
Wayne State University

Wayne State University Dissertations

1-1-2012

Querying and managing opm-compliant scientific
workflow provenance
Chunhyeok Lim
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Lim, Chunhyeok, "Querying and managing opm-compliant scientific workflow provenance" (2012). Wayne State University
Dissertations. Paper 382.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/382?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages

QUERYING AND MANAGING OPM-COMPLIANT SCIENTIFIC
WORKFLOW PROVENANCE

by

CHUNHYEOK LIM

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2011

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

Co-advisor

c©COPYRIGHT BY

CHUNHYEOK LIM

2011

All Rights Reserved

ACKNOWLEDGMENTS

I would first like to thank God for giving me the opportunity to start my Ph.D. program in 2007

and leading me to successfully finish my Ph.D. program in 2011. I also would like to express my

deep and sincere gratitude to my advisors, Dr. Farshad Fotouhi and Dr. Shiyong Lu, for their

constant encouragement, support, and guidance in every time of need throughout my Ph.D. pro-

gram. With their passionate advising, I successfully completed my work and also had invaluable

opportunities to make myself more capable. In addition, I am grateful to my Dissertation Commit-

tee members: Dr. Robert Reynolds and Dr. Zaki Malik in the Department of Computer Science

and Dr. Song Jiang in the Department of Electrical and Computer Engineering for being on my

committee and giving me constructive suggestions and comments on my work.

I would like to give my special thanks to Dr. Artem Chebotko in the Department of Com-

puter Science, University of Texas-Pan American for working hard with me as a co-author in my

research papers. I would like to thank Dr. Seunghan Chang who is currently working in the Ko-

rean army for giving me lots of help to early adapt to school life. I also would like to thank my

academic colleagues in the Scientific Workflow Research Laboratory: Dong Ruan, Fahima Amin,

and Andrey Kashlev, and also alumni Dr. Xubo Fei, Dr. Cui Lin, and Dr. Jamal Alhiyafi for their

academic cooperation and close friendships.

Many thanks go to my loving family: my wife Eunju and my sons Ugyun and Hyeongyun.

They have sacrificed a lot due to my study. Without their encouragement and understanding, it

would have been impossible for me to complete my program. My special gratitude goes to my

loving father and mother, brothers and sister, and mother-in-law for their unconditional love and

endless pray. Finally, the financial support of Republic of Korea Army is gratefully acknowledged.

ii

TABLE OF CONTENTS

Acknowledgments . ii

List of Tables . vii

List of Figures . viii

CHAPTER 1 INTRODUCTION . 1

1.1 Statement of the Problem . 4

1.1.1 Provenance Collection Framework . 4

1.1.2 Provenance Store for Scientific Workflows 5

1.1.3 Provenance Query Language . 8

1.2 Main Contributions . 9

1.3 Organization . 11

CHAPTER 2 RELATED WORK . 12

2.1 The Use of Provenance in Various Domains . 12

2.2 Storing and Querying Scientific Workflow Provenance 13

2.3 Querying and Managing OPM-Compliant Provenance 16

CHAPTER 3 PROVENANCE COLLECTION FRAMEWORK 20

3.1 The Problem . 20

3.2 Provenance Model . 22
iii

3.2.1 Prospective Provenance . 22

3.2.2 Retrospective Provenance . 22

3.3 Provenance Collection Framework . 24

3.3.1 Prospective Provenance Collection . 24

3.3.2 Retrospective Provenance Collection . 27

3.4 Summary . 29

CHAPTER 4 THE OPMPROV PROVENANCE STORE 32

4.1 The Problem . 32

4.2 Database Schema . 33

4.2.1 Prospective Provenance Database Schema 33

4.2.2 Retrospective Provenance Database Schema 35

4.3 Data Mapping Algorithm . 36

4.4 Provenance Reasoning and Querying . 37

4.4.1 Reasoning for One-Step Inferences . 38

4.4.2 Reasoning for Multi-Step Inferences . 39

4.4.3 SQL-Based Provenance Querying . 40

4.5 Experimental Study . 43

4.5.1 Data Insertion Performance Experiments 43

4.5.2 Provenance Query Performance Experiments 44

4.6 Summary . 48

CHAPTER 5 PROVENANCE QUERY LANGUAGE: OPQL 49

5.1 The Problem . 49

iv

5.2 The OPQL Provenance Query Language . 50

5.2.1 Formalizing the OPM Model . 50

5.2.2 Graph Patterns . 53

5.2.3 OPM-Based Graph Algebra . 58

5.2.4 OPQL Syntax and Semantics . 62

5.2.5 Expressing Provenance Queries in OPQL 67

5.3 Experimental Study . 69

5.3.1 Provenance Query Performance Experiments 71

5.3.2 Provenance Visualization Performance Experiments 74

5.4 Summary . 74

CHAPTER 6 DESIGN AND IMPLEMENTATION OF OPMPROV 75

6.1 Architecture of OPMPROV . 75

6.2 Implementation of OPMPROV . 77

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 81

7.1 Summary . 81

7.2 Contributions . 81

7.3 Future Work . 82

Appendix A . 84

Appendix B . 88

Appendix C . 102

v

Bibliography . 115

Abstract . 130

Autobiographical Statement . 131

vi

LIST OF TABLES

Table 2.1: The characteristics of provenance management systems. 16

Table 3.1: The entities and their attributes collected by provenance collector P 25

Table 3.2: The entities and their attributes collected by provenance collector R. 26

Table 3.3: The entities and their attributes inferred by provenance reasoning. 27

Table 5.1: The provenance queries expressed using the OPM-based graph algebra. 62

vii

LIST OF FIGURES

Figure 1.1: An example of a scientific workflow and its provenance. 2

Figure 1.2: The Open Provenance Model (v1.1). 3

Figure 1.3: An example of the XML provenance data produced by the UCDGC team. 6

Figure 1.4: An example of XML provenance data that conforms to the OPM XML schema. 7

Figure 1.5: An example of different query languages answering a provenance query (CQ1). 8

Figure 3.1: E-R diagram for modeling prospective and retrospective provenance. 21

Figure 3.2: Provenance collection framework. 24

Figure 3.3: A sample workflow specification designed in the VIEW workbench. 25

Figure 3.4: A sequence diagram illustrating provenance activities during an workflow execution. . 26

Figure 4.1: The database schema for the OPMPROV store. 34

Figure 4.2: An SQL view: one-step inference WasTriggeredBy. 38

Figure 4.3: An SQL view: multi-step inference WasDerivedFrom*. 40

Figure 4.4: An SQL view: multi-step inference WasGeneratedBy*. 40

Figure 4.5: An SQL view: multi-step inference Used*. 41

Figure 4.6: An SQL view: multi-step inference WasTriggeredBy*. 41

Figure 4.7: Provenance queries for the Third Provenance Challenge questions. 42

Figure 4.8: Data insertion performance over various datasets. 44

Figure 4.9: OPMPROV query performance over two different datasets. 46

Figure 4.10: OPMPROV query performance for recursive views. 47
viii

Figure 4.11: Query performance over OPMPROV and Karma. 47

Figure 5.1: A sample OPM graph. 51

Figure 5.2: A sample OPM graph representing dependencies associated with process p2. 52

Figure 5.3: A sample graph pattern of Pb. 53

Figure 5.4: A sample graph pattern of Po. 55

Figure 5.5: A sample graph pattern of Pd. 56

Figure 5.6: A sample graph pattern of Pt. 57

Figure 5.7: The output produced by the operation of different operators. 61

Figure 5.8: The OPQL Syntax. 63

Figure 5.9: The semantics of node expression Xn. 64

Figure 5.10: The semantics of the single-node and single-step-edge-forward (backward) constructs. 64

Figure 5.11: The semantics of the multi-step-edge constructs. 65

Figure 5.12: The description of the OPQL constructs and the graphical query results. 67

Figure 5.13: Two different query expressions that generate a data dependency graph (DG). 68

Figure 5.14: Provenance queries expressed by OPQL for the Third Provenance Challenge questions. 70

Figure 5.15: The sample query results executed by OPQL and SQL. 71

Figure 5.16: OPQL query performance over various datasets. 72

Figure 5.17: OPMPROV provenance visualization performance over various datasets. 73

Figure 6.1: An overview of the OPMPROV system. 76

Figure 6.2: Visualizing OPM graphs in OPMPROVISD and OPMPROVISW 79

ix

1

CHAPTER 1

INTRODUCTION

Today, scientific workflows have become a powerful computing paradigm for structuring and

automating complex and distributed scientific processes in various data-intensive sciences, such as

bioinformatics, physics, astronomy, earthquake science, and so on [1], [2], [3], [4]. A scientific

workflow is a formal specification of a scientific process, which represents, streamlines, and auto-

mates the analytical and computational steps [5], [6]. Provenance, which is one kind of metadata

that captures the derivation history of a data product, including the original data sources, inter-

mediate data products, and the workflow tasks that were applied to produce a data product, has

become increasingly important in scientific workflows to interpret, validate, and analyze the result

of scientific computing [7], [8]. For example, Figure 1.1(a) shows an example of a scientific work-

flow, which is the Load Workflow defined in the Third Provenance Challenge [15] that checks and

reads CSV files before loading, creates a database to load CSV files, loads them into tables and

validates tables, and compacts a database after loading. In general, provenance can be captured by

a provenance collection mechanism during the execution of a scientific workflow. The captured

provenance holds data dependencies, process dependencies, causality between data and processes,

and annotations. Such provenance is often represented by a provenance graph. Figure 1.1(b)

shows a provenance graph produced via the execution of the Load Workflow. Figure 1.1(c) and (d)

present a data dependency graph associated with artifact a9 and a process dependency graph asso-

ciated with process p8 from a provenance graph generated via the execution of the Load Workflow,

respectively.

Recently, the Open Provenance Model (OPM) has been proposed as a standard provenance

model in the community to facilitate and promote provenance interoperability among existing het-

erogeneous systems. The OPM model allows us to characterize what caused “things” to be (i.e.,

2

Figure 1.1: An example of a scientific workflow and its provenance.

how “things” depended on others and resulted in specific states). Therefore, the OPM model

essentially consists of a directed graph to express such dependencies. We briefly introduce the

constituents of such a graph. In the OPM model, provenance graphs consists of three types of

nodes (i.e., Artifact, Process, Agent) and five types of edges (i.e., Used, WasGeneratedBy, Was-

ControlledBy, WasTriggeredBy, WasDerivedFrom), which represent causal dependencies. An ar-

tifact is an immutable piece of state, a process is action or a series of actions, and an agent is a

contextual entity acting as a catalyst of a process, which is enabling, facilitating, controlling, or

affecting its execution. The five edges also capture the causal dependencies between the artifacts,

processes, and agents. As shown in Figure 1.2, an edge represents a causal dependency between

its source denoting the effect and its destination denoting the cause. The Used edge expresses

3

Figure 1.2: The Open Provenance Model (v1.1).

that a process used an artifact, and the WasGeneratedBy edge expresses that an artifact was gener-

ated by a process. The WasControlledBy edge also expresses that a process was controlled by an

agent. Regarding edge WasDerivedFrom, even though an artifact A2 may have been generated by

a process that used some artifacts, this does not tell us which artifact A2 actually depends upon.

Thus, to make the dependency explicit, it is required to assert that artifact A2 was derived from

another artifact A1. This edge gives us a dataflow oriented view of provenance. Likewise, for edge

WasTriggeredBy it is recognized that we may not be aware of the exact artifact that a process P2

used, but that there was some artifact generated by another process P1. Process P2 is then said to

have been triggered by P1. It allows for a process oriented view of past executions to be adopted.

The OPM model has played an important role in provenance interoperability and has had a positive

impact on ongoing provenance activities, including the IPAW workshops [11] and the Provenance

Challenges [14]. More details on the OPM model can be found in [18].

There is a growing effort in supporting the OPM model in the existing systems. Most exist-

ing systems [35], [51], [62], [27], [67], [97], [90] store and manage provenance data in their own

provenance stores of proprietary provenance models; however, these systems have to conduct an

additional transformation procedure to store and manage OPM-compliant provenance data (i.e.,

4

XML data that conforms to the XML schema defined in the OPM model) by means of a mapping

between their own proprietary provenance models and the OPM model, which is cumbersome and

inefficient. Moreover, most existing systems conduct query processing over the physical prove-

nance storages (i.e., RDB, RDF, and XML) using query languages, such as SQL, SPARQL, and

XQuery, which are closely coupled to the underlying provenance storage strategies; thus, users

have to know the structures or schemas of such provenance storages as well as semantics of prove-

nance models, which is nontrivial for users to formulate complicated provenance queries. There-

fore, an efficient and effective provenance management mechanism is needed to query and manage

OPM-compliant provenance in a native fashion.

1.1 Statement of the Problem

1.1.1 Provenance Collection Framework

In scientific workflow environments, provenance management is essential to support reproducibil-

ity of scientific discovery, result interpretation, and problem diagnosis [8], [64]. In general, prove-

nance management concerns about the efficiency and effectiveness of recording, representing, stor-

ing, querying, and visualizing provenance. Much research has been done for provenance manage-

ment [5], [35], [54], [25], [67], [90], [61], [85]. In particular, many capture mechanisms have

been proposed in existing provenance systems; however, most systems capture provenance based

on their own proprietary provenance models. Since the captured provenance data does not con-

form to the OPM XML schema when it is collected, such provenance data should be transformed

via a mapping between their proprietary provenance models and the OPM model to support the

OPM model. Therefore, we need a new provenance capture mechanism to directly collect OPM-

compliant provenance data during the execution of a scientific workflow.

Moreover, the OPM model only models retrospective provenance, which captures past work-

flow execution and data derivation information. Another kind of provenance, called prospective

provenance, which captures an abstract workflow specification as a recipe for future data deriva-

tion, cannot be modeled by the OPM model at this point. As a result, many provenance queries

5

related to workflow specification (prospective or hybrid provenance queries) cannot be answered

based on the OPM model. For example, among 16 provenance queries defined in Third Prove-

nance Challenge [15], query OQ9, which asks for “which steps were not executed because of

halt?” needs information associated with steps specified in a workflow before halt occurs in order

to answer this query. However, the OPM model does not represent information associated with

workflow specification existing before the execution of a workflow.

Therefore, we need to extend the OPM model to model prospective provenance so that we

can answer many provenance queries related to workflow specification before the execution of a

scientific workflow. That is, we need an efficient provenance capture mechanism that collects both

prospective provenance and retrospective provenance.

1.1.2 Provenance Store for Scientific Workflows

Scientific workflows have become an increasingly popular paradigm for scientists to formalize and

structure complex scientific processes to enable and accelerate many significant scientific discov-

eries [1], [2]. The importance of scientific workflows has been recognized by NSF since 2006 [3]

and was reemphasized in a recent science article [4], which concluded, “In the future, the rapidity

with which any given discipline advances is likely to depend on how well the community acquires

the necessary expertise in database, workflow management, visualization, and cloud computing

technologies.” As a result, provenance management has been identified as a key component of the

reference architecture for scientific workflow management systems (SWFMSs) [5]. The impor-

tance of provenance has been widely recognized in the scientific workflow community: almost all

existing SWFMSs now support provenance management [5], [35], [54], [25], [67], [90], [61], [85]

as a key functionality, even though challenges remain for the efficient and effective management

of provenance [2].

Although numerous provenance systems [35], [51], [62], [27], [67], [97], [5], [90] have been

developed to manage provenance data, either as part of a scientific workflow management system

or as a standalone provenance system [61], [85], provenance interoperability is poor among these

6

<?xml version=“1.0” encoding=“UTF-8” ?>
<Trace runId=”a1fd241f-305e-4eff-a2d9-f6f988557980” traceId=”1”>

<Data id=“2661” type=“StringToken”>csv899251008506</value>
<Data id=“1776” type=“StringToken”>success-J062941-20081115-P2FrameMeta.csv</value>
<Data id=“2189” type=“StringToken”>J062941-success-442745064-LoadDB</value>
<Insertion item=“1712” invocation=“IsExistsCSVFile:1” />
<Insertion item=“3138” invocation=“ReadCSVReadyFile:1” />
<Insertion item=“2045” invocation=“LoadCSVFileIntoTable:1” />
<InvocationDependency from=“IsMatchCSVFileColumn:1” to=“ReadCSVFileColumn:1”/>
<InvocationDependency from=“UpdateComputedColumns:1” to=“LoadCSVFileIntoTable:1”/>
<InvocationDependency from=“ReadCSVFileColumnNames:1” to=“IsExistsCSVFile:1”/>
< ... />

</Trace>

Figure 1.3: An example of the XML provenance data produced by the UCDGC team.

systems due to the use of their own proprietary provenance models [2]. Such a lack of provenance

interoperability makes it difficult to integrate provenance from various heterogeneous SWFMSs,

which is necessary when scientific results were obtained by running a sequence of scientific work-

flows enacted from different SWFMSs [80]. To address this issue, the Open Provenance Model

(OPM) [12] initiative was formed in 2007 with the aim of defining a standard provenance model

to facilitate provenance interoperability between different heterogeneous systems.

While an increasing number of systems have started to support the OPM model [15], most of

them use an import/export approach, which extends their own proprietary provenance models with

an import/export facility to map back and forth between the OPM model and their own provenance

models. For example, Figure 1.3 shows an example of the XML provenance data produced by the

UCDGC (UC Davis Genome Center) team in the Third Provenance Challenge [15]. As depicted in

Figure 1.3, the UCDGC’s XML provenance data does not conform to the XML schema defined in

the OPM model [12]. Therefore, in case provenance data produced by heterogeneous provenance

systems is exchanged each other, the UCDGC’s provenance data should be transformed to separate

provenance data that conforms to the OPM XML schema when it is exported. Figure 1.4 shows an

example of XML provenance data that conforms to the OPM XML schema. In fact, the provenance

data depicted in Figure 1.3 can be transformed to the provenance data presented in Figure 1.4

7

<?xml version=“1.0” encoding=“UTF-8” ?>
<opmGraph xmlns=”http://openprovenance.org/model/v1.01.a”>

<processes>
<process id=“IsExistsCSVFile:1”>

<value>IsExistsCSVFile</value>
</process>
<process id=“ReadCSVReadyFile:1”>

<value>ReadCSVReadyFile</value>
</process>

</processes>
<artifacts>

<artifact id=“1776”>
<value>success-P2-J062941-B001-P2fits0-20081115-P2FrameMeta.csv</value>

</artifact>
<artifact id=“2189”>

<value>J062941-success-442745064-LoadDB</value>
</artifact>

</artifacts>
<causalDependencies>

<used>
<effect id=“IsExistsCSVFile:1” />
<role value=“in” />
<cause id=“2661” />

</used>
<wasGeneratedBy>

<effect id=“1776” />
<role value=“out” />
<cause id=“ReadCSVReadyFile:1” />

</wasGeneratedBy>
< ... />

</causalDependencies>
</opmGraph>

Figure 1.4: An example of XML provenance data that conforms to the OPM XML schema.

via a mapping procedure. Likewise, when the OPM-compliant provenance data is imported, it

should be transformed to separate provenance data that meets the UCDGC proprietary provenance

model. These mapping strategies are expensive and inefficient. Therefore, we need an efficient and

effective provenance management mechanism to store and manage OPM-compliant provenance

data in a native fashion without any transformation procedure.

8

1.1.3 Provenance Query Language

Most existing systems [61], [25], [28], [54] store provenance data in their provenance stores of

proprietary provenance models and conduct provenance querying using query languages, such as

SQL, SPARQL, and XQuery over the physical provenance storages (i.e., RDB, RDF, and XML).

Such query languages are closely coupled to the underlying provenance storage strategies, and

therefore users have to know the structures or schemas of such provenance storages, as well as

semantics of provenance models that have been applied to the provenance storages to formulate

provenance queries. Moreover, users require the expertise about grammars, syntax, and semantics

of such languages to formulate complicated provenance queries.

For example, using existing approaches, provenance lineage queries (queries for tracking an-

cestor nodes) often require users to write recursive queries (directly typing recursive statements

or using recursive functionality). Figure 1.5 shows an example of different query languages (i.e.,

SQL, SPARQL, and XQuery) that answer a provenance query (CQ1), which is one out of 16 prove-

nance queries defined in the Third Provenance Challenge [15]. Query CQ1, which asks for CSV

CQ1: For a given detection (id), which CSV files contributed to it?

<SQL>: SELECT DISTINCT A2.Value FROM Artifact A2, Used U,
(SELECT DISTINCT TG.OPMGraphId, TG.ProcessId FROM MultiStepWasGeneratedBy TG, Artifact A
WHERE TG.ArtifactId = A.ArtifactId AND A.Value = ‘detectID’) As Pv
WHERE U.ProcessId = Pv.ProcessId AND U.ArtifactId = A2.ArtifactId AND
A2.Value LIKE ‘%Detection.csv’

<SPARQL>: SELECT ?value WHERE {?wgb ProtoProv:wgbSource pc:DBEntryP2Detection 0 ForIter3.
?wgb ProtoProv:wgbSource pc:DBEntryP2Detection 0 ForIter3. ?wgb ProtoProv:wgbTarget ?fxn.
?usd ProtoProv:usdSource ?fxn. ?usd ProtoProv:usdTarget ?var. ?var ProtoProv:hasType ?type.
FILTER(?type = “CSVFileEntry”) ?var ProtoProv:hasValue ?value}

<XQuery>: LET $d := doc(‘workflow opm2.xml’);
(: the user must first find the detection value in the DB. That table is used to find the artifact :)
LET $a := $d//artifact[value/function/parameter/@val = ’P2Detection’];
(: return all the artifacts upstream containing a P2Detection.csv file :)
RETURN local:derivedFrom($d, $a)[ends-with(value/function/parameter/@val, ‘P2Detection.csv’)]

Figure 1.5: An example of different query languages answering a provenance query (CQ1).

9

files that contributed to a given detection, requires the computation of transitive relationships. As

depicted in Figure 1.5, to answer this query (i.e., to find all data product that contributed to derive

a data product via the calculation of transitive relationships), SQL uses relation MultiStepWasGen-

eratedBy predefined via recursive queries, SPARQL uses many join conditions, and XQuery uses a

predefined recursive functionality, respectively. These languages require that users directly formu-

late provenance queries against physical provenance storages; as well as users need to understand

and consider the underlying provenance storage strategies, which are nontrivial.

Therefore, we need a new provenance query language that efficiently supports provenance

queries. We aim at designing OPQL, which is an OPM-level provenance query language. OPQL

is a graph query language that is directly defined over the OPM model [18], which is a standard

provenance model. An OPQL query takes one OPM graph as input and produces an OPM graph

as output; therefore, OPQL queries are not tightly coupled to the underlying storage strategies.

1.2 Main Contributions

In this dissertation, we first propose a provenance collection mechanism that captures both prospec-

tive provenance and retrospective provenance in scientific workflow environments. The main con-

tributions of this work are followings:

1. We design a provenance model that models both prospective provenance, which captures

an abstract workflow specification as a recipe for future data derivation and retrospective

provenance, which captures past workflow execution and data derivation. Our proposed

provenance model is an extension to the Open Provenance Model (OPM), which only models

retrospective provenance.

2. We propose a provenance collection framework to collect both prospective and retrospective

provenance according to our model. It is important to model and capture both prospective

and retrospective provenance since both provenance provide important contextual informa-

tion for the comprehensive analysis of scientific results. In fact, two queries out of 16 queries

raised in the Third Provenance Challenge cannot be answered solely based on the OPM

10

model. Many provenance queries related to workflow specification can be answered via our

provenance collection framework that models and captures both prospective and retrospec-

tive provenance.

Then, we propose a relational database-based provenance system, called OPMPROV that stores,

reasons, and queries prospective provenance and retrospective provenance, which is OPM-compliant

provenance. The main contributions of this work are followings:

1. We propose a relational provenance store to store, reason, and query prospective and retro-

spective provenance, which is captured via the proposed provenance collection framework.

An experimental study is performed to show the performance of our provenance store using

provenance queries defined in the Third Provenance Challenge. While most existing systems

use an internal proprietary provenance model and develop an import/export facility to con-

vert between the proprietary model and the OPM model, our provenance store features the

native support of the OPM model.

2. We show that provenance reasoning defined in the OPM model can be sufficiently supported

by OPMPROV using recursive views and SQL queries alone without any additional reason-

ing engine. Experiments are conducted to evaluate the performance of OPMPROV in data

insertion and provenance querying and the experiment results show to be very efficient. A

case study is performed, demonstrating that OPMPROV can answer all except one query out

of the 16 queries defined in the Third Provenance Challenge.

Finally, we propose OPQL, an OPM-level provenance query language, that is directly defined

over the Open Provenance Model (OPM). An OPQL query takes an OPM graph as input and pro-

duces an OPM graph as output. Therefore, OPQL queries are not tightly coupled to the underlying

provenance storage strategies. The main contributions of this work are followings:

1. To design OPQL that efficiently supports provenance queries, we first define six types of

graph patterns, which are the main building blocks of an OPQL query. We then define an

11

OPM-based graph algebra based on four operators (i.e., extract, union, intersection, and dif-

ference operator). We finally define OPQL syntax and semantics that is required to formulate

OPQL queries. Our OPQL features the native support for query processing of OPM graphs.

2. We implement OPQL using a Web service via our OPMPROV system; therefore, users can

invoke the Web service to execute OPQL queries in a provenance browser, called OPM-

PROVIS. The result of OPQL queries is displayed as an OPM graph in OPMPROVIS. An

experimental study is conducted to evaluate the feasibility and performance of OPMPROV on

OPQL provenance querying and the experiment results show satisfactory performance. To

our best knowledge, OPQL is the first OPM-level query language and OPM-compliant prove-

nance querying service for scientific workflows.

