncated forms of CpsA were used to assess the contribution of 

conserved domains to regulation of capsule.  Ectopic expression of truncated forms of CpsA 

lacking the LytR domain in a WT S. iniae background resulted in differences in capsule level, 

chain length, and antimicrobial susceptibility, suggesting that conserved domains of CpsA 

contribute to regulation of capsule and the cell wall.  Taken together, CpsA, as well as other 

members of the LytR_cpsA_psr protein family, may utilize a unique mechanism of 

transcriptional regulation to control the macromolecular structure of the cell surface. 
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INTRODUCTION  

 

Systemic pathogens require a repertoire of specialized mechanisms to survive in the 

various tissue environments encountered during dissemination. A collection of highly efficient 

and precisely regulated virulence factors utilized by streptococcal systemic pathogens has 

allowed them to become remarkably successful at causing disease. For example, the systemic 

pathogens Streptococcus agalactiae and Streptococcus pneumoniae continue to be major causes 

of life-threatening infections (106, 117). One of the most important virulence mechanisms shared 

by systemic pathogens is the production of a polysaccharide capsule, which is essential for 

systemic dissemination during infection.  In addition to providing resistance to phagocytosis (78) 

and complement deposition (88), the levels of polysaccharide capsule produced influence 

bacterial binding to host cells and tissue invasion during infection, with high levels of capsule 

inhibiting adherence (1, 51, 82), presumably by masking adhesive elements.  For S. pneumoniae, 

capsule levels are reduced after adherence to epithelial cells, leading to increased exposure of 

adhesive molecules that facilitate a stronger interaction allowing for colonization (51).   This 

suggests that streptococci most likely regulate synthesis of the polysaccharide capsule to balance 

systemic dissemination with colonization in response to cues from the host environment.  

Although components of the polysaccharide capsule produced by streptococci can differ 

greatly not only between species, but also amongst different strains, certain genes of the capsule 

synthesis operon are highly conserved in most streptococcal pathogens. There is greater than 

60% amino acid similarity between the first four genes of the capsule operon when comparing S. 

agalactiae to S. pneumoniae, all of which have been shown to play a role in regulation of capsule 
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production (27).  This implies that regulatory strategies used by these pathogens to control 

capsule synthesis are likely conserved as well.   

Analysis of enzymatic regulation of capsule production has provided a great deal of 

information on streptococcal pathogenesis (27, 79, 98, 153), although very little information has 

been provided on how regulation occurs at the transcriptional level. However, the apparent 

response of streptococcal pathogens to the surrounding environment and resulting modification 

of capsule production cannot be fully explained by regulation of enzymatic activity alone.  The 

most likely scenario would involve a combination of transcriptional and post-translational 

enzymatic regulation of capsule synthesis allowing the bacteria to modulate capsule level in 

response to surrounding conditions. Transcriptional regulation of capsule production in 

streptococcal pathogens appears to be enacted through the highly conserved putative 

transcriptional activator CpsA (27, 79).  The cpsA gene is the first gene of the capsule operon in 

streptococci.  A non-polar deletion of CpsA results in streptococcal mutants with decreased 

levels of polysaccharide capsule and operon transcript (27).  This is consistent with a 

transcriptional activating function for CpsA, whether it be a direct interaction or through another 

upstream event.  To date, very little work has been described characterizing the role of CpsA in 

pathogenesis or its mechanism of transcriptional activation.  Streptococcus iniae, an aquatic 

pathogen of great economic importance, is able to cause systemic disease in both marine animals 

and humans (160, 161).   A comparison of the capsule operon between S. iniae and S. agalactiae 

shows greater than 70% amino acid similarity for the first four genes of the operon, implying 

homologous control mechanisms for virulence. We utilize S. iniae as a model pathogen due to 

the availability of a natural host, the zebrafish (Danio rerio), to understand host-pathogen 

interactions during streptococcal pathogenesis.  A strain of S. iniae with a mutation in the cpsA 
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gene is significantly attenuated compared to the wild type strain in a systemic infection of 

zebrafish (79), demonstrating its importance in virulence. The high similarity between the 

capsule operons of S. iniae, S. agalacticae, and S. pneumoniae, suggest that observations made 

with S. iniae could be extended to these other pathogens as well.  Therefore, in this study we 

characterize the highly conserved CpsA protein of S. iniae to determine its role in transcriptional 

regulation of capsule in streptococcal systemic pathogens.  

The streptococcal CpsA protein is a member of the LytR_cpsA_psr family of “cell 

envelope-related transcriptional attenuator domain” (pfam PF03816) proteins, but has several 

intriguing differences from other members.  One difference is in the predicted topology where 

CpsA has three transmembrane domains instead of the single transmembrane domain predicted 

for LytR and PSR proteins.  Additionally, CpsA is the only family member that possesses a DNA 

polymerase processivity factor domain (DNA_PPF, pfam PF02916) adjacent to the LytR 

domain.  Lastly, the CpsA proteins, of which over 180 members have been annotated, were 

shown to be involved in transcriptional activation (27, 79), as opposed to an attenuator function 

described for LytR and PSR (74, 75, 90) even though less than 30 of its more than 450 amino 

acids are predicted to reside in the cytoplasm (28, 157).  The predicted topological model for 

CpsA includes a short N-terminal cytoplasmic tail, a small extracellular loop, a small 

cytoplasmic loop, and a large extracellular C-terminus.  This suggests a novel mechanism for 

transcriptional activation and confirmation of this topological prediction is an important 

prerequisite to analyzing CpsA function.  

In this chapter, employing a commonly used method for confirmation of protein 

membrane topology in which fusions are made to reporter enzymes that reflect specific 

subcellular localizations, we determined the membrane topology of the streptococcal CpsA 



31 
 

 

protein.  Furthermore we demonstrate that there is a direct interaction between purified CpsA 

and capsule operon promoter DNA, and that specific domains of the CpsA protein are required 

for this interaction.  We have also characterized the specificity of this interaction and speculate 

as to what it infers about the regulatory role of CpsA regarding control of polysaccharide capsule 

synthesis.  Additionally, we propose that CpsA of S. iniae coordinately regulates multiple aspects 

of the cell surface, including the polysaccharide capsule and cell wall maintenance.  The studies 

in this chapter support this hypothesis by showing that removal of the conserved LytR domain 

from CpsA results in a dominant negative loss of capsule when ectopically expressed in the WT 

S. iniae background, and also results in altered antimicrobial sensitivity.   
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MATERIALS AND METHODS 

 

Bacterial strains and growth conditions:  Plasmids were maintained in Escherichia coli T7 

Express lysY/Iq cells (NEB). Luria-Bertani (LB) medium was used to culture E. coli strains.  

Antibiotics were added as necessary to LB medium at the following concentrations: kanamycin, 

50 µg/ml; ampicillin, 100 µg/ml; erythromycin, 750 µg/ml; and chloarmphenicol, 20 µg/ml, for 

E. coli strains.  E. coli cultures were grown at 37°C with shaking.  Solid media was generated by 

supplementing liquid media with 1.4% agar (Acumedia).  The streptococcal strain used was S. 

iniae 9117, a human clinical isolate from the blood of a patient with cellulitis (44).  S. iniae was 

cultured in Todd-Hewitt medium (BD) supplemented with 0.2% yeast extract (BD) and 2% 

proteose peptone (BD) (TP) in airtight conical tubes without agitation at 37°C.  Antibiotics were 

added as necessary to TP medium at the following concentrations: kanamycin, 500 µg/ml; 

erythromycin, 2 µg/ml; and chloramphenicol, 3 µg/ml, for S. iniae strains. S. iniae grown on 

solid media supplemented with 1.4% agar (BD) were incubated in GasPak jars (BBL) with 

GasPak anaerobic system envelopes (BD). 

 

Cloning of CpsA membrane topology fusions: The previously described rofA promoter from S. 

pyogenes (48) was amplified by PCR from chromosomal DNA using primers 5’rofA-ApaI and 

3’rofA-PstI (see Table 1) and the resulting fragment was inserted into the ApaI/PstI sites of the 

pLZ12-Km vector (53) creating pLZ12-Km-rofA-pro. The lacZ gene was amplified from plasmid 

pTL61T (76) using primers 5’lacZ-BamHI-SmaI and 3’lacZ-BglII. The phoZ gene was amplified 

from Enterococcus faecalis genomic DNA using primers 5’phoZ-BamHI-SmaI and 3’phoZ-

BglII, removing the signal sequence from phoZ.  Each of these fragments was then digested with 
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BamHI and BglII and inserted into the corresponding BamHI and BglII sites of pLZ12-Km-rofA-

pro.  This led to the generation of the fusion vectors placZ and pphoZ.  Construction of several 

CpsA-LacZ fusion vectors were generated by amplification of fragments of the cpsA gene using 

genomic DNA of S. iniae strain 9117 with the universal 5’ primer 5’cpsA-PstI in conjunction 

with the following primers: 3’cpsA-cyto1-SmaI, 3’cpsA-ext1-SmaI, 3’cpsA-cyto2-SmaI, 3’cpsA-

ext2-SmaI, and 3’cpsA-dna_ppf.  Each of these cpsA gene fragments were then digested with 

PstI and SmaI and inserted into the corresponding PstI and SmaI sites of placZ in frame and 

upstream of the lacZ gene (Fig. 4A).  This created the plasmids placZ-cpsA-cyto1, placZ-cpsA-

ext1, placZ-cpsA-cyto2, placZ-cpsA-ext2, and placZ-cpsA-dna_ppf. Construction of the CpsA-

phoZ fusion vectors were created in a similar manner by amplification of fragments of the cpsA 

gene using the universal 5’ primer 5’cpsA-EcoRI in conjunction with the following primers: 

3’cpsA-cyto1-SmaI, 3’cpsA-ext1-SmaI, 3’cpsA-cyto2-SmaI, 3’cpsA-ext2-SmaI, and 3’cpsA-

dna_ppf.  These fragments were then digested with EcoRI and SmaI and inserted into the 

corresponding EcoRI and SmaI sites of pphoZ in frame and upstream of the phoZ gene (Fig. 4B).  

This generated the plasmids pphoZ-cpsA-cyto1, pphoZ-cpsA-ext1, pphoZ-cpsA-cyto2, pphoZ-

cpsA-ext2, and pphoZ-cpsA-dna_ppf. The vector strains contained the parent plasmid with no 

cpsA fragment fused to the reporter enzyme and thus no ribosome binding site or start codon. 

These plasmids were then transformed into S. iniae as previously described (94).  

To create and purify the intein-tagged CpsA protein, we used the IMPACTTM Kit (NEB). 

Amplification of cpsA gene fragments for fusion to the intein chitin binding protein (CBP) 

epitope tag was accomplished using the primer 5’cpsA-short-NdeI in conjunction with either 

3’cpsA-short-SapI or 3’cpsA-short-TM.  The PCR products were digested with NdeI and SapI 

and inserted into the pTXB1 plasmid (NEB) creating the plasmids pTXB1-cpsA-cyto1 and 
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pTXB1-cpsA-ext1 with 3’ fusions to the intein tag.  These constructs were transformed into T7 

Express (Invitrogen) E. coli cells.  

 

Measurement of ββββ-galactosidase activity:  The placZ-cpsA expressing E. coli cells were grown 

overnight as described above, then sub-cultured 1:40 the next morning into new medium and 

grown at 30°C with shaking to an OD600 of 0.3.  Chloramphenicol was added at a concentration 

of 200 ug/ml to 1 ml of culture and incubated on ice for 20 minutes.  Each sample was prepared 

by adding 0.1 ml of chloramphenicol-treated cell suspension to 0.9 ml of Z buffer (95), then 

adding 20 µl of 0.1% (wt/vol) SDS and 40 µl of chloroform, and vortexing the mixture 

vigorously for 10 seconds.  The samples were then incubated at 30°C for 15 minutes before 200 

µl of the colorimetric substrate o-nitrophenyl-β-D-galactopyranoside (4 mg/ml) (NPI) was 

added.  Reactions were developed at room temperature for various times prior to terminating the 

reaction with the addition of 500 µl of 1 M Na2CO3.  Samples were centrifuged briefly to pellet 

cellular debris and the OD420 and OD550 of each supernatant was measured.  Miller units were 

calculated as: units = 1,000 × [OD420-(1.75 × OD550)]/(time × volume × OD600) (95).  Each assay 

was repeated a minimum of three times. 

 

Determination of alkaline phosphatase activity:  The pphoZ-cpsA expressing E. coli cells 

were grown overnight, then sub-cultured 1:40 the next morning into new medium and grown at 

37°C with shaking to an OD600 of 0.3.  Culture concentrations were then normalized to an OD600 

of 0.75 in 1 ml of LB, and 50 µl of each normalized sample was placed into wells of a flat 

bottom 96 well plate in triplicate, followed by 200 µl of p-nitrophenyl phosphate (Sigma) 

suspended in 1 M Tris (pH 8).  Plates were incubated in the dark for one hour prior to reading the 
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OD405, OD550, and OD600. The pphoZ-cpsA expressing S. iniae strains were grown overnight, 

sub-cultured 1:40 the next morning into new medium and grown statically at 37°C to an OD600 of 

0.3.  Cultures were then normalized to an OD600 of 0.4 in 1 mL of 1M Tris (pH 8) containing p-

nitrophenyl phosphate.  These were incubated in the dark for 3 hours, and then briefly 

centrifuged to pellet cells prior to reading the OD405, and OD550.  Activity for E. coli was 

calculated as follows: 1,000 × [OD420-(1.75 × OD550)]/(time × volume × OD600).  Activity for S. 

iniae was calculated as done for E. coli, multiplied by an additional factor of 10 and normalized 

to WT activity.  Each assay was repeated a minimum of three times. 

 

Whole cell ELISA:  Analysis of the cpsA-intein fusion expressing strains (described above) was 

accomplished by growing the cells overnight as previously described (see above) and 

subculturing 1:40 the next morning into new medium with shaking at 37°C for 2 hours.  

Expression was induced by addition of 0.4 mM isopropyl-β-D-1-thiogalactopyranoside (MP 

Biomedicals) for three hours.  Cultures were then concentrated to an OD600 of 0.75 and 

resuspended in 1 mL LB media containing a 1:10,000 dilution of anti-CBD rabbit serum (NEB) 

and incubated at 4°C on a rotating platform for 1 hour.  After incubation, cells were pelleted by 

centrifugation at 8,000 × g for 5 minutes and washed with 1 mL of LB three times.  Cells were 

then pelleted again and resuspended in 1 mL of LB media containing a 1:10,000 dilution of goat-

anti-rabbit antibody conjugated to alkaline phosphatase and incubated at 4°C on a rotating 

platform for 1 hour.  Cells were subsequently pelleted and washed another three times, and 

finally resuspended in 1 ml of LB for detection of alkaline phosphatase activity as described 

above. 
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Cloning of Maltose Binding Protein-CpsA fusions:  The full-length cpsA gene was amplified 

from S. iniae 9117 genomic DNA using the primers 5’cpsA-SmaI and 3’cpsA-PstI.  Various 3’ 

truncations of the cpsA gene were amplified from S. iniae 9117 genomic DNA using the primer 

5’cpsA-SmaI in conjunction with the following primers: 3’cpsA-del1-PstI-stop, 3’cpsA-del2-PstI-

stop, and 3’cpsA-del3-PstI-stop.  Each of these products was digested with SmaI and PstI and 

cloned into the corresponding SmaI and PstI sites of pMAL-c2x (NEB) leading to in-frame 

fusion of cpsA fragments downstream of the malE gene.  This generated the following plasmids: 

pMAL-cpsA-full, pMAL- cpsA-116, pMAL-cpsA-78, and pMAL-cpsA-23.  These constructs 

were transformed into T7 Express (Invitrogen) E. coli cells. 

 

Protein purification:  The pMAL-cpsA expressing E. coli strains were grown overnight as 

described above and the following morning sub-cultured 1:40 into 500 ml new medium and 

grown at 37°C shaking until reaching an OD600 of 0.5, at which point protein expression was 

induced by addition of 0.3 mM isopropyl-β-D-1-thiogalactopyranoside followed by incubation 

for 3 hours.  Cells were then harvested by centrifugation at 4000 × g for 20 minutes, the 

supernatant discarded, and the cells resuspended in 20 ml of Column Buffer (20 mM Tris-HCl, 

200 mM NaCl, and 1mM EDTA) and stored at -20°C.  Frozen culture was thawed on ice and 

sonicated to lyse cells.  The lysate was then diluted to a total volume of 100 ml using Column 

Buffer and loaded onto a column containing amylose beads (NEB) and eluted according to the 

manufacturer’s specifications.  Purified protein concentration was determined using the BCA 

protein assay kit (Thermo Scientific) according to the manufacturer’s instructions.  Protein purity 

was assessed with SDS-PAGE. 
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Though no advanced preparative techniques were required for purification of the MBP-

CpsA fusions, those constructs containing transmembrane domains preferentially fractionated 

into the insoluble lysate fraction after sonication.  The degree of insolubility of these proteins 

was also evidenced by minimal migration in non-denaturing polyacrylamide gels during EMSAs, 

a property that was somewhat mitigated by the addition of non-ionic detergents to binding 

reactions (see below).   

 

Generating digoxigenin-labeled DNA probe:  A 182 bp probe emcompassing the cpsA 

promoter was amplified from S. iniae 9117 genomic DNA using the primers 5’cpsA-pro and 

3’cpsA-pro.  This product was then labeled using the DIG Gel Shift Kit, 2nd Generation (Roche) 

and labeling efficiency determined according to manufacturer’s instructions. 

