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ABBREVIATIONS 

p    pressure 

p'    dimensionless pressure 

P1, P1(t) instantaneous boundary pressure at inlet of test section tube 

P2, P2(t) instantaneous boundary pressure at outlet of test section tube 

PDP,   pressure difference, PDP = P1(t) – P2(t) 

PT1  pressure transducer at inlet of test-section tube 

PT2  pressure transducer at outlet of test-section tube 

∆P  pressure difference  

V  voltage  

hw   Weight of heart without blood 

Bw   Total weight of blood in the circulatory system 

W  Weight  

oQ   Oxygen consumption [ml/min] 
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CHAPTER 1  

INTRODUCTION 

 One of the challenges in the health care system is the diagnosis, treatment and 

prognosis as well as prevention and management of cardiovascular system (CVS) 

related disorders which constitute about 60% of all human deaths [1].  To mention few, 

some of the cardiovascular related diseases are such as hypertension, arterial 

aneurysms, stenosis (constrictions of the arterial blood vessels), atherosclerosis 

(deposits of fat and cholesterol, a waxy fat-like substance), stroke, etc.  

 Aneurysm defined as the localized abnormal enlargement, distention, dilation, or 

ballooning-out of the wall of an artery or vein due to the weakening of the wall, is one of 

the killer diseases in the developed world.  For example, the rupture of Abdominal Aortic 

Aneurysm (AAA), a localized balloon shaped expansion of the infrarenal segment of the 

abdominal aorta between the renal arteries and the iliac bifurcation, is the 15th leading 

cause of death in the United States [2] alone that affects elderly people over the age of 

55.  On the other hand, stenosis is a localized narrowing of the arteries due to 

atherosclerotic disease or plaques which can potentially cause unfavorable 

hemodynamic conditions.  This leads not only to skewed velocity profile in the stenosed 

section but upstream and downstream of the stenosis as well. It is these changes in the 

velocity distribution that significantly affect the magnitude and distribution of the 

oscillating wall shear stress and local pressures.  Generally, flow in the stenosed 

section of the artery is characterized as turbulent.  High velocity in stenosed arteries can 

cause high wall shear stress that can lead to the deposition of platelets forming blood 
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clots (thrombus) that can migrate downstream of the artery that can eventually block or 

constrict the flow of blood to vital organs such as the heart or brain.  

Today, thanks to the advancement of science & technology, to mitigate some of 

these CVS challenges, the medical practitioner has many tools at his/her disposal.  

Among them are harnessing the tremendous capabilities of magnetic resonance 

imaging (MRI), Magnetic Resonance Angiography (MRA), Computed Tomography Scan 

(CTS), X-Ray and ultrasonic technologies to better understand the anatomo-physiologic 

abnormalities of the CVS.  However, in the decision-making process as to what clinical 

interventions and other steps should be taken based on the above tools depends upon 

the medical practitioner’s experience and knowledge.  Thus, herein comes the need to 

assess quantitatively the risks of cardiovascular diseases such as arterial stenosis and 

aneurysms further based on the images obtained from these diagnostic tools in 

conjunction with other risk assessment methods such as understanding the 

hemodynamics of the diseased blood vessels.  Hence, the confidence level in the 

diagnosis and decision making process and the right intervention procedure can be 

enhanced using another important technique called computational fluid dynamics 

(CFD).  

 CFD techniques coupled with experimental work are making significant progress 

in analyzing and predicting pulsatile blood flow patterns, deformation and properties in 

patient specific and idealized models to solve cardiovascular fluid dynamics problems.  

Thus, the nature of the problems encountered in the CVS in general require a multi-

disciplinary approach both at system and subsystem levels to solve such complex 

system level problems and their interactions.  Among these subsystem level scientific 
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approaches are studies in anatomy, physiology, physics, chemistry, etc. at cellular, 

tissue or organ levels as well as blood rheology (hemorheology), including the solid 

mechanics of blood vessels (viscoelastic behaviors) to understand the pathogenesis 

(development or origin of disease) and clinical solutions of CVS disorders.   

1.1  Motivation 

 After reviewing several research works conducted by many researchers 

(mechanical and biomedical engineers as well as medical practitioners) in the area of 

cardiovascular diseases (with focus on the CFD simulation of stenosis and arterial 

aneurysms) including the minimally invasive surgical procedures or solution to treat 

them, the author decided to concentrate on investigating the physics of pulstile flows in 

order to understand the fundamentals of hemodynamics of diseased arteries. Thus, in 

this research different axisymmetric arterial geometric models were employed in the 

investigation of pulsatile flow using numerical and experimental work as well as the 

application of non-destructive evaluation (NDE) techniques for the characterization of 

the flows.   

 The author reviewed the literature on minimally invasive procedures and the 

different designs of endovascular grafts, stents or coils used to treat those common 

arterial diseases (abdominal aortic, intracranial or carotid arterial aneurysms) and the 

associated post procedural complications such as thrombus formation, endoleaks or 

neointimal hyperplasia - thickening of the intima - associated with implants that can lead 

to morbidity or death.  The observation from the literature was that most researchers 

focused only on the physiological normal cardiovascular information. None of them 
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considered the need to consider pulsatile flows beyond the physiological conditions. For 

example, recent reports by the Food and Drug Administration (FDA) on post procedural 

complications involving certain stents (manufactured by some biomedical companies) 

used for the treatment of arterial diseases and the high death rates associated with 

specific stent designs has drawn wide attention in the research or biomedical 

community and definitely could attract many potential researchers to focus on such 

topics in the future.     

Understanding the enormous work needed to address the current challenges, the 

author together with the co-advisors felt the need to limit the scope of this research to 

the investigation of pulsatile flows in healthy and diseased arterial models and 

characterizing the flows at different frequencies using acoustic emission based non-

destructive techniques as well as the use of computational fluid dynamic models.   

 It is the conviction of the author that the fundamentals of pulsatile flows have not 

yet been well studied and there is a need to investigate blood flow in humans beyond 

the normal human physiological heart rates or frequencies.  Such approach not only 

helps understand the fundamentals of pulsatile flows but would help meet the 

challenges in the design of minimally invasive procedures, the design of endovascular 

solutions in the biomedical industry as well as enhance the academic research.  

 The enormous health care expenditure on the treatment of cardiovascular 

diseases and the fact that cardiovascular diseases remain the leading causes of death 

and expenditure in the United States alone (shown on Figures 1-1 through 1-3 below) 

has also attracted the attention of the author and the co-advisors to focus on the current 
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research topic.  Figure 1-1 shows the rate per thousand for the ten leading causes of 

death in the USA [3, 4].  On the other hand, Figures 1-2 and 1-3 show the estimated 

direct and indirect costs associated with major cardiovascular diseases and strokes for 

the 2009 and 2010.  

 

Figure 1-1:  Causes of Death in the United States for 2006 and 2007 [3].  

 

Figure 1-2:  Estimated Direct and Indirect Costs of Major Cardiovascular 
Diseases, USA , 2009 [4].  
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Figure 1-3:  Estimated Direct and Indirect Costs of Major Cardiovascular Diseases, 

USA , 2010 [4]. 
 

A brief summary of the facts on the cardiovascular disease in the United States as 

outlined by the United States Centers for Disease Control and Prevention (CDC) and 

published on its official website states that: 

i. "Heart disease and stroke remain the first and third leading causes of death, 
accounting for more than 30% of all mortality,

 
and are among the leading causes 

of disability. 
ii. 1 million Americans are disabled from strokes; many can no longer perform daily 

tasks, such as walking or bathing, without help. 
iii. In 2003, approximately 37% of adults reported having two or more of the major 

risk factors for heart disease and stroke (high blood pressure, high cholesterol, 
diabetes, current smoking, physical inactivity, and obesity). 

iv. Many disparities persist—for example, age-adjusted stroke death rates for 2005 
were 31% higher for African Americans than for whites, and heart disease death 
rates were 23% ."  

 

1.2  Objectives 

 The objectives of this study are to understand better the flow of blood in stenosed 

arteries by conducting CFD simulations and experimental studies of pulsatile flows 
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using axisymmetric arterial models.  NDE techniques have also been employed to study 

the experimental pulsatile flows in the Simple Cardiovascular Hydraulic Model (SCHM). 

This approach was devised to characterize the pressure pulse or flow-induced elastic 

waves generated during the pulsatile flow of Newtonian fluids in the stenosed arterial 

models.  The arterial models used in the experiment are of different stages of stenosis 

(blockage ratios) and material properties (elastic moduli) to understand the effects of 

fluid flow properties in stenosed sections of arteries.  During the acoustic emission (AE) 

test, flow-induced acoustic emission signals have been monitored or measured to 

detect, locate and characterize the pulsatile flow in the geometric arterial models. 

Hence, the author believes that extracting and correlating such signals to geometric 

variations or defects in the arterial models may have a potential clinical application for 

the early detection of risky vascular abnormalities such stenosis or atherosclerosis, 

aneurysm, etc. early on.  Therefore, the use of acoustic emission (non-invasive 

detection techniques) used to determine the integrity of a material, component or 

structure would be applied in measuring quantitatively some characteristics of the 

diseased arterial models used in this research.  Thus, the author believes that this 

research work will contribute to the current or future studies of pulsatile flows including 

the development of non-invasive techniques for locating or diagnosing critical vascular 

diseases or defects in flexible or rigid industrial pipes by generating pulsatile flows. 

 Blood flow in general is usually modeled as non-Newtonian due to the presence 

of deformable formed elements (i.e. blood cells and blood platelets) that make up 45% 

of blood by weight.  The deformability of the formed elements are in proportions to the 

shear strain rates.  However, blood flow in large arteries (diameter > 0.5 mm) has been 



considered as a Newtonian flow due to the 

towards the center of the blood vessels far away from the walls.  Under strenuous 

physical conditions or blood flow in large arteries such as 

heart valves, can be turbulent.  This 

high.  In fact, a close investigation of 

the viscosity as a function of the 

of blood changes non-linearly with shear rate

Newtonian.  On the other hand, the relative viscosity 

10010 ≤≤
•

γ  until it becomes constant 

Figure 1-4:  Relative Viscosity versus Shear Rate 
RBC (Rouleaux Formation) 
Aggregated RBC

 

Thus, depending on the deformability or disintegration of the 

(RBC), the above curve can be

8 
 

 

considered as a Newtonian flow due to the aggregation of the blood cells and platelets 

towards the center of the blood vessels far away from the walls.  Under strenuous 

blood flow in large arteries such as in the aorta

ent.  This implies the magnitude of the shear strain rate is 

a close investigation of non-Newtonian blood viscosity model

the viscosity as a function of the shear strain rate 
•

γ , shows that the relative viscosity 

linearly with shear rate; at low shear rates the blood

On the other hand, the relative viscosity gradually 

until it becomes constant at higher shear rates as shown in Figure 1

:  Relative Viscosity versus Shear Rate Curve Showing: (a) Aggregation of 
(Rouleaux Formation) at Low Shear Rates and (b) Disintegration of 

RBC at Higher Shear Rates [5]. 

deformability or disintegration of the aggregated

curve can be divided into three categories/zones [1, 6, 

of the blood cells and platelets 

towards the center of the blood vessels far away from the walls.  Under strenuous 

the aorta, or in stenotic 

plies the magnitude of the shear strain rate is 

viscosity models by plotting 

relative viscosity 

blood is highly non-

 decreases for 

shown in Figure 1-4. 

 

(a) Aggregation of 
at Low Shear Rates and (b) Disintegration of 

ed red blood cells 

, 7] as follows: 
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• Zone I ( 10≤
•

γ ):  Blood is highly non-Newtonian as red blood cells are 

clustered to form large aggregations called rouleaux at low shear rates. 