1.3 Organization

The rest of this dissertation is organized as follows: Chapter 2 presents related work on prove-

nance management in existing provenance systems. Chapter 3 presents a provenance collection

framework that collects both prospective provenance and retrospective provenance. Chapter 4

presents a relational database-based provenance system, called OPMPROV that stores, reasons,

and queries prospective provenance and retrospective provenance, which is OPM-compliant prove-

nance. Chapter 5 presents OPQL, an OPM-level provenance query language, that efficiently sup-

ports provenance queries. Chapter 6 presents the design and implementation of OPMPROV. Fi-

nally, Chapter 7 concludes this dissertation and provides the directions for future work.

12

CHAPTER 2

RELATED WORK

In this chapter, we first discuss how provenance has been used in the various domains, such

as databases, Web, and scientific workflows to give a better understanding of provenance. We

then discuss related work on scientific workflow provenance management in existing systems. We

finally discuss our research in the context of OPM-compliant provenance management.

2.1 The Use of Provenance in Various Domains

In e-science environments, provenance has become increasingly important to trace, validate, and

analyze the orgins and derivation of data. In common sense, provenance refers to the fact of com-

ing from some particular sources; orgin; derivation. That is, provenance is a historical metadata

that provides explanations on how a particular result has been generated. Accordingly, the no-

tion of provenance has been used in the various domains, such as databases, Web, and scientific

workflows [64].

In the context of scientific workflow, provenance is one kind of metadata that captures the

derivation of history of a data product, including the original sources, intermediate data product,

and the workflow tasks that were applied to produce a data product. Typically, scientific work-

flow provenance contains information about data dependencies, process dependencies, causality

between data and processes, and annotations and it plays a key role in scientific workflows to trace

the experiment results back to the origin, reproduce the data products, and verify a series of process

that were used to produce the results.

In the field of databases, provenance, called data provenance refers to the process of tracing

and recording the orgins of data and its movement between databases [121], [120]. The issue of

data provenance is important in scientific databases to verify the accuracy and quality of data. In

13

databases, much research on the management of data provenance has been done on two perspec-

tives: one is “why” provenance, which refers to the source data that had some influence on the

existence of the data and the other one is “where” provenance, which refers to the location in the

source databases from which the data was extracted [119].

Similarly, in the field of Web data, provenance, called Web data provenance is important to

evaluate qualities (i.e., accuracy, timelines, reliability, and trustworthiness) of the data retrieved

from the Web [122], [123]. Web data provenance includes the access of data items on the Web,

which is not required in the context of self-contained systems such as DBMSs or scientific work-

flow management systems. In this dissertation, we focus on the management of scientific workflow

provenance, especially on OPM-compliant provenance management.

2.2 Storing and Querying Scientific Workflow Provenance

Scientific workflows have emerged for scientists to efficiently arrange and organize the complex

scientific processes and facilitate many scientific discoveries. A scientific workflow management

system is a system that supports the workflow specification, workflow scheduling, workflow ex-

ecution, workflow monitoring, provenance management, and data product management. In gen-

eral, provenance management concerns about the efficiency and effectiveness of recoding, storing,

representing, querying, and visualizing provenance data. Much research on scientific workflow

provenance management has been done in existing systems.

Kepler [35], [36] implements a provenance framework, called COMAD (Collection-Oriented

Modeling and Design), which supports nested data collections and captures explicit data depen-

dencies. The COMAD framework stores provenance information (trace) in an XML file by means

of a set of provenance annotations. Recently, the COMAD framework has been extended to au-

tomatically store provenance information in a relational database, where immediate and transitive

closure dependencies derived from provenance reasoning for each node and invocation are stored

14

by applying a set of reduction techniques to reduce the storage cost [33], [34]. The COMAD-

Kepler provenance system supports provenance querying through a high-level query language,

called QLP and an external reasoning engine.

Taverna [51], [56] implements a logbook plugin to capture provenance information from work-

flow runs based on a provenance ontology. The logbook plugin allows users to browse, reload,

rerun, and maintain provenance metadata. Taverna presents a data lineage model to support fine-

grained and efficient lineage querying of collection-based workflow provenance [50]. Taverna

uses Semantic Web technologies for representing provenance metadata and a general-purpose RDF

store to manage and query provenance [54]. Recently, Taverna [54] implements a semantic prove-

nance infrastructure and visualizes semantic, RDF-based provenance graphs based on a provenance

ontology. Taverna supports provenance queries using the SPARQL query language.

Karma [61] captures uniform and usable provenance metadata independent of the used work-

flow or service framework. The Karma provenance model captures two forms of provenance: pro-

cess provenance, which is metadata describing workflow execution and associated invocations; and

data provenance, which provides similar metadata about the derivation history of a data product.

Karma’s provenance model consists of two levels: the registry level, which records the metadata

of services and data that may be used in an execution sequence; and the execution level, which

models instances of the registry level and records the execution-related information of method in-

vocations and data products used or generated by each invocation [60]. Karma uses XML and

relational database technologies to store and query provenance metadata [60], [63], [64]. Recently,

Karma [61] presents an integrated provenance management architecture that supports automated

data provenance collection, annotated provenance, and provenance visualization. Karma supports

provenance queries in SQL and XPath.

VisTrails [27], [26] is the first one to support provenance tracking of workflow evolution. In

VisTrails, workflow evolution provenance is represented as a version tree, in which each node

corresponds to a version of a workflow, and each edge corresponds to an update action that was

applied to the parent workflow to create the child workflow. VisTrails uses XML and relational

15

database technologies for provenance management. VisTrails [25] uses a change-based prove-

nance mechanism to capture provenance information for data products and for the evolution of the

workflows used to generate these products. The provenance model consists of three layers: the

workflow evolution layer, which captures the evolution relationship between workflow specifica-

tions; the workflow layer, which consists of individual workflow specifications; and the execution

layer, which stores run-time information of workflow execution. VisTrails has the ability to vi-

sualize query results by highlighting workflow versions that match query conditions by using the

VisTrails query language, called vtPQL.

Swift [67] is a scientific workflow management system that has focused on the rapid and reli-

able specification, execution, and management of large-scale science and engineering workflows.

Swift implements a Virtual Data System (VDS) consisting of a set of relations to store the de-

scription of executable programs as transformations, their actual invocations as derivations, and

input/outputs as data objects. Swift uses provenance for tracking the data derivation history, on-

demand data generation, and data product validation. Swift utilizes relational database technolo-

gies to manage and query provenance metadata.

PReServ/PASOA [97] supports the recording of interaction provenance, actor provenance, and

input provenance with the provenance recording protocol, which specifies the messages that actors

can asynchronously exchange with a provenance store to support provenance submission. PRe-

Serv [84] uses a provenance management service that provides a common interface to enable dif-

ferent storage systems, such as file systems, relational databases, XML databases, and RDF stores,

as a provenance store.

The summary of storage and query capabilities, including provenance capture mechanisms for

above described systems is shown in Table 2.1. These systems have shown their storage and query-

ing capabilities on a sample scientific workflow defined in the Third Provenance Challenge [15].

16

Table 2.1: The characteristics of provenance management systems.

Kepler Taverna Karma Vistrails Swift PreServ
Scientific Biology Biology Biology Ecology Biology Biology

Domain Ecology Meterology
Geology

Capture Application- Application- Service- Application- Application- Service-

Mechanism Oriented Oriented Oriented Oriented Oriented Oriented
(COMAD) (Plug-in) (Change-based) (Plug-in) (PReP)

Representation XML XML/RDF XML XML XML XML
Storage RDBMS RDF Store XML Database RDBMS RDBMS RDBMS

Query Language QLP SPARQL SQL/XPath vtPQL SQL SQL

2.3 Querying and Managing OPM-Compliant Provenance

In scientific workflow environments, provenance management has become an essential function-

ality for most scientific workflow management systems. In 2006, the issue of provenance interop-

erability was first raised an important part of the provenance management and it has been actively

discussed in the community [14]. To promote and facilitate interoperability among heterogeneous

provenance systems, the Open Provenance Model (OPM) [17] was first proposed in 2008 and af-

terwards has played an important role in community activities, including the IPAW workshops and

Provenance Challenges. Recently, there has been an increasing effort in adapting existing prove-

nance systems to support OPM in the Third Provenance Challenge [15].

First, we discuss related work on adaptability to the OPM model in existing provenance sys-

tems. Kepler shows the import/export capability for the OPM model in the Third Provenance

Challenge by exporting COMAD-Kepler provenance traces into OPM traces and importing the

OPM traces back into the COMAD-Kepler provenance traces and then storing them into a re-

lational database to query the imported provenance metadata. Taverna exports OPM-compliant

provenance metadata from its native provenance system by means of incorporating OPM graph

generation functionality into the existing provenance query algorithm for a mapping of Taverna’s

proprietary model to the OPM model. Karma shows that three entities and five causal dependencies

defined in the OPM model can be represented as the corresponding entities in Karma by means of

17

mapping the OPM model to the proprietary model. While Karma exports OPM-compliant prove-

nance metadata from its proprietary storage, it lacks the import function and inference support for

multi-step edges defined in the OPM model. In the Third Provenance Challenge, VisTrails exports

OPM-compliant provenance metadata by combining information from the execution log with the

workflow specification and the module registry. VisTrails uses XQuery to query the XML specifi-

cations exported and implements recursive functions to query the transitive closure dependencies.

Swift is showcased to export OPM graphs from its proprietary RDBMS-based storage, however

similarly to Karma, Swift has no support for importing OPM-compliant provenance or multi-step

inferences. PReServ exports OPM-compliant provenance metadata by using a translation tool, and

PReServ also exposes provenance graphs with three different level of abstraction, such as depen-

dency level, process level, and communication level to describe the exported provenance metadata.

Although above described systems have storage and query capabilities to adapt the OPM model

in their systems, these systems have focused on enhancing the import/export capabilities in their

systems by means of a mapping between their own proprietary provenance models and the OPM

model. Our proposed provenance system (aka OPMPROV), on the other hand, starts from the OPM

model and designs the database to store and query native OPM-compliant provenance data.

Second, most existing provenance management systems capture provenance data based on their

own proprietary provenance models, and therefore the provenance data captured by these systems,

which does not conforms to the OPM XML schema, should be transformed via a mapping pro-

cedure to support the OPM model, which is cumbersome and inefficient. The approach taken by

our proposed provenance capture mechanism, however, differs from existing systems as our prove-

nance capture mechanism directly captures OPM-compliant provenance data, which conforms to

the OPM XML schema. The captured provenance data can be stored and managed in our prove-

nance store, which directly uses the OPM model as the native model, without any transformation.

Moreover, the OPM model only models retrospective provenance, which captures past workflow

execution and data derivation information. Therefore, we extends the OPM model to support the

modeling of prospective provenance, which captures an abstract workflow specification as a recipe

18

for future data derivation so that many provenance queries related by workflow specification can

be answered based on the OPM model.

Finally, we discuss related work on provenance query processing in provenance management

systems. Most existing systems store provenance data in their provenance stores of proprietary

provenance models and conduct provenance querying using query languages, such as SQL, SPARQL,

and XQuery over the physical provenance storages (i.e., RDB, RDF, and XML). VisTrails has the

ability to visualize query results by highlighting workflow versions that match query conditions by

using the VisTrails query language, called vtPQL. Kepler [28] implements an interactive prove-

nance browser to visualize and query data dependency graphs. The provenance browser enables

users to create different views for provenance graphs and express complex and recursive graph

queries. Similar to our proposed query language (aka OPQL), the Kepler’s QLP query language

provides a separation between the logical provenance model and its underlying physical repre-

sentation. However, QLP is not directly defined over the OPM model, but on Kepler’s propri-

etary provenance model. Thus, QLP has no support for direct query processing of OPM graphs.

ZOOM [44] enables users to construct appropriate user views for provenance graphs, and it pro-

vides users with an interface to query provenance information. Taverna [54] implements a seman-

tic provenance infrastructure and visualizes semantic, RDF-based provenance graphs based on a

provenance ontology. Taverna supports provenance queries using the SPARQL query language.

Karma [61] presents an integrated provenance management architecture that supports automated

data provenance collection, annotated provenance, and provenance visualization. The Karma’s

provenance browser visualizes OPM graphs by a mapping between provenance events and OPM

entities. Karma supports provenance queries in SQL and XPath. GraphQL [98] is a graph-based

query language for graph databases. GraphQL is defined over a data model representing attributes

of a generic graph, and a GraphQL query takes a collection of graphs as input and produces a

collection of graphs using graph patterns. Like SQL, SPARQL, and XQuery, GraphQL requires

users to directly formulate recursive queries to track ancestor nodes. Although most existing sys-

tems have the capabilities to query provenance data in their systems, query languages supported by

19

these systems are closely coupled to the underlying provenance storage strategies. Moreover, these

systems query OPM graphs by means of a mapping between their proprietary provenance models

and the OPM model. OPQL, on the other hand, is directly defined over the OPM model; therefore,

OPQL is not tightly coupled to the underlying provenance storage strategies. Our OPQL features

the native support for query processing of OPM graphs. That is, an OPQL query takes one OPM

graph as input and produces an OPM graph as output. OPQL might be a cornerstone for a study

on OPM-level provenance query languages.

20

CHAPTER 3

PROVENANCE COLLECTION FRAMEWORK

In this chapter, we propose a provenance collection framework that collects both prospective

provenance and retrospective provenance in scientific workflow environments.

3.1 The Problem

As the OPM model has emerged in the community to promote and facilitate provenance interop-

erability between different heterogeneous systems, an increasing number of systems have started

to support the OPM model [15]. However, most of them use an import/export approach, which

extends their own proprietary provenance models with an import/export facility to map back and

forth between the OPM model and their own provenance models. Moreover, the OPM model only

models retrospective provenance, which captures past workflow execution and data derivation in-

formation. Another kind of provenance, called prospective provenance, which captures an abstract

workflow specification as a recipe for future data derivation, cannot be modeled by the OPM model

at this point. As a result, many provenance queries related to workflow specification (prospective

or hybrid provenance queries) cannot be answered based on the OPM model. For example, two

queries out of the 16 queries raised in the Third Provenance Challenge cannot be answered solely

based on the OPM model [15].

To address these issues, we aim at designing a new provenance capture mechanism that di-

rectly captures OPM-compliant provenance data (which conforms to the OPM XML schema) as

retrospective provenance, as well as that captures prospective provenance. In particular, we design

a provenance model that models both prospective and retrospective provenance as an extension

to the OPM model, which only models retrospective provenance. We then present a provenance

collection framework to collect both prospective and retrospective provenance according to our

21

model. To our best knowledge, our proposed provenance collection framework is the first prove-

nance capture mechanism that supports the OPM model in a native fashion.

Figure 3.1: E-R diagram for modeling prospective and retrospective provenance.

22

3.2 Provenance Model

In this section, we present a provenance model that deals with both prospective and retrospective

provenance in scientific workflows. The model is captured via an entity-relationship diagram as

shown in Figure 3.1, where the left part corresponds to the prospective provenance model and the

right part corresponds to the retrospective provenance model.

3.2.1 Prospective Provenance

Prospective provenance models an abstract workflow specification as a recipe for future data

derivation. Unlike a workflow specification, which can be executed by a workflow engine accord-

ing to a particular scientific workflow model, prospective provenance is, in general, independent

from a scientific workflow model and intended to capture the recipe in an abstract and informative

form to allow further querying of this information. Prospective provenance can be automatically

captured by a workbench in which a workflow design is performed. Our prospective provenance

model includes four entity types, Workflow, Task, Performer, and Port, and four relationship types,

Contains, Performs, IsConnectedTo, and PartOf. Each entity type has a primary key attribute that

is underlined and each relationship type has a primary key that consists of the participating en-

tity type roles. Workflow corresponds to a high-level notion of a workflow; it has an identifier

and description. Entity type Task represents a computational task that is part of (relationship type

PartOf) Workflow. A task can be composite, i.e., it may contain child tasks, which is captured by

relationship type Contains. Entity type Performer represents a subject, such as a scientist or work-

flow engine, that performs (relationship type Performs) a task. Performer is also part of Workflow.

Entity type Port represents an input or output port of a task; two ports can be connected to form a

dataflow as captured by relationship type IsConnectedTo.

3.2.2 Retrospective Provenance

Retrospective provenance models past workflow execution and data derivation information, i.e.,

which tasks were performed and how data artifacts were derived. Retrospective provenance can be

23

automatically captured during workflow execution by a workflow engine. The retrospective prove-

nance model presented in the E-R diagram is based on the Open Provenance Model (OPM) [17]

and includes four entity types, OPMGraph, Process, Artifact, and Agent, and six relationship types,

Used, WasGeneratedBy, WasControlledBy, WasTriggeredBy, WasDerivedFrom, and PartOf. These

entity and relationship types have direct counterparts in OPM (see [18] for their semantics), ex-

cept relationship type PartOf which is implicit in the OPM model. According to the OPM model,

graphs, artifacts, processes, and agents are identified by unique identifiers and the causal depen-

dency edges are identified by their sources, destinations, and roles (for those that have roles) [18].

Thus, in the retrospective model, each corresponding entity type has a primary key attribute that

is underlined and each relationship type has a composite primary key that includes the two roles∗

of the relationship with participating entity types and the Role attribute (for those that have the

Role attribute). For example, the primary key of the Used relationship type is ProcessId, Artifac-

tId, and Role and the WasDerivedFrom relationship type takes ArtifactId for the Effect role and

ArtifactId for the Cause role as the primary key. Each entity type has the Value and Account

attributes; the latter is a set-valued attribute, such that a process, artifact, or agent can have mul-

tiple accounts. The relationship types have set-valued Account attributes and composite OTime

attributes (OTimeStart and OTimeEnd for the WasControlledBy relationship type). Composite at-

tribute OTime is composed of the OTimeLower and OTimeUpper attributes which are consistent

with the OTime annotation in the OPM model. The WasControlledBy relationship type has two

composite attributes OTimeStart and OTimeEnd that are composed of (OTimeStartLower, OTimeS-

tartUpper) and (OTimeEndLower, OTimeEndUpper), respectively. Finally, each entity/relationship

type has a set-valued and composite attribute Annotation, such that Process, Artifact, Agent, Used,

WasGeneratedBy, WasControlledBy, WasTriggeredBy, and WasDerivedFrom can have multiple an-

notations consisting of property-value pairs defined in the OPM model.

∗Note that the term “role” is used in both E-R diagram and the OPM model, but they have slightly different
meanings: roles in an E-R diagram represent the participation relationships between an entity type and a relationship
type, while roles in the OPM model represent annotations on used, wasGeneratedBy, and wasControlledBy.

24

The relationship between the prospective and retrospective provenance models is captured by

relationship types InstanceOf, WasOutputBy, and WasInputTo, such that OPMGraph, Process, and

Agent are runtime instantiations of Workflow, Task, and Performer, respectively, and Artifact can

be consumed or produced by Port.

3.3 Provenance Collection Framework

In this section, we propose a provenance collection framework that supports for collecting both

prospective and retrospective provenance according to our provenance model. In accordance with

the reference architecture for scientific workflow management systems [5], we design two prove-

nance collectors as the core of the provenance collection framework, which are positioned in two

subsystems of the reference architecture, respectively. Figure 3.2(a) depicts the system architec-

ture for VIEW [5], which is composed of six subsystems, including workbench, workflow engine,

workflow monitor, data product manager, provenance manager, and task manager. Figure 3.2(b)

depicts an overview of the provenance collection framework, in which two provenance collectors

are located in a workbench and workflow engine, respectively.

3.3.1 Prospective Provenance Collection

Prospective provenance captures an abstract workflow specification as a recipe for future data

derivation. As shown in Figure 3.2(b), the workbench of the VIEW system features a workflow

Figure 3.2: Provenance collection framework.

25

designer component that allows visual design of a workflow by a scientist. The workflow designer

interacts with Provenance Collector P, which gathers prospective provenance. In particular, each

time a workflow design specification is updated and saved, Provenance Collector P translates the

specification into a prospective provenance document and stores it into a provenance store (aka

provenance manager).

Figure 3.3: A sample workflow specification designed in the VIEW workbench.

Table 3.1: The entities and their attributes collected by provenance collector P .

Entity Attributes
Workflow WorkflowId, Description
Performer PFId, PFName
Port PortId, PortName, PortType
Contains ParentTastId, ChildTaskId
Performs PFId, TaskId
IsConnectedTo SourcePortId, DestinationPortId

For example, Figure 3.3 shows a sample workflow specification in the VIEW workbench [5]

and Table 3.1 shows its corresponding provenance entities and attributes collected by Provenance

Collector P as prospective provenance.

26

Figure 3.4: A sequence diagram illustrating provenance activities during an workflow execution.

Table 3.2: The entities and their attributes collected by provenance collector R.

Activity Entity Attributes

Workflow Start
OPMGraph OPMGraphId
Artifact ArtifactId, Value, Account
WasInputTo ArtifactId, PortId

Workflow End WasOutputBy ArtifactId, PortId

Task Start

Process ProcessId, Value, Account
Agent AgentId, Value, Account
Used ProcessId, Role, ArtifactId, Account, Timestamp
WasControlledBy ProcessId, Role, AgentId, Account, Timestamp
WasInputTo ArtifactId, PortId

Task End

Artifact ArtifactId, Value, Account
WasGeneratedBy ArtifactId, Role, ProcessId, Account, Timestamp
WasDerivedFrom EffectArtifactId, CauseArtifactId, Account, Timestamp
WasOutputBy ArtifactId, PortId

27

3.3.2 Retrospective Provenance Collection

Retrospective provenance captures past execution and data derivation information. As depicted

in Figure 3.2(b), the workflow engine of the VIEW system uses a scheduler to schedule and ex-

ecute a workflow specification obtained from the workflow designer. The workflow scheduler

communicates with Provenance Collector R, which gathers retrospective provenance. As shown in

Figure 3.4, retrospective provenance is captured for each provenance-aware activity that is sched-

uled by the scheduler. The sequence diagram in Figure 3.4 describes how such activities span in

time during a sample workflow execution. Four types of provenance-aware activities are defined:

Workflow Start, Workflow End, Task Start, and Task End. For each type of activity, captured prove-

nance information is shown in Table 3.2. For the Workflow Start activity, the provenance collector

collects entities OPMGraph, Artifact, and WasInputTo and their corresponding attributes as de-

picted in Algorithm 1. When the Workflow End activity is executed, entity WasOutputBy is only

collected to avoid redundant information according to Algorithm 2. The Task Start activity collects

provenance information about Process, Agent, Used, WasControlledBy, and WasInputTo as shown

in Algorithm 3. The Task End activity collects provenance information of Artifact, WasGenerat-

edBy, WasDerivedFrom, and WasOutputBy as presented in Algorithm 4. Provenance Collector R

stores a retrospective provenance document into the provenance store once all activities are com-

pleted. The rest of retrospective provenance information (see Table 3.3) defined in the model is not

directly gathered by the provenance collector, but rather inferred using reasoning techniques.

Table 3.3: The entities and their attributes inferred by provenance reasoning.

Non-Activity Entity Attributes

Provenance
WasTriggeredBy EffectProcessId, CauseProcessId, Account, Timestamp
Used* ProcessId, ArtifactId, Account

Reasoning
WasGeneratedBy* ArtifactId, ProcessId, Account
WasDerivedFrom* EffectArtifactId, CauseArtifactId, Account
WasTriggeredBy* EffectProcessId, CauseProcessId, Account

28

Algorithm 1 Algorithm for collecting OPM entities during activity Workflow Start
1: function: collectOPMEntityByWorkflowStart
2: input: Workflow identifier wid and workflow input list <ptid, dpid, dpvl, dpacc>, where ptid is a port identifier, dpid is a data product

identifier, dpvl is a value of dpid , and dpacc is an account of dpid
3: output: XML document (xmldoc) recording entities OPMGraph, Artifact, and WasInputTo
4: xmldoc = new xmldocument();
5: root elem = xmldoc.createElement(“opmGraph”);
6: artifacts elem = xmldoc.createElement(“artifacts”);
7: dataChannels elem = xmldoc.createElement(“dataChannels”);
8: root elem.append(artifacts elem);
9: root elem.append(dataChannels elem);

10: xmldoc.append(root elem);
11: let φ be a function to return a workflow run identifier (wrid) corresponding to a workflow identifier (wid), defined by wrid = φ(wid);
12: let ωa be a function to return an artifact identifier (aid) corresponding to a data product (dpid), defined by aid = ωa(dpid);

// recording entity “OPMGraph”
13: opmgraphId = φ(wid);
14: root elem.setAttribute(“id”, opmgraphId);

// recording entities “WasInputTo” and “Artifact”
15: for each wi in worflow input list do
16: portId = wi.ptid;
17: artifactId = ωa(wi.dpid);
18: value = wi.dpvl;
19: account = wi.dpacc;

// part of entity “WasInputTo”
20: wasInputTo elem = xmldoc.createElement(“wasInputTo”);
21: port elem = xmldoc.createElement(“port”);
22: port elem.setAttribute(“id’, portId);
23: input artifact elem = xmldoc.createElement(“inputArtifact”);
24: input artifact elem.setAttribute(“id”, artifactId);
25: wasInputTo elem.append(port elem);
26: wasInputTo elem.append(input artifact elem);
27: dataChannels elem.append(wasInputTo elem);

// part of entity “Artifact”
28: artifact elem = xmldoc.createElement(“artifact”);
29: artifact elem.setAttribute(“id”, artifactId);
30: account elem = xmldoc.createElement(“account”);
31: account elem.setAttribute(“id”, account);
32: value elem = xmldoc.createElement(“value”);
33: value elem.setAttribute(“id”, value);
34: artifact elem.append(account elem);
35: artifact elem.append(value elem);
36: artifacts elem.append(artifact elem);
37: end for
38: return xmldoc;
39: end function

29

Algorithm 2 Algorithm for collecting OPM entities during activity Workflow End
1: function: collectOPMEntityByWorkflowEnd
2: input: Workflow output list <ptid, dpid>, where ptid is a port identifier and dpid is a data product identifier
3: output: XML document (xmldoc) recording entity WasOutputBy
4: xmldoc = new xmldocument();
5: root elem = xmldoc.createElement(“opmGraph”);
6: dataChannels elem = xmldoc.createElement(“dataChannels”);
7: root elem.append(dataChannels elem);
8: xmldoc.append(root elem);
9: let ωa be a function to return an artifact identifier (aid) corresponding to a data product (dpid), defined by aid = ωa(dpid);

// recording entity “WasOutputBy”
10: for each wo in worflow output list do
11: portId = wo.ptid;
12: artifactId = ωa(wo.dpid);
13: wasOutputBy elem = xmldoc.createElement(“wasOutputBy”);
14: port elem = xmldoc.createElement(“port”);
15: port elem.setAttribute(“id”, portId);
16: output artifact elem = xmldoc.createElement(“outputArtifact”);
17: output artifact elem.setAttribute(“id”, artifactId);
18: wasOutputBy elem.append(port elem);
19: WasOutputBy elem.append(output artifact elem);
20: dataChannels elem.append(wasOutputBy elem);
21: end for
22: return xmldoc;
23: end function

3.4 Summary

In this chapter, we designed a provenance model that models both prospective provenance, which

captures an abstract workflow specification as a recipe for future data derivation and retrospective

provenance, which captures past workflow execution and data derivation. Then, we proposed a

provenance collection framework to capture both prospective and retrospective provenance. Our

provenance collection framework features the native support for the OPM model.