 

Electromobility Shift Assays (EMSA):  The digoxigenin labeled cpsA promoter was used as 

the probe for all gel shift assays.  To conduct the EMSA, varying amounts of the MBP–CpsA 

protein fusions were incubated with a constant amount of labeled probe (17 fmol) in a binding 

buffer containing 100 mM HEPES pH 7.2, 1 mM EDTA, 50 mM KCl, 50 mM MgCl2, 1 mM 

DTT, 25% (v/v) glycerol, 1% (v/v) NP40, and 1% (v/v) CHAPS for 30 minutes at room 

temperature. For reactions requiring competitor DNA, a 20-fold excess of either unlabelled cpsA 

probe or sheared salmon sperm DNA was included in the binding reaction. The samples were 

loaded onto a 6% polyacrylamide native gel consisting of 6% (v/v) polyacrylamide, 44.5 mM 

Tris base, 44.5 mM boric acid, and 1mM EDTA. Electrophoresis was performed at 4˚C.  The gel 

was then transferred to a nylon membrane (Micron Separations Inc.) using a semi-dry transfer 

apparatus (Bio-Rad). Chemiluminescent detection of DIG-labeled DNA on membranes was 
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accomplished with a commercial reagent (DIG Gel Shift Kit, 2nd Generation, Roche) according 

to manufacturer instructions, followed by exposure to X-ray film.   

 

Cloning truncated forms of S. iniae CpsA:  A gene encoding kanamycin resistance was 

amplified from the plasmid pABG5 (48) using the primers 5’kan-BamHI and 3’kan-EcoRI.  This 

product was digested with BamHI and EcoRI and cloned into the corresponding BamHI and 

EcoRI sites of the plasmid pOri23 (122), creating the plasmid pOri23-kan.  The cpsA promoter 

and a truncated form of cpsA lacking the LytR domain were amplified together from 9117 

genomic DNA using the primers 5’cpsA-pro-BamHI and 3’cpsA-∆LytR-PstI-stop.  This product 

was digested with BamHI and PstI and cloned into the corresponding BamHI and PstI sites of the 

plasmid pOri23-kan.  This generated the plasmid pCpsA-∆LytR.  A truncated form of cpsA 

entailing only the DNA_PPF domain was amplified from 9117 genomic DNA using the primers 

5’cpsA-DNA_PPF-BamHI and 3’cpsA-DNA_PPF-FLAG-PstI-stop.  This product was digested 

with BamHI and PstI and cloned into the corresponding BamHI and PstI sites of the plasmid 

pLZ12-rofA-pro (48, 103).  This generated the plasmid pCpsA-DNA_PPF. 

 

Measurement of S. iniae capsule levels with Percoll buoyant density assays:  Buoyant 

density centrifugation was performed similarly to previous work (32), (79), but with 

modification.  Linear density gradients of Percoll (GE Healthcare) were generated by diluting 

Percoll to a high density limit (1.120 g/cm3) and low density limit (1.0 g/cm3) with a final 

concentration of 0.15 M NaCl according to the manufacturer’s instructions, and carefully 

layering 5 mL of the low density solution on top of 5 mL of the high density solution in a 10 mL 

conical tube (BD).  These tubes were then set horizontally at a 15° angle to the benchtop, and left 
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overnight.  The next morning tubes were set upright and allowed to settle for 30 minutes prior to 

use.  Bacterial cultures were grown overnight as described above, and cultures were normalized 

to an OD600 of 0.6 in 1 mL of TP medium, pelleted by centrifugation, resuspended in 50 µl of 

PBS, and added directly to the top of the Percoll gradients.  Tubes were then centrifuged for 40 

minutes at 5000 rpm in a swinging bucket Eppendorf Centrifuge 5403 with Rotor 16A4-44 at 

room temperature.  Measurements were then taken from the meniscus to the bottom of the cell 

band in each tube, and compared to a set of colored beads of known density (GE Healthcare) to 

determine bacterial cell density.  These experiments were performed at least three times, with 

results reported using a representative experiment.  Measurement of capsule for time course 

experiments was identical to that given above, except that WT 9117 bacteria were taken at 

different time points from separate cultures after inoculating with a 1:10 dilution from an 

overnight culture. 

 

Measurement of antimicrobial resistance:  S. iniae strains were grown overnight, subcultured 

into fresh medium with a 1:25 dilution, and grown to an OD600 of 0.3.  Cultures were normalized 

and serially diluted to 1 x 104 CFU/mL and 10 µl added to individual wells of a 96 well plate, 

with a final volume of 200 µl including antimicrobial agents.  Antimicrobial concentration 

ranges were as follows:  lysozyme, 0 mg/mL to 52 mg/mL; bacitracin, 0 µg/ml to 6.6 µg/ml; and 

methicillin, 0 µg/ml to 1.65 µg/ml. Subsequent to addition of bacteria, plates were incubated at 

37° C overnight and OD600 measured with a VERSAmax microplate reader (Molecular Devices) 

the following day.   
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Measurement of autolysis:  S. iniae strains were grown overnight and normalized to an OD600 

of 0.3.  Bacteria were then pelleted and resuspended in either PBS, or 0.6% triton X-100 or 0.6% 

tween-20 (v/v) in PBS.  Resuspended bacteria were placed into a 96 well plate, incubated at 

incubated at 37° C for 24 hours and OD600 measured with a VERSAmax microplate reader 

(Molecular Devices) the following day.  Lysis was calculated as ((OD600final/OD600initial) x 

100%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

 

Table 1:  Primers used in this chapter. 
 

Primer name Sequence 5’ – 3’ 
5’rofA-pro-ApaI TCC GGG CCC ATT TTC TCT CCT CTC AAA AAC ATA TAT GAG C 
3’rofA-pro-PstI AAA ACT GCA TCA CAA TAA TGG TTT AGT TGT AAA AAG GTT AAG CC 
5’lacZ-BamHI-SmaI CGC GGA TCC GCG TCC CCC GGG GTC GTT TTA CAA CGT CGT GAC 
3’lacZ-BglII GGA AGA TCT CTG CCC GGT TAT TAT TAT TTT TGA C 
5’phoZ-BamHI-SmaI CGC GGA TCC GCG TCC CCC GGG CAA AAA AGC GGC GAA AAA C 
3’phoZ-BglII GGA AGA TCT CGT TCT GCT TTT TCT TCA TTT TG 
5’cpsA-PstI AAA ACT GCA GGT AAA CTA GAT GAT TTG GAG 
3’cpsA-cyto1-SmaI TCC CCC GGG GCT TAG ATT ATG TTT CTC TTT CG 
3’cpsA-ext1-SmaI TCC CCC GGG CTG CCT AAA AGC AAG GAA G 
3’cpsA-cyto2-SmaI TCC CCC GGG CTT TTT CTT GAT AAC GAG 
3’cpsA-ext2-SmaI TCC CCC GGG AGC TGT AAA GTC AAT TGT TG 
3’cpsA-dna_ppf-SmaI TCC CCC GGG CAT AAC CAT TGC TTG AGA CTG 
5’cpsA-EcoRI CCG GAA TTC GAT AGC TAT AAG TCT AAT AGA TGA AG 
5’cpsA-short-NdeI GGA ATT CCA TAT GGC ACA TTC CAG AAG TAA ACG 
3’cpsA-short-SapI GAG GGC TCT TCC GCA CGT ATT TAT TAA GCT TAG 
3’cpsA-TM-SapI GAG GGC TCTTCC GCA ATA GAG GTA CAT CCA AAA GC 
5’cpsA-SmaI TCC CCC GGG ATG GCA CAT TCC AGA AGT AAA CG 
3’cpsA-PstI AAA ACT GCA GTC ACC TGT TGA ACC TGT CC 
3’cpsA-del1-PstI-stop AAA ACT GCA GCT ATC ACA ATC TCT GAG AAA GAG GCT G 
3’cpsA-del2-PstI-stop AAA ACT GCA GCT ATC ACA ATC CCT TAA GCT TTT TCT TG 
3’cpsA-del3-PstI-stop AAA ACT GCA GCT ATC AGA TAT TTA TTA AGC TTA GAT TAT G 
5’cpsA-pro CTC ATA ATG ACA GTC TAT C 
3’cpsA-pro CCA TCA ATA TCA TTT AAG TC 
5’kan-BamHI CGC GGA TCC CAG GAC AAT AAC CTT ATA GC 
3’kan-EcoRI CCG GAA TTC GAC ATC TAA ATC TAG GTA C 
5’cpsA-pro-BamHI CGC GGA TCC GTT GTA TTC TCA TAA TGA CAG TC 
3’cpsA-∆LytR-PstI-stop AAA ACT GCA GCT ATC AGA AAT CGG ACC ATA AGT ATC 
5’cpsA-DNA_PPF-BamHI GCG GGA TCC GAG GAG TAG TAA AGG GAT TGA CCA GTC 
3’cpsA-DNA_PPF-FLAG-
PstI-stop 

AAA ACT GCA GTC ACT TGT CGT CAT CGT CCT TGT AGT CCA TAT AAG 
CAC TGT TCA TAA CC 
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RESULTS 

 

CpsA membrane topology verification. Gene fusions made to either lacZ (encoding β-

galactosidase) or phoZ (encoding alkaline phosphatase) provide a powerful framework for 

characterizing membrane protein topology. Fusion proteins containing β-galactosidase display 

high enzymatic activity only when β-galactosidase is attached to cytoplasmic domains (83, 85). 

In contrast, fusion proteins containing alkaline phosphatase exhibit high enzymatic activity only 

when alkaline phosphatase is fused to extracellular or periplasmic protein domains (84).  If 

alkaline phosphatase is fused to a cytoplasmic protein domain then it remains enzymatically 

inactive (85).  Therefore, high enzymatic activities for β-galactosidase fusions indicate a 

cytoplasmic location while high enzymatic activities for alkalkine phosphatase fusions indicate 

an extracellular orientation. Fusions of various truncated forms of CpsA were made to either β-

galactosidase or alkaline phosphatase for confirmation of membrane topology, generating the 

plasmids pcpsA-lacZ (Fig. 4A) and pcpsA-phoZ (Fig. 4B).  These fusions were made in-frame at 

five different locations of the cpsA gene resulting in a truncated protein containing the first 19, 

50, 74, 105, or 188 amino acids.  The location of each of these fusions relative to the three 

transmembrane domains is illustrated in Fig. 5. Colorimetric assays were performed with strains 

harboring each of the CpsA fusion plasmids as described in Materials and Methods.  

Fusions to the predicted cytoplasmic regions gave the highest β-galactosidase activity in 

E. coli at 3440 Miller units (MU) for CpsA-cyto1-βgal and 5127 MU for CpsA-cyto2-βgal, while 

fusions to putative extracellular regions gave much lower activity at 86 MU for CpsA-ext2-βgal 

and 101 MU for CpsA-dna_ppf-βgal (Fig. 6A). Although less than half of that observed for the 

two predicted cytoplasmic regions, there was a higher than expected activity observed for CpsA-
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ext1-βgal (1687 MU), as it was predicted to be in an extracellular loop. We attempted to perform 

the same β-galactosidase assays in S. iniae, but found that all constructs gave less than 1 MU of 

activity, a problem that persisted even with a positive control consisting of the native lacZ gene 

positioned behind the same promoter, which demonstrated only 8 MU of activity (data not 

shown).  We speculate that this may be due to a problem with permeabilization of the cells, as in 

our experience it is especially difficult to achieve cell permeabilization with S. iniae compared to 

other Gram positive organisms.   We adapted a variety of permeabilization methods 

corresponding to successful protocols in a number of other Gram positive species, including S. 

pyogenes (43), S. agalactiae (121), and Enterococcus faecalis (52), without any success.     

Colorimetric assays were also performed with E. coli strains harboring each of the CpsA 

alkaline phosphatase fusion plasmids (Fig. 6B).  Fusions to predicted extracellular domains gave 

the highest alkaline phosphatase activity with 807 MU for CpsA-ext2-Phos and 109 MU for 

CpsA-dna_ppf-Phos, while fusions to predicted cytoplasmic regions gave lower activity at 10 

MU for CpsA-cyto1-Phos and 5 MU for CpsA-cyto2-Phos. Once again the activity of CpsA-

ext1-Phos did not match its putative extracellular location with only 10 MU of alkaline 

phosphatase activity.  The lower than expected activity for CpsA-dna_ppf-Phos was shown to be 

due to protein degradation (Fig. 6C), a phenomenon also observed with another member of the 

LytR_CpsA_psR family when fusions were made closer to the C-terminus (58).  The stability of 

all CpsA-PhoZ fusions was confirmed by Western blot (Fig. 6C) with antibodies to the PhoZ 

alkaline phosphatase.  Western blots also confirmed the stability of all CpsA-β-galactosidase 

fusions (data not shown).  Alkaline phosphatase assays were also performed on S. iniae 

harboring each of the CpsA alkaline phosphatase plasmids.  Results from these assays 

corresponded exactly to those observed in E. coli with predicted extracellular regions giving the 
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highest activity with 490 units of activity for CpsA-ext2-Phos and 210 units of activity for CpsA-

dna_ppf-Phos, while fusions to putative intracellular regions gave lower activity at 40 units for 

both CpsA-cyto1-Phos and CpsA-cyto2-Phos (Fig. 6D).  As seen in E. coli, activity for the 

CpsA-ext1-Phos fusion did not correlate with its predicted extracellular position at only 90 units 

of activity, indicating that this discrepancy was species independent (Fig. 6D). 

We hypothesized that the unexpected results observed with CpsA-ext1 may have been 

due to masking of the hydrophobic region of the first transmembrane domain and prevention of 

membrane association by the large reporter enzymes fused to the C-terminus.  Therefore, an 

alternative method was to use a construct with a smaller chitin binding domain (CBD) tag fused 

in-frame at amino acids 22 and 43 (Fig. 7A).  If the CBD is indeed located extracellularly for 

CpsA-ext1-CBD, as predicted, then it will be accessible for antibody binding during whole cell 

ELISA and exhibit higher activity than vector alone or the cytoplasmic CpsA-cyto1-CBD fusion.  

Phosphatase activity, using a colorimetric assay from the whole cell ELISA, was measured for 

each strain (Fig. 7B).  As predicted, CpsA-ext1-CBD demonstrated the highest enzymatic 

activity at 1543 MU, indicating an extracellular CBD location.  The CpsA-cyto1-CBD fusion 

expressed significantly lower activity at 168 MU (similar to vector alone), consistent with the 

cytoplasmic location of the CBD.  The stability of each of these constructs was confirmed by 

Western blot, using antibodies generated against the CBD (data not shown). 
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Figure 4:  Plasmids constructed for CpsA membrane topology verification.  (A) Fusion of cpsA 
to lacZ and (B) cpsA to phoZ.  Plasmid pLZ12-rofA-pro was used to construct in-frame 
translational fusions of cpsA to the reporter enzymes.  The chimeric gene products are under 
control of the mid-level constitutive rofA promoter.  The size of the cpsA-trunc fragment varies 
in relation to the truncations used.  The locations of genes encoding resistance to kanamycin 
(aphA3), chloramphenicol (Cm), origins of replication and restriction site locations are shown.   
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Figure 5:  (A) CpsA membrane topology. (B)  Conserved protein domains of CpsA.  (C)  
Location of enzymatic fusions to CpsA to determine membrane topology. Hydropathy plots were 
used to predict the specific membrane topology for each fusion: TM (transmembrane), cyto1 or 
cyto2 (cytoplasm), ext1 or ext2 (extracellular), and dna_ppf (extracellular). aa, number of amino 
acids. 
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Figure 6:  (A) Activity of CpsA-β-galactosidase E. coli fusion strains in colorimetric assays, 
expressed in Miller units. (B) Activity of CpsA-alkaline phosphatase E. coli fusion strains in 
colorimetric assays, expressed in Miller units. (C) Western blot for confirmation of stability of 
CpsA-alkaline phosphatase fusions. The asterisk indicates a nonspecific band. The arrowhead 
points to a degradation product. (D) Activity of CpsA-alkaline phosphatase S. iniae fusion strains 
in colorimetric assays. Error bars reflect the standard deviations. 
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Figure 7:  CpsA membrane topology verification using the chitin-binding domain (CBD) tag. 
(A) Location of CBD fusions to CpsA. (B) Alkaline phosphatase activity of each strain used in 
the whole-cell ELISA. Activity is expressed as Miller units. Error bars reflect standard 
deviations. 
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Analysis of CpsA promoter binding. All members of the LytR_cpsA_psr protein family are 

implicated in transcriptional regulation, but to our knowledge no direct DNA binding function 

for these proteins has been demonstrated.  The CpsA protein has been shown to regulate capsule 

expression; cpsA is the first gene in the capsule operon and is adjacent to the putative capsule 

promoter (27, 79, 171). To determine if CpsA binds directly to the capsule operon promoter to 

influence transcription we performed electrophoretic mobility shift assays (EMSA) with purified 

CpsA and digoxigenin (DIG) labeled promoter DNA as a probe.  The use of EMSA provides the 

ability to discern direct interactions between proteins and specific DNA sequences, as well as the 

ability to assess the specificity of any observed interaction.  Sequence analysis of the 

cytoplasmic regions of CpsA revealed a high density of positively charged amino acids, with 

8/22 on the cytoplasmic N-terminus and 4/5 on the cytoplasmic loop (Fig. 8).  This led us to 

hypothesize that CpsA may be able to bind directly to the negatively charged phosphate 

backbone of DNA.  To this end, we generated maltose-binding-protein (MBP) tagged versions of 

CpsA, with full length CpsA as well as various C-terminal truncations (Fig. 9).  Following 

purification on an amylose column, EMSAs were performed with each of the MBP-CpsA fusion 

constructs.  An 182 bp DNA fragment containing the cpsA promoter was labeled with DIG and 

used as a probe.  

EMSA results demonstrated that full length MBP-CpsA was capable of binding 

specifically to the cpsA promoter probe (Fig. 10A).  The smallest concentration of protein (25 

pmol) was able to shift the probe completely (Fig. 10A, lanes 2-4).  Addition of 20-fold excess 

unlabeled cpsA promoter DNA to the binding reaction led to competition for CpsA protein 

binding with the DIG-labeled probe, resulting in an increase in unbound labeled probe (Fig. 10A, 
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lane 5).  Addition of excess non-specific competitor DNA led to minimal competition with the 

cpsA promoter DNA (Fig. 10A, lane 6).   