• Zone II ( 10010 ≤≤
•

γ ):  In this zone, the aggregations of the RBC( rouleaux) 

disintegrate as the shear rate increases resulting in a decrease in viscosity. 

• Zone III ( 100≥
•

γ ):  Blood is Newtonian (the viscosity becomes constant or 

independent of the shear strain rate) due to the flow of the clusters of RBC in 

layers along with the plasma. 

 Thus, the experimental and CFD simulation studies in this research focus on 

Newtonian fluid models due to the fact that a high Reynolds number blood flow behaves 

Newtonian.  This argument is supported and evidenced by the research work of many 

previous researchers that have shown or cited blood flow in large arteries (> 0.5 mm 

diameter) as a Newtonian flow. With this background outlines, the objectives of this 

research are summarized as follows: 

A. Computational fluid dynamics investigation of the effect of time-varying harmonic 

boundary conditions on pulsatile flow characteristics (transient friction factor 

variations) at different frequencies – fundamentals of pulsatile flow.  

B. Experimental characterization of pulsatile flows in axisymmetric arterial geometric 

models with different stenosis levels at different pulsating frequencies.    

C. CFD simulation of pressure-driven flows at selected frequencies and arterial 

models to test the capability of existing mathematical models by comparing the 

predicted results with the experimental flow test results. 
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D. Characterization and detection of pulsatile fluid flow-induced AE emissions at 

different frequencies using arterial models with different stenotic (constriction) 

levels. 

1.3  Road Map 

 The roadmap to achieve the goals of the dissertation work is as follows: 

I. Perform baseline CFD simulation of pulsatile flows to characterize pulsatile flows 

with harmonically varying inlet boundary conditions in the range of 1 to 10 Hz that 

are relevant to the cardiovascular system of mammals and industrial applications 

in particular.  

II. Conduct experiments on pulsatile fluid flow in a simplified cardiovascular 

hydraulic model (SCHM) to simulate periodic pulsatile flows.  The Newtonian 

fluids used in this study are as follows: 

a. Distilled water and  

b. Aqueous solution of glycerin (40% by weight glycerin) in distilled water to 

simulate Newtonian blood flow. 

III. Conduct transient CFD simulations of the fluid flow domain of the arterial models 

in the test section of the experimental setup of the SCHM  with the following 

purposes: 

a. Predict the volumetric flow rate in the arterial models and compare with the 

experimental results.  

b. Investigate the flow behavior within the arterial model at selected 

frequencies and specific geometric configurations (stenosis level) of the 
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arterial model using the measured pressure at the inlet and outlet to the 

test--section tube pressure as boundary conditions. 

IV. Characterize and detect pulsatile fluid flow-induced acoustic emissions using 

acoustic emission NDE techniques. 

V. Correlate the findings of III and IV for selected frequencies and geometric models 

qualitatively.   

1.4   Dissertation Outline 

 In this study, the author presents the literature review on the fundamentals of 

cardiovascular system in Chapter 2 as it is important to identify the most important 

physiological parameters that are relevant for this research.  In Chapter 3, the literature 

review related to this research is presented.  The CFD simulation work on the effect and 

characterization of harmonically varying pulsatile flows in a pipe and that of a periodic 

flow in aneurysmal and healthy axisymmetric arteries are presented in Chapter 4.  

Chapter 4 introduces the fundamental investigation work on pulsatile flows ahead of the 

experimental work.  Chapter 5 is dedicated to the discussion of the experimental setup, 

instrumentation, and procedures for conducting the experimental pulsatile flow and the 

measurement of the associated acoustic emissions in the arterial models.  The results 

and discussion of the experimental pulsatile flow study in the SCHM and the relevant 

CFD simulation using healthy and stenosed arterial models with different stages of 

stenosis (blockage ratios) and material properties (elastic moduli) is presented in 

Chapter 6.  The acoustic emission measurement results and discussion are presented 

in Chapter 7.  At last but not least, the summary, conclusion and future work 

recommendations are laid out in Chapter 8.  
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CHAPTER 2 BACKGROUND ON CARDIOVASCULAR SYSTEM  

2.1  Introduction  

 The cardiovascular system of birds and mammals in general and that of humans 

in particular consists of blood as the working fluid, a four chambered heart that functions 

as a dual pulstatile pump, blood vessels (arteries and veins) that serve as the conduit of 

blood to and from all parts of the body (tissues and organs) as well as capillaries that 

serve as diffusion devices for the exchange of gases (oxygen, carbon dioxide, etc.) and 

other nutrients. 

The main functions of the human cardiovascular system  (CVS) are the rapid 

convective transportation of nutrients such as glucose, amino acids, fatty acids, and 

vitamins as well as oxygen and drugs to the tissues and organs, and the removal of 

metabolic waste products such as carbon dioxide, urea and other unwanted byproducts 

from the same tissues and organs.   

The CVS is also responsible for the regulation of body temperature by removing 

heat from the tissues and organs of our bodies.  Moreover, the CVS provides a 

hydraulic mechanism for genital erection in the reproductive system of mammals. The 

CVS also serves as a control system by distributing hormones secreted by itself such as 

the atrial natriuretic peptide (a polypeptide hormone involved in the homeostatic control 

of body water, sodium, and adiposity).  For instance, the atrial myocytes (cells in the 

atria of the heart) release a hormone in response to signals of raised blood pressure [8, 

9].  The CVS may also carry other secretions or hormones produced by other organs 

outside the CVS to other parts of the body.  The other crucial function of the CVS also 
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includes the delivery of disease-fighting elements of the immune system, such as white 

blood cells and antibodies to tissues and organs of the body under attack.  The CVS 

also provides healthcare professionals with vital information on the health status of a 

subject by turning to routine examination of the elements of the cardiovascular system 

by measuring the arterial blood pressure, counting the pulse rate, testing blood to check 

on white or red blood cell concentrations or antibodies to detect for any infection or 

other valuable information. Figure 3 below shows the systemic and pulmonary 

circulations. 

 

Figure 2-1:  Systemic and Pulmonary Circulations [10]. 

In the last century alone there was a major progress in the study of the 

cardiovascular system of human and other mammalian animals in general.  The 
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research progress has been primarily driven by the major health challenges and the 

high percentage of death rates related to the cardiovascular system in the western 

world that enjoys high living standard.  The main focus of the research has been on 

understanding the anatomy and physiology of the cardiovascular system in general and 

the development and implementation of design solutions of medical devices to 

overcome cardiovascular diseases.  Great emphasis and progress has been made on 

heart transplantations, vascular implants including heart valve replacements as well as 

promising efforts in finding blood substitutes to mitigate shortage of blood in the trauma 

treating emergency or surgical rooms. 

2.2  Similarity of Mammalian Cardiovascular System Desig n  

 According to Dawson [11], a close observation of the cardiovascular system of 

mammals shows a stark similarity in the organization and operation of the 

cardiovascular system of mammalian animals including that of human beings.  No 

wonder why many researchers have conducted their research on animals to understand 

the anatomy and physiology of the human CVS and solve the diseases associated to it 

by exploiting the similarity in their structures and designs.  Thus, the similarity in the 

structure and design of the CVS of mammals such as pig, dog, sheep to that of the 

human cardiovascular system has helped in the development of stent-grafts and other 

cardiovascular implants or transplantation of tissues.  However, there is also a 

significant difference in the size of the heart, cardiac output, oxygen consumption and 

heart rates as well as the amount of blood in the circulatory system of different 

mammalian animals including man depending on the weight of the subject.   



In his study, Dawson [11] developed general scaling laws with a power

correlate various physiological variables of mammals to their body weights as follows: 

nkWY =    

Where Y is the dependent variable, W is animal weight, k is a constant, and n is 

exponent.  Hence, in its logarithmic form, the scaling equation above can be reduced to: 

( ) ( ) (kWnY logloglog +=

Table 2-1:  Data on Heart and Total Blood Weights for Different Mammals 

For example, after plotting the total heart weight data in Table 1 on a logarithmic scale 

and applying a best fit curve, one would obtain a linear sc

body weight of the animal, W, to its heart weight

WWh 0043.0=   
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developed general scaling laws with a power

correlate various physiological variables of mammals to their body weights as follows: 

       

Where Y is the dependent variable, W is animal weight, k is a constant, and n is 

exponent.  Hence, in its logarithmic form, the scaling equation above can be reduced to: 

( )k        

Data on Heart and Total Blood Weights for Different Mammals 

For example, after plotting the total heart weight data in Table 1 on a logarithmic scale 

and applying a best fit curve, one would obtain a linear scaling law correlating the total 

body weight of the animal, W, to its heart weight, Wh as per Dawson [11]: 

       

developed general scaling laws with a power-law form to 

correlate various physiological variables of mammals to their body weights as follows:  

 (2-1) 

Where Y is the dependent variable, W is animal weight, k is a constant, and n is 

exponent.  Hence, in its logarithmic form, the scaling equation above can be reduced to:  

  (2-2) 

Data on Heart and Total Blood Weights for Different Mammals [11]. 

 

For example, after plotting the total heart weight data in Table 1 on a logarithmic scale 

aling law correlating the total 

:  

 (2-3) 



In a similar fashion, the correlation of the total body weight of a mammalian animal to its 

total blood weight is given by E

WWB 056.0=   

Where WB is the total blood weight in the circulatory system. 

Other variables such as heart rate and oxygen consumption that depend on the 

total body of the animal are shown in Table 2

Table 2-2:  Total Body Weight, Heart Rate & Oxygen Consumption of Animals 

* Limited information was obtained from Wikipedia.
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In a similar fashion, the correlation of the total body weight of a mammalian animal to its 

total blood weight is given by Equation (4) as follows [3]:  

       

is the total blood weight in the circulatory system.  

Other variables such as heart rate and oxygen consumption that depend on the 

total body of the animal are shown in Table 2-2.   

Total Body Weight, Heart Rate & Oxygen Consumption of Animals 

* Limited information was obtained from Wikipedia. 

In a similar fashion, the correlation of the total body weight of a mammalian animal to its 

 (2-4) 

Other variables such as heart rate and oxygen consumption that depend on the 

Total Body Weight, Heart Rate & Oxygen Consumption of Animals [11]. 
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The respective scaling equations for both variables are provided by equations (5) and 

(6) as follows [6]: 

25.0229 −= WHR          (2-5) 

75.0
0 2.11 WQ =          (2-6) 

2.3  The Human Cardiovascular System  

As discussed in the introduction, the main function of the circulatory system is the 

delivery of oxygen, nutrients, and other substances to all body cells and the removal of 

metabolic waste products.  As shown in Figure 2-2, the principal blood vessels in the 

human blood circulatory systems are shown.  Figure 2-3 also shows the network of 

blood vessels that connect the heart to the tissues and organs of the body forming the 

systemic and pulmonary circulations.  Thus, the heart as a dual pump, pumps blood into 

two separate circulatory systems, namely, the systemic (main) and pulmonary 

circulations.  In the systemic circulation, blood is pumped from the left section of the 

heart to all parts of the body except the lungs through the aortic valve, aorta and the 

systemic arteries which in turn branch into arterioles that further branch into the smallest 

blood vessels called the capillaries.  It is here at the capillary level where the exchange 

of gases and nutrients occurs. 

 On the other hand, the pulmonary circulation begins at the right section of the 

heart which consists of two chambers, namely, the right atrium and right ventricle 

separated by the atrioventicular valve called the tricuspid valve.  The pumping of the de-

oxygenated blood to the lungs is effected by the contraction of the right ventricle during 
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the ejection (contraction) phase of the heart. The pulmonary circulation operates at low 

pressure compared to the systemic circulation.   

 

Figure 2-2:  The Principal Veins and Arteries - Human Circulatory System [12]. 