30

Algorithm 3 Algorithm for collecting OPM entities during activity Task Start
1: function: collectOPMEntityByTaskStart
2: input: Task identifier tid, task name tname, task account tacc, performer identifier pfid, performer name pfname, performer account

pfacc and task input list<ptid, dpid, dpvl, dpacc>, where ptid is a port identifier, dpid is a data product identifier, dpvl is a value of dpid
, and dpacc is an account of dpid

3: output: XML document (xmldoc) recording entities Process, Agent, Used, WasControlledBy, and WasInputTo
4: xmldoc = new xmldocument();
5: root elem = xmldoc.createElement(“opmGraph”);
6: processes elem = xmldoc.createElement(“processes”);
7: agents elem = xmldoc.createElement(“agents”);
8: dependencies elem = xmldoc.createElement(“causalDependencies”);
9: dataChannels elem = xmldoc.createElement(“dataChannels”);

10: root elem.append(processes elem);
11: root elem.append(agents elem);
12: root elem.append(dependencies elem);
13: root elem.append(dataChannels elem);
14: xmldoc.append(root elem);
15: let ωp and ωag be functions to return a process identifier (pid) and agent identifier (agid) corresponding to a task (dpid) and performer

(pfid), repectively, defined by pid = ωp(tid) and agid = ωag(pfid) ;
16: processId = ωp(tid);
17: agentId = ωag(pfid);
18: p value = tname;
19: ag value = pfname;
20: p account = tacc;
21: ag account = pfacc;

// recording entity “Process”
22: process elem = xmldoc.createElement(“artifact”);
23: process elem.setAttribute(“id”, processId);
24: paccount elem = xmldoc.createElement(“account”);
25: paccount elem.setAttribute(“id”, p account);
26: pvalue elem = xmldoc.createElement(“value”);
27: pvalue elem.setAttribute(“id”, p value);
28: process elem.append(paccount elem);
29: process elem.append(pvalue elem);
30: processes elem.append(process elem);

// record the “Agent” entity in a similar fashion
// recording entities “Used”, “WasControlledBy”, and “WasInputTo”

31: for each ti in task input list do
32: portId = ti.ptid;
33: artifactId = ωa(ti.dpid);
34: a value = ti.dpvl;
35: a account = ti.dpacc;
36: effectId = processId;
37: role = “used”;
38: causeId = artifactId;
39: used account = p account;

// part of entity “Used”
40: used elem = xmldoc.createElement(“used”);
41: effect elem = xmldoc.createElement(“effect”);
42: effect elem.setAttribute(“id”, effectId);
43: role elem = xmldoc.createElement(“role”);
44: role elem.setAttribute(“id”, role);
45: cause elem = xmldoc.createElement(“cause”);
46: cause elem.setAttribute(“id”, causeId);
47: account elem = xmldoc.createElement(“account”);
48: account elem.setAttribute(“id”, used account);
49: used elem.append(effect elem);
50: used elem.append(role elem);
51: used elem.append(cause elem);
52: used elem.append(account elem);
53: dependencies elem.append(used elem);

// In a similar fashion, record entities “WasControlledBy” and “WasInputTo”
54: end for
55: return xmldoc;
56: end function

31

Algorithm 4 Algorithm for collecting OPM entities during activity Task End
1: function: collectOPMEntityByTaskEnd
2: input: Task identifier tid, task account tacc, and task output list <ptid, dpid, dpvl, dpacc>, where ptid is a port identifier, dpid is a data

product identifier, dpvl is a value of dpid , and dpacc is an account of dpid
3: output: XML document (xmldoc) recording entities Artifact, WasGeneratedBy, WasDerivedFrom, and WasOutputBy
4: xmldoc = new xmldocument();
5: root elem = xmldoc.createElement(“opmGraph”);
6: artifacts elem = xmldoc.createElement(“artifacts”);
7: dependencies elem = xmldoc.createElement(“causalDependencies”);
8: dataChannels elem = xmldoc.createElement(“dataChannels”);
9: root elem.append(artifacts elem);

10: root elem.append(dependencies elem);
11: root elem.append(dataChannels elem);
12: xmldoc.append(root elem);
13: let ωp and ωa be functions to return a process identifier (pid) and agent identifier (aid) corresponding to a task (tid) and data product (dpid),

repectively, defined by pid = ωp(tid) and aid = ωa(dpid) ;
14: processId = ωp(tid);
15: p account = tacc;

// recording entities “Artifact”, “WasGeneratedBy”, “WasDerivedFrom”, and “WasOutputBy”
16: for each to in task output list do
17: portId = to.ptid;
18: artifactId = ωa(to.dpid);
19: a value = to.dpvl;
20: a account = to.dpacc;
21: effectId = artifactId;
22: role = “generated”;
23: causeId = processId;
24: generated account = paccount;

// part of entity “Artifact”
25: ...
26: record the “Artifact” entity in a similar fashion as described in Algorithm 2

// part of entity “WasGeneratedBy”
27: wasGeneratedBy elem = xmldoc.createElement(“wasGeneratedBy”);
28: effect elem = xmldoc.createElement(“effect”);
29: effect elem.setAttribute(“id”, effectId);
30: role elem = xmldoc.createElement(“role”);
31: role elem.setAttribute(“id”, role);
32: cause elem = xmldoc.createElement(“cause”);
33: cause elem.setAttribute(“id”, causeId);
34: account elem = xmldoc.createElement(“account”);
35: account elem.setAttribute(“id”, generated account);
36: wasGeneratedBy elem.append(effect elem);
37: wasGeneratedBy elem.append(role elem);
38: wasGeneratedBy elem.append(cause elem);
39: wasGeneratedBy elem.append(account elem);
40: dependencies elem.append(wasGeneratedBy elem);

// In a similar fashion, record entities “WasDerivedFrom” and “WasOutputBy”
41: end for
42: return xmldoc;
43: end function

32

CHAPTER 4

THE OPMPROV PROVENANCE STORE

In this chapter, we propose OPMPROV, a relational database-based provenance system, that

stores, reasons, queries prospective provenance and retrospective provenance, which is OPM-

compliant provenance.

4.1 The Problem

As described previously, provenance is essential for scientific workflows to support reproducibility

of scientific discovery, result interpretation, and problem diagnosis [8], [64]. Although numerous

provenance systems [35], [51], [62], [27], [67], [97], [5], [90] have been developed, their interop-

erability is poor due to the lack of a common data model for provenance. To address this issue,

the OPM model [12] was proposed. Since then, the OPM model has played an important role in

provenance interoperability.

While there is a growing effort in supporting the OPM model in existing scientific workflow

provenance systems [37], [51], [62], [27], [67], [97] and the evaluation of the OPM model in a

particular domain [9], [10], such as the scientific workflow domain, most of them focus on en-

hancing an existing provenance system with the import/export capability for the OPM model. In

this dissertation, however, we take the OPM model as a starting point and develop a native OPM

provenance store. By native, we mean that the OPM model is the conceptual data model that is

used to design our provenance store and the input and output of such a store is OPM-compliant

provenance data. Therefore, our work complements the existing work whose OPM support is based

on back and forth transformations between the OPM model and proprietary models employed by

these systems.

33

Although using the OPM model as an implementation schema belongs to one of the non-

requirements defined in the OPM model, an OPM-based provenance system can be useful for a

scientific workflow whose workflow tasks are subworkflows enacted by different scientific work-

flow management systems. An example of such a workflow is GENOMEFLOW [80]. In this sce-

nario, provenance from different scientific workflow management systems needs to be integrated,

and our OPMPROV system can be used for this purpose. OPMPROV is fully compliant with

the OPM model and can store provenance generated by different scientific workflow management

systems that are able to record OPM-compliant provenance.

In particular, in the Third Provenance Challenge [15], different scientific workflow manage-

ment systems, including Kepler, Taverna, and Swift, have shown the capability to export OPM-

compliant provenance data by means of a mapping between the proprietary models and the OPM

model; such heterogeneous provenance from different workflow management systems can be inte-

grated in OPMPROV. In our work, we are particularly interested in using relational database tech-

nologies to store, reason, and query OPM-compliant provenance data. Since relational databases

are not specifically designed for inferences, we aim to investigate if we can use recursive views

and SQL queries alone to perform provenance reasoning.

4.2 Database Schema

We design a relational database schema for our OPMPROV store to suport both prospective and

retrospective provenance. Based on our provenance model depicted in Figure 3.1, we translate the

E-R diagram into the relational database schema for prospective and retrospective provenance.

4.2.1 Prospective Provenance Database Schema

As shown in Figure 4.1, we define nine relations to store prospective provenance: Workflow, Task,

Performer, Port, Contains, Performs, IsConnectedTo, PerformerPartOfWorkflow, and TaskPartOf-

Workflow. The primary keys of the relations are underlined. For example, (ParentTaskId, Child-

TaskId) is the composite primary key of the Contains relation. The attributes of relations that

34

// relational schema for prospective provenance
1. Workflow (WorkflowId, Description)
2. Task (TaskId, TaskName, TaskType)
3. Performer (PFId, PFName)
4. Port (PortId, TaskId, PortName, PortType)
5. Contains (ParentTaskId, ChildTaskId)
6. Performs (PFId, TaskId)
7. IsConnectedTo (SourcePortId, DestinationPortId)
8. TaskPartOfWorkflow(TaskId, WorkflowId)
9. PerformerPartOfWorkflow(PFId, WorkflowId)

// relational schema for retrospective provenance
1. OPMGraph (OPMGraphId, WorkflowId)
2. OPMGraphAnnotation (OPMGraphId, Property, Value)
3. WasInputTo (OPMGraphId, ArtifactId, PortId)
4. WasOutputBy (OPMGraphId, ArtifactId, PortId)
5. Artifact (OPMGraphId, ArtifactId, Value)
6. Process (OPMGraphId, ProcessId, Value, TaskId)
7. Agent (OPMGraphId, AgentId, Value, PFId)
8. Used (OPMGraphId, ProcessId, Role, ArtifactId, OTimeLower, OTimeUpper)
9. WasGeneratedBy (OPMGraphId, ArtifactId, Role, ProcessId, OTimeLower, OTimeUpper)
10. WasControlledBy (OPMGraphId, ProcessId, Role, AgentId, OTimeStartLower, OTimeStartUpper,

OTimeEndLower, OTimeEndUpper)
11. WasDerivedFrom (OPMGraphId, EffectArtifactId, CauseArtifactId, OTimeLower, OTimeUpper)
12. ExplicitWasTriggeredBy (OPMGraphId, EffectProcessId, CauseProcessId, OTimeLower, OTimeUpper)
13. ArtifactHasAccount (OPMGraphId, ArtifactId, Account)
14. ProcessHasAccount (OPMGraphId, ProcessId, Account)
15. AgentHasAccount (OPMGraphId, AgentId, Account)
16. UsedHasAccount (OPMGraphId, ProcessId, Role, ArtifactId, Account)
17. WasGeneratedByHasAccount (OPMGraphId, ArtifactId, Role, ProcessId, Account)
18. WasControlledByHasAccount (OPMGraphId, ProcessId, Role, AgentId, Account)
19. WasDerivedFromHasAccount (OPMGraphId, EffectArtifactId, CauseArtifactId, Account)
20. ExplicitWasTriggeredByHasAccount (OPMGraphId, EffectProcessId, CauseProcessId, Account)
21. ArtifactAnnotation (OPMGraphId, ArtifactId, Property, Value)
22. ProcessAnnotation (OPMGraphId, ProcessId, Property, Value)
23. AgentAnnotation (OPMGraphId, AgentId, Property, Value)
24. UsedAnnotation (OPMGraphId, ProcessId, Role, ArtifactId, Property, Value)
25. WasGeneratedByAnnotation (OPMGraphId, ArtifactId, Role, ProcessId, Property, Value)
26. WasControlledByAnnotation (OPMGraphId, ProcessId, Role, AgentId, Property, Value)
27. WasDerivedFromAnnotation (OPMGraphId, EffectArtifactId, CauseArtifactId, Property, Value)
28. ExplicitWasTriggeredByAnnotation (OPMGraphId, EffectProcessId, CauseProcessId, Property, Value)
29. WasTriggeredBy (OPMGraphId, EffectProcessId, CauseProcessId, Account, OTimeLower, OTimeUpper) // view
30. MultiStepWasDerivedFrom (OPMGraphId, EffectArtifactId, CauseArtifactId, Account) // view
31. MultiStepWasTriggeredBy (OPMGraphId, EffectProcessId, CauseProcessId, Account) // view
32. MultiStepUsed (OPMGraphId, ProcessId, ArtifactId, Account) // view
33. MultiStepWasGeneratedBy (OPMGraphId, ArtifactId, ProcessId, Account) // view

Figure 4.1: The database schema for the OPMPROV store.

correspond to relationship types in the E-R diagram represent roles of the relationship with par-

ticipating entity types, and therefore these are also foreign keys. For example, ParentTaskId and

ChildTaskId in relation Contains are two foreign keys that reference TaskId in relation Task. Since,

in the E-R diagram, entity type Port participates in relationship type PartOf exactly once, instead

35

of creating a separate relation for this relationship type, we add attribute TaskId into relation Port.

TaskId in relation Port is a foreign key that references TaskId in relation Task.

4.2.2 Retrospective Provenance Database Schema

Figure 4.1 also defines 33 relations for retrospective provenance, where the first 28 of them are

materialized relations and the remaining five are non-materialized views. Relations OPMGraph,

Artifact, Process, Agent, Used, WasGeneratedBy, WasControlledBy, WasDerivedFrom, Explicit-

WasTriggeredBy∗, WasOutputBy, and WasInputTo are directly derived from the E-R diagram. To

handle the set-valued attributes Account and Annotation, additional relations are introduced, such

as the corresponding relations xxxHasAccount and xxxAnnotation. We restrict that each row in

relations Artifact, Process, Agent, Used, etc. has at least one account and therefore at least one row

in the corresponding xxxHasAccount relations. This participation constraint eliminates the burden

of dealing with missing values when computing relational joins and can be efficiently ensured on

the data insertion stage by introducing a default account. The primary keys of these 28 relations are

underlined in the figure. Relations OPMGraph, Process, and Agent have foreign keys WorkflowId,

TaskId, and PFId that reference relations Workflow, Task, and Performer, respectively, to maintain

the InstanceOf relationship. For example, relation Process has (OPMGraphId, ProcessId) as the

primary key and (OPMGraphId, TaskId) as the foreign key referencing relations OPMGraph and

Task, respectively. The ProcessHasAccount relation has (OPMGraphId, ProcessId, Account) as the

primary key and (OPMGraphId, ProcessId) as the foreign key referencing relations OPMGraph

and Process, respectively. Similarly, the Used relation has (OPMGraphId, ProcessId, Artifac-

tId, Role) as the composite primary key and the UsedHasAccount relation has the primary key

(OPMGraphId, ProcessId, ArtifactId, Role, Account) and foreign key (OPMGraphId, ProcessId,

ArtifactId, Role) referencing relation Used.

∗Note that this relation corresponds to relationship type WasTriggeredBy in the E-R diagram, but we name it
ExplicitWasTriggeredBy to differentiate from non-materialized view WasTriggeredBy which can be inferred from
relations Used, WasGeneratedBy, and ExplicitWasTriggeredBy.

36

Non-materialized views in our database schema are shown as the last five relations in Fig-

ure 4.1. View WasTriggeredBy implements the one-step inference rule defined in the OPM model [18],

and views MultiStepWasDerivedFrom, MultiStepWasTriggeredBy, MultiStepUsed, and MultiStep-

WasGeneratedBy implement the multi-step edges presented in the OPM model [18]. The semantics

and implementation of these recursive views are further discussed in Section 4.4.

4.3 Data Mapping Algorithm

To insert provenance data into OPMPROV, we design an efficient data mapping algorithm that

shreds XML documents, which conform to the XML schema specification for the OPM model [13],

into relational tuples and stores them into the database. The algorithm is presented in Algorithm 5.

First, OPMXMLInsert parses an input XML document and constructs its Document Object Model

(DOM) tree. Next, the algorithm iterates over all nodes in the tree with the process name, extracting

process identifiers from their attribute nodes, values and accounts from the child nodes of the

process nodes. At the end of each iteration, once the information about a single process is collected,

the algorithm inserts a tuple with the OPM graph identifier, process identifier, and process value

into database relation Process. Furthermore, if the process does not belong to any account, a

default account is assigned to the process. For each account, a tuple with OPM graph identifier,

process identifier, and account is inserted into relation ProcessHasAccount. The algorithm defines

similar loops that iterate over all the artifact and agent nodes and insert them into the database.

In the figure, we also show our pseudocode for the insertion of the used nodes. For each such

node, its child nodes are visited to extract the information about a process identifier from attribute

id of the effect node, role from attribute value of the role node, artifact identifier from attribute id

of the cause node, accounts from attributes id of the account nodes, and time annotations from

the noLaterThan and noEarlierThan child nodes of the time node. If nodes with names role and

account are not found, default values are assigned, which are customizable. The algorithm inserts a

tuple with the OPM graph identifier, process identifier, role, artifact identifier, and time annotations

into relation Used. For each account, a tuple with the OPM graph identifier, process identifier,

37

Algorithm 5 OPMXMLInsert
1: input: OPM-compliant XML document X (conforms to the

XML schema http://openprovenancemodel.org/
model/v1.01.1), OPM graph identifier OPMGraphId

2: output: X is inserted into the relational database
3: begin
4: parse X into DOM tree T ;

// inserting “process” elements
5: for each e in T .getElementsByTagName(“process”) do
6: processId = e.attributes.getNamedItem(“id”).value;
7: value = null;
8: accounts = empth list;
9: for each c in e.childNodes do

10: if c.nodeName == “value” then
11: value = c.nodeValue;
12: else // c.nodeName == “account”
13: accounts.add(c.nodeValue);
14: end if
15: end for
16: insert tuple (OPMGraphId, processId, value) into table

Process;
17: if account is empty then
18: accounts.add(“default”);
19: end if
20: for each account in accounts do
21: insert tuple (OPMGraphId, processId, account) into

table ProcessHasAccount;
22: end for
23: end for
24: //inserting “artifact” elements
25: for each e in T .getElementsByTagName(“artifact”) do

// ...
// instructions are similar to the process “process” element in-
sertion

26: end for
27: //inserting “agent” elements
28: for each e in T .getElementsByTagName(“agent”) do

// ...
// instructions are similar to the process “process” element in-
sertion

29: end for
//inserting “used” elements

30: for each e in T .getElementsByTagName(“used”) do
31: for each c in e.childNodes do

32: processId = null; role = “default”; artifactId = null;
33: oTimeLower = null; oTimeUpper = null;
34: accounts = empty list;
35: switch c.nodeName
36: case “effect”:
37: processId = c.attributes.getNamedItem(“id”).value;
38: break
39: case “role”:
40: role = c.attributes.getNamedItem(“value”).value;
41: break
42: case “cause”:
43: artifactId = c.attributes.getNamedItem(“id”).value;
44: break
45: case “account”:
46: accounts.add(c.attributes.getNamedItem(“id”).value;
47: break
48: case “time”:
49: for each t in c.childNodes do
50: if t.nodeName ==“noLaterThan” then
51: oTimeLower = t.nodeValue;
52: end if
53: if t.nodeName ==“noEarlierThan” then
54: oTimeUpper = t.nodeValue;
55: end if
56: end for
57: break
58: end switch
59: end for
60: insert tuple (OPMGraphId, processId, role, artifactId,

oTimeLower, oTimeUpper) into table Used;
61: if accounts is empty then
62: accounts.add(“default”);
63: end if
64: for each account in accounts do
65: insert tuple (OPMGraphId, processId, role, artifactId,

account) into table UsedHasAccount;
66: end for
67: end for

// ...
// insert other causal dependency elements wasGeneratedBy,
wasDerivedFrom, wasTriggeredBy, and wasControlledBy in a
similar fashion

68: end

role, artifact identifier, and account is inserted into relation UsedHasAccount. Other nodes that

define the causal dependencies of the OPM model, including wasGeneratedBy, wasDerivedFrom,

wasTriggeredBy, and wasControlledBy, are processed using a similar strategy.

4.4 Provenance Reasoning and Querying

In this section, we report on how the inference rules defined in the OPM model [18] can be ex-

pressed in SQL (IBM DB2 dialect) and implemented in an RDBMS directly, eliminating the need

for an external inference engine. We then showcase the querying capabilities of OPMPROV to

38

answer sample queries defined in the Third Provenance Challenge [15]. IBM DB2 is selected for

our presentation for its support for the definition of recursive views, which can be referred in SQL

queries. A similar recursive behavior can be achieved using the WITH clause and common table

expressions defined in SQL-99. However, repeating the WITH clause in every SQL query can re-

sult in more verbose presentation. Even though we present OPMPROV in the context of DB2, with

minor syntactic changes in SQL definitions, our approach can be used with other major RDBMSs,

including Oracle, SQLServer, and PostgreSQL (MySQL provides no support for common table

expressions).

CREATE VIEW WasTriggeredBy AS (
(SELECT U.OPMGraphId, U.ProcessId as EffectProcessId, G.ProcessId as CauseProcessId,

UA.Account as Account, U.OTimeLower, U.OTimeUpper
FROM WasGeneratedBy G, Used U, UsedHasAccount UA
WHERE U.OPMGraphId = G.OPMGraphId AND U.OPMGraphId = UA.OPMGraphId AND

U.ArtifactId = G.ArtifactId AND U.ProcessId = UA.ProcessId AND
U.ArtifactId = UA.ArtifactId AND U.Role = UA.Role)

UNION
(SELECT U.OPMGraphId, U.ProcessId as EffectProcessId, G.ProcessId as CauseProcessId,

GA.Account as Account, U.OTimeLower, U.OTimeUpper
FROM WasGeneratedBy G, Used U, WasGeneratedByHasAccount GA
WHERE U.OPMGraphId = G.OPMGraphId AND G.OPMGraphId = GA.OPMGraphId AND

U.ArtifactId = G.ArtifactId AND G.ArtifactId = GA.ArtifactId AND
G.ProcessId = GA.ProcessId AND G.Role = GA.Role)

UNION
(SELECT T.OPMGraphId, T.EffectProcessId, T.CauseProcessId, TA.Account, T.OTimeLower, T.OTimeUpper
FROM ExplicitWasTriggeredBy T, ExplicitWasTriggeredByHasAccount TA
WHERE T.OPMGraphId = TA.OPMGraphId AND T.EffectProcessId = TA.EffectProcessId

AND T.CauseProcessId = TA.CauseProcessId));

Figure 4.2: An SQL view: one-step inference WasTriggeredBy.

4.4.1 Reasoning for One-Step Inferences

The OPM model defines completion rules (i.e., one-step inferences) for causal dependencies WasTrig-

geredBy and WasDerivedFrom. In particular, WasTriggeredBy edge in the OPM model can be

inferred from the existence of the Used and WasGeneratedBy edges. If one process generated an

artifact that was used by another process, then the latter was triggered by the former. The SQL view

that implements this logic in a relational database are shown in Figure 4.2. The WasTriggeredBy

view derives which process (attribute EffectProcessId) was triggered by another process (attribute

39

CauseProcessId) using Used and WasGeneratedBy facts with the same artifact. The account in-

formation in this view is derived from both UsedHasAccount and WasGeneratedByHasAccount

relations. In addition, the view need to accommodate explicit wasTriggeredBy edges stored in the

ExplicitWasTriggeredBy relation. As a result, the view definition (1) joins relations WasGenerat-

edBy, Used, and UsedHasAccount, (2) joins relations WasGeneratedBy, Used, and WasGenerated-

ByHasAccount, (3) unions the results of the joins, and (4) unions inferred wasTriggeredBy edges

with explicit ones. OPM’s time annotations for WasTriggeredBy are captured by the OTimeLower

and OTimeUpper attributes and derived from the Used relation. OTimeLower and OTimeUpper

define a time interval when an artifact was used by a process and therefore when this process was

triggered by another process.