To confirm that the large extracellular C-terminus of CpsA was not playing a role in the 

observed DNA binding, MBP-CpsA-116, which removes greater than 90% of the extracellular 

domain (Fig. 9), was constructed and analyzed by EMSA.  Results with MBP-CpsA-116 

revealed similar binding kinetics to those seen for the full length MBP-CpsA (Fig. 10B).  

Increasing the concentration of protein in the binding reactions led to an increased shift of free 

probe to the bound state (Fig. 10B, lanes 2-4).  As seen with the full length form, excess 

unlabeled cpsA promoter led to a large shift of probe from the bound state to the unbound state 

(Fig. 10B, lane 5) while excess non-specific competitor led to only moderate competition with 

labeled probe (Fig. 10B, lane 6).   

 The contribution of the cytoplasmic loop between transmembrane domains 2 and 3 to 

DNA binding was analyzed by testing the MBP-CpsA-78 and MBP-CpsA-23 constructs with 

EMSA.  The MBP-CpsA-78 truncation left the cytoplasmic loop intact, but removed the 

transmembrane domain that anchored it to the membrane, likely disrupting its native structure.  

The MBP-CpsA-23 truncation completely removed the cytoplasmic loop, as well as the first 

transmembrane domain, leaving just the cytoplasmic N-terminus intact. Results of the EMSA 

with MBP-CpsA-116 indicated efficient binding to the labeled probe as illustrated in Fig. 10B 

(Fig. 11, lane 1), as did MBP-CpsA-78 (Fig. 11, lane 2), demonstrating that the cytoplasmic loop 

transmembrane anchor was not necessary for CpsA to bind to the DNA probe.  Excess unlabeled 

cpsA promoter DNA effectively competed with labeled probe for protein binding for both MBP-

CpsA-116 (lane 4) and MBP-CpsA-78 (lane 5). The major difference between MBP-CpsA-116 

and MBP-CpsA78 was observed when non-specific competitor DNA was used.  Only moderate 
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competition was observed with MBP-CpsA-116 when excess non-specific DNA was added (lane 

7) while significantly more competition was observed when excess non-specific DNA was 

incubated with MBP-CpsA-78 (lane 8), indicating loss of the native structure of the cytoplasmic 

loop through removal of the third transmembrane domain may result in a loss of specificity. 

Lastly, the full removal of the cytoplasmic loop in MBP-CpsA-23 completely abrogated the 

ability of CpsA to bind to DNA (Fig. 11, lanes 3, 6 and 9). This construct also served to show 

that the MBP tag alone was not responsible for the observed DNA binding in the other fusion 

constructs. 

Since we could not rule out that the N-terminally-located MBP tag may be responsible 

for blocking DNA binding of MBP-CpsA-23 through steric hindrance, we used constructs in 

which a small chitin-binding domain (CBD) tag was attached to the C-terminus of the protein 

(CpsA-cyto1-CBD and CpsA-ext1-CBD) in EMSA analysis, leaving the N-terminus of CpsA 

untagged.  Neither of these purified constructs was able to bind to the cpsA promoter probe (data 

not shown), indicating that the cytoplasmic N-terminus of CpsA, in the absence of the 

cytoplasmic loop, is not sufficient for DNA binding at this promoter. 
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Figure 8:  Cytoplasmic protein sequence of CpsA from Streptococcus iniae with positively 
charged amino acids in blue text. 
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Figure 9:  MBP-CpsA constructs used for DNA-binding assays. Full-length and sequential C-
terminal truncations of CpsA were generated for analysis of DNA-binding properties. Truncated 
forms of CpsA contained the first 116, 78, or 23 amino acids of the protein, removing the large 
extracellular C terminus, the third transmembrane domain, and the cytoplasmic loop and the first 
transmembrane domain, respectively. 
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Figure 10:  EMSA using digoxigenin-labeled cpsA promoter DNA as a probe. (A) EMSA with 
full-length MBP-CpsA. Lanes: 1, free probe; 2, 25 pmol MBP-CpsA; 3, 50 pmol MBP-CpsA; 4, 
75 pmol MBP-CpsA; 5, 75 pmol MBP-CpsA and 20x unlabeled cpsA promoter DNA; 6, 75 
pmol MBP-CpsA and 20x nonspecific DNA. (B) EMSA with MBP-CpsA-116. Lanes: 1, free 
probe; 2, 25 pmol MBP-CpsA-116; 3, 50 pmol MBP-CpsA-116; 4, 75 pmol MBP-CpsA-116; 5, 
75 pmol MBP-CpsA-116 and 20x unlabeled cpsA promoter DNA; 6, 75 pmol MBP-CpsA-116 
and 20x nonspecific DNA. B, bound probe; U, unbound probe. 
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Figure 11:  EMSA with MBP-CpsA truncations. All lanes contain 75 pmol of protein and DIG-
labeled probe. Lanes: 1, MBP-CpsA-116; 2, MBP-CpsA-78; 3, MBP-CpsA-23; 4, MBP-CpsA-
116 and 20x unlabeled cpsA promoter DNA; 5, MBP-CpsA-78 and 20x unlabeled cpsA promoter 
DNA; 6, MBP-CpsA-23 and 20x unlabeled cpsA promoter DNA; 7, MBP-CpsA-116 and 20x 
nonspecific DNA; 8, MBP-CpsA-78 and 20x nonspecific DNA; 9, MBP-CpsA-23 and 20x 
nonspecific DNA. B, bound probe; U, unbound probe. 
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The conserved domains of S. iniae CpsA are involved in regulation of capsule.  Previous 

observations in our lab documented that a cpsA insertion mutant of S. iniae produced less capsule 

and was attenuated for virulence (79).  The S. iniae cpsA-ins mutant effectively transcribes and 

translates a truncated form of the protein lacking the LytR domain that was initially thought to be 

inactive; however, the cpsA-ins mutant is unable to be complemented with ectopic expression of 

the full length native cpsA (data not shown).  To assess the nature of these phenotypes and the 

role of the DNA_PPF and LytR domains of CpsA in capsule regulation, truncated forms of CpsA 

lacking the LytR domain, or containing just the DNA_PPF domain, were generated and 

ectopically expressed in the WT S. iniae background (Fig. 12).   

 Capsule production in the WT strain demonstrated growth phase dependency, with 

highest levels of capsule produced during exponential growth (3-4 hours) (Fig. 13).  To assess 

capsule levels without variability due to growth phase, overnight cultures were used.  Production 

of a form of CpsA lacking the LytR domain (CpsA-∆LytR) in the WT S. iniae background 

resulted in a drastic reduction in capsule levels as measured by buoyant density centrfiguation, to 

levels comparable to those observed for the S. iniae cpsA-ins mutant (Fig. 14).  The loss of 

capsule experienced with removal of the LytR domain could be due to either an induced 

dominant negative function or the adoption of a repressive function for CpsA in the absence of 

the LytR domain.  Production of a truncated form of CpsA entailing just the DNA_PPF domain 

with a transmembrane anchor was also sufficient to produce the same phenotypic loss of capsule 

(Fig. 14), indicating that this phenotype was facilitated by the DNA_PPF domain and does not 

appear to require DNA-binding by the truncated form of the protein, as the DNA-binding domain 

of CpsA was absent for this construct (Fig. 12).  Additionally these observations explain our 

inability to complement capsule production in the cpsA-ins mutant of S. iniae with native CpsA, 
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as the cpsA-ins mutant is producing a dominant negative or repressing form of the protein that 

somehow prevents the native CpsA from activating capsule synthesis. 
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Figure 12:  Membrane topology and conserved domains of S. iniae CpsA with truncated forms 
of CpsA lacking the LytR domain, and containing just the DNA_PPF domain.  
 

 

Figure 13:  Production of capsule over time by WT 9117 S. iniae when growing in fresh 
medium. 
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Figure 14:  Capsule levels of S. iniae WT, cpsA-ins, and WT strain with either pCpsA-∆LytR or 
pCpsA-DNA_PPF plasmids.   
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The conserved domains of S. iniae CpsA are involved in regulation of cell wall stability.   

Other proteins containing the LytR domain have been shown to be associated with regulation of 

cell wall maintenance, including autolysis and cell division (24, 58, 62, 74, 110).  In addition to a 

decrease in capsule, previous observations in our lab documented that the cpsA-ins mutant of S. 

iniae formed significantly longer chains of cocci (79), a phenotype associated with altered cell 

wall maintenance (8, 9, 24).  To determine the role of CpsA and the LytR domain in regulation 

of cell wall stability, a variety of cell wall active antimicrobial agents that target specific steps in 

cell wall biosynthesis and turnover were used in conjunction with the S. iniae WT, cpsA-ins, and 

WT/pCpsA-∆LytR strains. 

 Lysozyme specifically cleaves the glycosidic bond between NAM and NAG of 

the cell wall PG, and is used by host organisms to enhance clearance of pathogenic bacteria.  In 

response to this selective pressure, bacterial systems have arisen that modify the PG backbone 

through O-acetylation of NAM and N-deacetylation of NAG to provide resistance to lysozyme 

cleavage of PG (31).  While growth of the WT S. iniae strain was ablated even at low levels of 

lysozyme, both the cpsA-ins and WT/pCpsA-∆LytR strains grew to similar levels across a broad 

range of lysozyme concentrations (Fig. 15), possibly indicating that PG modifications are altered 

in the absence of the CpsA LytR domain.   

Bacitracin inhibits recycling of Und-P, which is the lipid acceptor required for PG and 

CPS synthesis and transport to the cell exterior.  The inability to form a cell wall is bactericidal 

as bacteria easily lyse from osmotic pressure in the absence of the cell wall.  Interestingly, both 

the cpsA-ins and WT/pCpsA-∆LytR strains were about two to three-fold more resistant to growth 

in bacitracin than the WT strain of S. iniae (Fig. 16), suggesting differential usage of the Und-P 

acceptor.   
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Β-lactam antibiotics like methicillin inhibit crosslinking of the peptide side chains of PG, 

causing a bacteriostatic effect, but this indirectly results in an accumulation of PG precursors 

within the bacterial cell that positively activates the production of autolysins which ultimately 

cause bactericidal cell lysis.  In contrast to what was observed for lysozyme and bacitracin, the 

cpsA-ins and pCpsA-∆LytR strains of S. iniae demonstrated an approximately two-fold decrease 

in resistance to β-lactams, including methicillin (Fig. 17) and ampicillin (data not shown), when 

compared to the WT strain.  Taken together, these results suggest that the cell wall architecture 

of S. iniae is altered when the LytR domain of CpsA is removed.  This observation is consistent 

with a regulatory function for CpsA that includes not only capsule, but the cell wall as well. 
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Figure 15:  Growth profiles for strains of S. iniae grown in the presence of various lysozyme 
concentrations. 
 

 

Figure 16:  Growth profiles for strains of S. iniae grown in the presence of various bacitracin 
concentrations. 
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Figure 17:  Growth profiles of S. iniae strains grown in the presence of various concentrations of 
methicillin. 
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The LytR domain of CpsA contributes to differences in autolysis in S. iniae.  In addition to 

the differences in antimicrobial resistance observed for the different strains of S. iniae, we also 

observed that in the absence of antibiotics both the cpsA-ins and WT/pCpsA-∆LytR strains 

exhibited a lower OD600 value after overnight growth (Figs. 15-17).  We determined that this was 

not due to a growth defect by performing time-dependent growth curves, and observed that the 

OD600 value decreased during late stationary phase to a level much lower than that observed for 

the WT strain of S. iniae (data not shown).  A decrease in OD600 values is generally 

representative of cell lysis, leading to decreased absorption at the 600 nm wavelength. 

 To measure the increased autolysis associated with the cpsA-ins and pCpsA-∆LytR 

strains, bacteria were grown overnight and resuspended in PBS or the nonionic detergents triton 

X-100 and tween-20, which have been shown to induce autolysis (29).  The percent lysis was 

determined by comparing the final OD600 value to the initial OD600 value.  When strains were 

incubated in PBS alone, the cpsA-ins strain exhibited an approximately two-fold increase in 

autolysis compared to the WT strain (Fig. 18).  The WT/pCpsA-∆LytR strain demonstrated a 

more subtle increase in autolysis with an approximately 1.5 fold increase over that observed for 

the WT strain (Fig. 18).  Surprisingly, none of the strains showed a significant increase in 

autolysis when incubated with the nonionic detergents triton X-100 (Fig. 19) or tween-20 (Fig. 

20), but the same relative increase in autolysis was apparent for both the cpsA-ins and pCpsA-

∆LytR strains when compared to the WT strain.  Taken together, the data suggests that the LytR 

domain of CpsA contributes either directly or indirectly to regulation of autolysis, which is 

consistent with the observation that CpsA contributes to regulation of cell wall maintenance or 

stability as assessed by antimicrobial sensitivity above. 
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Figure 18:  The amount of lysis observed for different strains of S. iniae incubated in PBS. 

 

 

Figure 19:  The amount of lysis observed for different strains of S. iniae incubated in 0.6% triton 
X-100. 
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Figure 20:  The amount of lysis observed for different strains of S. iniae incubated in 0.6% 
tween-20. 
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DISCUSSION 

 

Many pathogens utilize a polysaccharide capsule to evade immune clearance, allowing 

for dissemination and development of systemic disease.  Among these are a number of 

streptococcal pathogens that appear to use the CpsA protein to exert transcriptional control over 

capsular synthesis.  Cieslewicz et al. demonstrated that a deletion of the cpsA gene resulted in a 

loss of capsule transcription in S. agalactiae, as well as decreased capsule production (27).  

Furthermore, mutation of cpsA in S. iniae resulted in an unencapsulated phenotype and led to a 

reduction in virulence and effective dissemination from the site of infection (79), underscoring 

the importance of capsule regulation in pathogenesis.   

Though several members of the LytR_cpsA_psr protein family have been implicated in 

transcriptional regulation, a mechanism for how these proteins modulate transcription has not 

been determined.  However, there appear to be several common themes of functionality within 

this protein family. The LytR protein of Bacillus subtilis demonstrates transcriptional attenuator 

activity of its own promoter and the promoter of the divergent operon of lytABC, which encodes 

proteins involved in autolysin production (74). The PSR protein, originally analyzed in 

Enterococcus hirae, was found to be a repressor for penicillin-binding protein 5 (PBP5) as well 

as a regulator of other cell surface-related processes (75, 90).  However, a subsequent report on 

PSR in E. faecium demonstrated that neither repressor or activator activities were associated with 

control of PBP5, but suggested that PSR may activate its own transcription during growth in the 

presence of ampicillin (124). Expression analysis of the LytR_cpsA_psr family member msrR in 

S. aureus revealed transcriptional activation in the presence of multiple cell wall-targeted 

antimicrobials including vancomycin and lysostaphin (125). An msrR mutant strain had a 4-fold 
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decrease in minimal inhibitory concentration (MIC) to oxacillin compared to the wild type strain, 

suggesting that this protein may be involved in sensing and responding to antimicrobials that 

target the cell wall.  Furthermore, this report demonstrated that MsrR had attenuator activity 

against the sarA gene, which encodes a global regulator of virulence genes in S. aureus (125).  

However, a recent microarray analysis with a deletion mutant of msrR demonstrated only minor 

changes in the transcriptome, suggesting that the regulatory effects of MsrR may be indirect (59).  

Conversely, when the gene encoding the S. mutans LytR (BrpA) protein, which is involved in 

biofilm formation, autolysis, cell division and systemic virulence (24, 102, 164, 172) was deleted 

and subjected to a transcriptome analysis, changes in expression of a number of genes was 

observed (163).  Taken together, members of this family of proteins appear to be involved with 

cell wall biogenesis, polysaccharide production, stress tolerance and transcriptional modulation 

of proteins involved in these processes.   

Although the predicted membrane topology for the CpsA protein suggests a unique 

transcriptional regulatory mechanism, it was first necessary to confirm the topological prediction 

provided by hydropathy plots. Recently the topology of another member of the LytR_cpsA_psr 

family, MsrR, was reported, although this protein has only a single transmembrane domain, with 

a small cytoplasmic N-terminus and a large extracellular C-terminus (58).  Translational fusions 

of various regions of the CpsA protein to either β-galactosidase or alkaline phosphatase enabled 

us to verify which regions of the protein are cytoplasmic or extracellular. We found that the 

predicted cytoplasmic regions (cyto1 and cyto2) gave the highest β-galactosidase activity of all 

fusions tested, consistent with a cytoplasmic location.  Enzymatic fusions to predicted 

extracellular locations (ext2 and dna_ppf) gave the highest alkaline phosphatase activity, 

confirming an extracellular location.  The decreased alkaline phosphatase activity given by 
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CpsA-dna_ppf-Phos was shown to be due to increased protein degradation.  Moreover, the 

extracellular location of this domain is consistent with the high alkaline phosphatase activity 

demonstrated by the adjacent CpsA-ext2 domain and the absence of a predicted transmembrane 

domain between the two locations. Though we were unable to confirm the CpsA β-galactosidase 

fusions in S. iniae, our results with the CpsA alkaline phosphatase fusions in S. iniae 

demonstrated identical trends to those seen in E. coli.  We are therefore confident that the results 

obtained in E. coli accurately represent the membrane topology that CpsA manifests in S. iniae.  

The only CpsA fusion location that did not correspond to the predicted membrane topology was 

at amino acid 50 (ext1), a predicted extracellular loop of only 7 amino acids. We speculate that 

these results may have been due to misfolding or interference with membrane association caused 

by the large reporter enzymes.  Subsequent construction with the smaller chitin-binding domain 

(CBD) tag allowed us to circumvent this problem, validating its extracellular location.  