 

 In the lungs, the exchange of gases (unloading of carbon-dioxide from the blood 

and loading of oxygen) takes places and finally the oxygen carrying blood returns to the 

left section of the heart (left atrium) to complete the pulmonary circulation.  From the left 
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atrium, the oxygenated blood is transferred to the left ventricle through the mitral valve 

during the diastolic (relaxation phase of the heart).   

 

Figure 2-3:  Network of Blood Vessels (Arteries, Veins and Capillaries in the 
Cardiovascular System [10]. 

  Thus, the left side of the heart operates at high pressure system to deliver 

oxygenated blood to the rest of the body through a network of blood vessels (arteries, 

arterioles, capillaries, venules and veins) to overcome the high hydraulic resistance. 

Thus, the walls of the right ventricle are much thinner than those of the left, because the 
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work (pressure) load is lower for the right side of the heart as the hydraulic resistance of 

the pulmonary circulation is much less than the main circulatory system. 

2.4  The Human Heart  

 In this section and following subsections, a brief history on the early anatomic 

and physiological study of the human heart including modern perspectives will be 

reviewed. 

2.4.1  The Human Heart as the Blood Pump 

 The human heart has an average weight of 11 ounces (310 grams) and is a little 

larger than the size of one's fist [13].  The heart beats about 108,000 times a day, 

pumping about 2,100 gallons (8,000 liters) of blood which translates to an average 

ejection rate of 75 ml of blood per stroke or about 5.6 liters of blood (cardiac output) per 

minute at resting conditions.  Thus, at the end of one's life (assuming an average life 

expectancy of 80 years), the heart would have accumulated more than 3 billion beats or 

cycles (successive contractions and relaxations). However this does not mean that the 

cardiac output is constant at all times.  The heart output could increase up to 4 to 5 folds 

[8] depending on the oxygen demand of the human body tissues or organs.  For 

example, during any flight or fight conditions or athletic competitions, the cardiac output 

could even exceed the above figures.  This implies the blood flow in normal, curved or 

diseased arteries could potentially turn from a laminar flow into a turbulent flow.   

 During each heartbeat, the heart pumps blood into two serial circulations, namely 

the pulmonary circulation and systemic circulation.  In the pulmonary circulation, venous 
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(deoxygenated) blood is transported from the right heart to the lungs.  Normally, 

deoxygenated blood from the systemic circulation flows into the right atrium passively 

through the superior and inferior venae cavae. Then, the blood enters into the right 

ventricle (composed of mainly cardiac muscle) through the tricuspid valve during the 

relaxation phase of the right ventricle, diastole.  From the right ventricle the blood is 

pumped to the lungs during the contraction phase of the ventricular muscle, systole.  

From the lungs, oxygenated blood returns to the heart, completing the circuit.  Thus, the 

function of the pulmonary circulation is the transportation of deoxygenated blood from 

the heart to the lungs and returning oxygenated blood back to the heart.  In the systemic 

circulation however, oxygenated blood from the left heart is delivered to all parts of the 

body and deoxygenated blood is returned to the heart.  Thus, the systemic circulation 

comprises the major arteries and arterioles that carry oxygenated blood and other 

nutrients from the left ventricle to the systemic capillaries of each tissue and organs of 

the body and the venules and veins that transport the deoxygenated blood (carbon-

dioxide) back to the heart through the superior and inferior venae cavae. As discussed 

in Section 2.1, the human/mammalian heart is divided into four chambers (most critical 

parts) and the major vessels of the human heart are as shown in Figure 2.4.   
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Figure 2-4:  Structure of Mammalian Heart [8, 14]. 

 

The upper right and left chambers called the atria serve as passive reservoirs for 

the returning blood to the heart.  From the right and left atria blood is forced into the 

right and left ventricles during the atrial systole. On the other hand, the two lower 

chambers of the heart (right and left ventricles) pump blood to the lungs and body 

through their respective arteries (pulmonary and aortic arteries) as shown in the cross-

sectional view of the mammalian heart of Figure 2-5.  
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Figure 2-5:  Cross-section of Mammalian Heart [8]. 

 

2.4.2  Major Phases of the Cardiac Cycle  

 Figure 2-6 shows the principal events in the normal cardiac cycle, for an 

individual with a blood pressure of 120/80 and a heart rate of 75 beats per minute.  In 

the cardiovascular system of a healthy human adult, a single cardiac cycle involves the 

simultaneous contraction of the atria (atrial systole) while the two ventricles are relaxed 

(ventricular diastole) followed by the contraction of the ventricles (ventricular systole) 

while the atria are relaxed (atrial diastole).  
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 The cardiac cycle which represents a series of mechanical events (contraction 

and relaxation) of the heart is preceded by action potentials in the cardiac muscle [8, 10, 

15, 16] duet to inherent electrical activity.   Thus, each heart cycle begins with an action 

potential generated at a pacemaker called the sinoatrial (SA) node which is part of the 

conducting system located at the wall of the right atrium.  The action potentials are 

repeatedly and rhythmically generated by a group of specialized cardiac muscle fibers 

called the autorhythmic cells.  It is the autorhythmic cells that periodically generate and 

trigger the contraction of the heart chambers. The autorhythmic muscle fibers act as a 

pacemaker to control and coordinate the heartbeat.  The autorhythmic cells also form 

the conducting system for the delivery of the action potentials throughout the heart 

muscle.  On the other hand, a group of cells that are responsible for the powerful 

contraction of the heart to propel blood from the chambers are called the contractile 

cells.  Some of the major events in a cardiac cycle include: 

1. Generation of Electrical Activity  

2. Pressure and Volume Changes  

3. Heart Sounds 

The Electrocardiography (ECG) :  The transmission of action potentials through the 

conduction system to all parts of the heart generates electrical current that can be 

detected using electrodes placed on the surface of the body.  The record of such 

electrical changes associated with the heartbeat is called electrocardiogram (ECG).  

The sequences of electrical activity are correlated to the mechanical events of the heart, 

namely, contraction and dilation.  Depolarization causes contraction and repolarization 
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causes relaxation of the cardiac muscle fibers. The correlation of the ECG waves with 

the heart activity are shown in Figure 2-6 and summarized as follows [10]:   

1. Initially, a cardiac action potential arises in the SA node and propagates through 

the atrial muscle down to the AV (atrioventricular) node located at the junction 

between the atria and ventricles.  The P wave appears in the ECG due to the 

depolarization of the atrial contractile fibres.  

2. Following the appearance of the P wave, the atria of the heart contract.  

3. Then the action potential propagates through the AV bundle and then the 

depolarization of the ventrcular contractile fibers produces the QRS complex 

which is a much stronger signal as the ventricles are much larger than the atria.  

At the same time the atrial repolarization occurs during this activity causing them 

to relax and ready for filling and next phase of contraction.  

4. The contraction of the ventricular contractile fibers begins shortly after the "QRS" 

complex appears.  Blood is squeezed out of the ventricles through the semilunar 

valves.  

5. Repolarization of the ventricular contractile fibers begins at the apex of the heart 

and spreads throughout the ventricular myocardium.  This produces the "T" wave 

in the ECG.  

6. Shortly after the "T" wave begins, the ventrilcles relax - the ventricular diastole." 



Figure 2-6:  Record of Electrical Activities of the Heart D

 

Thereafter, the contractile fibers in both the atria and ventricles relax briefly and then the 

P waves appear again in the ECG.  Then the atria begin to contract and the cycle 

repeats for as long as the life span of the human subject. 

Cardiac Cycle - Pressure and Volume Changes: 

electrical activity (ECG) and mechanical events of the heart, as well as changes in atrial 

pressure, ventricular pressure, aortic pressure and ventricular volume for a single 

cardiac cycle or heartbeat are shown in 

pertain to the left atrium, left ventricle and the large aorta.  The 

half of the heart (right atrium and right ventricle) are

left half of the heart (left atrium and left ventricle).  The correlation of the electrical 

(ECG) and mechanical events in a cardiac cycle are summarized as follows 

A. Atrial Systole:  In this event

1. Depolarization of the SA node causes atrial depolarization, marked by the 

P wave.  
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trical Activities of the Heart During one Cycle [

Thereafter, the contractile fibers in both the atria and ventricles relax briefly and then the 

P waves appear again in the ECG.  Then the atria begin to contract and the cycle 

repeats for as long as the life span of the human subject.  

Pressure and Volume Changes:  The correlation of the cardiac 

electrical activity (ECG) and mechanical events of the heart, as well as changes in atrial 

pressure, ventricular pressure, aortic pressure and ventricular volume for a single 

heartbeat are shown in Figure 2-7.  The pressure shown in Figure 

pertain to the left atrium, left ventricle and the large aorta.  The pressures in the right 

half of the heart (right atrium and right ventricle) are much lower than the pressure in the 

eft half of the heart (left atrium and left ventricle).  The correlation of the electrical 

(ECG) and mechanical events in a cardiac cycle are summarized as follows 

In this event, the atria contract while the ventricles are relaxed. 

Depolarization of the SA node causes atrial depolarization, marked by the 

 

[15]. 

Thereafter, the contractile fibers in both the atria and ventricles relax briefly and then the 

P waves appear again in the ECG.  Then the atria begin to contract and the cycle 

The correlation of the cardiac 

electrical activity (ECG) and mechanical events of the heart, as well as changes in atrial 

pressure, ventricular pressure, aortic pressure and ventricular volume for a single 

.  The pressure shown in Figure 2-7 

pressures in the right 

much lower than the pressure in the 

eft half of the heart (left atrium and left ventricle).  The correlation of the electrical 

(ECG) and mechanical events in a cardiac cycle are summarized as follows [10]: 

he atria contract while the ventricles are relaxed.  

Depolarization of the SA node causes atrial depolarization, marked by the 
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2. Atrial deoplolarization results in atrial systole (contraction). The atrial 

contraction forces blood to flow into the ventricles through the AV valves.   

3. During the atrial contraction, the ventricular filling occurs as the ventricles 

are in the relaxed phase.  

B. Ventricular Systole: In this event the ventricles contract while the atria relax. 

4. The QRS complex in the ECG marks the beginning of the ventricular 

depolarization.   

5. Ventricular depolarization causes ventricular systole whereby the blood 

pressure in the left ventricle increases while the semilunar and AV valves 

are closed.  

6. Then the ventricular contraction continues until the pressure inside the 

ventricles sharply increases and the blood is ejected through the 

semilunar valves.  

7. Volume of blood ejected from the left ventricle (stroke volume, SV) is the 

difference between the end of diastolic and end of systolic volumes in the 

left  

C. Relaxation Period: In this event the whole heart is in the diastolic phase.  

8. The T wave in the ECG marks the beginning of the ventricular 

depolarization.  
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 Figure 2-7:  Successive Events in a Cardiac Cycle - One Heart Beat [10]. 
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9. The ventricular depolarization results in the relaxation of the ventricles.  

During this event, the pressure inside ventricle falls and isovolumetric 

relaxation occurs as all the valves are closed 

10. Ventricular pressure continues to decrease below atrial pressure.  The AV 

valves open and ventricular filling process begins. Another cycle continues 

when the atria start to depolarize and the P wave signal in the ECG cause 

atrial contraction - systole.   

 

D. Heart Sounds:  During the cardiac cycle, sound is generated due to turbulent 

blood flow caused by the closure of valves which is manifested in the form of 

heart murmur.  As shown in Figure 2-8 below, the first sound S1 (lubb sound) is 

due to AV valve closing right after the ventricle starts to contract.  The second 

sound S2 (dupp sound) is a sharp sound caused by the turbulent blood flow 

during the closure of the semilunar valves at the end of the ventricular systole.  