4.4.2 Reasoning for Multi-Step Inferences

The OPM model defines multi-step inferences for four multi-step edges WasDerivedFrom*, WasTrig-

geredBy*, Used*, and WasGeneratedBy*. OPMPROV supports these multi-step inferences via re-

cursive views and SQL queries. As shown in Figure 4.3, the MultiStepWasDerivedFrom view is

defined as the union of two auxiliary recursive views that only differ in how they project account

information. Each auxiliary view has a non-recursive subquery that retrieves tuples from the Was-

DerivedFromHasAccount relation and a recursive part that joins the WasDerivedFromHasAccount

relation with the recursive view itself, such that if the first artifact was derived from the second

artifact and the second artifact was derived from the third one, the view infers that the first arti-

fact was also derived from the third artifact. In Figure 4.4, the MultiStepWasGeneratedBy view

is defined as the union of three subqueries returning: (1) given facts about which artifacts was

generated by which processes from relation WasGeneratedByHasAccount, (2) entailments about

artifacts and processes inferred via the join of relation WasGeneratedByHasAccount and recur-

sive view MultiStepWasDerivedFrom with the projection of account information from the former,

and (3) entailments about artifacts and processes inferred via the join of relation WasGenerat-

edByHasAccount and recursive view MultiStepWasDerivedFrom with the projection of account

40

information from the latter. Similarly, view MultiStepUsed (see Figure 4.5) is defined using rela-

tion UsedHasAccount and recursive view MultiStepWasDerivedFrom, and view MultiStepWasTrig-

geredBy (see Figure 4.6) is defined using relation UsedHasAccount, WasGeneratedByHasAccount,

and MultiStepWasDerivedFrom.

CREATE VIEW MultiStepWasDerivedFrom1 (OPMGraphId, EffectArtifactId, CauseArtifactId, Account) AS (
SELECT DA1.OPMGraphId, DA1.EffectArtifactId, DA1.CauseArtifactId, DA1.Account
FROM WasDerivedFromHasAccount DA1
UNION ALL
SELECT DA2.OPMGraphId, DA2.EffectArtifactId, TD.CauseArtifactId, DA2.Account
FROM WasDerivedFromHasAccount DA2, MultiStepWasDerivedFrom1 TD
WHERE DA2.OPMGraphId = TD.OPMGraphId AND DA2.CauseArtifactId = TD.EffectArtifactId);

CREATE VIEW MultiStepWasDerivedFrom2 (OPMGraphId, EffectArtifactId, CauseArtifactId, Account) AS (
SELECT DA1.OPMGraphId, DA1.EffectArtifactId, DA1.CauseArtifactId, DA1.Account
FROM WasDerivedFromHasAccount DA1
UNION ALL
SELECT DA2.OPMGraphId, DA2.EffectArtifactId, TD.CauseArtifactId, TD.Account
FROM WasDerivedFromHasAccount DA2, MultiStepWasDerivedFrom2 TD
WHERE DA2.OPMGraphId = TD.OPMGraphId AND DA2.CauseArtifactId = TD.EffectArtifactId);

CREATE VIEW MultiStepWasDerivedFrom AS (
SELECT OPMGraphId, EffectArtifactId, CauseArtifactId, Account
FROM MultiStepWasDerivedFrom1
UNION
SELECT OPMGraphId, EffectArtifactId, CauseArtifactId, Account
FROM MultiStepWasDerivedFrom2);

Figure 4.3: An SQL view: multi-step inference WasDerivedFrom*.

CREATE VIEW MultiStepWasGeneratedBy (OPMGraphId, ArtifactId, ProcessId, Account) AS (
SELECT GA1.OPMGraphId, GA1.ArtifactId, GA1.ProcessId, GA1.Account
FROM WasGeneratedByHasAccount GA1
UNION
SELECT GA2.OPMGraphId, TD.EffectArtifactId as ArtifactId, GA2.ProcessId, GA2.Account
FROM WasGeneratedByHasAccount GA2, MultiStepWasDerivedFrom TD
WHERE GA2.OPMGraphId = TD.OPMGraphId AND GA2.ArtifactId = TD.CauseArtifactId
UNION
SELECT GA2.OPMGraphId, TD.EffectArtifactId as ArtifactId, GA2.ProcessId, TD.Account
FROM WasGeneratedByHasAccount GA2, MultiStepWasDerivedFrom TD
WHERE GA2.OPMGraphId = TD.OPMGraphId AND GA2.ArtifactId = TD.CauseArtifactId);

Figure 4.4: An SQL view: multi-step inference WasGeneratedBy*.

4.4.3 SQL-Based Provenance Querying

The Third Provenance Challenge [15] defined 16 provenance queries for the Load Workflow from

the Pan-STARRS project [16], including three core queries (CQ) and 13 optional queries (OQ). To

41

CREATE VIEW MultiStepUsed (OPMGraphId, ProcessId, ArtifactId, Account) AS (
SELECT UA1.OPMGraphId, UA1.ProcessId, UA1.ArtifactId, UA1.Account
FROM UsedHasAccount UA1
UNION
SELECT TD.OPMGraphId, UA2.ProcessId, TD.CauseArtifactId as ArtifactId, UA2.Account
FROM MultiStepWasDerivedFrom TD, UsedHasAccount UA2
WHERE TD.OPMGraphId = UA2.OPMGraphId AND TD.EffectArtifactId = UA2.ArtifactId
UNION
SELECT TD.OPMGraphId, UA2.ProcessId, TD.CauseArtifactId as ArtifactId, TD.Account
FROM MultiStepWasDerivedFrom TD, UsedHasAccount UA2
WHERE TD.OPMGraphId = UA2.OPMGraphId AND TD.EffectArtifactId = UA2.ArtifactId);

Figure 4.5: An SQL view: multi-step inference Used*.

CREATE VIEW MultiStepWasTriggeredBy (OPMGraphId, EffectProcessId, CauseProcessId, Account) AS (
SELECT T1.OPMGraphId, T1.EffectProcessId, T1.CauseProcessId, T1.Account
FROM WasTriggeredBy T1
UNION
SELECT UA1.OPMGraphId, UA1.ProcessId, GA1.ProcessId, UA1.Account
FROM UsedHasAccount UA1, WasGeneratedByHasAccount GA1, MultiStepWasDerivedFrom TD
WHERE UA1.OPMGraphId = TD.OPMGraphId AND UA1.ArtifactId = TD.EffectArtifactId AND

GA1.OPMGraphId = TD.OPMGraphId AND TD.CauseArtifactId = GA1.ArtifactId
UNION
SELECT UA2.OPMGraphId, UA2.ProcessId, GA2.ProcessId, GA2.Account
FROM UsedHasAccount UA2, WasGeneratedByHasAccount GA2, MultiStepWasDerivedFrom TD
WHERE UA2.OPMGraphId = TD.OPMGraphId AND UA2.ArtifactId = TD.EffectArtifactId AND

GA2.OPMGraphId = TD.OPMGraphId AND TD.CauseArtifactId = GA2.ArtifactId);

Figure 4.6: An SQL view: multi-step inference WasTriggeredBy*.

demonstrate querying capabilities of OPMPROV, we express some of these queries in SQL that is

executable over our database schema. In particular, in Figure 4.7, we present 15 provenance queries

in English and SQL. In the following, we describe some of these more advanced queries that use

reasoning via the recursive views. First, query CQ1, which asks for CSV files that contributed to a

given detection, uses view MultiStepWasGeneratedBy to find all process identifiers that contributed

to the generation of the artifact with the value “detectID”. It then retrieves artifacts that are CSV

files used by those processes. The MultiStepWasGeneratedBy view is also used in a similar fashion

in query OQ8. Second, query OQ4, which asks why a certain entry is presented in a database, uses

view MultiStepWasTriggeredBy to find all processes that directly or indirectly triggered a process

that generated an artifact with a given value (e.g., “ccdID”). It then returns those process values

along with their count. This view is also used in queries CQ3 and OQ13. Finally, query OQ13,

which asks for artifact and process dependency views, can be directly satisfied by two SQL queries

42

that retrieve all data from views MultiStepWasTriggeredBy and MultiStepWasDerivedFrom. None

of the presented queries required to access view MultiStepUsed.

Figure 4.7: Provenance queries for the Third Provenance Challenge questions.

43

4.5 Experimental Study

In this section, we report on our experimental study that explored the performance of the data in-

sertion and provenance challenge queries over various datasets. The proposed database schema

for OPMPROV was created in RDBMS DB2 (v9.7.0.441), and the OPMXMLInsert algorithm was

implemented using the C# programming language for data insertion performance experiments.

The experiments presented below were conducted on a PC with one 2.4 GHz Pentium IV proces-

sor and 1 GB main memory, running the Windows XP Professional operating system. In all the

experiments, we show the results as the average of 100 trials.

4.5.1 Data Insertion Performance Experiments

To perform data insertion, we created the tables and views described in Figure 4.1 and selected

seven OPM-compliant XML documents generated by different participants of the Third Prove-

nance Challenge [15], including the datasets posted by teams UvA/VL-e (University of Amster-

dam), UoM (University of Manchester), TetherlessPC3 (Rensselaer Polytechnic Institute/Tetherless

World Constellation), NCSA (National Center for Supercomputing Applications), SotonUSCISIPc3

(University of Southampton and USC/ISI), SDSCPc3 (San Diego Supercomputer Center), and

UCDGC (UC Davis Genome Center). The data insertion performance for these datasets is re-

ported in Figure 4.8(a), where the datasets are shown in the ascending order of their sizes. The

results for data insertion showed to load all the datasets in less than 100 milliseconds.

To explore the data insertion performance and scalability on larger datasets, we generated five

XML documents according to the OPM XML schema [13] , which represent the OPM graphs with

varying complexity in which the total number of nodes and edges is 150,000 (17.89 MB), 300,000

(35.83 MB), 450,000 (53.69 MB), 600,000 (71.56 MB), and 750,000 (89.43 MB), respectively.

The results for these datasets are reported in Figure 4.8(b).The data loading performance revealed

the stable linear scalability with the data insertion rate of around four megabytes per second.

44

(a) Data insertion performance accross different datasets of the Third Provenance Challenge.

(b) Data insertion performance on the OPM graphs with varying complexity.

Figure 4.8: Data insertion performance over various datasets.

4.5.2 Provenance Query Performance Experiments

OPMPROV was evaluated on 15 queries defined by the Third Provenance Challenge and expressed

in SQL over our database schema as shown in Figure 4.7. Note that no participants have provided

an answer to OQ2 in the Third Provenance Challenge [15]; therefore, our experiments exclude

OQ2. The queries were executed over two different datasets stored into the OPMPROV system.

45

Since the two datasets only contained retrospective provenance compliant with OPM, we addition-

ally generated related prospective provenance that was also stored into the provenance store. The

query performance experiments on the UCDGC dataset (426 KB) and the TetherlessPC3 dataset

(40 KB) are reported in Figures 4.9. The results returned by the queries were compared with those

provided by the UCDGC and TetherlessPC3 teams to ensure correctness [15]. Overall, the query

evaluation in OPMPROV showed to be very efficient, returning results within a few milliseconds

for queries CQ2, OQ1, OQ3, OQ5, OQ6, OQ7, OQ10, OQ11, and OQ12 that did not compute tran-

sitive closures and within a few seconds for queries CQ1, CQ3, OQ4, OQ8, OQ9, and OQ13 that

required evaluation of recursive views. Non-recursive queries were performed faster on the smaller

dataset, however the recursive ones (except OQ13) showed to be faster on the larger dataset. This

is explained by the fact that even though the UCDGC XML document was larger in size than

the TetherlessPC3 XML document, the number of tuples computed by views MultiStepWasTrig-

geredBy and MultiStepWasGeneratedBy was substantially smaller for the UCDGC dataset. On

the other hand, the TetherlessPC3 dataset contained no XML elements with the wasDerivedFrom

name, resulting in empty relation WasDerivedFrom and empty view MultiStepWasDerivedFrom.

Therefore, since OQ13 required the evaluation of the two SQL queries that accessed views Multi-

StepWasTriggeredBy and MultiStepWasDerivedFrom, OQ13 was just a few milliseconds faster on

the smaller dataset.

Moreover, to explore the scalability of queries CQ1, CQ3, OQ4, and OQ8 that required com-

putation of recursive views, OPMPROV was evaluated on larger datasets. The response times for

these queries and four database size settings are reported in Figure 4.10. Overall, the queries with

recursive views showed satisfactory performance, returning results within around 40 seconds for

the provenance dataset with 250,000 nodes and edges (66.25 MB), however additional experiments

involving larger datasets and server-class machines are required in the future.

Finally, we conducted an experiment to compare the query performance of OPMPROV with

the query performance of Karma [61]. While OPMPROV’s storage facility was solely based on

relational database technology, Karma stored an XML document as a value of an XML-typed

46

(a) The query performance on the UCDGC dataset.

(b) The query performance on the TetherlessPC3 dataset.

Figure 4.9: OPMPROV query performance over two different datasets.

column in a relational table and, as a result, used both SQL and XPath queries to answer provenance

queries. Another significant difference between the two systems was their inference support. While

OPMPROV used recursive views to implement OPM’s multi-step inference rules, Karma had no

inference support for multi-step edges defined in the OPM model [18]. Therefore, due to these

47

Figure 4.10: OPMPROV query performance for recursive views.

Figure 4.11: Query performance over OPMPROV and Karma.

implementation differences, we report our comparison observation without further analysis. In

this experiment, we evaluated queries CQ1, CQ2, CQ3, OQ1, OQ3, OQ5, OQ10, OQ11, OQ12,

and OQ13 over a single OPM-compliant XML document with 60 nodes and 144 edges that was

generated by the Karma team for the Third Provenance Challenge [15]. The experiment results are

reported in Figure 4.11. For all queries, the response times of OPMPROV were smaller than those

48

of Karma, even though Karma did not perform transitive closure inference for queries CQ1 and

CQ3.

4.6 Summary

In this chapter, we designed a relational database schema that supports prospective and retrospec-

tive provenance. We then proposed an efficient data mapping algorithm, OPMXMLInsert that

stores OPM-compliant provenance data into our OPMPROV store. Then, we showed that our

OPMPROV can sufficiently support provenance reasoning defined in the OPM model using re-

cursive views and SQL queries alone without any additional reasoning engine. To evaluate the

performance of OPMPROV, we conducted experiments on data insertion and provenance query-

ing. Our case study demonstrated that OPMPROV could answer all but one query out of the 16

queries defined in the Third Provenance Challenge.

49

CHAPTER 5

PROVENANCE QUERY LANGUAGE: OPQL

In this chapter, we propose OPQL, an OPM-level provenance query language, that is directly

defined over the Open Provenance Model (OPM). An OPQL query takes an OPM graph as input

and produces an OPM graph as output. Therefore, OPQL queries are not tightly coupled to the

underlying provenance storage strategies.

5.1 The Problem

As discussed previously, most existing systems [61], [25], [28], [54] store provenance data in their

provenance stores of proprietary provenance models and conduct provenance querying using query

languages, such as SQL, SPARQL, and XQuery over the physical provenance storages (i.e., RDB,

RDF, and XML). Such query languages are closely coupled to the underlying provenance storage

strategies, and therefore users have to know the structures or schemas of such provenance storages,

as well as semantics of provenance models that have been applied to the provenance storages to

formulate provenance queries. Moreover, users require the expertise about grammars, syntax, and

semantics of such languages to formulate complicated provenance queries. For example, using ex-

isting approaches, provenance lineage queries (queries for tracking ancestor nodes) often require

users to write recursive queries (directly typing recursive statements or using recursive functional-

ity), which are nontrivial.

To address these issues, in this dissertation, we propose OPQL, an OPM-level provenance

query language that efficiently supports provenance queries. OPQL is a graph query language

that is directly defined over the OPM model [18], which is a standard provenance model in the

community. An OPQL query takes one OPM graph as input and produces an OPM graph as

output; therefore, OPQL queries are not tightly coupled to the underlying storage strategies. In

50

particular, to design the OPQL query language, we define six types of graph patterns, an OPM-

based graph algebra based on four OPQL operators, and OPQL syntax and semantics. To our best

knowledge, OPQL is a first proposal on the OPM-level provenance query language for scientific

workflows. Moreover, to enhance the accessibility and availability of OPQL, we provide OPQL as

a Web service; therefore, users can invoke the OPQL Web service to execute OPQL queries in a

user-friendly GUI, called OPMPROVIS, where the result of OPQL queries is displayed as an OPM

graph. To our best knowledge, OPMPROV supports the first OPM-compliant provenance querying

service for scientific workflows.

5.2 The OPQL Provenance Query Language

In this section, we describe the OPQL query language to efficiently support provenance queries. We

first formalize the OPM model which is used as a fundamental provenance model for OPQL. Next,

we define six types of graph patterns which are the main building blocks of an OPQL query and an

OPM-based graph algebra for OPQL. We then propose OPQL syntax and semantics. Finally, we

discuss how provenance queries can be expressed in OPQL.

5.2.1 Formalizing the OPM Model

The OPM model [18] is a standard provenance model in the community to facilitate and promote

provenance interoperability among heterogeneous systems. In essence, the OPM model consists of

a directed graph expressing the dependencies (i.e., how “things” depended on others and resulted

in specific states). An OPM graph is composed of three types of nodes (i.e., Artifact, Process, and

Agent) and five types of edges (i.e., WasGeneratedBy, Used, WasDerivedFrom, WasTriggeredBy,

and WasControlledBy), which represent causal dependencies between nodes. An artifact is an

immutable piece of state, a process is an action or a series of actions, and an agent is a contextual

entity acting as a catalyst of a process. The five edges are described through the following sample

provenance graph.

51

Figure 5.1: A sample OPM graph.

In Figure 5.1 (which is an example OPM graph that can be generated via the execution of the

Load Workflow defined in the Third Provenance Challenge [15]), an artifact, process, and agent

are represented as an ellipse, rectangle, and octagon shape, respectively, and an edge is represented

by an arc and denotes the presence of a causal dependency between the source of the arc (the

effect) and the destination of the arc (the cause). As depicted in Figure 5.1, the edges represent

the following causal dependencies: (1) edge Used (u1-u12): p1 used a1, p2 used a1 and a2, p3 used

a3, and so on; (2) edge WasGeneratedBy (g1-g8): a2 was generated by p1, a3 was generated by

p2, a4 was generated by p5, and so on; (3) edge WasDerivedFrom (d1, d2): a2 was derived from

a1 and a3 was derived from a2; (4) edge WasTriggeredBy (t1): p2 was triggered by p1; (5) edge

WasControlledBy (c1, c2): p1 and p2 were controlled by ag1, respectively. More details on the

constituents of the OPM graph can be found in [18].

52

Based on the OPM model, we formalize an OPM graph as follows. An OPM graph OG =

(V,E) consists of:

1. a set of vertices V = A ∪ P ∪ AG , where A is a set of artifacts, P is a set of processes, and

AG is a set of agents;

2. a set of edgesE =Eu ∪Eg ∪Ed ∪Et ∪Ec, where i)Eu ⊆ P ×A and (p, a) ∈Eu states that

process p used artifact a, ii) Eg ⊆ A × P and (a, p) ∈ Eg states that artifact a was generated

by process p, iii) Ed ⊆ A × A and (a1, a2) ∈ Ed states that artifact a1 was derived from

artifact a2, iv) Et ⊆ P × P and (p1, p2) ∈ Et states that process p1 was triggered by process

p2, and v) Ec ⊆ P × AG and (p, ag) ∈ Ec states that process p was controlled by agent ag.

In particular, we use a tuple, a list of name and value pairs, to denote the properties of nodes

and edges in an OPM graph. Figure 5.2 shows a sample OPM graph that represents dependencies

associated with process p2 in Figure 5.1.

graph OG {
node v1<id=‘a2’, value=‘’>;
node v2<id=‘a3’, value=‘’>;
node v3<id=‘p1’, value=‘IsCSVReadyFileExists’>;
node v4<id=‘p2’, value=‘ReadCSVReadyFile’>;
node v5<id=‘ag1’, value=‘John’>;
edge e1(v4,v1)<id=‘u2’, role=‘used’>;
edge e2(v2,v4)<id=‘g2’, role=‘wasGeneratedBy’>;
edge e3(v4,v3)<id=‘t1’, role=‘wasTriggeredBy’>;
edge e4(v4,v5)<id=‘c2’, role=‘wasControlledBy’>;

};

Figure 5.2: A sample OPM graph representing dependencies associated with process p2.

53

5.2.2 Graph Patterns

We extend the notion of graph pattern proposed in [98] to efficiently support provenance queries

over an OPM graph. In this work, we define six types of graph patterns, which are the main

building blocks of an OPQL query.

Definition 5.2.1 (Graph Pattern: Type B) A graph pattern Pb is a pair (M,C), where M is a

graph motif and C is a predicate on the properties of the motif. Figure 5.3 shows a sample graph

pattern of Pb.

graph Pb {
node v1;
node v2;

}
where v1.value = ‘butter’
and v2.value = ‘bake’;

Figure 5.3: A sample graph pattern of Pb.

Definition 5.2.2 (Graph Pattern: Type O) A graph pattern Po is a triple (M,O,C), where M is a

graph motif, O is an inverse-functional one-to-many mapping that returns a set of nodes that have

direct causal dependencies associated with a node, and C is a predicate on the properties of the mo-

tif. To efficiently handle five causal dependencies between nodes defined in the OPM model [18],O

is composed of ten types of mapping functions (i.e., O ∈ {Ou, Oû, Og, Oĝ, Od, Od̂, Ot, Ot̂, Oc, Oĉ})

54

as defined below:

Ou(p) = {a | (p, a) ∈ Eu}

Oû(a) = {p | (p, a) ∈ Eu}

Og(a) = {p | (a, p) ∈ Eg}

Oĝ(p) = {a | (a, p) ∈ Eg}

Od(a1) = {a2 | (a1, a2) ∈ Ed}

Od̂(a2) = {a1 | (a1, a2) ∈ Ed}

Ot(p1) = {p2 | (p1, p2) ∈ Et}

Ot̂(p2) = {p1 | (p1, p2) ∈ Et}

Oc(p) = {ag | (p, ag) ∈ Ec}

Oĉ(ag) = {p | (p, ag) ∈ Ec}

(5.1)

Graph pattern Po is a derived graph pattern. It enables users to efficiently formulate complicated

provenance queries. Figure 5.4 shows a sample graph pattern of Po. In Figure 5.4, the former

(graph pattern Po) is derived by the latter (graph pattern Pb).

Next, we define the following four graph patterns to efficiently support tracking of ancestor

nodes.

Definition 5.2.3 (Graph Pattern: Type D) A graph pattern Pd is a triple (M,D,C), where M is

a graph motif, D is an inverse-functional one-to-many mapping that returns a set of artifacts that

were applied to derive an artifact, and C is a predicate on the properties of the motif. D is defined

as:

D(a) =
⋃

a′∈Od(a)

D(a′) ∪ Od(a) (5.2)

Graph pattern Pd is a derived graph pattern. It enables users to efficiently formulate recursive

queries to track ancestor nodes regarding artifacts. For example, Figure 5.5 shows a sample graph

55

graph Po {
node v1;
node v2;

}
mapping Ou : v1

used−−→ v2
where v1.id = ‘p1’;

(is derived by)

graph Pb {
node v1;
node v2;

}
where e1(v1, v2).role = ‘used’
and v1.id = ‘p1’;

Figure 5.4: A sample graph pattern of Po.

pattern of Pd. In Figure 5.5, the former (graph pattern Pd) is derived by the latter (graph pattern

Pb) via the recursive graph pattern of Pb, which is represented in the with ˜ union all clause.

Definition 5.2.4 (Graph Pattern: Type T) A graph pattern Pt is a triple (M,T,C), where M is a

graph motif, T is an inverse-functional one-to-many mapping that returns a set of processes that

were applied to trigger a process, and C is a predicate on the properties of the motif. T is defined

as:

T (p) =
⋃

p′∈Ot(p)

T (p′) ∪ Ot(p) (5.3)

Graph pattern Pt is also a derived graph pattern. It enables users to efficiently formulate re-

cursive queries to track ancestor nodes regarding processes. Figure 5.6 shows a sample graph

pattern of Pt, where the former (graph pattern Pt) is derived by the latter (graph pattern Pb) via the

recursive graph pattern of Pb, which is represented in the with ˜ union all clause.