Therefore, our results confirm the predicted membrane topology of the streptococcal CpsA 

protein with a short (~22 amino acids) cytoplasmic N-terminus, 3 transmembrane domains and a 

large extracellular domain (>400 amino acids). 

As mentioned above, CpsA plays a role in transcriptional regulation of the capsule 

operon. To identify a regulatory mechanism, we utilized purified proteins with targeted 

truncations to determine whether direct binding to the promoter occurs, the protein domains 

responsible for binding to DNA and the specificity of the interaction between CpsA and the 

capsule operon promoter. Analysis by EMSA with purified MBP-CpsA-full showed a direct 

interaction between the CpsA protein and the cpsA promoter DNA, indicating that CpsA may 

regulate transcription through direct DNA binding. Furthermore, our analyses demonstrate that 

the interactions are specific for the capsule promoter DNA. To our knowledge this is the first 
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report demonstrating binding of any LytR_cpsA_psr family member to its target DNA.  EMSA 

analysis with a CpsA protein that has the entire C-terminal extracellular domain removed (MBP-

CpsA-116) confirmed that this domain does not contribute to the observed DNA binding, also 

consistent with the finding that this region is extracellular.  However, these results do not rule out 

a possible contribution of this domain in transcriptional activation through possible 

conformational changes. Therefore, although the CpsA protein has less than 30 amino acids in 

the cytoplasm, its cytoplasmic regions are sufficient for binding to DNA.   The ability of the 

membrane-bound CpsA protein to bind to a specific DNA target is not without precedent.  The 

well-studied virulence protein ToxR of Vibrio cholerae is a transmembrane protein proven to 

bind to specific promoters to regulate transcription (55, 96).  Therefore, the highly conserved 

CpsA protein present in the majority of streptococcal capsule operons appears to be modulating 

transcription of polysaccharide capsule through direct binding to the capsule promoter. Further 

experiments are necessary to determine if this interaction is sufficient for transcriptional 

activation and what other factors may contribute to DNA target specificity.   

Notably, although the cytoplasmic regions of the CpsA protein bind to the cpsA promoter 

in a specific manner, there is no evidence of a typical DNA binding domain. A possible leucine 

zipper domain which may facilitate protein dimerization exists in the N-terminal portion of the 

protein, spanning the cytoplasmic N-terminus and first transmembrane domain, however, a 

single leucine in the heptad repeat of this motif is replaced with a tryptophan.  It is possible that 

this still represents a functional leucine zipper domain as it has been shown that substitution of a 

single leucine in the repeat with a tryptophan does not necessarily abrogate the function of the 

motif (57), however, verification is required.   Results of the topological analysis combined with 

the protein sequence suggest that the DNA binding may be influenced by an interaction with the 



72 
 

 

positively charged residues present in the small cytoplasmic N-terminus (8 of 22 residues) and 

the cytoplasmic loop between transmembrane domains 2 and 3 (4 of 5 residues), although this 

would not necessarily provide specificity.  Therefore some additional component may be 

required to enhance CpsA binding specificity and transcriptional activation in vivo. Many 

transcriptional activators require a co-inducer for enhanced binding to their target DNAs such as 

what is observed for the LysR family of transcriptional regulators (81). The co-inducer causes a 

conformational change in the tertiary structure of the protein that allows specific binding to its 

DNA target.  Alternatively, binding may require interactions with another protein to induce a 

conformational change that will enhance binding to the DNA target.  The ToxR transmembrane 

transcriptional regulator of V. cholerae mentioned above interacts with another membrane 

protein, ToxS, through specific residues in the periplasm (35).  Although ToxR can bind to its 

target DNA in the absence of ToxS, the specific interactions between the two proteins in their 

periplasmic domains enable transcriptional activation (116).  As described above, several 

members of the LytR_cpsA_psr family can modulate transcription of multiple genes, however, 

the short cytoplasmic domains of many of these proteins suggest that the mechanism of 

transcriptional activation may also require interaction with other proteins to alter their 

transcriptional profile.  In the case of the CpsA proteins, such an interaction may occur through 

the extensive extracellular domain and may also influence DNA binding specificity.  Absence of 

both the DNA_PPF domain and the LytR domain was shown to not significantly affect the 

ability of CpsA to bind DNA, indicating that these domains are likely not involved in facilitating 

the DNA binding event, but serve some other function that may be linked to transcriptional 

activation.   One possibility could be through protein-protein interactions with other membrane-

bound proteins encoded by the capsule operon.  



73 
 

 

The presence of the DNA polymerase processivity factor domain (DNA_PPF, pfam 

PF02916) in the CpsA protein alone out of all members of the LytR_cpsA_psr family is 

particularly intriguing since we have determined that it is located extracellularly.  DNA_PPF 

proteins function to bind to and tether their cognate polymerases to the duplex DNA template so 

that the polymerase stays firmly in contact with the DNA during high-speed replication (73).  

Clearly, this domain in CpsA is not binding to a polymerase, but instead may have been co-opted 

for another specific protein-protein interaction.  Interestingly, although absence of the DNA_PPF 

and LytR domains (MBP-CpsA-116) did not significantly alter binding to the cpsA promoter in 

vitro, ectopic expression of a construct lacking the LytR domain in the wild type background 

results in a dominant negative (non-encapsulated) phenotype, suggesting that the DNA_PPF 

domain, expressed in the absence of the LytR domain, can interfere with regulation by the wild 

type CpsA protein.  This assertion is further supported by the observation that expression of just 

the DNA_PPF domain of CpsA in the wild type background is sufficient to incur the dominant 

negative phenotype.  Although the LytR domain is not required for DNA binding, it may be 

involved in facilitating protein-protein interactions through the DNA_PPF domain, or it may act 

to modulate DNA binding ability through a ligand or environmental sensing function as 

demonstrated for the extracellular portion of V. cholerae’s ToxR protein (142).   

In addition to alteration of capsule levels, insertional inactivation of cpsA and ectopic 

expression of cpsA lacking the LytR domain in a WT background result in changes to 

antimicrobial sensitivity for lysozyme, bacitracin, and methicillin.  The dominant negative 

phenotype induced in the cpsA-ins and WT/pCpsA-∆LytR strains results in an increase in 

resistance to lysozyme.  The degree to which resistance is increased, approximately 10 fold, is 

highly suggestive of modifications to the PG backbone that confer resistance to lysozyme, 
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including O-acetylation of NAM and N-deacetylation of NAG (31).  Additionally, both strains 

are also about 2 fold more resistant to bacitracin when compared to the WT strain.  Both PG and 

CPS require the Und-P lipid acceptor that bacitracin inhibits (173), and it may be that the 

reduction in capsule experienced by these strains results in an increase in free Und-P that allows 

for viability at higher concentrations of bacitracin.  Both the cpsA-ins and WT/pCpsA-∆LytR 

strains also exhibited a 2 fold reduction in resistance to the β-lactam methicillin.  The cause for 

this decrease in resistance is unclear, but the increase in autolytic activity observed for these 

strains suggests that they would be more sensitive to the autolytic bactericidal activity of β-

lactams.  LytR proteins are generally associated with transcriptional attenuation of autolysin 

genes (24, 58, 62, 74, 110), and have also shown functional redundancy in Staphylococcus 

aureus (110), therefore it could be that CpsA also contributes in some way to regulation of 

autolysins in manner similar to that observed for other LytR proteins. A decrease in capsule 

alone is unlikely to be responsible for the increase in autolysis, as it has been shown for S. 

pneumoniae that less capsule is associated with an increase in wall teichoic acids (70), which act 

to inhibit autolysis (129).  However, an isogenic acapsular mutant of S. iniae is required as a 

control to determine the extent to which a decrease in capsule alone causes these phenotypes.   

There is currently little information on the environmental signals that are important for 

influencing capsule levels.  Exposure to aerobic conditions has been shown to cause a reduction 

in capsule levels in S. pneumoniae, which was initially attributed to increased phosphorylation of 

the tyrosine kinase CpsD, a predicted negative regulator of capsule production (162).  However, 

it has since been shown that phosphorylation of CpsD instead correlates with increased capsule 

levels (11), leaving the mechanism of response to oxygen levels unexplained.  In S. agalactiae, 

growth in acidic media leads to an increase in buoyant density, indicative of reduced capsule 
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levels (136). However, the authors point out that the terminal sialic acids of the polysaccharide 

capsule are acid labile, and go on to show that sialic acid levels are indeed decreased in acidic 

media (136), indicating that this observed phenotype is likely a more general molecular response 

than an active regulatory phenomenon.  Additionally, no change in S. agalactiae capsule levels 

in response to differing levels of oxygen tension or temperature (136) was observed in contrast to 

the oxygen responsiveness of S. pneumoniae. Other factors that have been shown to modulate 

polysaccharide capsule expression in S. agalactiae type III strains are growth rate (112) and 

growth in human serum (120).  In the context of commensal colonization, it is likely that each 

streptococcal species downregulates capsule in response to different signals, representative of the 

different colonization niches they inhabit, such as that seen for oxygen levels (nasopharynx) for 

S. pneumoniae and pH levels (vaginal canal) for S. agalactiae.  Most likely, similarities in 

virulence related transcriptional control of capsule would become more apparent in the context 

of systemic infection, a commonality amongst the different streptococcal pathogens possessing 

the conserved capsule operon.  One could speculate that the large extracellular domains of CpsA 

are responsible for environmental signal sensing, which is then conveyed through conformational 

changes or differential protein associations into a direct transcriptional response and experiments 

addressing those possibilities are currently in progress. 

In this chapter, we have confirmed the predicted membrane topology of the streptococcal 

CpsA protein and demonstrated its DNA binding ability; providing a glimpse into the 

mechanism by which CpsA modulates capsule gene transcription in streptococci.  Additionally, 

we have identified that the DNA_PPF domain of S. iniae CpsA induces a dominant negative loss 

of capsule in the absence of the LytR domain, suggesting the possible presence of a repressing 

domain and a control domain for CpsA.  The phenotypes that result from expressing a dominant 
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negative form of CpsA include altered resistance profiles to antimicrobials and increased 

autolysis, suggesting that CpsA directly or indirectly contributes to regulation of cell wall 

turnover or stability.  The CpsA proteins of S. iniae and S. agalactiae are highly homologous 

with 55% identity and 74% similarity at the amino acid level, so the observations made with S. 

iniae CpsA are likely applicable to GBS CpsA as well. Additionally, observations made for the 

CpsA protein also shed light on other members of the LytR_cpsA_psr family, present in a 

number of medically and economically important bacteria. The importance of capsule in 

virulence makes CpsA a promising therapeutic target, but further characterization of its two 

extracellular protein domains to determine functional properties in capsule regulation is required. 
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 CHAPTER 2 

 

REGULATION OF CAPSULE AND CELL WALL BY THE CPSA PROTEIN OF 

STREPTOCOCCUS AGALACTIAE 

 

ABSTRACT 

 

 Pathogenic streptococci such as Streptococcus agalactiae (GBS) are an important cause of 

systemic disease, which is facilitated in part by the presence of a polysaccharide capsule.  The 

protein CpsA is a putative transcriptional regulator of the capsule locus in these pathogens, but 

its exact contribution to regulation is unknown. To address the role of CpsA in regulation, full-

length GBS CpsA and two truncated forms of the protein were purified and analyzed for DNA 

binding ability.    These studies demonstrated that CpsA is able to bind specifically to two 

putative promoters within the capsule operon with similar affinity, and that the full length protein 

is required for specificity.  Functional characterization of CpsA confirmed that the ∆cpsA strain 

produced less capsule than WT, and demonstrated that production of full length CpsA or the 

DNA-binding region of CpsA resulted in increased capsule levels.  In contrast, production of a 

truncated form of CpsA lacking the extracellular LytR domain (CpsA-245) in the wild type 

background resulted in a dominant negative decrease in capsule level.  GBS with CpsA-245, but 

not the ∆cpsA strain, were attenuated in human whole blood.  However, the ∆cpsA strain showed 

significant attenuation in a zebrafish infection model.  Furthermore, chain length was observed to 

be variable in a CpsA-dependent manner, but could be restored to WT levels with growth in the 

presence of lysozyme.  Despite obvious differences in cell wall related phenotypes, GBS ∆cpsA 
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and GBS with CpsA-245 did not exhibit differences in antimicrobial sensitivity for lysozyme, 

bacitracin, or ampicillin compared to the WT GBS strain.  Taken together, these results suggest 

that CpsA is a modular protein with different levels of regulatory capacity, and that this 

regulation may include not only capsule synthesis, but also cell wall associated factors.   
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 INTRODUCTION  

 

Streptococcal pathogens capable of causing systemic disease utilize a number of 

strategies for survival in the host.  The most important of these is the polysaccharide capsule that 

is produced to shield the pathogens from clearance by components of the immune system, 

including complement deposition (88) and phagocytosis (67).  The production of a 

polysaccharide capsule has proven to be a successful strategy for a number of human-specific 

pathogens, including the Group B Streptococcus (GBS) Streptococcus agalactiae, as well as 

Streptococcus pneumoniae.  GBS has long been a significant cause of neonatal mortality (34), 

and long term sequelae (37), with intrapartum antibiotic prophylaxis still the recommended 

measure taken to combat incidence of infection (154).  GBS remains a pathogen of significant 

import in developing countries, and the preemptive use of antibiotics to combat this disease is 

not ideal, as the development of drug resistance is a major concern (154).  Though rare in adults, 

recent work has revealed an alarming trend of increased incidence of GBS infection in the 

United States in non-pregnant adults (117) (141), particularly in elderly patients with at least one 

underlying health issue, illustrating that GBS remains an important problem for adults as well.  

These observations demonstrate the need for further characterization of targets for antimicrobial 

therapy or vaccine generation, and the unequivocal importance of the polysaccharide capsule 

during infection makes it a prime candidate for disruption and subsequent alleviation or 

prevention of disease. 

The production of a polysaccharide capsule by GBS and S. pneumoniae both rely on a 

number of shared components, with the first four genes of the capsule operon the most highly 

conserved between the two species with greater than 60% similarity (27).  These genes are 
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annotated as cpsA, cpsB, cpsC, and cpsD for both species.  The gene cpsA encodes a putative 

membrane-bound transcriptional regulator of the capsule operon (49), and contains a small 

intracellular domain and two conserved extracellular protein domains; the DNA Polymerase 

Processivity Factor (DNA_PPF; Pfam accession no. PF02916) domain and the LytR_cpsA_psr 

(LytR; Pfam accession no. PF03816) domain.  The genes cpsB, cpsC, and cpsD, constitute a 

phospho-relay system that regulates polymerization and ligation of the capsular polysaccharide 

to the cell wall peptidoglycan (11, 20, 98, 99), with the encoded proteins CpsB as a phospho-

tyrosine protein phosphatase, CpsD as a tyrosine kinase, and CpsC as a membrane tether and 

accessory protein for CpsD.   

The presence of the DNA_PPF domain is curious for two reasons: first, although this 

region of the protein is categorized as belonging to a family of sliding clamp proteins that bind 

directly to DNA, the DNA_PPF domain of CpsA has been shown to reside extracellularly (54).  

Second, despite this region of the protein being classified with the DNA_PPF designation, the 

protein sequence of the DNA_PPF region of CpsA proteins diverges a great deal from traditional 

DNA_PPF sliding clamp proteins, with a BLAST alignment of the GBS CpsA DNA_PPF 

domain to the bacteriophage RB69 DNA_PPF domain giving no significant similarity.  

Therefore, we propose that the DNA_PPF designation of this portion of the protein does not 

correspond to a function consistent with sliding clamps, and that streptococcal species utilize the 

DNA_PPF domain of CpsA for some other as yet unknown function, which has been suggested 

previously (58). 

In contrast to the DNA_PPF designation, the LytR designation of the CpsA protein is 

much more robust, with a sequence alignment of the GBS CpsA LytR domain to the Bacillus 

subtilis LytR protein’s LytR domain giving 38% identity and 58% similarity (E-value = 1e-25), 
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indicating possible functional conservation.  LytR proteins have been associated with 

transcriptional attenuation of the lytRABC divergon (74), which encodes cell-wall modifying 

enzymes.  In contrast to the transcriptional attenuation observed for LytR, CpsA appears to have 

a transcriptional activation function for the capsule locus (27).  The mechanism by which the 

LytR domain functions remains unclear. It may act as an environmental sensor that modulates 

the activity of the CpsA protein, thereby controlling the cytoplasmic domain, or in the case of 

CpsA altering the function of the DNA_PPF domain.  In addition to regulation of capsule, CpsA 

may prove to exhibit roles associated with cell wall regulation as well, which would be 

congruent with the function assigned to LytR proteins.  Although GBS lacks the lytABC operon 

of Bacillus and other species, CpsA may represent a regulatory module at the crossroads of 

capsule and the cell wall, two of the major surface components of streptococcal cells. 

The presence of a small N- terminal cytoplasmic domain is common to both GBS CpsA 

and B. subtilis LytR proteins with 26 and 11 amino acids respectively.  We have previously 

shown that this small cytoplasmic region in its entirety is sufficient for S. iniae CpsA to bind to 

the promoter upstream of cpsA (54), and it may be that LytR proteins function similarly.  Both 

CpsA and LytR proteins contain a high density of positively charged amino acids in the 

intracellular domains with 11/26 amino acids for CpsA and 7/11 amino acids for LytR which 

may help facilitate interaction with specific DNA sequences.  Additionally, the CpsA proteins of 

GBS and S. pneumoniae have possible leucine zipper domains extending from the cytoplasmic 

region into the first transmembrane region, which could also help facilitate DNA binding through 

dimerization.  LytR proteins lack this property.  Although the leucine repeat is present, there is 

no predicted coiled-coil sequence for CpsA, so the presence of a functional leucine zipper 

domain requires validation.  In addition to the operon promoter upstream of the cpsA gene, a 
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second promoter element may also exist upstream of the cpsE gene in GBS, as a secondary 

transcription initiation site was identified in this region with upstream A-T rich repeats (171). 