S3 is  the heart sound caused by the turbulence of blood flow during rapid 

ventricular filling while the S4 sound is due to blood turbulence due to atrial 

systole [10].  
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Figure 2-8:  Correlation of Heart Sounds with ECG Waves, Pressure Changes, and 
Valve Opening and Closing -  Successive Events in a Cardiac Cycle [10]. 
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2.4.3  Pressure and Blood Velocity Profiles in Systemic Ci rculation 

 As discussed in subsection 2.4.1, the human or mammalian heart acts as an 

intermittent muscular dual pump generating a pulsatile blood flow both in the pulmonary 

and systemic circulations.   In the systemic circulation as shown in Figure 2-9, the blood 

pressure in the left ventricle pulsates between 0 and 120 mmHg in excess of 

atmospheric pressure.   

 

Figure 2-9:  Profile of Pressure and Blood Velocity in Human Systemic Circulation of a 
Resting Human [8]. 
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 In the systemic circulation, due to the pulsatile blood flow the blood pressure in 

the aorta fluctuates between a peak of 120 mm Hg (during ventricular systole - 

ventricular contraction or ejection phase) and a trough of 80 mm Hg (during ventricular 

diastole - ventricular relaxation). Thus, in the aorta the mean blood pressure in normal 

subjects is about 100 mmHg.  As the blood flows through the network of large and 

smaller arteries, the pulsation and amplitude of the pressure and velocity decreases.  

The highest pressure drop occurs in the small arteries and capillaries which have the 

highest hydraulic resistances. At the entrance to the capillary network, the average 

blood pressure declines to about 35 mmHg whereas the hydrostatic pressure in the 

capillary bed may reach about 18 mmHg.  On the hand the pressure in the veins quite 

low and pressure gradient between the smallest veins (venules) and the right atrium is 

about 18 mmHg.  

 The velocity profile in the systemic circulation also follows the pulsatile behavior 

of the pressure. The pulsations in pressure and velocity tend to decrease rapidly in 

small arteries (arterioles and capillaries) as well as venules and veins. Thus, the 

hydraulics of the cardiovascular system relating the gradient of blood pressure and 

blood flow rate can be mathematically expressed as follows: 

)( 21 PPKPKQ −=∆=              (2-5) 

Where Q is the blood flow rate, K is the proportionality constant and ∆P is the pressure 

gradient or difference that drives the blood between two points along the blood vessel 

whereas P1  and P2 are the upstream and downstream pressures at the respective 

points.  Equation (2-7) can also be expressed using the famous Darcy's law as follows: 
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Φ

−
=

)( 21 PP
Q               (2-6) 

where Φ is the hydraulic resistance. In the cardiovascular system, the total hydraulic 

resistance is a combination of vascular resistance, viscosity, and turbulence (depending 

on the local Reynolds number).  

2.5  Blood Vessels  

 Having reviewed the heart as the blood pump in the cardiovascular system, in 

this section and following subsections the author reviews the conduits of blood, namely, 

the blood vessels.  From biomechanics of point of view, blood vessels are classified as 

soft tissues that do not obey Hooke's law.  In fact, blood vessels exhibit viscoelastic 

behavior during loading and unloading cycle with hysteresis [1].   

 In the cardiovascular system of mammals including humans, blood is pumped by 

the left section of the heart (left ventricle) and flows through the major elastic arteries 

(aorta, common carotid, subclavian, vertebral, pulmonary, and common iliac arteries, 

etc.), branching muscular arteries, arterioles and capillaries. Then venules and veins 

return the blood to the right section of the heart completing the main circulatory system.  

Thus, blood vessels constitute a system of conduits responsible for the transport of 

blood laden with useful nutrients (glucose, amino acids, fatty acids), oxygen, vitamins, 

drugs and hormones to the underlying tissues and organs of the body while carrying 

away waste products of metabolism such as urea, carbon dioxide, etc. from the body 

tissues [8, 10, 15, 17].  There are five classifications of blood vessels:  

i. Arteries,  
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ii. Arterioles 

iii. Capillaries 

iv. Venules 

v. Veins 

The wall thickness and lumen sizes of blood vessels are summarized in Table 2-3.    

Table 2-3:  Wall Thickness and Lumen Sizes of Blood Vessels [18]. 

Item 

No.
Blood Vessel Description Wall Size Lumen Size

1 Aorta 2 mm 25 mm

2 Artery 1 mm 4 mm

3 Arteriole 30 μm 30 μm

4 Capillary 0.5 μm 6 μm

5 Venule 3 μm 30 μm

6 Vein 0.5 mm 5 mm

Wall Thickness and Lumen Sizes of Blood Vessels

 

2.5.4  The Structure of Blood Vessels  

A close look of the structure of blood vessels shows that  except capillaries, the walls of 

all blood vessels (aorta, arteries, arterioles, venules, veins and vena cava) are made up 

of three layers [8, 10, 17] as follows:  

i. Tunica intima (innermost layer) - composed of endothelium, basement 

membrane, and elastic tissue. 

ii. Tunica media (middle layer) - consists of elastic fibers and smooth 

muscle.  

iii. Tunica externa or adventitia (outer layer) - made up of connective tissues.  
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 The structures of the different blood vessels of the pulmonary and main 

circulatory systems are shown in Figure 2-10. It is also imperative to point out that the 

structures of the blood vessels are linked to the functions of the respective blood 

vessels.  For a healthy human subject, the mean pressure in the arteries is about 100 

mm Hg.  However, in the pulmonary circulation, the pressure is below 25 mm Hg  as 

shown in Figure 2-11.  The distinctive differences between arteries, veins and capillaries 

are shown in Figure 2-12.  

 

Figure 2-10:  Structure of Blood Vessels in the Human CVS [15]. 
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Figure 2-11:  Healthy Blood Pressure in Human Systemic Circulation [19]. 

 

 

Figure 2-12:  Comparison of the Structure of Blood Vessels [10]. 



Mills et al. [20] conducted research on the pressure and flow waves in the human 

arterial tree and is shown in Figure 

at given site shows that the peak value of the velocity profile lags behind the peak value 

for the pressure.  

Figure 2-13:  Pressure and Flow Waves in Human Ar
Cardiac Catheterization
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arterial tree and is shown in Figure 2-13.  A close look at the pressure and flow waves 

at given site shows that the peak value of the velocity profile lags behind the peak value 

ow Waves in Human Arterial Tree Undergoing Diagnostic 
Cardiac Catheterization [20]. 
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.  A close look at the pressure and flow waves 

at given site shows that the peak value of the velocity profile lags behind the peak value 
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2.5.5  Cardiovascular Blood Pressure and Flow Regulation 

In the cardiovascular system, negative feedback systems control blood pressure 

and flow by adjusting heart rate, stroke volume, vascular resistance and systemic blood 

volume.  As shown in Figure 2-14, the cardiovascular center in the medulla oblongata 

regulates the blood pressure and flow by receiving inputs (nerve impulses) from higher 

brain centers, proprioceptors (movement monitoring), baroreceptors (blood pressure 

monitoring) and the chemoreceptors (blood acidity monitoring) nerves and effect the 

negative feedbacks through the parasympathetic or sympathetic nerves by decreasing 

or increasing heart rate, or vasodilation or vasoconstriction of the blood vessels [10, 15-

17].  

 

Figure 2-14:  Cardiovascular Center - Center of Nervous System Regulation of Heart 
Beat, Force of Contraction, Vasodilation and Vasoconstriction of Blood 
Vessels [10]. 
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2.5.6  Autonomic control of the Circulation System 

The sympathetic innervation of the circulation system plays an important role in 

regulating blood flow.  For example, the vasomotor center in the modulla oblongata 

regulates blood flow by increasing smooth muscle tone (vasoconstriction) and hence 

increasing the resistance of blood flow as shown in Figure 2-15.  

 

 

Figure 2-15:  Vasomotor Center: Blood Vessel Control [21] 

 

Factors that affect mean blood pressure in the cardiovascular system of humans is 

shown in Figure 2-16.   
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Figure 2-16:  Factors that affect Blood Pressure In Human CVS: Factors that Increase 
Cardiac Output  and Systemic Vascular Resistance [5]. 
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2.6  Physical Properties and Functions of Blood 

 Now that the main components of the cardiovascular system, namely, the heart 

and blood vessels have been reviewed in the previous sections, this section is devoted 

to reviewing the working fluid of the cardiovascular system, blood briefly. 

 At a temperature of 38 oC blood has a density of 1050 kg/m3 and it is slightly 

denser than water.  It is also more viscous than water and slightly alkaline with a PH 

value ranging from 7.35 to 7.45.  The functions of blood as mentioned in the 

introductory section of chapter 2 are as follows [10, 22]: 

i. Transportation of nutrients from the digestive system to all cells of the body. 

ii. Transportation of oxygen from the lungs to all cells of the body. 

iii.  Transportation carbon dioxide and other waste products from all body tissues 

and organs to the excretory organs. 

iv. Transportation of hormones from endocrine glands to targeted tissues of the 

body. 

v. Regulation of body temperature by carrying heat away from tissues. 

vi. Regulation of the pH and water content of cells. 

vii. Protection against diseases and blood loss through clotting. 

viii. Provision of hydraulic mechanism for genital erection in the reproductive 

system by increasing supply of blood at increased pressure. 



42 
 

 

2.6.7  Composition of Blood 

Blood constitutes about 8% of the body weight and is composed of the following major 

components [10, 22]: 

i. Plasma (55%) by weight which can be decomposed further into 

a. Water (91.5 %) 

b. Proteins (7%)  

c. Solutes (1.5%) 

ii. Formed elements (45%) by weight which consists of  

a. Red blood cells  

b. White blood cells 

c. Platelets  

2.6.8  Blood Rheology  

 Generally rheology is defined as the study of deformation and flow properties of 

materials. On the other hand, hemorheology is a compound word derived from the 

Greek word hemo which denotes blood and rheology (the science of deformation and 

flow of materials). Hence, hemorheology focuses on the study of blood flow and 

deformations.  The flow properties of fluids are defined by the mathematical relationship 

between shear stress and shear rate.  Hemorheology has been of great interest in the 

fields of biomedical engineering and medical researches for several years. Many 

researchers have investigated correlations between whole blood viscosity and arterial 

diseases, stroke, hypertension, diabetes, smoking, aging, and gender.  

 Factors that affect measurement of blood viscosity are as follows [5]: 
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• Red Blood Cell (RBC) Aggregation  

• Hematorcrit – Volume ratio of RBC to whole blood 

• Tube size – Independent of size for D >1000 micrometer. 

• Temperature  

• Deformability of suspensions – RBC, Platelet, etc 

• Age, gender, behavior (smoking or non-smoking) 

2.7  Fluid Constitutive Models 

 There are two types of fluid constitutive models that correlate the shear stress 

and shear rates in a fluid flow, namely Newtonian and non-Newtonian constitutive 

models.  

2.7.9  Newtonian Fluid Constitutive Models 

 In a Newtonian fluid flow, the constitutive model that correlates the shear stress 

and shear rate or strain is Newton's law of viscosity [23, 24] given by: 

   
•

= γµτ         (2-7) 

where µ is Newtonian viscosity constant, and 
•

γ  is the shear rate or strain rate.  

 



 (a) Shear stress vs. Shear rate                     (b)  Viscosity vs. Shear Rate 

Figure 2-17:  Newt

 

2.7.10  Non-Newtonian Fluid Constitutive Model

Non-Newtonian fluids are more or less described as follows

• Aqueous solutions 

suspensions of fine particles.

• Fluids that do not obey the Newtonian constitutive model

• The slope of shear stress vs strain rate curve 

• Non-Newtonian fluids 

depending if viscosity increases or decreases with shear strain rate. 

