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PART I 

DEVELOPMENT OF BIMORPH ELECTRO-THERMAL ACTUATORS 
  

 This part of dissertation confined in Chapter One through Five describes a study of torsion 

phenomena observed for the first time in freestanding micromechanical mirrors made of silicon 

nitride and coated with thin films of metals such as nickel, gold, and silver while passing electric 

current. Such micromechanical freestanding silicon nitride mirrors were fabricated by 

photolithography and selective etching. The torsion produced on passing current was found to be 

proportional to the square of the dc current passed with the torsion direction independent of the 

current direction. The torsion angles as a function of current were measured for nickel-deposited, 

gold-deposited, and silver-deposited micromirrors of different dimensions. The measurements 

were done using optical technique by monitoring the differential voltage output from a split 

photodiode, with the data taken by the standard lock-in technique. Calibrations were performed 

using a rotation stage. The torsion angles were measured for several sets of micromirrors with 

the dimensions of 150µm×150µm; and 175 µm long beams with different widths of 8, 10, 12, 16 

and 20 µm. The results indicate that the torsion angles are proportional to the square of the dc 

current and are dependent on the beam widths. Switching time for such micromirrors was found 

to be ~ 1ms. Large torsion angle of 26.3 degrees corresponding to 38 mA of a dc current with 

less than 1 V of applied voltage was measured in the case of Au-deposited structure of 390 µm × 

290µm with the beam size of 100 µm×7µm. Large torsion angles achieved in such micromirrors 

may find potential applications in various actuators for MEMS and display technologies. 

 The second part of this dissertation starting from chapter six will focus on the study of 

various weak ferromagnetic materials by using Andreev reflection spectroscopy. Such materials 

have spintronic applications and have scientifically interesting and important material properties. 
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CHAPTER 1 

TORSION MEASUREMENTS OF MICROMECHANICAL MIRRORS COA TED WITH 
NICKEL, GOLD AND SILVER 

1.1 Introduction 

 Famous Stern-Gerlach experiment in 1921 showed that the electrons have just two 

possible orientations of magnetic moment even though the origin of magnetic moment of the 

electrons with zero orbital angular momentum (l = 0) was not known to them. Four years later in 

1925, Samuel Goudsmit and George Uhlenbeck made a remarkable discovery that an electron 

has intrinsic angular momentum that doesn’t depend on the orbital characteristic [Uhlenbeck et 

al., 1925]. They used the term “spin” to describe such intrinsic angular momentum of electrons. 

The property that the electrons have charge has been widely used to develop electronic 

industries.  

Mott (1936) was the first to consider the study of spin polarized transport which helped to 

understand tunneling experiments in the early days [Mott et al., 1936]. Tunneling measurements 

on junctions between very thin superconducting aluminum films and ferromagnetic Nickel films 

in a high magnetic field show that the tunneling current is spin dependent [Tedrow et al., 1971]. 

The study of the spin polarized tunneling current in ferromagnet in F/N/F junctions, where N and 

F stand for nonmagnetic and ferromagnetic, has potential application as spin filters. A giant 

magnetoresistance, which is much larger than anisotropy (difference in resistivity ∆R = R┴ - Rll 

for currents flowing parallel (Rll) and perpendicular (R┴) to the magnetization) was found in 

F/AF/F layers (e.g. Fe-Cr-Fe) where F is ferromagnetic and AF is antiferromagnetic interlayer 

[Binasch et al., 1989; Baibich et al., 1988]. An appreciable increase of the electrical resistivity 

was found in the case of antiparallel alignment of magnetizations in the double magnetic layers. 

The origin of this effect was believed to be due to spin flip scattering of the electrons as spin 



3 

 

polarized electrons in one ferromagnet propagate through the structure. The effect called GMR 

(Giant Magnetic Resistance) was discovered independently in 1988 and 1989 by Baibich et al. 

and Binasch G. respectively. A. Fert and P. Grunberg were awarded Nobel Prize in Physics in 

2007 for the discovery of spin dependent transmission of the conduction electrons between Fe 

layers through Cr layers. This research was promising for application to magnetoresistance 

sensors. In 1994 J.M. Daughton et al. developed the first GMR sensor as commercial electron 

spin product [Daughton et al., 1995].  

After their discovery of GMR, continuous improvements have been made in 

reproducibility, increase of efficiency, and reduction of coercivity [Parkin et al., 1991; Dieny et 

al., 1991; Daughton et al., 1992]. GMR and spin dependent tunneling (SDT) structure are now 

being used in magnetic field sensors. Spin valves are used in read heads for hard drives and 

galvanic isolators. Spin valves and SDT are being used in non volatile random access memory 

development [Daughton et al, 1999]. Another interesting concept is a bipolar spin switch that 

was fabricated in 1993 by Mark Johnson et al. [Johnson et al., 1993]. When spin polarized 

electrons go from one layer to another in a FM-NM-FM GMR structure, the electrons have to 

change their spin if the magnetization of two FM layers are not parallel. This causes the change 

in angular momentum of the polarized electrons which, in turn, causes mechanical torque. This 

spin transfer torque was predicted independently by Slonczewski [Slonczewski et al., 2000] and 

Berger [Berger et al., 1996]. Later J.A Katine et al. were able to facilitate the large current 

density induced magnetic domain realignment in Co/Cu multilayer nanostructure in 1999 [Katine 

et al., 2000]. Effect of spin polarized current on various electrodeposited single contacted 

nanowires was studied by J.E. Wegrowe et al. in 2002 [Wegrowe et al., 2002] and they proposed 

that exchange torque and spin transfer are the two mechanisms of magnetization change. In 
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2003, Li. et al. analyzed the consequence of the spin torque on the dynamics of the local moment 

of a spin valve structure. They found that the magnetic energy oscillates as a function of time 

even for a steady-state current. For pulsed current, the minimum width and amplitude of the spin 

torque for achieving current-driven magnetization reversal have been determined quantitatively 

[Li et al., 2003]. Microwave frequency dynamics in nanomagnets propelled by spin polarized 

current was studied by Kiselec et al. in 2003. They found that the spin transfer could produce 

several kinds of magnetic excitations, and magnetic layers are able to convert DC currents into 

high frequency magnetic rotation [Kiselec et al., 2003]. In 2004, Yamanouchi et al. demonstrated 

that, in a ferromagnetic semiconductor structure, magnetization reversal through domain wall 

switching can be induced in the absence of a magnetic field using current pulses with low current 

densities ( below 10-5 A cm-2). Though the switching speed was low, their approach could 

provide a route to magnetic information storage applications [Yamanouchi et al., 2004]. 

In 1998 P. Fulde proposed that the measure of spin transfer induced mechanical torque of 

a hybrid FM/NM wire would be the measure of the magnetic polarization of the conduction 

electrons in ferromagnets. This may yield new information on the transport properties of the 

narrow band electrons in itinerant ferromagnets [Fulde et al., 1998a]. Measurement of the 

mechanical torque will give the spin polarization of ferromagnet being used in the composite 

structure. X. Li attempted to fabricate the composite FM/NM wire to measure spin torsion by 

using an optical system [Li et al., 2005]. Li has also observed the torsion even when the current 

was passed through a single magnetic microwire of Nickel. 

In order to increase reproducibility and to understand the origin of the observed effects 

we have studied the spin torsion in micro electro mechanical (MEM) structure. An optical 

system was used to measure the torsion angle produced on such micromirrors coated with 
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ferromagnetic material (Ni) or non-magnetic material Au or Ag. The measurement of torsion 

angle will be done by passing DC and AC (to get enhanced oscillations, if any, at resonance). 

Understanding the reason of torsion in a FM structure will reveal a new dimension on the 

dynamics of spin when they are influenced by current. In addition, such devices, which are easier 

to fabricate than composite structures, will have several possible technological applications. 

Quantification of such torsion angle as a function of current is essential for its controlled 

practical use. Also, whether the torsion is produced in nonmagnetic metal coated structure will 

be tested.  This project is directed toward this goal that will be quite useful for spintronics device 

applications, as well as a variety of MEMS applications. Sample fabrication and optical 

technique to measure spin transfer torque directly will be discussed in the next section. 

1.2 Spin and prediction of Spin Torque 

Apart from the orbital angular momentum associated with the motion of an electron, an 

electron has an intrinsic angular momentum S
r

whose magnitude is S = h
2

3
. Just like charge or 

mass of an electron, the spin angular momentum is also its intrinsic property. There are two 

possible values of its z-components viz., hsz mS = , where the spin magnetic quantum numbers 

are 
2

1±=sm , which are also referred to as spin up and spin down.When electrons go from a 

ferromagnetic layer to a non-ferromagnatic layer, they transfer their angular momentum to this 

layer. As a result of this, angular momentum transfer will be translated into a mechanical torque 

of the device [Fulde et al., 1998b]. 

1.2.1     Torque and spin Polarization 

The measurement of the torque at an FM/NM interface would allow one to determine the 

relative contributions of different types of electrons (e.g., s and d in the case of Fe) to the current 
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[Aharoni et al., 1996; Fulde et al., 1973c].    Each spin flip results in a change in angular 

momentum DL = h . Let the number of electrons that pass through the interface in time interval 

Dt be DN while passing current I. Then, the total charge Ne∆  passes in timet∆ . So, 
t

Ne
∆

∆=Ι , 

which gives the number of electrons passing as
e

t
N

Ι∆=∆  . Assuming α to be the degree of 

magnetic polarization of electrons contributing to the current in the ferromagnet, the fraction 
2

α
 

of the electrons will flip their spin at the interface between FM and NM when current I is passed 

through the wire. Total change in angular momentum of 
2

αN∆
 electrons is hN∆

2

α
. Hence, the 

torque which is the rate of change of angular momentum is x
e

ˆΙα
2

h
, where x̂  is the unit vector 

along the wire axis. Thus torque, which increases linearly with the applied current, is a direct 

measure of the spin polarization of the itinerant electrons in the ferromagnet [Mohanty et al., 

2004]. Other factors such as Wiedemann effect, general magnetostriction effect also contribute 

for the torsion of the wire but these contributions are too small compared to the spin transfer 

torque [Li et al., 2005].  The effect of temperature on torsion angle is relatively weak, and at 

room temperature, at least at resonance, the torsion angles exceed the thermal torsional 

fluctuations [Fulde et al., 1998].   

To provide a better understanding of the degree of electric transport contribution of 

especially d electrons in ferromagnetic transition metals like Fe, Co, Ni, scientists have given 

theoretical predictions for the measurement of spin flip torsion produced in the interface of the 

FM and NM wires as shown in Figure 1.1. However, the torsion effect has been observed in a 

single Ni wire [Li et al., 2005] and micro electro mechanical mirror structures.  
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 Fig. 1.1 Two types of composite structures (a) wire structure, and (b) micromechanical structure 

   (After Xin Li et al., 2005) 

1.2.2     Prediction of torsion in micromechanical structure 

The micro electro mechanical structure with a mirror consists of freestanding rectangular 

thin film of a Silicon Nitride substrate as shown in Fig. 1.2. The beams that support the structure 

are fixed to the silicon wafer. Optical photolithography is used for the sample fabrication. The 

mirror and the beam structure are coated with Ni by electron beam deposition method.  The 

structure with thin layer of Ni on it (about 50 nm) is excited by either dc or ac electric current. 

The structure displays torsion even though it is different than the composite structure we have 

originally planned to study (see Figure 1.2). The effect is so large that the torsion can be seen by 

the naked eyes, or for small currents in an optical microscope. In addition to the magnitude of the 

current, the torsion depends on the geometry of the mirror namely the moment of inertia of the 

structure. The ferromagnetic Ni layer is much thinner than the silicon wafer (the mirror structure) 

so that the mechanical behavior of the mirror is dominated by the Silicon Nitride structure even 

after the deposition of a thin layer of Ni.  

1.2.3 Moment of inertia (J) calculations for the microstructure, and the resonance 

frequency 

 These calculations are shown in Appendix A(I). 

Silicon substrate 

Magnetic part Nonmagnetic part 

Fixed end 
Fixed end (b) 

 Magnetic part 

Nonmagnetic part 

(a) 
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CHAPTER 2 

EXPERIMENTAL TECHNIQUES FOR MEASUREMENT OF SMALL TO RSIONAL 
ANGLE AND FABRICATION OF MICROSTRUCTURES 

 
2.1    Different optical techniques to measure small angle 

 In order to measure very small torsion angles as a function of the applied current we have 

employed a highly sensitive optical system. Different other sensitive optical set-ups have been 

used by many people for research in optics. 

2.1.1    Remo’s correlated –optical detection approach 

Remo et al. developed a correlated–optical detection approach (Fig. 2.1) which provides 

a high level of precision and resolution for linear and angular displacements [Remo et al., 1997]. 

A digital piezotranslator (DPT) with displacement precision of less than 1 nm is used to displace 

the fiber optic (FO) so that the photons supplied by a given FO aperture impinge on both 

segments of the dual photodiode (DPD) surface. The differential voltage as a function of 

displacement of piezotranslator is used as calibration standard to convert relative voltage change 

to displacement. This approach seems more suitable for the measurement of displacement than 

rotation angle.  

                                 

                         Fig. 2.1 Remo’s displacement measurement set up [Remo et al., 1997]  



9 

 

2.1.2     Guo’s surface-plasmon resonance-heterodyne interferometry (SPRHI) 

Guo et al. have developed another method of angle measurement using surface-plasmon 

resonance-heterodyne interferometry (SPRHI) [Guo et al., 1998]. Their experimental set up is 

shown in Figure 2.2. They claim that the phase difference between p and s polarization states 

when surface Plasmon resonance (SPR) takes place is very sensitive to the angle of incidence. 

They employed heterodyne interferometry to measure this phase difference and thus to measure 

small angle. 

 

                    Fig. 2.2 Guo’s angle measurement set up [Guo et al., 1998] 

A beam of laser (He-Ne, 632.8 nm) is split into two paths by a beam splitter (BS). One 

part of the beam passes through analyzer A1 and reaches the photo detector D1. The output from 

D1 is used as a reference signal. The other part of the beam reaches the prism (P) and is reflected 

from the hypotenuse side of the prism coated with silver. On the reflecting surface of the prism, 

SPR takes place so that the reflected light passes through the analyzer A2 and reaches the photo 

detector D2. It will have a phase difference Ф compared to the reference beam. The phase 

difference Ф is recorded as a function of a small change in the incident angle to be measured. 

Using these relations, a small angle can be measured by this technique. Even though the 
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measurement resolution of 2×10-5 degree can be achieved by this method, it is not easy to use it 

for our experiment.  

2.1.3 Giuliani’s oscillating mirror technique 

As a modification of a basic self-mixing configuration [Servagent et al., 1998], Giuliani 

et al. devised a method for measuring small angle, with a high sensitivity (5×10-7 rad) [Giuliani 

et al., 2001]. In the presence of a strong feedback from the mirror, the laser diode (LD) operates 

in the so called coherent collapse regime. In this regime, the power for LD is modulated by a 

signal which accelerates the mirror. The experimental set up of this technique is shown in Figure 

2.3. The requirement on the oscillating mirror in this technique is too complicated for our 

measurements.  

                             

              Fig. 2.3 Giuliani’s angle measurement set up [Giuliani et al., 2001] 

2.1.4    T. Suzuki’s rotating-mirror system 

Another method to measure small rotation angles was presented by Suzuki et al. whose 

experimental set up is shown in Figure 2.4 [Suzuki et al., 2001]. They calculated the angle from 

the relative phase shift of the viewed grating image by means of the Fourier transform (FT) 

method. Their set up consists of a computer-generated grating, a CCD camera with a zoom lens, 

a computer, and a rotating-mirror system with M1 as a reference mirror and M2 as an object 

mirror. They claim that the system does not require a coherent light source so that it is insensitive 
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to external disturbance and works with rough alignment. However, this method is not suitable for 

mounting our free standing mirror samples. Measurements of small rotation angles can also be 

done by interferometers and autocollimators but these techniques require an isolated 

environment from external disturbances, and longer measurement time respectively.  

 

  Fig. 2.4  T. Suzuki’s angle measurement set up [Suzuki et al., 2001]   

2.2    Our technique used for measurement of small angle /experimental set up 

We have also used an optical system to measure a small torsion angle of the nano 

structure. The optical set up we use is shown in Figure 2.5. After attenuation of the beam of a 

He-Ne laser, it is directed through chopper to the reflecting surface of the mirror sample mounted 

vertically on a translation stage. A quadrant photodiode receives the reflected light from the 

sample.  The signal that comes from the photodiode is measured by the lock-in technique. A 

chopper with a frequency around 220 Hz is used. This is the reference frequency of the signal. 

An oscilloscope is used to monitor the chopper frequency and the signal frequency 

independently. The signal from the photodiode is adjusted to zero by aligning the laser before 

measurements. We can do two types of measurements using this set up. DC measurement uses 

dc voltages taken from the Lock-in. The dc is transmitted through resistors connected in series 

with the mirror structure. The dc current through the sample produces torsion in the structure, so 
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that light reflected by it rotates and moves to a different location of the photodiode. The 

differential output voltages from the photodiode are synchronized with the input pulses by the 

LabView program, and the data are recorded in the computer that controls the Lock-in. We get 

the relation between the input current and the output voltages. On the other hand, the relation 

between the output voltages from the photodiode corresponding to different rotational positions 

of the sample is found by putting the sample on the rotation stage that can be controlled by the 

LabView program. The calibration curve is used to convert the recorded voltages to torsion 

angles.  On the other hand, we can also pass AC currents of different frequencies from a function 

generator to a sample.  The sample is expected to show maximum rotation when the frequency 

supplied by the generator is in resonance with natural oscillation frequencies of the structure. 

 

                                 Fig. 2.5 Optical system used in our experiment 
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2.2.1    Split photodiode  

 A semiconductor photodiode QP50-6SD from Silicon Sensor Inc. has been used. It is a 

quadrant photodiode array with current-to-voltage amplifiers that provide X and Y difference 

signals. The output voltages are obtained by routing the diode element current into current to 

voltage amplifiers with a gain of 104. The four quadrants, each of these can act as a single 

photodiode, are formed by separating them by 42 µm gaps. The electronic assembly is shown in 

Figure 2.6.  

 

                                                                  

             

                                Fig.2.6. Front and back of assembly of quad photodiode  

 The quadrant photodiode is utilized in the principle of electron excitation that when 

photons (light) are incident on a PN junction of semiconductors, some electrons get exited from 

the valence band so that they jump to the conduction band leaving holes on the valence band. 

Electron hole pairs created in such a fashion are responsible for the photocurrent that depends on 

the power of the incident photon and the width of the depletion region of the p-n junction. The 

photo current is given as Iph  ∝ Pin (1-e-αd), where d is the width of the depletion region and Pin is 



14 

 

the power of the incident light. The depletion region is increased and hence the photocurrent is 

enhanced by reverse biasing the photodiode. 

 Before taking any data, the output signal was zeroed by putting the light beam in the 

center of the photodiode. For a one-dimensional motion of the light beam we can check the 

difference of top and bottom, or the difference of the left and right quadrants, which is expected 

to be close to zero. Once this is achieved, we always get some differential voltage when the light 

spot moves in any direction up-down, or left-right. Figure 2.7 shows how the differential outputs 

are taken. 

 

 

 

 

 

 

 

       

               

                 Fig 2.7 Block diagram of internal circuit of photodiode to show the output  

2.2.2     Sample preparation 

The momentum transfer of electrons when they pass through the interface of magnetic 

and nonmagnetic conductors is explained as the cause of the torque produced in the 

wire/composite nanostructure.  However, we notice that the torsion effect is observed in a single 

magnetic material such as the one coated with Ni. Below we will discuss the preparation of such 

sample. 
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2.2.3     Preliminary micromirror structure 

 Structures of micromirrors on a silicon wafer were fabricated by photolithography. A 

number of similar structures were fabricated on a single Silicon wafer. One of such mirrors is 

shown in Figure 2.8. 

 

 

 

 

 

   

 Fig. 2.8 Structure of Si mirror before Ni coating  

 

2.2.4     Typical dimensions of the mirror-beam structure 

The exact dimensions of the mirror beam structure were taken by using microscope with 

a CCD camera. The dimensions of the mirror and the beams supporting the mirror are shown in 

Figure 2.9. 

 

 

 

 

 

 

 

Fig. 2.9 Dimensions of the mirror beam structure 
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2.2.5    Ni Deposition 

Nickel was chosen as one of the magnetic materials to be deposited on the mirror. 

Shadow masks were made for the deposition of Nickel. During the deposition we have made sure 

that a Nickel layer is continuous on a particular mirror and beams supporting the mirror. At the 

same time we made sure that individual mirrors are insulated from one another.  

 Nickel deposition was done by the electron beam deposition technique. In this technique, 

electron beam is used to melt and eventually evaporate a metal to be deposited on the wafer. For 

the deposition of Ni on the structures we used, the pressure of the deposition chamber has gone 

down to 2×10-6 Torr at the time of deposition. The filament current was approximately 1 A with 

the voltage of 8.0 KV. The deposition rate was set to be from 0.2 to 0.3Ǻ/s. The thickness of the 

Nickel layer deposited in such controlled fashion was 500 Ǻ. Fig. 2.10 shows the Si3N4 mirror 

after the Ni deposition.  

 

 

 

 

 

 

 

 

               Fig. 2.10 Si mirror-beam structure after Ni deposition 

  

 



17 

 

2.2.6     Experiments with Nickel, and a test for the Gold deposited sample 

 As explained earlier, Ni-coated sample was used to see the torsion effect while passing dc 

current through it. The effect was observed under the microscope by applying dc current. When a 

current was turned on, the deflection of the mirror was seen clearly, and it was independent of 

the direction of the current. At this point, we assumed that the effect has magnetic origin. But it 

was important to check whether or not this effect is observable in nonmagnetic samples as well. 

For instance, rotational effect may be due to the interaction between individual electric dipoles 

and the ac electric field as observed by Fan et al. [Fan et al., 2005]. On one of the mirrors, 500Ǻ 

thick layer of Au was deposited as a nonmagnetic conductor. It was difficult to make the Indium 

contact to the gold layer, since it was coming off easily while the surface was heated by the iron. 

Thin silver paste, on the other hand, allowed us to make contacts across the gold coated mirror. 

As in the case of Ni, gold wires were used between the contacts and the connecting wires. Using 

the same source meter (Keithley 2400) as a current source, dc current was passed through the 

structure, ranging from 0.1 µA to 2 mA. For each current the sample was observed under the 

microscope. In the case of Ni coating, the torsion effect was observed when dc of 1.3 mA was 

applied and the effect was more prominent when pulses of dc current increase. There was no 

torsion effect at all as we observed by naked eye in the case of gold-deposited structure for the dc 

current of up to about 5 mA. However, close to this value of dc current, the torsion of the 

structure was observed. The presence of torsion in gold deposited sample has challanged our 

hypothesis that the torsion in Ni-coated sample is due to magnetism alone. In fact this 

experiment indicated that the torsion effect in the case of Ni-deposited sample does not have 

magnetic origin. There are many possible sources of torques at nanoscale. Torques on MEMS are 

based on electrostatic forces, thermal fluctuations, circularly polarized light and angular 
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momentum transfer by spin polarized currents [Covalev et al., 2007]. In the context of our 

observation, it was important to know the reason of the torsion in the Ni deposited freestanding 

silicon mirrors and Au-deposited structures. It is worth noting that the torsion in the case of Ni is 

seen at lower currents than the torsion in the case of Gold deposited structures.  

2.2.7     Taking data/experimental details  

 He-Ne laser was focused by lens system onto a free standing sample which was kept 

vertical on a stage with translational (x, y, z) and rotational degrees of freedom.  Initially, the 

laser spot is adjusted at the center of the photodiode, so that the output signal is zero (see Figure 

2.11). Once the zeroing is accomplished, current is passed through the sample. When pulses of 

current are passed through the mirror beam structure, torsion pulses are produced in the structure. 

As the mirror rotates, it rotates the reflected laser beam so that the reflected spot gets shifted on 

the photodiode. When a current is passed through a vertical structure the reflected light moves 

mostly from left to right. Output signal is taken from pad 2 which gives the differential voltage 

produced by the left and right opposite quadrants. Lock-in amplifier controlled by LabView 

program is used to execute the output signal. The output signal voltages as a function of the input 

voltage pulses, which is responsible for current pulses, is recorded by the LabView interface. 

These output voltage signals are to be converted to the corresponding torsion angles. 

                             Pad 1 Photodiode Bias 

 Pad 2 output = (V3+V4)- (V1+V2) 

 Pad 3 Output = (V2+V3)- (V1+V4)  

                                                                                    Pad 4 Outpot = V1+V2+V3+V4  

  Pad 5 for +15 V 

Fig. 2.11 Quadrants of the photodiode                      Pad 6 for GROUND                                                                               
Pad 7 for –15 V 

 
V1 

V2 

V3 V4 
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2.2.8     Lab View Programs  

 Lab View program was developed for controlling Lock in, generating the dc voltage in 

steps and run the program between +v and –v, and record the data that Lock in acquires when the 

micromirror actuates and the signal of laser changes on the split photodiode. Fig. 2.12 shows the 

front panal of the software developed. 

 

 
Fig. 2.12 Lab View program used to control Lock in and record data while passing dc current 
 
2.2.9    Calibration 

 The calibration curves are obtained from the output voltage signals corresponding to 

different known angular positions of the sample structure. Such a relation is found by putting the 

sample in a vertical position on the rotation stage that can be rotated in a controlled fashion by 

LabView interface. Laser is focused on the sample. The reflected laser beam is focused on the 

split photodiode. As before, zeroing of Lock-in reading, which is the output signal from the 
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photodiode, is initially done by adjusting the position of the photodiode. The rotation stage is set 

to zero at this position as a reference. The rotation stage is then rotated controlling it by using the 

LabView program. For different positions of rotation stage, and hence the mirror-sample on it, 

the differential voltages as output signal from pad 2 are recorded. The distance between the 

sample and the photodiode layer, intensity of laser, and other parameters are kept the same 

during calibration as they are during the measurements. Current is not passed through the sample 

during calibration. A typical calibration curve is shown in Figure 2.13. It is taken up to the 

saturation region of the photodiode maintaining the same distance of 15 cm between the 

reflecting sample and the photodiode as during the measurements. While converting the actual 

data to the torsion angle the calibration data has been multiplied by -1 to correlate the direction 

of torsion of the mirror and the corresponding direction of the rotation stage. In other words, this 

allows the positive angle of calibration curve to represent the data for increasing currents, and 

negative angles to represent the data for decreasing currents. 
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      Fig. 2.13 Typical calibration curves used for (a) Gold sample (b) Ni sample 
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2.2.10    Some challenges in the measurements 

 The experimental realization of the structure is a challenge, since free-standing metallic 

structures on a micro and nano scale need to be fabricated and manipulated [Covalev et al., 

2007]. Extra care is required in every step of such manipulation. Several problems were 

encountered while working with our micro scale mechanical structure. Not all the structures 

survive during the fabrication. Beyond that, while depositing Ni by the electron beam deposition, 

or gold by a thermal evaporation noticeable bending of the mirror structure was observed. The 

reason of bending is due to heating of the structures in the deposition chamber.  Most of the time 

the reflecting surface with deposit Ni or Au film is convex which produces a broadened beam of 

light in reflection. Such reflections are very hard to focus on the photodiode. However, by 

introducing a small aperture some portion of light beam can still be focused in the center of the 

photodiode. When the structure torts while passing current, the spot of light on the photodiode 

moves in one direction causing the shift of power of laser spot on the photodiode. Due to slightly 

folded geometry of the mirrors after metal depositions in many cases, the light spot on the 

photodiode was found to have a complex shape. However, in average the spot could be used to 

measure the differential voltage between the left and right halves of the quadrant photodiode. 

Despite technical difficulties, optimizations of the measurement set up allow us to obtain 

information about the current and thermal effect on the torsion 
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CHAPTER 3 

TORSION OF THE FIRST GENERATION MICROSTRUCTURES 

3.1    Torsion with magnetic (Ni) and non-magnetic (Au) samples  

 As explained earlier, Ni-coated sample was used to see the torsion effect while passing dc 

current through it. The effect was observed under the microscope by applying pulses of dc 

currents. When a current was turned on, the deflection of the mirror was seen clearly, and it was 

independent of the direction of the current. At this point, we assumed that the effect has magnetic 

origin. But it was important to check whether or not this effect is observable in nonmagnetic 

samples as well. For instance, rotational effect may be due to the interaction between individual 

electric dipoles and the ac electric field as observed by Fan et al. [Fan et al., 2005]. Thin silver 

paste was used to make contacts across the gold coated mirror. Direct current ranging from 0.1 

µA to 2 mA were passed through the structure. In the case of Ni coating, the torsion effect was 

observed when dc of 1.3 mA was applied and the effect was more prominent when pulses of dc 

current increase. There was no torsion effect at all as we observed by naked eye in the case of 

gold-deposited structure for the dc current of up to about 5 mA. However, close to this value of 

dc current, the torsion of the structure was observed. The presence of torsion in gold deposited 

sample has challanged our hypothesis that the torsion in Ni-coated sample is due to magnetism 

alone. In fact this experiment indicated that the torsion effect in the case of Ni-deposited sample 

does not have magnetic origin. There are many possible sources of torques at nanoscale. Torques 

on MEMS are based on electrostatic forces, thermal fluctuations, circularly polarized light and 

angular momentum transfer by spin polarized currents [Covalev et al., 2007]. In the context of 

our observation, it was important to know the reason of the torsion in the Ni deposited 

freestanding silicon mirrors and Au-deposited structures. It is worth noting that the torsion in the 

case of Ni is seen at lower currents than the torsion in the case of Gold deposited structures.  
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3.2    Preliminary data for dc measurements 

3.2.1    Ni deposited sample 

 To quantify the torsion angle as a function of current in a soft magnetic material (nickel), 

the experiment was carried on. Figure 3.1 (a) shows that the Lock-in recorded signal from the 

photodiode detector in micro volts as a function of the input voltage generated from the same 

lock in, and applied across the micro mirror. Positive values of photo diode signal, i.e. the 

differential voltages between the left and right halves of the photodiode indicate that the mirror 

torts in the same direction irrespective of the direction of the current supporting manual 

observations under the microscope. When the current pulses were passed, manually by the dc 

current source Keithley 2400, it was clearly visible to the naked eye that the mirror would go to 

the same direction for both directions of the current. The data, as shown in Figure 3.1 (b) 

revealed that the torsion angle depends on the square of the current. The equation obtained by the 

second order polynomial fit, that is shown in Figure 3.1 (b) is the best representation of the data 

within the operating range of the photo diode.  
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(a)        (b) 

Fig.3.1  Dependence of torsion angle of Ni deposited micromirror, (a) Photodiode signal as a 
function of input voltage, (b) torsion angle as a function of current. 
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3.2.2    Au, and Ag deposited samples 

 The angle of torsion is not linear with the dc current passed.  Rather the angle seems 

proportional to the square of the current as shown in Figure 3.2 (b). Also, this graph shows that 

the direction of rotation of the micro mirror is independent of the direction of current. This is 

shown by the increasing output signal within certain range of positive and negative voltage. 

Figure 3.2 shows the torsion angle in terms of microvolts. The parabolic region of the graph in 

Figure 3.2 (a) shows clearly the appropriate operating range of input voltage. Outside the 

parabolic region, the decreasing signal in both positive and negative input voltages indicates that 

for the large torsion angle of the micromirror, the laser spot moved beyond the active operating 

region of the photodiode. Thermal energy seems to contribute to the torsion of the micromirror. 

The tests done to see the contribution of thermal effect will be discussed later.  
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                                   (a)                                                                      (b) 

Fig.3.2   Dependence of photodiode signal on the input voltage in gold sample (a) raw data, (b) 

data in the operating region  

  The data can be converted to the units of angle as shown in Fig. 3.3 (a) and (b) for Au 

deposited and Ag deposited samples by using the calibration equations. 
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    Fig. 3.3  Torsion angle as a function of direct current in (a) Gold sample, (b) Silver sample 

  Most of the time, it is seen that there is some hysteresis in the angle. The micromirror is 

allowed to actuate by passing dc current in one direction, and then the current direction is 

reversed. While doing so, the structure shows some hysteresis as shown in Fig. 3.4. It shows two 

curves one for increasing input current and the other for the decreasing input current, i.e. in the 

reverse direction as shown by the arrows. 

3.3    Hysteresis in torsion in Au and Ni deposited samples 
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                         Fig.3.4 Hysteresis in reversing the direction of the current in gold sample  

 The nature of hysteresis in the Au samples is similar to the case of the Ni samples. In 

Figure 3.5, up arrow shows the data for increasing current where as the down arrow shows the 
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data for reverse direction of current. Gold sample and Nickel sample both show that the torsion 

mirror does not go back exactly to the same position for the same current when the direction is 

reversed. Let’s consider the case when the current is decreasing from higher values to zero. Until 

it goes to zero, the mirror always remains little further ahead than it was for forward current 

direction. It is shown by higher values of photodiode signals for the reverse current until it goes 

down to zero. However, below zero value of current which corresponds to the initial equilibrium 

position of the torsion mirror, the output signals are smaller than they were for the corresponding 

current when it was increasing. This is shown by the lower values of the signal voltages in the 

negative direction of current in both the samples shown in Figures 3.4 and 3.5. The hysteresis 

curves suggest that it would be reasonable not to expect the micromirror position to be exactly 

the same for forward and reverse directions of the currents. However, the difference in positions 

is not large which suggests that such torsion mirrors can still be used again and again within 

small difference in positions for forward and reverse directions of current.   
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Fig. 3.5 Hysteresis in reversing the direction of current in Ni sample 
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3.4    The possibility of heating effect, and its test 

 Despite their differences regarding their magnetic properties, both nickel and gold 

deposited micro mirror structures showed torsion when current was passed through them.  It is 

obvious that the beam-structures get somewhat heated when current passes through them due to 

their electrical resistance. Since the photodiode signals are the functions of torsion angle that 

depends on the applied current, they are functions of the electric power too. Figure 3.6 (a) shows 

how the output signals for Gold sample of resistance 20.9 W depend on the electric power 

through it. Four different lines show the output signals for increasing and decreasing current in 

one direction, and also increasing and decreasing currents in the reverse direction. The linear 

region as shown in Figure 3.6 (b), and also the linear fit of one of the curves as shown in Figure 

3.6 (c) corresponds to the well behaving parabolic region of the output data. It shows that the 

torsion angle is proportional to the electric power applied.  
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Fig. 3.6 Signal that corresponds to torsion angle; (a) as a function of electric power; (b) linear 
region for useful data; (c) linear fit to the average data of linear region. 

 It was desirable to check if there is similar pattern of output signal if the sample is heated 

by other thermal source in the absence of current through the sample. If there is a contribution to 

heating effect, a hypothesis at this point would be that the signal varies in the same fashion as in 

the case of electric power when the sample is heated up. A separate powerful source of green 
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laser was used to thermally actuate the sample. A sensitive detector was calibrated against the 

available power meter, and it was used to measure the low power produced by attenuating the 

power of green laser with the help of a set of polaroids.  

 Output signals were recorded after approximately every 10 seconds after the power of the 

green laser was changed every time to let the heat propagate through the rectangular structure to 

the beams supporting the structure. This would give almost the same exposure time for the 

sample to different power of the laser to allow equal time for its thermal expansion. Figure 3.7 

shows the increase in photodiode signal indicating bigger torsion of the structure as the optical 

power falling on it is subjected to increase.  It was also observed by the naked eye that the mirror 

rotated, which was confirmed by the change in the output signal on the Lock-in. This test shows 

that there is definitely some contribution of thermal effect to expand the metal layer which 

produces torsion of the micro mirror structures. 
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 Fig. 3.7 Torsion of micromirror with Au deposit on it as a function of optical power used to heat 
the sample 
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 While using green laser to heat the sample, an orange filter was used to block the 

reflected green laser from the sample to make sure that the green laser didn’t contribute to the 

intensity of the laser spot focused on the photodiode. The effect of heating was also tested in 

another way. For different sets of data, different power of green laser was used constantly. Figure 

3.8 shows the data without the green laser; and two sets of data with green laser at different 

power levels. These data reveal that the torsion of the mirror is higher for the higher power of the 

green laser used for heating. This indicates that there is definitely some contribution of thermal 

effect in the torsion of such micro mirrors. After the green laser, the heating source, was 

removed, the data was taken again with the red laser only as was done in the first experiments. 