This study focuses on the function of each of the CpsA domains as they relate to the 

capsule locus promoters, actual capsule levels, and preliminarily, to cell wall stability.  We 

demonstrate that the GBS CpsA protein is able to bind specifically to both the GBS cpsA and 

cpsE promoter elements, and define the regions of CpsA that facilitate binding to DNA and 

contribute to the specificity of the interaction. We have also shown that expression of these 

different domains in either the WT or a ∆cpsA strain of GBS alters capsule level and the capacity 

of the bacteria to survive in human whole blood.  Additionally, we present data implicating 

CpsA in modulating the cell wall.  
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MATERIALS AND METHODS 

 

Bacterial strains and growth conditions:  Plasmids were maintained in Escherichia coli 

electro-competent Top 10 cells (Invitrogen).  Luria-Bertani (LB) medium (BD) was used to 

culture E. coli strains.  Antibiotics were added as necessary to LB medium at the following 

concentrations: chloramphenicol, 20 µg/ml, and ampicillin, 100 µg/ml for E. coli strains.  E. coli 

cultures were grown at 37°C with shaking.  When growing E. coli cultures for protein 

purification, LB media was supplemented with 0.2% glucose (w/v).  Solid media was generated 

by supplementing the liquid media with 1.4% agar (Acumedia).  The streptococcal strain 

Streptococcus agalactiae Group B Strep (GBS) 515, a human clinical isolate from the blood of a 

patient with neonatal septicemia and GBS 515 ∆cpsA were generously provided by M. Wessels. 

GBS 515 was cultured in Todd-Hewitt medium (BD) supplemented with 0.2% yeast extract 

(THYB) (BD) in airtight conical tubes without agitation at 37°C. When transforming GBS 515 

by electroporation, bacteria were grown on solid media supplemented with 1.4% agar (BD) and 

incubated in GasPak jars (BBL) with GasPak anaerobic system envelopes (BD). 

 

Transformation of GBS 515. GBS 515 cultures were grown statically in THYB supplemented 

with 80 mM glycine overnight, diluted 1:20 in 25 mL of THYB supplemented with 80 mM 

glycine the following day and grown with shaking to an OD600 of 0.4.  The cells were then 

harvested by centrifugation, washed 3 times with 10 mL of ice-cold 10% glycerol, and 

resuspended in 1 mL of ice-cold 10% glycerol.  Plasmid DNA was mixed with 200 µl of cells, 

placed into an electroporation cuvette (DOT Scientific), and electroporated with a BIO-RAD 

Gene Pulser II at 25 µF, 2.0 kV, and 400 Ω.  Cells were immediately transferred to 10 mL of 
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fresh THYB medium, and allowed to recover for 90 minutes at 37°C prior to plating on selective 

media. 

 

Cloning of maltose-binding-protein (MBP)-CpsA fusions.  The full length cpsA gene was 

amplified from GBS 515 genomic DNA using the primers 5’ GBS-cpsA-SmaI and 3’ GBS-cpsA-

full-stop-PstI. Truncations of the 3’ end of cpsA were amplified from GBS 515 genomic DNA 

using the primer 5’GBS-cpsA-SmaI in conjunction with the primers 3’GBS-cpsA-245-stop-PstI, 

3’GBS-cpsA-117-stop-PstI or 3’GBS-cpsA-39-stop-PstI. These products were digested with 

SmaI and PstI and cloned into the corresponding SmaI and PstI sites of pMAL-c2x (NEB) 

leading to in-frame fusions of cpsA fragments downstream of the malE gene.  This generated the 

following plasmids: pMAL-GBS-cpsA-full, pMAL-GBS-cpsA-245, pMAL-GBS-cpsA-117, and 

pMAL-GBS-cpsA-39.  These constructs were transformed into E. coli Top10 cells (Invitrogen). 

 

Protein purification:   Overnight pMAL-cpsA expressing E. coli strains were sub-cultured 1:40 

into 300 mL new LB medium supplemented with 0.2% glucose and grown at 37°C with shaking 

until reaching an OD600 of approximately 0.5, and protein expression was induced by addition of 

0.3 mM isopropyl-β-D-1-thiogalactopyranoside, followed by incubation for 3 hours. Cells were 

then harvested by centrifugation at 6500 × g for 10 minutes, the supernatant discarded, and the 

cells resuspended in 30 ml of Column Buffer (20 mM Tris-HCl, 200 mM NaCl, and 1mM 

EDTA) and stored at -20°C overnight.  The frozen cultures were thawed on ice, and 10 mL of 

lysis buffer was added (50 mM Tris-HCl, 150 mM NaCl, 1% Sarkosyl (w/v), 1% Triton-X 100 

(v/v), 10 mM CHAPS, pH 7.4) along with 40 µl of 100X ProteoBlock protease inhibitor cocktail 

(Fermentas). The mixture was then sonicated in 30 second bursts to lyse cells.  The lysate was 
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centrifuged at 10,000 x g for 30 minutes and the clarified lysate diluted to a total volume of 100 

ml using Column Buffer.  This was run on a glass column containing amylose beads (NEB) and 

eluted according to the manufacturer’s specifications.  Purified protein concentration was 

determined using the BCA protein assay kit (Thermo Scientific) according to the manufacturer’s 

instructions.  Protein purity was assessed with SDS-PAGE. 

 

Generating digoxigenin-labeled DNA probe and competitor DNA probes:  Probes consisting 

of the GBS 515 cpsA promoter (217 bp) and GBS 515 cpsE promoter (221 bp) were amplified 

from GBS 515 genomic DNA using the primers 5’ GBS-cpsA-pro with 3’ GBS-cpsA-pro, and 5’ 

GBS-cpsE-pro with 3’ GBS-cpsE-pro, respectively.  The S. iniae cpsA promoter (182 bp) was 

amplified from S. iniae 9117 genomic DNA using the primers 5’iniae-cpsA-pro and 3’iniae-

cpsA-pro.  The 515 GBS promoter products were then labeled with digoxigenin using the DIG 

Gel Shift Kit, 2nd Generation (Roche) according to manufacturer’s instructions. 

 

Electromobility Shift Assays:  To conduct the EMSA, constant amounts of the MBP –CpsA 

protein fusions were incubated with a constant amount of labeled probe (12 fmol) in a binding 

buffer containing 100 mM HEPES pH 7.2, 1 mM EDTA, 50 mM KCl, 50 mM MgCl2, 1 mM 

DTT, and 30% (v/v) glycerol for 30 minutes at room temperature. For reactions with competitor 

DNA, an excess of unlabeled GBS 515 probe DNA (either cpsA-pro or cpsE-pro) was used as a 

specific competitor, and unlabeled S. iniae cpsA-pro was used as a non-specific competitor. The 

samples were loaded onto a 6% polyacrylamide native gel consisting of 6% (v/v) 

polyacrylamide, 44.5 mM tris base, 44.5 mM boric acid, and 1mM EDTA. Electrophoresis was 

performed at 4˚C.  The gel was then transferred to a nylon membrane (Santa Cruz) using a semi-
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dry transfer apparatus (Hoefer). Chemiluminescent detection of DIG-labeled DNA on 

membranes was accomplished with CDP-Star (Roche) according to manufacturer instructions, 

followed by exposure to X-ray film.  Each EMSA was repeated at least twice, and was also 

repeated by using sheared salmon sperm DNA as a non-specific competitor to confirm results 

with the S. iniae cpsA-pro non-specific competitor.  Only EMSAs using the S. iniae cpsA-pro as 

a non-specific competitor are reported in the results. 

 

Cloning of MBP-cpsA fusions for complementation.  The MBP-cpsA fusions MBP-cpsA-full, 

MBP-cpsA-246, and MBP-cpsA-117 were amplified from the plasmids generated above using 

the primer 5’ MBP-RBS-BamHI in conjunction with the primers 3’ GBS-cpsA-full-stop-PstI, 3’ 

GBS-cpsA-245-stop-PstI, and 3’GBS-cpsA-117-stop-PstI respectively.  These fragments were 

then digested with BamHI and PstI and ligated into the corresponding BamHI and PstI sites on 

the plasmid pLZ12-rofA-pro (103) behind the rofA promoter (12) creating the following 

plasmids:  pGBS-cpsA-full, pGBS-cpsA-245, and pGBS-cpsA-117.  These constructs were 

transformed into E. coli Top10 cells, propagated, and then transformed into GBS 515 as 

described above. 

 

Measurement of GBS 515 capsule levels using buoyant density centrifugation.  Buoyant 

density centrifugation was performed similarly to previous work (32), (79), but with 

modification.  Linear density gradients of Percoll (GE Healthcare) were generated by diluting 

Percoll to a high density limit (1.120 g/mL) and low density limit (1.085 g/mL) with a final 

concentration of 0.15 M NaCl according to the manufacturer’s instructions, and carefully 

layering 2 mL of the low density solution on top of 2 mL of the high density solution in a 5 mL 
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Falcon tube (BD).  These tubes were then set horizontally at a 15° angle to the benchtop, and left 

overnight.  The next morning tubes were set upright and allowed to settle for 30 minutes prior to 

use.  Bacterial cultures were grown overnight as described above, and cultures were normalized 

to an OD600 of 0.6 in 1 mL of THYB medium, pelleted by centrifugation, resuspended in 50 µl of 

PBS, and added directly to the top of the Percoll gradients.  Tubes were then centrifuged for 30 

minutes at 5000 rpm in a swinging bucket Eppendorf Centrifuge 5403 with Rotor 16A4-44 at 

room temperature.  Measurements were then taken from the meniscus to the bottom of the cell 

band in each tube, and compared to a set of colored beads of known density (GE Healthcare) to 

determine bacterial cell density.  These experiments were performed at least six times, with 

results reported using a representative experiment.  

 

Time course measurement of GBS 515 capsule as a function of growth phase.   Measurement 

of capsule for time course experiments was identical to that given above, except that GBS 

bacteria were taken at different time points from separate cultures after inoculating with a 1:10 

dilution from overnight cultures.  These experiments were performed at least two times, with 

results collated from separate experiments and normalized to WT buoyant density. 

 

Measurement of capsule after growth of GBS 515 in media of differing pH.  THYB medium 

was adjusted to a pH of 5, 6, 7, 8, or 9, using liquid HCl or NaOH when appropriate.  Bacterial 

strains were grown as previously described and capsule measured as given above, with the 

exception that Percoll gradients were generated in a 10 mL conical tube with 5 mL each of the 

high density and low density solutions. 
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Measurement of capsule after incubation in fresh medium or 100% human serum.  

Bacterial strains were grown as previously described and the following day normalized to an 

OD600 of 0.6 in 1 mL of THYB medium, pelleted with centrifugation, and resuspended in 50 µl 

of PBS.  This concentrate was then resuspended in either 1 mL of fresh THYB medium or 1 mL 

of 100% human serum donated from a healthy volunteer, and incubated with rotation at 37° C 

for 1 hour.  Subsequently, bacteria were pelleted with centrifugation, resuspended in 50 µl of 

PBS, and capsule measured as given above. 

 

Incubation of GBS 515 in human whole blood.  Human blood was obtained from healthy 

volunteers and collected in heparinized vacuum tubes.  Bacteria were grown overnight and 

normalized to an OD600 of 0.3 in PBS, serially diluted in PBS, and 2.5 x 105 CFU were added to 

1 mL of blood and incubated with rotation at 37°C for 3 hours.  After incubation, 100 µl of the 

inoculated blood was plated onto selective media, and incubated overnight at 37°C in a CO2 

incubator to determine colony forming units.  Whole blood assays were repeated a minimum of 

three times with results reported using a representative experiment. 

 

Zebrafish survival assays with GBS 515.  Assays were performed in a similar manner as 

described previously (79).  Briefly, bacteria were grown overnight, diluted 1:50 the following 

day in fresh medium, and grown to an OD600 of approximately 0.3.  Cultures were then 

normalized to 1 x 108 CFU/mL and 10 µl of culture or media alone was injected into zebrafish 

intramuscularly, resulting in an infectious dose of 1 x 106 CFU.  A total of 25 fish were infected 

with each strain over three experiments, and zebrafish survival monitored over a 6-day period, 

after which all surviving fish were euthanized. 
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Quantification of GBS 515 chain length. Cultures were grown overnight and 6 µl of culture 

was directly placed onto a glass slide with a coverslip (Fisher) and viewed at 1000X 

magnification on a Zeiss AxioSkop 40.  Pictures were taken of visual fields selected as randomly 

as possible with an attached Zeiss AxioCam MRc.  Pictures were taken on two separate 

occasions and at least 250 chains were counted from each set, for a total of 500 or more chains 

counted for each strain.  Chain length values were distributed between arbitrarily set numerical 

categories and calculated as a percentage of all counted chains.   For analysis of lysozyme treated 

strains, cultures were grown overnight in the presence of a sub-inhibitory concentration of 

lysozyme (200 µg/mL) and pictures taken as above. 

 

Measurement of antimicrobial resistance.  GBS strains were grown overnight, subcultured 

into fresh medium with a 1:10 dilution, and grown to an OD600 of 0.3.  Cultures were normalized 

and serially diluted to 1 x 104 CFU/mL and 10 µl added to individual wells of a 96 well plate, 

with a final volume of 200 µl including antimicrobial agents.  Antimicrobial concentration 

ranges were as follows:  lysozyme, 0 mg/mL to 3.65 mg/mL; bacitracin, 0 µg/ml to 1.65 µg/ml; 

and ampicillin, 0 µg/ml to 0.275 µg/ml. Subsequent to addition of bacteria, plates were incubated 

at 37° C overnight and OD600 measured with a VERSAmax microplate reader (Molecular 

Devices) the following day.   
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Table 2:  Primers used in this chapter. 
 

Primer Sequence (5’ - 3’) 

5’ GBS-cpsA-pro CGC GGA TCC GTT GAA TTC TCA TAA CTC TAG 
3’ GBS-cpsA-pro CCG GAA TTC GCG AAT GAT TAG ACA TTG 
5’ GBS-cpsE-pro GAA AAA GGA AGT AAG GGG CTC TTG 
3’ GBS-cpsE-pro GCC ACG ACT CCA AAA GTC TC 
5’ iniae-cpsA-pro CTC ATA ATG ACA GTC TAT C 
3’ iniae-cpsA-pro CCA TCA ATA TCA TTT AAG TC 
5’ GBS-cpsA-SmaI TCC CCC GGG TCT AAT CAT TCG CGC CGT C 
3’ GBS-cpsA-full-stop-PstI AAA ACT GCA GTT ATT CCT CCA TTG TGT TC 
3’ GBS-cpsA-117-stop-PstI  AAA ACT GCA GTT ACT CAA TTT CAG AGT ATG AAG C 
3’ GBS-cpsA-39-stop-PstI  AAA ACT GCA GTT ACA TAA GAA ATA ATG AGA CTA C   
3’ GBS-cpsA-245-stop-PstI AAA ACT GCA GTT ATG TTG ATA TAG AGC CAA AAG 
5’ MBP-RBS-BamHI CGC GGA TCC GCG GAT AAC AAT TTC ACA CAG G 
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RESULTS 

 

GBS CpsA binds to two separate putative promoters located in the capsule operon.  All 

members of the LytR_cpsA_psr protein family have been connected to transcriptional regulation, 

but the precise method by which these proteins contribute to transcriptional regulation has not 

yet been elucidated.  As a member of this protein family CpsA has been identified as a potential 

transcriptional activator of the capsule operon (27).  Previous work in our lab has demonstrated 

that purified CpsA protein from S. iniae was capable of binding with specificity to the promoter 

region of the S. iniae capsule operon upstream of the cpsA gene (54), suggesting that S. iniae 

CpsA may modulate transcription by directly binding to promoter sequences.  An alignment of 

the cpsA promoter DNA sequences of S. iniae and GBS using BLAST reveals that these 

promoters share no significant similarity.  Additionally, despite the CpsA proteins of S. iniae and 

GBS sharing 57 % amino acid identity and 76 % amino acid similarity, the intracellular regions 

of CpsA responsible for binding to DNA in S. iniae share no significant similarity with the same 

regions on the GBS form of the protein (Fig. 21).  These differences in sequence at the DNA and 

protein level necessitate confirmation of DNA binding by the GBS form of CpsA.  To this end 

we performed electromobility shift assays using labeled probes reflective of two putative 

promoter regions within the GBS capsule operon, upstream of the previously identified 

transcriptional start sites of the  cpsA gene and cpsE gene (Fig. 22A) (171).  To determine the 

importance of different regions of the GBS CpsA protein in binding to DNA, we constructed and 

purified multiple maltose binding protein fusions of the CpsA protein including the full-length 

protein (MBP-CpsA-full) as well as two truncated forms of the protein, MBP-CpsA-117 and 

MBP-CpsA-39 (Fig. 22C). 
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Purified MBP-CpsA-full was incubated with either the DIG labeled GBS cpsA promoter 

or the DIG labeled GBS cpsE promoter.  MBP-CpsA-full demonstrated the ability to bind to the 

labeled cpsA promoter with specificity (Fig. 23A).  Lane 1 demonstrates the migration of 

unbound labeled cpsA-pro probe, lanes 2 and 3 demonstrate labeled probe bound by the protein 

in the presence of 25 fold specific or non-specific unlabeled competitor DNA, lanes 4 and 5 

demonstrate labeled probe bound by the protein in the presence of 50 fold specific or non-

specific unlabeled competitor DNA, and lanes 6 and 7 demonstrate labeled probe bound by the 

protein in the presence of 75 fold specific or non-specific unlabeled competitor DNA.  In the 

same manner, using the same concentration of protein and probe, the full length GBS CpsA 

protein demonstrated specific binding to the labeled cpsE promoter as well (Fig. 23B).  

After observing specific binding of MBP-CpsA-full to both the labeled GBS cpsA and 

GBS cpsE promoters, we proceeded to determine if there was a preference for binding to one of 

these promoters over the other by cross-competing each labeled probe with unlabeled probe (Fig. 