• Non-Newtonian fluids that 

an applied shear stress
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(a) Shear stress vs. Shear rate                     (b)  Viscosity vs. Shear Rate 

Newtonian Fluid Constitutive Model [5]. 

Newtonian Fluid Constitutive Model s 

are more or less described as follows: 

 of high molecular weight polymers, polymer melts, 

suspensions of fine particles. 

Fluids that do not obey the Newtonian constitutive model 

The slope of shear stress vs strain rate curve - not constant 

luids are classified as shear-thinning or shear

depending if viscosity increases or decreases with shear strain rate. 

Newtonian fluids that exhibit yield stress or resistance to deformation to 

an applied shear stress.  

 

(a) Shear stress vs. Shear rate                     (b)  Viscosity vs. Shear Rate  

t polymers, polymer melts,  and 

ing or shear-thickening 

depending if viscosity increases or decreases with shear strain rate.  

resistance to deformation to 
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• In non-Newtonian fluid flow, the constitutive models that correlate the shear 

stress and shear rate or strain are given by different non-Newtonian 

constitutive models as follows: 

1.   The Power-Law Constitutive Equation  

 Non-Newtonian fluids such as aqueous solutions and simple polymeric liquids, 

etc., that exhibit a non-linear mathematical relationship between shear stress and rate 

of shear and pass through the origin of the shear stress and shear rate coordinates can 

be modeled by the two parameter power-law mathematical model of Ostwald and 

deWaele as follows [25]:   

 

n

m 





=
•

γτ           (2-8) 

 

1−•







=

n

m γη
          (2-9) 

    
 

where m and n are the power law constants and η  is the apparent viscosity.  

Thus, those non-Newtonian fluids that follow the power constitutive model, have non-

linear shear stress versus shear rate curves and hence their slopes are not constant as 

shown in Figure 2-18.   
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            (i) Shear Stress versus Shear Rate.   

 

    (ii) Shear Stress versus Shear Rate. 

(a) Shear Thinning Fluid, n < 1, (b) Newtonian Fluid, n =1, (c) Shear Thickening, n > 1 

 Figure 2-18:  Non-Newtonian Constitutive Fluid Model, Power-Law [5]. 

 

In the power law equation (with n>1) the shear stress increases as the shear rate 

increases and such fluid that fits this model is called a shear-thickening or dilatant fluid. 

Shear rate 

Shear Rate 
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On the other hand, a non-Newtonian fluid that obeys the power law equation, with n<1,  

whereby the shear stress decreases as the shear rate increases is called a shear-

thinning or pseudoplastic fluid [26].  However, the power law model fails to describe the 

behavior of many non-Newtonian fluids that resist deformation to an applied shear 

stress until the applied shear stress exceeds a certain yield stress value.  Hence, other 

non-Newtonian models are used to describe such non-Newtonian fluids. Some of the 

models are either modified power-law or Bingham plastic fluid models. 

 

2.  The Carreau-Yasuda Constitutive Model 

The Carreau-Yasuda model is a five parameter model based on the power-law model 

applicable to viscous (concentrated) polymer solutions and melts and is expressed by: 
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       (2-10) 

where the η  is the shear rate dependent viscosity, oη and ∞η  are the viscosities at the 

zero and the infinite shear rates respectively, λ is the time constant, and 2=a  is a 

constant that describes the transition between the zero shear stress and power-law 

regions [25].  The above equation can be restated as: 
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3.  The Herschel-Bulkley Model 

  The Herschel-Bulkley Model is an extension of the power-law model and takes 

into account the yield stress that need to be applied to the non-Newtonian fluid before 

the onset of deformation or shear rate [27]: 

o

n

o form ττγττ ≥





+=
•

       (2-12) 

ofor ττγ ≤=
•

,0        (2-13) 

 

4.  The Bingham Constitutive Model 

 The Bingham model is used to model viscoplastic fluids such as paste, slurries, 

ketchup, etc., which belong to another class of non-Newtonian fluids that do not obey 

the power-law mathematical model. Thus, Bingham plastic fluids would start to deform 

only when sufficient shear stress beyond a yield stress is applied. The Bingham fluids 

show a linear relationship between the applied shear stress and the shear rate 

thereafter. The Bingham equation is:  

 opo form ττγττ ≥+=
•

       (2-14) 

 ofor τττ ≤= ,0       (2-15) 

where oτ is the shear stresses at the zero shear rate and τ  is the general shear stress 

and pm  is the plastic constant which is the slope of the straight line.   
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5.  The Casson Constitutive Model 

 The Casson equation models the flow of viscoplastic fluids and is an nonlinear 

extension of the Bingham plastic model.  It has been used for simulating blood flows 

and suspensions of polymer solutions as follows [25]:   

 ooo for ττγµττ ≥+=
•

       (2-16) 

 ofor ττγ ≤=
•

0        (2-17) 

The Casson model is believed to be useful for the simulation of blood flow as the model 

incorporates both the yield stress and shear-thinning non-Newtonian viscosity.  

 

6.  The Cross Model 

The cross model was introduced to correct the deficiencies of the power-law model by 

Cross [28] and is given by: 

























+

−
+=

•

∞
∞

•

n
o

m γ

ηη
ηγτ

1

         (2-18) 

where the oη and ∞η  are the viscosities at the zero shear rate and infinite shear rate 

respectively and 
•

γ  is the deformation or shear rate.  

In this subsection efforts have been made to summarize the non-Newtonian fluid 

models for simulating biofluid flows in general.  The reader is encouraged to refer to 

other books on rheology of fluids in general that of hemorheology in particular.  
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2.8  Common Cardiovascular Disorders 

 In this section, the most common/general types of cardiovascular diseases 

specifically those that limit the normal functioning of the arterial blood vessels and the 

heart are reviewed.  

2.8.11  Arteriosclerosis 

 Arteriosclerosis is a chronic arterial disease that may develop due to arterial wall 

thickening and hardening.  The migration of smooth muscle and collagen fibers into the 

innermost layer (tunica intima) of the artery causes the walls of the arteries to become 

thick, stiff and narrow with time and eventually losing the flexibility to control the lumen 

size.  The main risk factors for arteriosclerosis are as follows: 

i. Hypertension 

ii. Diabetes mellitus 

iii. Smoking  

iv. Obesity 

The above risk factors for arteriosclerosis may be prevented by exercising regularly, 

quitting smoking, using proper diet and stress management.  

2.8.12  Atherosclerosis  

 Atherosclerosis is type of arteriosclerosis in which the thickening and hardening 

of the walls is caused by deposits of cholesterol and plaques accumulate at a tear in the 

inner lining of an artery over a long period of time.  With time the deposits harden and 

occlude the arterial lumen through which blood flows to distant branching arteries and 
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tissues thereby effectively decreasing the blood flow and resulting in a blood clot that 

may become lodged, completely blocking the artery.  Figure 19 shows the development 

of arterial atherosclerosis that culminates with a clogged artery duet to a blood clot.   

 

 

Figure 2-19:  Development of Atherosclerosis in Medium and Large Arteries [29]. 

 

2.8.13  Stroke 

 Stroke is a condition where there is sudden loss of blood supply to the brain 

when a blood vessel leading to the brain or inside the brain bursts or is blocked due to 

atherosclerotic plaque causing damage to the brain.  According to the US Centers for 

Disease Control and Prevention, stroke is the 3rd leading cause of death in the United 

States.  To reduce permanent damage to the brain or loss of functions, stroke victims 

need to seek immediate treatment as soon as the symptoms of stroke are diagnosed.  

Figure 2-20 shows an intracranial stroke due to atherosclerosis.  There are different 
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types of strokes.  Strokes due to arterial occlusion are called ischemic stroke.  Most 

frequently strokes are caused by atherosclerotic disease of extracranial or intracranial 

arteries.  In the USA, for example, atherosclerotic diseases of extracranial arteries are 

more prevalent in Caucasians, while that of intracranial arteries are more frequent 

among African Americans and Asians.  Thrombus (a stationary blood clot) formed on 

atherosclerotic plaques in extracranial or intracranial arteries, as well as on the aorta, 

can dislodge and embolize to block a distal artery.  Atherosclerosis related strokes 

account for approximately 66% of all strokes [30].   

 Atherosclerotic arteries may be treated using stents to open the arteries as 

shown in Figure 2-21. To avoid any risks associated to stroke due to the blockage of the 

carotid arteries, a physician may recommend to a patient the installation of a stent in the 

carotid artery.  Stenting is a procedure in which a tiny, slender metal-mesh tube is 

inserted inside a carotid artery to increase blood flow.  Figure 2-22 shows a summary 

chain of events that cause plaque rupture [31].  

 

Figure 2-20:  Stroke due to Atherosclerosis [32]. 
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The stent is installed following an angioplasty procedure, in which the physician guides 

a balloon-tipped catheter into the blocked artery. This procedure is recommended in the 

event the patient cannot undergo an endarterectomy ( a procedure to remove plaque 

from the artery by surgery) .  

 Large arteries with aneurysm may be treated with a stent graft during an 

endovascular procedure.  A stent graft is a tubular biofluidic solution composed of 

special fabric supported by a rigid structure, usually metallic mesh called stent which 

props open the aneurysm and prevents possible rupture risks.  

 

Figure 2-21:  Stroke due to Atherosclerosis and Endovascular Solution [29]. 
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Figure 2-22:  Series of Events that Cause Plaque Rupture: Bboth mechanical and 

Biochemical Factors [31]. 
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Figure 2-23:  Endovascular Metallic Mesh - Stents (for Peripheral Blood Vessels) [33].  

 

   

2.8.14  Aortic/Thoracic Aneurysm 

 The aorta is the largest artery in the main circulatory system with a lumen 

diameter of 20 to 30 mm.  It has 4 branches, namely, the ascending aorta, aortic arch, 

thoracic aorta and abdominal aorta as shown in Figure 2-24.  As discussed in the 

introductory section of this dissertation work, aneurysm is defined as the abnormal 

enlargement, distention, dilation, bulging, or ballooning-out of the wall of an artery or 

vein due to the weakening of the vessel wall.  Aneurysm is one of the killer diseases in 

the developed world.  For example, abdominal aortic aneurysm is caused by 

atherosclerosis (hardening of the arteries).  Abdominal aortic aneurysms most 

frequently occur in older men ranging from ages 40 to 80.  Thoracic aortic aneurysm is 

another form aneurysm that occurs in the descending thoracic aorta.  Figure 2-25 
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shows the sites of the thoracic and abdominal aortic aneurysms.  The stent-graft repair 

of abdominal aortic aneurysm is shown in Figure 2-26.  Some of the causes of thoracic 

aortic aneurysm are as follows:   

i. Weakening of the wall of the aorta due to a medial degeneration 

ii. Vasculitis (inflammation of the wall of the artery) 

iii. Trauma, such as a car accident or other deceleration injury in which the 

body slows down rapidly. 

 

Figure 2-24:  Thoracic and Abdominal Aortic Aneurysms [34]. 
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Figure 2-25:  Comparison of a Normal and Aneurysmal Human Aortas [34] . 

 

Figure 2-26:  Endovascular Surgery: Stent-graft Repair of Abdominal Aortic 
Aneurysm [34]. 
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2.8.15  Types of Aneurysms 

 Generally, aneurysms are classified according to their shape and location in the 

human circulatory system.  For instance as shown in Figure 2-27, based on their 

shapes, aneurysms may be classified as follows [35]: 

i. Berry aneurysm 

ii. Saccular aneurysm 

iii. Dissecting aneurysm 

iv. Fusiform aneurysm 

Fusiform aneurysms are most commonly found in the abdominal aorta or popliteal 

artery behind the knee.  Saccular or berry aneurysms are predominantly found in the 

main arteries of the cerebral circulation, especially along the circle of Willis, hence the 

name intracranial aneurysm. 