The output signal didn’t revert back to the original data without the green laser. This may be due 

to some change on the surface geometry of delicate microstructure due to heating.   
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Fig.3.8 Torsion in terms of micro volts as a function of input voltage at different power levels of 
green laser used for heating the Au sample. Also the data before the use of green laser and after it 
was removed are shown 
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 An aperture with circular shape of the diameter of about 2 mm was used right before the 

photodiode to form a laser spot of a regular shape on the photodiode.  This hole definitely limited 

the laser reflected from the sample. The inflexion points at maxima seen in each curve in Fig. 3.8 

are due to this effect. So, the data showing the parabolic parts are only the data that may 

represent the rotation of the micro mirrors. This is the reason why only the parabolic part was 

used earlier to find the useful relation between the rotation angle and the input current.   

3.5    Higher current limits 

 Both Ni and Au samples have shown torsion effect. While we understand that there are 

some common torsion effects in both magnetic and non-magnetic samples, some of the 

mechanisms responsible for the origin of these effects are to be understood. Importantly, 

however, for the possible use of such torsion in MEMS, it is desirable to have large torsion 

angles. Survival of the structure is a matter of concern for such torsion because it needs to be fed 

higher current. Surprisingly, the Au deposited Silicon Nitride (Si3N4) mirror did not break up to 

20 mA of direct current. The test done for higher current than 20 mA will be discussed in the 

next section.  It would require separate calibration. While passing larger currents manually, one 

could hold the mirror in the position it reaches by continuing the same current. The rotation stage 

angle is set in the reverse direction so that the rotation stage can bring the position of the mirror 

back to the original position. The stage is rotated until the lock-in reading is the same as in the 

initial position of the mirror. The angle of rotation of the rotation stage corresponds to the angle 

of torsion of the mirror for the current being used. A set of data taken this way is shown in Fig. 

3.9.  The fit of this data can be used to predict the torsion angle for 20 mA of current up to which 

the mirror was strained to show torsion.                   
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                               Fig.3.9 Torsion of micromirror with Au sample for higher current 

  

 Using the fit shown in the Fig. 3.9, the torsion angle for 20 mA current comes to be 5.5 

degree. On the other hand, the motion of the reflected light from the sample was clearly 

noticeable and traceable on a sheet of paper at the same distance of 15 cm as the photodiode 

from the sample.  One end of the light strip was monitored and projected on a white sheet of 

paper. The deflection of the end point was marked before and after the current was passed. It was 

about 2.6 cm. Considering a right angled triangle with adjacent side of 15 cm, the distance 

between the sample and the photodiode; and the opposite of 2.6 cm, the angle of deviation of 

reflected light was found to be 9.83 degree which is double of the rotation of the mirror. Hence, 

the rotation of the mirror was found be to be 4.9 degree which is just about 11% different than 

the actual measurements. This agreement supports the confidence level in the measurement of 

the torsion angle of the mirror. 
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3.6    Direct measurement of torsion angle for higher currents 

 As higher currents were passed through the sample, and reflected light was projected on a 

screen at the same distance as the photodiode, the deflection of the reflected light became more 

apparent to the naked eyes. When the current is turned on using a dc current source (Keithley 

2400), the light (taken for one end point of the visible light strip) deflects on the screen. Initial 

position of this end is marked on the screen, and after the light deflects it can be brought back by 

rotating the rotation stage in opposite direction by the same amount as the deflection of the 

structure. This is done by controlling the rotation stage by the LabView interface. The restoring 

angle of the stage, where the sample was kept fixed vertically along its axis of rotation, 

corresponds to the torsion angle of the structure. Since the stage needs to be rotated in the 

opposite direction of the torsion, the angles can be taken as negative compared to the torsion 

angle. This is indicated by the negative angles shown in Fig. 3.10. 
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                     Fig.3.10 Direct measurement of torsion angle by restoring it by the rotation stage  

  



33 

 

  Since the deflection of light spot on the screen for the application of low currents was 

too small to be observed by eyes, the initial lock-in reading was taken as the reference point 

which is achieved by the back rotation of the sample stage. The restoring angle of the stage is the 

torsion angle. In this regime, the measurements are not accurate. However, for the larger currents 

the deflection is clearly distinguishable, and the restoring angle is taken directly by bringing the 

deflected light back to the reference mark corresponding to the zero position (equilibrium 

position of the mirror). Thus confidence level in this regime (15-35 mA) was high. As shown in 

Fig. 3.11, point “A” is the position of the end of reflected light as projected on the screen before 

the current was turned “on”, and point ‘B” is the position of the corresponding point after the 

current is turned “on”. This means that point “A” corresponds to the zero position, and point “B” 

corresponds to the excited state of the mirror-beam structure. For further “off’ and “on” of the 

same amount of current, the light beam moves exactly to points A to B respectively. 

                                

Fig.3.11 A photograph showing the initial and final positions of the tip of light                                                                       

before and after 20 mA of current was turned off and on 

“A” - Position when the current is OFF 

 “B” - Position when the current is ON 

A B 
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 Again, for the region of high currents (more than 35 mA), there was some distortion of 

the shape of the reflected light. This might be due to the slightly convex surface where the light 

might have been reflected from nearby points but not exactly from the same point as before. This 

can also be considered as the experimental limitation of aligning the sample exactly on the 

rotational axis of the stage. This might make the sample shift by few microns from its original 

position, and it might be the cause of the change of the shape of the reflected light. This caused 

slight deviation of the data points from the fit in this regime (35-40mA). Considering the fitting 

shown in the graph of Fig. 3.10, one can find the torsion angle corresponding to 20 mA of 

current which comes to be 5.3 degree. Compared to the earlier measured values, this value is in 

close agreement by 3.6% less than 5.5 degree, and 8.2% more than 4.9 degree. This shows the 

consistency of the measured values of torsion angles for high currents. The gold deposited 

structure survived well beyond this value and showed the torsion faithfully up to 40 mA of direct 

current. However, after the structure was cycled a couple of times by turning this current on and 

off, the structure lost conductivity. The current of 38 mA gave the torsion of 26.3 degree which 

is way above the desired angle for the applications needed for MEMS. According to these 

measurements the useful torsion can be produced way below the breakdown current limit 

demonstrating the possible use of torsion in such micromirror structures.  

3.7    AC measurement technique and assumptions 

 From a function generator, alternating current of varying frequency is passed through the 

micro structure as shown in Fig. 3.12. While passing AC, the mirror beam structure is expected 

to oscillate, and a resonance is expected when the supplied frequency is equal to the natural 

oscillation frequency of the system. When the resonance takes place, the amplitude of the 

photodiode-output voltage goes to the maximum value.  
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                   Fig.3.12 Schematic for measurement of possible resonance due to alternating current 

 

3.8    Estimation of the resonance angle 

 When alternating current is passed, the oscillation is expected to be enhanced so that the 

torsion angle would go higher. Magnitude of this angle becomes the highest at the resonance 

frequency. An estimate can be made for this angle. The general expression for the torsion angle 

of the structure is given by the following expression. The variables appearing in this expression 

are explained in Appendix A (I). The torsion angle is: 
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When we set the term inside square brackets to be equal to zero in resonance (ω = ωo), we get 

the expression for the resonance angle when alternating current is applied. 
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On the other hand, when direct current is passed (ω = 0), this leads to the expression for torsion 

angle for dc current as: 
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From the above expressions, we get the ratio as: 
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Where K
L

bhGk Si =
3

12
 for the double torsion bar. On substituting this value, we get a simple 

expression relating torsion angle for dc to the torsion angle when the system is at resonance as:  

J

KQ

o
oo dc ϖ

αϖα 0)( = , where ϖo = 2πfo, 

J in the above expression can be replaced by the denominator of the following expression.  
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 However, taking an approximation as b<<L, and h<<L, we can write 3

12

1
BhLJ Siρ=  . 

Putting the values for ρSi = 2330 Kg/m3, and for the mirror used for the Au sample B = 291.2 

µm, h = 0.5 µm, and L = 388.1 µm, we get approximately, 910−≈J . For the structure we used, 

k1 = h/b = 0.07 for b = 6.5 µm, and GSi = 65 × 109 N/m2 for Silicon. If we take Q = 10, fo=10 

KHz [Li, 2005], we find that the torsion angle at resonance )( oo ϖα is enhanced by about 100 

times compared to the torsion angle due to the same amount of dc current. If we eliminate J
K  

by ϖo , we get a simplified relation as: 

,)(
dcooo Q αϖα =  

If the quality factor Q is 1000, the torsion angle is enhanced by thousand times. This shows that 

the alternating current can enhance the torsion angle by several orders of magnitude. So, the 

micromechanical mirror can be actuated by alternating current to measure too small angles that 

may not be obvious while using direct current.   

3.9    Estimation of the resonant frequency 

 Some preliminary AC measurements were taken while working previously with the Ni 

coated samples. For these samples, different parameters were taken as: k1= 0.23; G Si = 65 × 109 

Pa; h = 5×10-7 m; b = 7.6×10-6 m; L = 3.826×10-4 m; ρ for Si3N4 = 3440 Kg/m3; B = 2.93×10-4 

m; and L1=1.039×10-4 m. Using these values, the resonant frequency is estimated to be about 894 
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Hz. For the samples with different physical parameters, we can anticipate different resonant 

frequencies.  

 Despite the expectation of resonance phenomena in actuation of microstructure while 

passing ac current, practically the structures were found over damped. No oscillations were 

observed, and it was not possible to find resonance frequency. 

3.10    Conclusions for preliminary microstructures 

 Micromechanical free standing mirror-beam structures of Silicon Nitride have been 

fabricated. These structures were coated with Nickel by electron beam deposition technique to 

the deposition thickness of 500 Ǻ, and with Gold by thermal evaporator to about the same 

thickness. All of these structures show torsion when current is passed through them. The torsion 

direction has been found to be independent of the direction of the current. The torsion angle is 

typically proportional to the square of the applied direct current. A technique to measure such 

torsion angles has been developed. LabView programs were developed to produce auxiliary dc 

voltage output from the lock-in and to record the photodiode output signals through the lock-in. 

The torsion angles as a function of direct current have been measured for nickel and gold 

samples. Heating effects have been found to provide some contribution to produce torsion. On 

the other hand this does not seem to be the only cause of the observed effects.  
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CHAPTER 4 

DESIGN AND FABRICATION OF MORE PRECISE, THE SECOND GENERATION 
OF MICROSTRUCTURES 

 In the previous micromechanical mirrors and the measurements as discussed earlier, we 

encountered a problem of mirror folding while depositing metal on them. Thinking that reduced 

size of mirrors would make the mirrors sturdier and remain flat on metal deposition, improved 

mirrors with square shape were designed and fabricated in more systematic way with smaller 

dimensions of 150µm×150µm. In order to see how the torsion angle depends on beam width of 

the mirrors, five different beam widths (8, 10, 12, 16 and 20 µm) were designed in the new 

fabrication of the free standing mirrors. The thickness of silicon nitride and the thickness of 

metal deposition were altered presumably for more systematic results in the measurements.  

4.1    Design of more precise micromirrors 

 More systematic design of micromirror structures was necessary to understand the torsion 

phenomena in detail. During deposition of metal on the surface of micromirror structures in the 

previous design, bending of the mirrors was found every time. The convex reflecting surface 

caused wide reflection that always created problem in getting a sharp spot of reflected light on 

the photodiode during optical measurements for torsion angle. Reducing the size of micromirrors 

might solve this problem, thus a new design of micromirros was proposed. The layout was 

designed using design software named LASI. One layout of such design consists of 5 mirrors in 

a column with 5 rows. The mirrors are 150 µm×150µm in dimensions which are supported by 

beams with different widths, viz. 8, 10, 12, 14, and 16 µm. These freestanding mirror structures 

are made of silicon nitride layer, and they are suspended in KOH etched silicon wafer. The size 

of the top opening of the wafer is kept to be 700µm×500µm. For this opening on the top, the 

opening on the bottom has to be 1124 µm×924µm. The rate of etching of silicon at 54.7 degree 
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with the (100) plane is much faster than in other direction which is schematically shown in Fig. 

4.1(a). Due to this the etching from the bottom to top of the wafer goes as four sided pyramid as 

shown in Fig. 4.1 (b). The dimensions at the bottom are designed for 300 µm thick wafer.  

 

 

  

 

(a)                                                       

(b)  

Fig. 4.1 Schematics of KOH etched hole of Si wafer (a) wider etch at the bottom than at the top 
of the wafer, (b) square hole with bigger opening at the botton of the wafer after etching.   

 If we consider the top opening with one side wt  and the corresponding side at the bottom 

as wb, then they are related to each other through the etching angle by  Wt = wb-2 h cot 54.7 o, 

where h is the thickness of the silicon wafer. 

4.2    Mask design 

 For the lithography and fabrication of microstructures, four layers of masks were 

designed by using LAyout System for Individuals (LASI) software. Each layer of mask was 

designed with specific purpose which are discussed and shown in Appendix A (II). Figure 4.2 

shows the unit cell of mask layers. 
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4.2.1   Unit cell of all layers  

           

(a)                                 (b)                                           (c)  

 (d) 

Fig. 4.2 Unit cell of design of mask (a,b and c: separate layers; and d: all layers together) 
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4.2.2 Design of four dies and trench 

  It would be useful to put four dies on single wafer from cost –viewpoint and for more 

yield of the micro structures. Trench between the dies would help to separate each die in the 

wafer so that it would be easier to handle the mirror samples. For this purpose, trenches were 

designed between the dies. The trenches were designed from the bottom. As shown in Fig. 4.3 

the trenches were designed to be only 100 µm deep so that the remaining 200µm wafer is still 

strong enough for handling during processing.  The width for the trench at the bottom is 

determined by the relation, x = d tan 35.3o, where “d” is the depth of the trench to be etched from 

the bottom of the wafer (we used 300 µm thick Si wafer). This calculation gives the width of the 

trench-opening at the bottom as 70.8µm.                                         

 

 

 

 

 

                               Fig.4.3 Trench design for etching from the bottom of Si wafer 

4.2.3 Some important distances in the present design 

The following parameters were used to use the Si wafer appropriately for the maximum yield of 

the micro structures, and to divide the wafer by trenches into four quadrants. 

Diameter of the wafer = 4 inch = 101.6mm 

Thickness of the Si wafer = 300µm 

Distance between the edge to the nearest KOH etched window = 12.48mm 

Distance between the trench to nearest KOH etched window = 9.36 mm 

For clarity, these parameters are shown in Fig. 4.4. 

x 

d =100µm 

200µm 

54.7
o
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                                        Fig. 4.4 Some important distances in the present design 

4.3   Fabrication Steps of Silicon Nitride freestanding mirror-beam structures with Au 

deposition 

Photolithography was used to fabricate the freestanding structures. Low stress silicon 

nitride layer was made on the front and back of Si wafer. Then Au layer was deposited on the 

front surface. Contact photolithography was done on the back surface to mark the areas to be 

etched. After this, SiN on the back on these marks was etched. Photoresist stripping was done on 

the front in such a way that the photoresist remains in other areas than the mirror pattern. Then Si 

on the back was etched by KOH to open the windows and trenches. After this step, contact 

photolithography was done on the front on Au surface using mask Layer 2. Gold wet etch on the 

front was performed afterwards to leave the Au patterns. After this, silicon nitride was etched on 

 

12.4mm 

9.3mm Trench 
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the front to leave gold coated SiN freestanding mirror structures. Finally, Photoresist Stripping 

was done to remove photoresist remaining on the top of Au pattern. The detail of micromirror 

fabrication steps with schematic figures is given in Appendix A (III). 

4.4    Dimensions check of the yield, and thickness measurement by AFM 

 Optical images of some of the microstructures after fabrication are shown in Fig. 4.5. 

 

 

 

 

 

 
Fig.4.5 Image taken by optical microscope showing one of the micromirrors after fabrication. 
The figure shows the micro mirror and its supporting beams coated with Au during 
fabrication. 
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 AFM was done to confirm the thickness of the Au layer. Tapping mode of AFM gave the 

step height of Au layer to be close to what was aimed to deposit. The Au thickness was found to 

be 49.53nm, i.e.495.3Å which is close to expected thickness of 500 Å. Thickness of gold was 

measured at different locations, e.g. on the wire, and on the contact pad. Three different 

thickness measured were 49.53nm, 54.63nm, and 47.72nm whose average value comes to be 

50.63nm. Hence, the thickness of gold is in target thickness of 50nm within experimental errors. 

Fig. 4.6 shows AFM picture of thickness measurement of Au layer. 

 

 

Fig. 4.6  measurement of thickness of Au layer deposition on the microstructures by using AFM 
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CHAPTER 5    

TORSION MEASUREMENTS WITH NEWLY FABRICATED SECOND 
GENERATION OF MICROMIRRORS 

5.1    DC voltage generation from Lock-in amplifier  

 An auxiliary dc output in steps was generated from Lock-in by Lab View control 

program. The voltage steps swinging from -3V to +3V are shown in Fig. 5.1 (a) and from +3 V 

to -3V are shown in Fig. 5.1 (b). The voltage goes to zero between these values. 
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5.2    Response of mirrors for different input signals  

 Function generator was used to supply different wave forms to the microstructure to see 

how the output signal corresponds to the input signal type. Oscilloscope (Tektronix AFG 3021)              

was used to record the input and output data. Figure 5.2 shows that the output signal is square 

wave when the input signal, which is the actuating signal, is a square wave. This shows the 

proper response of photodiode signal in phase with the input signal as expected. 

Fig. 5.1 DC voltage supplied from Lock- in at the steps of 0.5 V from (a) -3 V to 
+3 V; (b) +3 V to -3 V to actuate the microstructure  
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 Figure 5.3 shows that the photodiode signal when the input signal is the sine wave of 

frequency 1Hz from the function generator. The output signal shows that the mirror is in state 0 

(Lowest voltage) when the input has zero volt. For the input voltage above zero the oscillation 

follows the input wave which is seen on gradual change of output signal. This means that the 

microstructure oscillates in correlation to the input signal as expected, and in the same direction. 
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Fig.5.3 When the mirror is actuated with a sine wave, the output signal from the 
photodiode is in phase with with the input signal. (The input signal used has f= 1Hz) 

Fig. 5.2 Correlation of PD output signal due to actuation of micromirror to the actuating 
signal  

Zero level of 

photodiode 

signal 
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 The effect of triangular wave as actuating signal is shown in Fig. 5.4. When the input 

signal is at zero Volt, the mirror is in 0 state, i.e. the equilibrium state, and displaces more as the 

input voltage increases, and returns gradually as the input voltage decreases. 
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            Fig. 5.4  PD signal (blue) when the actuating signal (red) is triangular wave of f = 1Hz  

 For the saw tooth wave as actuating signal, Fig. 5.5 shows the corresponding photodiode 

signal. The lowest point of output signal corresponds to zero of input signal, and for positive 

voltage, the rotation of mirror is represented by the output signal. These dynamical responses 

show that the output signals are in phase with the actuating signal. 
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Fig. 5.5 PD signal (blue) when the actuating signal (red) is saw tooth wave of 
frequency, f = 1Hz   
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5.3    Measurements of switching time 

 When certain dc current is passed through the structure, it actuates from its initial state 

(state 0) to final state (state 1). The switching time τ of the mirror is important parameter to 

know. It can be hypothesized that passing current is analogous to the charging of a capacitor, and 

turning current off which allows the mirror go back to its initial position can be assumed 

analogous to discharging of a capacitor.   

 Experimental set up for switching time is schematically shown in Fig. 5.6. As the mirror 

actuates, the reflected laser from the mirror which falls on the difference photodiode is converted 

to electrical signal. An oscilloscope is used to record how the output voltage changes with time. 

Figure 5.6 is schematic for the switching time measurement. 

 

   (a) 

 

    (b) 

    Fig. 5.6  Micromirror actuation by (a) manually, (b) ac signal from function generator 
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 The mirror was actuated in two ways. First, it was actuated by passing dc current from 

current source (Keithley 2400). The data and the waveform were recorded. Again, the mirror was 

actuated by passing ac of certain frequency from a function generator. The data and waveforms 

were recorded again.  

 Figure 5.7 shows the output signal from the photodiode (PD) when the mirror was 

actuated manually.  Fig 5.7 (a) shows oscilloscope screen showing the state change of the 

photodiode signal when the mirror goes from off (0) position to on (1) position; and Fig. 5.7 (b) 

shows the opposite action, i.e., from state 1 to state 0. The micromirror is stable in either state 

which is shown by substantially constant amplitudes in each state. Absence of oscillations after 

switching shows that the system is heavily/over-damped. This may be useful when 0 and 1 sate 

are needed by switching action in the system.  

                 

(a)                                                           (b) 

 

 

  Switching time when the mirror actuates from 0 to 1 state can be measured quantitatively 

by finding the time constant of the switching action. Considering as charging a capacitor as the 

Fig. 5.7 The photodiode signal when the current supplied to actuate the micromirror is 
switched on and off manually, (a) when mirror goes from 0 (off) to 1 (on) position, (b) when 
mirror goes from 1 (on) to 0 (off) position 
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mirror goes from 0 to 1 state as shown by the change in signal amplitude in Fig. 5.8, the time 

constant for one of the mirrors with beam width of 20 µm is found to be 1.03ms.  
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Fig. 5.8 Switching time constant of electrically actuated micromirror (beam width = 20µm) when 
the current is supplied turning the switch on or off manually 

 As a cross check, the time constant was measured by actuating the microstructure by 

passing actuating signal of 1Hz from the function generator (FG). Fig. 5.9 shows the input and 

output signals with the measured value of time constant of 1.17 ms. 
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 Fig. 5.9 Switching time constant of electrical actuation of micro mirror (beam width = 20 
µm), while using actuating signal of 1 Hz from the function generator, time const, τ = 1.17ms 
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5.4    Torsion angles as function of current for different micromirrors with different beam 
widths 

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

0.00

0.03

0.06

0.09

0.12

0.15

A
ng

le
 (

D
eg

re
e)

Current (mA)

Au_8um_C1R5

            

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.01

0.00

0.01

0.02

0.03

0.04
Au_10um_C2R5

A
ng

le
 (

de
gr

ee
)

Current (mA)  

 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0.000

0.008

0.016

0.024

0.032
Au_12um_C3R5

A
ng

le
 (

D
eg

re
e)

Current (mA)          

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0.000

0.006

0.012

0.018

0.024 Au_16um_C4R5
A

ng
le

 (
D

eg
re

e

Current (mA)  

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0.000

0.003

0.006

0.009

0.012
Au_16um_C5R5

A
ng

le
 (

D
eg

re
e)

Current (mA)          

Fig. 5.10  Torsion angle as a function of Current for different beam width, b of free standing 
structure (Top Row� Left:  b=8µm, Right: b= 10µm; Middle Row� Left: b=12µm, Right: 
b=16µm; Bottom Row� Left: b=20µm, Right: combined plot of angles for all microstructures 
observed) 
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 Figure 5.10 shows the measurement of angles as a function of current for micromirrors of 

beam widths 8, 10, 12 16 and 20µm. Parabolic curves show that the torque experienced by the 

free standing structures is in the same direction for both directions of current. It has been 

observed under optical microscope that the change in current direction doesn’t change the torsion 

direction. The last of Figure 5.10 is the combined plot showing torsion angle of all the 

microstructures in the same scale. This shows that if the same current is passed to the 

microstructures of different beam widths, then the torsion produced in the structure of smallest 

beam width is the largest, and the torsion angle goes down as the beam width increases. The 

curves for 8, 12, 16 and 20µm wide beamed structure are the experimental data. They are 

following certain pattern, and the analysis of their curvatures can be helpful in predicting the 

curvature of such parabolic curves for microstructure of 150µm × 150µm, and with different 

beam widths. This method can be used to find torsion angle of any microstructure of this 

dimension but with different beam widths. After fitting these curves, we get the fitting equations. 

The coefficients of the quadric terms give the curvature of parabola. So, the coefficients of these 

quadric terms were taken, and plotted as a function of beam widths which are shown in the Fig. 

5.11. The fit equation of this curve gave the relation of the coefficient (C) with the beam width 

(b). It was found to be: C = 3.521 b-1.52, where b is in µm.  The parabolic dependence of the 

torsion angle on the dc current that is passed to actuate the mirror allows us to write the torsion 

angle in degrees as θ = C I2. Using the above equation we can write 
52..1

2

521.3
b

I=θ , where I is in 

mA and b is in micrometers. This empirical relation predicts the torsion angle of micromirrors 

with dimensions of 150µm × 150µm but with different beam widths when current I is passed 

through them. Using this technique, the torque angles for the structure with 10µm beam width 
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has been predicted and plotted together with the experimental data as shown at the last of Fig. 

5.10. This falls in the right position of the pattern for different structures. 
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Fig. 5.11 Coefficients of quadratic terms as a function of beam width of micro structures 

 
5.5. Torque estimation as a function of current 

For rectangular torsion bar
L
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case of narrow rectangular cross section b>>h so that this expression reduces 

to ).63.01(
3

1
1 b

h
k −=  For the experimental values of the beam widths and thicknesses, 1/ <<bh  

and thus the coefficient k1 is practically constant [Minhang Bao, 2005]. The torque produces 

torsion in the torsion bars so that the mirrors actuate.  Since torque is proportional to torsion 

angle, and also it is proportional to acceleration, it can be said that the acceleration is 

proportional to the torsion angle. Accelererometers have been developed based on this. So, 

knowing torque of such micromechanical mirrors is important.     
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 The torque T = KΦ .Φ = 2×K1×G×a3×b/L×Ф can be calculated for Si3N4 by using the 

value of shearing modulus G = 1.27×1011 N/m2, thickness of beams a = 0.4µm, beam widths b = 

8, 10, 12, 16 and 20µm, length of each beam L = 175µm, and using the values of the torsion 

angles measured for these microstructures. The factor 2 is introduced for two beam structures of 

the freestanding mirror. Since the torsion angles were measured as a function of current passed to 

actuate the structure, the torque can be expressed as a function of current as well. From the 

analysis of the coefficients C in the expression Φ = CI2 of the parabolic fits of the curves in 

Fig.5.11, we found that C(b) = 3.521 b-1.52,where b is the size of beam width in µm. This leads to 

the expression T = (K1Gh3b/L) (3.52/b1.52) I2, resulting in a series of parabolic curves as shown in 

Fig. 5.12 with the magnitude of torque on the order of 10-14 Nm.  
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Fig. 5.12 Torque of micromechanical mirrors (150µm × 150µm) as a function of  
actuating current. 

 For a given current passing through the freestanding structures of different beam widths, 

it would be interesting to know how the torque depends on the width of the beam. This will help 

to design suitable beam width of the structure depending on the need of the torque while passing 
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certain current. The curves shown in Fig. 5.12 indicate that the torque for a structure with a 

narrower beam is larger than for a structure with a wider beam (at the same current), as expected. 

The estimates above work well for all beam widths, except for the beams of less than 10µm 

wide, for which the torque calculated based on the measured values of torsion angles Φ, 

increases disproportionally faster compared to the structures with wider beams. In general, for 

constant I and for h<<b, we get T~1/ b 0.52. 

5.6.   Moment of inertia of microstructure as a function of beam width 

For knowing the inertial resistance of the free standing micro structure to rotational 

acceleration, one can find the moment of inertia which, for the geometry of the micro structure 

with mirror plate and two supporting beams, is given by the expressions: 

      
1212

1
3

1
3

1

bLhhLb
J SiNSiNL ρρ +=  

   
1212

1
3

1
3

2

bLhhLb
J SiNSiNL ρρ +=      (L1= L2 for this design of microstructure) 

                                 
1212

33 LBhBhL
J SiNSiNmirror ρρ +=

     
 

Where JL1 = Moment of inertia for one beam with length L1, width b, thickness h; 

             JL2 = Moment of inertia for the other beam with length L2, width b, thickness h; 

J mirror = Moment of inertia for the mirror plate of length L and width B (in our case,   

L = B) for Si3N4 with density of ρSiN. 

 For the structure being used, L1 = 175µm, L2 = 175µm, h = 0.4µm, L = 150µm, B = 

150µm, and ρSi3N4 = 3440 kg/m3. Using these values the total moment of inertia of the actuating 

system J = JL1+ JL2+ Jmirror was calculated for five different sizes of b, viz. b = 8µm, 10µm, 

12µm, 16µm and 20µm. Since JL1 + JL2 << Jmirror , the moment of inertia is only weakly 
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dependent on the beam widths, varying from 5.81×10-20 to 5.84×10-20 kg.m2  for b = 8µm and b = 

20µm respectively.  

5.7    Electric Power dissipation in the mirror-beam structure 

 One of the reasons of actuation of free standing mirror beam structure while passing 

current through it could be due to electric heating that expands the structure fixed at both ends 

resulting its torsion. In this context, it is important to know the amount of heat dissipation in the 

structures of different beam widths. The resistances of the structures with Au deposition were 

measured which were found to be 20.048Ω, 17.568Ω, 14.721Ω, 11.163Ω, and 9.028Ω for the 

structures with beam widths of 8, 10, 12, 16, and 20µm respectively. The electric power 

dissipation, Pn = I2Rn, calculated as function of current supplied, is shown in Fig. 5.13. The 

curves show that the power dissipation in the structures with narrower beam is greater than in the 

structures with wider beams. This correlates with the higher torsion angles in case of the 

structures with narrower beams while passing current. This correlation also serves as an 

additional indication of the role of thermoelectric effects in the actuation of these structures by 

electric current. 
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Fig. 5.13 Electric power as a function of current in the free standing mirror-beam structure 
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5.8    Resistance of Au layer on the microstructures as a function of beam width 

 Resistances of the microstructures were measured which seems decreasing with beam 

width b as shown in Fig. 5.14. Smaller resistance of wider beamed structures will dissipate 

smaller joule heating which might be one of the causes of smaller torsion angle of wider 

structure due to less expansion causing smaller twist of the structure.  
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Fig. 5.14 Dependence of resistance on beam widths of free-standing structures 

 

5.9. Torsion of freestanding microstructure in Gallium stands 

 One of the micro mirrors was detached from the Si wafer and was placed its two ends on 

Gallium at room temperature so that the microstructure stands freely, and the ends of the 

structure are free to move along their axes in case if the structure expands while passing current. 

DC current was passed starting from few micro amperes, and increasing until the structure 

showed some torsion. The mirror was observed under optical microscope. The structure showed 

clear torque when 7mA of current was passed through it. The actuation was similar to the case 
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when the beams of the mirror were fixed at both ends with Si wafer. When the current was 

passed, the microstructure would tort in one direction and when the current was turned off the 

structure would go back to its initial position. This was observed for repeated actuation by 

manually turning the current on and off.  

 The reason to check this qualitatively was to check if the torsion is seen when the two 

ends of the beam were free to move along their axes should there be any effect of expansion 

while passing current. It was assumed that liquid Gallium would not be able to hold the ends of 

the structure from moving along the axis if the structure and the beams expand. Despite this 

degree of freedom given to the micro structure, its tendency to show the torsion indicates that the 

possible expansion of the structure along the beam length due to joule heating is not the only 

reason, if it is suspected, for producing the torsion of the microstructure with Au coating on it. 

While passing current the expansion is not only linear. If we assume superficial expansion of the 

mirror plate, then the expansion of the mirror plate along the direction perpendicularto the beam 

length produces some elastic potential difference laterally which is easily released as a twist. The 

linear component of elongation is helpful in triggering the twist.  

 The observation was carried out by cooling a microstructure by touching the frame with 

liquid Nitrogen. When the current was passed before cooling, the twist was seen. The mirror was 

allowed to remain in excited state before cooling, and then while the current remained passing, 

the structure was cooled by touching the Si frame by liquid Nitrogen. Even after cooling, the 

structure didn’t come back to its initial position, and it came to its initial position only after 

current was turned off. This adds confusion on the explanation of torsion due to heating only. 

However, the Joule heating might still be effective even though it was cooled by liquid nitrogen 

because of existing resistance, and may be the observation by naked eyes under optical 
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microscope cannot distinguish some change in the twist. So, there could be other reason 

responsible for torsion apart from joule heating. This needs further careful investigation. 

5. 10 Discussion  

 Torsion was observed in micromechanical freestanding mirrors (preliminary samples or 

set A samples, with dimensions ~390 µm× 290 µm with beam width ~7µm) coated with Ni or 

Au or Ag when current was passed through them. It was observed and measured in another set of 

samples (set B samples) with the mirror size 150µm×150µm and with different beam widths (8, 

10, 12, 16, 20µm), and was found that the torsion produced is bigger in the case of the samples 

with narrower beam widths. The torsion angles as a function of current were measured for these 

samples. Switching time, torque and moment of inertia were measured for the microstructures of 

set B samples, and they were found in the order of milli-second, 10-12 Nm and 10-20 kgm2 

respectively. The angle of torsion measured for Au sample (set A) when 38 mA of current was 

passed is about 26 degree. The structure with Au deposition survived until the current was 40 

mA. Such a huge torsion angle is important for MEMS from the technological viewpoint. This 

torsion angle is much bigger than any torsion angle that could have been produced by any other 

known effects such as Wiedemann effect, transfer of momentum of spin, or heating effect alone 

[Li, 2005]. Since spin torque is supposed to be observed in hybrid wires, and such mechanical 

torques change sign with the electric current direction [Covalev et al., 2007], it is unlikely that 

the torsion we have observed is due to spin torque since the torque we observed is always in the 

same direction for both directions of the current. Another interesting feature in our observations 

is that a microstructure with deposition of only one metal, so far tested with nickel, gold and 

silver only, can actuate appreciably, and the angle of torsion is controllable by simply increasing 

or decreasing the current. The actuation of certain mirror is always in the same direction which 
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may be related to the asymmetric structural strength of the Si3N4 membrane.  Once the structure 

is actuated it remains there stable until the current is turned off. In case of our mechanical 

system, there may be several sources of actuation. Contraction of Si3N4 due to electrostriction on 

applying the electric field E, and superficial expansion of metallic layer due to Joule heating on 

passing dc current may work together for producing effective strain which results the enhanced 

electromechanical performance as in hybrid actuation system [Su et al., 2004]. Since the metallic 

layer is constrained by Si3N4 layer, the nonequilibrium strain causes a deformation which finds 

its lowest energy after the freestanding system makes torsion by certain angle which seems 

dependent on the applied current quadratically. Since the electrostriction of Si3N4 is proportional 

to E2, where E is the electric field applied to Si3N4, and the thermal strain on the top layer is also 

proportional to I2, it is reasonable for the effective strain to be proportional to I2, which seems the 

reason of why the measured torsion angles are proportional to the dc current passed through the 

structure. However, the applied electric field of 2 KV/m on 0.5mm long Si3N4 structure of 

electrostriction coefficient of 0.17×10-21 m2/V2 [Rattikorn et al., 2002] seems to produce a strain 

of 0.7×10-13 which may be too small to produce such a large torsion effect observed. Maxwell 

Stress compression may also be too small because of its small magnitude compared to the 

observed large torsion. Out of three effects known to produce a quadratic behavior: 

electrostriction, Joule heating and Maxwell Stress compression [Choi et al., 1992], the 

elimination or the negligible effect of electrostriction and Maxwell Stress compression leaves the 

third effect, the Joule heating which is mostly responsible for the actuation of such 

microstructures while passing current. Moreover, our observation of qualitatively similar current-

induced torque in the gold and silver deposited micromirror structures makes it unclear whether 

and to what extent magnetic effects play a role in actuating the mirrors. However, torsion angles 
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can be increased easily by controlling the dc current.  At this stage, the torsion angles that can be 

produced by passing current through micromechanical structures seem to have some potential for 

technological use, though the origin of such torsion is yet to be determined. Due to the high 

sensitivity of the photodiode as a detector, the optical measurement system we have developed 

may be used to measure even smaller torques, possibly the torque produced in heterostructure of 

magnetic and nonmagnetic materials as proposed by P. Fulde and S. Kettemann [Fulde et al., 

1998]; Yu et al. [Yu et al., 2007] and Zolfagharkhani et al. [Zolfagharkhani et al., 2008].   

5.11   Conclusions and future work  

 Nano and micro machines utilize torsion angles to operate. We have observed torsion in 

magnetic and non-magnetic micromirrors while passing current through the structure. Since the 

angle is easily controllable by dc current, such devices may be very useful. Experimentally 

accessible range of torsion can be used in information technology as optical switches. 