24A).   As shown above, full-lengh CpsA protein binds to the cspA-pro and cpsE pro probes 

(Fig. 24A, lanes 2 and 7).  Competition with an excess of unlabeled probe of either cpsA-pro 

(lanes 3 and 9) or cpsE-pro (lanes 4 and 8), revealed that the full length CpsA protein was able to 

bind both labeled promoters and did not demonstrate a clear preference for either cpsA or cpsE 

probe to the exclusion of the other. Again, these interactions were specific as a 50-fold excess of 

unlabeled S. iniae cpsA-pro (nonspecific competitor) showed no competition (Fig 24A, lanes 6 

and 10).  

To determine what regions of the protein were required for DNA-binding, EMSAs were 

performed using both truncated forms of the GBS CpsA protein, MBP-CpsA-117 and MBP-

CpsA-39.  MBP-CpsA-117 truncated the CpsA protein after the third transmembrane domain 
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(see Fig 22C), thereby removing the large extracellular region to assess its contribution to 

binding or specificity.  When full length GBS CpsA was replaced with the truncation MBP-

CpsA-117 (Fig. 24B), the protein was still able to bind both labeled probes, and no clear 

preference for either the labeled cpsA-pro or cpsE-pro probes was observed when cross-

competed, as seen for the full length CpsA.  However, a reduction in specificity was observed for 

both the cpsA and cpsE labeled probes when comparing competition with unlabeled specific and 

non-specific DNA, though some level of specificity was still present.  This indicated that the 

large extracellular portion of CpsA is not required for binding to DNA, but does affect the 

specificity with which CpsA is able to interact with DNA.   

MBP-CpsA-39 has a truncation of the protein at the end of the first transmembrane 

domain, leaving the putative leucine zipper domain intact, but removing the cyoplasmic loop 

between the second and third transmembrane domains (see Fig. 22C).  Thus, an EMSA using this 

protein fusion assessed the contribution of the cytoplasmic loop to binding ability and specificity.  

When the MBP-CpsA-39 truncation was used with the same parameters (Fig. 24C), the protein 

retained the ability to bind to both labeled probes, but lost all semblance of specificity for either 

the cpsA-pro or cpsE-pro when comparing competition for unlabeled specific and non-specific 

DNA.  This confirmed that the cytoplasmic loop contributes to specificity, but is not required for 

binding ability.  Taken together, these results demonstrate that only the cytoplasmic N-terminus 

of GBS CpsA is required for binding to DNA, but that the cytoplasmic loop and extracellular 

region of the protein both contribute to specificity of the interaction. 
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Figure 21:  Comparison of the cytoplasmic amino acid sequence for CpsA from S. iniae and 
GBS with positively charged amino acids in blue text. 
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Figure 22:  (A)  Capsule operon of GBS.  Putative promoter sequences within the capsule 
operon are indicated by directed arrows.  (B)  Membrane topology of GBS CpsA.  (C)  
Arrangement of the GBS CpsA protein where domains are shown as TM (Transmembrane 
domains), DNA_PPF (DNA Polymerase Processivity Factor domain), and LytR (LytR_cpsA_psr 
family domain).  Below are truncations made to MBP fusions of CpsA representing the full 
protein, a truncation at amino acid 245, a truncation at amino acid 117, and a truncation at amino 
acid 39. 
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Figure 23:  Electromobility shift assay demonstrating binding of GBS MBP-CpsA-full to either 
(A) the labeled GBS cpsA-pro probe or (B) the labeled GBS cpsE-pro probe.  In both (A) and (B) 
10 pmol of protein is used in lanes with protein added. 
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Figure 24:  Electromobility shift assays showing binding of (A) MBP-CpsA-full (10 pmol), or 
(B) MBP-CpsA-117 (52 pmol), or (C) MBP-CpsA-39 (7 pmol), to either the labeled GBS cpsA-
pro or labeled GBS cpsE-pro probes in the absence or presence of competitor DNA representing 
unlabeled GBS cpsA-pro, GBS cpsE-pro, or S. iniae cpsA-pro (unlabeled nonspecific).  Unbound 
labeled probe is indicated by “U” and bound labeled probe is indicated by “B.” 
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Ectopic expression of CpsA affects GBS capsule level.  Deletion of the cpsA gene has 

previously been associated with decreased capsule production (27).  To assess the contribution of 

each domain of the CpsA protein to capsule production in the bacterial cell, full length and 

truncated forms of CpsA (Fig. 22C) were constructed and placed on the plasmid pLZ12-rofA-pro 

(103), providing constitutive expression.  These plasmids were then transformed into either the 

WT GBS 515 strain or a ∆cpsA GBS 515 strain.  Buoyant density centrifugation was used to 

determine relative differences in the level of capsule produced by the strains created as described 

above.  Measurement of capsule demonstrated that the ∆cpsA strain produced less capsule than 

the WT strain when both strains harbored the vector alone (Fig. 25).  Expression of MBP-CpsA-

full in both the WT and ∆cpsA background led to an increase in capsule over that produced 

normally by the WT strain, (Fig. 25), demonstrating that expression of the full length form of 

CpsA was able to complement the ∆cpsA strain, although the complemented strain still produced 

slightly less capsule compared to the WT strain with the same plasmid.  When a truncated form 

of the protein lacking the LytR domain (MBP-CpsA-245) was expressed in either background a 

loss of capsule was experienced to levels below that of the ∆cpsA strain (Fig. 25), indicative of 

possible dominant negative or repression mechanism.  The addition of just the N-terminal DNA-

binding domain of CpsA (MBP-CpsA-117) resulted in an increase in capsule for the WT strain 

to the same level as expression of MBP-CpsA-full and an increase in capsule for the ∆cpsA strain 

to a slightly lesser degree (Fig. 25), showing complementation of the ∆cpsA mutant with a 

truncated form of CpsA missing the entire extracellular domain.  Taken together, the data 

suggest that the various domains of CpsA contribute to regulation of capsule production in 

different ways. 
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 To further investigate the role of CpsA in controlling capsule production, capsule levels 

were monitored over time as a function of growth phase in both the WT and ∆cpsA strains 

ectopically expressing different forms of CpsA.  As observed for S. iniae, WT GBS 

demonstrated the highest levels of capsule during exponential growth, between hours 4 and 5, 

(Fig. 26).  Expression of MBP-CpsA-full in the WT background did not significantly change the 

curve, but the decrease in capsule at early time points and the increase in capsule during later 

time points were both more pronounced (Fig. 26), suggesting that CpsA may contribute to both 

the initial decrease in capsule as well as the later increase during exponential growth.  Expression 

of the dominant negative form MBP-CpsA-245 did not turn capsule fully off, and growth phase 

related changes were still observable (Fig. 26).  However, capsule levels were decreased at 

almost all time points relative to the other strains (Fig. 26).  Expression of the DNA-binding 

domain MBP-CpsA-117 resulted in a slight increase in capsule levels at all time points relative 

to the other strains (Fig. 26), consistent with its presumed activating function. 

 Investigation of the ∆cpsA strain revealed that capsule level is still modulated in response 

to growth phase, with a slight reduction in capsule compared to the WT strain at early time 

points (Fig. 27).  Interestingly, at later time points the ∆cpsA strain induces capsule production to 

a higher level than that observed for the WT strain, but then promptly decreases to a level lower 

than the WT strain (Fig. 27), perhaps indicating dysregulation of other components involved in 

regulation of capsule synthesis.  Expression of MBP-CpsA-full in the ∆cpsA background gave 

different results than those observed for the WT strain, with capsule levels generally higher at 

most time points relative to the other strains (Fig. 27).  Production of MBP-CpsA-245 in the 

∆cpsA background led to a decrease in capsule levels at almost all time points relative to the 

other strains (Fig. 27), consistent with a putative dominant negative function.  The presence of 
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MBP-CpsA-117 did not exhibit the same activating function in the ∆cpsA background as that 

observed in the WT background, with lower levels of capsule at early time points relative to 

other strains, however, an increase in capsule levels relative to other strains was observed at later 

time points (Fig. 27).  Taken together, the data suggest that in the presence of WT CpsA, 

expression of various forms of MBP-CpsA does not alter growth phase dependency for capsule 

production, but does modulate the level to which capsule is produced.   However, when these 

same constructs are ectopically expressed in the ∆cpsA parent strain, growth phase dependency 

appears to be somewhat dysregulated. 
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Figure 25:  Percoll buoyant density assay reflecting capsule levels of the GBS WT or ∆cpsA 
strains harboring the vector plasmid, or a plasmid containing MBP-CpsA-full, MBP-CpsA-245, 
or MBP-CpsA-117. 
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Figure 26:  Changes in capsule as a function of growth phase for WT 515 strains carrying the 
vector plasmid, MBP-CpsA-full, MBP-CpsA-245, or MBP-CpsA-117. 
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Figure 27:  Changes in capsule as a function of growth phase for the 515 WT/vector strain and 
∆cpsA 515 strains carrying the vector plasmid, MBP-CpsA-full, MBP-CpsA-245, or MBP-
CpsA-117. 
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Capsule change associated with pH and human serum is not dependent on CpsA.   Previous 

work in our lab showed that S. iniae capsule levels changed when bacteria were grown in media 

of differing pH, with an acidic pH leading to less capsule and a basic pH leading to more capsule 

(B. Lowe and M. Neely, unpublished data).   Additionally, it has also been reported that GBS 

increases capsule levels in the presence of serum derived from human blood (119).  One of our 

hypotheses is that CpsA integrates environmental signals within the host to regulate capsule 

levels, so we proceeded to determine the extent to which CpsA of GBS contributes to capsule 

regulation with regard to pH and human serum.  Using GBS 515 WT and ∆cpsA strains we 

determined that GBS also demonstrates changes in capsule when grown in media of different 

initial pH levels, however, the observation that the ∆cpsA strain showed the same pH 

responsiveness ruled out a role for CpsA in facilitating changes in capsule level in response to 

pH (Fig. 28).  Furthermore, we tested the same two strains by incubating in fresh media or in 

100% human serum for one hour, and confirmed that GBS increased capsule levels in response 

to human serum, but again observed that this response was not dependent on the presence of 

CpsA (Fig. 29).  While not ruling out an environmental sensing function for CpsA, these results 

do suggest alternate regulatory schemes employed by GBS to dynamically alter capsule levels in 

response to two physiologically relevant environmental signals encountered in the host, with 

changes in pH occurring during a switch from the genitourinary tract to the bloodstream, and 

components of serum encountered during systemic disease. 
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Figure 28:  Capsule levels of GBS 515 strains grown in media of varying pH. 
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Figure 29:  Capsule level of GBS 515 strains when incubated in THYB medium or 100% human 
serum for one hour at 37° C. 
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GBS survival in whole blood is altered by ectopic expression of CpsA.  GBS virulence entails 

dissemination through the bloodstream, an ability that relies on inhibiting phagocytic clearance, 

which is primarily dependent on the presence of capsule (126).  The variations in capsule 

production observed when different domains of CpsA are ectopically expressed in GBS led to 

the question of whether these variations corresponded to changes in survival in human blood. 

Surprisingly, when incubated in human whole blood, the ∆cpsA strain of GBS shows no major 

difference in the number of bacteria killed compared to the WT strain of GBS (Fig. 30), despite 

the presence of less capsule as measured by buoyant density (Fig. 25). Expression of MBP-

CpsA-full or MBP-CpsA-117 in the WT background did not significantly alter the number of 

bacteria killed (data not shown), despite the presence of more capsule than the WT strain with 

vector alone as measured by buoyant density (Fig. 25).  Alternatively, expression of MBP-CpsA-

full or MBP-CpsA-117 in the ∆cpsA background caused an approximately 0.4 log increase in 

bacterial killing compared to the parent strain (Fig. 30), despite the production of more capsule 

(Fig. 25).  However, expression of MBP-CpsA-245 in both the WT and ∆cpsA background 

resulted in an approximately 0.6 log increase in the number of bacteria killed compared to the 

respective parent strain (Fig. 30), which may correspond to the loss of capsule these strains 

exhibit as measured by buoyant density (Fig. 25).   
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Figure 30:  Whole blood assay measuring the Log10 level of CFU killed for bacterial strains 
incubated in human whole blood for 3 hours. 
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GBS virulence is attenuated in a zebrafish model of infectious disease in the absence of 

CpsA.  The surprising result that the GBS ∆cpsA strain was not attenuated in human whole 

blood, despite the production of less capsule, led to an in vivo assessment of virulence for the 

GBS 515 strains using a zebrafish model of infectious disease.  When zebrafish were inoculated 

with the WT strain of GBS, only 8% of zebrafish survived to day 6 (Fig. 31).  In contrast, when 

zebrafish were inoculated with a ∆cpsA strain of GBS, 68% of fish were viable at day 6 (Fig. 

31).  The observed decrease in virulence of the ∆cpsA strain in an in-vivo model of pathogenesis, 

when compared to a lack of attenuation in human whole blood (Fig. 30), suggests that disruption 

of cpsA may lead to deficiencies that are only observable in the context of systemic disease.  

These deficiencies could be associated with synthesis of capsular polysaccharide, cell wall 

maintenance, or a combination of both. Alternatively, the amount of capsule production observed 

when grown in laboratory medium does not correlate to that produced in whole blood. 
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Figure 31:  Zebrafish infection study tracking survival over time for zebrafish infected 
intramuscularly with either the GBS 515 WT or ∆cpsA strain and compared to media only mock 
infection. 
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CpsA affects chain length distribution. The chain length of cocci adopted by streptococcal 

species depends on a number of conditions, not all of which have been determined.  Chain length 

is often controlled by production of cell wall amidases or other autolysins (24), but the presence 

of capsule has also been shown to affect chain length as well (8, 9), with the presence of capsule 

generally leading to longer chains.  CpsA is a member of the same family of proteins as LytR, a 

group of proteins associated with attenuating expression of cell wall modifying enzymes (74), 

and various domains of CpsA also influence capsule levels (Fig. 25).  Therefore, the effect of 

these associations on chain length in GBS was analyzed using microscopy.  Despite a small 

relative difference in capsule level, the ∆cpsA mutant with vector alone produced considerably 

longer chains than the WT GBS strain with vector alone (Fig. 32). Complementation of the 

∆cpsA strain with either MBP-CpsA-full or MBP-CpsA-117, both of which increased capsule, 

showed a shift to shorter chains, but did not fully restore the WT shorter chain phenotype (Fig. 

32).  Furthermore, the expression of the LytR deletion construct, MBP-CpsA-245, in the WT 

strain, which greatly decreased capsule, led to markedly longer chains than the WT strain (Fig. 

32), while the ∆cpsA strain expressing MBP-CpsA-245 maintained the long chain phenotype 

(Fig. 32).   

             To confirm the microscopy observations, the number of cells per chain for each strain 

was calculated as described in the Materials and Methods, verifying the prevalence of short 

chains in the WT/vector strain with 1-2 cells per chain predominating at 70% of chains (Fig. 

33A) as well as a preponderance of long chains for the ∆cpsA/vector strain with greater than10 

cells per chain the most numerous population at 45% of chains (Fig. 33B).  Addition of MBP-

CpsA-full to the WT background did not substantially alter chain length as short chains were still 

favored with 1-2 cells per chain at 66% (Fig. 33A).  Addition of MBP-CpsA-full to the ∆cpsA 
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background did not fully alleviate the long chain phenotype, with greater than 10 cells and 3-4 

cells per chain representing the largest populations at 27% and 26% respectively (Fig. 33B).  

When the LytR deletion strain, MBP-CpsA-245 was expressed in the WT background, the long 

chain phenotype predominated with the majority of chains showing greater than 10 cells per 

chain at 83% (Fig. 33A), while the presence of MBP-CpsA-245 in the ∆cpsA parent strain 

seemed to exacerbate the long chain phenotype with greater than 10 cells per chain 

predominating at 59% (Fig. 33B).  Expression of MBP-CpsA-117 in the WT strain did not 

change the WT chain phenotype (Fig. 33A).  Similar to MBP-CpsA-Full, expression of MBP-

CpsA-117 did not fully alleviate the long chain phenotype of the ∆cpsA strain, with 

approximately equal chains at greater than 10 cells per chain (27%) and 3-4 cells per chain 

(28%) (Fig. 33B). These results suggest that CpsA either directly or indirectly influences chain 

length and that capsule level alone is not sufficient to explain chain length variance in these 

circumstances. 

  To determine if cell wall related factors were primarily responsible for the observed 

variances in chain lengths, each GBS strain above was cultured in sub-inhibitory concentrations 

of lysozyme.  Lysozyme has muramidase activity and cleaves N-acetyl-D-glucosamine residues 

of the peptidoglycan cell wall.  When grown in the presence of lysozyme, all strains existed 

almost exclusively as diplococci or single cells (Fig. 34), indicating that CpsA-dependent 

changes in the cell wall or associated enzymes may be responsible for the observed chain length 

variances. 

 In an attempt to determine the mechanism by which CpsA alters the cell wall 

architecture, a number of cell wall active antimicrobial agents were employed, including 

lysozyme, bacitracin, and ampicillin.  In contrast to what was observed for S. iniae (Table 3), 
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parent strains of GBS, and GBS with MBP-CpsA constructs, did not demonstrate a difference in 

antimicrobial sensitivity for any of the agents tested, (Table 3), and data not shown respectively.  

This may be reflective of species-specific differences with regard to the macromolecular 

structure of the cell surface or the impact of relative capsule levels on the activity of these agents.   
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Figure 32:  Visualization of chain length at 1000X magnification for GBS 515 WT and ∆cpsA 
strains, carrying the plasmid vector, MBP-CpsA-full, MBP-CpsA-245, or MBP-CpsA-117 as 
indicated on the top of the panel.   
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Figure 33:  Quantification of chain length for parent strains of GBS 515, (A) WT and (B) 
∆cpsA, carrying the plasmid vector, MBP-CpsA-full, MBP-CpsA-245, or MBP-CpsA-117 as 
indicated on the bottom of the panel. 
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Figure 34:  Visualization of chain length at 1000X magnification for GBS 515 WT and ∆cpsA 
strains, carrying the plasmid vector, MBP-CpsA-full, MBP-CpsA-245, or MBP-CpsA-117 as 
indicated on the top of the panel when grown in the presence of a sub-inhibitory concentration of 
lysozyme. 