Definition 5.2.5 (Graph Pattern: Type G) A graph pattern Pg is a triple (M,G,C), where M is

a graph motif, G is an inverse-functional one-to-many mapping that returns a set of processes that

56

graph Pd {
node v1;
node v2;

}
mapping D : v1

wasDerivedFrom∗−−−−−−−−−−−→ v2
where v1.id = ‘an’;

(is derived by)

with graph Pb as A {
node A.v1;
node A.v2;
}
where A.e1(A.v1, A.v2).role = ‘wasDerivedFrom’
and A.v1.id = ‘an’;

union all
graph Pb as R {

node R.v1;
node R.v2;

}
where R.e1(R.v1, R.v2).role = ‘wasDerivedFrom’
and R.v1.id = A.v2.id;

Figure 5.5: A sample graph pattern of Pd.

were applied to generate an artifact, andC is a predicate on the properties of the motif. G is defined

as:

G(a) =
⋃

p′∈Og(a)

T (p′) ∪ Og(a) (5.4)

Definition 5.2.6 (Graph Pattern: Type U) A graph pattern Pu is a triple (M,U,C), where M is

a graph motif, U is an inverse-functional one-to-many mapping that returns a set of artifacts that

were used by a process, and C is a predicate on the properties of the motif. U is defined as:

U(p) =
⋃

a′∈Ou(p)

D(a′) ∪ Ou(p) (5.5)

57

graph Pt {
node v1;
node v2;

}
mapping T : v1

wasTriggeredBy∗−−−−−−−−−−→ v2
where v1.id = ‘pm’;

(is derived by)

with graph Pb as A {
node A.v1;
node A.v2;
}
where A.e1(A.v1, A.v2).role = ‘wasTriggeredBy’
and A.v1.id = ‘pm’;

union all
graph Pb as R {

node R.v1;
node R.v2;

}
where R.e1(R.v1, R.v2).role = ‘wasTriggeredBy’
and R.v1.id = A.v2.id;

Figure 5.6: A sample graph pattern of Pt.

As described above, graph patterns Pg and Pu are derived graph patterns. These graph patterns

enable users to efficiently formulate recursive queries to track ancestor nodes regarding processes

and artifacts, respectively. In a similar fashion, sample graph patterns of Pg and Pu can be de-

scribed.

Next, we define three types of graph pattern matching which generalize subgraph isomorphism

over six graph patterns.

Definition 5.2.7 (Graph Pattern Matching α) A graph pattern Pb is matched with a graph OG

if there exists an injective mapping φα: V (M) → V (OG) such that i) For ∀ e(u, v) ∈ E(M),

(φα(u), φα(v)) is an edge in OG, and ii) predicate Cφα(OG) holds.

58

Definition 5.2.8 (Graph Pattern Matching β) A graph pattern Po is matched with a graph OG

if there exists an injective mapping φβ: V (M) → V (OG) such that i) For ∀ e(u, v) ∈ E(M),

(φβ(u), φβ(v)) is an edge in OG, ii) function Oφβ(OG) holds, and iii) predicate Cφβ(OG) holds.

Definition 5.2.9 (Graph Pattern Matching γ) Each of graph patterns (Pd, Pt, Pg, and Pu) is matched

with a graphOG if there exists an injective mapping φγ: V (M)→ V (OG) such that i) For ∀ e(u, v)

∈ E(M), (φγ(u), φγ(v)) is an edge in OG, ii) each function (Dφγ (OG), Tφγ (OG), Gφγ (OG), and

Uφγ (OG)) holds, and iii) each predicate Cφγ (OG) holds.

To denote the binding between a graph pattern and an OPM graph, we define a matched graph

as follows.

Definition 5.2.10 (Matched Graph) Given an injective mapping φ ∈ {φα, φβ , φγ} between a pat-

tern P ∈ {Pb, Po, Pd, Pt, Pg, Pu} and an OPM graph OG, a matched graph is a triple (φ, P , OG)

and is defined as φP (OG).

5.2.3 OPM-Based Graph Algebra

We propose an OPM-based graph algebra for the OPQL query language. The OPM-based graph

algebra is based on four operators, which operate on an OPM graph. Each operator takes one

OPM graph as input and produces another OPM graph as output. In particular, each of the union,

intersection, and difference operators is basically operated on one OPM graph, but these operators

take two OPM subgraphs produced by other queries as input and produce an OPM graph as output.

We define the following four operators to manipulate and query an OPM graph.

5.3.3.1 Extract operator (δ)

One of the most frequent operations performed on an OPM graph is the extraction of a set of nodes

and edges, which are constituents of an OPM graph. An extract operator is defined using a graph

pattern P . It takes one OPM graph (OG) as input and produces a new OPM graph that matches the

graph pattern as output, denoted by δP (OG). For example, let Figure 5.1 be an OPM graph (OG).

59

You might want to find all the artifacts that contributed to derive artifact a6. Using the extract

operator, this query can be expressed as:

δ[Pd:D(a6)](OG) (5.6)

This query first generalizes a matched graph which consists of a set of artifacts (a1-a6) and a

set of edges (d1-d5) via the graph pattern matching γ (i.e., φγ), and then it produces a new OPM

graph by combining information from the matched graph. The output of the extract operator is an

OPM graph:

δp(OG) = φP (OG) (5.7)

Next, we define the following three operators (union, intersection, and difference). These op-

erators are basically operated on one OPM graph, but they take two OPM subgraphs produced by

other queries as input and produce an OPM graph as output. Let OG be an OPM graph, and let

OG1 and OG2 be the output of δP1(OG) and δP2(OG), respectively. Given two OPM subgraphs

OG1 = (V1, E1) and OG2 = (V2, E2), where OG1 and OG2 ⊆ OG, these operators are defined as

follows.

5.3.3.2 Union operator (∪)

The union operator calculates the union of two OPM subgraphs. A union operation is defined by

OG1 ∪ OG2, resulting in an OPM graph OG′ = (V ′, E ′), where

V ′ = {v | v ∈ V1 or v ∈ V2}

E ′ = {e | e ∈ E1 or e ∈ E2}
(5.8)

For example, let Figure 5.7(a) be an OPM graph (OG). Then, Figure 5.7(b) and Figure 5.7(c)

represent the output of δ[Pd:D(a5)](OG) and δ[Pd:D(a8)](OG), respectively. You might want to find

all the artifacts that contributed to derive either artifact a5 or artifact a8 over OPM graphOG. Using

60

the union operator, this query can be expressed as δ[Pd:D(a5)](OG) ∪ δ[Pd:D(a8)](OG). The result of

the query is shown in Figure 5.7(d).

5.3.3.3 Intersection operator (∩)

The intersection operator calculates the intersection of two OPM subgraphs. An intersection oper-

ation is defined by OG1 ∩ OG2, resulting in an OPM graph OG′ = (V ′, E ′), where

V ′ = {v | v ∈ V1 and v ∈ V2}

E ′ = {e | e ∈ E1 and e ∈ E2}
(5.9)

For example, you might want to find all the artifacts that contributed to derive both artifact a5 and

artifact a8 over OPM graph OG. Using the intersection operator, this query can be expressed as

δ[Pd:D(a5)](OG) ∩ δ[Pd:D(a8)](OG). The result of the query is shown in Figure 5.7(e).

5.3.3.4 Difference operator (−)

The difference operator calculates the difference of two OPM subgraphs. A difference operation is

defined by OG1 − OG2, resulting in an OPM graph OG′ = (V ′, E ′), where

V ′ = {v | v ∈ V1 and v /∈ V2}

E ′ = {e | e ∈ E1 and e /∈ E2}
(5.10)

For example, you might want to find all the artifacts that contributed to derive artifact a5, but not

artifact a3 over OPM graph OG. Using the difference operator, this query can be expressed as

δ[Pd:D(a5)](OG) − δ[Pd:D(a3)](OG). The result of the query is shown in Figure 5.7(f).

5.3.3.5 Example Provenance Queries Expressed using the OPM-based Graph Algebra

To evaluate the feasibility of the operators defined in the OPM-based graph algebra, we use eight

example provenance queries, which require the computation of transitive relationships to track an-

cestor nodes. These queries, including four queries (Q1-Q4) for the Load Workflow defined in the

61

Figure 5.7: The output produced by the operation of different operators.

Third Provenance Challenge [15] and four queries (Q5-Q8) for a synthetic workflow consisting of

a large number of steps, can be expressed using our OPM-based graph algebra (these queries can

be also expressed in OPQL as shown later in Figure 5.14). First, let OG1 and OG2 be the OPM

graphs produced by the execution of the Load Workflow and synthetic workflow, respectively.

Then, as depicted in Table 5.1, query Q1, which asks for CSV files that contributed to a given detec-

tion, can be answered by a query expressed as δ[Pd:D(′detectID′)](OG1) ∩ δ[Pb:value=′%CSV%′](OG1).

It first finds all the artifacts that contributed to derive the artifact with the value “detectID” by

δ[Pd:D(′detectID′)](OG1), and then it retrieves these artifacts whose value is CSV files via the inter-

section with δ[Pb:value=′%CSV%′](OG1). Similarly, query Q5 can be answered by δ[Pd:D(an)](OG2).

Second, query Q2, which asks for steps that were completed successfully before the halt occurred,

can be answered by a query expressed as δ[Pg :G(′%success%′)](OG1) to find all the processes that

contributed to generate artifacts with the value “%success%”. In a similar fashion, the answers of

queries Q3, Q4, and Q8 can be expressed as depicted in Table 5.1. Finally, query Q6, which asks

for a process dependency view for all the steps that contributed to trigger the last step (id = pn), can

be satisfied by using δ[Pt:T (pn)](OG2) and query Q7, which asks for a data dependency view for all

the data products that were directly or indirectly used by the last step (id = pn), can be satisfied by

using δ[Pu:U(pn)](OG2).

62

Table 5.1: The provenance queries expressed using the OPM-based graph algebra.

Q1: For a given detection (detectID), which CSV files contributed to it?
⇒ δ[Pd:D(′detectID′)](OG1) ∩ δ[Pb:value=′%CSV%′](OG1)

Q2: Which steps were completed successfully before the halt occurred?
⇒ δ[Pg:G(′%success%′)](OG1)

Q3: Why is this entry (ccdID) in the database?
⇒ δ[Pg:G(′ccdID′)](OG1)

Q4: Which operation executions were necessary for the Image table to contain a particular value?
⇒ δ[Pg:G(′%Image%′)](OG1)

Q5: Display dependencies of all the data products that contributed to derive the last data product (id = an).
⇒ δ[Pd:D(an)](OG2)

Q6: Display dependencies of all the steps that were applied to trigger the last step (id = pn).
⇒ δ[Pt:T (pn)](OG2)

Q7: Display dependencies of all the data products that were used by the last step (id = pn).
⇒ δ[Pu:U(pn)](OG2)

Q8: Display dependencies of all the steps that contributed to generate the last data product (id = an).
⇒ δ[Pg:G(an)](OG2)

5.2.4 OPQL Syntax and Semantics

We present an OPQL syntax that is required to formulate OPQL queries and a formal semantics for

OPQL constructs. OPQL queries are formulated against an OPM graph displayed by a graphical

user interface.

5.3.4.1 OPQL Syntax

OPQL queries are built from the following syntax as depicted in Figure 5.8. An OPQL query is

composed of either a basic query or a set operation of two queries via set operators (i.e., UNION,

INTERSECT, and MINUS). A basic query can be one of the single-node constructs (A, P, and AG),

one of the single-step-edge-forward constructs (USD, WGB, WCB, WDF, and WTB), one of the

single-step-edge-backward constructs (USD∧, WGB∧, WCB∧, WDF∧, and WTB∧), or one of

the multi-step-edge constructs (USD*, WGB*, WDF*, and WTB*). Each of these constructs has

an argument (arg) in a bracket, and an argument for a construct can be either a node expression

(Xn) or a basic query. If a construct has a basic query as an argument, it means a nested OPQL

query; otherwise, it means a simple OPQL query. A node expression (Xn) can be expressed by an

artifact node expression (Xa), a process node expression (Xp), or an agent node expression (Xag).

63

query :: = basic-query
| query UNION query
| query INTERSECT query
| query MINUS query

basic-query :: = single-node construct (arg)
| single-step-edge-forward construct (arg)
| single-step-edge-backward construct (arg)
| multi-step-edge construct (arg)

single-node construct :: = A | P | AG
single-step-edge-forward construct :: =

USD |WGB |WCB |WDF |WTB
single-step-edge-backward construct :: =

USD∧ |WGB∧ |WCB∧ |WDF∧ |WTB∧

multi-step-edge construct :: =
USD* |WGB* |WDF* |WTB*

arg :: = basic-query | node-expression (Xn)
node-expression (Xn) :: = artifact-node-expression (Xa)

| process-node-expression (Xp)
| agent-node-expression (Xag)

artifact-node-expression (Xa) :: =
artifact-identifier (an) | %artifact-value% (aν) | a∗

process-node-expression (Xp) :: =
process-identifier (pn) | %process-value% (pν) | p∗

agent-node-expression (Xag) :: =
agent-identifier (agn) | %agent-value% (agν) | ag∗

Figure 5.8: The OPQL Syntax.

The node expressions of an artifact, process, and agent can be a node identifier (i.e., an, pn, or agn),

a node value (i.e., aν , pν , or agν) starting and ending with % , or a wildcard (i.e., a∗, p∗, or ag∗),

respectively.

5.3.4.2 OPQL Semantics

Let OG = (V,E) be an OPM graph such that V = A ∪ P ∪ AG and E = Eu ∪ Eg ∪ Ec ∪ Ed ∪ Et,

as defined in Section 3.1. First, each node expression Xn (i.e., Xn ∈ {Xa, Xp, Xag}) is defined as

a function that maps an OPM graph (OG) to a set of vertices such that Xn(OG) returns a subset of

64

‖an‖ = {an}
‖pn‖ = {pn}
‖agn‖ = {agn}
‖aν‖ = {an | an ∈ ids(aν) and an ∈ A}
‖pν‖ = {pn | pn ∈ ids(pν) and pn ∈ P}
‖agν‖ = {agn | agn ∈ ids(agν) and agn ∈ AG}
‖a∗‖ = {an | an ∈ A}
‖p∗‖ = {pn | pn ∈ P}
‖ag∗‖ = {agn | agn ∈ AG}

Figure 5.9: The semantics of node expression Xn.

A(Xa) = {an | an ∈ Xa}
P (Xp) = {pn | pn ∈ Xp}

AG(Xag) = {agn | agn ∈ Xag}
USD(Xp) = {an | pn ∈ Xp and (pn, an) ∈ Eu}
WGB(Xa) = {pn | an ∈ Xa and (an, pn) ∈ Eg}
WCB(Xp) = {agn | pn ∈ Xp and (pn, agn) ∈ Ec}
WDF (Xa) = {an2 | an1 ∈ Xa and (an1 , an2) ∈ Ed}
WTB(Xp) = {pn2 | pn1 ∈ Xp and (pn1 , pn2) ∈ Et}
USD∧(Xa) = {pn | an ∈ Xa and (pn, an) ∈ Eu}
WGB∧(Xp) = {an | pn ∈ Xp and (an, pn) ∈ Eg}
WCB∧(Xag) = {pn | agn ∈ Xag and (pn, agn) ∈ Ec}
WDF∧(Xa) = {an1 | an2 ∈ Xa and (an1 , an2) ∈ Ed}
WTB∧(Xp) = {pn1 | pn2 ∈ Xp and (pn1 , pn2) ∈ Et}

Figure 5.10: The semantics of the single-node and single-step-edge-forward (backward) constructs.

V as depicted in Figure 5.9, where ids(nν) returns those nodes satisfying node value nν ∈ {aν , pν ,

agν}.

We define the following three types of OPQL constructs including single-node constructs,

single-step-edge-forward constructs, and single-step-edge-backward constructs. First, the single-

node constructs play a role to efficiently retrieve nodes in an OPM graph, and they are defined

as functions that take an OPM graph OG = (V,E) and a node expression Xn and return those

65

WDF ∗(Xa) = {an |
⋃

an∈WDF (Xa)

WDF ∗(an) ∪ WDF (Xa)}

WTB∗(Xp) = {pn |
⋃

pn∈WTB(Xp)

WTB∗(pn) ∪ WTB(Xp)}

WGB∗(Xa) = {pn |
⋃

pn∈WGB(Xa)

WTB∗(pn) ∪ WGB(Xa)}

USD∗(Xp) = {an |
⋃

an∈USD(Xp)

WDF ∗(an) ∪ USD(Xp)}

Figure 5.11: The semantics of the multi-step-edge constructs.

nodes satisfying node expression Xn such that Xn(OG) ⊆ V . Specifically, given single-node

construct Cn (i.e., Cn ∈ {A, P , AG}), OPM graph OG = (V,E), and node expression Xn, the

semantics of the single-node constructs are defined by Cn(Xn, OG) = {n | n ∈ Xn(OG) ⊆ V }.

For convenience, we generally omit OG when writing OPQL constructs and node expressions (as

in Figure 5.9, 5.10, 5.11, 5.12, and 5.14). Second, the single-step-edge-forward constructs and

single-step-edge-backward constructs play a role to efficiently retrieve the cause node (the destina-

tion of an arc) and the effect node (the source of an arc) representing a causal dependency between

two nodes in an OPM graph, respectively. The single-step-edge-forward constructs are defined as

functions that take an OPM graph OG = (V,E) and a node expression Xn for effect nodes and

return cause nodes which have causal dependencies with effect nodes satisfying Xn(OG), while

the single-step-edge-backward constructs are defined as functions that take an OPM graph OG

= (V,E) and a node expression Xn for cause nodes and return effect nodes which have causal

dependencies with cause nodes satisfying Xn(OG). Specifically, given single-step-edge-forward

construct Ce (i.e., Ce ∈ {USD, WGB, WCB, WDF , WTB}), single-step-edge-backward con-

struct Cê (i.e., Cê ∈ {USD∧, WGB∧, WCB∧, WDF∧, WTB∧}), OPM graph OG = (V,E),

and node expression Xn, the semantics of the single-step-edge-forward constructs and single-step-

edge-backward constructs are defined byCe(Xn, OG) = {ncause | neffect ∈Xn and (n
effect, ncause)

∈ E} and Cê(Xn, OG) = {neffect | ncause ∈Xn and (n
effect, ncause) ∈ E}, respectively. More de-

tails on the semantics of these constructs are shown in Figure 5.10.

66

Next, we define the multi-step-edge constructs (i.e., WDF ∗,WTB∗,WGB∗, and USD∗) as

functions that take an OPM graph OG = (V,E) and a node expression Xn and return all the nodes

which have direct or indirect causal dependencies (i.e., transitive relationships) with those nodes

satisfying Xn(OG). These constructs allow user to efficiently track ancestor nodes without formu-

lating recursive queries. For example, let Figure 5.7(a) be an OPM graph (OG) as input. Then,

multi-step-edge construct WDF ∗(a5) returns all the artifacts that contributed to derive artifact

a5. That is, it returns a set of artifacts {a1, a2, a3, a4} by the computation of transitive relation-

ships associated with artifact a5 via existing causal dependencies (i.e., {(a5, a4), (a5, a3), (a4, a3),

(a3, a2), (a3, a1), (a2, a1)} ⊂ Ed). The semantics of these multi-step-edge constructs are depicted

in Figure 5.11.

A simple OPQL query is formulated by only an OPQL construct which has a node expression

as an argument. Then, through graph pattern matching over the nodes returned by the computation

of a single construct, a new OPM graph as output is extracted. In a similar way, a nested OPQL

query is formulated by a combination of the OPQL constructs, and a new OPM graph as output is

extracted via graph pattern matching over all the nodes that were returned by the computation of all

the constructs in a nested OPQL query. To give a better understanding, we present simple OPQL

query examples in Figure 5.12, where the description of the OPQL constructs and the graphical

query results are described.

In addition, an OPQL query can be expressed using a set operator between two OPQL queries

since the result of a basic query is an OPM graph which consists of a set of vertices and a set

of edges. For example, given two OPQL queries Q1 and Q2, a new OPQL query combining

these two queries can be formulated using set operators UNION, INTERSECT, and MINUS (e.g.,

Q1 UNION Q2, Q1 INTERSECT Q2, and Q1 MINUS Q2). More details on the OPQL query

expression are discussed in the following section.

67

Figure 5.12: The description of the OPQL constructs and the graphical query results.

5.2.5 Expressing Provenance Queries in OPQL

We discuss how provenance queries can be expressed in OPQL. As described in Section 3.4, an

OPQL query is expressed as a combination of OPQL constructs, each of which corresponds to each

of the graph patterns. The OPQL query language provides users with effective query formulation.

For example, Figure 5.13 shows two different query expressions that generate a data dependency

graph (DG) for artifact a6 over the OPM graph depicted in Figure 5.1. First, Figure 5.13(a) shows

68

Given OPM graph OG,
DG = WDF*(a6);

(a)

with graph Pb as A {
node A.v1;
node A.v2;
}
where A.e1(A.v1, A.v2).role = ‘wasDerivedFrom’
and A.v1.id = ‘a6’;

union all
graph Pb as R {

node R.v1;
node R.v2;

}
where R.e1(R.v1, R.v2).role = ‘wasDerivedFrom’
and R.v1.id = A.v2.id;

DG = graph { };
for A in doc (OG)
let DG: = graph {

graph DG;
node A.v1, A.v2;
edge A.e1(A.v1, A.v2);
unify DG.v2, A.v1 where DG.v2.id = A.v1;

}
(b)

Figure 5.13: Two different query expressions that generate a data dependency graph (DG).

an OPQL query expression to answer the query via an OPQL construct, and then Figure 5.13(b)

shows a GraphQL query expression [98], which is expressed by a graph pattern and a FLWR (For,

Let, Where, Return) expression in XQuery. Although the query expressed in GraphQL results in

the same output as that of the OPQL query, the GraphQL query requires users to directly write a

recursive query with a graph pattern; on the other hand, OPQL allows users to effectively formu-

late the query with just writing WDF*(a6). OPQL supports graph queries at a higher level than

GraphQL.

69

In addition, to demonstrate the expressiveness of OPQL, we use 16 provenance queries, in-

cluding three core queries (CQ) and 13 optional queries (OQ) defined in the Third Provenance

Challenge [15]. In particular, we express some of these queries in OPQL that are executable over

our OPMPROV system. As depicted in Figure 5.14 (which is extended from a figure presented

in [82], where these queries are presented in SQL), we present 13 provenance queries in English,

SQL, and OPQL, respectively. In this dissertation, we omit the description of these queries and

their answers (more details on these query processing can be found in [82]). Instead, we intro-

duce an example about how a provenance query is formulated and answered by SQL and OPQL,

respectively. For query CQ1, which asks for CSV files that contributed to a given detection, SQL

uses relation MultiStepWasGeneratedBy to find all process identifiers contributed to the generation

of the artifact with the value “261887437010025730 (detectID)” and then it retrieves artifacts that

are CSV files used by those processes. On the other hand, OPQL uses construct WGB* to find

all processes that were contributed to generate an artifact whose value is “261887437010025730

(detectID)”, and then it uses construct USD to find artifacts used by those processes, and then it

intersects with construct A(%Detection.csv%) to retrieve artifacts that are CSV files. In terms of

usability, OPQL supports more effective query formulation than SQL; furthermore, as depicted

in Figure 5.15, a query result of an OPQL query is displayed as an OPM graph to give a better

understanding to users, while an SQL query result is a set of tuples (i.e., a table).

5.3 Experimental Study

In this section, we report on our experimental study that explored the performance of OPM-

PROV on OPQL provenance querying over various datasets. Before we conduct experiments, we

implement OPQL as a Web service via the OPMPROV system (we discuss the implementation of

OPQL in the following chapter). We first performed provenance query experiments for OPQL,

and then we performed provenance visualization performance experiments to demonstrate the vi-

sualization capability of OPMPROV. The experiments presented below were conducted on a PC

70

Figure 5.14: Provenance queries expressed by OPQL for the Third Provenance Challenge questions.

71

Figure 5.15: The sample query results executed by OPQL and SQL.

with one 2.27 GHz dual core processor and 4 GB main memory, running the Windows 7 operating

system. In all the experiments, we show the results as the average of 20 trials.

5.3.1 Provenance Query Performance Experiments

To evaluate the querying performance of OPQL, we used eight provenance queries depicted in

Table I. These queries were executed on the dataset (UCDGC: UC Davis Genome Center), which

represents an OPM graph in which the total number of nodes and edges is 2,909. The query

performance experiments are reported in Figure 5.16(a). Overall, the query evaluation for OPQL

showed to be very efficient, returning results within 0.06 seconds for all the queries (Q1-Q8).

Moreover, to explore the scalability of queries Q5, Q6, Q7, and Q8 that required the more

expensive computation of transitive relationships in the OPM graph, we used four OPM-compliant

72

(a) The query performance on the UCDGC dataset.

(b) The query performance on the OPM graphs with varying complexity.

Figure 5.16: OPQL query performance over various datasets.

datasets generated via the simulation over five synthetic workflows, which are a sequential type of

workflows (i.e., a workflow step is connected to only one workflow step) in which the total number

of steps (s) is 1,000, 2,000, 3,000, and 4,000, respectively. Note that the more the number of steps

of the workflow, the more expensive the computation of transitive relationships in the OPM graph.

OPQL queries (i.e., Q5, Q6, Q7, and Q8) were evaluated on these larger datasets. The response

times for these queries are reported in Figure 5.16(b). Overall, these queries showed satisfactory

73

performance, returning results within around 12 seconds for the provenance dataset with 20,000

nodes and edges.

(a) The provenance visualization performance across different datasets.

(b) The provenance visualization performance on the OPM graphs with varying complexity.

Figure 5.17: OPMPROV provenance visualization performance over various datasets.