 To understand the cause of actuation in more detail, it will be helpful to study asymmetric 

mirrors, may be by cutting one side of the beams. Further understanding of torsion phenomena in 

these samples will be helpful for potential use of such micro structures in MEMS technology. 
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PART II 

CHAPTER 6 

SPINTRONICS: EVOLUTION AND PRESENT DIRECTION 

6.1 Introduction 

The term “spintronics” was coined by S.A.Wolf in 1996 for spin electronics. Its research 

relies on the results obtained in diverse areas of physics such as magnetism, semiconductor 

physics, superconductivity, optics and mesoscopic physics; and establishes new connections 

between its different subfields. It involves the study of active control and manipulation of spin 

degrees of freedom in solid-state systems (Zutic et. al., 2004). The control of spin is a control of 

either the population and the phase of the spin of an ensemble of particles, or a coherent spin 

manipulation of a single or a few-spin system. The research in this area tends to find an effective 

way to polarize a spin system, measure the time for which the system is able to remember its 

spin orientation, find a way to detect spin, and investigate the spin polarized transport in 

electronic materials. Study of spin transport properties can lead to the knowledge of spin 

polarization of a material.  In this dissertation, Point Contact Andreev Reflection Spectroscopy 

has been used as a useful technique to study spin polarization of various materials with potential 

for the use in spintronic applications.   

Electronic devices are traditionally based on the charge of an electron. Intel co-founder 

Gordon Moore (Moore, 1965) indicated that the number of transistors in a chip doubles every 24 

months. In this situation, the size of transistors should be reduced to make small and portable 

electronic devices. Not only reducing the size, but also improving the performance of transistors 

is important.  With the advancement of electronic technology, the desire and need to increase the 

data processing speed, information storing capacity, low power consumption, and 

miniaturization of electronic devices has inspired researchers to develop new technology with 
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such capabilities. Use of the spin properties of electrons would enable researchers achieve these 

goals. Adding spin degree of freedom would help to control current, based on the degree of spin 

orientation. The devices based on spin would be nonvolatile and faster in data processing. They 

consume less electric power and have increased integration densities compared with 

conventional semiconductor devices (Wolf et. al. 2001). It is envisioned that merging of 

electronics, photonics, and magnetic will lead to spin based multifunctional  devices such as 

spin-FET (field effect transistor), spin-LED (Light emitting diode), spin-RTD (resonant 

tunneling device), optical switches operating at terra-hertz frequency, modulators, encoders, 

decoders, and quantum bits for quantum computation and communication (Wolf et. al. 2001).   

6.2 Spintronic devices  

6.2.1 Magnetoresistance 

Anisotropic magnetoresistance in bulk ferromagnets such as Fe and Ni was observed first 

by Lord Kelvin (Thomson, 1857). He found that in presence of magnetic field the resistance of 

iron was different, and it was bigger if the current was flowing in the direction of the field and 

was smaller if the current was flowing perpendicular to the field. The difference in electrical 

resistivity was due to spin-orbit interaction. The magnetoresistance is defined as Rap-Rp/Rp or 

Rap-Rp/Rap, where Rap is the antiparallel state resistance and Rp is the parallel state resistance. 

The better known magnetoresistance was ~1%.  

6.2.2 TMR 

 Concept of spin polarized transport became important to understand magnetoresistance. 

Mott (Mott 1936a, b) realized that at sufficiently low temperatures, where magnon scattering 

becomes vanishingly small, electrons of majority and minority spin, with magnetic moment 

parallel and antiparallel to the magnetization of a ferromagnet, respectively, do not mix in the 
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scattering processes (Zutic et. al., 2004).  After series of tunneling experiments by different 

people (Kasuya and Yanase, 1968; Esaki et al., 1967) to understand the spin polarized transport, 

Jullier`e (1975) measured tunneling conductance and formulated a model for a change of 

conductance between the parallel (↑↑) and antiparallel (↑↓) magnetization in the two 

ferromagnetic regions F1 and F2, as shown in Fig. 6.1. The corresponding tunneling 

magnetoresistance (TMR) in an F/I/F magnetic tunnel junction (MTJ) is defined as 

 

where conductance G and resistance R=1/G are labeled by the relative orientations of the 

magnetizations in F1and F2. This model showed that the resistance of a device can be manipulated by 

the relative orientation of magnetization of F1 and F2. 

 
 
Fig. 6.1. Illustration of electron tunneling in F/I/F tunnel junctions: (a) parallel and (b) 
antiparallel orientations of magnetizations in ferromagnetic metals (arrows in ferromagnets 
represent the majority spin-subbands) (Zutic et. al. 2004). 
 
6.2.3 GMR 

Spin based electronics started after the discovery of giant magnetoresistive effect (GMR) 

in 1988. Albert Fert and Peter Grünberg made a sandwitch of a nonmetal between two 

ferromagnetic layers and observed that, in presence of small magnetic field (100 to 1000 Oe), the 

resistance of the system was smaller if the magnetic moments of the ferromagnetic layers were 

parallel, and it was larger in the case when the magnetic moments of the ferromagnetic layers 

were antiparallel. This was true for both the configurations of whether the current is in plane 
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(CIP) or the current is perpendicular to the plane (CPP). They called this property the GMR 

(“giant” for reflecting the magnitude of the effect more than ~10%). Multilayered structures of 

GMR can be used for non-volatile memory applications (Hartman (Ed.), 2000; Hirota et al., 

2002; Parkin, 2002). Schematics of such multilayered structures are shown in Fig. 6.2. Many 

read heads for magnetic hard-disc drives are based on GMR. IBM launched the first commercial 

read heads based on GMR in 1997. This technology is being used in nearly all computers 

worldwide. It is also being used in some digital cameras and MP3 players. Though many 

spintronic applications are based on GMR effects, tunneling magneto resistance devices are 

potential candidates for several MRAM prototypes (Parkin et al., 1999; Tehrani et al., 2000) due 

to discovery of room temperature large TMR in them and researchers’ renewed interest in them 

(Miyazaki and Tezuka, 1995; Moodera et al., 1995). 

 

Fig. 6.2. GMR and TMR structures for spin dependent transport (a) spin valve, (b) magnetic 
tunnel junction (Wolf et al., 2001) 

6.2.4 Magnetoresistive random access memory (MRAM) 

Magnetoresistive random access memory (MRAM) has added features on semiconductor 

RAM chip. It stores information based on the direction of magnetization, and can readout the 

information based on magnetoresistance. MRAM can retain data even when the power is off. It 

has one thousand times faster write time than electrically erasable programmable read-only 
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memory (EEPROM) and flash memory, and has no wearouts with writing cycles and consumes 

less energy. Their data access timings are 10,000 times faster than that of hard drives (Wolf et 

al., 2001). Even though the GMR was discovered in the late 1980s and TMR was discovered in 

the early 1990s, it took several years for their improved performances for realizing in 

technology. Prototype of MRAM was announced in 2003, its first commercial product started to 

ship in 2006 (Engel et. al., 2005).  Today 180- and 90-nm standalone MRAM products are 

finding more and more applications in various areas where their unique features of being 

nonvolatile fast and of unlimited endurances are vital: satellite applications, automotive data 

recorders, industrial controls, etc. Efforts are ongoing to scale MRAM technology to 65 nm for 

both standalone and embedded applications (Wolf et. al., 2010). 

 
                         
 
                       Fig. 6.3. Schematic drawing of MRAM (Wolf et al., 2010) 
 

6.2.5 Spin transfer torque random access momory (STT-RAM) 

New memory devices should have smaller and denser memory sizes with lower power 

consumption. However, conventional MRAM has a drawback of the need of increased switching 

current as the size is scaled down. To circumvent this problem, and with simpler architecture and 

manufacturing than conventional MRAM,  a different memory called the spin transfer torque 

random access memory  (STT-RAM) was proposed theoretically in 1996; and first demonstrated, 
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though the switching current density was high, in metallic spin valve thin film (Slonczewski et 

al., 1996; Pufall et al., 2003). Spin polarized current is applied vertically through the magnetic 

tunnel junction (MJT) element in STT-RAM. SONY Corporation demonstrated STT-RAM test 

chip in 2005 for the first time (Hosomi et al., 2005); and Hitachi and Tohoku University 

demonstrated a circuit design for 2 Mb- STT-RAM chip in 2007 (Kawahara et al., 2007). Recent 

report was even lower writing current on 50-nm perpendicular MTJ dots (Kishi et al., 2008) and 

45-nm STT-RAM chips on CMOS (complementary metal-oxide-semiconductor) platform using 

in-plane MTJ films (Lin et al., 2009).  The writing current scaling with the size of MTJ element 

is shown in Fig. 6.4. 

 

Fig. 6.4. MRAM and STT-RAM in terms of writing current scaling trend (Wolf et al., 2010) 

Because of size challenge of SRAM, DRAM, and Flash beyond less than 45nm, and high 

power consumption of SRAM, need of refreshing of DRAM, and limited endurance and slow 

write speed of Flash memory, STT-RAM may also work as a replacement for storage class 

memory with all the major benefits (fast, nonvolatile, no wear-out mechanisms, unlimited 

endurance and scalability to sub-10-nm nodes). It is assumed that STT-RAM after incorporating 

in mobile applications can dramatically reduce power by up to 75%. The comparison of 

performance of different memory devices is shown in table 6.1. 
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Table 6.1. Comparison of performance of different memory devices (SRAM = DRAM = Flash 
(NOR) = parallel, Flash (NAND) = series, FeRAM =  MRAM = magnetoresistive random access 
memory,  PRAM = STT-RAM = spin transfer torque random access memory, (Wolf et al., 2010) 

 

6.2.6 Spin transistor 

With semiconductor region in one side, and with the aim to integrate spin and charge 

transport within traditional devices such as junction and field-effect transistors, several spin 

transistors have been proposed. Spin transistors that contain metallic as well as insulating regions 

have been proposed (Datta and Das, 1990; Johnson, 1993; You and Bader, 2000; Bauer et al., 

2003; Zvezdin et al., 2003). Also, single electron transistors have been proposed and investigated 

(Datta and Das, 1990; Ono et al., 1996; Barnaś and Fert, 1998; Korotkov and Safarov, 1999; 

Ciorga et al., 2002; Martinek et al., 2002). 

Datta-Das spin field effect transistor (SFET) (Datta and Das, 1990) is a prototypic 

spintronic device, which has, as in field effect transistor (FET), a drain, a source, a narrow 

channel, and a gate for controlling the current as shown in Fig. 6.5. But the difference in SFET is 

the presence of ferromagnetic metals or semiconductors with parallel magnetic moments as 
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source and drain acting as the injector and detector of electron spins. Electrons are injected from 

the source with wave vector k. When the electrons pass ballistically through the narrow channel 

(made of GaAs/InAlAs in a plane normal to n) , their spins precess about the precession vector Ω 

because of the effective magnetic field produced in the direction Ω as shown in Fig. 6.5 due to 

the electrostatic potential of the gate, and due to the spin-orbit coupling in the substrate material. 

Only the spins which have the same direction as the spins at the drain are allowed to enter to the 

drain (ON), otherwise they are scattered away (OFF). By controlling the gate voltage, the 

electron spins can be controlled to be parallel or antiparallel or anything in between as compared 

to the spins at the drain. This results the control of the current.  For an example, the current is 

large if the electron spin at the drain is pointing the initial direction as shown in top row, and it is 

small if the spin is pointing the opposite direction as shown in bottom row in Fig. 6.5. 

 

             Fig. 6.5.  Scheme of Datta-Das spin field effect transistor (SFET) (Zutic et al, 2004) 

 

6.3 Creating non equilibrium spins 

Non equilibrium spins at Fermi level are necessary in a material so that its spin 

polarization is high as needed for technological use of such materials for injecting spins and 
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getting spin polarized current. Such nonequilibrium can be created by different techniques such 

as transport, optical and resonance methods. Traditionally, electron spins can be oriented by 

transferring angular momenta of circularly polarized photons. However, electrical spin injection 

is more desirable for device applications. Magnetic electrode is connected to the sample as a 

source for spin injection. When current is passed, it drives the spin polarized electrons from the 

magnetic electrode to the sample so that nonequilibrium spins accumulate at the sample. Spin 

relaxation, which is the process of bringing the nonequilibrium spin population back to 

equilibrium, determines the rate of spin accumulation. Spin relaxation time is determined by 

spin-orbit coupling and momentum scattering, and it ranges from picosecond to microsecond. 

Spin detection is done by sensing the change in signal due to nonequilibrium spin. 

6.4 Spin Injection 

There are different ways of spin injection. They can be injected to nonmagnetic metal 

from ferromagnetic material at the interface (F/N junction). Its theory was first offered by 

Aronov (1976b). The theory was extended to F/N/F junctions. For efficient spin injection it is 

expected that the F and the N regions should have different band structure which would 

contribute to a significant contact resistance (Zwierzycki et al., 2003). In the interface between 

ferromagnetic material and semiconductor a space charge region such as depletion layer in p-n 

junction or Schottky contact is developed. Non-self-consistent analyses of a Schottky barrier spin 

injection were performed (Albrecht and Smith, 2002, 2003; Prins et al., 1995), while Osipov and 

Bratkovsky (2003) proposed an efficient spin injection method using a δ-doped Schottky contact. 

6.5 Spin polarization 

Knowledge of spin polarization in a material is important for its technological use. 

Development of highly spin polarized material, such as half metal is essential for successful 
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implementation of spintronics in technology. So, it is important to have the knowledge of the 

measurement of spin polarization. Next chapter will give emphasis on spin polarization, its 

measurement techniques, and special attention will be given to Andreev Reflection spectroscopy 

which is used for measuring spin polarization of various materials in this study.  
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CHAPTER 7 

SPIN POLARIZATION MEASURING TECHNIQUES WITH EMPHASI S ON 
ANDREEV REFLECTION SPECTROSCOPY 

7.1 Spin Polarization: Development and definitions 

Not only the electrons, but also holes, nuclei and the excitations can show polarization. 

Electrons have intrinsic angular momentum called spin whose degree of alignment in a given 

direction gives their spin polarization which is defined in several ways depending on the regime 

of electron transport in a given material. Based on the density of states of majority and minority 

carriers at Fermi level, the spin polarization is defined as 

       ,
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where N↑ and N↓ are the electronic density of states (DOS) of majority and minority carriers at 

Fermi level. This “N”-definition, PN, can be typically probed by spin-polarized photoemission 

technique. Its usefulness is limited by the fact that the transport phenomena usually are not 

defined by the DOS alone. This limitation is particularly true for materials which have both 

heavy d-electrons and light s-electrons at the Fermi level (e.g., Ni). While the DOS is mostly 

defined by the former, the electric transport is primarily due to the fast s electrons [Mazin, 1999].  

In order to compare the calculations with the experimental data it is crucial to make sure that a 

proper definition of the DSP is used.  For instance, the tunneling spin polarization (PT) 

determined by weighted average of DOS and tunneling matrix elements (T↑↓) which are 

functions of the Fermi velocities as defined in equation 7.2 is not the same as PN  as defined by 

equation 7.1. 
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 In terms of separate current densities J↑(↓) for spin up and spin down electrons, the 

DSP can be defined [Mazin, 1999] as DSP = (J↑-J↓)/ (J↑+J↓),  where J↑(↓) is proportional to NV2↑(↓) 

τ ↑(↓) which on assuming the same relaxation time for both spins leads to a new “PNv
2” definition 

of spin polarization given by  

  (7.3) 

 

This new definition is for diffusive (or Maxwell) regime in which the electron mean free path (λ) 

is smaller than the ferromagnetic- superconductor contact size (d).  Another definition for spin 

polarization comes from Sharvin derivation with the assumption that an electron going through the 

contact experiences the acceleration by the electric field so that its energy increases [Mazin, 1999]. This 

assumption leads to the expression that J is proportional to <Nv>, so that the third definition for spin 

polarization, for the case of ballistic (or Sharvin) transport in which the electron mean free path (λ) is bigger 

than the superconducting contact size, comes to be  
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Half-metallic magnets do not have any electrons at the Fermi level in one of the two spin 

channels so that they have 100% spin polarization. For regular magnetic metal, which has Fermi 

surfaces in both spin channels, it is not obvious a priori how to define the degree of spin 

polarization. However, the estimate of the transport regime by Zeeman Formula  

 σ↑(↓) = 1/3e2N(↑↓)v
2
F(↑↓) t                                                                 (7.5) 

and Wexler’s formula [Wexler, 1966], 

Rc ≈ 4ρL/3πd2 + ρ/2d                                                                         (7.6) 

gives the idea of experimental conditions of transport, which can be compared with the 

theoretical calculations based on the definitions of spin polarization. 
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7.2 Spin polarization measurement techniques 

There are different techniques capable of measuring spin polarization of a material. Every 

technique has some strengths and weaknesses. These are explained briefly here. 

7.2.1 Photoemission Spectroscopy 

Spin polarized photoemission spectroscopy has capability of measuring spin polarization 

directly, but this method can measure the spin polarization of electrons emitted only from 5-20 Å 

of surface of the ferromagnet, and hence it is surface sensitive [Johnson, 1995]. This technique 

lacks the necessary energy resolution (1 meV) [Feder, 1985]. This technique is based on 

Einstein’s photoelectric effect. The modification is the ejection of spin polarized electrons from 

initial state below the Fermi level of magnetic materials to final state (the vacuum level), and 

their detection by polarimeters. This allows the analysis of the spin polarization and other 

electronic structure of solids of interest based on conservation of momentum and energy of 

ejected photoelectrons.  

7.2.2 Spin polarized tunneling (SPT) spectroscopy 

 Tunneling experiment was developed by Meservey and Tedrow in 1970 in which they 

showed that the quasi particle energy states in thin superconducting Al films are split in a high 

magnetic field by the interaction of the field with the quasi particle spin magnetic moments 

[Meservey et al., 1970]. Later, they used such a polarized tunnel current to investigate the 

polarization of the current carriers in ferromagnetic nickel [Tedrow et al., 1971], and it was later 

extended to measure the spin polarization of Fe, Co, Ni and Gd thin ferromagnetic films [Tedrow 

et al., 1973]. These SPT experiments showed that the conduction electrons in ferromagnetic 

metals are spin polarized and that the spin is conserved in the tunneling process. These 

pioneering experiments are the fundamental basis for the MR effect in MTJs, as well as many 

other spin polarized phenomena. This technique gave the spin polarization values of the 
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ferromagnetic thin films more or less in agreement with the corresponding values measured by 

photoemission spectroscopy, as shown in table 7.1. 

Table 7.1 Comparison of percent polarization P measured in thin ferromagnetic films by 
Photoemission spectroscopy and spin polarized tunneling [Tedrow et al., 1973] 

 
Magnetic thin film materials Photoemission (%) Tunneling (%) 

Fe + 54 + 44 

Co + 21 + 34 

Ni + 15 + 11 

Gd + 5.7 + 4.3 

 

Magnetoresistance on trilayer junctions of FM-Insulator-FM was measured first by 

Julliere in 1975 [Julliere, 1975] with the interpretation that the tunneling current depends on the 

relative orientation of magnetization of the electrodes. This model suggests the TMR to be given 

by                                   

    ,
1

2

21

21

PP

PP

R

R

R

RR
TMR

PP

PAP

−
=∆=

−
=                                                  (7.7) 

Where P1 and P2 are the spin polarizations of two ferromagnetic electrodes as measured by SPT 

spectroscopy. 

Towards late 1980s, the notion that spin polarized current can be obtained by the use of 

one of magnetic film electrodes in tunnel junctions changed, and the concept of spin-filtering 

effect was introduced. In this effect, magnetic semiconductors such as EuO, EuS, and EuSe as 

tunnel barriers display different barrier heights for two spin directions due to exchange splitting, 

and hence allow high spin polarized current through them [Moodera et al., 1988; Hao et al., 

1990; Moodera et al., 1993; Santos and Moodera, 2004]. 
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7.2.3 Positron Spectroscopy 

Radioactive positron sources such as 22Na, 64Cu, 58CO are used to inject positrons into 

solids where they annihilate with their anti particle electrons (e-) with the emission of γ-rays, 

which yield detailed information regarding both the electron density and electron momenta in the 

region from which the positron annihilates [Siegel, 1980]. Positron (e+) has spin ½ and it carries 

magnetic moment equal to that of an electron. This property can be utilized to image the 

electronic structure of magnetic materials [Berko, 1983]. Positrons emitted from a radio-isotope 

like Na-22 [Zwart et al., 1985] are partially spin-polarized [Rabou, 1983], a relativistic 

consequence of non-conservation of parity in the beta-decay process. Switching the 

magnetization direction of a magnetic material allows one to extract its spin-resolved electronic 

structure, as the positron annihilates preferentially with an electron of opposite spin direction.        

7.2.4 Point Contact Andreev Reflection Spectroscopy  

Spin polarization of a metal that requires no magnetic field and places no special 

constraint on sample; thin films, single crystals and metallic foils can be measured by point 

contact between the sample and  a superconductor (SC) [Soulen et al., 1998] as shown in 

schematic drawing of the set up shown in Fig.7.1.  This experimental technique developed by 

Soulen et. al. in 1998 in point contact geometry [Soulen et al., 1998] and by Upadhyay et al. in 

1998 in lithographically fabricated ballistic nanocontacts [Upadhyay et al., 1998] is based on 

well known Andreev reflection which is a process of converting normal current to supercurrent 

at a metallic interface [Andreev, 1964]. Three years earlier in 1995, de Jong and Beenakker had 

shown that the transport properties of Ferromagnet-superconductor (FS) junctions are 

qualitatively different from the non-ferromagnetic case, because the Andreev reflection is 

modified by the exchange interaction in the ferromagnet [de Jong, 1995].  
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Fig. 7.1. Schematics of point contact set up to obtain conductance curves (After Soulen et al., 
1998). 

 

In an interface between a normal metal (non-magnetic) (N) and a superconductor (S) , an 

electron from N forms a Cooper pair taking another electron of opposite spin from opposite spin 

band at Fermi level of N, and  as the Cooper pair travels through the superconductor within its 

BCS gap ∆, a hole is reflected to the N in the direction opposite to the incident electron. This 

process is called Andreev reflection which is also called retro-reflection, and it is illustrated in 

Fig. 7.2. Andreev reflection is always allowed at the interface of N and S. Momentum is 

conserved in this process, and such reflection has time reversal symmetry.  

 

Fig. 7.2.  Schematic of the energy diagram for supercurrent conversion by unhindered Andreev 
reflection at the NS interface. The solid and open circles are for representing electrons and holes 
respectively (Soulen et al., 1998). 

A 
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But the situation is no longer true at the interface of magnetic metal and a 

superconductor. The Andreev reflection is limited by a minority spin population. In half metals 

which do not have minority spin states at Fermi level, a hole is not reflected and Cooper pair 

cannot be formed so that the Andreev reflection and hence the conductance is supressed for the 

electrons with energy less than superconducting BCS gap. Such situation was emphasized first 

by de Jong and Beenakker in 1995 [de Jong, 1995]. The schematics of supression of Andreev 

reflection is shown in Fig. 7.3. 

 

Fig.7.3. Schematic of the energy diagram for suppression of Andreev reflection at the 
ferromagnetic superconductor (FS) interface. The solid and open circles are for representing 
electrons and holes respectively (Soulen et al., 1998). 
 

As the Cooper pair moves into the superconductor in N-S contact, the charge 

conservation at the interface requires the reflection of a hole. This doubles the charge flow (2e) 

at the interface which inhances the conductance to double compared to the normal state (i.e. at 

bias much larger than the superconducting gap).  If we represent the conductance when the 

Andreev reflection is not taking place at N-N situation as Gn, and the conductance due to 

unpolarized current due to Andreev reflection at the N-S interface as ,
dV

dIunpol  then due to the 
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double charge flow during Andreev reflection, the normalized conductance for zero bias 

(eV<<∆) and KBT<<∆ for no barrier scattering at the interface (Z = 0) can be taken as 2, i.e. 

2
1 =

dV

dI

G
unpol

n

                                                                     (7.8) 

Since, no polarized current flows in this situation, the normalized conduction for polarized 

current can be taken as zero, i.e.                  0
1 =
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                                                         (7.9) 

When a spin polarized current flows in an interface of N-S, the total current (I) is the sum of the 

unpolarized ( unpolI ) and polarized (polI ) currents, i.e. 

polunpol III +=                                                                (7.10) 

This allows to write an expression for the normalized conductance(
dV

dI

Gn

1
)  that is dependent on 

V, T, Pc and Z, as shown in equation (7.11). 
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From equations 7.8, 7.9, and 7.11, one can write the normalized conductance in terms of spin 

polarization Pc at T→0, eV→0 ( low bias) and for clean interface (Z=0) as, 
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−=                                                                   (7.12) 

This is highly simplified expression for ideally clean interface at zero bias and at T→0. 

However, the reality would be different due to interfacial scattering, and finite temperature. In 

such situation, the spin polarization can be extracted by numerically fitting the conductance data 

over the entire voltage range with modified form of BTK model. The original and modified BTK 

models will be discussed in th efollowing sections. 
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7.3 BTK Theory 

G.E. Blonder, M. Tinkham, and T.M. Klapwijk (BTK) proposed a theory for the I-V 

curves of normal-superconducting (N-S) microconstriction contacts [Blonder et al., 1982]. This 

model is a unified treatment to understand classic (high-barrier) tunnel junctions, metallic (no-

barrier) junctions and transitional (small-barrier) junctions, and is based on generalized Andreev 

reflection model. This model considers ballistic transport, includes a barrier of arbitrary strength 

at the N-S interface, and gives detailed insight into the conversion of normal current to super-

current at the interface. In this theory, the reflection and transmission probabilities at the 

interface are found by solving the Bogolubov-de Gennes equation for electrons incident on the 

N/S interface.  

At temperature higher than 0 K, all incident electrons may not form Cooper pairs. The 

unpaired electrons known as quasi-particles can have energy of an electron either greater than the 

average energy of Cooper pair (electron-like state,e ) or less than the average energy of Cooper 

pair (hole-like state,h ). Such quasi-particles can be described by using Bogolibov-de Gennes 

equation 

 ,ψψ









Η−∆
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=
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d
ih                                                                          (7.13) 

Where the Hamiltonian 
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And the wave function of the quasi-particle 

  







=+=

),(

),(
),(,),(),(),(

txg

txf
txorhtxgetxftx ψψ                               (7.15) 



82 

 

Where ),( txf  and ),( txg   are probability of finding the quasi-particles in states  an electron-like 

and hole-like states e  and h  respectively. In electron-like state the quasi-particles obey 

Schrodinger equation, and in hole-like state they obey time reversed Schrodinger equation. 

Electronlike excitations cannot be made inside the Fermi sphere, since the states there are fully 

occupied in the ground state, and the hole excitations are possible only outside the Fermi sphere 

[Blonder et al., 1982]. 

The scattering at the interface due to different reasons such as oxide layer in a point 

contact or the localized disorder in the neck of a short microbridge, or the intentional oxide 

barrier in tunnel junction is modeled by a repulsive potential Hδ(x) located at the interface. A 

dimensionless barrier strength Z = KFH / 2EF = FvH h/ , where KF and Fv  are the Fermi wave 

vector and Fermi velocity respectively, is assigned to simplify the reflection and transmission 

probabilities A (Andreev reflection probability), B (the normal reflection probability), C 

(electron-like transmission probability) and D (hole-like transmission probability) at the 

interface. These probabilities are also the function of energy E which is written for convenience 

in terms of dimensionless parameter, .
22

2

∆−
=

E

Eε    

Table 7.2. The Andreev reflection coefficient A, the ordinary reflection coefficient B, the 
transmission coefficient without branch crossing (electron-like) C, and the 
transmission coefficient with branch crossing (hole-like) D. 
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Transmission probability (C+D) can be calculated if A and B are known by using the fact 

that the total probability is 1, i.e. A+B+C+D = 1. The probability of Andreev reflection goes 

down as the value of Z increases (Fig. 7.4 (a)), where as the normal reflection plays a dominating 

role in the total reflection coefficient (Fig. 7.4 (b)). Andreev reflection is completely suppressed 

in low energy regime when the value of barrier strength Z goes very high which represents the 

tunneling transport regime. An incident electron with E<∆ (sub gap energy) cannot enter the 

superconductor as quasi-particle, i.e., the total reflection probability, A+B =1. An electron with 

E>∆ does not Andreev reflect so that the total transmission probability, C+D is 1- (A+B). If we 

set ∆ → 0, i.e. ε → 1, one can find the total transmission probability (C+D) to be 
21

1

Z+
 , which 

is the standard transmission of a δ-function barrier [Griffiths, 1995]. 

 

           

 

Fig. 7.4. Probalility for (a) Andreev reflection, and (b) normal reflection as a function of particle 
energy for values of Z = 0.00, 0.25, 0.50, and 1.25. The direction of arrows indicate 
increasing trend of Z [Kant, 2005].  
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For a given bias voltage, the current in a normal metal (N) or a superconductor (SC) 

making the interface can be found by using the reflection and transmission coefficients A and B. 

Let an electron is incident from N-side (say on the left).  There will be current flowing to the N-

side from the interface because of Andreev reflection, and also there will be current flowing to 

the SC-side (say on the right). The current flowing to the right for an electron with an energy in 

[E, E + dE] is given by 

                                           eSv(E)ρ(E)f(E)dE;                                                                     (7.16) 

where e is the charge of the electron, S the area of the N/S interface, v(E) the electron velocity, 

ρ(E) the density of states and f(E) the Fermi distribution function. The expression ρ(E)f(E)dE is 

the density of electrons with an energy in [E, E + dE].  Because of the Andreev reflected part 

A(E) of incident electrons as holes, an additional current flows to the right which is given by 

eSv(E)ρ(E)A(E)f(E)dE,                                                               (7.17) 

The current flowing to the left due to the normal reflection of part B(E) of the incident electrons 

is given by 

eSv(E)ρ(E)B(E)f(E)dE,                                                            (7.18) 

Due to the particles originated and incident with probability X from the S-side, the current that 

flows to the left can be written as 

eAv(E)ρ(E)X(E)f(E)dE,                                                          (7.19) 

where X=1+A-B so that the total current is zero in absence of an externally applied bias voltage. 

Non-equilibrium particle distributions will be generated when a bias voltage is applied. It raises 

the energy of the normal metal by eV with respect to the superconductor. In this case, the 

distribution function of the electrons coming from S-side is f(E), and that for incoming electrons 

from N-side have the distribution f(E-eV). Thus, for obtaining the current for a given bias 
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voltage, we should replace f(E) in expressions (7.16-7.18) by f(E - eV ). Consequently, the 

current resulting from electrons incident from the N-side is given by 

∫ −−+ ,)()]()(1)[()( dEeVEfEBEAEEveS ρ                                     (7.20) 

and the current resulting from particles incident from the S-side is given by 

   ∫ −+ ,)()]()(1)[()( dEEfEBEAEEveS ρ                                             (7.21) 

where we have used that X = 1 + A - B. The total current becomes 

∫ −−−+= dEEfeVEfEBEAEEveSVI )]()()][()(1)[()()( ρ                       (7.22) 

The function f(E - eV )- f(E) is nonzero only in a region of size eV in the vicinity of the Fermi 

level. Since ,FEeV <<∆≈  the electron velocity vand the density of statesρ of the normal metal 

at Fermi level can be considered as constants and can be taken outside of the integral sign, giving   

 ∫ −−−+= dEEfeVEfEBEAeSvVI )]()()][()(1[)( ρ                                   (7.23) 

The conductance GNS = dI/dV then becomes 

∫ −−+−= ,)()]()(1[ '2 dEeVEfEBEASveGNS ρ                                                (7.24) 

where 'f  is the derivative of the Fermi distribution function. The function )(' Ef− is zero 

everywhere except near E = 0 where it has a pulse-shape similar to a delta-function with a width 

proportional to kBT. When both sides of the interface are normal metal (∆ = 0), equation (7.24) 

reduces to                              
2

2

1 Z

Sve
GNN +

= ρ
                                                                             (7.25) 

since A = 0 and 1 - B = 1/(1 + Z2). The conductance in the superconducting state normalized by 

the conductance in the normal state is the main result of the BTK theory given by 

∫ −−++−= dEeVEfEBEAZ
G

G

NN

NS )()]()(1[)1( '2                             (7.26) 
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7.4 Modified BTK Theory and other developments 

 BTK theory is unclear in interpretation of the barrier strength, Z. Proximity effect is not 

considered in this theory, and it has not incorporated spin polarization, P. These limitations of 

BTK theory needed modifications, and after 19 years of their work, Strijkers et. al. [Strijkers et 

al., 2001] came up with a model that extended BTK theory to include spin polarization and 

proximity effects. This allowed to reliably interpret experimentally observed data in both cases 

of magnetic superconducting (Nb/Ni, Co, Fe), and nonmagnetic superconducting (Nb/Cu) 

contacts [Strijkers et al., 2001].   Mazin et al. contributed more by considering for the F/S 

interface that the Andreev reflection probability is not zero, rather the Andreev reflected hole as 

a spatially decaying evanescent wave with finite probability but carrying no net current [Mazin et 

al., 2001]. This model was able to explain the interfacial conductance curves as a function of 

voltage not only for ballistic transport but also it was able to calculate the same for diffusive 

case.   

 

                       Fig. 7.5. Andreev conductance in different regimes [Mazin et al., 2001]. 
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In this paper they have argued that they have addressed the issues  like different number of 

conduction channels (CC) for different spins, finite interface resistance, band structure effects, 

effect of an evanescent Andreev hole on quasiparticle current in half-metallic CC, and diffusive 

transport in the ferromagnet. They concluded that while it is difficult to separate the suppressive 

effects of diffusive transport on the conductance from the effect of a high Z value in a ballistic 

contact, it is possible to distinguish the effect of spin polarization from the two, as shown in 

Figure 7.5.  

 Many of the experimental works [Ji et al., 2001; Nadgorny et al., 2001] utilized either the 

model of Strijkers et al. [Strijkers et al., 2001] or Mazin et al. [Mazin et al., 2001]. In a 

comparison of these models regarding interpretation of the experimental data for determining 

spin polarization, Ji et al. [Ji et al., 2001] concludes that both models can be used to extract spin 

polarization from experimental results for a variety of ferromagnetic materials including half-

metallic CrO2   within the difference in P values of less than 2%.  However, by introducing an 

evanescent wave in the minority band Mazin et al. [Mazin et al., 2001] removed the conjecture 

of Strijkers et al. [Strijkers et al., 2001] that Andreev reflection amplitude must be set to zero in 

the case of half-metal, which resulted in a more accurate determination of P by about 2% - 4% 

[Nadgorny, 2011].  

Auth et al. considered that the transport at the interface may not be only elastic (ballistic 

or diffusive) [Auth et al., 2003]. Working with thin films of double perovskite Sr2FeMoO6 and 

bulk material of the Heusler compound Co2Cr 0.6Fe0.4Al, which are ferromagnetic samples with a 

predicted half metallic behavior and comparably low conductivity, they included inelastic 

process in their analysis and concluded that the thermal effect can have significant effect in data 
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evaluation, such as smaller values of transport spin polarization. They remained inconclusive 

about the effect of ballistic and diffusive transport on transport spin polarization. 

Measuring accurate value of spin polarization has been a debate and matter of research 

for a long time. For consistent data analysis to avoid misinterpretation of data, Woods et al. 

considered the relationship between ballistic and diffusive transport, the effect of different 

transport regimes on spin polarization measurements, and the importance of unambiguous 

identification of the type of transport regime [Woods et al., 2004]. They found that the spin 

polarization in the case of diffusive transport is only about 3% lower than in the case of ballistic 

transport, and the barrier strength Z larger by~0.5-0.6. They found that the value of PC is system 

dependent on Z, presumably due to spin-flip scattering at the interface. However, the exact type 

of this dependence is hard to determine with any statistical certainty. 

 Xia et al. [Xia et al., 2002] indicated the possibility of some interaction between the 

ferromagnet and superconductor not included in the BTK model such as the Zeeman splitting of 

the superconducting densities of states caused by the stray magnetic fields of the ferromagnet. 

They also pointed out that the reduction in transparency of the F/S interface not only depends on 

the Fermi velocity mismatch, but also on the mismatch of the wave-function character at the 

Fermi energy. 

 After the introduction of barrier scattering Z at the N/S interface by BTK, and after its 

extension for F/S interface by others [Soulen et al., 1998; Mazin et al., 2001; Strijkers et al., 

2001], the spin polarization of ferromagnetic materials were measured by several researchers, 

and it was found that the P was systematically suppressed with decreasing interface transparency 

which means increasing barrier strength Z [Ji et al., 2001; Strijkers et al., 2001]. Intrinsic value 

of spin polarization would be found from Z dependence of P by setting Z = 0 for clean interface.  
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However, the physical mechanism of dependence of P on Z was not clear at this point. Kant et al. 