117 
 

 

Table 3:  Antimicrobial minimum inhibitory concentrations for S. iniae and GBS strains grown 
under conditions given in Materials and Methods. 
 

 Lysozyme Bacitracin Ampicillin Methicillin 

S. iniae WT <12 mg/mL 1.2 µg/mL 0.078 µg/mL 1.05 µg/mL 

S. iniae cpsA-ins >48 mg/mL 3.0 µg/mL 0.039 µg/mL 0.45 µ/mL 

GBS WT 2.6 mg/mL 0.075 µg/mL 0.075 µg/mL ---- 

GBS ∆cpsA 2.6 mg/mL 0.075 µg/mL 0.075 µg/mL ---- 
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DISCUSSION 

 

Streptococcal pathogens capable of causing systemic disease remain a major health 

concern worldwide, and new strategies are currently being utilized to identify and exploit novel 

vaccine and antimicrobial targets (113, 150).  The streptococcal CpsA protein is part of the 

LytR_cpsA_psr family of proteins associated with regulatory control over cell surface 

physiology, including polysaccharide synthesis (27), cell wall processing (24, 62, 74), and 

response to antimicrobial stress (152).  The involvement of this protein family with these 

important virulence determinants highlights its potential as a possible target for virulence 

reduction, increased clearance by host immune function or antimicrobial therapy.  Therefore, our 

aim was to characterize the functional properties of CpsA to better understand the role it may 

play during initiation and perpetuation of disease. 

The streptococcal CpsA protein has been identified as a putative regulatory activator of 

capsule, with an in-frame deletion of cpsA resulting in reduced levels of transcript from the 

capsule operon as well as a concomitant loss in capsule level in GBS (27).  Work on a strain of 

the aquatic pathogen S. iniae in which the cpsA gene was insertionally inactivated demonstrated 

that interruption of cpsA led to significant attenuation in a zebrafish model of infectious disease 

when compared to the WT S. iniae strain (79).  This evidence suggests that CpsA is required for 

full virulence as a positive regulator of capsule, and that this may occur through direct interaction 

with DNA to facilitate transcriptional changes.   

CpsA proteins effectively contain three discrete domains: a cytoplasmic N-terminal 

DNA-binding domain, an extracellular DNA_PPF domain, and an extracellular C-terminal LytR 

domain (54).  The N-terminal DNA-binding domain is conserved in other streptococcal CpsA 
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proteins and contains a possible lecuine zipper motif, which may facilitate homo- or hetero-

dimerization and DNA binding ability (18).  The DNA_PPF domain function is canonically 

ascribed to sliding clamp structures that enhance the rate of DNA replication through association 

with DNA polymerases (97, 138).  However, the protein sequence of the DNA_PPF domain of 

CpsA diverges considerably from that of traditional sliding clamp DNA_PPF domains, 

suggesting a different function for the DNA_PPF domain in the CpsA protein.  This is also 

supported by the observation that the DNA_PPF domain of CpsA resides extracellularly where it 

would be unable to participate in DNA replication (6).  Sliding clamps that contain the 

DNA_PPF domain typically participate in a number of protein-protein interactions that 

contribute to their function (138), and although it appears that the DNA_PPF domain of CpsA 

has been functionally redirected from traditional sliding clamps, it may be that the ability for 

facilitating protein-protein interactions has been retained.   

The LytR domain of CpsA demonstrates a relatively high level of homology to traditional 

LytR proteins of Gram-positive species with a comparison of the GBS CpsA LytR domain and 

the B. subtilis LytR protein showing 38% identity and 58% similarity at the amino acid level.  

LytR proteins of Gram-positive species are generally associated with regulation of cell wall 

maintenance through transcriptional attenuation of autolysin genes, as well as their own 

sequence (74).  Analysis of the LytR protein from Streptococcus pneumoniae demonstrated that 

LytR is required for normal septum formation during cell division (7).   lytR null mutants divide 

non-symmetrically and have highly variable cell shape and size, with lytR mutants sometimes 

demonstrating much larger cell size (62).  Similar results were reported for the LytR protein of 

Streptococcus mutans, with a lytR null mutant exhibiting cell division defects, including the 

production of significantly longer chains of bacteria (24). These reports are consistent with our 
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results with the CpsA truncation in which the LytR domain has been removed (MBP-CpsA-245).  

When this construct is expressed alone (in the ∆cpsA strain) or along with the WT CpsA strain, 

consistently longer chain lengths are observed.  In addition, this construct produces cocci that are 

noticeably larger in size than the WT strain expressing full length CpsA.  Increased autolysin 

production was also observed for the S. mutans lytR mutant, suggestive of a transcriptional 

attenuator role for LytR over autolysin genes (24).  The homology between CpsA and LytR 

proteins indicates that some functional overlap may be present, and that in addition to regulation 

of capsule, CpsA may also contribute to regulation of cell wall maintenance.  Evidence to 

support this hypothesis is found in Staphylococcus aureus where LytR_cpsA_psr family 

members have been shown to exhibit functional redundancy (110). 

Members of the LytR_cpsA_psr family of proteins have generally been associated with a 

regulatory role at the transcriptional level, and it may be that these proteins are capable of 

binding directly to DNA to modulate transcription.  Because CpsA has been associated with 

transcriptional activation of the capsule operon, our aim was to assess the ability of GBS CpsA 

to bind to two putative promoter sequences within the GBS capsule operon.  A series of 

truncated CpsA proteins were constructed to analyze the contribution of different domains of the 

protein to DNA binding ability and specificity.  Using EMSA, we found that the full length GBS 

CpsA protein was capable of binding to both the cpsA and cpsE promoters with specificity.  

Furthermore, we determined that the CpsA protein had the same apparent affinity for both the 

cpsA and cpsE promoters.  Removal of the large extracellular portion of the CpsA protein 

immediately after the third transmembrane domain did not preclude CpsA from binding to the 

cpsA and cpsE promoters, but a decrease in both the specificity and affinity of binding to both 

promoters was observed.  When the CpsA protein was truncated to a region encompassing the 
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cytoplasmic N-terminus and first transmembrane domain, binding to both capsule operon 

promoters was still observed, however all apparent specificity was abolished.   

These results indicate that GBS CpsA is able to bind directly to both the cpsA and cpsE 

promoters of the capsule operon, perhaps providing a mechanism for the transcriptional changes 

associated with deletion or interruption of the cpsA gene.  The observation that specificity of 

DNA binding decreases with sequential truncation from the C-terminus of the protein suggests 

that both the large extracellular region of the protein and the cytoplasmic loop between 

transmembrane domains 2 and 3 likely contribute to specificity either structurally or through 

direct interaction, much like what has been demonstrated with S. iniae CpsA (54).  The observed 

DNA binding ability for GBS MBP-CpsA-39 is in contrast to what was found with S. iniae 

CpsA, in which truncation to the cytoplasmic N-terminus abolished DNA binding ability (54).  

This discrepancy could be explained by the inclusion of the first transmembrane domain for GBS 

MBP-CpsA-39 (including the putative leucine zipper), which was removed from the comparable 

S. iniae form of the protein.  Another possibility is that differences in sequence between the GBS 

and the S. iniae proteins and promoter DNA may result in different functional interactions 

between CpsA and capsule promoter DNA in each species. At present, it is unclear what the 

relative contributions of the cpsA and cpsE promoters are to eventual capsule levels, or how they 

may be differentially regulated.  Also unclear is whether the internal cpsE promoter exists in the 

capsule operon of other streptococcal systemic pathogens. 

After determining that GBS CpsA is able to bind directly to the capsule operon promoters 

with specificity in vitro, we proceeded to analyze the function of different domains of CpsA 

when ectopically expressed in either a WT or ∆cpsA GBS background.  To do this, we truncated 

CpsA to remove the LytR domain (MBP-CpsA-245) and both the LytR and DNA_PPF domain 



122 
 

 

(MBP-CpsA-117) and expressed these forms of CpsA, as well as the full length CpsA (MBP-

CpsA-full) and the vector plasmid in both parent GBS backgrounds.  When each of these strains 

was assayed for capsule level with percoll buoyant density gradients, we found that the 

∆cpsA/vector strain produced less capsule than WT/vector, and that both parent strains could be 

induced to produce higher levels of capsule when either full length CpsA (MBP-CpsA-full) or 

just the DNA-binding domain of CpsA (MBP-CpsA-117) was ectopically expressed.  These 

results support the hypothesis that CpsA is an activator of capsule, and that it does this by 

binding to the capsule operon promoter, as the DNA-binding domain of CpsA was sufficient for 

complementation of capsule levels in a ∆cpsA background.  However, analyses of these 

constructs in the context of capsule production during different growth phases revealed that 

while constitutive expression of MBP-CpsA-full or MBP-CpsA-117 modulates capsule levels, 

these constructs do so in a growth phase dependent manner.  A similar result was observed for 

the ∆cpsA parent strain, albeit with reduced capsule levels, indicating that although CpsA 

appears to be a transcriptional activator of capsule, other regulatory components must contribute 

to actual capsule levels observed at different time points.  One possibility would include the 

CpsB, CpsC, and CpsD phosphor-relay system, which controls polymerization and export of the 

CPS. 

In contrast to results obtained for MBP-CpsA-full and MBP-CpsA-117, the production of 

CpsA lacking the LytR domain (MBP-CpsA-245) resulted in a decrease in capsule for both the 

WT and the ∆cpsA parent strains.  The presence of the DNA-binding domain was not the cause 

of decreased capsule, because as mentioned above, expression of this domain alone had an 

activating effect.  This indicated that the DNA_PPF domain was responsible for the decrease in 

capsule levels, which could be due to a dominant negative function that is adopted by CpsA in 
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the absence of the LytR domain, perhaps through inappropriate protein-protein interactions.  

Another possibility is that the DNA_PPF normally represses capsule through the DNA-binding 

domain by a change in protein conformation, and that the LytR domain controls this repressive 

mechanism.  With either option, because of the extracellular location of the DNA_PPF domain, 

the repression of capsule is likely facilitated through either a protein-protein interaction or an 

induced conformational change.  While MBP-CpsA-245 led to decreased capsule levels, time 

course experiments revealed that capsule level still retained a growth phase dependency, again 

suggesting the contribution of other regulatory components in controlling capsule levels as a 

function of growth phase. 

During initiation of systemic disease, GBS typically disseminates from the genitourinary 

tract of the mother to the bloodstream of the neonate, an event that causes GBS to switch from a 

colonizing role to a pathogenic role.  This switch likely entails the integration of a number of 

environmental signals that trigger virulence pathways enabling survival in the host bloodstream.  

The genitourinary tract is typically defined as an acidic environment, while the circulatory 

system consists of a neutral pH, and this change in pH may act to signal the activation of 

virulence cascades, including production of a polysaccharide capsule.  The large extracellular 

domains of CpsA may contribute to environmental sensing function to adopt a pathogenic 

profile, so alterations in capsule level were monitored in the WT and ∆cpsA GBS strains over a 

range of pH conditions.  We determined that there was a responsiveness of capsule to differing 

pH values, with acidic pH leading to less capsule and alkaline pH leading to more capsule, but 

this change was not dependent on CpsA, as differing pH values elicited the same phenotype in 

the ∆cpsA strain.   
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When GBS transitions to the bloodstream to cause systemic disease, bacteria encounter a 

number of small molecules that are not present in a colonization setting.  GBS has previously 

demonstrated an increase in capsule in response to human serum (119), so we set out to 

determine whether this increase was dependent upon the presence of CpsA.  An increase in 

capsule was observed for WT GBS after incubation in human serum, confirming previous 

reports, and the same increase was also observed for the ∆cpsA strain, indicating that the 

responsiveness of capsule to human serum is independent of CpsA.  Changes in capsule with 

regard to pH value and exposure to human serum appear to be regulated in a manner independent 

of CpsA, and this may be achieved through the CpsB, CpsC, and CpsD phospho-relay system. 

The production of a polysaccharide capsule allows GBS to evade immune clearance upon 

introduction to the host bloodstream during initiation of infection.  Therefore, we incubated the 

above strains in human whole blood to assess how differing levels of capsule due to 

manipulation of CpsA affect the ability of the bacteria to survive.  Despite the production of less 

capsule in the ∆cpsA background, we observed no major difference in survival when compared 

to the WT strain.  Additionally, production of the full length CpsA (MBP-CpsA-full) or the 

DNA-binding domain (MBP-CpsA-117) in the WT background did not alter the ability of the 

WT parent to survive in human blood (data not shown).  Surprisingly, when MBP-CpsA-full or 

MBP-CpsA-117 was produced in the ∆cpsA background, a decrease in survival was observed 

compared to the parent strain alone, despite the presence of more capsule as measured by 

buoyant density centrifugation.  Production of CpsA lacking the LytR domain (MBP-CpsA-245) 

also led to a decrease in survival in both parent strains.  These results demonstrate that survival 

in human whole blood does not always correlate with levels of capsule, and suggest that there is 

another CpsA- dependent mechanism responsible for the discrepancy in survival when 
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comparing the WT and ∆cpsA strains with either MBP-CpsA-full or MBP-CpsA-117.  Therefore, 

at this time it is not possible to discern whether the greater attenuation associated with both 

parent strains expressing the MBP-CpsA-245 form of the protein lacking the LytR domain is due 

to reduced capsule levels or some other property of the bacteria, perhaps associated with the cell 

wall, or a combination thereof.  Supporting this hypothesis is the observation that the GBS 

∆cpsA strain was attenuated for virulence in the zebrafish model of infectious disease when 

compared to the WT strain.  Although the ∆cpsA strain was not attenuated in human whole 

blood, a regulatory role for CpsA appears to exist in the context of systemic disease.  The 

discrepancy between these two observations may be due to an amplification of the capsule defect 

phenotype during systemic disease and its absolute requirement, or it may be due to pleiotropic 

effects that are not apparent during incubation in blood, but affect the ability of GBS to survive 

or disseminate within a host organism. 

The LytR proteins of streptococci have been associated with regulating cell division, 

including septum formation, cell size, and chain length (24, 62).  The homology of CpsA to LytR 

proteins led us to investigate if any of these phenotypes existed in either a ∆cpsA background, or 

with the addition of different domains of CpsA.  We determined that deletion of cpsA resulted in 

decidedly longer chains of cocci when viewed microscopically and when quantified, compared 

to the WT parent strain. Production of MBP-CpsA-full or MBP-CpsA-117 did not affect chain 

length of the WT parent strain, but did partially restore a short chain phenotype to the ∆cpsA 

strain. Similar to what was observed for capsule levels, production of CpsA lacking the LytR 

domain (MBP-CpsA-245) resulted in a shift to an increased amount  of long chains in both the 

WT and, to a lesser extent, the ∆cpsA background.  The decreased extent of both the capsule and 

chain length phenotypes in the ∆cpsA background may be reflective of protein-protein 
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interactions that occur in the WT strain between WT CpsA and MBP-CpsA-245 that enhances 

the degree to which these phenotypes are exhibited.  Interestingly, these results also indicate that 

capsule level does not necessarily correlate with chain length, at least in GBS, as ∆cpsA strains 

harboring MBP-CpsA-full and MBP-CpsA-117 produce more capsule than WT, but retain a 

higher proportion of long chains than the WT strain.  Additionally, the observation that 

encapsulation leads to longer chains in S. pneumoniae (8, 9) is not consistent with our 

observation that the ∆cpsA strain, as well as both parent strains producing MBP-CpsA-245, 

produce less capsule than WT with vector alone, yet produce primarily much longer chains than 

the WT/vector strain.   

Interestingly, CpsA appears to exert either a direct or an indirect control over chain 

length, suggesting a possible dual role for this protein that is separate from the control of capsule 

expression.  Additionally, we observed that the WT strain with MBP-CpsA-245 appeared to 

produce larger sized cells compared to other strains, however, further characterization of these 

strains at higher magnification levels using electron microscopy would be required to better 

discern differences in septum placement and actual cell size and shape.  We propose that CpsA-

dependent changes in cell wall maintenance are responsible for the observed differences in chain 

length, as growth in medium with a sub-inhibitory concentration of lysozyme, which selectively 

cleaves peptidoglycan of the cell wall, results in eradication of long chains for all strains and a 

switch of nearly all bacteria to single cells or diplococci.  A number of cell wall active 

antimicrobial agents were used to investigate molecular changes that may be associated with the 

cell surface that contribute to changes in chain length, however, no difference in resistance was 

observed for either the GBS parent strains or GBS with the various forms of MBP-CpsA.  
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Testing of these strains with additional cell wall reactive agents may help elucidate how CpsA 

contributes to regulation of the cell wall.  