 

Figure 2-27:  Classification of Aneurysm by Shape [35]. 
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Figure 2-28:  Unruptured and Ruptured Aneurysms [34]. 

 

2.8.16  Abdominal Aortic Aneurysm (AAA) 

 It is the outward ballooning of the artery or blood vessel that supplies blood to the 

abdomen, pelvis, and legs.  AAA aneurysms do not exhibit any visible or clear 

symptoms.  However, ruptured aneurysms cause low blood pressure, lightheadedness 

and increased heart rate, etc.  The AAA disease develops slowly over long period of 

time and mostly affects old age people.  Unless treated early on, AAA may eventually 

become large and suddenly rupture causing blood loss and death.  The treatment of 

AAA is done either by open surgery or using endovascular technique called 

endovascular stent repair depending on the age, condition and size of the aneurysm.  If 

the treatment is done before the rupture of the aneurysm, the survival rate is quite good.  

However, for patients who are treated after the rupture of the aneurysm, the survival 

rate may not exceed 40%.  
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2.8.17  Dissecting Aneurysm  

 The splitting or dissection of the arterial wall of a blood vessel causes blood to 

accumulate within the vessel wall through a tear in the intima and internal elastic lamina 

further causing the narrowing of the lumen.  Dissecting aneurysm is more common in 

the aorta, with an intimal tear near the aortic valve and distal dissection of the media for 

a variable distance, frequently rupturing through the outer wall. 

2.8.18  Popliteal Artery Aneurysm 

 Popliteal aneurysms are the most frequently encountered limb and life 

threatening peripheral artery aneurysms that constitute 70% to 85% of the total 

aneurysms in the periphery of the human circulatory system [36, 37].  Like all other 

aneurysms, atherosclerosis appears to be the cause of the disease for more than 90% 

of the cases [36, 37].  Popliteal artery aneurysms are of fusiform type and up to 40% of 

them are  associated with abdominal aortic aneurysms in most cases, but only 1 to 2% 

of abdominal aortic aneurysms were found to be associated with popliteal artery 

aneurysms [37, 38].  The treatment of popliteal artery aneurysms involves open surgery 

repair, however, endovascular treatment is also gaining momentum with the 

advancement of technology. 
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Figure 2-29:  Endovascular Treatment of Aneurysm:  Stent Grafts [34].  

 

2.8.19  Intracranial Aneurysms 

 According to Brisman et al. [35], saccular intracranial aneurysms which are 

abnormal outpouchings of cerebral arteries, cause substantial rates of morbidity and 

mortality.  Saccular intracranial aneurysms are found in different location of the brain.  

For example, the incidence of intracranial aneurysms by location in the human brain 

(see Figure 33) shows the anterior communicating artery with 30% followed by the 

posterior communicating artery about 25% and the middle cerebral artery 20%. 
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Figure 2-30:  Intracranial Vasculature: Most Frequent Locations (Incidence) of 
Intracranial Aneurysms [35]. 
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Figure 2-31:  Major Arteries Supplying Blood to the Brain [39]. 

 

The most frequent intracranial aneurysm locations and the corresponding percentage 

are as follows [39] :   

i. Internal Carotid Artery    36% 
ii. Middle Cerebral Artery     33% 
iii. Anterior Cerebral Artery   15% 
iv. Basilar Artery     6% 
v. Vertebral Basilar     4% 
vi. Posterior communicating artery   4% 
vii. Cavernous carotid artery   2% 
viii.  

 



Figures 32 illustrates the human b

Figure 2-32:  Human Brain: (a) Normal Brain

 

Figure 2-33:  Saccular Aneurysms with Different Neck and Dome Sizes 
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uman brain with normal and saccular Aneurysm 

(a) Normal Brain (b) Brain with Saccular Aneurysm 

Saccular Aneurysms with Different Neck and Dome Sizes [34

with normal and saccular Aneurysm [34]. 

 

with Saccular Aneurysm [34]. 

 

34]. 
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2.8.20  Detection of Aneurysms 

Aneurysms are detected using several techniques.  However, the most frequently 

used techniques or procedures are as follows: 

i. Computerized Tomography (CT scan), 

ii. CT Angiography, and 

iii. Magnetic resonance imaging (MRI). 

The risk factors that contribute to the weakness of the artery wall and hence increase 

the risk of a brain aneurysm formation are as follows [34, 40]:   

a) Age 

b) Smoking habit 

c) Hypertension (high blood pressure) 

d) Hardening of the arteries (arteriosclerosis) 

e) Drug use, cocaine in particular 

f) Blood infection 

g) Brain tumors 

h) Traumatic head injury 

i) Family History of brain aneurysms  

j) Alcohol consumption 

k) Lower estrogen level 

Other disorders or defects that are congenital or present at birth also increase the risk of 

brain aneurysm and are listed as follows [34, 40]: 

i. "Connective tissue disorders, such as Ehlers-Danlos syndrome 
that weaken blood vessels. 
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ii. Polycystic kidney disease, an inherited disorder, that results in 
fluid-filled sacs in the kidneys and usually increases blood 
pressure 

iii. Abnormally narrow aorta (coarctation of the aorta), the blood 
vessel that delivers oxygen-rich blood from the heart to the body  

iv. Cerebral arteriovenous malformation (brain AVM), an abnormal 
connection between arteries and veins in the brain that 
interrupts the normal flow of blood between them". 

On the other hand the risk factors that contribute to the rupture of brain aneurysms are 

[34, 40]: 

i. Smoking 
ii. Hypertension" 
iii. Female 

 

Figure 2-34:  Basilar Aneurysm Detected by Injecting contrast (dye) through Vertebral 
Artery [41]. 
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 Figure 2-35:  Aneurysm at the Basilar Tip, Incidental finding in an Elderly Individual 
[42]. 

 

Figure 2-36:  Edematous brain taken from an individual who experienced fatal SAH 
(subarachnoid Hemorrhage) [42]. 
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 A freshly removed edematous brain taken from an individual who experienced 

fatal SAH is shown in Figure 38. 

2.9  Treatment of Aneurysms 

 Thanks to the advancement of medical technology in the fields of neurosurgery, 

neurology and endovascular fields, the diagnosis and treatment for brain aneurysms 

has made tremendous progress.  However, the treatment decision for a particular 

patient is made by the treating doctor after weighing several factors.  These factors 

include:   

a) Size of aneurysm  

b) Type of aneurysm 

c) Location of aneurysm  

d) Age of the patient 

e) Condition of the patient, etc.  

 The treatment options for a patient that has been diagnosed with aneurysms may 

include (a) observation (i.e. monitoring aneurysm patients by reducing risks such as 

lowering blood pressure in hypertensive patient, quitting smoking, etc., (b) surgical 

clipping, (c) endovascular coiling, and (d) blood vessel occlusion and bypass.  For 

example, the treatment of an intracranial saccular aneurysm is done either using 

minimally invasive procedures such as using endovascular coiling or stenting (as 

illustrated in Figure 36) or craniotomy (surgical opening in the skull).  The endovascular 

coiling procedure also called embolization involves the filling of the aneurysm sac using 

platinum wires to initiate thrombus formation.  With endovascular coiling, the surgeon 
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first carefully inserts the catheter into the artery by making incision through the groin as 

shown in Figure 37.  Once the catheter is installed then the doctor feeds a soft, flexible 

wire (platinum) into the aneurysm via the catheter. The wire coils inside the aneurysm 

enhance the formation of a blood clot that seals off the aneurysm from the artery. 

 

 

Figure 2-37:  Endovascular Coiling of a Saccular Brain Aneurysm [34]. 
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Figure 2-38:  Catheterization and Endovascular Coiling of Posterior Communicating  
Artery with Guglielmi Detachable Coils [35]. 

 

Figure 2-39:  Saccular Aneurysm that was Treated Using Coiling for an Individual [42]. 
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Figure 2-40:  Procedures of Stenting and Coiling of Wide Neck Saccular Aneurysm [34]. 
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An invasive procedure (Microsurgical Clipping) for the treatment of an intracranial 

aneurysm is shown in Figure 2-41.  The microsurgical clipping of an the intracranial 

aneurysm in the posterior communicating artery.[35] is performed by segment the 

craniotomy segment at last the clip is applied to stop the aneurysm from rupturing.  

 

Figure 2-41:  Microsurgical Clipping of an Aneurysm of the Posterior Communicating 
Artery [35]. 
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Figure 2-42:  Surgical Solution - Bypass [39]. 

 

Risks and complications of surgery are as follows:   

i. Blood clot 

ii. Swelling in the brain 

iii. Bleeding in the brain 

iv. Weakness 

v. Paralysis 

vi. Loss of sensation 

vii. Loss of vision 

viii. Confusion 

ix. Loss of speech and cognitive fucntions 

x. Short term memory problems 
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xi. Infections 

xii. Vasospasm 

xiii. Seizures 

2.10  Other Blood Flow Related Disorders 

Other cardiovascular diseases that are associated to the obstruction of blood flow that 

may be related to blood vessel structural defects include: 

i. Thrombosis (thrombus formation)  

ii. Embolism  

iii. Compression of blood vessel 

iv. Vasospasm  

2.10.21  Thrombosis (Thrombus Formation)  

Thrombosis is the formation of thrombus or blood clot in the arteries or veins due to 

rupture of atherosclerosis or other causes.  Thrombus formation in the circulatory 

system can cause sudden arterial occlusion of blood to the critical body tissues and 

organs causing loss of sensory reflex and motor never functions [26].  

2.10.22  Embolus:  Migration of Thrombus 

An embolus is a freely moving foreign mass that arises from thrombosis or blood clot, 

fat, air bubbles or tumor cells.  Normally, the embolus may travel along large blood 

vessel unrestricted but once it reaches smaller vessels it gets lodged and obstructs 

blood flow.  Arterial emboli originate more frequently at the heart and can make their 

way to the upper and lower extremities of the body, viz, the brain, kidney, spleen, and 
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other organs thereby causing fatalities and serious morbidity. For example, cerebral 

embolism or ischemic stroke is as a result of a moving blood clot (from the heart) that 

blocks the arteries in the brain.  

2.10.23  Hypotension (Low Blood Pressure) 

Hypotension or low blood pressure is a condition where the systolic aortic blood 

pressure falls to ≤ 90 mm Hg or the diastolic pressure falls to ≤ 60 mm Hg.  People with 

hypotension can experience dizziness, fainting, or even death if the situation persists 

and is tied to loss of blood or severe dehydration as it may deprive the vital organs of 

the body oxygen and blood along with other nutrients. 

2.10.24  Hypertension 

High blood pressure is a chronic medical condition in which the blood pressure in 

the arteries is above the normal range.  Hypertension is more common in older people 

due to the aging of the arteries.  As people age, the elasticity of the arteries decreases.  

Hypertension is a risk factor for many cardiovascular disorders such as intracranial 

aneurysm, aortic aneurysm, etc.  

2.10.25  Compression  

The compression of blood vessels is the occlusion of blood flow in the lumen of 

blood vessels by external agents or forces.  Some of the forces that can cause 

compression of blood vessels are such as hard supporting surfaces pressing blood 

vessels against bony structures of the body, enlarged tumors that may encroach on 
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blood vessels, swelling that may occur after casts and circular dressings have been 

applied [26].  

2.10.26  Vasospasm 

Vasospasm is the sudden constriction of a blood vessel that can cause restricted 

blood flow.  There are different types of vasospasms depending on the location within 

the cardiovascular system.  For example, peripheral vasospasm is constriction of blood 

in the peripheral vessels.  On the other hand, cerebral vasospasm is another disorder 

that follows after subarachnoid hemorrhage that causes death. 