74

5.3.2 Provenance Visualization Performance Experiments

To perform provenance visualization experiments, we selected five OPM-compliant provenance

datasets (which represent the OPM graphs) generated by different participants of the Third Prove-

nance Challenge [15], and then we inserted these datasets into OPMPROV. The provenance vi-

sualization performance for these datasets is reported in Figure 5.17(a), where the datasets are

shown in the ascending order of the total number of nodes and edges. The results for provenance

visualization showed to visualize all the datasets in less than 2 seconds.

To explore the provenance visualization performance and scalability on larger datasets, we used

five OPM-compliant provenance datasets which represent the OPM graphs with varying complex-

ity in which the total number of nodes and edges is 5,000, 10,000, 15,000, 20,000, and 25,000,

respectively. The results for these datasets are reported in Figure 5.17(b). Overall, the provenance

visualization performance over the larger datasets showed satisfactory performance, returning re-

sults within around 26 seconds for the dataset with 25,000 nodes and edges.

5.4 Summary

In this chapter, we designed the OPQL query language, including six types of graph patterns, an

OPM-based graph algebra, and OPQL syntax and semantics, that efficiently supports provenance

queries. We then implemented OPQL as a Web service via our OPMPROV system; therefore,

users can invoke the Web service to execute OPQL queries in a user-friendly GUI, OPMPROVIS.

Finally, we conducted experiments to evaluate the performance and feasibility of OPMPROV on

OPQL provenance querying, and the experimental results showed satisfactory performance. To

our best knowledge, OPQL is the first OPM-level query language and OPM-compliant provenance

querying service for scientific workflows.

75

CHAPTER 6

DESIGN AND IMPLEMENTATION OF OPMPROV

In this chapter, we first discuss an overall architecture of the OPMPROV system, which is

a relational database-based provenance system that supports both prospective and retrospective

provenance. We then discuss how our OPMPROV system, including the OPQL query language

can be implemented.

6.1 Architecture of OPMPROV

OPMPROV is a relational database-based scientific workflow provenance system that efficiently

stores, reasons, and queries prospective provenance and retrospective provenance, which is OPM-

compliant provenance data (XML data that conforms to the OPM XML schema). As recognized,

the design of OPMPROV has been motivated by the OPM model [18], which is a standard prove-

nance model to facilitate and promote provenance interoperability among heterogeneous systems.

OPMPROV uses the OPM model as a conceptual data model to design a native OPM provenance

store, and therefore an input or output of OPMPROV is OPM-compliant provenance data. OPM-

PROV is compliant with the OPM model (v1.1) [18]; therefore, without any transformation between

the OPM model and our provenance model, provenance data represented in XML documents,

which conform to the XML schema specification for the OPM model, can be inserted into OPM-

PROV using a data mapping procedure that shreds the XML documents into relational tuples and

stores them in the corresponding relational tables in OPMPROV. Moreover, OPMPROV can suffi-

ciently support provenance reasoning (i.e., by completion rules and multi-step inferences) defined

in the OPM model using recursive views and SQL queries alone without any additional reasoning

engine.

76

To give a better understanding of the design of OPMPROV, we describe an architecture of

the OPMPROV system as shown in Figure 6.1, where the OPMPROV system interacts with the

VIEW system. Figure 6.1(a) depicts an architecture of OPMPROV. The OPMPROV system plays

a role as Provenance Manager of the VIEW system [5], a scientific workflow management sys-

tem, which consists of six major functional subsystems, including Workbench, Workflow Engine,

Worklfow Monitor, Data Product Manager, Task Manager, and Provenance Manager, as shown

in Figure 6.1(b). OPMPROV has a three-layer architecture. The provenance presentation layer

Figure 6.1: An overview of the OPMPROV system.

77

provides users with the functionality of data insertion, provenance querying, and provenance vi-

sualization via user-friendly GUIs. OPMPROV supports OPMPROVISD(desktop version) and

OPMPROVISW (web version) as user-friendly GUIs, which enable users to invoke Web services

via interface IOPM that is defined and described by WSDL (for example, the WSDL definition

of the OPQL Web service can be found in Appendix C). The provenance service layer provides

users with OPM-compliant provenance services. Currently, the OPMPROV system provides two

Web services that employ two mappings; one is to insert OPM-compliant provenance data into the

OPMPROV store using XML-to-Relational data mapping that maps OPM-compliant XML docu-

ments to relational tuples and the other is to execute OPQL queries from the OPMPROV store using

OPQL-to-SQL query mapping that translates OPQL queries into SQL queries. These mappings in-

terconnect the provenance service layer and the provenance infrastructure layer, where the latter is

represented by a relational database management system that plays a role as an efficient relational

provenance storage backend. In addition, as shown in Figure 6.1(c), via our proposed provenance

collection framework that interacts with the VIEW system, OPMPROV can store and manage both

prospective and retrospective provenance. Our OPMPROV features the native support of the OPM

model.

6.2 Implementation of OPMPROV

In this section, we discuss how our OPMPROV can be implemented to query and manage prospec-

tive provenance and retrospective provenance, which is OPM-complaint provenance. Basically, we

use relational database technologies to efficiently store and query provenance data. The provenance

store for OPMPROV is implemented using RDBMS DB2 (v9.7.0.441). As discussed in Chapter

3, both the relational schema for prospective provenance which includes nine relations and the re-

lational schema for retrospective provenance which includes total 33 relations are created in DB2,

respectively. The details on the database schema of OPMPROV are described in Appendix A and

B. To support the insertion of OPM-compliant provenance data (i.e., XML data that conforms to

the OPM XML schema), we implement the OPMXMLInsert algorithm discussed in Chapter 4 as a

78

Web service; therefore, users can store OPM-compliant provenance data into our OPMPROV store

without any transformation procedure via a user-friendly GUI.

Moreover, to efficiently support query processing of OPM-compliant provenance, we imple-

ment the OPQL query language as a Web service using Java and Axis2 on top of the OPM-

PROV system. The OPQL Web service takes an OPQL query as input, translates an OPQL query

to an equivalent SQL query and executes the SQL query translated in OPMPROV, and returns an

OPM graph as output. To invoke these Web services, we implement two kinds of user-friendly

GUIs (i.e., provenance browsers) that allow users to store OPM-compliant provenance data and

79

execute OPQL queries: one is OPMPROVISD (desktop version) implemented by Java and JGraph

and the other is OPMPROVISW (web version) implemented by JSP and mxGraph. Since, in the

OPMPROV system, efficient provenance visualization, either as part of visualizing a whole OPM

graph or as part of visualizing the query result is important to reduce response time for prove-

nance querying and visualization, we employ an efficient algorithm, called OPMGraphConstruct,

to construct and visualize an OPM graph.

Algorithm 6 shows an efficient algorithm that takes relevant OPM entities from our OPM-

PROV store and creates an OPM graph with different levels of account views (an account view

means a view of an OPM graph depending on one account). The algorithm has four steps. As the

first step, OPMGraphConstruct takes as an input OPM-compliant relational databases, retrieves

relevant OPM graph entities from the corresponding tables, and creates datasets Ra, Rp, Rag, Ru,

Figure 6.2: Visualizing OPM graphs in OPMPROVISD and OPMPROVISW .

80

Rg, Rd, Rc, and Rt that correspond to three OPM nodes and five OPM edges, respectively. In partic-

ular, to handle overlapping accounts over an artifact, separate dataset Rov is created via a condition

to check if an artifact has two different accounts. The second step is responsible for creating ver-

tices to be displayed in an OPM graph. OPMGraphConstruct creates vertex datasets Va, Vp, Vag,

in which each vertex holds one account information. In particular, in the Vov dataset that represents

vertices for overlapping artifacts, each vertex holds both parent and child account information.

The third step is responsible for creating edges to be displayed in an OPM graph. At lines 38-48,

OPMGraphConstruct finds indexes of two vertices (i.e., a process vertex as source and an artifact

vertex as destination) for an Used edge and creates an Used edge via the found indexes. Each

edge created also holds the corresponding account information. Through iteration of creation of an

Used edge, dataset Eu for the Used edges is created. Similarly, lines 49-59 demonstrates creation

of the WasGeneratedBy edges, where indexes of two vertices (i.e., an artifact vertex as source and

a process vertex as destination) for a WasGeneratedBy edge are found and finally dataset Eg is

created. In a similar fashion, datasets Ed, Ec, and Et can be created for edges WasDerivedFrom,

WasControlledBy, and WasTriggeredBy, respectively. Finally, the fourth step is responsible for

creating an OPM graph with different levels of account views based on the created vertices and

edges. OPMGraphConstruct first computes the order of hierarchical account levels over overlap-

ping accounts via recursive queries using additional relation OverlapAccount and creates dataset

R (account, level) that contains the account level corresponding one account, where one account

level has an integer value. Using the account level (default is the maximum value of account levels)

selected by a user interface, an OPM graph with different account views is created and visualized

via a function that finds and collects vertices and edges whose account level is the same as the

account level until the integration condition of the account level taken as an argument meets.

This algorithm is implemented in our user-friendly GUIs (OPMPROVISD and OPMPROVISW)

to visualizes not only a whole OPM graph but also the result of an OPQL query. Figure 6.2(a)

shows the output of OPQL query WDF*(a4) in OPMPROVISD and Figure 6.2(b) shows the output

of OPQL query WTB*(p3) in OPMPROVISW .

81

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

We conclude this dissertation by summarizing our results, discussing our contributions and

presenting future work.

7.1 Summary

In this dissertation, we first proposed a provenance collection framework to capture both prospec-

tive and retrospective provenance. We then proposed a relational database-based provenance sys-

tem that stores, reasons, and queries prospective and retrospective provenance. Then, we proposed

OPQL, an OPM-level provenance query language, that is directly defined over the Open Prove-

nance Model (OPM), which is a standard provenance model. Finally, we presented the design and

implementation of the OPMPROV system.

7.2 Contributions

Our contributions are elaborated in detail as follows:

• First, to propose a provenance collection mechanism that captures both prospective and ret-

rospective provenance in scientific workflow environments, (i) we designed a provenance

model that models both prospective and retrospective provenance as an extension to the

Open Provenance Model (OPM), which only models retrospective provenance and (ii) we

proposed a provenance collection framework to collect both prospective and retrospective

provenance according to our model. While most existing systems use an internal proprietary

provenance model and develop an import/export facility to convert between the proprietary

model and OPM, our provenance collection framework features the native support of the

OPM model.

82

• Second, to propose a relational database-based provenance system, called OPMPROV that

stores, reasons, and queries prospective and retrospective provenance, which is compliant

with the OPM model, (i) we designed a relational database schema for the storage of prove-

nance and (ii) we showed that provenance reasoning defined in the OPM model (v1.1) can be

sufficiently supported by OPMPROV using recursive views and SQL queries alone without

any additional reasoning engine. Experiments are conducted to evaluate the performance of

OPMPROV in data insertion and provenance querying. A case study is performed, demon-

strating that OPMPROV can answer all except one query out of the 16 queries defined in the

Third Provenance Challenge.

• Third, to design OPQL, an OPM-level provenance query language, that is directly defined

over the Open Provenance Model (OPM), (i) we designed OPQL, including six types of

graph patterns, an OPM-based graph algebra, and OPQL syntax and semantics, that effi-

ciently supports provenance queries and (ii) we implemented OPQL using a Web service

via our OPMPROV system; therefore, users can invoke the Web service to execute OPQL

queries in a provenance browser, called OPMPROVIS. The result of OPQL queries is dis-

played as an OPM graph in OPMPROVIS. An experimental study is conducted to evaluate

the feasibility and performance of OPMPROV on OPQL provenance querying. To our best

knowledge, OPQL is the first OPM-level query language and OPM-compliant provenance

querying service for scientific workflows.

7.3 Future Work

This dissertation has addressed several issues associated with querying and managing OPM-compliant

provenance data in scientific workflows. These issues are expected to result in some additional

problems and solutions from the scientific workflow provenance community. This section de-

scribes possible future work as follows:

83

• We showed that provenance reasoning defined in the OPM model can be sufficiently sup-

ported by OPMPROV using recursive views and SQL queries alone without additional rea-

soning engine. In reality, it is expensive to use recursive views for provenance reasoning in

case of large amounts of provenance data. Thus, presenting a mechanism to improve the per-

formance of provenance reasoning and querying in OPMPROV is considered as a potential

future work.

• We desinged OPQL, including six types of graph patterns, an OPM-based graph algebra, and

OPQL syntax and semantics, that efficiently supports provenance queries. To enhance the

accessibility of OPQL, we implemented OPQL as an OPM-compliant provenance service

for scientific workflows using a Web service. As a future work, evaluating OPQL from other

points of view, including expressiveness, completeness, and usability is considered.

• We performed our experiments to evaluate the performance of OPMPROV in data insertion

and provenance querying. To efficiently support large amounts of provenance data in scien-

tific workflow provenance management, using cloud computing technologies provides many

benefits in term of reliability, usability, scalability, performance, and maintenance. Thus,

exploring a cloud-based provenance store is considered as a potential future work.

84

APPENDIX A

Relational Schema for Prospective Provenance in OPMPROV

CREATE TABLE Workflow (

WorkflowId VARCHAR(50) NOT NULL,

Description VARCHAR(255),

PRIMARY KEY (WorkflowId)

);

CREATE TABLE Task (

TaskId VARCHAR(50) NOT NULL,

TaskName VARCHAR(255),

TaskType VARCHAR(50),

PRIMARY KEY (TaskId)

);

CREATE TABLE Performer (

PFId VARCHAR(50) NOT NULL,

PFName VARCHAR(255),

PRIMARY KEY (PFId)

);

85

CREATE TABLE Port (

PortId VARCHAR(50) NOT NULL,

TaskId VARCHAR(50),

PortName VARCHAR(255),

PortType VARCHAR(50),

PRIMARY KEY (PortId),

CONSTRAINT fk Task

FOREIGN KEY (TaskId) REFERENCES Task (TaskId) ON DELETE CASCADE

);

CREATE TABLE Contains (

ParentTaskId VARCHAR(50) NOT NULL,

ChildTaskId VARCHAR(50) NOT NULL,

PRIMARY KEY (ParentTaskId, ChildTaskId),

CONSTRAINT fk Task

FOREIGN KEY (ParentTaskId) REFERENCES Task (TaskId) ON DELETE CASCADE,

CONSTRAINT fk Task

FOREIGN KEY (ChildTaskId) REFERENCES Task (TaskId) ON DELETE CASCADE

);

86

CREATE TABLE Performs (

PFId VARCHAR(50) NOT NULL,

TaskId VARCHAR(50) NOT NULL,

PRIMARY KEY (PFId, TaskId),

CONSTRAINT fk Performer

FOREIGN KEY (PFId) REFERENCES Performer (PFId) ON DELETE CASCADE,

CONSTRAINT fk Task

FOREIGN KEY (TaskId) REFERENCES Task (TaskId) ON DELETE CASCADE

);

CREATE TABLE IsConnectedTo (

SourcePortId VARCHAR(50) NOT NULL,

DestinationPortId VARCHAR(50) NOT NULL,

PRIMARY KEY (SourcePortId, DestinationPortId),

CONSTRAINT fk Port

FOREIGN KEY (SourcePortId) REFERENCES Port (PortId) ON DELETE CASCADE,

CONSTRAINT fk Port

FOREIGN KEY (DestinationPortId) REFERENCES Port (PortId) ON DELETE CASCADE

);

87

CREATE TABLE TaskPartOfWorkflow (

TaskId VARCHAR(50) NOT NULL,

WorkflowId VARCHAR(50) NOT NULL,

PRIMARY KEY (TaskId, WorkflowId),

CONSTRAINT fk Task

FOREIGN KEY (TaskId) REFERENCES Task (TaskId) ON DELETE CASCADE,

CONSTRAINT fk Workflow

FOREIGN KEY (WorkflowId) REFERENCES Workflow (WorkflowId) ON DELETE CASCADE

);

CREATE TABLE PerformerPartOfWorkflow (

PFId VARCHAR(50) NOT NULL,

WorkflowId VARCHAR(50) NOT NULL,

PRIMARY KEY (PFId, WorkflowId),

CONSTRAINT fk Performer

FOREIGN KEY (PFId) REFERENCES Performer (PFId) ON DELETE CASCADE,

CONSTRAINT fk Workflow

FOREIGN KEY (WorkflowId) REFERENCES Workflow (WorkflowId) ON DELETE CASCADE

);

88

APPENDIX B

Relational Schema for Retrospective Provenance in OPMPROV

CREATE TABLE OPMGraph (

OPMGraphId VARCHAR(50) NOT NULL,

WorkflowId VARCHAR(50) ,

PRIMARY KEY (OPMGraphId),

CONSTRAINT fk Workflow

FOREIGN KEY (WorkflowId) REFERENCES Workflow (WorkflowId)

ON DELETE CASCADE

);

CREATE TABLE OPMGraphAnnotation (

OPMGraphId VARCHAR(50) NOT NULL,

Property VARCHAR(255) NOT NULL,

Value VARCHAR(255) NOT NULL,

PRIMARY KEY (OPMGraphId, Property, Value),

CONSTRAINT fk OPMGraph

FOREIGN KEY (OPMGraphId) REFERENCES OPMGraph (OPMGraphId)

ON DELETE CASCADE

);

89

CREATE TABLE Artifact (

OPMGraphId VARCHAR(50) NOT NULL,

ArtifactId VARCHAR(50) NOT NULL,

Value VARCHAR(255),

PRIMARY KEY (OPMGraphId, ArtifactId),

CONSTRAINT fk OPMGraph

FOREIGN KEY (OPMGraphId) REFERENCES OPMGraph (OPMGraphId)

ON DELETE CASCADE

);

CREATE TABLE ArtifactHasAccount(

OPMGraphId VARCHAR(50) NOT NULL,

ArtifactId VARCHAR(50) NOT NULL,

Account VARCHAR(50) NOT NULL,

PRIMARY KEY (OPMGraphId, ArtifactId, Account),

CONSTRAINT fk Artifact1

FOREIGN KEY (OPMGraphId, ArtifactId) REFERENCES Artifact (OPMGraphId, ArtifactId)

ON DELETE CASCADE

);

90

CREATE TABLE Process (

OPMGraphId VARCHAR(50) NOT NULL,

ProcessId VARCHAR(50) NOT NULL,

Value VARCHAR(255),

TaskId VARCHAR(50),

PRIMARY KEY (OPMGraphId, ProcessId),

CONSTRAINT fk OPMGraph

FOREIGN KEY (OPMGraphId) REFERENCES OPMGraph (OPMGraphId)

ON DELETE CASCADE,

CONSTRAINT fk Task

FOREIGN KEY (TaskId) REFERENCES Task (TaskId)

ON DELETE CASCADE

);

CREATE TABLE ProcessHasAccount(

OPMGraphId VARCHAR(50) NOT NULL,

ProcessId VARCHAR(50) NOT NULL,

Account VARCHAR(50) NOT NULL,

PRIMARY KEY (OPMGraphId, ProcessId, Account),

CONSTRAINT fk Process

FOREIGN KEY (OPMGraphId, ProcessId) REFERENCES Process (OPMGraphId, ProcessId)

ON DELETE CASCADE

);

91

CREATE TABLE Agent (

OPMGraphId VARCHAR(50) NOT NULL,

AgentId VARCHAR(50) NOT NULL,

Value VARCHAR(255),

PFId VARCHAR(50),

PRIMARY KEY (OPMGraphId, AgentId),

CONSTRAINT fk OPMGraph

FOREIGN KEY (OPMGraphId) REFERENCES OPMGraph (OPMGraphId)

ON DELETE CASCADE,

CONSTRAINT fk Performer

FOREIGN KEY (PFId) REFERENCES Performer (PFId)

ON DELETE CASCADE

);

CREATE TABLE AgentHasAccount (

OPMGraphId VARCHAR(50) NOT NULL,

AgentId VARCHAR(50) NOT NULL,

Account VARCHAR(50) NOT NULL,

PRIMARY KEY (OPMGraphId, AgentId, Account),

CONSTRAINT fk Agent

FOREIGN KEY (OPMGraphId, AgentId) REFERENCES Agent (OPMGraphId, AgentId)

ON DELETE CASCADE

);

92

CREATE TABLE WasInputTo (

OPMGraphId VARCHAR(50) NOT NULL,

ArtifactId VARCHAR(50) NOT NULL,

PortId VARCHAR(50) NOT NULL,

PRIMARY KEY (OPMGraphId, ArtifactId, PortId),

CONSTRAINT fk Artifact

FOREIGN KEY (OPMGraphId, ArtifactId) REFERENCES Artifact (OPMGraphId, ArtifactId)

ON DELETE CASCADE,

CONSTRAINT fk Port

FOREIGN KEY (PortId) REFERENCES Port (PortId) ON DELETE CASCADE

);

CREATE TABLE WasOutputBy (

OPMGraphId VARCHAR(50) NOT NULL,

ArtifactId VARCHAR(50) NOT NULL,

PortId VARCHAR(50),

PRIMARY KEY (OPMGraphId, ArtifactId),

CONSTRAINT fk Artifact

FOREIGN KEY (OPMGraphId, ArtifactId) REFERENCES Artifact (OPMGraphId, ArtifactId)

ON DELETE CASCADE,

CONSTRAINT fk Port

FOREIGN KEY (PortId) REFERENCES Port (PortId)

ON DELETE CASCADE

);

93

CREATE TABLE Used (

OPMGraphId VARCHAR(50) NOT NULL,

ProcessId VARCHAR(50) NOT NULL,

Role VARCHAR(255) NOT NULL,

ArtifactId VARCHAR(50) NOT NULL,

OTimeLower VARCHAR(50),

OTimeUpper VARCHAR(50),

PRIMARY KEY (OPMGraphId, ProcessId, Role, ArtifactId),

CONSTRAINT fk Process

FOREIGN KEY (OPMGraphId, ProcessId) REFERENCES Process (OPMGraphId, ProcessId)

ON DELETE CASCADE,

CONSTRAINT fk Artifact

FOREIGN KEY (OPMGraphId, ArtifactId) REFERENCES Artifact (OPMGraphId, ArtifactId)

ON DELETE CASCADE

);

CREATE TABLE UsedHasAccount (

OPMGraphId VARCHAR(50) NOT NULL,

ProcessId VARCHAR(50) NOT NULL,

Role VARCHAR(255) NOT NULL,

ArtifactId VARCHAR(50) NOT NULL,

Account VARCHAR(50) NOT NULL,

PRIMARY KEY (OPMGraphId, ProcessId, Role, ArtifactId, Account),

CONSTRAINT fk Used

FOREIGN KEY (OPMGraphId, ProcessId, Role, ArtifactId)

REFERENCES Used (OPMGraphId, ProcessId, Role, ArtifactId) ON DELETE CASCADE

);

94

CREATE TABLE WasGeneratedBy (

OPMGraphId VARCHAR(50) NOT NULL,

ArtifactId VARCHAR(50) NOT NULL,

Role VARCHAR(255) NOT NULL,

ProcessId VARCHAR(50) NOT NULL,

OTimeLower VARCHAR(50),

OTimeUpper VARCHAR(50),

PRIMARY KEY (OPMGraphId, ArtifactId, Role, ProcessId),

CONSTRAINT fk Artifact

FOREIGN KEY (OPMGraphId, ArtifactId) REFERENCES Artifact (OPMGraphId, ArtifactId)

ON DELETE CASCADE,

CONSTRAINT fk Process

FOREIGN KEY (OPMGraphId, ProcessId) REFERENCES Process (OPMGraphId, ProcessId)

ON DELETE CASCADE

);

CREATE TABLE WasGeneratedByHasAccount (

OPMGraphId VARCHAR(50) NOT NULL,

ArtifactId VARCHAR(50) NOT NULL,

Role VARCHAR(255) NOT NULL,

ProcessId VARCHAR(50) NOT NULL,

Account VARCHAR(50) NOT NULL,

PRIMARY KEY (OPMGraphId, ArtifactId, Role, ProcessId, Account),

CONSTRAINT fk WasGeneratedBy

FOREIGN KEY (OPMGraphId, ArtifactId, Role, ProcessId)

REFERENCES WasGeneratedBy (OPMGraphId, ArtifactId, Role, ProcessId)

ON DELETE CASCADE

);

95

CREATE TABLE WasControlledBy (

OPMGraphId VARCHAR(50) NOT NULL,

ProcessId VARCHAR(50) NOT NULL,

Role VARCHAR(255) NOT NULL,

AgentId VARCHAR(50) NOT NULL,

OTimeStartLower VARCHAR(50),

OTimeStartUpper VARCHAR(50),

OTimeEndLower VARCHAR(50),

OTimeEndUpper VARCHAR(50),

PRIMARY KEY (OPMGraphId, ProcessId, Role, AgentId),

CONSTRAINT fk Process

FOREIGN KEY (OPMGraphId, ProcessId) REFERENCES Process (OPMGraphId, ProcessId)

ON DELETE CASCADE,

CONSTRAINT fk Agent

FOREIGN KEY (OPMGraphId, AgentId) REFERENCES Agent (OPMGraphId, AgentId)

ON DELETE CASCADE

);

CREATE TABLE WasControlledByHasAccount (

OPMGraphId VARCHAR(50) NOT NULL,

ProcessId VARCHAR(50) NOT NULL,

Role VARCHAR(255) NOT NULL,

AgentId VARCHAR(50) NOT NULL,

Account VARCHAR(50) NOT NULL,

PRIMARY KEY (OPMGraphId, ProcessId, Role, AgentId, Account),

CONSTRAINT fk WasControlledBy

FOREIGN KEY (OPMGraphId, ProcessId, Role, AgentId)

REFERENCES WasControlledBy (OPMGraphId, ProcessId, Role, AgentId)