[Kant et al., 2002] incorporated spinflip scattering in the interface region of the contact, and 

identified Z2 as an effective scattering parameter, and explained the decay of P exponentially 

with Z2. On the other hand, as we have shown in Chapter 10 that the extracted values of P and Z 

for a given set of experimental data depend on the fitting parameters such as temperature, 

spreading resistance or the superconducting gap. This observation, which will be explained in 

detail in §8.5 of Chapter 10, indicates that different Z can be related to the changes in the fitting 

procedure. However, such P-Z dependence gives similar intrinsic value of P corresponding to Z 

= 0 as given by using the P-Z dependence of data for multiple contacts as described above.  

 

Fig. 7.6. Extended BTK theoretical normalized conductance curves at 1.5K and superconducting 
gap of 1.5meV (calculated with the modified BTK theory of Mazin et al.)  
  

 For a given sample, the intrinsic value, and hence the most accurate value of P is found 

for Z = 0. However, P will be overestimated if it is found based on zero bias conductance when Z 
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is not zero. For example, the zero bias conductance for Z = 0 and P = 0.50 is almost same as for 

the case of Z = 0.55 and P = 0 as shown in the theoretically calculated conductance curves for 

these cases as shown in Fig.7.6. So, the P value is found by fitting the conductance curve for the 

entire range below and above the superconducting gap. 

 In case of Andreev reflection experiments of ferromagnetic semiconductors, the spin 

polarization measurements are limited by high resistivity at low temperature, presence of 

Schottky barrier, and high velocity mismatch at the superconductor-semiconductor interface. 

Using heavily doped magnetic semiconductor (Ga,Mn)As having metallic type conductivity , 

hence narrow Schottky barrier and small Fermi velocity mismatch at the interface, spin 

polarization was extracted [Barnes et al., 1978; Panguluri et al., 2005] using reduced 

superconducting gap and higher effective temperature. Though the uncertainty in the P values 

was high, they found that the carrier concentration can be increased by doping heavily. This 

reduced the Schottky barrier so that its role in uncertainty in spin polarization was reduced. 
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CHAPTER 8 

THEORETICALLY PREDICTED CURVES GENERATION AND FITTI NG OF DATA 

8.1 Effect of Z on normalized conductance curves 

Modified BTK model of Mazin et al. [Mazin et al., 2001] incorporates barrier strength Z 

as explained earlier. For different values of Z in this model, the normalized conductance obtained 

for superconducting gap of Nb, ∆= 1.5 meV at 4.2 K and 1.5K are shown in Fig. 8.1 [Mazin et 

al., 2001].  For Z = 0 at low bias, when all incident electrons undergo Andreev reflection so that 

P = 0, the normalized conductance is 2. As Z increases, increasing number of electrons suffer 

normal reflection so that only rest of the electrons undergo suppressed Andreev reflection which 

is the cause of local minimum of conductance at zero bias. The conductance is maximum at the 

edge of superconducting gap ∆, and those peaks are sharper as Z increases. Also, these peaks are 

more pronounced at lower temperature, and get smeared at higher temperature as shown in lower 

and upper panels respectively of Fig. 8.1.  

 

            

Fig 8.1.  The Normalized conductance of an N/SC contact calculated with the mBTK theory 
(P=0) with Z= 0.00, 0.20, 0.40, 0.55, 0.80 and 1.5, for T = 4.2 K (Left Panel) and 1.5K 
(Right Panel). The arrows indicate the trend with increasing Z [Mazin et al., 2001]. 
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 The normalized conductance curves generated with P = 0, ∆ =1.55 meV at T =1.2K for 

different values of Z, as shown in the legend, are shown in Fig.  8.2. It also shows that the 

conductance at low bias is suppressed for larger Z, where as the maximum conductance peaks at 

the edge of the gap energy are sharper for such larger Z. The case of ideal interface (Z = 0) at P = 

0 shows conductance of 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.2. Normalized conductance curves at T = 1.2K for P=0 with ∆ =1.5 meV for different 
values of Z 

8.2 Effect of P on normalized conductance curves for clean interface (Z=0) 

If the SC/FM interface is ideal, i.e. the barrier strength is “zero”, then the conductance 

curves for materials with different P values will be as shown in Fig. 8.3.The conductance is 

higher for lower P values, and it is equal to 2 for P=0, and the zero bias conductance decreases 

for higher P. However, we clearly notice enhanced zero bias conductance up to P ≈ 40+ % , and 
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it gets suppressed  from around P≈50 - %, and the normalized conductance reaches to 0 for 

P=100% as shown in Fig. 8.3. The conductance at low bias lower than ~∆ seems to be constant 

for every value of P in this case when Z = 0. This nature of the conductance curves, however, 

changes in most of the experimental conditions when Z is no longer “zero” due to the presence 

of barrier scattering at the contact interface of the superconductor and the sample under study. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.3. Normalized conductance curves predicted by mBTK model for ideal interface (Z =0) 
and for different P values. BCS gap used to generate these curves is ∆ = 1.5meV. 

8.3 Effect on normalized conductance curves due to change in Z and P 

Figure 8.4 shows, for an example,  the conductance curves generated for different values 

of (Z,P) such as (0,0), (0.1,0.1), (0.2.0.2),(0.3,0.3),(0.4,0.4),(0.5,0.5),(0.6,0.6), (0.7,0.7), 

(0.8,0.8), (0.9,0.9) and  (1,1).  Even though, these are generated curves from model, and might be 

the situation for different sample systems, it is reasonable to expect lower values of P as the 

values of Z go up for different contact situations for a particular sample. While doing 

experiments, though the (Z,P) values are system dependent, mostly encountered values of Z 
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range from 0.2 to 0.6, and P values range from 0.6 to 0.3 for non half metallic materials. For any 

particular system, intrinsic P value is found from plotting Z versus P, and extrapolating the curve 

for Z = 0. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.4. Normalized conductance curves generated theoretically by using mBTK model for 
different values of Z and P at T=1.2K and for ∆=1.55 meV. 

8.4 Effect of elevated temperature in fitting conductance curves by mBTK model 

Temperature is another fitting parameter. Even though the data are taken at certain 

temperature like 1.2K or 1.5K, sometimes one encounters a problem in fitting the data exactly at 

the same temperature. It could be due to thermal broadening. However, use of slightly higher 

temperature allows exact fitting of the conductance curves, especially at the maximal region of 

conductance corresponding to the edge of superconducting gap ∆. So, it is important to have the 

knowledge of how this elevated T as fitting parameter changes the conductance curves. For this 

purpose, theoretical curves are generated using mBTK model for fixed ∆ =1.55 meV and for 

different values of temperature ranging from 1.2K to 4K as shown in Fig. 8.5.  The experimental 
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data have tendency to fit around the conductance peaks around ∆ at higher temperatures. This 

could be due to the fact that it is difficult to see very sharp peaks in experimental data. Generally, 

the conductance peaks in this region (at around 1.5 meV) are sharper if the curves are generated 

at lower temperature, and they become less sharp , i.e. more and more smooth curves if the data 

are generated using slightly higher temperatures as shown in Fig.8.5. We can clearly see the 

decreasing conductance peak at ∆≈1.5 meV even for the temperature increase of 0.1K. Initially, 

the curve at 1.2K was generated for P=0. The other curves were generated by changing 

temperature at fixed ∆ of 1.55 meV. Knowing how the shape of conductance curve changes with 

temperature as a fitting parameter helps for fitting a given set of experimental data.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.5.  Effect of elevated temperature in fitting conductance curves with P=0: the shape of the 
conductance curves changes with reduced conductance maxima at the edge of ∆, but P = 0 
doesn’t change. 
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8.5 Uniqueness of fitting 

 The parameters Z and P are extracted from fitting of the experimental data. Knowing how 

uniquely these quantities represent the fitting of a given set of data is important. In order to test 

this, a nice set of conductance data obtained for MnBi (sample: u1MnBiX103010) was fitted by 

the modified BTK model by changing different parameters in different possible ways. Different 

parameters involved as input parameters in the fitting are the temperature (T) at which the data 

are collected, superconducting gap ∆Nb =1.5 meV, initializing value of Z for fitting, initializing 

value of P for fitting, spreading resistance of the sample (Rs), the number of data points being 

used for fitting, and the slope correction which was taken to be zero in all cases. The fitting was 

initially done for 1.4K with some initializing values of Z and P, and with the spreading resistance 

Rs=2Ω. Figure 8.6 (a) shows such a fitting. 
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Fig. 8.6. Fitting of the same set of experimental data with different fitting input parameters 
giving different values of Z and P : (a), (b), (c) showing effect of spreading resistance; (d), (e) 
showing effect of temperature; (f), (g) effect of temperature and spreading resistance; (h) effect 
of number of data points 

 The input fitting parameters and extracted values of Z and P are shown in every fitting 

plot in Fig. 8.6. Even though the real physical situation is represented by Fig (a), other 

possibilities of fitting as shown in Fig (b) through (h) have been explored. Fig (b) and (c) show 

the effect on extracted values of Z and P when the values of spreading resistance are taken 

slightly different but still retaining reasonably well fitted curve. Fig. (d) and (e) show the 

reasonable fitting with slightly different values of T. Fig. (f) and (g) show the fittings with 

different T and Rs, and Fig. (h) shows the fitting with different number of data points taken in 

the same set of data. All of these curves look reasonably good fits despite the use of slightly 

different values of input parameters which lead to different values of extracted Z and P.  Figure 

8.7 (a) shows how P depends on Z in general and for different cases viz., change in Rs, change in 
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T, change in T and Rs, and change in data points while fitting the same set of data. This indicates 

that the variation of T and Rs both at a time can have larger spread in Z and P, where as the 

different numbers of data points considered while doing fitting has also some effect in Z and P, 

but with minimum spread in these values. The spread in P in this fitting is within ±3% from the 

mean value of P= 48. However, the intrinsic value of P is different.  
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Fig. 8.7. Dependence of P on Z on different possible fittings of the same data set (a) showing the 
effect of different fitting parameters, (b) the loop in the P-Z plane indicates the constant error bar 
as shown by χ2 versus P plot shown in the inset, (c) quadratic fit of the P-Z data extracted from 
fitting of a single data set, (d) comparison of P-Z data extracted from fitting a single data set to 
that of the extracted values from fitting of various data sets for the same sample. 
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 While fitting this set of conductance data the fitting error bars were found almost constant 

as shown in the inset of Fig 8.7 (b). This is represented by the loop in Z-P data in this plot. 

Quadratic fit of the Z dependence of P in Fig. 8.7(c) gives the value of P corresponding to Z=0 as 

56.6% which is within error bars of intrinsic value of P (= 57.8±1.6)% for clean interface (Z=0) 

as determined from the fittings of  several sets of conductance data taken for various contacts for 

the same sample. This is shown by comparing the quadratic fits for these cases in Fig. 8.7 (d). 

Interesting observation here is that the Z dependence of P obtained by fitting a single set of 

conductance data for various input parameters close to exact experimental physical parameters 

gives the same P for clean interface as determined by fitting several sets of conductance data. 

Also, one thing noteworthy here is that the interfacial scattering barrier denoted by Z does not 

represent to the physically scattering barrier, but it also arises due to fitting of the conductance 

data. In conclusion, the fitting gives Z dependence of P. In this sense, the fitting is not unique. 

However, the intrinsic value of P seems unique within the error bars. 

 

 

 

 

 

 

 

 

 

 



100 

 

CHAPTER 9 

DETAILS OF EXPERIMENTAL TECHNIQUES 

9.1 Preperation of samples 

The samples used for measuring spin polarization are either single crystals or thin films 

deposited mostly on Si wafers and sometimes on glass wafers. MnSi, LSMO, BaFe2As2, and Ni 

were single crystals, where as the other samples such as MnBi, Pt, PdNi, InN were thin film 

samples deposited mostly by e-beam evaporation and by magnetron sputtering. Thin films of 

MnBi and Pt were deposited in Nebraska Center for Materials and Nanoscience by Prof. Dave 

Sellmyer’s group. PdNi samples were deposited by Prof. Norman Birge’s group in Michigan 

State University, and the work in InN was done in collaboration with the group of Dr. Gavin 

Lawes at Wayne State University. MnSi single crystals were provided by Dr. Fabrizio Carbone 

in Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. 

9.1.1 Evaporation techniques (thermal, e-beam, magnetron sputtering) 

Thin film samples were deposited by using e-beam evaporation technique and magnetron 

sputtering technique. In these systems the pressure was reduced to about 1.3 × 10-6 Torr, and the 

thickness of the sample was monitored by crystal monitor. 

9.1.2 Polishing the sample 

In case of single crystal like MnSi, the crystal was polished by mechanical polishing 

method by using several grits starting from coarse to fine. Alumina gel was used for final 

finishing. This technique helped to make the surface shining almost free of any scratches. 

9.1.3 Tip preparation for point contact  

Superconducting Nb tips were prepared by electrochemical etching of 99.99% pure Nb 

wire of diameter 0.25mm. Volume ratio of HNO3 : HF : CH3COOH = 5 : 4 : 1 was taken as 
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etchant for Nb. DC voltage of 8V was supplied between the positive Nb electrode and negative 

Carbon rod electrode both dipped into the etchant taken in a plastic container. Nb tip was dipped 

such that the current flowing initially would be about 800mA for getting pointed tips. The 

etching would complete once the current drops to zero. The etching would take place 

predominantly on the surface of etchant.  The etched tips were rinsed with deionized water 

carefully so that the tips would not get damaged, and such tips were stored apex up on a foam 

pad in a box in a desiccator after confirming good quality of the tips by observing under optical 

microscope. Such tips would require dipping into HF for about 40 sec before mounting into the 

probe for point contact experiment so that any Oxide layer or any other dirt would be removed 

leaving behind clean and pure Nb tip for point contact with the sample being used. The 

electrochemical etching gives the radius of curvature of the tip less than 100nm [Faiz, 2009]. 

 In some experiments, Sn tips were used. Such tips were fabricated by mechanically 

polishing tin wires. Careful polishing with lapping papers would give fine tips usable for making 

point contacts. In case of the use of superconducting sample such as Barium Iron Arsenide 

[BaFe2As2], we used normal metal tips made of Au wires. Since Au wires are soft, the tips were 

made by cutting the wire at an angle of about 45 degree so that the very tip of the wire is sharp 

and pointed. 

9.2 Characterization techniques 

X-ray Diffraction was used for structural analysis. Constructive interference of the 

reflected rays from different lattice planes gives the peak intensity in the X-ray spectrum. X-ray 

diffraction analysis is based on the well known Bragg’s law 2dsinθ = nλ, where θ is Bragg’s 

angle and λ is the wavelength of X-ray, and d is the lattice spacing. Crystallelographic structures 

are known by knowing the location of the peaks and their intensities. 
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 Elemental composition was studied by Energy Dispersive X-ray (EDX) spectroscopy 

which is a technique in which a X-ray emitted from an element when it is bombarded with 

electron beam is detected. The X-ray energy is characteristic of the element from which it is 

emitted. This technique is used in conjunction with scanning electron microscopy (SEM) which 

was also used for electron beam lithography on MnSi sample to make nano contact of Niobium. 

This will be discussed in detail later. 

Transport properties such as dc resistivity measurement at low temperature were done by 

using quantum design Physical Property Measurement System (PPMS). This device can be used 

to perform a variety of experiments that require precise thermal control.  It can be used to 

execute magnetic, electro-transport, or thermo-electric measurements, or with some modification 

it can be used to AC measurements, heat capacity or Ultra-Low field. This has the capability of 

operating from 1.9K to 400K with the temperature accuracy of 0.01K. PPMS can be equipped 

with 1-T, 7-T, 9-T, 14-T or 16-T longitudinal magnet, or a 7-T transverse magnet. PPMS 

MultiVu software application is the interface software used to operate the Model 6000 PPMS 

Controller. This device has slew rate from 0.01K/min up to 12 K/min with temperature stability 

≤0.2% for T ≤10K, and ≤ .02% for T>10K. This instrument was used even to obtain temperature 

dependence and field dependence of conductance curves in point contact measurements such as 

for point contact measurements of MnSi single crystal. In such case, the tip was driven by 

squiggle piezo motor. This will be covered more while discussing MnSi in different chapter later.  

Magnetic characterizations of the samples were done by using quantum design’s 

Magnetic Property Measurement System (MPMS) also known as Superconducting Quantum 

Interference Device (SQUID). It consists of temperature control unit, and provides a 

compensated superconducting magnet capable of producing a very uniform magnetic field (B) up 
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to ± 5.5 T over the entire sample.  M-H loops and M-T data were obtained using this instrument. 

With the use of liquid helium, this device works in the temperature range of 2K to 400K with 

temperature accuracy of 0.01K, and the magnetic field resolution of 1G for B > 5KG and 0.1G 

for B < 5KG. 

Atomic force microscopy was used to study surface topography of samples such as Pt 

when surface roughness played important role in the magnetism of these thin films. This will be 

discussed later while discussing magnetism in Pt thin films. Neutron scattering was used to 

cross-check the surface magnetism of Pt thin films. This technique is the most reliable one to 

measure small magnetic moment present on a sample.   

Point contact geometry was used to obtain conductance curves (dI/dV vs V) which were 

used to extract spin polarization of various materials. The point contact geometry was 

implemented first by Soulen [Soulen et al., 1998] and Upadhay [Upadhay et al., 1998], and later 

it has been used by several researchers such as Nadgorny [Nadgorny et al., 2000], Kant [Kant et 

al., 2005], etc. A superconducting tip is allowed to touch the sample of interest at low 

temperature, and conductance curves are obtained. In case of a superconducting sample, a 

normal metallic tip such as Au can be used instead. The tip can be approached in several ways: 

manually driving, piezo driving, and by lithography technique. Superconducting tip is mounted 

on the tip holder in such a way that the tip is right above the sample. Manual driving facility has 

a shaft with pitch of screw of 100µm so that the contact resistances can be controlled by fine 

movement of the tip. The schematics of the point contact arrangement, experimental set up and 

the probe head are shown on the left panal, middle panel and right panel respectively in Fig. 9.1.  



104 

 

Standard lock-in technique was used to acquire conductance data. For bias voltage V, let 

the current be I(V). Then corresponding to the bias voltage (V+dV), the current will be I    

...,)()( ++=+ dV
dV

dI
VIdVV  where the ac modulation voltage tvdV ωsin= is superimposed 

to dc bias voltage which was supplied by Agilent DC Power Supply Dual Output E3620A. So 

the above expression becomes, tv
dV

dI
VItvVI ωω sin)()sin( +=+ . Due to small modulation 

voltage, there is small ac signal with amplitude equal to the conductance. This amplitude in the 

current signal is measured by lock-in. 

Lock-in is sensitive to the signals at reference frequency only. The lock-in amplifier 

multiplies the current signal with the ac modulation voltage v sinωt. This product is passed 

through a low pass filter to average out all components in the current signal with a frequency 

different from ω. If a signal has the frequency ω but is not in phase with the ac modulation 

voltage, the lock-in averages out such signals too.  

    

     

Fig. 9.1.  Left panel: Schematics of the point contact arrangement, Middle panel:  experimental 
set up, right panel: probe 
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CHAPTER 10 

POINT CONTACT ANDREEV REFLECTION IN Cu AND La 0.7Sr0.3MnO 3 

10.1 Conductance curves for Copper 

Point contact Andreev Reflection Spectroscopy (PCAR) was used to observe 

conductance curves for copper using electrochemically etched Nb tip. The motivation to see how 

conductance curves look for this superconducting/normal metal interface has two folds. Firstly, it 

gives chance to compare our observation with the observations found in literature; and secondly 

it helps to show, as expected, that the spins of the electrons in normal metal (Cu here) are not 

polarized. At the same time, these observations would be helpful to establish that our 

experimental set up is ready for reliable measurements of spin polarization of different other spin 

polarized materials to be discussed later.  

10.1.1 Conductance curves of Nb/Cu by Soulen et al. 

It is found in literature that people have done experiments to find conductance curves for 

Copper using Niobium as superconducting tip for the point contact. Soulen et. al. [Soulen et al., 

1998] published the conductance curve taken for the configuration of mechanically polished 

Niobium tip pressed into copper foil in liquid helium at 1.6K.  Figure 10.1 shows their 

observation of I-V curve as well as corresponding normalized conductance curve. As the bias 

voltage between the superconducting tip (Nb) and the normal metal (Cu) is less than the 

superconducting gap (1.5mV for Nb), a supercurrent flows through the configuration due to the 

flow of cooper pair during which an electron at Fermi surface of normal metal takes another 

electron with opposite spin state which results retroreflection of a hole which behaves as parallel 

channel for the flow of current, hence enhancing the flow of current from normal to supper 

current.  When the super current flows, there is 0.2 mA of excess current than in the normal state 
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at low voltage bias, and the normalized conductance is twice that at normal state [Soulen et al., 

1998] as shown in Fig. 10.1. 

 

 

Fig.10.1 Normalized conductance curve and the I-V curve at 1.6 K for copper foil when 
superconducting Nb tip is pressed against it [Soulen et al., 1998] 

The mechanism how super current flows is shown in the schematic diagram in Fig.10.2. 

In this model, a spin up electron at Fermi level of the metal (Cu) is considered to form a cooper 

pair with a spin down electron at the same Fermi level of the normal metal. The cooper pair 

travels through superconductor (Nb tip). Momentum of the electrons is conserved by the 

reflection of a hole at the interface between the normal metal and the superconductor. The hole 

that provides a parallel channel for the flow of current is responsible for the enhanced 

conductance in N/S configuration. Zero value of spin polarization of a normal metal in N/S 

configuration shows unhindered Andreev reflection due to sufficiently available inter-spin 

electrons for the cooper pair formation. 
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It has been seen in the literature that the conductance curves for Nb/Cu configuration has 

been observed by many scientists. Interesting enough, it is found that the conductance curves 

observed by different people look slightly different in their shape, still preserving the spin 

polarization value to be zero. What different shapes of conductance are reported in literature, and 

what factors are responsible for such variation is important to know. Before presenting my 

measurements for conductance of similar system, it seems important to review on what people 

have observed. 

10.1.2 Conductance curves of Nb/Cu by Miyoshi et al.  

Another literature [Miyoshi et al., 2005] has reported the field dependence of 

conductance curves for Nb/Cu system as shown in Fig. 10.2. They have shown the conductance 

curves for the magnetic field parallel to the superconducting Nb tip (upper panel), and for the 

magnetic field perpendicular to the superconducting tip (lower panel) as shown in Fig. 10.2, both 

taken at 4.2K. Our aim here is not to focus in the field dependence, but it is relevant to consider 

the conductance curve obtained for the case of zero magnetic field. We can see the conductance 

curves for zero magnetic field in the upper and lower panels of Fig. 10. 2. If the field is zero, we 

don’t need to consider the field parallel or perpendicular to the tip; it means the tip position is 

same, and it is just like taking two sets of data may be for different contacts between the 

superconducting tip and the normal metal, Cu in this case. It is desirable to have similar 

conductance curves in these two cases, however the curves look entirely different indicating the 

possibility of different conductance curves for different contacts which are presumably 

characterized by different interfacial conditions. 
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Fig. 10.2. Conductance curves for Nb/Cu film when the magnetic field is parallel (top panal) and 
when the field is perpendicular (bottom panal) to the Nb tip. Notice different shapes of 
conductance curves for zero field in these two graphs. 

10.1.3 Conductance curves of Nb/Cu by Gavin Burnell 

 Gavin Burnell, University of Leeds reports I-V curve and conductance curve for Nb/Cu 

configuration as shown in Fig. 10.3 Conductance at lower bias is similar to the data shown in 

Fig.10.1 in the sense of its enhancement, however the shape of characteristic curve has some 

differences. Interfacial barrier, scattering and possibly other factors play important role for the 

shape of conductance curves. Lack of universality in conductance curves is a matter of concern 

for everybody working in this area. This difference arises not only in the observations between 

different investigators but also in different observations by the same investigator. Difficulty in 

maintaining the identical situations for different observations, especially for different contacts is 

an arduous challenge, and it leads to slightly different types of conductance curves. 
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Fig.10.3. Conductance curve for Nb/Cu [Burnell, University of Leeds] 

 

10.1.4 Conductance curves of Nb/Cu by Blonder et al. 

G. E. Blonder and M. Tinkham [Blonder et al., 1983] have given theoretical conductance 

curve for Nb/Cu configuration as shown in Fig. 10.4. Dotted line shows the conductance for the 

ideal case (T = 0K, Z = 0: pure metallic, and equal Fermi velocities in Cu and Nb). When Fermi 

velocity ratio r is 1.414, the conductance curve takes the position shown by solid line. However, 

the case of r = 1.414 can be mimicked for r =1 (same Fermi velocity) by taking the scattering 

barrier potential Z = 0.175. This shows that the scattering due to velocity mismatch can be 

incorporated in the barrier scattering potential Z which is mainly responsible for different shapes 

of the conductance curves. 
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Fig. 10.4. Conductance curve for Nb/Cu configuration 

10.1.5 Conductance curves for Pb/Cu by Chalsani et al.  

  Chalsani [Chalsani et al., 2007] has given dV/dI curve, shown in Fig. 10.5, as a function 

of voltage across the junction of nanocontact device for Cu-Pb configuration. The curves shown 

are taken at 4.2K, one with the application of magnetic field of 2000 Oe and the other in absence 

of magnetic field. Showing the presence of low energy clear phonon spectra of Pb in Cu-Pb and 

Co-Pb configurations [Chalsani et al., 2007], they have concluded that the electron transport is in 

ballistic regime, l>d, where l is the electron mean free path and d the size of the contact. 

 

(a)       (b)  

Fig. 10.5. For Cu-Pb configuration, (a) dV/dI curve at 4.2 K; (b) normalized conductance curve 
(open circles: experimental data, and solid line: 3D BTK fit) 
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 Figure 10.5 (b) shows the normalized conductance curves taken for Cu-Pb system at 4.2 

K. At this temperature, lead behaves as superconductor so that the spin polarization of Cu can be 

extracted from the fit, and it has been shown in the figure to be 0 with the interfacial barrier 

scattering Z = 0.29.  In this fit, Chalsani et al. have considered that there is no Fermi energy 

mismatch, i.e EfN = EfS, where these energies are given by   mkE fsfS 2/22
h=  and 

mkE fNfN 2/22
h= . This assumption corresponds to the temperature T = 0.79 K and the exchange 

energy J = 0. The fitting shows good agreement for /V/ < 2mV. The discrepancy between data 

and theory at higher bias in Cu-Pb system arises from nonequilibrium effects where the injection 

of nonequilibrium quasiparticles into the lead gradually reduces the gap and suppressed the extra 

overall conductance arising from Andreev reflection [Chalsani et al., 2007].  

10.1.6 Our observation of conductance curves for Nb/Cu  

 Point contact exhibits a seemingly endless variety of I-V curve shapes [Blonder et al., 

1983]. The shapes of differential conductance change accordingly. The excess current over the 

normal current can be found from the I-V curves whereas the fitting of conductance curves 

yields some fitting parameters, especially physically significant parameter: the spin polarization 

of a material. In this regard, we have taken several measurements of conductance curves for 

different copper samples with electrochemically etched Nb tip for the point contact. For different 

pressures of the contact (i.e. different contacts leading to different resistance), and for different 

samples, the conductance curves were obtained. To be consistent with the observation for Nb/Cu 

configurations as discussed in reference [Blonder et al., 1983], the Nb tip was electrochemically 

etched in HNO3: HF: Acetic Acid = 5:4:1 by volume, and a copper single crystal was also etched 

in the similar solution for short time. The Nb tips produced were similar to the one shown in 

reference [Blonder et al., 1983]. Similar to their observations [Blonder et al., 1983], Nb tips were 
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observed before and after several contacts were made with Cu sample and were found as shown 

in Fig.10.6. 

 

Fig.10. 6.  electrochemically etched Nb tip before (first) and after (second) the point contacts 
were made with Cu sample [Blonder et al., 1983] 

Conductance curves were observed using standard Lock-in technique. The data were 

fitted with modified BTK model. Fitted conductance curves were found, and different fitting 

parameters were extracted which are presented ahead. 

Fig. 10.7 shows the I-V curve taken for Nb/Cu configuration. Nonlinear region of the 

curve is responsible for the feature of its differential conductance.  This region corresponds to the 

flow of super current below superconducting gap. Above the superconducting gap, the I-V curve 

is linear which corresponds to the constant base line of the conductance curve. 

 

Fig. 10. 7. I-V curve for the point contact  Nb/Cu configuration 



113 

 

 Etched Niobium tip was used to make point contact against Copper slab which was made 

by cutting a bigger Cu slab, and by cleaning it with acetone. Normalized conductance data as 

shown in Fig.10.8 was fitted with modified BTK model. The fitting was done for 

superconducting gap of Niobium as 1.5 meV. Even though the data was taken at 1.36K, the best 

fitting was possible for the temperature of 3.1K. Thermal broadening might have been the cause 

for the need of higher temperature as fitting parameter for the best fit of the data. The barrier 

scattering potential was found to be Z = 0.677. The fitting not only yields the conductance curve, 

it also allows to extract the spin polarization of the sample that is used to make point contact with 

the superconducting tip. The extracted value of spin polarization for copper was found to be P = 

0 as expected for normal metal. 
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Fig. 10.8. Normalized conductance curve for Nb/Cu slab configuration 
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 Purity of sample is essential factor for reliable data. Copper single crystal was taken after 

it was etched with the acid solution same as the one used for Nb etching. The single crystal was 

dipped into the acid solution for short time to remove any oxide layer on the surface. As used for 

the previous case, Nb tip was used after dipping into HF for a while. The data was taken for 

conductance curve which was fitted with the same fitting program (noresist) as in the previous 

case. Fitting was done separately for the data for the positive and negative bias voltages. The 

fitting was possible even in this case at slightly elevated temperature of T = 1.9K which was not 

much higher than the actual temperature of He while taking data. The Ruthenium thermometer 

was used to measure the temperature of He while being pumped, and at the time of taking data 

the temperature was 1.2K. As in the previous case the need of higher temperature might be due 

to thermal heating while making the contact and on passing current through the junction.  The 

superconducting gap of Nb was used 1.55 meV. The interfacial barrier scattering which plays 

important role in the shape of the conductance curve was found to be Z = 0.78, and the spin 

polarization of Cu was extracted to be 0. Slight change of the value of Z was observed in 

different observations. This is inevitable in point contact experiment due to the difficulty to 

maintain identical contacts. However, small changes in the values of T and Z in the fitting don’t 

change the value of P for Cu. As anticipated, the value of the spin polarization was found zero in 

several observations for Cu in the configuration being used. Several conductance curves were 

taken for different contacts, and also with Sn as superconducting tip. The fitting parameters with 

correspondingly extracted values of Z and P in these observations are given in Fig.10.9. 
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Fig. 10.9.  Conductance curves corresponding to different contact resistances for Nb/Cu [(a) and 
(b)]; and for Sn/Cu [(c)].  

As a test of the PCAR set up for its reliability, the measurements were done in other 

standard LSMO sample. The data obtained are discussed in the following sections.  
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10.2 PCAR of LSMO (La0.7Sr0.3MnO3) 

Conventional half metals in which the density of electrons in the minority bands at Fermi 

level is zero, and the density of electrons is only in the majority bands at Fermi level are 

supposed to have almost 100% spin polarization. Possible application of such materials in 

spintronic applications such as non-volatile logic and memory and spin transistors has attracted 

the attention of scientists to study such materials. Due to colossal magneto resistance, manganese 

perovskites, La1−xAxMnO3 (A = Ca, Ba, or Sr), which are also called CMR Oxides have attracted 

interests of researchers.  However, different reported experimental values of spin polarization of 

optimally doped La0.7Sr0.3MnO3 (LSMO) have put it in controversy [Nadgorny, 2007].  The 

reported values [Park et al., 1998; Lu et al., 1996; Sun et al., 1997;  Worlege et al., 2000] of spin 

polarization (35%-100%) was found to vary according to the measurement technique, the use of 

the definition of spin polarization, and the type of sample such as single crystal or epitaxial films 

or irradiated films [Nadgorny, 2007]. As reliability test of the PCAR system, and a test of 

reproducibility of spin polarization, optimally doped La0.7Sr0.3MnO3 (LSMO) sample was used to 

measure spin polarization. The conductance curves obtained for two different contacts of Nb as 

superconducting tip to the LSMO single crystal are shown in Fig. 10.10. These data were taken 

at 1.2K, and the fitting was done with superconducting gap of Nb as 1.5 meV. The extracted 

values of spin polarization was 58.4% which agrees with the reported value of P=58% for the 

LSMO single crystal with Sn as superconducting tip [Nadgorny, 2007]. Unlike conventional half 

metals, experimental results [Nadgorny et al., 2001] have indicated that LSMO has minority spin 

states at Fermi level, but still mimics the behavior of a true half-metal in transport experiments, 

hence the material can be called a transport half-metal [Nadgorny et al., 2001]. 
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Fig.10.10. Normalized conductance curves for Nb/ LSMO interface showing the spin 
polarization of 58%. 
 

The temperature dependent conductance curves for La0.7Sr0.3MnO3 are different, 

however, its spin polarization is reported to be independent of temperature. Rather it was 

reported to be dependent on the residual resistivity of the samples indicating that the defect level 

in the sample plays important role to control P value [Nadgorny, 2007]. 

In conclusion, PCAR measurements of Cu sample gave the value of spin polarization to 

be 0 as reported by other people. The conductance curve can have various shapes dependent on 

the contact. Spin polarization value for La0.7Sr0.3MnO3 sample was reproducible and agreed with 

the reported value of 58% for single crystal. Hence, the point contact measurement set up works 

fine with the capability of measuring the spin polarization values of different samples with high 

precision. 
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CHAPTER 11 

POINT CONTACT ANDREEV REFLECTION STUDIES OF ITINERA NT MAGNET 
MnSi SINGLE CRYSTALS 

11.1 Introduction 

 Manganesesilicide has drawn attention of researchers for a long time due to its varieties 

of magnetic and electrical properties (Williams et al., 1966, Shinoda et al., 1966, Wernick et al., 

1971). Its crystal structure is generated by the cubic B20 structure (Borèn et al., 1933, van der 

Marel et al., 1998).  The unit cell contains 4 Mn atoms at crystallographycally equivalent 

positions, with the basic structural element as an equilateral triangle of three Mn atoms. Each Mn 

atom connects three triangles sharing the corners, with the triangles at four different orientations 

along the body diagonal of the cubic unit cell (Carbone et al., 2006). Figure 11.1 shows two 

views of B20 crystal structure of MnSi. It is traditionally considered weakly itinerant 

ferromagnet (Moriya et. al., 1973; Taillefer et al., 1986), i.e. the spin polarization is modeled as a 

relative shift of bands of delocalized Bloch states for the two spin directions (Carbone et al., 

2006). There are several evidences of why MnSi in the induced ferromagnetic (paramagnetic) 

state can be classified as a weak itinerant ferromagnet (Ishikawa et. al., 1977). MnSi undergoes 

magnetic phase transition when magnetic field is applied below critical temperature. Neutron 

small angle diffraction study revealed that in zero magnetic field MnSi has the helical spin 

structure below 29.5 ± 0.5K with the long period of 180Å propagating along the [111] direction 

(Ishikawa et al., 1976).  When a magnetic field is applied greater than 0.6T the crystal is 

saturated with spontaneous magnetic moment of 0.4µB per Mn atom, which is substantially 

smaller than the effective moment of 1.4µB evaluated from the Curie-weiss relation in 

paramagnetic region as reported by Ishikawa et al., 1976, and that of 2.2 µB per Mn in the 
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paramagnetic phase as reported by Wernick et al., 1972. This difference is considered as a 

signature of the itinerant nature of magnetism (Stishov et al., 2008). 

               

Fig. 11.1  Two views of the B20 crystal structure of MnSi, showing four cells. The larger atoms 
are Mn and are connected by sticks; the smaller spheres are Si atoms. Left: a view along the 
(111) direction. Right: view nearly along the (100) axis (Jeong et al., 2008) 
 
 Magnetic phase diagram of MnSi is shown in Fig. 11. 2.  It shows that the spin structure 

at zero external field is helical. If magnetic field of about 1 KG is applied, the moments tilt 

toward the applied magnetic field and hence form conical structure. The cone becomes smaller in 

angle as the magnetic field is increased. When H is 6.5 KG, the moments are aligned in the 

direction of the external field, with the crystal reaching the saturation magnetic moment of 0.4 

µB, and hence MnSi becomes induced ferromagnetic, which is shown in the phase diagram by 

solid line. The broken line indicates a boundary where the magnetic moment induced in the field 

direction decreases distinctly (Ishikawa et al., 1977). Three energy scales govern the magnetic 

properties of MnSi. Exchange interaction, the strongest energy scale, between the spins keeps 

them on plane ordering.  Weaker than exchange interaction is Dzyaloshinskii Moriya spin-orbit 

interaction (H = D. (Si × Sj) which is responsible for the chirality of the spin structure i.e., helical 
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structure, and the axis of the helix is kept in (111) direction by even weaker exchange-crystal 

anisotropic interaction in MnSi crystals. 