Taken together, the results of this study suggest that GBS CpsA is a modular protein 

containing three functionally distinct domains.  The N-terminal region of GBS CpsA is able to 

bind to promoters within the capsule operon upstream of both the cpsA and cpsE genes, and 

expression of the N-terminal region alone (MBP-CpsA-117) in both the WT and ∆cpsA strains is 

sufficient to increase capsule levels, and to partially complement the ∆cpsA strain chain length 

distribution.  This seems to indicate that despite the reduction in DNA-binding specificity of 

MBP-CpsA-117 when used alone in EMSAs, a tangible effect can still be incurred in vivo, 

possibly through binding of the capsule operon promoters and potentially other gene targets that 

regulate chain length. The second module of CpsA, the DNA_PPF domain, may be responsible 

for facilitating protein-protein interactions, a function that could be regulated by the LytR 

domain as removal of the LytR domain results in dominant-negative or repressive function for 

both capsule level and chain length.  To date, no mechanistic function has been applied to the 

LytR domain in either CpsA or LytR proteins, but it appears that the LytR domain may play a 

similar role in both proteins as similar phenotypes of increased chain length and size are 

observed when it is removed from CpsA, both of which are seemingly independent of capsule 

level.  This suggests that CpsA may also act as a transcriptional attenuator of autolysin genes, 

which would give it a unique role at the interface of regulating the two major components of the 

bacterial cell surface, capsular polysaccharide and the cell wall peptidoglycan.  
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GENERAL CONCLUSIONS 

 

 The primary goal of the work presented here consisted of characterizing the role of the 

streptococcal CpsA protein in regulation of capsule synthesis and cell wall maintenance, and 

associated contributions to virulence.  This was accomplished through molecular analysis of the 

CpsA protein with regard to capsule production and cell wall stability, and subsequent analyses 

of virulence using in vitro, ex vivo, and in vivo models of pathogenesis. 

 The first chapter focuses on the regulatory role played by CpsA in the aquatic pathogen 

Streptococcus iniae.  Previous work in the lab demonstrated the importance of CpsA during in 

vivo infection of the zebrafish model host (79).  Other work had already established that CpsA 

was likely a transcriptional activator of capsule synthesis (27), so the attenuation of a S. iniae 

cpsA-ins mutant in the zebrafish model was hypothesized to be due to a deficiency in capsule 

synthesis (79).  Therefore, we began the work in this chapter with the hypothesis that CpsA 

adopted a unique membrane topology enabling it to bind directly to the promoter of the capsule 

operon to influence transcription, and that the conserved domains of CpsA contributed to 

regulation of this activity.  Previous work with the S. iniae cpsA-ins mutant also established that 

this strain produced considerably longer chains of cocci than the wild type strain (79). 

Subsequently, we hypothesized that CpsA may also exert regulatory control over cell wall 

related processes as well. 

 To confirm the membrane topology adopted by CpsA, reporter enzyme fusions were 

made to each distinct topological portion of the protein and these constructs assayed for 

enzymatic activity.  This was accomplished with in-frame fusion of either β-galactosidase or 

alkaline phosphatase to different regions of CpsA.  In this scheme, protein fusions to β-
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galactosidase give enzymatic activity only if the region fused to β-galactosidase remains 

intracellular, as transport across the membrane disrupts the multimeric structure required for 

enzymatic activity (83, 85).  In contrast, protein fusions to alkaline phosphatase give enzymatic 

activity only if the region fused to alkaline phosphatase is transported across the membrane to an 

extracellular location, as transport across the membrane is required for formation of a critical 

disulfide bond needed for enzymatic activity (84).  Using this strategy, we confirmed that the 

membrane topology of CpsA includes a short cytoplasmic N-terminal tail, a transmembrane 

domain, a short extracellular loop, a second transmembrane domain, a short cytoplasmic loop, a 

third transmembrane domain, and a large extracellular C-terminus (54).  This determination is 

consistent with previous reports that a S. aureus LytR family protein exhibited a short 

cytoplasmic N-terminus and large extracellular C-terminus (58).  In the context of transcriptional 

regulation, the membrane topology adopted by CpsA and other LytR family proteins suggests 

that the large extracellular domains likely influence its regulation in some way, perhaps by 

binding to small molecule ligands in a regulatory capacity, or mediating protein-protein 

interactions that contribute to regulation of capsule.  This would be similar to what has been 

observed in V. cholerae with the proteins ToxR and ToxS, where protein-protein interactions in 

the periplasm contribute to transcriptional regulation (35, 116).  Additionally, the proximity of 

the extracellular domains of CpsA to the capsular polysaccharide residues on the cell surface 

may represent a sensory feedback loop that alters the function of CpsA. 

The membrane orientation of CpsA implied that if CpsA were capable of binding to the 

capsule operon promoter, then this activity would have to be facilitated by the small cytoplasmic 

N-terminal tail and cytoplasmic loop.  To assess the ability of S. iniae CpsA to bind directly to 

the capsule operon promoter, a number of protein constructs were purified, representing the full 
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length CpsA protein as well as sequential truncations from the C-terminal end that removed 

cytoplasmic portions of the N-terminus.  Using these purified proteins in electromobility shift 

assays (EMSA), we demonstrated that full length CpsA was capable of binding to the cpsA 

promoter DNA, and that this interaction required the entire intact cytoplasmic portion of the 

protein (54).  These results, in conjunction with previous evidence, strongly suggest that CpsA is 

a transcriptional activator of capsule synthesis, and that CpsA does this by directly interacting 

with promoter DNA.  As mentioned above, this activity may be modulated through a number of 

mechanisms that include protein-protein interactions or environmental sensing facilitated by the 

extracellular domains of CpsA.   

To analyze the role of the conserved DNA_PPF and LytR domains, located on the 

extracellular C-terminus of the CpsA protein, truncations were made that removed the LytR 

domain (CpsA-∆LytR), or removed both the LytR and N-terminal domains (CpsA-DNA_PPF).  

Due to our inability to generate a ∆cpsA strain of S. iniae, or complement the S. iniae cpsA-ins 

mutant, both of these constructs were ectopically expressed in the WT S. iniae background and 

assessed for changes in capsule level.  Surprisingly, we found that production of either CpsA-

∆LytR or CpsA-DNA_PPF in the WT background led to a significant decrease in capsule, to 

levels comparable to what was observed for the cpsA-ins mutant.  These results signified that in 

the absence of the LytR domain, the DNA_PPF domain manifests either a dominant negative or 

repressive phenotype.  This likely reflects a dysregulated protein-protein interaction, as the 

DNA_PPF and LytR domains are located extracellularly, and this phenotype happens in the 

presence of WT CpsA.  These observations also explain our inability to complement the cpsA-ins 

mutant, as it is effectively producing a truncated form of CpsA similar to the CpsA- ∆LytR 

construct.  These observations are also suggestive of a more nuanced regulatory role for CpsA 
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than simple activation, and indicate that CpsA may modulate transcription in both activating and 

repressing roles, depending on input from the LytR domain.  In addition to modulation of 

capsule levels, the cpsA-ins mutant and WT with CpsA- ∆LytR both exhibit increased cocci 

chain length as well.  This determination suggests that CpsA also contributes to regulation of cell 

wall related components as well.  Further evidence of this relationship consists of changes in 

resistance to cell wall active antimicrobial agents for the cpsA-ins and WT/CpsA-∆LytR strains.  

Both lysozyme and bacitracin resistance were increased for the cpsA-ins and WT/CpsA-∆LytR 

strains, and β-lactam resistance decreased for both strains.  The extent to which lysozyme 

resistance increased suggests specific modifications to the peptidoglycan backbone, which confer 

lysozyme resistance (31).  Bacitracin resistance may have increased as an indirect result of 

increased free Undecaprenyl-phosphate (Und-P) carrier associated with decreased usage of Und-

P for capsular polysaccharides.  The cause for increased susceptibility to β-lactams for both of 

these strains is unclear, but may be due to the increased levels of autolysis observed for these 

strains.  Taken together, the data suggest that manipulation of CpsA results in changes to the 

molecular structure of the cell wall, resulting in pleiotropic effects that may be directly, or 

indirectly, related to regulation by CpsA.  The extent to which these phenotypes are influenced 

by the relative abundance or absence of capsule remains unclear and an isogenic acapsular 

mutant of S. iniae is needed to determine the relative contribution of CpsA or capsule to these 

phenotypes.  However, these observations do support the idea that CpsA contributes significantly 

to regulation of the cell surface, and that cell surface derived molecules may influence this 

regulatory capacity. 

The second chapter focuses on the conservation of CpsA function between S. iniae and 

Streptococcus agalactiae (GBS), by analyzing the molecular properties of GBS CpsA and its 
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contribution to regulation of capsule and cell wall.  Although the S. iniae and GBS CpsA 

proteins demonstrate 70% similarity at the amino acid level, the cytoplasmic N-terminal regions 

of CpsA from these two species share no significant homology.  Therefore, it was important to 

confirm our findings with S. iniae in GBS.  Additionally, many cell surface related structures and 

associated regulation can be species specific, again necessitating confirmatory analyses.   

Assessment of the ability of GBS CpsA to bind to DNA followed a similar methodology 

as that utilized for S. iniae.  However, the GBS capsule operon contains two demonstrated 

transcriptional start sites (171), upstream of the cpsA gene and upstream of the cpsE gene.  

Therefore, our analyses included DNA constituting both putative promoter elements.  Using 

EMSA, we demonstrated that full length GBS CpsA was capable of binding specifically to both 

promoters, and did not show a preference for either the cpsA or cpsE promoter to the exclusion 

of the other.  Truncated CpsA constituting just the N-terminal portion of the protein was still able 

to bind to both promoters, but at slightly reduced specificity.  Truncation of CpsA all the way to 

the N-terminal region of the protein encoding a putative leucine zipper domain did not preclude 

DNA-binding, but did ablate all semblance of specificity. These results suggest that the entire 

protein is required for full specificity, but only the putative leucine zipper motif is required for 

DNA interaction.   The presence of a second transcriptional start site in the capsule operon of 

other streptococcal species has not been verified, but preliminary data suggests that a second 

promoter element exists in the same relative position within the S. iniae capsule operon (B. 

Hanson and M. Neely, unpublished data).   Further analyses of the capsule operon of other 

streptococcal species is required to verify if a second promoter is species specific, or applies to a 

broad range of streptococcal species encoding a capsule operon.   
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The presence of a secondary transcriptional start site preceding the cpsE gene indicates 

that regulation of capsule may be influenced by the genes succeeding each putative promoter 

element.  The cpsA promoter contributes to a transcript that includes the entire capsule operon, 

including the phospho-relay system that has been described in detail (171), suggesting that it 

serves exclusively as an “on” switch for capsule expression.  The cpsE gene product catalyzes 

the initial polymerization event required for capsule production, and thus represents the first 

committed step in capsule synthesis.  Therefore, the cpsE promoter may represent an additional 

layer of regulation, and CpsA may act to enhance or repress activation from this promoter to 

influence a commitment to capsule production.  Another possibility is that post-translational 

modifications are made to CpsA that influence its relative capacity to regulate transcriptional 

activation or repression at either of these promoters.  Additionally, the presence of a putative 

leucine zipper domain has mechanistic implications for how CpsA regulates capsule expression, 

and needs to be verified through targeted mutational analysis.  The presence of a functional 

leucine zipper domain might explain the ability of a small portion of the CpsA protein to bind to 

DNA, but would also suggest that CpsA can form hetero- or homo-dimers to modulate DNA-

binding activity and subsequent expression at either the cpsA or cpsE promoters.  Co-

immunoprecipitation experiments are currently in progress to identify any protein-protein 

interactions that occur with full length CpsA. 

Functional analysis of the GBS CpsA protein utilized truncated forms of CpsA that were 

ectopically expressed in either a WT or ∆cpsA GBS background.  Using this method, we 

determined that ectopic expression of full length GBS CpsA (MBP-CpsA-full) resulted in 

increased capsule levels in both parent strains.  Expression of just the N-terminal DNA-binding 

region of the protein in both parent strains (MBP-CpsA-117) was also sufficient for activating 
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capsule synthesis.  As seen with S. iniae, removal of the LytR domain (MBP-CpsA-245) resulted 

in a dominant negative decrease in capsule levels, indicating repressive function for the 

DNA_PPF domain, or a dysregulated protein-protein interaction.  Analysis of these constructs in 

the context of growth phase dependent regulation of capsule revealed that CpsA is not the 

primary activator of capsule synthesis, as growth phase dependency was unaltered, but rather 

seems to be a “dimmer-switch” for capsule, with ectopic expression of activating regions 

generally leading to slightly more capsule over time, and ectopic expression of the dominant 

negative form generally leading to less capsule over time.  This indicates that CpsA may act to 

dynamically control capsule during a transition from commensalism to pathogenesis by 

selectively enhancing capsule synthesis, and may also modulate the switch from pathogen to 

commensal by selectively decreasing capsule synthesis. 

The modulation of capsule by CpsA may in part require environmental signals within the 

host, but these signals remain undefined.  We hypothesize that the modulatory capacity of the 

LytR domain may be dependent on sensing environmental signals within the host, however, we 

have demonstrated that changes in capsule due to growth phase, pH value, and human serum are 

all independent of CpsA.  These observations do not rule out an environmental sensing function 

for the extracellular domains of CpsA, but do indicate that CpsA is not responsible for 

modulating capsule in response to the major host derived signals that are encountered during a 

switch from commensalism to pathogenesis.  Therefore, it may be that the membrane 

localization of CpsA is indicative of an auto-sensory function for these domains, and the close 

proximity of the cell surface macromolecular structure and its modifications may serve as a 

signal to the extracellular domains of CpsA to modulate transcription of the capsule locus.  

Future studies to assess this consideration could utilize purified peptidoglyan-capsule complexes 
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to discern whether exposure to different components of the macromolecular cell surface induce 

changes to capsule level, and whether this is a CpsA dependent event.  Additionally, quorum 

sensing mechanisms may contribute to regulation of capsule through CpsA, and an viable 

method to test this is to expose bacteria to supernatants from terminally grown cells and assess 

changes in capsule level and dependency on CpsA.  

In addition to reduced capsule levels, parent strains of GBS ectopically expressing MBP-

CpsA-245 also demonstrated a decreased ability to survive in human whole blood.  Surprisingly, 

despite a reduction in capsule for the parent ∆cpsA strain, no reduction in survival was observed.  

However, infection of zebrafish with either the WT or ∆cpsA GBS strains revealed that the 

∆cpsA strain was attenuated for virulence in vivo, indicating that the detrimental effects 

associated with disruption of CpsA may be more apparent in the context of systemic disease.  

Furthermore, these results also suggest that CpsA could be targeted with a small peptide or 

molecule in a therapeutic fashion, enhancing clearance by the host immune system.  Plans are 

underway to identify small peptides that selectively inhibit the function of CpsA, either by 

interfering with the control exerted by the LytR domain, or by recapitulating the dominant 

negative effect observed with ectopic expression of CpsA-245 in the presence of WT CpsA. 

As seen with S. iniae, disruption of cpsA in GBS resulted in a long chain phenotype, 

indicating that CpsA contributes to regulation of cell wall related components in GBS as well.  

However, probing this phenotype with a variety of cell wall active agents did not reveal any 

differences in resistance between the WT and ∆cpsA strains, or any derivative strains ectopically 

expressing various forms of CpsA.  This is in contrast to what was observed for S. iniae, where 

lysozyme, baciatracin, and β-lactam resistances were altered.  This could mean that there are 

species-specific differences with regard to the macromolecular structure of the cell surface, or 
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could signify that CpsA functions differently between these two species.  Evidence from these 

studies favors the former conclusion, as CpsA appears to function almost identically for both S. 

iniae and GBS.  Future studies will include a full assessment of the macromolecular structure of 

both species, which may shed light on relative differences in antimicrobial sensitivity as a 

function of disrupting CpsA. 

In conclusion, the function of CpsA appears to be highly conserved amongst closely 

related streptococcal species, and includes DNA-binding and regulation of capsule and cell wall 

constituents that are required for full virulence.  These studies suggest that CpsA effects 

transcriptional changes by directly binding to DNA, and that these changes may not be limited to 

transcriptional activation, but rather appear to be composed of nuanced changes that 

appropriately regulate increases and decreases in capsule level as the bacteria deem appropriate.  

Additionally, CpsA may act to coordinately regulate not only capsule, but the cell wall as well, 

and the relative contribution of cell wall changes that occur in the absence or disruption of CpsA 

to systemic disease is a primary target of future studies.  The results presented here also 

demonstrate that CpsA can be targeted in a way that is detrimental to the pathogen, as ectopic 

expression of CpsA lacking the LytR domain results in less capsule and attenuation in human 

whole blood.  This demonstrates that CpsA may be a viable target of future antimicrobial 

therapy. 
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 Streptococcus agalactiae (GBS) and Streptococcus pneumoniae remain a significant 

threat to human health worldwide.  The ability of these organisms to cause systemic disease is 

compounded by the production of a polysaccharide capsule that provides immune evasion 

function.  The production of the polysaccharide capsule in pathogenic streptococci is controlled 

in part by the membrane bound protein CpsA.  These studies analyze the contribution of CpsA to 

regulation of capsule level in the model aquatic pathogen Streptococcus iniae and human 

pathogen GBS, and how this regulation affects virulence in in-vitro, ex-vivo, and in-vivo models 

of pathogenesis.  We have determined that the membrane topology of the CpsA protein consists 

of a small cytoplasmic N-terminus, and a large extracellular C-terminus that contains the 

conserved DNA_PPF and LytR protein domains.  The cytoplasmic N-terminal region in its 

entirety is capable of binding specifically to the capsule operon cpsA promoter in S. iniae, and to 

two putative promoter elements in GBS which include the capsule operon cpsA promoter and the 

internal cpsE promoter.  Additionally, CpsA is a modular protein, with the cytoplasmic N-

terminus as a capsule-activating domain, the DNA_PPF region as a capsule-repressing domain, 
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and the LytR region as a control domain that regulates the activities of the other two domains.  

CpsA also appears to regulate cell wall maintenance, as truncation or removal of CpsA results in 

longer chains of cocci in both S. iniae and S. agalactiae, a phenotype that is associated with 

altered antimicrobial resistance and autolysis activity in S. iniae.  Taken together, CpsA 

contributes to the complex regulatory scheme controlling capsule and cell wall, the two major 

constituents of bacterial cell surface macromolecular structure, and does so in a way that 

influences pathogenesis during systemic disease.  The insights gained through these studies 

indicates that CpsA can be targeted in a way that is detrimental to bacterial survival in the 

context of systemic disease, suggesting CpsA may be an important future target of antimicrobial 

therapy. 
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