ON DELETE CASCADE

);

96

CREATE TABLE WasDerivedFrom (

OPMGraphId VARCHAR(50) NOT NULL,

EffectArtifactId VARCHAR(50) NOT NULL,

CauseArtifactId VARCHAR(50) NOT NULL,

OTimeLower VARCHAR(50),

OTimeUpper VARCHAR(50),

PRIMARY KEY (OPMGraphId, EffectArtifactId, CauseArtifactId),

CONSTRAINT fk Artifact

FOREIGN KEY (OPMGraphId, EffectArtifactId)

REFERENCES Artifact (OPMGraphId, ArtifactId) ON DELETE CASCADE,

CONSTRAINT fk Artifact

FOREIGN KEY (OPMGraphId, CauseArtifactId)

REFERENCES Artifact (OPMGraphId, ArtifactId) ON DELETE CASCADE

);

CREATE TABLE WasDerivedFromHasAccount (

OPMGraphId VARCHAR(50) NOT NULL,

EffectArtifactId VARCHAR(50) NOT NULL,

CauseArtifactId VARCHAR(50) NOT NULL,

Account VARCHAR(50) NOT NULL,

PRIMARY KEY (OPMGraphId, EffectArtifactId, CauseArtifactId, Account),

CONSTRAINT fk WasDerivedFrom

FOREIGN KEY (OPMGraphId, EffectArtifactId, CauseArtifactId)

REFERENCES WasDerivedFrom (OPMGraphId, EffectArtifactId, CauseArtifactId)

ON DELETE CASCADE

);

97

CREATE TABLE ExplicitWasTriggeredBy (

OPMGraphId VARCHAR(50) NOT NULL,

EffectProcessId VARCHAR(50) NOT NULL,

CauseProcessId VARCHAR(50) NOT NULL,

OTimeLower VARCHAR(50),

OTimeUpper VARCHAR(50),

PRIMARY KEY (OPMGraphId, EffectProcessId, CauseProcessId),

CONSTRAINT fk Process

FOREIGN KEY (OPMGraphId, EffectProcessId)

REFERENCES Process (OPMGraphId, ProcessId) ON DELETE CASCADE,

CONSTRAINT fk Artifact

FOREIGN KEY (OPMGraphId, CauseProcessId)

REFERENCES Process (OPMGraphId, ProcessId) ON DELETE CASCADE

);

CREATE TABLE ExplicitWasTriggeredByHasAccount (

OPMGraphId VARCHAR(50) NOT NULL,

EffectProcessId VARCHAR(50) NOT NULL,

CauseProcessId VARCHAR(50) NOT NULL,

Account VARCHAR(50) NOT NULL,

PRIMARY KEY (OPMGraphId, EffectProcessId, CauseProcessId, Account),

CONSTRAINT fk ExplicitWasTriggeredBy

FOREIGN KEY (OPMGraphId, EffectProcessId, CauseProcessId)

REFERENCES ExplicitWasTriggeredBy (OPMGraphId, EffectProcessId, CauseProcessId)

ON DELETE CASCADE

);

98

CREATE TABLE ArtifactAnnotation (

OPMGraphId VARCHAR(50) NOT NULL,

ArtifactId VARCHAR(50) NOT NULL,

Property VARCHAR(255) NOT NULL,

Value VARCHAR(255) NOT NULL,

PRIMARY KEY (OPMGraphId, ArtifactId, Property, Value),

CONSTRAINT fk Artifact

FOREIGN KEY (OPMGraphId, ArtifactId) REFERENCES Artifact (OPMGraphId, ArtifactId)

ON DELETE CASCADE

);

CREATE TABLE ProcessAnnotation (

OPMGraphId VARCHAR(50) NOT NULL,

ProcessId VARCHAR(50) NOT NULL,

Property VARCHAR(255) NOT NULL,

Value VARCHAR(255) NOT NULL,

PRIMARY KEY (OPMGraphId, ProcessId, Property, Value),

CONSTRAINT fk Process

FOREIGN KEY (OPMGraphId, ProcessId) REFERENCES Process (OPMGraphId, ProcessId)

ON DELETE CASCADE

);

99

CREATE TABLE AgentAnnotation (

OPMGraphId VARCHAR(50) NOT NULL,

AgentId VARCHAR(50) NOT NULL,

Property VARCHAR(255) NOT NULL,

Value VARCHAR(255) NOT NULL,

PRIMARY KEY (OPMGraphId, AgentId, Property, Value),

CONSTRAINT fk Agent

FOREIGN KEY (OPMGraphId, AgentId) REFERENCES Agent (OPMGraphId, AgentId)

ON DELETE CASCADE

);

CREATE TABLE UsedAnnotation (

OPMGraphId VARCHAR(50) NOT NULL,

ProcessId VARCHAR(50) NOT NULL,

Role VARCHAR(255) NOT NULL,

ArtifactId VARCHAR(50) NOT NULL,

Property VARCHAR(255) NOT NULL,

Value VARCHAR(255) NOT NULL,

PRIMARY KEY (OPMGraphId, ProcessId, Role, ArtifactId, Property, Value),

CONSTRAINT fk Used

FOREIGN KEY (OPMGraphId, ProcessId, Role, ArtifactId)

REFERENCES Used (OPMGraphId, ProcessId, Role, ArtifactId) ON DELETE CASCADE

);

100

CREATE TABLE WasGeneratedByAnnotation (

OPMGraphId VARCHAR(50) NOT NULL,

ArtifactId VARCHAR(50) NOT NULL,

Role VARCHAR(255) NOT NULL,

ProcessId VARCHAR(50) NOT NULL,

Property VARCHAR(255) NOT NULL,

Value VARCHAR(255) NOT NULL,

PRIMARY KEY (OPMGraphId, ArtifactId, Role, ProcessId, Property, Value),

CONSTRAINT fk WasGeneratedBy

FOREIGN KEY (OPMGraphId, ArtifactId, Role, ProcessId)

REFERENCES WasGeneratedBy (OPMGraphId, ArtifactId, Role, ProcessId)

ON DELETE CASCADE

);

CREATE TABLE WasControlledByAnnotation (

OPMGraphId VARCHAR(50) NOT NULL,

ProcessId VARCHAR(50) NOT NULL,

Role VARCHAR(255) NOT NULL,

AgentId VARCHAR(50) NOT NULL,

Property VARCHAR(255) NOT NULL,

Value VARCHAR(255) NOT NULL,

PRIMARY KEY (OPMGraphId, ProcessId, Role, AgentId, Property, Value),

CONSTRAINT fk WasControlledBy

FOREIGN KEY (OPMGraphId, ProcessId, Role, AgentId)

REFERENCES WasControlledBy (OPMGraphId, ProcessId, Role, AgentId)

ON DELETE CASCADE

);

101

CREATE TABLE WasDerivedFromAnnotation (

OPMGraphId VARCHAR(50) NOT NULL,

EffectArtifactId VARCHAR(50) NOT NULL,

CauseArtifactId VARCHAR(50) NOT NULL,

Property VARCHAR(255) NOT NULL,

Value VARCHAR(255) NOT NULL,

PRIMARY KEY (OPMGraphId, EffectArtifactId, CauseArtifactId, Property, Value),

CONSTRAINT fk WasDerivedFrom

FOREIGN KEY (OPMGraphId, EffectArtifactId, CauseArtifactId)

REFERENCES WasDerivedFrom (OPMGraphId, EffectArtifactId, CauseArtifactId)

ON DELETE CASCADE

);

CREATE TABLE ExplicitWasTriggeredByAnnotation (

OPMGraphId VARCHAR(50) NOT NULL,

EffectProcessId VARCHAR(50) NOT NULL,

CauseProcessId VARCHAR(50) NOT NULL,

Property VARCHAR(255) NOT NULL,

Value VARCHAR(255) NOT NULL,

PRIMARY KEY (OPMGraphId, EffectProcessId, CauseProcessId, Property, Value),

CONSTRAINT fk ExplicitWasTriggeredBy

FOREIGN KEY (OPMGraphId, EffectProcessId, CauseProcessId)

REFERENCES ExplicitWasTriggeredBy (OPMGraphId, EffectProcessId, CauseProcessId)

ON DELETE CASCADE

);

102

APPENDIX C

The WSDL Definition of the OPQL Web Service

<?xml version=“1.0” encoding=“UTF-8” ?>

<wsdl:definitions xmlns:wsdl=“http://schemas.xmlsoap.org/wsdl/”

xmlns:ns1=“http://org.apache.axis2/xsd” xmlns:ns=“http://pm.viewsystem.org”

xmlns:wsaw=“http://www.w3.org/2006/05/addressing/wsdl”

xmlns:ax21=“http://pm.viewsystem.org/xsd”

xmlns:xs=“http://www.w3.org/2001/XMLSchema”

xmlns:mime=“http://schemas.xmlsoap.org/wsdl/mime/”

xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/”

xmlns:soap12=“http://schemas.xmlsoap.org/wsdl/soap12/”

targetNamespace=“http://pm.viewsystem.org”>

<wsdl:documentation>OPQL</wsdl:documentation>

<wsdl:types>

<xs:schema attributeFormDefault=“qualified” elementFormDefault=“qualified”

targetNamespace=“http://pm.viewsystem.org/xsd”>

<xs:complexType name=“OPMGraphNodeFactoryAdapter”>

<xs:sequence>

<xs:element maxOccurs=“unbounded” minOccurs=“0”

name=“OPMGraphNode” nillable=“true” type=“ax21:IOPMGraphNode” />

</xs:sequence>

103

</xs:complexType>

<xs:complexType name=“IOPMGraphNode”>

<xs:sequence>

<xs:element minOccurs=“0” name=“account” nillable=“true” type=“xs:string” />

<xs:element minOccurs=“0” name=“nodeId” nillable=“true” type=“xs:string” />

<xs:element minOccurs=“0” name=“value” nillable=“true” type=“xs:string” />

</xs:sequence>

</xs:complexType>

<xs:complexType name=“OPMGraphFactoryAdapter”>

<xs:sequence>

<xs:element maxOccurs=“unbounded” minOccurs=“0” name=“OPMGraph”

nillable=“true” type=“ax21:IOPMGraph” />

<xs:element maxOccurs=“unbounded” minOccurs=“0” name=“OPMGraphs”

nillable=“true” type=“ax21:IOPMGraph” />

</xs:sequence>

</xs:complexType>

<xs:complexType name=“IOPMGraph”>

<xs:sequence>

<xs:element minOccurs=“0” name=“destinationNode”

nillable=“true” type=“xs:string” />

<xs:element minOccurs=“0” name=“sourceNode”

nillable=“true” type=“xs:string” />

</xs:sequence>

</xs:complexType>

</xs:schema>

104

<xs:schema xmlns:ax22=“http://pm.viewsystem.org/xsd” attributeFormDefault=“qualified”

elementFormDefault=“qualified” targetNamespace=“http://pm.viewsystem.org”>

<xs:import namespace=“http://pm.viewsystem.org/xsd” />

<xs:element name=“getRelationProcessHasAccount”>

<xs:complexType>

<xs:sequence>

<xs:element minOccurs=“0” name=“opmgraphid”

nillable=“true” type=“xs:string” />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=“getRelationProcessHasAccountResponse”>

<xs:complexType>

<xs:sequence>

<xs:element minOccurs=“0” name=“return” nillable=“true”

type=“ax22:OPMGraphNodeFactoryAdapter” />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=“getRelationArtifactHasAccountWithOverlappedAccount”>

<xs:complexType>

<xs:sequence>

<xs:element minOccurs=“0” name=“opmgraphid”

nillable=“true” type=“xs:string” />

</xs:sequence>

105

</xs:complexType>

</xs:element>

<xs:element name=“getRelationArtifactHasAccountWithOverlappedAccountResponse”>

<xs:complexType>

<xs:sequence>

<xs:element minOccurs=“0” name=“return” nillable=“true”

type=“ax22:OPMGraphNodeFactoryAdapter” />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=“getRelationAgentHasAccount”>

<xs:complexType>

<xs:sequence>

<xs:element minOccurs=“0” name=“opmgraphid”

nillable=“true” type=“xs:string” />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=“getRelationAgentHasAccountResponse”>

<xs:complexType>

<xs:sequence>

<xs:element minOccurs=“0” name=“return” nillable=“true”

type=“ax22:OPMGraphNodeFactoryAdapter” />

</xs:sequence>

</xs:complexType>

106

</xs:element>

<xs:element name=“executeOPQLQuery”>

<xs:complexType>

<xs:sequence>

<xs:element minOccurs=“0” name=“opmgraphid”

nillable=“true” type=“xs:string” />

<xs:element minOccurs=“0” name=“opqlQuery”

nillable=“true” type=“xs:string” />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=“executeOPQLQueryResponse”>

<xs:complexType>

<xs:sequence>

<xs:element minOccurs=“0” name=“return” nillable=“true”

type=“ax22:OPMGraphFactoryAdapter” />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

</wsdl:types>

<wsdl:message name=“getRelationArtifactHasAccountWithOverlappedAccountRequest”>

<wsdl:part name=“parameters”

element=“ns:getRelationArtifactHasAccountWithOverlappedAccount” />

</wsdl:message>

107

<wsdl:message name=“getRelationArtifactHasAccountWithOverlappedAccountResponse”>

<wsdl:part name=“parameters”

element=“ns:getRelationArtifactHasAccountWithOverlappedAccountResponse” />

</wsdl:message>

<wsdl:message name=“getRelationAgentHasAccountRequest”>

<wsdl:part name=“parameters” element=“ns:getRelationAgentHasAccount” />

</wsdl:message>

<wsdl:message name=

“getRelationAgentHasAccountResponse”>

<wsdl:part name=“parameters” element=“ns:getRelationAgentHasAccountResponse” />

</wsdl:message>

<wsdl:message name=“getRelationProcessHasAccountRequest”>

<wsdl:part name=“parameters” element=“ns:getRelationProcessHasAccount” />

</wsdl:message>

<wsdl:message name=“getRelationProcessHasAccountResponse”>

<wsdl:part name=“parameters” element=“ns:getRelationProcessHasAccountResponse” />

</wsdl:message>

<wsdl:message name=“executeOPQLQueryRequest”>

<wsdl:part name=“parameters” element=“ns:executeOPQLQuery” />

</wsdl:message>

<wsdl:message name=“executeOPQLQueryResponse”>

<wsdl:part name=“parameters” element=“ns:executeOPQLQueryResponse” />

</wsdl:message>

108

<wsdl:portType name=“OPQLPortType”>

<wsdl:operation name=

“getRelationArtifactHasAccountWithOverlappedAccount”>

<wsdl:input message=

“ns:getRelationArtifactHasAccountWithOverlappedAccountRequest”

wsaw:Action=

“urn:getRelationArtifactHasAccountWithOverlappedAccount” />

<wsdl:output message=

“ns:getRelationArtifactHasAccountWithOverlappedAccountResponse”

wsaw:Action=

“urn:getRelationArtifactHasAccountWithOverlappedAccountResponse” />

</wsdl:operation>

<wsdl:operation name=“getRelationAgentHasAccount”>

<wsdl:input message=“ns:getRelationAgentHasAccountRequest”

wsaw:Action=“urn:getRelationAgentHasAccount” />

<wsdl:output message=“ns:getRelationAgentHasAccountResponse”

wsaw:Action=“urn:getRelationAgentHasAccountResponse” />

</wsdl:operation>

<wsdl:operation name=“getRelationProcessHasAccount”>

<wsdl:input message=“ns:getRelationProcessHasAccountRequest”

wsaw:Action=“urn:getRelationProcessHasAccount” />

<wsdl:output message=“ns:getRelationProcessHasAccountResponse”

wsaw:Action=“urn:getRelationProcessHasAccountResponse” />

</wsdl:operation>

109

<wsdl:operation name=“executeOPQLQuery”>

<wsdl:input message=“ns:executeOPQLQueryRequest”

wsaw:Action=“urn:executeOPQLQuery” />

<wsdl:output message=“ns:executeOPQLQueryResponse”

wsaw:Action=“urn:executeOPQLQueryResponse” />

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name=“OPQLSoap11Binding” type=“ns:OPQLPortType”>

<soap:binding transport=“http://schemas.xmlsoap.org/soap/http” style=“document” />

<wsdl:operation name=“getRelationArtifactHasAccountWithOverlappedAccount”>

<soap:operation soapAction=

“urn:getRelationArtifactHasAccountWithOverlappedAccount”

style=“document” />

<wsdl:input>

<soap:body use=“literal” />

</wsdl:input>

<wsdl:output>

<soap:body use=“literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=“getRelationAgentHasAccount”>

<soap:operation soapAction=“urn:getRelationAgentHasAccount” style=“document” />

<wsdl:input>

<soap:body use=“literal” />

</wsdl:input>

110

<wsdl:output>

<soap:body use=“literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=“getRelationProcessHasAccount”>

<soap:operation soapAction=“urn:getRelationProcessHasAccount”

style=“document” />

<wsdl:input>

<soap:body use=“literal” />

</wsdl:input>

<wsdl:output>

<soap:body use=“literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=“executeOPQLQuery”>

<soap:operation soapAction=”urn:executeOPQLQuery” style=”document” />

<wsdl:input>

<soap:body use=“literal” />

</wsdl:input>

<wsdl:output>

<soap:body use=“literal” />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

111

<wsdl:binding name=“OPQLSoap12Binding” type=“ns:OPQLPortType”>

<soap12:binding transport=“http://schemas.xmlsoap.org/soap/http” style=“document” />

<wsdl:operation name=“getRelationArtifactHasAccountWithOverlappedAccount”>

<soap12:operation soapAction=

“urn:getRelationArtifactHasAccountWithOverlappedAccount”

style=“document” />

<wsdl:input>

<soap12:body use=“literal” />

</wsdl:input>

<wsdl:output>

<soap12:body use=“literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=“getRelationAgentHasAccount”>

<soap12:operation soapAction=“urn:getRelationAgentHasAccount” style=“document” />

<wsdl:input>

<soap12:body use=“literal” />

</wsdl:input>

<wsdl:output>

<soap12:body use=“literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=“getRelationProcessHasAccount”>

<soap12:operation soapAction=“urn:getRelationProcessHasAccount” style=“document” />

112

<wsdl:input>

<soap12:body use=“literal” />

</wsdl:input>

<wsdl:output>

<soap12:body use=“literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=“executeOPQLQuery”>

<soap12:operation soapAction=“urn:executeOPQLQuery” style=“document” />

<wsdl:input>

<soap12:body use=“literal” />

</wsdl:input>

<wsdl:output>

<soap12:body use=“literal” />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:binding name=“OPQLHttpBinding” type=“ns:OPQLPortType”>

<http:binding verb=“POST” />

<wsdl:operation name=“getRelationArtifactHasAccountWithOverlappedAccount”>

<http:operation location=

“OPQL/getRelationArtifactHasAccountWithOverlappedAccount” />

<wsdl:input>

<mime:content type=“text/xml”

part=“getRelationArtifactHasAccountWithOverlappedAccount” />

113

</wsdl:input>

<wsdl:output>

<mime:content type=“text/xml”

part=“getRelationArtifactHasAccountWithOverlappedAccount” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=“getRelationAgentHasAccount”>

<http:operation location=“OPQL/getRelationAgentHasAccount” />

<wsdl:input>

<mime:content type=“text/xml” part=“getRelationAgentHasAccount” />

</wsdl:input>

<wsdl:output>

<mime:content type=“text/xml” part=“getRelationAgentHasAccount” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=“getRelationProcessHasAccount”>

<http:operation location=“OPQL/getRelationProcessHasAccount” />

<wsdl:input>

<mime:content type=“text/xml” part=“getRelationProcessHasAccount” />

</wsdl:input>

<wsdl:output>

<mime:content type=“text/xml” part=“getRelationProcessHasAccount” />

</wsdl:output>

</wsdl:operation>

114

<wsdl:operation name=“executeOPQLQuery”>

<http:operation location=“OPQL/executeOPQLQuery” />

<wsdl:input>

<mime:content type=“text/xml” part=“executeOPQLQuery” />

</wsdl:input>

<wsdl:output>

<mime:content type=“text/xml” part=“executeOPQLQuery” />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name=“OPQL”>

<wsdl:port name=“OPQLHttpSoap11Endpoint” binding=“ns:OPQLSoap11Binding”>

<soap:address location=

“http://pm.viewsystem.org/axis2/services/OPQL.OPQLHttpSoap11Endpoint/” />

</wsdl:port>

<wsdl:port name=“OPQLHttpSoap12Endpoint” binding=“ns:OPQLSoap12Binding”>

<soap12:address location=

“http://pm.viewsystem.org/axis2/services/OPQL.OPQLHttpSoap12Endpoint/” />

</wsdl:port>

<wsdl:port name=“OPQLHttpEndpoint” binding=“ns:OPQLHttpBinding”>

<http:address location=

“http://pm.viewsystem.org/axis2/services/OPQL.OPQLHttpEndpoint/” />

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

115

BIBLIOGRAPHY

[1] E. Deelman and A. L. Chervenak, Data management challenges of data-intensive scientific

workflows, In Proc. of the International Symposium on Cluster Computing and the Grid

(CCGRID), pages 687-692, 2008.

[2] S. B. Davidson and J. Freire, Provenance and scientific workflows: Challenges and oppor-

tunities, In Proc. of the ACM SIGMOD International Conference on Management of Data

(SIGMOD), pages 1345-1350, 2008.

[3] E. Deelman, Y. Gil, and M. Zemankova, NSF Workshop on the Challenges of Scientific

Workflows, 2006.

[4] G. Bell, T. Hey, and A. Szalay, Beyond the data eeluge, Science, 323(6):1297-1298, 2009.

[5] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi, and J. Hua, A reference ar-

chitecture for scientific workflow management systems and the VIEW SOA solution, IEEE

Transactions on Services Computing (TSC), 2(1):79-92, 2009.

[6] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, and F. Fotouhi, Service-oriented archi-

tecture for VIEW: A Visual Scientific Workflow Management System, In Proc. of the IEEE

International Conference on Services Computing (SCC), pages 335-342, 2008.

[7] A. Chebotko, S. Lu, X. Fei, and F. Fotouhi, RDFProv: A relational RDF store for query-

ing and managing scientific workflow provenance, Data & Knowledge Engineering (DKE),

69(8):836-865, 2010.

[8] P. Groth and L. Moreau, Recording process documentation for provenance, IEEE Transac-

tions on Parallel and Distributed Systems (TPDS), 20(9):1246-1259, 2009.

116

[9] S. Miles, P. Groth, S. Munroe, S. Jiang, T. Assandri, and L. Moreau, Extracting causal

graphs from an open provenance data model, Concurrency and Computation: Practice and

Experience, 20(5):577-586, 2008.

[10] N. Kwasnikowska and J. V. Bussche, Mapping the NRC dataflow model to the Open Prove-

nance Model, In Proc. of the International Provenance and Annotation Workshop (IPAW),

pages, 2008.

[11] D. L. McGuinness, J. Michaelis, and L. Moreau, Provenance and annotation of data and

processes - Third International Provenance and Annotation Workshop (IPAW 2010), Lecture

Notes in Computer Science (LNCS), Vol. 6378, 2010.

[12] The Open Provenance Model (OPM) home page, http://openprovenance.org,

2007.

[13] The XML schema of the Open Provenance Model (v1.01), http://openprovenance.

org/model/v1.01.a, 2008.

[14] The Provenance Challenge Wiki website, http://twiki.ipaw.info/bin/view/

Challenge/WebHome, 2006.

[15] The Third Provenance Challenge Wiki website, http://twiki.ipaw.info/bin/

view/Challenge/ThirdProvenanceChallenge, 2009.

[16] Pan-STARRS project home page, http://ps1sc.org/, 2009.

[17] L. Moreau (Editor), B. Plale, S. Miles, C. Goble, P. Missier, R. Barga, Y. Simmhan, J.

Futrelle, R. E. McGrath, J. Myers, P. Paulson, S. Bowers, B. Ludäscher, N. Kwasnikowska,

J. V. Bussche, T. Ellkvist, J. Freire, and P. Groth, The Open Provenance Model (v1.01),

Technical report, University of Southampton, 2008.

[18] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska, S. Miles,

P. Missier, J. Myers, B. Plale, Y. Simmhan, E. Stephan, and J. V. Bussche, The Open

117

Provenance Model core specification (v1.1), Future Generation Computer Systems (FGCS),

27(6):743-756, 2011.

[19] Y. Simmhan, P. T. Groth, and L. Moreau, Special section: The Third Provenance Challenge

on using the open provenance model for interoperability, Future Generation Computer Sys-

tems (FGCS), 27(6):737-742, 2011.

[20] S. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and C. Zaniolo, Efficient structural joins on

indexed XML documents, In Proc. of the International Conference on Very Large Data

Bases (VLDB), pages 263-274, 2002.

[21] B. He, Q. Luo, and B. Choi, Adaptive index utilization in memory-resident structural joins,

IEEE Transactions on Knowledge and Data Engineering (TKDE), 19(6):772-788, 2007.

[22] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry, 3-HOP: A high-compression indexing scheme for

reachability query, In Proc. of the ACM SIGMOD International Conference on Management

of Data (SIGMOD), pages 813-826, 2009.

[23] Y. Chen and Y. Chen, An efficient algorithm for answering graph reachability queries, In

Proc. of the International Conference on Data Engineering (ICDE), pages 893-902, 2008.

[24] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo, VisTrails:

Visualization meets data management, In Proc. of the ACM SIGMOD International Confer-

ence on Management of Data (SIGMOD), pages 745-747, 2006.