 

 

                   Fig. 11.2 Magnetic phase diagram of MnSi (Ishikawa et al., 1977) 

 MnSi might be an ideal playground to study the properties of itinerant magnets in 

general, which are one of the less understood and yet more interesting materials (Carbone, 2007). 

In this context, we are motivated in exploring another property i.e., spin polarization of MnSi 

which has not been done by any one so far. Spin polarization is well defined in conventional 

ferromagnets and has been measured by different techniques such as positron scattering, Tedro-

Meservy, tunneling spectroscopy, photoemission spectroscopy and point contact Andreev 

reflection spectroscopy. However, this property has not been investigated in case of MnSi, with 

very unusual magnetic properties, exhibiting various magnetic structures from helical to conical 
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to induced ferromagnetic phase. So, in this research we wanted to study transport properties of 

MnSi, and to detect any possible changes in spin polarization as MnSi undergoes various 

magnetic transition. 

11.2  Magnetization and AC susceptibilities measurememnts of MnSi 

Magnetization and susceptibility measurements were done by SQUID, and they were 

taken by using MnSi single crystal grown by floating zone technique. Susceptibility 

measurement, as shown in Fig.11.3 (a), shows that the susceptibility suddenly increases at 30 K 

showing that the magnetic ordering begins at this temperature. When the magnetic field of 1 KG 

is applied the susceptibility even goes higher at this temperature indicating that the helical phase 

changes to conical phase. When the increasing magnetic field reaches to about 6.5 KG, we can 

see that the susceptibility curve shows different behavior showing the transition from conical 

phase to induced ferromagnetic phase.  

 Magnetization measurement (Fig. 11.3 (b)) shows that the magnetization is saturated at 

6.5 KG and the saturation magnetization is ~0.4 Bohr magneton/ Mn at low temperature (5K). 

Susceptibility and magnetization measurements are consistent to each other and also consistent 

to the literature. 

 

 

 

 

 

                

 (a) (b) 

Fig. 11.3  Left: AC susceptibility, Right: magnetization measurements for MnSi single crystal 
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11.3 Resistivity measurements of MnSi single crystal 

 Resistivity measurement also shows the phase transition at ~30 K as shown in Fig. 11.4.  

T2 dependence of resistivity below Tc shows that the transport is governed by the spin 

fluctuation. Resistivity at 2K was 5 µΩcm showing that the MnSi single crystal we used was a 

good conductor.  

 

 

 

 

 

 

 

                         

   Fig. 11.4. Resistivity of MnSi single crystal as a function of temperature 

11.4 PCAR measurements of spin polarization of MnSi   

  Presence of magnetic moment and low resistivity showed that the crystal being used for 

magnetic and transport measurements was good for spin polarization measurements. We used 

Andreev reflection spectroscopy to measure spin polarization. Andreev reflection is a process of 

converting normal current to super current at the junction of a metal and a super conductor. In a 

normal metal in which the spin polarization is zero, there are spin-up and spin-down bands at the 

Fermi level. A spin up electron takes a spin down electron at the Fermi level to form a Cooper 

pair which travels through superconductor if the applied energy is less than superconducting gap. 

This process enhances the current. In case of highly spin polarized materials like half metals in 
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which P = 100%, a spin up electron does not get spin down electron in the Fermi level so that 

cooper pair cannot be formed. This results in suppression of current. 

Spin polarization is given by the formula, 
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We pass current through the junction between a superconducting tip and a metal, MnSi in this 

case; and measure voltage and conductance. The conductance curves obtained are fitted using 

modified BTK model.   

11.4.1 Point contact by approaching the superconducting tip by squiggle 

 MnSi single crystal was polished mechanically to get the best possible shining surface 

free of any scratches. It was mounted in a probe and was mounted into PPMS. For our 

experiment, we used electrochemically etched Niobium tips whose small protrusions at the tip 

have size of couple of micrometer. Such a tip is mounted in a tip holder as shown schematically 

in Fig. 11.5 (a). The tip holder is driven by squiggle piezoelectric motor as shown in Fig 11.5 (b). 

                 

(a)                                                                       (b) 

                 Fig. 11.5 Superconducting tip holder (a) schematic, (b) Squiggle motor 
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 Conductance curves were fitted and the spin polarization was extracted from the fitting 

parameters. Several conductance curves were fitted for the data taken for different point contacts 

at 2K. The average value of spin polarization was found to be 44±4%. The spin polarization was 

extracted from the conductance curves taken even at 1.2 K, and it was found to be 47.8% which 

is within the error bar of the average value. An example of such conductance curves is given in 

Fig. 11.6 as representative of several curves taken and fitted for the extraction of spin 

polarization. The interfacial scattering barriers which are extracted by fitting the curves and are 

denoted by Z are shown in individual plots.  

 

 

 

 

 

 

 

 

 

 

             Fig. 11.6 Normalized conductance curves obtained for MnSi single crystal with Nb        
superconducting tip 
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11.4.1.1  Magnetic field dependence conductance curves of MnSi  

 We wanted to detect any possible change of spin polarization with the magnetic field as 

MnSi underwent magnetic phase transition. We saw some change in P at different magnetic 

fields. Fig 11.7 shows the field dependence conductance curves taken at 2K. These spectra show 

that the amplitude of the conductance curves decreases with higher external magnetic field. 

  

 

 

 

 

 

 

 

 

 

Fig. 11.7 Magnetic field dependence normalized conductance curves for MnSi single crystal 

 However, we found in literature (Miyoshi et al., 2005) that people have obtained 

conductance curves of Nb/Cu point contact system at different applied magnetic fields. They 

have shown the change in conductance with the applied magnetic field as shown in Fig. 11.8. 

The top graph shows the change when magnetic field is parallel to Nb tip, and the bottom graph 

-10 -8 -6 -4 -2 0 2 4 6 8 10
0.96

0.98

1.00

1.02

1.04

1.06

1.08

 0Gexp
 0Gth
 200Gexp
 200Gth
 500Gexp
 500Gth
 1KGexp
 1KGth
 2KGexp
 2KGth
 4KGexp
 4KGth
 5KGexp
 5KGth
 6.5KGexp
 6.5KGth
 7KGexp
 7KGth
 10KGexp
 10KGth

N
or

m
al

iz
ed

 C
on

du
ct

an
ce

mV

0G
200G

500G
2KG

1KG

4KG

5KG
6KG

7KG
10KG



126 

 

shows the change when the magnetic field is perpendicular to the Nb tip. We also observed 

similar type of change of conductance curves in Nb/MnSi system when H is parallel to the Nb 

tip. So, at this point it is hard to differentiate the contribution of Nb and MnSi. This needs further 

investigation.  

 

  

 

Fig. 11.8 Magnetic field dependence of conductance curves for Nb/ Cu system, Top: when Nb 
tip is parallel to the applied magnetic field, Bottom: when Nb tip is perpendicular to the applied 
magnetic field (Miyoshi et al., 2005). 
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 Finally, in conclusion, we have studied spin polarization in MnSi single crystals 

characterized by Tc of 29.5 K with saturation magnetic moment of 0.4µB/Mn at 5K and a 

residual resistivity of 5µΩcm. And, the average spin polarization of MnSi single crystal as 

measured by PCAR technique by driving the superconducting tip by squiggle motor was found 

to be 44 ± 4% in zero magnetic field. With increasing magnetic field, when the maganese 

monosilicide single crystal undergoes magnetic phase transition, the spin polarization is found to 

be higher as the transition is from helical to conical to induced ferromagnetic. Figure 11.9 shows 

how P is found to change with H. It is seen that the increase is not monotonic, rather the spin 

polarization saturates beyond the magnetic phase transition to the induced ferromagnetic phase 

when the applied magnetic field is about 6.5KG. This is consistent with what one expects as the 

magnetic moments are aligned in the direction of applied field. 

 

 

 

 

 

 

 

 

 

 

Fig. 11.9 Magnetic field dependence of spin polarization of MnSi as it goes under 
magnetic phase transition. 
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11.4.1.2 Approaching the superconducting tip manually 

Conductance curves were also obtained by driving the superconducting tip manually to 

bring it in point contact with MnSi. This arrangement gives more flexibility in control of the 

contact resistance. Conductance curves were obtained for different contact resistances. In this 

arrangement, the facility of pumping liquid Helium allows to lower the temperature below 2K 

which was the minimum limit that could be achieved while using PPMS for point contact 

experiments by as discussed in section 11.4.1.  With this arrangement, the data were taken at 

1.5K , and the mBTK fittings were done with cuperconducting gap value of Nb as 1.5 meV. The 

fitting parameters and the extracted values of P and interfacial barrier scattering Z are shown in 

the corresponding plots shown in Fig. 11.10.                                                                                                                            

Fig. 11.10 Normalized conductance curves for Nb/MnSi interface while the superconducting tips 
were driven manually  
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It was observed that the P values have quadratic dependence on Z values. So, the intrinsic 

value of P, which corresponds to Z = 0, was found from the extrapolation of P (Z) curve as 

shown in Fig.11.11. This gives the intrinsic value of P to be 45.2% which is within the error bars 

in previous measurements by squiggle technique. This confirms the reliability of the spin 

polarization values of MnSi single crystal. 
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                                 Fig. 11.11 Dependence of P on interfacial barrier scattering  
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11.4.1.3 Conductance of the interface between Nb thin film sputtered on MnSi after 

e-beam lithography on PMMA 

 In the previous measurements by squiggle and manual techniques to approach the Nb tip, 

it was not easy to get clean field-dependent and temperature-dependent data. Thinking that the 

situation can be improved if Nb contacts are made on MnSi by e-beam lithography and 

depositing Nb, one more technique was implemented to get conductance curves of Nb/MnSi 

interface. Interestingly, new features such as zero-bias conductance with amplitude greater than 2 

and conductance oscillations outside superconducting gap have been observed which may be due 

to the formation of triplet Cooper pairs at the interface of Nb and MnSi in the geometry being 

used. This is discussed hence forth.         

11.4.1.3.1 E-beam lithography on MnSi surface and Nb deposition 

On the surface of polished MnSi single crystal, PMMA 950A4 was spin coated. It was 

baked for 15 minutes at 180oC.  E-beam lithography was done on the surface of PMMA to open 

two square holes each of 1µm×1µm, and 10µm apart as shown in Fig. 11.12, which is the optical 

image taken after the lithography was developed. 

 

Fig.11.12. Optical image of the openings on PMMA after the lithography was developed 
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With appropriate masking, Nb was deposited by sputtering on and within the area of 

PMMA so that Nb would come in contact with MnSi surface only through the opened holes 

shown in Fig. 11.12. The Nb film sputtered at the chamber pressure of 1.4×10-7 Torr showed 

superconducting transition temperature Tc of 5.5K as shown in Fig. 11.13. 
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 Fig. 11.13 Superconducting transition temperature of Nb thin film (Red: includes Nb and MnSi; 
Navy: Nb on glass)  

11.4.1.3.2  Magnetic field dependent and temperature dependent conductance curves 

 Silver paste contacts were made on Nb film and MnSi. Magnetic field dependence at 2K 

with field perpendicular and parallel to the sample surface, and temperature dependence 

conductance curves in both cases were obtained which are catalogued below: 

a.1) Field dependence of conductance curves with magnetic field parallel to the Sample 

surface (B║Surface) at 2K 

 This configuration of sample with the magnetic field parallel to the sample surface was 

achieved after some data were taken in the perpendicular configuration at 2K. The purpose of 

mentioning the sample configuration-sequence is to discuss about the topography change 

observed on the sample surface. This will be discussed in the next section. Figure 11.14 shows 
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the magnetic field dependence normalized conductance curves for the Nb-MnSi interface. 

Surprisingly, the conductance curves are different in this lithographically defined interface of Nb 

and MnSi compared to the conductance curves obtained for manually obtained point contacts as 

discussed earlier. The amplitude of zero-bias conductance was highest when no external 

magnetic field was applied. It kept on decreasing as the magnetic field was increased. However, 

the amplitude was still more than 2 until the applied magnetic field was more than ~ 25KG. The 

amplitude of zero bias conductance decreases faster for the magnetic field more than ~30KG.  

There exists a small zero bias conductance at ~35KG. However, it disappeared completely at 

around 38KG. This may be due to the destruction of superconductivity of Nb due to the applied 

magnetic field. 

 

 

 

 

 

 

 

 

 

 

Fig. 11.14. Normalized conductance curves at different magnetic fields parallel to the sample 
surface at 2K for Nb/ MnSi interface defined by e-beam lithography  
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allows one to see clearly how the curve features are changing from no applied field (top curves) 

to high applied field of 40KG (bottom curves). 

 

 

 

 

 

 

 

 

 

 

Fig. 11.15. Normalized conductance curves with shift in y-axis for clarity for Nb/MnSi interface 
defined by lithography and when it is in parallel configuration. 

 Interestingly, the other unusual feature of these conductance curves is the presence of 

conductance oscillations outside superconducting gap. These oscillations decay as we go farther 

from the superconducting gap edge. With the increasing magnetic field the amplitudes of these 

oscillations decrease, and disappear after H = 6.5KG is applied. Below this magnetic field, the 

oscillations in different conductance curves obtained at different magnetic fields are in phase to 

each other (Fig. 11.15). These oscillations disappear when the applied magnetic field is more 

than 6.5KG [Fig. 11.16].  As we know that MnSi undergoes magnetic phase transition from 

conical to induced ferromagnetic phase at 6.5KG, it is found that the conductance oscillations do 

not appear in the ferromagnetic phase.  
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Fig. 11.16.  Magnetic field dependence of zero bias conductance, and conductance oscillations 
outside superconducting gap of Nb in contact with MnSi with its surface in parallel to the applied 
magnetic field  
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Figure 11.17 (a) shows the dependence of normalized zero bias amplitude on the applied 

magnetic field. The amplitude is more than 2 for the magnetic field less than about 26KG. 

Beyond this magnetic field, the amplitude goes down as the field goes up and finally levels down 

to 1 when the field is 38KG and more. The amplitude ratio of the first and the second peaks was 

almost equal to 1 for all conductance curves. 

 

 

 

 

(a) (b)                                                                                

Fig. 11.17  Effect of magnetic field (a) on normalized zero bias conductance, and (b) on 
wavelength of the first oscillation of conductance curve outside superconducting gap of Nb that 
is in contact with MnSi         

a2) Temperature dependence of conductance curves with magnetic field, B = 0 in parallel 

configuration at 2K 

The amplitude and the shape of conductance curves changed with the change in 

temperature well below Tc of Nb (This Nb film had Tc of 5.5K) indicating that the effect is due to 

the changes in properties of MnSi.  Figure 11.18 (a) shows as collected conductance curves of 

Nb/MnSi interface at 2K when no external field was applied.  The same set of data after 

normalization is shown on the right panel. It shows that the zero bias conductance at 2K is about 

3.5, and this amplitude decreases with increasing temperature. Figure 11.18 (c) shows the 

normalized data with a consecutive shift of 0.4 in Y-axis for the purpose of clarity and 

comparison. 
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Fig. 11.18 conductance curves for Nb/MnSi interface at different temperatures in absence of 
magnetic field: (a) as collected, (b) normalized, and (c) normalized and shifted for clarity  

The conductance oscillations are present in this case also. In order to show these 

oscillations more prominently, some of the conductance curves are shown in Fig. 11.19.  The 

amplitudes of oscillations decrease with temperature, and they disappear at 4K and higher 

temperatures. Zero bias normalized conductance amplitude also keeps on decreasing with 

temperature, and disappears at 5.5K as shown in the last plot in Fig. 11.19. 
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Fig. 11.19. Temperature dependence of conductance curves of Nb/MnSi point contact interface 
at no external magnetic field applied 

 

The dependence of normalized zero bias amplitude with temperature as observed in the 

experimental data are shown in Fig. 11.20. It is observed that the conductance amplitudes 

decrease faster after 4.6K to 5.5K, and then the normalized amplitude just levels to 1 as shown in 

Fig. 11.20. The wavelength of oscillations is in decreasing tendency with the increasing 

temperature. 
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 Fig. 11.20 Dependence of normalized zero-bias amplitude on temperature for Nb/MnSi interface 
in parallel configuration. 

After taking field dependence and temperature dependence conductance curves in parallel 

configuration the sample was taken out from PPMS. The surface of Nb looked different. So, it 

was observed under optical microscope, and very interesting patterns developed were found on 

the surface. These patterns shown in Fig. 11.21 were imaged with optical microscope. These 

patterns were not developed when the sample was kept perpendicular to the magnetic field. They 

were developed only when the magnetic field was applied parallel to the Nb thin film surface.  

 

Fig. 11.21. New surface topography developed on Nb film sputtered on PMMA spin coated on 
MnSi. This was developed when the magnetic field was applied parallel to the sample surface. 
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b1) Field dependence of conductance curves with magnetic field perpendicular to the 

Sample surface (B ┴ Surface) at 2K 

The sample was mounted again into PPMS with its orientation restored in previous 

configuration, i.e. the sample was kept such that Nb deposited surface would be perpendicular to 

applied magnetic field. The data obtained in this configuration are given in Fig. 11.22. These 

conductance curves were almost similar to those in parallel configuration, but with smaller zero 

bias amplitude compared to the parallel configuration.  

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

Fig 11.22. Field dependence of conductance with the field perpendicular to the sample surface  
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Conductance oscillations outside superconducting gap edge were observed for applied 

fields less than 4KG.  The shapes of these curves were similar for the magnetic fields within 0G 

to 4KG, and then within 4KG to 20KG.  From 20KG to about 35 KG the shapes were similar to 

each other. The zero bias amplitude disappeared at 35KG and beyond as shown in Fig. 11.23. 

 

Fig. 11.23. Conductance curves for Nb/MnSi interface to show the disappearance of conductance 
oscillations outside superconducting gap when higher magnetic fields are applied 
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The zero bias amplitude decreases with magnetic field as shown in Fig. 11.24 (a). This 

pattern looks similar to the case of field dependence in parallel configuration. The conductance 

feature collapses at about 30 KG. The wavelengths of conductance oscillations seen around 

superconducting gap increase initially after magnetic field is applied from zero to about 10G, and 

then decreases for the higher magnetic fields. As shown in Fig. 11.24 (b). This pattern is also 

similar to the case of parallel configuration. The amplitudes of the first and second oscillations 

are almost equal. 

 

 

 

 

 

Fig 11.24  Effect of applied magnetic field on (a) normalized zero bias amplitude, (b) average 
wavelength of the conductance oscillations when the field is perpendicular to Nb/MnSi surface 

The conductance curves before applying magnetic field was compared with the one taken 

after the applied magnetic field was set to zero. Their coincidence as shown in Fig. 11.25 

indicates that there is no temperature dependent hysteresis in the conductance curves.   

 

 

 

 

 

Fig 11.25. Normalized conductance curves before applying magnetic field, and after setting the 
applied magnetic fields to zero.  
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b2) Temperature dependence of conductance in perpendicular configuration   

In the same configuration as in (b1), the conductance curves were obtained as function of 

temperature at zero magnetic field. Figure 11.26 (a) shows the data as collected, (b) shows the 

normalized data, and (c) shows the same data after shifted for clarity. These data have also 

similar conductance features with conductance oscillations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11.26  Temperature dependence of conductance in perpendicular configuration (a) as 
collected conductance curves, (b) normalized conductance curves, and (c) normalized 
conductance curves with a shift  
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Figure 11.27 shows the conductance curves at different temperatures sowing the presence 

of conductance oscillations at lower temperatures lower than 4K. The oscillation features 

disappear at around 4K. The shape of conductance curve changes for 5K, and with its amplitude 

vanishing at 5.5K. 

 

Fig. 11.27 Normalized conductance curves for Nb/MnSi interface showing the dependence on 
temperature 
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With the increase in temperature, the zero bias amplitude was found to decrease, but the 

pattern of this change was different than due to the effect of magnetic field. As shown in Fig. 

11.28 (a), the amplitude decreases slowly at first when temperature is increased from 2K to about 

4K, and it decreases abruptly from 4K to about 5.5K. The pattern of change of zero bias 

amplitude with temperature is similar in both parallel and perpendicular cases.  The wave length 

of conductance oscillations seems slightly decreased at higher temperatures as shown in Fig. 

11.28 (b). 

 

 

 

 

 

 

 

 

Fig. 11.28. Effect of temperature on (a) normalized zero bias amplitude, and (b) the average 
wavelength of conductance oscillations around superconducting gap for Nb/MnSi interface 
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and after temperature cycle are shown in Fig. 11.29. This also indicates that the change is really 

due to the temperature change in the temperature dependence complete set of conductance data. 

The average amplitude seems slightly increased when the temperature is increased. 
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Fig. 11.29. Normalized conductance curves at 2K before and after temperature cycle in 
Nb/MnSi.  

11.4.1.4     Discussion and conclusions 

 The spin polarization of MnSi single crystal was measured at 2K by point contact 

Andreev reflection technique driving the superconducting tip by a piezo motor in PPMS, and it 

was found to be 44±4%.  It was measured at 1.5K by driving the tip manually, and the intrinsic 

value of P at 1.5K was found to be 45.2%.  Since MnSi undergoes magnetic phase transition 

from helical to conical to induced ferromagnetic phase, it would be interesting to know how the 

spin polarization changes in these phases. For this purpose, the spin polarization of MnSi single 

crystal was measured as a function of applied magnetic field. It was found that the spin 

polarization increases with the applied magnetic field, and finally saturates once it reaches to the 

ferromagnetic phase. In another approach, the superconducting tip contact was established by e-

beam lithography on PMMA on top of MnSi surface, and depositing Nb on top of it so that Nb 

would touch MnSi only through 1µm ×1µm two holes. The conductance curves in this case were 

found unconventional and interesting because of their large zero bias amplitude and conductance 
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oscillations outside the superconducting gap edge. These conductance curves obtained in parallel 

and perpendicular cases as magnetic field dependent and temperature dependent curves were 

analyzed.  

To understand the interesting features of these curves, we consider the following model 

for FS interface. Bulk itinerant magnet MnSi is connected to a BCS superconductor Nb of finite 

thickness d. Niobium, being a standard BCS superconductor, has Cooper pairs which are made 

of electrons with opposite spins so that the total spin is 0, and hence the superconductivity is 

singlet. However, as Nb comes in contact with a ferromagnet with inhomogeneous magnetization 

such as helical or conical magnetic structure of MnSi in the present case, spin-triplet Cooper 

pairs are generated [Bergeret et al., 2005; Fominov et al., 2007]. Probably all  three types of 

triplet Cooper pairs: 1 heterospin ↑↓+↓↑ and 2 equal-spin: ↑↑, ↓↓ are generated, but for us most 

interesting are equal spin ones since only for those pairs Andreev reflection couples electron and 

hole in the same spin subband, i.e. will not be suppressed by spin polarization, as seen by the 

enhanced Andreev reflection in our data. These triplet pairs can then penetrate into 

superconductor side and coexist with singlet pairs. They penetrate into the ferromagnet also but 

with shorter coherence length.  For the transport between superconductor and a ferromagnet, the 

Andreev reflection is suppressed due to electron-like or hole-like quasiparticle not getting 

particle of opposite spin at Fermi level in different spin subband, and hence the scattering is very 

sensitive to a spin polarization. However, for equal spin triplet pairs ( total spin =1), Andreev 

reflection is not suppressed  at all by spin polarization of the ferromagnet because one spin can 

take the other spin from the same spin subband, i.e. Andreev reflection conserves spin subbands. 

Hence, at low magnetic field less than 6.5KG when the spin structure in MnSi is in helical or in 

conical phase Andreev reflection at the FS interface is the dominant scattering process. As a 



147 

 

result, the following sequence of reflections is possible: electron-like excitation is injected into S 

across the FS interface, it crosses over S film and reflects from its free surface as an electron by 

the normal reflection process, then it arrives FS interface again and is reflected as a hole-like 

excitation (with the same spin). Created hole crosses S film as well and is then converted to an 

electron at the SF interface. As a result, electron-like state reappears but with the phase shift due 

to momentum difference between electrons and holes in a superconductor. At energy E above the 

superconducting gap ∆, the momentum mismatch is  

F
he v

E
kk

h

222 ∆−=−  

Since each electron and hole cross S film two times, the phase shift is 

F
he v

E
kkd

h

224
)(2

∆−=−=ϕ . The condition nπϕ 2=  provides energy levels, which for ∆>>E  

can be approximated by simple formula 
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This is slightly modified realization of classical Tomash effect [Tomash, 1966] which should 

result in oscillations of conductance at energies above the superconducting gap. At bias V >>∆, 

oscillation have period .2/dvV Fhπδ =  

Above 6.5KG of applied magnetic field, the conical structure in MnSi disappears, and 

hence the triplet Cooper pairs disappear. Consequently, the conductance oscillations outside the 

superconducting gap should disappear which is seen in our experimental data.  

The enhanced zero bias conductance peak (ZBCP) exceeding the standard Andreev 

factor-of-two can be qualitatively explained from the present model of triplet superconductivity 
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in Nb/MnSi. Generated triplet pairs are so-called odd-frequency pairs, with more complex 

spectral properties. It was shown theoretically that quite generally [Bergeret et al., Tanaka et al.,  

Eschrig et al., 2003] odd- frequency pairing leads to a strong peak in the density of states at low 

energy, which in turn, should provide ZBCP. This peak should be suppressed on applying 

external magnetic field, which it does beyond 30KG and 38KG in parallel and perpendicular 

configurations respectively. However, its existence in fields over 6.5KG may be due to 

additional mechanism of zero bias conductance peak formation. 
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CHAPTER 12 

STUDY OF ANDREEV REFLECTION SPIN POLARIZATION AND 
MAGNETIZATION OF Pd 1-xNix ALLOYS WITH DIFFERENT Ni CONCENTRATION 

12.1  Introduction 

Magnetocrystalline anisotropy observed in PdNi (Trupti et.al., 2009) makes this alloy an 

interesting system. Filled 4d orbital ([Kr]4d10 5s0 configuration) fcc element Pd is nonmagnetic 

which is isoelectronic to the magnetic 3d element Ni so that it is reasonable to expect 4d 

elements to be almost magnetic (Moruzzi et. al., 1989). Be it isolated Ni impurities with local 

moment of 1µB (Loram et. al., 1985), or Ni atoms in clusters of three or more to have local 

moments (Chouteau et. al., 1976; Cheung et. al. 1981), magnetic 3d impurities induce large host 

polarizations (Oswald et.al., 1986) leading to the appearance of magnetism by the creation of 

giant moments in PdNi alloys at atmospheric pressure as well as under pressure (Beille et.al., 

1975). The critical concentration of Ni in Pd matrix for the onset of ferromagnetism is 2% 

(Aldred et.al., 1970) for the bulk and 6.3% in Pd/Ni nano-alloys (Nunomura et.al., 1998). 

Bulk Palladium on the other hand is itself an interesting material in terms of its 

magnetism. Expansion of fcc lattice by 5% (Fritsche et. al.;1987; Chen et.al.,1989; Alexandre 

et.al, 2006) or thin films of Pd with hcp crystal structure (Alexandre et. al., 2006)  show induced 

moment whereas Palladium rests on the edge of magnetism with the density of states at the 

Fermi energy just below the Stoner criterion (N loc (EF) I > 1 , where I is the exchange integral 

and N loc (EF)  is the local density of states at the Fermi energy) for ferromagnetism (Alexandre 

et. al., 2006). Magnetic moments have been predicted for coaxial Palledaium nanowires (Stewart  

et.al., 2006) and at (100) facets of polyhedron structure of the clean gas-evaporated Pd fine 

particles with an average radius between 60 Å and 144 Å  with maximum magnetization of 

1.4±0.05 emu/g at 5K for a sample with 80 Å average radius (Shinohara et. al, 2003).  
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In a ferromagnetic superconducting system PdNi shows long range proximity effects. It is 

a weak ferromagnet (Fulde et. al., 1964; Larkin et. al., 1965). Change in Ni concentration in 

PdNi helps to control exchange energy and hence coherence length which is inversely 

proportional to the exchange energy (Kontos, et al., 2001; Ryazanov et. al., 2001). Long range 

character of Josephson current in samples with PdNi represents evidence for its spin triplet 

nature (Keizer et al., 2006; Khaire et. al., arXiv: 0912.0205). 

Energy as a function of density of states shows that the 3d bands of electron in Ni splits 

into different energy levels for up spin and down spin electrons as shown in Fig. 12.1. This 

develops ferromagnetism in Ni, and so PdNi is an example of strong magnetic susceptibility 

enhancement of nearly ferromagnetic Pd by Ni impurities (Lederer et. al., 1968). Because of split 

bands, spin polarization is expected. So, in our research, we are interested to find the correlations 

between the spin polarization and the magnetization of the sample. For this purpose, PdNi thin 

films with different Ni concentrations were prepared by magnetron sputtering of Pd target with 

Ni inserts into it. Magnetization as a function of external applied magnetic field at 10K, and 

magnetization as a function of temperature in presence of 10 Oe magnetic field were measured 

by quantum design SQUID (Superconducting Quantum Interference Design) magnetometer. The 

conductance curves for these samples were measured at 1.5K by using Point Contact Andreev 

Reflection (PCAR) technique and the Spin polarization values were extracted by fitting the data 

with modified BTK model. Measurement of conductance curves and extraction of spin 

polarization of Pd in bulk helps to understand how the surface of Pd bulk behaves magnetically, 

and it also provides the ground to compare the spin polarization of PdNi alloy with Pd, and to 

understand the exotic role of Ni in the alloy for its spin polarization. The detailed data of such 

measurements are presented in the following sections. 
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Fig. 12.1 Energy levels as function of electron density of states (Nicola Spaldin, ferromagnetism 
in metals, Cambridge University press) 

                            

12.2  The case of Pd1-xNix sample with Ni 12%    (Pd0.88Ni 0.12 ) 

12.2.1 Magnetization and Curie Temperature measurements of  Pd0.88Ni 0.12  sample 

 The magnetization of PdNi thin film with Ni concentration of 12%, as measured by 

EDAX,  was measured by SQUID. The sample was ferromagnetic which is indicated by nice M-

H loop shown in Fig. 12.2 (a). It shows that the saturation magnetization of such sample is 112 

emu/cm3. 
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(a)                                                                                 (b) 

Fig. 12.2. Measurement of (a) magnetization; and (b) Curie Temperature of of Pd0.88Ni 0.12  

sample (Khaire et. al., 2009). 

 

 Fig. 12.2 (b) shows how magnetization varies with temperature. The Curie temperature of 

PdNi with 12% Ni concentration is found to be 175K. The purpose of finding magnetization and 

Curie temperature is to find any possible correlation between them and with the spin polarization 

of the sample. 

12.2.2 Spin Polarization measurements of  Pd1-xNix sample with Ni 12%  ( Pd0.88Ni 0.12 ) 

Point Contact Andreev Reflection Spectroscopy  (PCAR) was used to obtain several sets 

of conductance curves corresponding to different contact resistances. Some of such 

representative normalized conductance curves are shown in Fig.12.3. Electrochemically etched 

Nb tips were used as superconducting tips. The fitting of such curves was done by using 

modified BTK model to extract spin polarization values. The experiment was done at 1.2K. Fig. 

12.3 (a) is one set of normalized conductance curve whose fitting parameters are T = 2K, 

cuperconducting gap ∆=1.5meV, interfacial scattering barrier Z = 0.15 with spin polarization P = 

49%. Similarly Fig. 12.3 (b) shows conductance curve with the fitting parameters of T = 2K, ∆ = 

-4 -2 0 2 4

-100

-50

0

50

100
PdNi (12%)

M
ag

ne
tiz

at
io

n 
(e

m
u/

cm
3 )

H (KOe)



153 

 

1.5meV for Nb, Z = 0.136 with P = 49%. The fitting was done in slightly elevated temperature of 

2K. However, the use of exact experimental temperature of 1.2K can still fit the data with sharp 

peaks near the superconducting gap, but still giving the other fitting parameters almost same and 

giving the same spin polarization values as shown in Fig. 12.3 (c) and (d) which correspond to 

the data(a) and (b) respectively. 

             

        Fig. 12.3. Normalized Conductance curves for PdNi sample with Ni 12% 

 In order to find the intrinsic value of spin polarization, i.e spin polarization independent 

of interfacial barrier scattering Z, a plot of P as a function of Z is plotted as shown in Fig. 12.4. 
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For this sample, P was almost independent of Z, and the intrinsic value of spin polarization is 

found to be 48.8%. 

 

 

 

 

 

 Fig. 12.4. Spin polarization as a function of interfacial barrier scattering for PdNi with Ni 12% 
sample 

12.3 The case of Pd1-xNix sample with Ni 6% (Pd0.94Ni0.06 ) 

12.3.1 Magnetization and Curie Temperature measurements of Pd0.94Ni 0.06 sample 

 As shown in Fig. 12.5 (a), the saturation magnetization of PdNi with Ni 6% sample was  

found to be 55 emu/cm3 at 10K;  and the Curie temperature was found to be 95K at 10 Oe field as 

shown in Fig 12.5 (b). The presence of lower concentration of Ni has shown lower Ms and lower 

Tc. 

 

 

 

 

 

 

 

Fig. 12.5. Measurement of (a) magnetization; (b) Curie temperature of PdNi  with Ni 6% sample 
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12.3.2 Spin Polarization measurements of Pd1-xNix sample with Ni 6% ( Pd0.94Ni 0.06 ) 

 Insert of Ni rods was reduced reduced in Pd target during magnetron sputtering to reduce 

the percentage of Ni than before. Fig.12.6 shows four different conductance curves taken for 

different contact resistances. Temperature used as one of the fitting parameters is same as the 

experimental temperature of 1.5K. Supreconducting gap of Nb is 1.5meV which has given 

reasonable fittings with Z ranging from about 0.3 to 0.65. The spin polarization values are shown 

in these figures separately.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12.6. Conductance curves for PdNi sample with Ni 6% 

 Since, the polarization, P is found dependent on the barrier scattering Z;  intrinsic values 

of spin polarization corresponding to probable clean interface is found by interpolation of P-Z 

graph as shown in Fig. 12.7. This gave the value of P as 37.5%. 
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Fig. 12.7. Spin polarization as a function of interfacial barrier scattering for PdNi with Ni 6% 
sample 

 

12.4 The case of Pd1-xNix sample with Ni 3% (Pd0.97Ni0.03 ) 

 PdNi sample with 3% Ni concentration gave saturation magnetization of 12.6 emu/cm3 at 

10K, and it gave Curie temperature of 40K at 10 Oe magnetic field as shown in Fig. 12.8 (a) and 

(b) respectively. 

 

 

 

 

 

 

 

Fig. 12.8. Measurement of (a) magnetization; (b) Curie temperature of PdNi  with Ni 3% sample 
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 Conductance curves were obtained as usual using Nb tips as superconducting tips. 

Several such conductance curves were obtained. Some of representative curves are shown in Fig. 

12.9.  For consistency, these conductance curves were taken at the same temperature as it was 

done for samples with different concentrations. The fitting parameters as shown in corresponding 

plots are T=1.5K, ∆ for Nb= 1.5 meV. Barrier scattering seems high even in these samples with 

typical values ranging from 0.4 to 0.6 showing the spin polarization values dependent on the 

barrier strength.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Fig. 12.9. Normalized conductance curves for Nb/PdNi with 3% Ni samples 

 The P vs Z plot for 3% Ni sample of PdNi is shown in Fig. 12.10. Interpolation of the 

quadratic fit of the data shows the intrinsic value of spin polarization of this sample to be 32.9% 

which is less than for 6% Ni sample. With lower concentration of Ni, it has been seen that the 
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values of saturation magnetization, Curie temperature and spin polarization go lower. This trend 

has been seen in the samples sputtered in the same lot under identical growth conditions of the 

samples. 
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Fig.12.10 Spin polarization as a function of interfacial barrier scattering for PdNi with Ni 3% 
sample 

12.5 The case of  Pd1-xNix sample with Ni 2% (Pd0.98Ni0.02 ) 

 Separate batch of PdNi samples were sputtered reducing insert of Ni rods in Pd target so 

as to get 2%Ni in PdNi thin films. However, the rate of deposition was maintained different 

while depositing the same thickness of PdNi thin films. While characterizing the films, different 

saturation magnetizations were found in these samples. Curie temperatures were also found 

different. This indicated that magnetization and Curie temperature depend on the growth 

conditions of the sample. This helps to anticipate that the spin polarization might also depend on 

the growh conditions. The exact measurements for this sample are discussed in this section. 