2.11  Coronary Artery Disease (CAD) 

 The right and left coronary arteries that branch off the aorta do supply oxygen 

and nutrients to the tissues of the heart via smaller blood vessels and capillaries.  From 

the capillaries, the blood flows through coronary veins which join to form a large vein 

called the coronary sinus that returns the blood to the right side of the heart, atrium. 

However, a condition called coronary artery disease (CAD) can develop when the 

coronary arteries and branches that supply oxygen and blood to the heart become 

thickened or blocked due to atherosclerosis (the deposition of fat and plaque buildup on 

the walls of these blood vessels that can harden with time).  Figure 2-42 shows the 

heart and its major blood vessels.  When a blood vessel becomes partially or fully 

blocked, blood flow to the cardiac muscle of the heart decreases or stops and the 

affected cardiac muscle becomes ischemic - lacking blood supply.  This condition 

deprives the affected heart muscle oxygen and other nutrients.  It is this condition that 

leads to heart attack and it is called myocardial infarction.   
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Figure 2-43:  Illustration of the Human Heart and Major Blood Vessels [43]. 

 

CAD is the main cause of heart attack and the leading cause of death in the United 

States.  Experiencing chest pain or discomfort is the main symptom of CAD.  Other 

symptoms of CAD include such as shortness of breath during physical activities and 

fatigue.  Physical activities such as shoveling snow or strenuous exercises could also 

trigger stroke when the plaque ruptures and occludes blood flow to the heart.  The 

treatment of CAD at its early stages include taking medication and monitoring the main 

risk factors such as [26, 34]: 

i. Bad cholesterol (LDL) level to ≤ 100 mg/DL 

ii. Blood pressure to 120/80 mm Hg.  

iii. Glycosylated hemoglobin (HbA1c) levels ≤ 7% 
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However, if the condition/symptoms worsen, then the treatment of CAD may include 

bypass heart surgery or minimally invasive techniques including the use of angioplasty 

and placement of stent to rectify the flow of blood to the heart.  
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CHAPTER 3  

LITERATURE REVIEW  AND RESEARCH OBJECTIVES  

3.1  Introduction 

 Understanding the pathogenesis, progression, diagnosis, and treatment of 

cardiovascular diseases in humans in particular and those of mammals in general 

requires a thorough understanding of hemodynamics beyond and above the normal 

physiological flow conditions using appropriate physical and mathematical models. The 

significance of such an investigation at different flow parameters can pave the way to 

laying the fundamentals of pulsatile flow in cardiovascular systems. This would also 

enable the successful development of biomedical devices, equipment, and biofluidic 

solutions such as endovascular implants which are vital for the treatment of 

cardiovascular system (CVS) related disabilities (atherosclerosis, stenosis, aneurysm, 

etc.) in humans.  

 In this chapter, the literature review on relevant work of many researchers in the 

field of biomedical and mechanical engineering and other related fields is briefly 

summarized. The main focus is on the physical and mathematical models employed so 

far in the study of pulsatile flows with emphasis on the flow regime and relevant models 

used for the simulation of blood flow in arterial models and related experimental work.  

A review of the scientific application of a non-destructive technique called acoustic 

emission (AE) for the detection, location and characterization of defects in rigid and 

viscoelastic structures is also presented to understand the response of the bounding 

wall to the flow-induced stresses. 
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 It is with this in mind that this study gears towards addressing some of the gaps 

that are observed in the computational fluid dynamics (CFD) simulation-based research 

that were conducted to simulate previous experimental work on pulsatile flows in 

general and that of arterial blood flow in particular. Some of these gaps include the 

choice of inadequate flow regime/mathematical models and the imposition of unrealistic 

simplifying assumptions.  Predictions from the use of deficient flow regime assumption 

and inadequate mathematical models lead to erroneous results and wrong conclusions.  

For example, a pulsatile flow which may be cited as laminar based on the inlet Reynolds 

number (i.e. calculated on the basis of the inlet conditions using inlet hydraulic diameter 

and mean peak velocity) in a stenosed arterial model can lead to a turbulent flow in the 

constricted zone due to temporal or spatial variations of the flow during a cardiac cycle.    

 As evidenced in the literature, the principles governing blood flow in particular 

and that of pulsatile flows in general are rooted in steady-state fluid flow in rigid 

cylindrical tubes.  The fact that the foundations of hemodynamics were laid on the 

theoretical and experimental studies of such steady state or quasi-steady state flow 

explains why there is a need to further study pulsatile flows independent of the steady 

state flow-based approach and assumptions.  For example, blood flow in diseased and 

healthy arteries has been generally modeled as a laminar flow regime based on the inlet 

Reynolds number.  However, experimental evidence has shown that there is flow 

disturbance during the deceleration phase of a pulsatile flow in rigid cylindrical pipes 

which makes the flow become transitional or turbulent.  Hence, a thorough study of 

pulsatile flows requires the use of well-devised experimental work to study the flow 
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regime and implement an appropriate and efficient mathematical model to simulate the 

flow using CFD simulation technique.  

 Periodic flows can be described by three quantities, namely, the amplitude, the 

mean value and the frequency of the pulsation. According to Ahn and Ibrahim [44] 

periodic flows can be classified into two classes: (1) unsteady flow with a non-zero mean 

velocity and (2) unsteady flow with zero mean velocity.  The first class of the periodic flow 

is called pulsatile flow while the second is oscillatory flow.  

Numerous, investigations on the fundamental theories and issues of pulsatile flows 

(on all flow regimes, namely, laminar, transitional and turbulent) have been conducted by 

Gundogdu et al. [45-47].  Time-varying physiological flows were studied using direct 

numerical simulations (DNS) by Varghese et al. [48-50].  CFD turbulence models were 

also used for the simulation of other physiological flows by Tan [51] and Ryval [52].  

Other researchers [53, 54] studied the application of different turbulence models for 

pulsatile channel flows.  Hofmann et al. [55] also conducted CFD simulations of steady 

and pulsating impinging jets using 13 different Reynolds-averaged Navier-Stokes 

(RANS)-based turbulence models and pointed out that the k-Omega-based transitional 

shear stress transport (SST) model was able to predict correctly the laminar-turbulent 

transition.  Abraham et al. [56-58] extensively investigated pulsatile flows with emphasis 

on the breakdown of laminar flow into transitional intermittency and transition into fully 

developed intermittent or turbulent flow and the associated friction factors. Other 

researchers [44, 51, 52, 57-74] have either conducted experimental work or performed 

CFD simulations by direct application or adaptation of mathematical models to investigate 

oscillatory or pulsatile internal flows.    



82 
 

 

 Theoretical and experimental studies on fundamentals of unsteady turbulent flows 

have been studied by Brown et. al [75], Wood and Funk [76], Ohmi et al. [67], Iguchi and 

Ohmi [68],  Vardy et al. [77, 78] as well as Shuy [79].  Zielke [73] also studied water 

hammer, another type of unsteady flow that has been studied for 60 years and whose 

mathematical model was rooted in a steady-state friction factor or flow assumption to 

begin with.  In most cases, the experimental and the mathematical models used for the 

prediction of pulsatile flows such as water hammer were inadequate.  At times the 

frequencies at which some of the experimental tests were conducted were relatively low.  

Shuy  [79] conducted  pulsatile turbulent flow experiments on water flow in a pipe 

at higher Reynolds numbers (Re = 40,000 and 130,000) and measured and monitored 

simultaneously the transient pressure.  To his surprise, his results contradicted the 

observations and findings of other researchers before him.  Shuy's results showed 

increasing wall friction factor values during the deceleration phase of the flow and 

decreasing friction factor values during the accelerating phase of the flow.  Shuy further 

concludes that during the deceleration phase, it was possible that the flow was 

undergoing relaminarization.  

Unsteady flow properties in stenotic arteries using a nonlinear viscoelastic 

Mooney-Rivlin thin wall model was also investigated by Chen [80].  The dynamic 

behaviors of the tube wall and viscous fluid flow through the viscoelastic tube with a 

stenosis were studied to simulate blood flow in the human carotid arteries.   
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3.2  Physical Models of the Cardiovascular System 

 The beginning of hemodynamics dates back to the 18th century as cited by 

Milnor [81] and is rooted in two lines of thinking that existed about the circulation 

system.  The first is that of Hale's who emphasized that arterial elasticity was the prime 

means for the smoothing of the intermittent ejection of blood by the ventricles of the 

heart and the consequent transformation of the flow into a much less pulsatile flow in 

the peripheries. Hales’ hypothesis was so strong that  it was well-received and became 

a theory so much that it has influenced modern hemodynamics.  The second line of 

thinking that was not accepted rather believed that it was the pressure and flow wave 

changes during blood flow that caused the blood in the peripheries to be less pulsatile.  

 There have been different approaches in the physical modeling of the 

cardiovascular system by different researchers. For example, the famous Windkessel 

model (Windkessel being a German word for air chamber),  is one of the oldest models 

which is a well-studied model to understand the human cardiovascular system using 

several analogous mathematical (electrical) models.  For example, the model has been 

used  to study chick-embryo and rats [82, 83].  The Windkessel modeled the 

cardiovascular system as a closed hydraulic circuit comprising a water pump connected 

to a chamber with a pocket of air in it to simulate the compliance or elasticity of a major 

artery such as the aorta as the heart valve opens and closes. However, this model has 

been found to have its own limitations and weaknesses as pointed out by many 

researchers [81]. 

 Others (O'Rourke) as reported in [20, 84]) simplified the cardiovascular system of 

mammals by an equivalent single tube representing flow resistances for upper and 



lower limbs. Figure 3-1 shows 

(top right), respectively. The corresponding 

the bottom left and bottom right 

 

Figure 3-1:  Systemic Arterial Tree
Models, Respectively 

 

Figure 3-2 shows the pressure wave

different arteries between the 

[20]. The pressure waves and

in the (far right) of Figure 3-2. 
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1 shows the systemic arterial trees for a dog (top left) 

corresponding equivalent T-tube models are 

bottom left and bottom right of Figure 3-1 corresponding to the arterial trees.

Systemic Arterial Trees for a Dog and Human and Their Respective 
, Respectively [20]. 

he pressure waves (second from right)  amplitude and contour 

the central aorta and peripheral arteries for a 

The pressure waves and contour for a patient dog with arteriosclerosis

 

(top left) and human 

are also shown in 

corresponding to the arterial trees. 

 

for a Dog and Human and Their Respective T-Tube 

amplitude and contour for 

central aorta and peripheral arteries for a healthy dog 

teriosclerosis are shown 



Figure 3-2:  Pressure Wave Amplitude and Contour between Central Aorta and 
Peripheral Arteries for a Dog.  Pressure Waves in Different Arteries of a 
Dog (Second from Right
[20]. 

 

Figure 3-3 shows the comparison of  the 

the systemic resistances of various mammals
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Pressure Wave Amplitude and Contour between Central Aorta and 
Peripheral Arteries for a Dog.  Pressure Waves in Different Arteries of a 

Second from Right) and in a Patient with Arteriosclerosis

3 shows the comparison of  the impedance of asymmetric T-tube models for 

the systemic resistances of various mammals. 

 

Pressure Wave Amplitude and Contour between Central Aorta and 
Peripheral Arteries for a Dog.  Pressure Waves in Different Arteries of a 

and in a Patient with Arteriosclerosis (Far Right) 

tube models for 



Figure 3-3:  Comparison of Impedance for Asymmetric T
Resistances of Various 

 On the other hand, recent medical researchers such as 

human cardiovascular system 

linear system.  Anderson underscores 

has ten unique characteristics that make it an unusually complicated hydraulic system. 