[25] C. E. Scheidegger, D. Koop, E. Santos, H. T. Vo, S. P. Callahan, J. Freire, and C. T. Silva,

Tackling the Provenance Challenge one layer at a time, Concurrency and Computation:

Practice and Experience, 20(5):473-483, 2008.

[26] C. Silva, J. Freire, and S. Callahan, Provenance for visualizations: Reproducibility and

beyond, IEEE Computing in Science and Engineering, 9(5):82-29, 2007.

118

[27] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger, and H. T. Vo, Man-

aging rapidly-evolving scientific workflows, In Proc. of the International Provenance and

Annotation Workshop (IPAW), pages 10-18, 2006.

[28] M. Anand, S. Bowers, and B. Ludäscher, Techniques for efficiently querying scientific work-

flow provenance graphs, In Proc. of the International Conference on Extending Database

Technology (EDBT), pages 287-298, 2010.

[29] M. Anand, S. Bowers, and B. Ludäscher, Provenance browser: Displaying and querying

scientific workflow provenance graphs, In Proc. of the IEEE International Conference on

Data Engineering (ICDE), pages 1201-1204, 2010.

[30] M. Anand, S. Bowers, I. Altintas, and B. Ludäscher, Approaches for exploring and query-

ing scientific workflow provenance graphs, In Proc. of the International Provenance and

Annotation Workshop (IPAW), pages 17-26, 2010.

[31] I. Altintas, M. Anand, D. Crawl, S. Bowers, A. Belloum, P. Missier, B. Ludäscher, C. Goble,

and P. Sloot, Understanding collaborative studies through interoperable workflow prove-

nance, In Proc. of the International Provenance and Annotation Workshop (IPAW), pages

42-58, 2010.

[32] M. Anand, S. Bowers, and B. Ludäscher, A navigation model for exploring scientific work-

flow provenance graphs, In Proc. of the Workshop on Workflows in Support of Large-Scale

Science (SC-WORKS), 2009.

[33] M. Anand, S. Bowers, T. McPhillips, and B. Ludäscher, Exploring scientific workflow

provenance using hybrid queries over nested data and lineage graphs, In Proc. of the Inter-

national Conference on Scientific and Statistical Database Management (SSDBM), pages

237-254, 2009.

[34] M. Anand, S. Bowers, T. McPhillips, and B. Ludäscher, Efficient provenance storage over

nested data collections, In Proc. of the International Conference on Extending Database

Technology (EDBT), pages 958-969, 2009.

119

[35] S. Bowers, T. McPhillips, S. Riddle, M. Anand, and B. Ludäscher, Kepler/pPOD: Scientific

workflow and provenance support for assembling the tree of life, In Proc. of the Interna-

tional Provenance and Annotation Workshop (IPAW), pages 70-77, 2008.

[36] S. Bowers, T. M. McPhillips, and B. Ludäscher, Provenance in collection-oriented scientific

workflows, Concurrency and Computation: Practice and Experience, 20(5):519-529, 2008.

[37] I. Altintas, O. Barney, and E. Jaeger-Frank, Provenance collection support in the Kepler sci-

entific workflow system, In Proc. of the International Provenance and Annotation Workshop

(IPAW), pages 118-132, 2006.

[38] S. Bowers, T. M. McPhillips, B. Ludäscher, S. Cohen, and S. B. Davidson, A model for

user-oriented data provenance in pipelined scientific workflows, In Proc. of the International

Provenance and Annotation Workshop (IPAW), pages 133-147, 2006.

[39] S. B. Davidson, S. Khanna, S. Roy, J. Stoyanovich, V. Tannen, and Yi Chen, On provenance

and privacy, In Proc. of the IEEE International Conference on Database Theory (ICDT),

pages 3-10, 2011.

[40] Z. Bao, S. B. Davidson, S. Khanna, and S. Roy, An optimal labeling scheme for workflow

provenance using skeleton labels, In Proc. of the ACM SIGMOD International Conference

on Management of Data (SIGMOD), pages 711-722, 2010.

[41] S. B. Davidson, S. Khanna, D. Panigrahi, and S. Roy, Preserving module privacy in work-

flow provenance, CoRR abs/1005.5543, 2010.

[42] Z. Bao, S. C. Boulakia, S. B. Davidson, A. Eyal, and S. Khanna, Differencing provenance

in scientific workflows, In Proc. of the IEEE International Conference on Data Engineering

(ICDE), pages 808-819, 2009.

[43] Z. Bao, S. C. Boulakia, S. B. Davidson, and P. Girard, PDiffView: Viewing the difference

in provenance of workflow results, In Proc. of the VLDB Endowment (PVLDB), 2(2): 1638-

1641, 2009.

120

[44] O. Biton, S. C. Boulakia, S. B. Davidson, and C. S. Hara, Querying and managing prove-

nance through user views in scientific workflows, In Proc. of the IEEE International Con-

ference on Data Engineering (ICDE), pages 1072-1081, 2008.

[45] S. C. Boulakia, O. Biton, S. Cohen, and S. B. Davidson, Addressing the Provenance Chal-

lenge using ZOOM, Concurrency and Computation: Practice and Experience, 20(5): 497-

506, 2008.

[46] O. Biton, S. C. Boulakia, and S. B. Davidson, Zoom*UserViews: Querying relevant prove-

nance in workflow systems, In Proc. of the International Conference on Very Large Data

Bases (VLDB), pages 1366-1369, 2007.

[47] S. B. Davidson, S. C. Boulakia, A. Eyal, B. Ludäscher, T. M. McPhillips, S. Bowers, M. K.

Anand, and J. Freire, Provenance in scientific workflow systems, IEEE Data Engineering

Bulletin (DEBU), 30(4): 44-50, 2007.

[48] S. Cohen, S. C. Boulakia, and S. B. Davidson, Towards a model of provenance and user

views in scientific workflows, In Proc. of the International Conference on Data Integration

in the Life Sciences (DILS), pages 264-279, 2006.

[49] P. Missier, S. Sahoo, J. Zhao, C. Goble, and A. Sheth, Janus: From workflows to semantic

provenance and linked open data, In Proc. of the International Provenance and Annotation

Workshop (IPAW), pages 129-141, 2010.

[50] P. Missier, N. W. Paton, and K. Belhajjame, Fine-grained and efficient lineage querying of

collection-based workflow provenance, In Proc. of the International Conference on Extend-

ing Database Technology (EDBT), pages 299-310, 2010.

[51] P. Missier, K. Belhajjame, J. Zhao, and C. Goble, Data lineage model for Taverna workflows

with lightweight annotation requirements, In Proc. of the International Provenance and

Annotation Workshop (IPAW), pages 17-30, 2008.

121

[52] A. Gibson, M. Gamble, K. Wolstencroft, T. Oinn, C. A. Goble, K. Belhajjame, and Paolo

Missier, The data playground: An intuitive workflow specification environment, Future

Generation Computer Systems (FGCS), 25(4): 453-459, 2009.

[53] P. Missier, S. M. Embury, and R. Stapenhurst, Exploiting provenance to make sense of

automated decisions in scientific workflows, In Proc. of the International Provenance and

Annotation Workshop (IPAW), pages 174-185, 2008.

[54] J. Zhao, C. Goble, R. Stevens, and D. Turi, Mining Taverna’s Semantic Web of provenance,

Concurrency and Computation: Practice and Experience, 20(5):463-472, 2008.

[55] A. Preece, P. Missier, S. Embury, B. Jin, and M. Greenwood, An ontology-based approach

to handling information quality in e-Science, Concurrency and Computation: Practice and

Experience, 20(3):253-264, 2008.

[56] P. Missier, P. Alper, O. Corcho, I. Dunlop, and C. Goble, Requirements and services for

metadata management, IEEE Internet Computing, 11(5):17-25, 2007.

[57] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and T. Oinn, Taverna:

A tool for building and running workflows of services, Nucleic Acids Research (NAR),

34(Web-Server-Issue):729-732, 2006.

[58] R. S. Barga, Y. L. Simmhan, E. Chinthaka, S. S. Sahoo, J. Jackson, and N. Araujo, Prove-

nance for scientific workflows towards reproducible research, IEEE Data Engineering Bul-

letin (DEBU), 33(3):50-58, 2010.

[59] B. Cao, B. Plale, G. Subramanian, P. Missier, C. Goble, and Y. Simmhan, Semantically

annotated provenance in the life science grid - The International Workshop on the role of

Semantic Web in Provenance Management (SWPM 2009), CEUR Workshop Proceedings

(CEUR-WS.org), Vol. 526, 2009.

122

[60] B. Cao, B. Plale, G. Subramanian, E. Robertson, and Y. Simmhan, Provenance informa-

tion model of Karma version 3, In Proc. of the IEEE International Workshop on Scientific

Workflows (SWF), pages 348-351, 2009.

[61] Y. Simmhan, B. Plale, and D. Gannon, Karma2: Provenance management for data driven

workflows, International Journal of Web Services Research, 5(2):1-22, 2008.

[62] Y. Simmhan, B. Plale, and D. Gannon, Query capabilities of the Karma provenance frame-

work, Concurrency and Computation: Practice and Experience, 20(5):441-451, 2008.

[63] Y. Simmhan, B. Plale, and D. Gannon, A framework for collecting provenance in data-

centric scientific workflows, In Proc. of the IEEE International Conference on Web Services

(ICWS), pages 427-436, 2006.

[64] Y. Simmhan, B. Plale, and D. Gannon, A survey of data provenance in e-Science, ACM

SIGMOD Record, 34(3), 2005.

[65] D. Crawl and I. Altintas, A provenance-based fault tolerance mechanism for scientific work-

flows, In Proc. of the International Provenance and Annotation Workshop (IPAW), pages

152-159, 2008.

[66] T. M. McPhillips, S. Bowers, D. Zinn, and B. Ludäscher, Scientific workflow design for

mere mortals, Future Generation Computer Systems (FGCS), 25(5):541-551, 2009.

[67] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. vonLaszewski, I. Raicu, T. Stef-Praun, and

M. Wilde, Swift: Fast, reliable, loosely coupled parallel computation, In Proc. of the IEEE

International Workshop on Scientific Workflows (SWF), pages 199-206, 2007.

[68] Y. Zhao, M. Wilde, and I. T. Foster, Applying the virtual data provenance model, In Proc. of

the International Provenance and Annotation Workshop (IPAW), pages 148-161, 2006.

[69] Y. Zhao and S. Lu, A logic programming approach to scientific workflow provenance query-

ing, In Proc. of the International Provenance and Annotation Workshop (IPAW), pages 31-

44, 2008.

123

[70] M. Atay, A. Chebotko, D. Liu, S. Lu, and F. Fotouhi, Efficient schema-based XML-to-

Relational data mapping, Information Systems (IS), 32(3):458-476, 2007.

[71] A. Chebotko, C. Lin, X. Fei, Z. Lai, S. Lu, J. Hua, and F. Fotouhi, VIEW: A Visual Scientific

Workflow Management System, In Proc. of the IEEE International Workshop on Scientific

Workflows (SWF), pages 207-208, 2007.

[72] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi, Storing and querying scientific workflow

provenance metadata using an RDBMS, In Proc. of the IEEE International Conference on

e-Science and Grid Computing (e-Science), pages 611-618, 2007.

[73] A. Chebotko, S. Chang, S. Lu, F. Fotouhi, and P. Yang, Scientific workflow provenance

querying with security views, In Proc. of the International Conference on Web-Age Infor-

mation Management(WAIM), pages 349-356, 2008.

[74] L. Wang, S. Lu, X. Fei, A. Chebotko, H. Bryant, and J. Ram, Atomicity and provenance

support for pipelined scientific workflows, Future Generation Computer Systems (FGCS),

25(5):568-576, 2009.

[75] X. Fei, S. Lu, and C. Lin, A MapReduce-enabled scientific workflow composition frame-

work, In Proc. of the IEEE International Conference on Web Services (ICWS), pages 663-

670, 2009.

[76] X. Fei and S. Lu, A collectional data model for scientific workflow composition, In Proc. of

the IEEE International Conference on Web Services (ICWS), pages 567-574, 2010.

[77] X. Fei and S. Lu, A dataflow-based scientific workflow composition framework, IEEE

Transactions on Services Computing (TSC), 2011. In press.

[78] J. Abraham, P. Brazier, A. Chebotko, J. Navarro, and A. Piazza, Distributed storage and

querying techniques for a Semantic Web of scientific workflow provenance, In Proc. of the

IEEE International Conference on Services Computing (SCC), pages 178-185, 2010.

124

[79] A. Chebotko, S. Lu, S. Chang, F. Fotouhi, and P. Yang, Secure abstraction views for sci-

entific workflow provenance querying, IEEE Transactions on Services Computing (TSC),

3(4):322-337, 2010.

[80] J. Alhiyafi, A scientific workflow system for genomic data analysis, PhD thesis, Wayne

State University, 2010.

[81] C. Lim, S. Lu, A. Chebotko, and F. Fotouhi, Prospective and retrospective provenance col-

lection in scientific workflow environments, In Proc. of the IEEE International Conference

on Services Computing (SCC), pages 449-456, 2010.

[82] C. Lim, S. Lu, A. Chebotko, and F. Fotouhi, Storing, reasoning, and querying OPM-

compliant scientific workflow provenance using relational databases, Future Generation

Computer Systems (FGCS), 27(6):781-789, 2011.

[83] C. Lim, S. Lu, A. Chebotko, and F. Fotouhi, OPQL: A first OPM-level query language for

scientific workflow provenance, In Proc. of the IEEE International Conference on Services

Computing (SCC), pages 136-143, 2011.

[84] P. Groth, S. Miles, and L. Moreau, A model of process documentation to determine prove-

nance in mash-ups, ACM Transactions on Internet Technology (TOIT), 9(1):1-31, 2009.

[85] P. T. Groth, S. Miles, W. Fang, S. C. Wong, K. Zauner, and L. Moreau, Recording and using

provenance in a protein compressibility experiment, In Proc. of the International Symposium

on High Performance Distributed Computing (HPDC), pages 201-208, 2005.

[86] S. Miles, P. Groth, M. Branco, and L. Moreau, The requirements of recording and using

provenance in e-science experiments, Technical report, University of Southampton, 2005.

[87] M. Szomszor and L. Moreau, Recording and reasoning over data provenance in Web and

Grid services, In Proc. of the International Conference on Ontologies, Databases, and Ap-

plications of Semantics (ODBASE), pages 603-620, 2003.

125

[88] P. T. Groth, M. Luck, and L. Moreau, A protocol for recording provenance in service-

oriented Grids, In Proc. of the International Conference on Principles of Distributed Systems

(OPODIS), pages 124-139, 2004.

[89] P. T. Groth, E. Deelman, G. Juve, G. Mehta, and G. B. Berriman, Pipeline-centric prove-

nance model, CoRR abs/1005.4457, 2010.

[90] J. Kim, E. Deelman, Y. Gil, G. Mehta, and V. Ratnakar, Provenance trails in

the Wings/Pegasus system, Concurrency and Computation: Practice and Experience,

20(5):587-597, 2008.

[91] D. A. Holland, U. Braun, D. Maclean, K. Muniswamy-Reddy, and M. Seltzer, Choosing a

data model and query language for provenance, In Proc. of the International Provenance

and Annotation Workshop (IPAW), 2008.

[92] D. A. Holland, M. I. Seltzer, U. Braun, and K. Muniswamy-Reddy, PASSing the Provenance

Challenge, Concurrency and Computation: Practice and Experience, 20(5):531-540, 2008.

[93] E. Deelman, D. Gannon, M. S. Shields, and I. Taylor, Workflows and e-Science: An

overview of workflow system features and capabilities, Future Generation Computer Sys-

tems (FGCS), 25(5):528-540, 2009.

[94] E. Elmroth, F. Hernández, and J. Tordsson, Three fundamental dimensions of scientific

workflow interoperability: Model of computation, language, and execution environment,

Future Generation Computer Systems (FGCS), 26(2):245-256, 2010.

[95] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, Service provenance in QoS-aware

Web service runtimes, In Proc. of the IEEE International Conference on Web Services

(ICWS), pages 115-122, 2009.

[96] W. Ding, J. Wang, and Y. Han, ViPen: A model supporting knowledge provenance for

exploratory service composition, In Proc. of the IEEE International Conference on Services

Computing (SCC), pages 265-272, 2010.

126

[97] S. Miles, P. T. Groth, M. Branco, and L. Moreau, The requirements of using provenance in

e-Science experiments, Journal of Grid Computing (GRID), 5(1):1-25, 2007.

[98] H. He and A. K. Singh, Graphs-at-a-time: query language and access methods for graph

databases, In the Proc. of the ACM SIGMOD International Conference on Management of

Data (SIGMOD), pages 405-418, 2008.

[99] R. Zeng, X. He, and W.M.P. van der Aalst, A method to mine workflows from provenance

for assisting scientific workflow composition, In Proc. of the IEEE International Workshop

on Scientific Workflows (SWF), pages 169-175, 2011.

[100] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, Selective service provenance in

the VRESCo runtime, International Journal of Web Service Research (IJWSR), 7(2):65-86,

2010.

[101] W. Tsai, X. Wei, Y. Chen, R. Paul, J. Chung, and D. Zhang, Data provenance in SOA:

Security, reliability, and integrity, Service Oriented Computing and Applications (SOCA),

1(4):223-247, 2007.

[102] S. Cruz, M. Campos, and M. Mattoso, Towards a taxonomy of provenance in scientific

workflow management systems, In Proc. of the IEEE International Workshop on Scientific

Workflows (SWF), pages 259-266, 2009.

[103] T. Ellqvist, D. Koop, J. Freire, C. T. Silva, and L. Stromback, Using mediation to achieve

provenance interoperability, In Proc. of the IEEE International Workshop on Scientific Work-

flows (SWF), pages 291-298, 2009.

[104] A. Marinho, C. Werner, S. Cruz, M. Mattoso, V. Braganholo, and L. Murta, A strategy for

provenance gathering in distributed scientific workflows, In Proc. of the IEEE International

Workshop on Scientific Workflows (SWF), pages 344-347, 2009.

127

[105] I. Altintas, Lifecycle of scientific workflows and their provenance: A usage perspective, In

Proc. of the IEEE International Workshop on Scientific Workflows (SWF), pages 474-475,

2008.

[106] C. Ringelstein and S. Staab, DiALog: A distributed model for capturing provenance and

auditing information, International Journal of Web Service Research (IJWSR), 7(2):1-20,

2010.

[107] M. A. Vouk and M. P. Singh, Quality of service and scientific workflows, In Proc. of the

IFIP TC2/WG2.5 Working Conference on the Quality of Numerical Software, pages 77-89,

1996.

[108] C. T. Silva, E. W. Anderson, E. Santos, and J. Freire, Using VisTrails and provenance for

teaching scientific visualization, Computer Graphic Forum, 30(1):75-84, 2011.

[109] D. Zinn, Q. Hart, T. M. McPhillips, B. Ludäscher, Y. Simmhan, M. Giakkoupis, and V.

K. Prasanna, Towards reliable, performant workflows for streaming-applications on cloud

platforms, In Proc. of the International Symposium on Cluster Computing and the Grid

(CCGRID), pages 235-244, 2011.

[110] D. Yuan, Y. Yang, X. Liu, and J. Chen, On-demand minimum cost benchmarking for in-

termediate dataset storage in scientific cloud workflow systems, Journal of Parallel and

Distributed Computing (JPDC), 71(2):316-332, 2011.

[111] G. Juve and E. Deelman, Scientific workflows and clouds, ACM Crossroads (CROSS-

ROADS), 16(3):14-18, 2010.

[112] K. S. Shams, M. W. Powell, T. Crockett, J. S. Norris, R. Rossi, and T. Soderstrom,

Polyphony: A workflow orchestration framework for cloud computing, In Proc. of the Inter-

national Symposium on Cluster Computing and the Grid (CCGRID), pages 606-611, 2010.

128

[113] T. Huu and J. Montagnat, Virtual resources allocation for workflow-based applications dis-

tribution on a cloud infrastructure, In Proc. of the International Symposium on Cluster Com-

puting and the Grid (CCGRID), pages 612-617, 2010.

[114] D. Yuan, Y. Yang, X. Liu, and J. Chen, A data placement strategy in scientific cloud work-

flows, Future Generation Computer Systems (FGCS), 26(8):1200-1214, 2010.

[115] P. T. Groth and L. Moreau, Representing distributed systems using the Open Provenance

Model, Future Generation Computer Systems (FGCS), 27(6):757-765, 2011.

[116] D. Yuan, Y. Yang, X. Liu, and J. Chen, A cost-effective strategy for intermediate data stor-

age in scientific cloud workflow systems, In Proc. of the IEEE International Parallel &

Distributed Processing Symposium (IPDPS), pages 1-12, 2011.

[117] C. Zhang and H. Sterck, CloudWF: A computational workflow system for clouds based on

Hadoop, In Proc. of the IEEE International Conference on Cloud Computing Technology

and Science (CloudCom), pages 393-404, 2009.

[118] S. B. Davidson, S. Khanna, V. Tannen, S. Roy, Y. Chen, T. Milo, and J. Stoyanovich, En-

abling privacy in provenance-aware workflow systems, In Proc. of the biennial Conference

on Innovative Data Systems Research (CIDR), pages 215-218, 2011.

[119] P. Buneman, S. Khanna, and W. C. Tan, Why and where: A characterization of data prove-

nance, In Proc. of the International Conference on Database Theory (ICDT), pages 316-330,

2001.

[120] P. Buneman, S. Khanna, and W. C. Tan, Data provenance: Some basic issues, In Proc. of the

International Conference on Foundations of Software Technology and Theoretical Computer

Science (FSTTCS), pages 87-93, 2000.

[121] P. Buneman and W. C. Tan, Provenance in databases, In Proc. of the ACM SIGMOD Inter-

national Conference on Management of Data (SIGMOD), pages 1171-1173, 2007.

129

[122] Olaf Hartig, Provenance information in the Web of data, In Proc. of the International Work-

shop on Linked Data on the Web (LDOW), 2009.

[123] Y. Gil and P. T. Groth, Using provenance in the Semantic Web, Journal of Web Semantics

(WS), 9(2):147-148, 2011.

130

ABSTRACT

QUERYING AND MANAGING OPM-COMPLIANT SCIENTIFIC WORKFLOW
PROVENANCE

by

CHUNHYEOK LIM

December 2011

Advisor: Dr. Farshad Fotouhi

Co-advisor: Dr. Shiyong Lu

Major: Computer Science

Degree: Doctor of Philosophy

Provenance, the metadata that records the derivation history of scientific results, is important in

scientific workflows to interpret, validate, and analyze the result of scientific computing. Recently,

to promote and facilitate provenance interoperability among heterogeneous provenance systems,

the Open Provenance Model (OPM) has been proposed and has played an important role in the

community. In this dissertation, to efficiently query and manage OPM-compliant provenance, we

first propose a provenance collection framework that collects both prospective provenance, which

captures an abstract workflow specification as a recipe for future data derivation and retrospec-

tive provenance, which captures past workflow execution and data derivation information. We

then propose a relational database-based provenance system, called OPMPROV that stores, rea-

sons, and queries prospective provenance and retrospective provenance, which is OPM-compliant

provenance. We finally propose OPQL, an OPM-level provenance query language, that is directly

defined over the OPM model. An OPQL query takes an OPM graph as input and produces an

OPM graph as output; therefore, OPQL queries are not tightly coupled to the underlying prove-

nance storage strategies. Our provenance collection framework, provenance store, and provenance

query language feature the native support of the OPM model.

131

AUTOBIOGRAPHICAL STATEMENT

CHUNHYEOK LIM

EDUCATION

• Doctor of Philosophy (Computer Science), December 2011
Wayne State University, Detroit, Michigan, United States

• Master of Science (Computer Science), January 2001
Korean National Defense University, Seoul, Republic of Korea

• Bachelor of Science (Computer Science), February 1996
Korea Military Academy, Seoul, Republic of Korea

PUBLICATIONS

• Chunhyeok Lim, Shiyong Lu, Artem Chebotko, and Farshad Fotouhi, “Prospective and
Retrospective Provenance Collection in Scientific Workflow Environments”, In Proc. of
the IEEE International Conference on Services Computing (SCC), pages 449-456, Miami,
Florida, USA, July 2010.

• Chunhyeok Lim, Shiyong Lu, Artem Chebotko, and Farshad Fotouhi, “Storing, reasoning,
and querying OPM-compliant scientific workflow provenance using relational databases”,
Future Generation Computer Systems (FGCS), 27(6):781-789, 2011.

• Chunhyeok Lim, Shiyong Lu, Artem Chebotko, and Farshad Fotouhi, “OPQL: A First
OPM-Level Query Language for Scientific Workflow Provenance”, In Proc. of the IEEE
International Conference on Services Computing (SCC), pages 136-143, Washington, D.C.,
USA, July 2011.

• Chunhyeok Lim, Shiyong Lu, Artem Chebotko, and Farshad Fotouhi, “A First OPM-
Compliant Provenance Service for Scientific Workflows”, IEEE Transactions on Services
Computing (TSC), 2011. (submitted).

AWARDS AND HONORS

• Overseas Education Scholarship for Three Years (August 2007 - August 2010), Republic of
Korea Army, August 2007.

	Wayne State University
	1-1-2012
	Querying and managing opm-compliant scientific workflow provenance
	Chunhyeok Lim
	Recommended Citation

	tmp.1323957605.pdf.JKlD4