12.5.1 The case of Pd1-xNix sample with Ni ~2% (sample 1A) 

 Figure 12.11 (a) shows that the saturation magnetization for this sample is 1.43 emu/cm3; 

and (b) shows the Curie temperature of this sample to be 8.43K. The M-H loop shows that PdNi 
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with Ni about 2% is still ferromagnetic. However, the saturation magnetization is low as 

expected. Correspondingly, the Curie temperature is also low. 

  

 

 

 

 

 

 

 

Fig. 12.11 Measurement of (a) magnetization; (b) Curie temperature of PdNi  with Ni 2%  
sample 1A 

  

 The motivation was to see the transition of spin polarization, if any, in PdNi samples with 

low magnetization values. For that, PCAR spectra were obtained at 1.5K, and the  fittings were 

done by the same BTK model as was used for other samples with higher Ni concentrations. The 

conductance curves look conventional. Fig. 12.12 shows four different conductance curves taken 

for different interfacial contact resistances.The fittings were possible for T = 1.5K, ∆ = 1.5 for 

Nb. Barrier scattering values were different for different contacts. These values were typically in 

the range of 0.0 to 0.7.  
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       Fig. 12.12. Normalized conductance curves for Nb/PdNi with 2% Ni sample (1A) 

 As shown in Fig. 12.12, the spin polarization values were different for different 

conductance curves. It was found that P values were Z dependent as they were found for 

previous samples. Z values, which cannot be controlled as we desire, depends on the scattering 

situation of electrons at the interface. Making several contacts and getting conductance curves 

gives a chance of arbitrary change of Z values. Some lucky chances give smaller Z which we 

generally prefer to be more confident of the intrinsic values of the samples. In this sample, some 

of the lower Z and corresponding P values confirm that the quadratic fit is reliable enough to get 

intrinsic value of spin polarization accurately.  Z dependence of P for this sample is shown in 

Fig. 12.13, from which the intrinsic spin polarization of PdNi with 2% Ni is found to be 40.23%. 

Interesting enough, the value of P is higher for this sample than for 3%Ni sample of PdNi. 
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Different growth condition might be responsible for this change, or there may be overshooting of 

P for PdNi samples with concentration close to critical concentration. This is not clear at this 

pont. More samples of PdNi with concentration of Ni ~2% were measured to get better idea. 

 

 

 

 

 

 

Fig. 12.13 Spin polarization as a function of interfacial barrier scattering for PdNi with Ni 2% 
sample 1A 

12.5.2 The case of Pd1-xNix sample with Ni ~2% (sample 2A) 

 Saturation magnetization and Curie temperature for this sample were found to be 2.23 

emu/cm3 and 41.8K as shown in Fig. 12.14 (a) and (b) respectively. 

 

 

 

 

 

 

 

Fig. 12.14 Measurement of (a) magnetization; (b) Curie temperature of PdNi  with Ni 2% sample 
2A 
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The conductance curves obtained for this sample are conventional, and their fitting is 

done at 1.5K, the experimental temperature. They fit for ∆Nb = 1.5 meV giving typical values of 

Z from 0.3 to 0.5, and the P values dependent on Z. Figure 12.15 shows some of representative 

conductance curves for this sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Fig. 12.15 Normalized conductance curves for Nb/PdNi with 2% Ni sample (2A) 

  

 Interpolation of Z dependence curve gives the intrinsic value of P for this sample to be 

41.8% as shown in Fig. 12.16. The difference in P is due to different saturation magnetization 

compared to the previous sample which will be compared in detail later. 
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Fig. 12.16. Spin polarization as a function of interfacial barrier scattering for PdNi with Ni 2% 
sample 2A 

12.5.3 The case of Pd1-xNix sample with Ni ~2% (sample 3A) 

 Saturation Magnetization for this sample was measured to be 6.05emu/cm3, and the Curie 

temperature was measured to be 16.6K as shown in Fig. 12.17.  

 

 

 

 

 

 

 

Fig.12.17. Measurement of (a) magnetization; (b) Curie temperature of PdNi  with Ni 2% sample 
3A 

 Fitting of conductance curves was done at T = 1.5K, ∆ = 1.5meV. For this sample also, a 

range of barrier scattering values were obtaiened as shown in some of the representative curves 

shown in Fig. 12.18. 
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Fig. 12.18. Normalized conductance curves for Nb/PdNi with 2% Ni sample (3A) 

 Quadratic fit of Z-dependance curve gave the intrinsic value of P to be 47.7% as shown 

in Fig. 12.19. Even though the magnetization is low, P value came high for this sample showing 

some inconsistency in the correlation of P with saturation magnetization which will be discussed 

later. 

 

 

 

 

 

Fig. 12.19. Spin polarization as a function of interfacial barrier scattering for PdNi with Ni 2% 
sample 3A 
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12.6  The case of pure Pd 

Fcc structure of bulk Pd presents a high paramagnetic susceptibility value (Litran et. al., 

2006) close to fulfilling Stoner Criterion of magnetism. The electron spin fluctuations in a strong 

paramagnet are known to renormalize the quasiparticle energy which affects the electron spin 

fluctuation coupling constant so that the phase relationship of electron and back scattered hole 

changes controlling the quantum interference in normal metal (Aprili et. al., NATO Science 

series, Springer). In paramagnetic regime, the S/N structure is described in dirty limit by Usadel 

equations (Aprili et. al., NATO Science series, Springer): 
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where θ, the pairing angle contains all the information about equilibrium properties.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 12.20 Normalized conductance curves for polished Pd slab 
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For larger spin fluctuations that occur in paramagnetic Pd, ∑Sinθ is smaller so that T 

goes higher. It may be the cause of the need of higher temperature to fit data for Pd slab. In case 

of ferromagnetic PdNi, exchange field acts like spin dependent potential which doesn’t act like 

the spin fluctuations that renormalize the energy of the quasiparticles. This may be related to 

high Z in Pd and low Z in case of PdNi as discussed earlier. The normalized conductance curves 

for Pd are shown in Fig. 12.20. 

 Figure 12.21 shows that the spin polarization of Pd is zero for different values of 

scattering barrier potential which arise while changing the tip pressure on the Pd surface to have 

different contacts, and hence different contact resistances. In both cases of PdNi  with Ni 12% 

sample and Pd slab, the spin polarization is Z independent.  

 

 

 

 

 

 

Fig. 12.21. Dependance of spin polarization P on the barrier strength Z for Pd sample 

12.7 Combined results and discussions for different concentration of Ni in PdNi  

 We can summarize all the results so far for PdNi samples with different Ni 

concentrations. Table 12.1 shows the experimental values of Curie temperature, saturation 

magnetization and spin polarization for these samples. Samples 1A,2A and 3A correspond to 

nearly 2%Ni concentration samples deposited with different rate during magnetron sputtering. 
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Table 12.1. Curie temperature, saturation magnetization and Spin polarization of Pd1-xNix  
 
sample Tc(K) Ms (emu/cc) P% 
1A 8.43 1.43   40.23 
2A 10.5 2.23   41.8 
3A 16.63 6.05   47.7 
3% 40  12.6   32.9     
6% 95  55  37.5   
12% 175  112  48.8   
  

 Curie temperature of PdNi samples was found proportional to the saturation 

magnetization in the observed range of saturation magnetization from 1.4 to 112 emu/cm3. This 

was found consistent in the samples of different batch. Figure 12.22 shows the linear relation. 

This indicates that controlling the magnetization, it is possible to control Curie temperature of 

PdNi alloy. 

 

 

 

 

 

 

 

 

 

Fig. 12.22 Curie temperature of PdNi samples as a function of saturation magnetization 
controlled by controlling the concentration of Ni 
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 Spin polarization values of PdNi samples was found proportional to Curie temperature 

for the samples of the same batch indicating the dependency on growth condition. However, 

when all data is considered together for samples of different batches, it is seen that P is in higher 

profile in the samples with lower Curie temperature corresponding to Ni concentration of about 

2% as shown in Fig.12.23. At Tc of about 40K, P value was found lowest and it was found 

increased at higher Curie temperature to 112K, our largest observed value of Tc for 12% Ni 

concentration sample. From the overall trend, it is difficult to find the generalized correlation 

between the spin polarization and Curie temperature of PdNi samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12.23. Spin Polarization as a function of Curie temperature of PdNi sample with different Ni 
concentration 
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 Finding the correlation between the spin polarization and saturation magnetization was 

main objective of this project. With the measurements with two different batches of samples, it is 

observed that P values are proportional to Ms for the same batch of samples (Fig. 12.24). The 

linearity of Ms dependence of P is seen for concentration range of Ni from 3% to 12%. This is 

also observed at around 2% Ni concentration for the samples with different magnetization. 

However, naturally slightly different growth condition of different batches of samples might be 

responsible for the the nonlinearity for the overall samples from 2% to 12% Ni concentration. It 

is unlikely that this linearity holds true for higher concentration because the value of P is already 

close to the value of P for Ni. So, P values reach to saturation beyond certain concentration, 

probably 12% Ni as observed in these experiments. 

  

 

 

 

 

 

 

 

 

 

 

Fig. 12.24. Spin Polarization as a function of saturation magnetization of PdNi samples with 
different Ni concentrations 
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12.8  Spin polarization of PdNi (sample 1A with Tc = 8.4K) at 4.2K and 1.42K 

 For the sample with low Tc, it is worth knowing how much the value of P is at 

temperature closer to Tc and at lower temperature than Tc, such as 1.5K. Within the constraint of 

available instrument, i.e. He dewer we used, it was possible to measure P only at 4.2K which is 

the temperature of liquid Helium if it is not pumped in the dewer. Conductance curves were 

obtained at 4.2K. Some of such curves plotted after fitting was done are shown in Fig. 12.25.  

 

         Fig. 12.25. Normalized conductance curves for Nb/PdNi with 2% Ni sample (1A) at 4.2K 
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 Several such conductance curves were taken for different contacts which means different 

contact resistances. The shape and amplitude of conductance curves are dependent on Z as 

shown by example of such curves in Fig. 12.25. The Z- dependence of P at 4.2Kis found to be 

almost uninfluenced by Z as shown in Fig. 12.26. The intrinsic value of P at 4.2K is found to be 

27.9% which will be compared to the P value of the same sample at lower temperature.  

 

 

 

 

 

 

 

 

 

 

Fig. 12.26. Spin polarization as a function of interfacial barrier scattering for PdNi with Ni 2% 
sample 1A, at 4.2K 
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      Fig.  12.27. Normalized conductance curves for PdNi with Ni 2% sample (1A), at 1.42K 

Fitting was done for more than a dozen of conductance curves, and P was found to be Z 

dependent as before for this and for other samples. P at 1.42 K for clean interface (Z=0) was 

found to be 37.23% as shown in Fig. 12.28. It is clearly observed that the spin polarization at 

4.2K (P = 27.9%) is lower than the spin polarization at 1.42K (37.23%) by 8.3%. The lower 

value of P at higher temperature is due to lower magnetization of the sample at higher 

temperature. We may expect no spin polarization above Tc, but due to technical difficulty, it was 

not possible to obtain conductance at higher temperature than 4.2K in the system we used.  
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For this particular sample, the spin polarization was measured before also as shown in 

Fig 12.12 at 1.5K, and it was found to be 40.2%. Present value at 1.42K is 37.23% which is close 

within +/-3%, which is reasonable in such measurements. This provides a concrete example of 

reproducibility of the P values. 

 

 

 

 

 

 

 

 

Fig.12.28 Spin polarization as a function of interfacial barrier scattering for PdNi with Ni 2% 
sample 1A, at 1.42K 
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due to the fact that spin polarization values may be surface sensitive, and the surfaces of the 

films fabricated at different batches might have different topological and termination properties. 

This needs further study to understand the trend of the data. The spin polarization values ranged 

from about 33% to 49% in PdNi samples with the highest value for the sample with 12% Ni 

concentration, the largest concentration of Ni in our study. 
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CHAPTER 13 

MAGNETISM AND SUPERCONDUCTIVITY IN COBALT DOPED IRO N PNICTIDE 
BaFe2As2 

13.1 Introduction 

 After the first discovery of superconductivity in Hg with transition temperature Tc of 

4.2K in 1911 by H. Kamerlingh [Onnes, 1911], scientists were intrigued to find materials with 

higher transition temperature for the purpose of practical application of such materials. Among 

pure metal, the highest Tc of 9.2K was found in Nb [Meissner et al., 1930]. Next possibility 

remained to investigate the alloys, and the highest Tc of 23K was found in Nb3Ge in 1972 

[Gavaler, 1973]. After 14 years, a dramatic breakthrough was the report by Bednorz and Muller 

of Tc of 35K in copper based alloy La2-xBaxCuO4 for x = 0.15 [Bednorz et al., 1986].  Frenetic 

search for other materials gave the Tc of 92K in YBa2Cu3O7-δ (δ = 0.1) in 1987 [Wu et al., 1987], 

110K in Bi2Sr3-xCaxCu2O8+δ (x≤1) in 1988 [Maeda et al., 1988], 125K in Tl2Ba2Ca2Cu3O10 in 

1988 [Hook et al., 1991]. Although cuprate superconductors (LaBaCuO) have transition 

temperature above boiling point of Nitrogen, they exhibit a very short coherence length, very 

high anisotropy, and are brittle which hinder large scale applications [Wen, 2008]. This forced 

the superconductivity community to discover non-cuprate superconductors with high Tc.  

           In 2008, Hosono from Tykyo institute of technology reported superconductivity in LaO 1-

xFx FeAs (x = 0.05-0.12) which is F-doped in parent material LaOFeAs (known as “1111” 

structure) with Tc of 26K [Kamihara et al., 2008]. Soon, Such other materials were reported to 

show superconductivity with Tc of 43K in SmO0.85F0.15FeAs [Chen et al., 2008], 50K in 

NdO0.85F0.15FeAs [Chen et. al., arXiv:cond- mat/0803.3790 ], 50K in PrO0.85F0.15FeAs [Ren et. 

al., 2008] . These materials with layered structure in c-axis are referred to as quaternary 

oxypnictides and have the general formula LnOMPn where Ln =  La, Ce, Pr, Nd, Sm, Eu, and 
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Gd etc.; M = Mn, Fe, Co, and Ni, etc, Pn = P, and As, etc.  As being in the nitrogen group, these 

compounds are the compounds of Nitrogen group material and are called “pnictides”.  Fig. 1 

shows the layered crystal structure of 1111 FeAs material where FeAs layers are separated by 

spacer layers of LaO. Fluorine dopants are introduced in LaO layers as shown, and the tansport 

measurements show that F-dopped materials have electron-like charge carriers with low density. 

This is because the Fluorine replaces Oxygen donating electrons to the FeAs layer. Later it was 

found that iron based superconductivity is possible in hole-dopped (substituting trivalent La by 

divalent Sr and without F doping) system [Wen et al., 2008].  In these materials, either by 

changing pressure or by doping on 1111 parent materials, it was possible to achieve Tc beyond 

50K. However, the search for simpler class of materials with the hope of possibly increasingly 

higher Tc continued, and superconductivity in BaFe2As2 parent compound , the 122 structure, 

without LaO spacer layers was found to be superconducting with comparable Tc to compounds 

with the 1111 strucuture. Co dopping in BaFe2As2 has shown Tc up to 22K, and the Co doping 

system gives robust superconductivity in FeAs layer as compared to cuprate superconductors in 

which the doping on the Cu sites destroys the superconductivity. With this historical 

development of why BaFe2As2 compounds are being developed and considered for potential high 

Tc superconducting materials, this study will focus on other magnetic and superconducting 

properties of BaFe2As2.  It is important to recall that the conventional superconductors can be 

explained by BCS theory, while high Tc materials cannot be explained by this. 
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 (a) (b) 

Fig. 13.1. Crystal structure of Iron Pnictides (a) 1111 FeAs material [Takahashi et al., 2008], (b) 
122 FeAs material [Goldman., arXiv:0807.1525v2]. Iron moments (shown by red arrows) form 
stripped antiferromagnetic pattern in the parent compound of both materials. 

13.2 Structural and magnetic transitions in BaFe2As2  

    BaFe2As2 compounds show different structural and magnetic transitions compared to 

LaOFeAs type of compounds. Unlike separate structural and magnetic transitions in 1111-type 

materials, the first order simultaneous structural and magnetic transition has been observed by 

neutron diffraction studies in 122 type materials [Huang et al., 2008].  The magnetic transition in 

BaFe2As2 occurs at the same temperature where the structural transition from tetragonal to 

orthorhombic symmetry occurs. Fig. 2 shows the dependency of resistivity of BaFe2As2 with 

temperature, and it shows the anomaly of resistivity at 142K which is due to  the first order 

structural transition which is indicated by the hysteresis in neutron diffraction intensity at 

diffraction angle 2θ = 95.8o as shown by the inset in Fig. 2.  In terms of the magnetic structures, 

antiferromagnetic transition occurs at the same temperature as the structural transition, and the 

antiferromagnetic alignment and magnetic moment are both along the longer a-axis in the FeAs 

plane. The first order structural and magnetic transition indicates strong coupling between the 

structural and magnetic order parameters. 
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Fig. 13.2. Resistivity while cooling and warming of BaFe2As2, and showing structural transition 
at Ts = 142K. Inset shows the splitting of neutron diffraction peak below Ts indicating magnetic 
transition [Huang et al., 2008]. 

 13.3 Effect of Co doping in  BaFe2As2    

  Co (or Ni) doping which is the electron doping in BaFe2As2 replaces Fe atom in FeAs layer 

producing superconductivity [Sefat et al., 2008]. Even though higher Tc of 38K was found by 

hole doping (replacing some of Ba+ by K+) with the doping of Potassium [Rotter et al., 2008] in 

BaFe2As2,  Co doping is more advantageous due to directly added carriers in FeAs layers, and it 

being easier to handle than alkali metals despite its lower Tc = 22K [Sefat et al., 2008]. 

Temperature dependent resistivity in the ab- plane of parent and its Co-doped compound as 

measured by Quantum Design PPMS is shown in Fig. 3(a). Both BaFe2As2 and BaFe1.8Co0.2As2 

show metallic behavior with the parent compound showing its resistivity at 300K and 2K to be 

5.9 mΩcm and 5 mΩcm respectively. However, the resistivity for BaFe1.8Co0.2As2 is much 

smaller than BaFe2As2 as shown in the inset of Fig. 3(a).  The resistivity of BaFe1.8Co0.2As2 

drops suddenly as the temperature is lowered down below 22K showing onset of 

superconductivity at 22K at 0T of magnetic field, and it shifts to lower temperatures with the 

magnetic field as shown for 8T of magnetic field in Fig. 3(a). The transition width of 
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BaFe1.8Co0.2As2 is ∆T = 0.6K in absence of magnetic field, and it becomes wider (∆T = 1.3K for 

8T) when magnetic field is applied indicating that BaFe1.8Co0.2As2  is type II superconductor.   

Fig. 3(b) shows how Hall coefficient of BaFe2-xCoxAs2 depends on temperature for various 

Cobalt concentration (x = 0.08, 0.16, 0.20, and 0.60).  For x = 0.08 and 0.16, the Hall coefficient 

shows big slope corresponding to the anomaly in resistivity. Strong temperature dependence is 

observed above the superconducting temperature for the Co concentration of x = 0.2 which, 

being consistent with the fact that the Hall coefficient for the SDW state of a sample shows 

strong temperature dependence above SDW transition temperature, indicates that this 

concentration of  Co gives spin density wave state of the sample and indicates strong magnetic 

fluctuation. At higher concentration of x = 0.6 of Co, Hall coefficient seems independent of 

temperature as expected in the Fermi-liquid state. Hence, the dependence and evolution of Hall 

coefficient with Co concentration indicates that the system evolves from SDW state to the Fermi 

Liquid state.  

 

 (a)                      (b) 

Fig.13.3. Temperature dependent (a) [Sefat et al., 2008]  resistivity of BaFe1.8Co0.2As2 at 0T and 
8T magnetic fields with inset showing the comparison between the parent  BaFe2As2 and Co 
doped daughter compound  BaFe1.8Co0.2As2, (b) [Wang et al., 2009] Hall coefficient of BaFe2-

xCox As2 (x = 0.08, 0.16, 0.2, 0.6).  
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13.4 Effect in superconductivity of BaFe2As2 due to Co concentration 

  Field cooled (FC) and zero field cooled (ZFC) susceptibility show sharp 

superconductivity transition as shown in Fig. 4. These set of data show the data for temperature 

range of 2K to 30 K at fixed magnetic field of 5 Oe. Calculation of superconducting volume 

fraction shows that it reaches 100% at 2K for the BaFe2-xCoxAs2 sample with x = 0.17, 0.18 and 

0.25, and 80% for the sample with x = 0.20 indicating bulk superconductivity in these samples. 

 

Fig.13. 4. Temperature dependent susceptibility for BaFe2-xCoxAs2 (x = 0.17, 0.17, 0.2, 0.25) 
[Wang et al., 2009]. 

  13.5 Similarities and differences of Cuprate and Pnictide superconductors 

          To understand the pnictide superconductors, people have tried to see the similarities and 

differences between superconducting mechanisms in cuprate superconductors and pnictide 

superconductors.  The parent compounds of cuprates are Mott insulators whereas the parent 

compounds of pnictides are computed to be semi metals [Singh et al., 2008]. The pnictides are 

found to be more isotropic in a magnetic field [Ni et al., 2008] , which may facilitate 

technological application due to more effective pinning of quantized magnetic vortices [Norman, 

2008]. Figure 5 shows the topographic images of cleaved surface of optimally doped single 
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crystal of BaFe1.8Co0.2As2 at 6.15K in zero magnetic field, and taken by cryogenic scanning 

tunneling microscope (STM) [Yin et al., 2009]. Alternate rows of complex stripelike structures 

are seen on the image. Interatomic spacing from the Fourier Transform was found to be 3.96Å.  

         

 (a) (b) (c) 

Fig.13.5. (a) Topographic image of the cleaved surface of BaFe1.8Co0.2As2, (b) Zoom in within 
the image (a). The circles denote the position of stripe structures. The interatomic spacing is 3.96 
Å [Yin et al., 2009]. (c) Local density approximation (LDA) Fermi Surface of BaFe1.8Co0.2As2 
(light blue is the low band velocity) [Sefat et al., 2008]. 

           Co is more strongly hybridized with As than Fe. Fig. 5(c) shows the calculated Fermi 

surface of the virtual crystal without magnetism. Effect of Co doping on the structure of the 

Fermi Surface at the virtual crystal level is similar to the effect of electron doping on the Ba site 

[Sefat et al., 2008].  Possibility of two band superconductivity arises due to depleted Co 

contribution within EF, and the same Co contribution as EF starting from 0.2 eV above EF. Strong 

interband scattering would lead to the assumption of an s-symmetry superconducting state [Sefat 

et al., 2008].     

13.6 Pinning of vertex lattice in BaFe2-xCoxAs2  

      Electron pairing, the fundamental property of superconductivity is characterized by the 

superconducting energy gap ∆ of the material in the electronic density of states (DOS).   Yin 

(Yin et. al., 2009) found the range of superconducting gap by taking a series of conductance data 

of BaFe1.8Co0.2As2 from 4.5 to 8 meV, and the average of large pool of data was found to be 
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6.25meV at temperature of 6.25K and zero magnetic field [Yin et. al., 2009]. Muon spin rotation 

(µSR) technique allows to investigate the local magnetic field distribution on a microscopic scale 

and to directly access the corresponding volume fractions [Weidinger et al., 1989]. In this 

technique, muons are implanted into the bullk of the sample. The muons thermalize in short time 

scale of about 10-12sec without any noticeable loss in their initial spin polarization. Analogously 

as in cuprate superconductors, these muons are likely bound to the negatively charged O or As 

ions which allows to probe certain volume of interest in the sample. Positive muon decays into 

two neutrinos and a positron which is emitted along the direction of the muon spin at the time of 

decay. Time resolved detection of the decay positron emission rate gives the time evolution of 

the spin polarization P(t) of the muon ensemple. Fig. 6(a) shows the result of a vortex–lattice 

pinning experiment. µSR lineshape data taken after the crystal cooled in presence of transverse 

field of 0.1 T to 5K during which vortex lattices are developed shows two peaks centered around 

0.095T and 0.1T. The first peak corresponds to the background muons that miss the sample, and 

the second peak corresponds to the muons that stop in the sample where the vortex lattice forms 

below Tc that is strongly pinned by defects such that the magnetization density cannot follow the 

change of the external magnetic field. Splitting between the position of the background and 

vortex lattice signals with large amplitude indicates that the crystals BaFe2-xCoxAs2 (x = 0.2, 

0.25) are bulk superconductors. By fitting the ZF-µSR time resolved spectra at different 

representative temperatures of optimally doped BaFe1.8Co0.2As2 single crystal by using relaxation 

function [Weidinger et al., 1989] the relaxation rate λ were extracted which depend on 

temperature as shown in Fig. 6(b). It suddenly increases below Tc = 25K which reveals the 

existence of weak magnetic correlations that set in right below Tc, and shows that the 

superconductivity-induced change in the spin dynamics.   
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                (a)  (b) 

Fig. 13.6 (a) Transverse field cooling- µSR data on BaFe2-xCoxAs2 (x = 0.2 and 0.25) showing 
pinning of the vortex lattice, (b) temperature dependence of relaxation rate [Weidinger et al., 
1989]. 

13.7. The phase diagram of BaFe2-xCoxAs2            

A complete phase diagram of electronic evolution defined by the anomaly in resistivity (Ts) and 

the superconductivity (Tc) transition by resistivity and susceptibility respectively, as shown in 

Fig. 7 shows that the spin density wave (SDW) state is suppressed (reduction of SDW transition 

temperature) with Co doping, and Fermi liquid state develops. In the Co doping range of 

0.15≤x≤0.20, SDW state and superconductivity coexist in BaFe2-xCoxAs2 system. Further 

increase in Co doping shows the temperature independent Hall coefficient, and Curie-Weiss-like 

behavior supporting the emergence of Fermi-liquid state. T-linear behavior in susceptibility is 

expected in superconducting samples, and it is observed up to 700K in BaFe2-xCoxAs2 system for 

x>0.2 showing strong magnetic fluctuation above SDW ordering, and T2 behavior in 

susceptibility is observed in the overdoped sample [Wang et al., 2009]. This indicates that the 

strong magnetic fluctuation could be important for superconducting mechanism in iron based 

122 systems. 
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Fig.13. 7. The phase diagram of BaFe2-xCoxAs2 within the range 0≤x≤0.40. Both Ts and Tc are 
determined by resistivity [Wang et al., 2009]. 

13.8 Temperature dependent and magnetic field dependent conductance, and indication 
of pseudogap in BaFe1.8 Co0.1As2 

          Understanding the superconductivity in iron based superconductors is a growing interest, 

and Point Contact Andreev Reflection (PCAR) spectroscopy was used [Panguluri et al., 

unpublished] to obtain temperature spectra of conductance curves for BaFe1.8 Co0.1As2 at zero 

magnetic field as shown in Fig. 8(a) so that superconducting gap can be extracted from these 

conductance curves. Interestingly, besides regular BCS superconducting gap, different wider gap 

appeared below superconducting transition temperature at around 12 meV, and it was called 

pseudogap. It was possible to suppress this gap by applying magnetic field ~14 KG 

perpendicular to the ab-plane whereas the BCS gap is not suppressed even at 7T.  Fig. 8(b) 

shows the magnetic field spectra at 12K for BaFe1.8 Co0.1As2.  The magnetic field to suppress the 

BCS gap at 2K is 4T and at 7K is 2T (not shown here), showing the need of lower magnetic field 

to suppress the pseudogap at higher temperature. From this, it is possible to speculate that the 

pseudogap could arise from antiferromagnetic fluctuations emanating locally in this system. 
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Fig. 13.8. (a) Temperature dependent conductance curves for a Au/ BaCo0.1Fe1.8As2 with a 
contact resistance ~ 7Ω in zero magnetic field, b) Field dependent conductance curves for the 
same contact at 12K, and showing the pseudogap suppression by magnetic field perpendicular to 
ab-plane for the same contact. 

 13.9 Conclusions 

          To sum up, this study has attempted to summarize the historical development of 

superconductivity showing the trend on how Co doped 122 iron pnictides came into play. The 

transport, magnetic, and superconductive properties of BaFe2-xCoxAs2 superconductors have 

been discussed.  With Co doping, magnetic order is destroyed and superconductivity is induced. 

The evolution from SDW state to Fermi-liquid state, and their coexistence at x = 0.17 is shown 

by the phase diagram. Evidence of pseudogap below superconducting transition temperature, and 

its suppression with magnetic field, was found by Point Contact Andreev Reflection (PCAR) 

technique. In the pursuit of higher Tc superconductors, there can be different routes such as 

finding materials with new structures, or fabricating materials with layered structure of FeAs. 

However, exact reason of pairing mechanism for superconductivity in such materials is still a 

question of research. 
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CHAPTER 14 

MAGNETISM AND SPIN POLARIZATION OF PLATINUM THIN FI LMS 

14.1 Introduction 

Transition metal platinum with atomic number 78 has partially filled 5d shell with 

electronic configuration [Xe] 4f14 5d9 6s1 and a spin triplet ground state. In the bulk, Pt does not 

show magnetic ordering. However, literature shows that its magnetic properties have been 

studied in its different forms. Makoto [Sasaki et al., 1998] have reported that the samples of Pt 

nano-particles in the form of cluster, and samples of Pt nano wires in the form of nano-rods 

exhibit magnetism with magnetic moments of 1.54 µB per Pt and 0.131 µB per Pt respectively. 

They found different temperature dependence of magnetization of Pt nano particles and nano 

rods which they think is possible due to the anisotropic morphology of Pt nano-wires for the 

electron-spin ordering. 

Ferromagnetism in Pt nanowires has been predicted theoretically by Delin et al. [Delin et 

al., 2004]. Their calculation showed that the magnetic moment of one dimensional equally 

spaced Pt chain in equilibrium bond length of 2.48 Å is 0.6 µB per atom and it increases if the 

bond length is stretched. The magnetism they observed was Hund’s rule magnetism. They also 

predicted that more majority bands cross the Fermi level than do minority bands, resulting in a 

partial spin polarization of the transmitted electron current. Magnetic anisotropy of 

spontaneously magnetized nanosystem such as an adatom, a cluster or a nanowire is a crucial 

parameter because it helps to reduce the magnitude of thermal (superparamagnetic) fluctuations, 

and such anisotropy are theoretically predicted in monatomic free and deposited Pt nano wires by 

Smogunov et al. [Smogunov et al., 2008]. Orbital magnetization and the spin orbit coupling is 

the cause of such anisotropy whose maximal value should correspond to minimal atomic caging 
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such as adatom and linear atomic chain; and in the case of Pt chain, the anisotropy persists after 

weak adsorption on an inert substrate or surface step [Smogunov et al., 2008]. The magnetic 

profiles for the scalar and fully relativistic calculations are found to be different for Pt. Scalar 

relativistic calculation predicts that Pt is magnetic only for stretched wires, whereas the fully 

relativistic calculation predicts it to be magnetic in the range of bond lengths ~2.2 to 3.2 Å 

[Delin et al., 2003]. 

Detailed study of Pt clusters is found in Kumar et al. [Kumar et al., 2008]. They have 

reported that Pt clusters have small magnetic moments which tend to decrease with an oscillatory 

behavior as the cluster size increases which they explain considering ferromagnetic and 

antiferromagnetic couplings between the spins in some cases. Even the large octahedral clusters 

differ from bulk surface due to large dispersion and the presence of low coordination sites, such 

as edges and vertices, and such nearly planar as well as other open structures in the small size 

range give Pt particles with different structures and properties [Kumar et al., 2008]. Such 

behavior will be helpful in explaining the origin of magnetism in Pt thin films we observed. 

Magnetism of 3d, 4d and 5d transition metals in their monolayer thin films on noble 

metal (001) substrates such as Ag (001) and Au (001)) was studied by Blügel [Blügel., 1992]. He 

predicted ferromagnetism of 5d transition metal monolayers for the first time. For Ir on Ag (001) 

and Au (001) substrate the magnetic moments of 0.9 µB were predicted theoretically. In some 

cases, the magnetism is found dependent on the substrate material. For an instance, Os was 

predicted magnetic on Ag (001) substrate but nonmagnetic on Au (001) substrate. Pd and Pt 

monolayers, which are in 4d and 5d series, are nonmagnetic [Blügel., 1992; Blügel., 1995] since 

the d-d hybridization between monolayers and substrate destroys the magnetic moment 
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[Redinger et al., 1995]. The hybridization between the d-orbitals and the sp electrons of the noble 

metal substrate is the controlling parameter of magnetism in such monolayers [Blügel., 1992].  

After three years of studying the magnetism of monolayer, magnetism of 4d and 5d 

transition metal bilayers on noble elements Ag (001) substrate was studied by Blügel [Blügel., 

1995] by ab initio calculations. It was reported that bilayer of Pt showed ferromagnetism as 

shown by Rh, Pd, and Ir, but compared to monolayers of Ir, Os on Ag (001), the moments are 

strongly reduced to less than 0.35µB indicating that the magnetic moment is dependent on the 

thickness of the film and also indicating the possible effects of island growth and cluster 

formation in magnetic properties [Blügel., 1995]. In case of 3d metal films, Ferromagnetic 

monolayers Fe, Co, and Ni remain ferromagnetic upon deposition of additional layers, whereas 

V, Cr, and Mn monolayers show an in-plane antiferromagnetic order which, except V which 

becomes non magnetic, transforms after additional layer deposition to antiferromagnetic order 

normal to the surface [Blügel., 1995]. The sudden collapse of the magnetic moments of the 

bilayers was explained with the onset of the d-d hybridization due to the existence of the second 

transition-metal layer. The presence of weak magnetism in Pt bilayers is the onset of bulk effect, 

and it is driven by the expansion of the Pt lattice constants due to the Ag substrate [Blügel., 

1995]. However, these studies were done for the Ag and Au (001) substrates only and possible 

magnetism for thicker films (several layers), and in other substrates such as Si is unknown in this 

study. Our study will try to address such issues. 

Magnetism of 4d (Mo, Tc, Ru, Rh, Pd) and 5d (Re, Os, Ir) transition-metal over layers on 

Ag (111) was studied by Redinger et al. [Redinger et al., 1995]. Their ab initio calculations 

showed that Ru, Rh, and Ir have nonvanishing magnetic moments. Similar study on Ag (100) 

and Au (100) substrates were done [Blügel., 1992, Zhu et al., 1991, Eriksson et al.,1991, Blügel 
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et al., 1992, Wu et al., 1992], and the same trend in magnetic moment was found with the 

magnetic moments of the (111) oriented monolayers being smaller due to the increase of the 

coordination number in the monolayer film [Redinger et al., 1995]. These results show that the 

magnetism of monolayers of 4d and 5d transition metals depends on substrate orientation and 

local atomic coordination. 

Thinking that the magnetism might have complicated effects due to intermixing of 4d and 

5d transition metals with metal substrates like Ag and Au, Yang et al. [Yang et al., 2010] used 

oxide substrate such as MgO (001) to predict magnetism by ab initio calculations in ultrathin Pt 

monolayer films formed on them. They found a high density of states (DOS) peak of N(EF) = 

4.42 states/eV/(1×1) at the Fermi energy EF , and using the Stoner exchange integral, I = 0.295 

eV [Sigalas et al., 1994], they found that the Stoner criterion for ferromagnetism, N(EF) I ≥ 1 is 

satisfied leading to the ferromagnetism of Pt monolayer on MgO(001) with magnetic moment of 

0.89µB [Yang et al., 2010] which is larger than the values of 0.23µB/atom and 0.33µB /atom for 

the surface and the interface Pt atoms of magnetic Pt bilayers on Ag(001) [Blügel., 1995]. This 

magnetic moment on MgO (001) was close to the magnetic moment of calculated value (0.8µB) 

of freestanding Pt monolayer which indicates that the unusual magnetism in 1-ML Pt/MgO(001) 

is related to the appearance of ferromagnetism in a freestanding Pt monolayer. 

From these discussions we can summarize that the magnetic moments of lower 

dimensional Pt such as adatoms, nanorods, bilayers on noble metal substrates like Ag (001) and 

Au (001), and monolayer on oxide substrate such as MgO (001), and even freestanding 

monolayers are possible. However, it is not seen in the literature about the magnetism of several 

layers of Pt thin films. In our case, we studied the magnetism of Pt thin films ranging from 10nm 

to 100nm, and its dependence on the thickness of the film and the surface roughness of the films. 
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Magnetizations were measured using SQUID, and also they were cross-checked for some 

samples by using neutron scattering. Also, the transport spin polarization of Pt thin films was 

studied. Intrinsic values of transport spin polarization of 40.2% to 52.6% were measured for 

different Pt samples. This is a strong support for the existence of magnetism in Pt thin films.  

This will be discussed in the sections ahead. 

The structural study of Pt thin films is reported by Lim et.al. [Lim et al., 2004]. They 

report that the sputtered Pt thin films usually show a highly (111) textured growth behavior with 

(111) direction perpendicular to the substrate surface, and the in plane orientation is random. The 

properties and structure of Pt films such as stress, grain size, degree of texturing, surface 

roughness, and defect concentration are influenced by the growth conditions. These factors 

influence the performance of functional thin films in various ways [Lim et al., 2004].  

14.2 Platinum thin film fabrication 

In order to study the magnetism in Pt thin films, and to study transport spin polarization 

in those films, several samples of different thickness were deposited by using Pt target of 99.99% 

purity. Platinum thin films of thickness 10, 12.7, 21.2, 25.55, 30, 33.3, 55.5, 65.18, 74, and 

100nm were used for the study.  10nm and 30 nm thick films were prepared by e-beam 

deposition, and the rest of the films were deposited by magnetron sputtering. The deposition 

conditions were kept the same within experimental limitations. 

14.2.1 Measurement of Film thickness 

Film thickness was estimated by the crystal monitor during deposition. To cross check 

and confirm, the thickness of the films were measures by XRR method also. The thicknesses 

expected from the crystal monitor method were less reliable, so the thicknesses from the XRR 
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method were considered the final and exact values.  Some of the fits of the data by XRR method 

are shown in Fig. 14.1. 

 

 

Fig.14.1. Some representative curves of measurements of Pt film thickness by XRR method: Top 
left panel, Pt thickness = 12.75nm, Top right panel, Pt thickness = 25.55nm, Bottom left panel, 
Pt thickness = 30 nm, Bottom right panel, Pt thickness = 65.16nm  

14.3 Magnetization measurements of various Pt thin films  

The magnetization of all thin films of Pt were measured by superconducting quantum 

interference device (SQUID) in both parallel and perpendicular configurations, i.e. when the 

plane of the sample is parallel to the magnetic field and when it is perpendicular to the 

magnetizing field in the SQUID respectively. Several pieces of the same sample were stacked so 

as to increase the signal of magnetization, which were later normalized with the volume of Pt 



192 

 

films used to get the magnetization in emu/cm3. For every sample, the magnetization was 

measured at 300K and at 5K from -0.5T to +0.5T of magnetizing field. The M-H loops for 

different samples at 10K and 300K for H parallel to the sample plane and H perpendicular to the 

sample plane are given in Fig. 14.2 (a-j).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14.2. (a)  Magnetization measurements of Pt films 10nm in thickness in H parallel to sample 
plane (top two panels in red colour), and in H perpendicular to the sample plane (bottom two 
panels in blue colour). 
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Fig. 14.2. (b)  Magnetization measurements of Pt films 12.7nm in thickness in H parallel to 
sample plane (top two panels in red colour), and in H perpendicular to the sample plane (bottom 
two panels in blue colour). 

 

 

 

 

 

 

 

 

 

 

Fig. 14.2. (c)  Magnetization measurements of Pt films 21.2nm in thickness in H parallel to 
sample plane (top two panels in red colour), and in H perpendicular to the sample plane (bottom 
two panels in blue colour). 
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Fig. 14.2. (d)  Magnetization measurements of Pt films 25.55nm in thickness in H parallel to 
sample plane (top two panels in red colour), and in H perpendicular to the sample plane (bottom 
two panels in blue colour). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14.2. (e)  Magnetization measurements of Pt films 30nm in thickness in H parallel to sample 
plane (top two panels in red colour), and in H perpendicular to the sample plane (bottom two 
panels in blue colour). 
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Fig. 14.2. (f)  Magnetization measurements of Pt films 33.33nm in thickness in H parallel to 
sample plane (top two panels in red colour), and in H perpendicular to the sample plane (bottom 
two panels in blue colour). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14.2. (g)  Magnetization measurements of Pt films 55.5nm in thickness in H parallel to 
sample plane (top two panels in red colour), and in H perpendicular to the sample plane (bottom 
two panels in blue colour). 
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Fig. 14.2. (h)  Magnetization measurements of Pt films 65.18nm in thickness in H parallel to 
sample plane (top two panels in red colour), the middle panel shows these data together, and the 
data  in H perpendicular to the sample plane (bottom two panels in blue colour).  
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Fig. 14.2. (i)  Magnetization measurements of Pt films 74nm in thickness in H parallel to sample 
plane (top two panels in red colour), and in H perpendicular to the sample plane (bottom two 
panels in blue colour). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14.2. (j)  Magnetization measurements of Pt films 100nm in thickness in H parallel to 
sample plane (top two panels in red colour), and in H perpendicular to the sample plane (bottom 
two panels in blue colour). 
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14.3.1 Magnetization measurement by Neutron Scattering  

Neutron scattering is reliable technique to measure magnetic moments on the surface. 

This technique was applied to the Pt thin film sample of 65.18nm. The fitting of the data as 

shown in Fig. 14.3 reveals the magnetic moment of about3 emu/cc consistent with the SQUID 

measurements of the same sample as discussed before. This confirms the existence of 

ferromagnetism on the surface of Pt thin films. 

 

                           Fig. 14.3. Measurement of magnetism by neutron scattering 

14.3.2 Magnetism of Pt rough surface from the first principle study  

The possibility of magnetism of Pt (111) textured rough surface has been studied by the 

first principles. This study on different topological features on the surface of Pt (111) that are 

frequently observed in fcc metal surfaces shows that the ideal Pt surface as well as single layered 

thick surfaces are not magnetic, but the 3D islands in the shape of pyramid as shown in Fig. 14.4  

have a net moment of 1.1µB.  This demonstrates the importance of the local coordination and the 

roughness in the epitaxial films. 
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Figure 14.4. Atomic structure of the 4-atom Pt pyramid on Pt(111) surface. 

The 3D islands can be viewed as supported cluster. This structure exhibits a local 

magnetic moment. The reason for the existence of the local moments is related to the charge 

transfer from the sharp pyramid vertex to the inner Pt sites making density of states at the Fermi 

level higher due to narrowing of the d-state peak as shown in Fig. 14.5. Stoner criterion is 

satisfied in this case and magnetic solution becomes stable. 

 

                         Fig. 14.5. Local densities of d-states of Pt at the vertex site of the pyramid. 
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The isosurface of charge density of Pt pyramid on Pt (111) surface as shown in Fig. 14.6 

Shows that the largest charge density is at the 4 top Pt sites, but non-negligible contribution to 

total magnetization comes also from inner sites of Pt film.  

 

Fig. 14.6. Isosurface of charge density of Pt pyramid on Pt (111) surface 

 

14.4 Roughness study by AFM  

 Roughness of Pt surface of all samples was measured by Atomic Force Microscope 

(AFM), and the data was analyzed by the image processing software XEI of Park Systems. 

Average roughness was recorded at different clean regions of the images, and their average was 

taken to find the final average roughness of each sample. Wenzel roughness or surface area ratio 

was measured for all samples. It is defined [XEI Software manual, Version 1.7.6] as 100(%) × 

(Geometric Area – Surface Area) / (Geometric Area). Figure 14.7 shows the AFM images of 

most of the samples studied.  
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                        Pt 55.5 nm film_Roughness=0.4425nm         

 

                                                                                                       

 

 

          

          3D view of Pt 65.18nm film, Roughness = 0.5387nm 

 

            Fig. 14.7. AFM images of typical topography of Pt surfaces of different samples           

 

Pt12.7nm film, Roughness=0.17nm
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The average roughness measured in nm as a function of thickness of the samples is 

shown in Fig.14.8 (a). It shows that the surface roughness has increased for the increasing 

thickness up to 65.18nm, and beyond this thickness, the surface roughness seems decreasing 

again up to the thickness of 100nm. Possibly small differences in sample fabrications conditions 

are responsible for such roughness variations. 
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   (a) (b) 

Fig. 14.8.  Roughness of Pt thin film surfaces (a) roughness average of Pt thin film surface as a 
function of thickness of Pt deposition, (b) Wenzel ratio as a function of thin film thickness 

The surface area ratio, also called Wenzel ratio, as a function of film thickness for these 

samples is shown in fig 14.8 (b). Even though it is not clear what parameters exactly control the 

surface roughness of the films, it is found that the film of thickness 65.18nm has the maximum 

surface area ratio among all other samples studied. It would be interesting to find whether the 

magnetism observed in Pt thin films is dependent on the surface roughness or not.  This will be 

discussed shortly in the next section.  

14.5 Correlation of magnetism with thickness 

Magnetic moment in unit area of film surface of Pt samples of different thickness seems 

nearly independent of their thicknesses. Figure 14.9 shows the experimental data of M×d, where 
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M is the magnetization in emu/cm3 and d is the thickness of the sample in cm. Figure 14.9(a) 

shows the magnetization data taken at 10K and 300K for the configuration when magnetizing 

field was parallel to the sample surface, and Fig. 14.9(b) shows the same data together with the 

magnetization data in the configuration when magnetic field is perpendicular to the sample 

surface. These plots show that the surface magnetism is independent of the film thickness and 

indicate that the magnetism observed in Pt thin films is not volume magnetism, rather it is 

developed on the surface with almost constant surface magnetization. The parallel and 

perpendicular cases show similar values of magnetization within experimental limitations, and 

these data indicate that Pt thin films are not anisotropic in terms of their magnetizations.    
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Fig.14.9. Surface magnetization of Pt samples as function of their thickness, (a) when the field is 
parallel to the sample surface, and (b) when the field is perpendicular to the sample surface as 
compared to the parallel case 

14.6 Correlation of magnetism with roughness 

Figure 14.10(a) shows the surface magnetization as a function of Wenzel roughness 

(surface area ratio). It also shows that the surface magnetization is more or less independent of 

Wenzel roughness. Such roughness independence was found, as shown in Fig. 14.10(b), even 
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when simply the roughness average was considered. It is possible that the presence of roughness 

itself, not its extent, on the Pt thin film surface is the cause of existence of magnetism in such 

films. 
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       (a)                                                                            (b)                                 

                 Fig. 14.10.  Surface magnetization M×d (emu/cm2) as a function of surface area ratio. 

14.7 Spin polarization measurements for different Pt samples 

Point contact Andreev reflection (PCAR) technique was used to measure the values of 

spin polarization of Pt samples with various thicknesses ranging from 10nm to 100nm. All data 

were obtained by using electrochemically etched Nb tips. Fitting of the conductance data were 

done by using modified BTK model. Conductance curves for several contact resistance were 

obtained for each Pt sample, and the Z dependence of P was found in each case. Two of 

conductance curves as representative curves for each Pt sample, and the Z dependence of P for 

each sample are tabulated in table 14.1. The intrinsic value of P which corresponds to Z=0 for 

each sample is extracted from P-Z curves.  The data were taken at 1.5K and the superconducting 

gap of Nb, ∆ =1.5 meV was used for fitting the data. The fitting parameters for individual 

conductance are shown along with the corresponding plots shown in table 14.1.  
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Table 14.1. Normalized conductance curves for various Pt thin films, Z dependence of P and 
intrinsic values of P measured by point contact technique. 
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14.7.1 Spin Polarization as a function of film thickness 

 The measured values of spin polarization indicate that it is hard to find any 

dependence of P on the thickness of the samples. However, the data indicate almost linear 

relation with close values of P as shown in Fig. 14.11. It would be better to indicate that the 

intrinsic values of spin polarization are found between ~40% to ~53% for Pt samples with 

different thicknesses. Any concrete correlation of P with film thickness of Pt samples is not 

found. Any possibility of whether P values depend on their magnetization will be discussed in 

the following sections. 
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Fig. 14.11. Spin polarization data for Pt thin film samples with different thickness 

14.7.2 Spin polarization as a function of Wenzel roughness (Surface area ratio) 

Since the Wenzel ratio, i.e. the surface area ratio was found different for different films, it 

would be interesting to see the correlation of such surface roughness on spin polarization. This 
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will implicitly reflect the dependence of P on magnetization which might be originated from the 

surface roughness of the films. As shown in Fig. 14.12, the experimental data indicate that the 

spin polarization as a function of Wenzel roughness is almost constant within its experimental 

spread for different samples. This is consistent with almost constant surface magnetism of the 

samples with surface area ratio.  
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              Fig.14.12. Spin polarization as a function of surface area ratio (Wenzel roughness) 

14.7.3 Spin polarization as a function of magnetization 

 Correlation between spin polarization and magnetization is not universal; it is system 

dependent as explained in §15.6 in Chapter 15. So, it is important to see how they are related in 

Pt thin film samples. The data shown in Fig. 14.13 (a) indicate that the values of P are almost 

constant with the volume saturation magnetization of the films. Also, the P values are within the 

band between 40% and 53% as a function of surface magnetization (emu/cm2). 
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Fig. 14.13. Spin polarization as a function of saturation magnetization 

 

14.7.4 Spin polarization as a function of Coercivity 

The plots in Fig.14.14 show how the spin polarization depends on corecivity in both in 

parallel and perpendicular configurations. Both plots show that the spin polarization is almost 

constant with the coercivity of the samples.  

 

 

 

 

 

 

 

 

Fig.14.14. Spin polarization as a function of coercivity, (a) when the magnetizing field is parallel 
to the sample surface, and (b) when the magnetizing field is perpendicular to the sample surface 
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14.8 Conclusions 

Pt thin films sputtered by e-beam evaporation or magnetron sputtering are found to be 

ferromagnetic. The magnetism is independent of the thickness of the films, and the surface 

magnetism (emu/cm2) is more or less constant for different samples. The existence of magnetism 

as observed by SQUID, PCAR and neutron scattering is supported by the first principle 

calculation for the 3D islands in the shape of pyramid of Pt atoms. The reason for the local 

moment in such pyramid is related to the charge transfer from the sharp pyramid vertex to the 

inner Pt sites making density of states at the Fermi level higher due to the narrowing of the d-

state peak. Stoner criterion is satisfied in this case causing such rough Pt surfaces ferromagnetic. 

It is found that the spin polarization values of Pt thin films of thickness between 10nm 

and 100nm are found in between 40% and 53%. The P values do not have strong correlation with 

different parameters such as thickness, roughness, saturation magnetization (emu/cm3), surface 

magnetization (emu/cm2) and coercivity. It seems that the sample preparation conditions and 

topography of sample surfaces play some role for different values of spin polarization. 

More importantly, the Pt thin films are ferromagnetic, as confirmed by series of 

measurements of magnetization by SQUID, and cross checking the existence of magnetization 

by neutron scattering. Measured finite values of transport spin polarizations also confirm that the 

Pt surfaces are ferromagnetic which we proposed as due to the Pt clusters in the form of 

pyramids of Pt atoms on the rough surfaces of Pt thin films deposited by e-beam evaporation and 

magnetron sputtering. 
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CHAPTER 15 

TRANSPORT SPIN POLARIZATION OF HIGH CURIE TEMPERATU RE 
FERROMAGNETIC MnBi FILMS BY ANDREEV REFLECTION 

15.1 Introduction 

Spin generation and injection are very important issues in spintronics. Especially, spin 

injection from ferromagnet to semiconductors is challenging due to low interface resistance [van 

Son et al., 2000]. Such problem can be circumvented by using the ferromagnet of high Curie 

temperature, high conductivity and high spin polarization. MnBi is stable in its NiAs phase and 

seems to be a potential candidate due to its suitable properties such as high Curie temperature 

[Heikes, 1955] of (628K) in stable NiAs phase at room temperature, high coercivity [Guo et al., 

1993], large perpendicular room temperature anisotropy in thin films [Rüdiger et al., 2000], and 

high Kerr rotation (useful for magnetooptical (MO) recording) [Fasol, 1996]. These unusual 

magnetic and magneto-optical properties have been the main motivation for the intensive studies 

on the various properties of this material [Katsui et al.,1976; Shen et al.,1991; Jaswal et al., 1994; 

Köhler et al., 1996; Rüdiger et al., 1997; Bandaru et al.,  1999]. Even though MnBi in zinc 

blende structure is half metallic [Xu et al., 2002; Zheng et al., 2004; Kahal et al., 2010], it is 

difficult to grow and it may be metastable phase. But MnBi in NiAs phase is stable phase with 

high magnetic and structural transition temperature of 628K, and due to the possibility that the 

interfacial condition may be changed by the addition of Bismuth, it is particularly important to 

measure the transport spin polarization of MnBi in the NiAs structure [Kharel et al., 2011], 

which is also relevant to the understanding of MnBi junctions that show a large 

magnetoresistance (70% at room temperature) [Clifford et al., 2004]. Transport spin polarization 

of MnBi films has been measured by point contact Andreev reflection spectroscopy and the 

experimental values are compared with the theoretical calculations. Correlation between the 
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transport spin polarization and the saturation magnetization on these films has been established 

in this study. 

15.2 MnBi samples and their structure  

Four   different samples (A, B, C, D) of MnBi films were prepared on glass substrate by 

sequential e-beam evaporation of Bi and Mn with subsequent in situ annealing of bilayers 

immediately after the deposition. High-quality MnBi thin films can be grown by this method by 

maintaining the atomic ratio of Mn:Bi = 55:45 [Kharel et al., 2010]. Samples A, C, and D were 

32nm thick, and sample B was 47nm thick. Two samples (A and C) were deposited at room 

temperature and annealed for 1 hour at 410◦C and 400◦C, respectively; the other two samples (B 

and D) were deposited at 125◦C and annealed at 350◦C for 1.5 hours and 1 hour, respectively. All 

of the samples were single-phase MnBi highly textured polycrystalline films, with a hexagonal 

NiAs crystal structure, although small traces of elemental Bi have been detected as shown in X-

ray- diffraction spectra in Fig. 15.1. 

 
Fig. 15.1 X-ray-diffraction spectra of MnBi film (samples A and D) show strong diffraction 
peaks from (002) and (004) planes indicating preferred c-axis orientation of the films [Kharel et 
al., 2011]. 
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15.3 Magnetization of MnBi 

Magnetic hysteresis loops obtained for all samples were well-defined rectangular loops in 

the out of plane geometry as shown, for sample D, in Fig. 15.2. This indicates that the 

magnetization easy axis in perpendicular to the sample plane. The curves show that the samples 

are highly anisotropic with magnetization easy axis along c-axis. Saturation magnetizations 

measured for samples A, B, C, and D are 503, 485, 464, and 425 emu/cm3 respectively with 

corresponding coercivities of 8.4, 3.2, 7.9, and 5.4 KOe at 300 K.  It is seen that these values are 

dependent on sample preparation conditions. 

 

Fig. 15.2. Magnetization loops in the magnetic field parallel and perpendicular to the sample 
plane  

15.4 Resistivity of MnBi 

The resistivity as a function of temperature (Fig. 15.3) show that MnBi samples are 

metallic. The resistivity at 4K is ~15µΩcm with the residual resistivity ratio (rrr) of ~8.5 for all 

samples. Unlike the expectation of T2 dependence of resistivity at low temperature for weak 

ferromagnetic materials, MnBi samples follow an anomalous power law (ρ~Tm) with m between 

2.9 to 3.6, similarly to what has been  observed for half -metallic  film such as CrO2 [Gupta et al., 

2000]. The inset shows the power law dependence for m = 2.9 for the resistivity below 30K. 
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               Fig. 15.3. Resistivity of MnBi films (samples A and D) as a function of temperature 

15.5 Point Contact Andreev Reflection of MnBi 

Transport spin polarization of MnBi was measured by using Point Contact Andreev 

Reflection (PCAR) spectroscopy. Electrochemically etched Nb tip was used as superconductor in 

contact with magnetic material MnBi thin film on Si, and the data were taken at 1.5K. 

Characteristic conductance curves with dip in conductance at zero bias were obtained which 

indicate the suppression of Andreev reflection due to spin polarization of current. For every 

sample A, B, C and D two of the typical conductance curves are shown in Fig. 15.4. 

Conductance curves (a) and (b) are for sample A; (d) and (e) for sample B; (f) and (g) are for 

sample C; and (i) and (j) are for sample D.  Fitting of the data was done using modified BTK 

model. Data taken for different contact resistances show that the spin polarization value depends 

on interfacial barrier strength (Z) between the MnBi surface and Nb superconductor. Z 

dependence of P for samples A, B, C and D are shown in Fig. 15.4 (c), (f), (i), (l). For every case, 

intrinsic value of spin polarization have been obtained by extrapolation of the curve to Z=0 

(perfectly transparent interface) [Strijkers et al., 2001]. For samples A, B, C and D, the intrinsic 

values are found to be 63 ± 0.8%, 57.8 ±1.6%, 54.2 ± 2.4%, and 51.7 ± 1.1%. 
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Sample A 

 

 

 

                          (a)                                                    (b)                                                            (c) 

Sample B 

 

 

 

 

                        (d)                                                        (e)                                                           (f) 

Sample C 

 

 

 

                            (g)                                                          (h)                                                          (i)  

Sample D 

 

 

 

 

                      (j)                                              (k)                                               (l)     

Fig. 15.4. Normalized conductance curves with mBTK fitting for samples A : figs (a,b); B: figs 
(d,e); C: figs (g,h); D: figs (i,j); and Z dependence of P for corresponding samples figs (c,f,i,j). 
Contact resistances and the fitting parameters are shown in the corresponding figures. 
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15.6 Correlation between spin polarization and magnetization, and transport regime 

As spin polarization (PT ) is associated with the electronic states near the Fermi energy 

and the respective Fermi velocities, whereas the magnetic moment is associated with the 

algebraic sum of occupancies of all majority and minority spin states, there is no reason for these 

quantities to be related [Kharel et al., 2011]. However, in some case the linear relationship 

between PT and M has been reported [Meservey et al., 1994], while in many other cases such as 

for Ni 1-xFex system [Veerdonk et al., 1997] as shown in Fig .15.5 (c), Co1-xVx system and Co1-

xPtx system [Kaiser et al., 2005] as shown in Fig 15.5 (a) and (b), and NixFe1-x system [Nadgorny 

et al., 2000] as shown in Fig 15.5(c), no direct relationship between the two quantities has been 

observed.  

                                                       
                                                                                                 

                                                                                                                                              (d) 

Fig. 15.5. Relation between spin polarization and magnetization in (a) Co1-xVx system, (b) Co1-

xPtx system, (c) Ni 1-xFex system, and (d) NixFe1-x system. 
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These works indicate that the relationship between the transport spin polarization and the 

magnetization is to be determined independently for different concrete material systems.  In case 

of MnBi, the experimental values of transport spin polarization are found to be proportional to 

the saturation magnetization as shown in Fig. 15.6 (a). Theoretical calculations show that the 

spin polarizations are proportional to magnetic moment per cell, and it is further seen that the 

spin polarizations calculated for diffusive transport are closer to the experimental values than the 

spin polarizations calculated for ballistic transport, as shown in Fig. 15.6 (b).  

                                                                          

                 

(a) (b) 

 

Fig. 15.6.  Correlation between spin polarization and magnetization of MnBi films (a) 
experimental data, (b) theoretical calculations for diffusive denoted in the graph by by PNV

2 and 
ballistic PNV . 

On the other hand, it is important to know the experimental conditions to know which 

regime of transport was occurring during the experiment.  Using the measured value of 

resistivity of 15 µΩ cm for MnBi at 4 K, and the values of calculated density of states for the 

majority (↑) and minority (↓) carriers, N↑ = 0.446 and N↓ = 0.425 states/eV/cell respectively, 

scattering time τ was calculated for both the carriers from Ziman formula,      

                                  σ↑(↓) = 1/3e2N(↑↓)v
2
F(↑↓) t ,                                                                      (15.1) 
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where vF(↑↓)  is the Fermi velocity and the conductivity σ↑(↓) =1/ρ↑(↓) . The electron mean free path  

L↑↓  = vF ↑↓  t  was found to be ~20nm for majority and ~10nm for minority carriers. The contact 

size (d) of the superconducting tip was estimated from Wexler’s formula,   

                     Rc≈ 4ρL/3πd2 + ρ/2d,                                                                             (15.2) 

where  the contact resistance Rc  was changed from 10Ω to 100Ω. For these values of Rc, and for 

majority carriers, the contact sizes were found to be ~15nm and 5nm respectively.  It is found 

that L>d for majority carriers and L≈d for minority carriers. This indicates that the transport is in 

ballistic regime for majority, and it is in intermediate regime for minority carriers.Though our 

experimental parameters show that the transport is in ballistic regime, theoretically the diffusive 

calculations are in better agreements (diffusive Pnv2= 51-66%,ballistic PNv =28-36% ) with the 

experimental values (PNv2= 51-63%). This is possible due to the fact that P is sensitive to the 

interface and the termination of electrodes (there is substantial difference in electronic DOS of 

Mn and Bi at the Fermi energy). Bi states control the magnitude of P (PNv = 55% and PNv2 = 

76%, respectively) [Kharel et al., 2011]. 

15.7 Role of Spin Orbit Interaction in spin polarization  

To see the effect of spin orbit (SO) coupling, band structure calculations were done for 

NiAs structure of MnBi.  Figure 15.7 (a) and (b) show the band structure calculations for 

majority and minority channels without SO coupling; and (c) shows the band structure 

calculations for both the channels with SO coupling. Close inspection shows that there is no 

significant effect in dispersion relations due to inclusion of SO interaction.  
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(a)                                                            (b)                                                           (c) 

Fig. 15.7. Energy bands for (a) majority channels without SO coupling, (b) minority channels 
without SO coupling, and (c) both channels with SO coupling. 

To further interpret our data, density of states were calculated with and without SO 

interaction. The comparison is shown in Fig.15.8. It shows that there is no significant difference 

in density of states at Fermi level due to SO coupling even though there is a slight band shift in 

the order of SO constant. The same DOS indicate that there is no role of SO interaction in high 

values of transport spin polarizations measured.  

 

Fig. 15.8. comparison of density of states without and with SO interaction 
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15.8 Cause of high transport spin polarization in MnBi 

The density of states at the Fermi energy are nearly equal (~0.45 states/cell/eV) for 

majority- and minority-spin carriers as shown in the top panel of Fig. 15.9. This results vanishing 

spin polarization, as shown in the bottom panel of  Fig. 15.9, due to density of states as the spin 

polarization is defined as PN = (N↑−N↓) / (N↑+N↓) , where N↑ and N↓ are the majority- and 

minority-spin DOS.  

 

Fig. 15.9. Top panel: total DOS for majority and minority carriers (shaded region), <Nv>↑(↓) 
(solid blue line), <Nv2 > ↑(↓) (dashed red line); bottom panel: P near the Fermi energy for PN 
(DOS) (solid gray line crossing zero at 0 eV), PNv (solid blue line), and PN v2 (dashed red line) 
in the direction of the c axis. Inclusion of spin-orbit coupling (from fully relativistic calculations) 
does not practically affect the calculated DOS. 

 

The origin of the large PT measured in MnBi is due to the substantial spin asymmetry of 

the electronic bands near the Fermi energy as shown in Fig. 15.10. The Fermi velocities for the 

majority and minority carriers are 1.2×106m/s and 0.6×106m/s respectively. When the mobility 

of electrons is taken into account, a large PT is expected [Nadgorny et al., 2003; Mazin, 1999; 

Velev et al., 2008]. Thus the disparity in Fermi velocities is the cause of high transport spin 

polarization in MnBi. If the velocity is projected along c axis, the spin polarization for ballistic 

and diffusive transport are PNv = 36% and PNv2 = 66% respectively where as they are reduced to 
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PNv = 28% and PNv2 = 51% when the velocity direction is considered perpendicular to ab plane. 

Hence, the strong anisotropy of the transport properties of MnBi can play a role for lower values 

of spin polarization of polycrystalline MnBi samples. 

 

Fig. 15.10. Dispersion of the majority and minority bands near Fermi level; Red squares, 
majority band; blue spheres, minority band 
 

15.9 Discussions and conclusions 

Even though the experimental conditions are found to be in ballistic regime (λ>d), the 

first principle calculations of spin polarization (PNv2 = 51%–66%) of MnBi in diffusive regime 

(λ<d) agree to the experimental values (51% - 63%). This is possible due to the fact that the spin 

polarization can often be very sensitive to the interface, and to the termination of electrodes 

[Tsymbal et al., 2007]. In MnBi it is expected to be strongly dependent on the surface 

termination because of the substantial difference in the electronic DOS at the Fermi energy for 

Bi and Mn [Kharel et al., 2011]. 

To sum up, the structural, magnetic and transport properties of MnBi films were studied. 

Transport spin polarization of these films was measured by Point Contact Andreev Reflection 

Spectroscopy, and the values were found consistent with the results of band structure calculation 
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and with observation of a large magnetoresistance in MnBi contacts [Clifford et al., 2004]. The 

first principle calculations show that the density of states of majority and minority spin-bands at 

Fermi level are almost identical showing vanishing spin polarization due to the contribution of 

density of states. However, the disparity in Fermi velocities is the main cause of high transport 

spin polarization in MnBi. The transport spin polarization of MnBi was found proportional to the 

magnetization of MnBi. 
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CHAPTER 16 

STUDY OF MAGNETISM AND SPIN POLARIZATION IN DEGENER ATE InN AND 
Cr DOPED InN FILMS 

16.1 Introduction 

Room temperature ferromagnetism in semiconductors has been an area of interest to 

many researchers due to their potential spintronic application [Žutic et. al., 2004). Several dilute 

magnetic semiconductor (DMS) systems have been predicted theoretically by doping transition 

metal, for instance, Mn in GaAs, and ZnTe [Dietl et al., 2000] ; and experimentally by doping 

Mn on GaN [Sasaki et al., 2002], Co on ZnO [Coey et al., 2005], Co on TiO2 [Song et al., 2006] 

etc. There are Oxide materials such as TiO2 [Kim et al., 2009], In2O3 [Panguluri et.al. 2009], ZnO 

thin films [Khalid et al., 2009], and semiconductor material such as GaN [Madhu et al., 2008] 

which show magnetic states even without doping of 3d transition metals because of defects 

present in them. In some cases the weak ferromagnetism is attributed to magnetic clusters [Coey 

et al., 2006], impurity phases [Coey et al., 2010], or accidental contamination [Abraham et al., 

2005].  In order to characterize such DMS materials for possible spintronic applications, an 

increasing interest in measuring their spin polarization is seen because of its insensitivity to 

impurity phases [Dixit et al., 2011].                          

 Even though Oxides are the major focus for studying their room temperature 

ferromagnetism [Coey, 2006], materials based on III-V nitrides have attracted much interest 

since room temperature ferromagnetism was predicted in these materials [Dietl et al., 2000]. 

Transition metals such as Mn doped InN films  were found to exhibit spin glass phase at low 

temperature, while Cr doped InN were reported to have shown room temperature 

ferromagnetism [Chen et al., 2004] which was confirmed by X-ray magnetic circular dichroism 

[Ney et al., 2006]. Recent calculations have shown that indium vacancies and nitrogen 
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interstitials in InN are magnetic [Duan et al., 2009].  Presence of Oxygen in InN films increases 

the carrier concentration, which leads to re-entrant magnetic behavior in some cases [Petukhov, 

et al., 2007] and might facilitate ferromagnetism via a Zener - like exchange interaction between 

carries and localized spins [Zener et al., 1950a, 1950b; Fröhlich et al., 1940]. At the same time, 

the high carrier concentration in InN leads to large conductivities which allow direct 

measurement of the spin polarization at low temperatures. In order to investigate the connection 

between spin polarization and room temperature ferromagnetism in degenerate nitride 

semiconducting films, we have studied pure InN and Cr substituted InN films, both having a 

significant oxygen content. 

16.2 InN and Cr doped InN samples preparation 

Indium Oxide targets were used in nitrogen rich environment to deposit InN thin films by 

rf magnetron sputtering. On the other hand, 2 at % and 5 at % Cr substituted InN films were 

deposited on c-axis oriented sapphire substrate at 475+/- 5 0C by the same technique  using In2O3 

powder (99.99% pure, Alfa Aesar) with chromium chloride (CrCl3. 6H2O) in appropriate 

amounts. The sputtering was done at 475±5 0C to avoid nitrogen dissociation during the growth 

process. The thicknesses of these In1-xCrxN thin films were measured by cross-sectional scanning 

electron microscopy, and cross checked by the interference fringes in optical spectra. All thin 

film samples were measured approximately 1µm thick. 

16.3 Structural properties of InN and In1-xCr xN films 

XRD patterns of undoped InN thin films which were sputtered by using oxide target 

show broad reflections at 2θ = 28.96°, 30.66°, and 32.85°, consistent with an isotropic 

polycrystalline sample (Fig. 16.1a) [Dixit et al., 2008], and these patterns can be completely 

indexed to the wurtzite structure with no evidence for impurity phases [Dixit et al, 2011]. 
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However, bcc structured In2O3 secondary phase but no other impurity phase have been observed 

in Raman spectra as shown in Fig. 16.2(a) [Dixit et al., 2008]. These films show the expected E2 

(low), E2 (high), and A1 (LO) modes near 90, 490, and 580 cm-1, respectively, indicating a 

preferred c-axis orientation for the InN crystallites. Further, an unassigned phonon mode (200 

cm-1) is present in the Raman spectra. This band could be a disorder activated mode.  These 

Raman studies confirm the presence of an In2O3 secondary phase in InN samples [Dixit et al., 

2008]. Depth dependent XPS measurements show a highly oxidized surface, with the oxygen 

content in this InN film falling from close to 50% at the surface to approximately 25% at depths 

of over 4 nm [Dixit et al., 2008].  

 

(a)                                               (b) 

Fig.16.1. X-ray diffraction peaks for (a) the InN film sputtered using oxide target [Dixit et al., 
2008], (b) the 5% Cr substituted InN films [Dixit et al, 2011].  The sapphire peak is indicated. 

Figure 16.1(b) shows the XRD pattern for 5 at% Cr substituted InN films. The pattern for 

2 at% films is similar. Similar to the structure of pure InN films, these peaks for 5 at% Cr 

substituted InN films can also be indexed to the InN wurtzite structure (JCPDS 50−1239), and 

are consistent with a polycrystalline sample with no impurity phases. However, similar to InN 
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films, 5 at% Cr samples have oxide impurity phase present which are seen in Raman spectra of 

these films (Fig. 16.2 (b)). These In2O3 peaks near 220 cm-1 and 300 cm-1 confirm that some 

oxide impurity phase is present in these samples, despite their apparent absence in the XRD 

patterns [Dixit et al, 2011].  

 

(a)                                                                  (b) 

            

                                           (c)                                                       (d) 

Fig.16.2. Room temperature Raman spectra for (a) InN thin film made from Oxide target. The * 
corresponds to the peaks at 129 and 303 cm−1 modes from In2O3 (White et al., 1972), (b) the 5% 
Cr substituted InN films, (c) CrO2 at 300K with 632.8 nm excitation [Iliev et al., 1999], and (d) 
XPS spectrum for the 5% Cr substituted InN film.  The solid line is a fit indicating the presence 
of only the 3+ valence state. 
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Both XRD and Raman data did not show any evidence of ferromagnetic impurity phases. 

Had there been any ferromagnetic CrO2 impurity, the Raman peak characteristics would have 

appeared at 149, 458, 570, and 682 cm-1 as shown in Fig 16.2 (c) for activation of different 

Raman modes at 300K with 632.8 nm excitation [Iliev et al., 1999]. But we do not see any of 

such Raman peaks indicating the absence of ferromagnetic CrO2 impurity. In order to more 

carefully exclude the possibility of Cr-rich impurity phases, we have shown the Cr XPS 

spectrum for the 5 at% Cr doped InN film in Fig. 16.2 (d).  This can be fit assuming that Cr is 

present only in the 3+ valence, consistent with substitutional doping and confirming the absence 

of ferromagnetic Cr in 4+ valence state. 

16.4  Optical spectra and resistivity of Cr doped InN films 

Hall effect measurements and plasmon absorption show that the n-type carrier 

concentration due to the presence of oxygen defects in InN films is found to be 3.8x1020cm-3, 

consistent with previous studies (Dixit et al., 2009). The carrier concentration for the 2 at% and 5 

at% Cr substituted films were estimated to be 6.7x1020 cm-3 and 7.2x1020 cm-3 respectively. 

Perkin-Elmer UV-Vis spectrometer was used to find optical spectra for In0.98 Cr0.02N, shown in 

Fig. 16.3 (a), as a plot of (αE)2 versus E. The spectra for In0.95 Cr0.05N sample were quantitatively 

similar. A large absorption peak, possibly due to plasmon excitation, was observed at the energy 

near 0.7 eV. At the higher energy, these curves are linear whose extrapolation gives the optical 

bandgap energy of approximately 1.8 eV for both samples [Dixit et al., 2011].   

Figure 16.3 (b) shows the resistivity as a function of temperature for both 2% and 5% Cr 

substituted films. Both the films show metallic behavior at higher temperature with the resistivity 

of about 1 mΩcm.  They show a shallow minimum in resistance at lower temperatures. The 

shallow minimum for 2% Cr substituted film is at about 50K, while for 5% Cr substituted sample 
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it is at about 150K. Such phenomena of minimum resistivity have been observed in a number of 

other defect-rich semiconducting films, including ZnGa0.05O films, which shows a metal 

semiconductor transition (MST): metallic conductivity above 170 K and semiconducting 

behavior at temperatures below it. This is explained on the basis of weak localization effects: the 

free electrons tend to localize at lower temperatures giving rise to minima in the resistivity. 

[Bhosle  et al., 2006]. 

 

Fig.16.3. (a) Optical absorbance for the 2% Cr substituted InN film. The extrapolation of the 
optical band edge to zero energy is shown by the dashed line. (b) resistivity plots for the 2% Cr 
(circles) and 5% Cr (stars) substituted InN films. 
 
16.5 Magnetization measurements in InN, and Cr substituted InN films 

In-plane magnetizations of InN and Cr substituted (2% and 5% Cr) InN samples at room 

temperature were measured using SQUID magnetometer. Diamagnetic background was 

estimated from the high field response and it was subtracted to get the corrected magnetization 

curves shown in Fig. 16.4 (a). The saturation magnetization for InN sample was 0.05 emu cm-3, 

for In0.98Cr0.02N it was 0.15 emu cm-3, and for In0.95Cr0.05N sample it was 0.3 emu cm-3. All three 

films show evidence of room temperature ferromagnetism with monotonically increasing 

saturation magnetization with Cr content. Presence of ferromagnetic signal in undoped InN 

samples eliminates the possibility of magnetism due solely to Cr-rich impurity phases, and 
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systematic dependence of saturation magnetization on Cr content diminishes the possibility of 

introducing magnetic impurity during sample handling. As discussed earlier, these samples 

contain some In2O3 secondary phase. However, the magnetic signal cannot develop solely in 

these impurity phases because the specific magnetization measured for the 5 at% Cr substituted 

InN film, 0.3 emu cm-3, is almost as large as that measured for pure vacuum annealed In2O3, 0.5 

emu cm-3 [Panguluri et. al., 2009]. Out-of-plane saturation magnetization for the 5 at% Cr 

substituted sample was found slightly larger than in-plane magnetization, as shown in Fig. 16.4 

(b),  indicating that these films have some modest anisotropy.  

 

(a)                                                                     (b)        

Fig. 16.4. (a) Magnetization curves for undoped InN, 2% Cr and 5% Cr substituted InN films at 
room temperature. (b) In-plane and out-of-plane magnetization curves for 5 at% Cr substituted 
film at room temperature. 

Field cooled (FC) and zero field cooled (ZFC) magnetization curves (Fig. 16.5) were 

measured for 5% Cr substituted InN film to check whether nanoscale ferromagnetic impurity 

phases that were not detected by XRD or by Raman spectroscopy are responsible for room 

temperature ferromagnetic signals. The curves were taken at H = 500 Oe, and estimated 

background was subtracted for corrections. There is not significant separation between the ZFC 



229 

 

and FC curves, which argues against the presence of superparamagnetic impurity phases [Dixit et 

al., 2011]. These magnetization curves can be fit by the expression M(T)=M0+C/T+MS(1-βT3/2), 

with M0 a temperature independent background contribution, C the Curie constant, and β the 

spin wave stiffness. The best fit yielded a background magnetization of M0=0.07 emu cm-3, 

Curie constant C=1.3 emu K cm-3, and spin wave stiffness β=0.00006. This fit to a paramagnetic 

plus ferromagnetic term is shown by the dashed gray line in Fig. 16.5, and yields an extrapolated 

ferromagnetic transition temperature of approximately 550 K [Dixit et al., 2011].      

 

Fig. 16.5. Zero-Field Cooled (open) and Field-Cooled (closed) magnetization curves for the 5% 
Cr substituted InN film.  The dashed line shows the fit to a paramagnetic plus ferromagnetic spin 
wave contribution, as discussed in the text.   
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16.6 Spin polarization 

 Spin polarization of conduction electrons in InN and Cr doped InN films were extracted 

by fitting using modified BTK model [Mazin et al., 2001] the conductance curves obtained by 

point-contact Andreev reflection (PCAR) technique (Soulen et al., 1998). Nb was used as 

superconducting tip to obtain conductance curves at 1.5K. The examples of conductance curves 

with mBTK fits for all of these samples are shown in Fig. 16.6.  

 

Fig. 16.6.  The normalized conductance curves measured at 1.5 K using Nb superconducting tip 
for InN,  In0.98Cr0.02N, and In0.95Cr0.05N samples.  The solid lines show the best fits by modified 

BTK model at 1.5K with Nb superconducting gap of ∆ = 1.5 meV.   

 The intrinsic values of spin polarization for all of these samples were found by 

extrapolating the Z2 dependence of P, often encountered in PCAR measurements [Woods et al., 

2004], to the case of transparent interface (Z=0). The intrinsic values of spin polarization were 

found to be ranging from ~ 46±2% for InN to ~50%±2% for In0.95Cr0.05N films. Such finite 



231 

 

values of spin polarization suggest that the degenerate InN and Cr doped InN films may be 

suitable for spintronic device applications. Excess oxygen vacancies in these samples are the 

source of high carrier concentration which is the cause of magnetism in these samples as 

suggested that the ferromagnetism in certain oxide semiconductors such as In2O3 may be carrier 

mediated [Panguluri et al., 2009].  

Magnetization of undoped InN films was measured after storing them under ambient 

conditions for approximately one year. Interestingly, the magnetization was found to be 

increased by a factor of about 27 to about 1.36 emu/cc (Fig. 16.7) which may reflect the effect of 

a larger Oxygen content on the magnetic ordering. The in-plane magnetizations in both 

directions were found same which indicated no magnetic anisotropy in X-and Y-directions of the 

plane of the film.  

-4 -2 0 2 4
-2

-1

0

1

2
 H parallel X plane

M
ag

ne
tiz

at
io

n 
(e

m
u/

cm
3 )

Field, H (KOe)  

Fig 16.7 Increased magnetization of InN after storing in ambient conditions for about one year 

Our studies find that incorporating Cr produces only a relatively modest increase in the 

magnetic moment, with an almost negligible change in the spin polarization, in agreement with 

the recent results indicating that the magnetic moment in Cr-doped InN is coupled to the carrier 

concentration, rather than Cr concentration [Kinsey et al., 2006]. 
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16.7 Conclusions 

 Different properties such as structural, electrical, magnetic and spin polarization of 

degenerate InN and 2 at% and 5 at% Cr substituted InN films have been investigated. These 

samples contain considerable amount of oxygen which causes over 1020 cm-3 of high n-type 

carrier concentrations due to which the samples show conducting behavior down to low 

temperatures. Cr undoped InN and Cr doped InN thin films show room temperature 

magnetization, with the size of moment increasing from 0.05 emu cm-3 for InN to 0.30 emu cm-3 

for 5 at% Cr doped InN samples with monotonic increase of the moment with Cr fraction. Even 

though the samples contain In2O3 impurity phase, the systematic dependence of the moment on 

Cr fraction excludes the possibility of other ferromagnetic impurity phases. Spin polarization 

was measured by PCAR technique. It was measured about 46% for undoped InN sample and 

about 50% for In0.95Cr0.05N films. Room temperature ferromagnetic behavior, and finite low 

temperature spin polarization of these materials suggest that they may be pertinent to a number 

of different spintronic applications, including efficient spin injection into silicon.  
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CHAPTER 17 

CONCLUSION AND FUTURE PROSPECT 

17.1 Summary and conclusions 

The first part of this dissertation (chapters 1-5) was focused on development of Si3N4 

free-standing micromirrors with metallic coating and their torsion study by passing electric 

current. The torsion angles in case of Au, Ni, or Ag deposited micro structures were measured as 

a function of dc current passed, and their dependence was found to be quadratic. Due to 

negligible effects of electrostriction and Maxwell stress compression, the only effect responsible 

for such quadratic dependence is the Joule heating which increases the temperature of the 

metallic layer so that the thermal expansion of this layer constrained by Si3N4 layer causes non 

equilibrium strain which deforms the bimorph having residual stress, resulting in angular rotation 

[Thapa et al., 2011]. Large reproducible torsion angles with low electrical power in such electro-

thermal actuation may be useful for MEMS applications. The optical detection system we have 

developed has high sensitivity which may be used to measure even smaller torques, such as the  

torque produced in heterostructures of magnetic and nonmagnetic materials, as proposed by 

Fulde and Kettemann [Fulde et al., 1998] and Yu [Yu et. al., 2007]. 

 The second part of this dissertation (chap 6 onwards) was focused on spintronics, 

especially the development of spintronic materials and their structural, transport and magnetic 

properties focusing mostly on spin transport measurements by using point contact Andreev 

Reflection spectroscopy. A brief review of how the development of spintronics evolved was 

made in chapter 6. With this evolution, different spintronic devices such as GMR, TMR, 

MRAM, STT-RAM, SFET were developed. Their fundamental aspects and the impact in 

technology were briefly explained. Spin injection from ferromagnetic materials to non-magnetic 
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or semiconductors is efficient if nonequilibrium spins can be created at the Fermi level of such 

magnetic materials. Importance of knowing the degree of spin polarization is important to 

develop and identify such materials for their efficient and effective use in spintronics. 

 With this introduction, the discussion moved on to review the development of different 

techniques used for measuring spin polarization with more emphasis on point contact Andreev 

reflection (PCAR) spectroscopy in chapter 7. Spin polarization can be measured by 

Photoemission Spectroscopy [Johnson, 1997], Spin polarized tunneling (SPT) spectroscopy 

[Tedrow et al., 1971; Tedrow et al., 1973;  Meservey et al., 1994], Positron Spectroscopy [ 

Hanssen et al., 1990], and  point contact Andreev reflection spectroscopy [Soulen et al., 1998]. 

While the values of spin polarizations measured were reported slightly different because of 

different sensitivity of these techniques, the values can be different depending on the regime of 

transport: ballistic or diffusive or intermediate. Point contact Andreev reflection spectroscopy 

was used throughout the study of spin polarization in this dissertation. Andreev reflection theory, 

BTK theory and modified BTK theory were briefly summarized in this chapter to introduce 

different parameters used for fitting the conductance data of the interface between 

superconductor and the sample in point contact experiments. 

Moving on to chapter 8, it was attempted to show theoretically generated conductance 

curves for different cases of varying interfacial barrier strength (Z) at different temperatures for P 

= 0, and at different spin polarization (P) values at Z = 0. Also, such ideal curves were generated 

for changing Z and P both to show the possibilities of various shapes of conductance curves that 

are encountered in different systems while doing experiments. Conductance curves are generated 

for different temperature T to show how the shape of conductance curves change especially 

around the bias voltage equal to the superconducting gap of the tip being used. In this particular 
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case when P = 0 has been considered, some temperature elevation during fitting can help to 

achieve better fitting curve, but still retaining the same extracted value of P and almost 

unchanged value of Z. Uniqueness of fitting has been checked by fitting a nice experimental data 

with all possible changes of input fitting parameters such as temperature (T), spreading 

resistance (Rs), the number of data points. The test was done with change of such parameters 

separately or in different combinations. For the reasonably acceptable fit, the extracted values of 

P and Z were noted. It is found that P is dependent on Z quadratically which is similar to their 

correlation for different conductance curves taken for different contacts between the sample and 

the superconductor. It shows that the P is not only correlated with the scattering at the interface, 

but also it involves Z dependence that arises while fitting the data. Interestingly, the intrinsic 

value of P corresponding to Z = 0 for both cases are found close enough within the error bar.  

This indicated that even though the fittings can give some spread in P and Z values, their 

quadratic dependence gives unique intrinsic value of P within its error bar. 

 Sample preparation techniques and experimental technique of Andreev reflection 

spectroscopy are discussed in chapter 9. The thin film samples, viz. PdNi, Pt, MnBi, InN etc 

were prepared by either magnetron sputtering or e-beam evaporation.  MnSi, Co doped 

BaFe2As2, and Ni samples with and without strain were single crystals. Magnetic properties of 

these samples were studied by using SQUID, transport properties were studied by using PPMS, 

and transport spin polarizations at low temperature were studied by lock-in technique. 

Superconducting tips of Nb were prepared by electrochemical etching. Various characterizing 

techniques such as XRD, EDX, AFM etc. were applied for some samples. 

 As a reliability and reproducibility test of the point contact technique, experiments were 

done on non-magnetic sample Cu, and highly spin polarized and known sample La0.7Sr0.3MnO3 
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(LSMO). Varieties of conductance curves reported by different authors for Cu are reviewed, and 

the conductance curves obtained from our point contact technique are reported in chapter 10. As 

expected, the spin polarization for Cu samples was found to be 0. On the other hand the spin 

polarization of LSMO sample was measured, and its extracted value was found to be 58.4% 

which agrees with the reported value of P = 58% for the LSMO single crystal [Nadgorny, 2007]. 

These tests indicate that the point contact setup is reliable and the spin polarization values are 

reproducible. 

 After PCAR set up was found to be reliable, it was reasonable to move on exploring 

different new samples whose spin polarizations have not been reported so far. Manganesesilicide 

was chosen as one of the very interesting systems to be studied. Because of its different magnetic 

phases from helical to conical to induced- ferromagnetic below its critical temperature (29.5±0.5) 

oC, it is very interesting to know how the spin polarization of this sample changes in these 

phases. Magnetization measurements show that the induced ferromagnetic phase is obtained at 

6.5KG at 5K. Resistivity measurements show that the transport at low temperature below critical 

temperature is governed by spin fluctuation (T2 dependence), and the phase transition occurs at 

around 30K, the critical temperature. PCAR technique was applied by driving the 

superconducting tip manually, and also by driving it by squiggle piezoelectric motor. The spin 

polarization at 2K was measured to be 44±4% by using squiggle piezoelectric motor, and at 1.2K 

it was measured to be 47.8% when the tip was driven manually. The magnetic field dependent 

conductance curves were obtained at different magnetic phases, and their fittings gave the 

dependence of spin polarization with the magnetic field.  It is found that the spin polarization 

increases with magnetic field, and it reaches to the saturation value at around 6.5KG as expected 

for the ferromagnetic phase, with the saturation value of P about 52%. 
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 In another approach, e-beam lithography was done on PMMA coating on the polished 

surface of MnSi single crystal to open two holes each of 1 µm square at 10µm far, and Nb was 

deposited on the top of this surface so that Nb contact to MnSi was achieved only through these 

holes on PMMA. The deposited Nb film was superconducting with superconducting transition 

temperature of 5.5K. Conductance curves across the interface between Nb and MnSi were taken 

at 2K with application of different magnetic fields for both parallel and perpendicular 

configurations of the sample. Interestingly, the conductance curves obtained were different than 

conventional conductance curves. The normalized zero bias amplitude was more than 2, the 

maximum amplitude generally expected and encountered in Andreev reflection. Also the 

amplitudes were found suppressed at higher magnetic fields, disappearing completely at 38KG in 

the case when the plane of the sample was parallel to the applied field. In these conductance 

curves, another interesting feature was the oscillation of conductance curves outside the 

superconducting gap edge. These oscillations disappeared when the applied magnetic field 

exceeded 6.5KG, the field required to induce MnSi to ferromagnetic phase. This observation 

indicates that these oscillations arise due to helical spin fluctuation initially at no field and low 

field. Their fluctuations decrease with the increasing magnetic field, and disappear when the 

spins are aligned as MnSi is induced to ferromagnetic phase. In the same configuration of the 

sample, the amplitude of zero bias normalized conductance at no field decreases with 

temperature, and disappears at 5.5K, the same temperature as the superconducting transition 

temperature of Nb film being used. The conductance oscillations disappear at 4K. The systematic 

reduction of zero bias amplitude with temperature below Tc of Nb, and supression of 

conductance oscillations at temperature T<Tc indicate that the spins in MnSi are taking part in 

the conductance features.  
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In case of perpendicular configuration, the conductance curves were similar with the zero 

bias amplitude reducing with magnetic field, and collapsing at around 30KG at 2K. The 

conductance oscillations disappeared at around 4KG at 2K. The temperature dependence 

conductance curves in this configuration also have similar features as in parallel configuration. 

The conduction oscillations disappear at 4K, and the zero bias amplitude disappears at 5.5K in 

this case also. These interesting features of conductance curves are yet to be understood in detail 

with the help of modeling some suitable theory. 

 Another interesting system studied was Pd1-xNix alloy in which the magnetic 

susceptibility of nearly ferromagnetic Pd is increased by Ni impurities. Split in spin bands causes 

spins to polarize, and exploring the dependence of spin polarization on corresponding saturation 

magnetization and Curie temperature was one of the aims to work on this material. Six different 

thin film samples of PdNi with Ni concentrations up to 12% were sputtered. Their spin 

polarization, saturation magnetization and Curie temperature were measured. It was found that 

the Curie temperatures of all the samples were proportional to their saturation magnetization. 

The spin polarizations for different samples were measured from 33% to 49% with its highest 

value corresponding to the sample of highest Ni concentration of 12% among the samples that 

were studied.  For bulk pure Pd the spin polarization was measured to be zero.  In case of the 

spin polarization, it was found proportional to the saturation magnetization; and the Curie 

temperature as well. However, this proportional trend was found in the samples if they were 

sputtered in the same batch. For the samples of different batch, the proportionality of spin 

polarization showed different slopes. This could be due to the fact that the spin polarization is 

sometimes surface and termination dependent.  The proportionality of Curie temperature on 
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saturation magnetization was valid for all samples even from different batches. The study of 

PdNi system has been discussed in Chapter 12 of this dissertation. 

In most of the cases, superconducting tip is used to probe the spin polarization of a 

sample in the form of thin film or a single crystal. But an iron pnictide superconducting sample 

BaFe2As2 with Co doping was chosen as another interesting system. Chapter 13 discusses briefly 

about the historical development of superconductivity and how the development advanced to the 

iron pnictide superconductors. With some review of its magnetism and superconductivity, the 

experimental results about the field dependent and temperature dependent conductance were 

presented. Since the sample BaFe1.8 Co0.1As2 is suprconducting with superconducting transition 

temperature Tc=18K, and with superconducting gap of ∆=2.73mV, the tip for PCAR 

measurements was chosen to be of Au. The tips were made of 250µm thick Au wire by cutting at 

an angle and pulling it at the same time so that the very tip becomes sharp. The conductance 

curves show that a pseudogap appears at around 12 mV of bias, and this can be suppressed by 

applying magnetic field of 14KG whereas the main superconducting gap is still present even at 

7T. Lower magnetic field was needed at higher temperature to suppress the pseudogap. Hence, 

evidence of pseudogap below superconducting transition temperature, and its suppression with 

magnetic field, was found by Point Contact Andreev Reflection (PCAR) technique. 

 In order to study the low magnetic system, Pt was chosen in the other study which is 

presented in detail in Chapter 14. Though Pt is non magnetic in bulk form, its nano-particles and 

nano-rods have been reported to be magnetic [Sasaki et al., 1998] experimentally and 

ferromagnetism in Pt nano wires has been predicted theoretically [Delin et al., 2004]. Pt clusters 

are also reported to have magnetic moments [Kumar et al., 2008]. Mono layer of Pt on certain 

substrate such as Au(001) [Blügel., 1992] and MgO [001] [Yang et al., 2010] was predicted. 
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However, the magnetism in its thin film was not reported by any one. So, several Pt thin films of 

thicknesses 10, 12.7, 21.2, 25.55, 30, 33.3, 55.5, 65.18, 74, and 100nm were deposited for the 

study.  10nm and 30 nm thick films were prepared by e-beam deposition and the rest of the films 

were deposited by magnetron sputtering. The magnetization measurements of these samples by 

SQUID showed that all of the Pt thin films are magnetic. The magnetism in Pt thin films was 

supported by neutron scattering measurements also. The magnetization per unit area of the 

surface of these samples was almost constant no matter what the thickness of the samples was. 

This indicated that the magnetism in Pt thin films is not related to volume magnetism, but it is 

simply the surface magnetism. The Pt thin film surfaces were images under AFM, and were 

found that the surfaces have roughness. In an attempt to find the correlation of surface roughness 

and the surface magnetization, it was noticed that the presence of roughness is the source of 

magnetism as predicted theoretically, but it seems that the degree of roughness has nothing to do 

with the degree of surface magnetism. 

Beside measurement of magnetism directly, the spin polarization of these Pt thin film 

samples were measured by PCAR technique. The intrinsic values of spin polarization were 

measured between 40% and 53% for these samples. The relation of spin polarization with the 

thickness of the sample is hard to find. The spin polarization seems linearly dependent on the 

saturation magnetization of these films.  

The P values do not have strong correlation with different parameters such as thickness, 

roughness, saturation magnetization (emu/cm3), surface magnetization (emu/cm2) and coercivity. 

It seems that the sample preparation conditions and topography of sample surfaces play some 

role for different values of spin polarization. More importantly, the Pt thin films are 

ferromagnetic. Measured values of transport spin polarization also confirm that the Pt surfaces 
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are ferromagnetic which may be due to Pt clusters and atomic chains on the rough surfaces of Pt 

thin films. 

It is quite natural to look for a material that has high spin polarization. In this regard, 

MnBi thin films were studied because MnBi in zinc blende structure is half metallic [Xu. et al., 

2002; Zheng et al., 2004; Kahal et al., 2010] though it is not stable phase, however, in NiAs 

structure MnBi is stable with high Curie temperature (628K). So, exploring its magnetism and 

spin polarization would be important in this system. Magnetization measurements show that 

MnBi films have perpendicular easy axis of magnetization along c-axis so that it can be used in 

spin injection. Transport spin polarization of MnBi thin films gave the highest P value of about 

64%. Such a high value of P was found, theoretically, to be due to the disparity in Fermi 

velocities of majority and minority carriers at the Fermi level. The spin polarizations in different 

samples were found to be proportional to the saturation magnetization experimentally, which 

was supported by the theoretical calculations also. Due to high transport spin polarization and 

other suitable magnetic properties, MnBi is found to be a potential candidate in spintronic 

applications. Detailed description of the study of MnBi is given in Chapter 15. 

 Other materials needed for spintronic applications are dilute magnetic semiconductors. 

Room temperature ferromagnetism has been reported in such materials without or with 3d 

transition metal doping as reviewed briefly in Chapter 16. Degenerate InN, and 2 at % and 5 at % 

Cr doped InN thin films were studied. They were found to show room temperature 

magnetization, with the size of moment increasing from 0.05 emu cm-3 for InN to 0.30 emu cm-3 

for 5 at% Cr doped InN. 
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  Such films showing high carrier concentration and low resistivity were studied applying 

point contact Andreev reflection spectroscopy to probe their spin polarization. The intrinsic 

values of spin polarization were found to be ranging from ~ 46±2% for InN to ~50%±2% for 

In0.95Cr0.05N films. Such finite values of spin polarization suggest that the degenerate InN and Cr 

doped InN films may be suitable for spintronic device applications. Presence of Oxygen and 

hence high carrier concentration in these samples is suggested to be the cause of magnetism in 

these samples. It is observed that the Cr doping causes relatively modest increase in magnetic 

moment and spin polarization. Room temperature ferromagnetic behavior, and finite low 

temperature spin polarization of these materials suggest that they may be pertinent to a number 

of different spintronic applications, including efficient spin injection into silicon.  

 Hence, weak ferromagnetisms of different materials were studied with the help of point 

contact Andreev reflection spectroscopy. These materials are potentially useful in spintronic 

applications. 

17.2    Ongoing experiments 

To answer the question of how the spin polarization of a single crystal changes if shear 

stress is applied to the crystal, Ni single crystals without stress and with shear stress of 11% and 

25% were studied. The strain-stress relation of these single crystals is shown in Fig. 17.1. 

 

                             Fig.17.1. Stress-strain relation of Ni single crystals 
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The conductance curves after BTK fit for these crystals are shown in Fig. 17.2. The 

intrinsic values of spin polarizations for Ni with stress of 0%, 11% and 25% are found to be 

43.6%, 38.7% and 35.7%. This trend clearly shows that the spin polarization is reduced in the 

sample with larger strain. 

 

Fig. 17.2 Normalized conductance curves for Ni single crystals with shear 0%, 11% and 25%. 
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Out of the samples done so far, the relation of spin polarization to the shear strain of these 

samples is shown in Fig.17.3 (a). It seems that the spin polarization is lower for the samples with 

higher dislocation density caused by larger strain. This is indicated by the plot in Fig. 17.3 (b). 

The resistance of 25% strained sample is higher than the resistance of 11% strained sample as 

shown in Fig. 17.3(c). It is seen that more resistive sample has lower value of spin polarization. 

However, for making final conclusions, more samples with different strains are to be studied. 
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Fig. 17.3.  Spin polarization as a function of (a) shear strain, (b) dislocation density, and (c) 
temperature dependence of resistance of strained Ni single crystals  

 

17.3. Future perspective                                     

One of the purposes of studying spin polarization of different low ferromagnetic 

materials is to find a material that is half-metallic with high spin polarization, high stability, high 

Curie temperature, and with other suitable properties so that it can find spintronic applications. 

The other importance is in understanding the fundamental aspects such as dependence of spin 

polarization in magnetization or in Curie temperature or in strain or in some other properties of 

such materials so that these properties can be tuned to control or increase the spin polarization of 

such materials for useful technological applications.  This study can be extended to different 

alloys of ferromagnetic materials, e.g. CoPt with different Co concentration, or other Co based 

Heusler compounds, or different dilute magnetic semiconductors. 
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In the line of the development of bimorph thermo-electric actuators, further studies can 

be done in understanding the mechanism more quantitatively, and in finding the appropriate 

applications of the developed microstructures in MEMS technology.  
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APPENDIX A (I) 

A.1.      Moment of inertia (J) calculations for the microstructure, and the resonance 

frequency 

Let us consider the structure as shown in Fig. A.1. The dimensions are shown in the 

figure. We can calculate the moment of inertia by using the general expression for inertia tensor. 

 

  

 

                                            

 

 

 

 

 Fig. A.1. Micro electro mechanical mirror structure 
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1212

33 LBhBhL
J SiSimirror ρρ +=

                                                                                                                                                              

The expression for the angle of rotation is given by 

 

The resonant frequency ωo  is found by setting the term inside the square bracket in the 

denominator equal to zero. This gives, 
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Where, 

K1 = 0.23 = geometry factor for the ratio of h and b;                                                                                            

GSi = silicon’s shear modulus = 65 Gpa;                                                                                                                                               

h = thickness of the structure = 0.5 µm;                                                

b = width of the torsion bar; L = length of the mirror; B = width of the mirror;                                                                 

ρSi  = density of Si mirror = 2330 Kg/m3;                                                                                                                                 

L1 = L2 = length of the beam supporting the mirror;                                                                                   

P = Spin polarization of the material = 0.5 (Assumed);  

Q = Quality value of the system; Io = Amplitude of current through wire = 1 mA; 

K = equivalent stiffness of the beam.    
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APPENDIX A (II) 

MASK DESIGN 
 

A.2.  Design of Layer 1 mask (Bottom layer) 

 This layer of mask as shown in Fig. A.2. is to open the window by etching into Si wafer. 

 

                                           Fig. A.2.  Design of Layer 1 of mask 
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A.3  Design of Layer 2 of mask 

 

                                                       Fig. A.3. Design of Layer 2 of mask 
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A.4  Design of layer 3 of mask 

 

                                                        Fig. A.4. Design of Layer 3 of mask 
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A.5 Single die of each layer shown separately for more clarity 

 

Fig. A.5a . Layer 1 of mask (single die) 
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            Fig. A.5b. Layer 2 of mask (single die) 
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Fig. A.5c. Layer 3 of mask (single die) 
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 A.6. Complete design of mask including alignment marks 

 

Fig. A.6. Final mask showing all layers overlapped (Fig: Top view of the design of micromirrors: 
the design shows four dies with box alignment marks) 
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APPENDIX A (III) 

A.7   Fabrication Steps of Silicon Nitride freestanding mirror-beam structures with Au 

deposition 

Photolithography was used to fabricate the freestanding structures. Several steps involved 

in the fabrication process are summarized below. 

 Step 1:  Low Stress silicon nitride LPCVD (200MPa) on front and back of wafer 

 

 

 

   

  

                Fig. A.7. Schematics to show SiN layers on front and back of Si wafer  

 

Step 2: E-beam evaporation (CHA) 

 

 

 

  

  

               

              Fig. A.8. Schematics to show Au layer on SiN layers on front of Si wafer  

 

  

SiN 

Si 
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Au 

SiN 

Si 

SiN 

Front side 
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Step 3: Contact Photolithography on back using the layer 1 mask 

 

 

  

 

  

  

 

 

 

 

Fig A.9. Formation of pattern on SiN on the back of Si wafer by contact photolithography  

Step 4: Silicon Nitride Lam 590 Etch 

 From back, etch the patterns  and trench cross 

  

 

 

 

 

 

 

 

 

 

 Fig. A.10. Patterns developed on SiN on the back after etching Silicon Nitride on the back  

 

 

Etch 

 

Such patterns are 
made on back 

Trench 
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Step 5: Photoresist Stripping (Stripping left over photoresist in other areas than the pattern and 
trench) 

 

  

 

 

 

 

 

 

 

Fig. A.11. Stripping of photoresist on the top of Au in the areas except patterns and trench on the 
front of wafer 

Step 6: KOH Silicon Etch II (from back) 

 The design considers etching at 54.7 degree angle with 100 plane. 

 

  

 

 

 

 

 

 

 

Fig. A.12. Etching of Si wafer from the back to open the square windows and dig trenches 
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Step 7: Contact Photolithography on front on Au surface using mask Layer 2 

 

 

 

 

  

 

 

 

 

 

 

Fig.A.13. Pattern development on Au surface on the front by contact photolithography  
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SiN Layer 
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Step 8: Gold Wet Etch (On Front) 

 

 The pattern/ drawing of Layer 2 mask should “remain”.  

 

(Note: Gold patterns in this layer correspond to contact pads, wirings, and gold deposition on the 
surface of freestanding silicon nitride mirror-beam structures). 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       Fig. A.14. Etching Au except in the patterns on the front 
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SiN Layer 
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except pattern 
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Step 9: Silicon Nitride Etch on Front 

(Note: Patterns of Layer 2 mask, same mask used in step 7, should remain so that we have 
freestanding silicon nitride mirror-beam structures with Au deposition on their front surface) 

 

 

 

 

 

 

 

 

 

 

 

                                   Fig. A.15. Etching SiN on the front except under Au patterns 

Step 10:  Photoresist Stripping:   Photoresist remaining on the top of Au pattern is stripped out. 

 

 

  

 

 

 

 

 

                        

Fig. A.16. Stripping of photoresist on top of Au patterns on the front

 

Gold pattern should remain 

SiN Layer under 

Au should 

remain 

Etch Silicon Nitride in 

other areas except 

pattern, same as Au 

pattern 

 Photoresist 
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on top of 

gold pattern  

silicon nitride Layer under Au 
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 It is well accepted that spin polarization of materials has a major role in spintronics to 

improve the efficiency of spintronic devices. Point contact Andreev reflection (PCAR) 

spectroscopy, one of the popular and reliable techniques, was used to study the spin polarization 

of various materials, generally with low ferromagnetism, in order to understand the transport 

properties of spin polarized current and find the relation of spin polarization with other 

parameters such as saturation magnetization or the Curie temperature so that better spintronic 

materials can be identified and developed.  

 With brief review of the work in spintronics, Andreev reflection theory and spectroscopy, 

and data analyzing by modified BTK model, we have studied various weak ferromagnetic single 

cryatals such as MnSi and Co doped BaFe2As2, and various thin film materials such as Pd 1-xNix, 
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MnBi, Pt, InN etc. By applying PCAR we have investigated how the spin polarization of 

itinerant ferromagnet Manganese monosilicide changes as it undergoes magnetic phase transition 

from helical to conical to induced ferromagnetic when external magnetic field is applied. When 

Nb contacts on MnSi were set up by e-beam lithography and sputtering on PMMA coated on 

polished MnSi surface, conductance curves with amplitude more than 2 and with conductance 

oscillations for the bias more than superconducting gap were obtained. The suppression of these 

oscillations at around 6.5KG indicated quite an interesting observation of the presence of triplet 

superconductivity in Nb/MnSi interface. 

 Because of magnetocrystalline anisotropy PdNi was chosen as another interesting system 

to study. The spin polarization, magnetization and the Curie temperature of Pd 1-xNix samples 

with different concentration of Ni were studied. The Curie temperature was found proportional to 

the saturation magnetization. But in case of spin polarization, the values were found proportional 

to the saturation magnetization if the samples were sputtered in the same batch otherwise there 

was some spread in spin polarization possibly due to its surface sensitivity. 

 PCAR spectroscopy of superconducting sample: Co doped iron pnictide (BaFe2As2) was 

performed. The conductance curves showed the presence of pseudogap at around 12 meV, and 

these could be suppressed by applying magnetic fields of ~14 KG perpendicular to the ab-plane. 

 The existence of magnetism in isolated Pt clusters is known, however, whether the Pt thin 

films are magnetic or not was unknown. For finding this, Pt thin films of various thicknesses 

were studied. PCAR spectroscopy revealed that all thin films of Pt show spin polarization, 

indicating that the films are magnetic. SQUID measurements also gave finite value of saturation 

magnetization of such films, and neutron scattering measurements confirmed the existence of 
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ferromagnetism in Pt thin films. First principle calculations show that the magnetism could arise 

due to surface roughness of the film. The charge transfer from the sharp pyramid vertex to the 

inner Pt sites of 3D islands, which can be viewed as supported clusters, makes the density of 

states at the Fermi level higher due to the narrowing of the d-state peak. This satisfies Stoner 

criteria and hence exhibiting local moments. The surface magnetization (emu/cm2) is more or 

less constant and it is independent of the thickness of the films. 

 Spin injection into semiconductors needs a ferromagnet with high Curie temperature, 

high conductivity and high spin polarization. Though MnBi in unstable zinc blende structure is 

predicted to be half metallic, MnBi thin films in NiAs structure were studied due to their stable 

phase. The study showed that MnBi thin films have perpendicular magnetic anisotropy with 

easier magnetization along c-axis, and PCAR study revealed that these films have high transport 

spin polarization consistent with band structure calculation and their high magnetoresistance. 

The high spin polarization was not because of density of states at Fermi level due to almost 

identical values in spin bands but it was accounted due to the disparity in Fermi velocities in 

these bands. The transport spin polarization of MnBi correlates proportionally with their 

saturation magnetization. MnBi seems to be a potential candidate for spin injection to 

semiconductors. 

 Room temperature ferromagnetism in semiconductors is another property useful for 

spintronic devices. Magnetism and spin polarization of dilute magnetic semiconductors: 

degenerate InN, and Cr doped InN were studied. Undoped and Cr doped InN thin films showed 

room temperature magnetization with monotonic increase of the moment with Cr fraction. Finite 

low temperature transport spin polarization was measured in these samples. These materials have 
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potential application in spintronics due to their room temperature ferromagnetism and finite low 

temperature spin polarization. 

 Motivated with the spin torque initially in hybrid structure of magnetic and non magnetic 

structure, free standing microstructures were fabricated and coated with magnetic and non 

magnetic materials Au, or Ag or Ni separately. While passing dc current through the structure, a 

torque was produced even in non magnetic single material. The torque produced was found 

proportional to the square of the dc current. The expansion of metallic layer due to Joule heating, 

and residual strain on Si3N4 free standing microstructure together cause the torque. Such 

developed bimorph electro-thermal actuators may find application in MEMS technology.  
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