Understanding how the cardiovascular

larger set of variables than that which governs the function of most 

pipes, and fluid systems. Thus, a

characteristics peculiar to the cardiovascular system are as follows

1. The system is a closed loop rather than being open
2. The system is elastic rather than rigid. 
3. The system is filled with liquid at a positive mean pressure ("mean cardiovascular 

pressure"), which exists independent of the pumping action of the heart. 
4. The right and left ventricles, which pump into the same system that they pum

out of, are in series with two interposed vascular beds (systemic and pulmonary). 
5. The heart fills passively, rather than by actively sucking. 
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Impedance for Asymmetric T-Tube Models of 
Various Mammals [20]. 

On the other hand, recent medical researchers such as Anderson 

human cardiovascular system as a closed-loop system rather than an 

linear system.  Anderson underscores the fact that the human cardiovascular system 

ten unique characteristics that make it an unusually complicated hydraulic system. 

Understanding how the cardiovascular system functions requires a good insight into a 

larger set of variables than that which governs the function of most mechanical 

. Thus, according to Anderson [85], the ten unique 

characteristics peculiar to the cardiovascular system are as follows:  

The system is a closed loop rather than being open-ended and linear. 
ic rather than rigid.  

The system is filled with liquid at a positive mean pressure ("mean cardiovascular 
pressure"), which exists independent of the pumping action of the heart. 
The right and left ventricles, which pump into the same system that they pum
out of, are in series with two interposed vascular beds (systemic and pulmonary). 
The heart fills passively, rather than by actively sucking.  

 

Models of the Systemic 

Anderson [85], model the 

an open-ended 

that the human cardiovascular system 

ten unique characteristics that make it an unusually complicated hydraulic system. 

system functions requires a good insight into a 

mechanical pumps, 

, the ten unique 

ended and linear.  

The system is filled with liquid at a positive mean pressure ("mean cardiovascular 
pressure"), which exists independent of the pumping action of the heart.  
The right and left ventricles, which pump into the same system that they pump 
out of, are in series with two interposed vascular beds (systemic and pulmonary).  
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6. As a consequence of the heart's passive filling, the circulation rate is normally 
regulated by peripheral-vascular factors, rather than by cardiac variables.  

7. The flow from the heart is intermittent, while the flow to it is continuous.  
8. Normally, there is an excess expenditure of energy by the heart needed for the 

circulation rate imposed by peripheral vascular regulators ("pump energy 
excess").  

9. Normally, ventricular capacity is in excess of the diastolic filling volume ("pump 
capacity excess").  

10. The slowing effect of any vascular resistance on flow rate depends on its 
location, with reference to upstream compliance, as well as its magnitude. 

 

 

3.3  Pulsatile Flow In the Human Cardiovascular System 

 Many researchers have been investigating pulsatile blood flow in the human 

cardiovascular system for several years.  A close look at the anatomy of blood vessels 

as shown in Figure 3-4 reveals that the arterial system within the cardiovascular system 

is composed of blood vessels characterized by complex bends and turns, branching 

and tapering geometries, etc.  The figure depicts the major human arteries such as the 

thoracic aorta, ascending aorta, aortic arch, abdominal aorta, and the carotid arteries to 

mention a few where frequent CVS diseases such as aneurysm or stenosis due to 

atherosclerosis may occur.  

 Thus, to study the hemodynamics of diseased arteries in the cardiovascular 

system, one is compelled to understand the fundamental principles governing pulsatile 

flows in general.  This requires extensive experimental research (in-vivo and ex-vivo) 

and the use of CFD or numerical methods.  Once, the fundamentals of pulsatile flow is 

well understood, one can extend those principles to the cardiovascular system.  Before 

jumping into diseased arteries, it would be imperative to conduct thorough study on 
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blood flow in healthy blood vessels under different parameters.  Definitely, 

hemodynamics of diseased arteries is quite different from the hemodynamics of  

 

Figure 3-4:  Diagrammatic View of the Major Human Arteries [15]. 

 

Generally, blood flow in the human body has been considered laminar by several 

researchers.  However, turbulent blood flow also occurs in large arteries at branching 

points, in diseased and narrowed or stenotic arteries as well as across stenotic heart 



valves. For example, the typical Reynolds numbers for blood flow in different blood 

vessels for a man is given by Table 3

Table 3-1:  Typical Reynolds Numbers for 

3.3.1  Blood Flow in the Human Ascending Aorta

 As shown in Figure 3-5

well as the associated blood flow and pressure gradients are 

87].  
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valves. For example, the typical Reynolds numbers for blood flow in different blood 

for a man is given by Table 3-1. 

ypical Reynolds Numbers for Blood Flow in Human Blood Vessels 

 

Blood Flow in the Human Ascending Aorta   

5 below, a small section of the human ascending aorta as 

lood flow and pressure gradients are shown over one cycle

valves. For example, the typical Reynolds numbers for blood flow in different blood 

Blood Flow in Human Blood Vessels [86]. 

 

below, a small section of the human ascending aorta as 

shown over one cycle [8, 
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 Figure 3-5:  Flow and Pressure Gradient in the Human Ascending Aorta [87].  

  

The pressure drop ∆P increases first, accelerating the flow and then decreases, 

decelerating the flow and resulting in a backflow until it becomes zero in the diastolic 

phase.   

 Figure 3-6 shows Noble’s [88] investigation work on the temporal changes in 

pressure, velocity, ventricular blood volume profiles at the aorta, left atrium and left 

ventricle during one cardiac cycle.  



Figure 3-6:  Changes in Pressure, Volume, Flow in Aorta, Left Ventricle, and Left Atrium 
During Cardiac Cycle (A = Aortic, P

 

3.3.2  Cardiac Output at Rest and Exercise

 The cardiac output significantly changes during physical exercise compared to 

the normal output at rest.  For example, 

at rest and strenuous exercise 
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Changes in Pressure, Volume, Flow in Aorta, Left Ventricle, and Left Atrium 
During Cardiac Cycle (A = Aortic, P = Pulmonary Sounds) [88

Cardiac Output at Rest and Exercise  

The cardiac output significantly changes during physical exercise compared to 

the normal output at rest.  For example, Table 3-2 shows comparison of cardiac output

at rest and strenuous exercise [16].  

 

 

Changes in Pressure, Volume, Flow in Aorta, Left Ventricle, and Left Atrium 
88]. 

The cardiac output significantly changes during physical exercise compared to 

shows comparison of cardiac output 



Table 3-2:  Comparison of Cardiac Output at Rest and Strenuous Exercise 

The human heart rate can increase from 72 beats/min (1.2 Hz) at rest condition 

to 220 beats/min under strenuous physical activities.  This is about three times the 

average heart rate in order to increase the cardiac output and meet the demand for 

oxygen and nutrients by the different organs and tissues of the human body. 

 Table 3-3 shows comparison 

[16]. 
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Comparison of Cardiac Output at Rest and Strenuous Exercise 

The human heart rate can increase from 72 beats/min (1.2 Hz) at rest condition 

to 220 beats/min under strenuous physical activities.  This is about three times the 

average heart rate in order to increase the cardiac output and meet the demand for 

d nutrients by the different organs and tissues of the human body. 

3 shows comparison of cardiac output at rest and during upright

Comparison of Cardiac Output at Rest and Strenuous Exercise [16]. 

 

The human heart rate can increase from 72 beats/min (1.2 Hz) at rest condition 

to 220 beats/min under strenuous physical activities.  This is about three times the 

average heart rate in order to increase the cardiac output and meet the demand for 

d nutrients by the different organs and tissues of the human body.  

during upright exercise 



Table 3-3:  Summary of Cardiovascular Changes During Upright Exercise 

 

 During exercise, as the demand for oxygen and nutrients increases, the heart 

rate increases up to a maximum rate of 220 beats/minute in human subjects in order to 

increase the cardiac output.  However, the maximum human heart rate (MHR), depends 

on the age of the human subject and is estimated by: 

AGMHR −= 220    

where AG stands for age in years and 220 is the average childhood heart rate in 

humans.  However, the applicability of the above fo

challenged by a clinical study conducted by Gulati et al. 

for male heart rate studies. Thus, the 

AHR 88.0206−=   
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Summary of Cardiovascular Changes During Upright Exercise 

as the demand for oxygen and nutrients increases, the heart 

rate increases up to a maximum rate of 220 beats/minute in human subjects in order to 

increase the cardiac output.  However, the maximum human heart rate (MHR), depends 

human subject and is estimated by:  

       

where AG stands for age in years and 220 is the average childhood heart rate in 

However, the applicability of the above formula to women has been 

challenged by a clinical study conducted by Gulati et al. [89] in that it was based on data 

male heart rate studies. Thus, the corrected mean heart rate for women 

       

Summary of Cardiovascular Changes During Upright Exercise [16]. 

 

as the demand for oxygen and nutrients increases, the heart 

rate increases up to a maximum rate of 220 beats/minute in human subjects in order to 

increase the cardiac output.  However, the maximum human heart rate (MHR), depends 

 (3-1) 

where AG stands for age in years and 220 is the average childhood heart rate in 

rmula to women has been 

was based on data 

for women is given by:   

 (3-2) 
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3.4  Structure & Mechanical Properties of Blood Vessels  

 As shown in Figure 3-7, the structure of the human blood vessel shows that the 

blood vessels cannot be considered as a single layer, rather the blood vessel is a 

complex structure with multiple layers.   There are different ways and assumptions for 

the mathematical modeling of healthy and diseased blood vessels.  Most of the 

mathematical models consider the blood vessels as a single elastic or viscoelastic layer.  

 

Figure 3-7:  Structure of Blood Vessel Wall [90]. 
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3.5   Acoustic Emission  

 It has been found that cardiovascular (CVS) related disorders constitute about 

60% of all human deaths [1]. Some of the cardiovascular related diseases include 

arterial aneurysm, atherosclerosis, hypertension, stroke, etc. to mention a few. Thus, 

one can imagine how enormous the health care expenditure on the treatment of the 

cardiovascular related diseases alone can be. The fact that cardiovascular related 

diseases remain the leading cause of death in the developed western world and other 

developing nations with growing middle income population has motivated the author to 

explore other alternative ways to investigate the detection, location, and 

characterization of pulsatile flows in vascular abnormalities. The primary alternative 

investigated is the measurement and analysis of flow-induced acoustic emission (AE) 

signals. Thus, one of the objectives of this study is to use a non-destructive evaluation 

(NDE) technique for the detection and characterization of the flow- induced AE signals 

in normal and diseased arterial models. 

 An acoustic emission event is the generation of transient elastic waves due to 

sudden redistribution of stress in structures subjected to mechanical loading such as 

pressure or temperature changes.  Acoustic emission testing (by listening to audible 

sounds) in its crudest form as a means of quality control in pottery dates back to 6,500 

B.C.  As witnessed by this author, even today, this methodology is well known and 

widely used in the detection of defects or demonstrating the quality of pottery products 

by potters and their potential customers during transactions in open markets in Africa.  

This methodology deals with just low frequency audible signals after the application of 

an impact or pressure loading stimulus. 



 Today, thanks to the advancement of modern non

acoustic emission has emerged as one of the best non

for the detection, location, monitoring of the integrity of structures well befo

failure occurs.  Acoustic emission has wide application as diverse as monitoring critical 

nuclear plants, pressure vessels, and quality control in industrial plants.  

In Figure 3-8 is shown an illustration on the principles of acoustic emissio

sensors are used to detect the elastic waves (acoustic emissions) generated when a 

structure receives internal localized stimulus (at microscopic level) or external stimulus 

such as pressure, impact load, temperature

transient elastic stress waves that travel at high frequencies

structure.  These elastic stress waves can be detected (using acoustic emission 

sensors), located and characterized using an acoustic emission hardware/softwar

acoustic emission signals are characterized by elastic energy, wave speed, amplitude, 

location, number of events, etc. 

Figure 3-8:  Acoustic Emission, Wave Propagation and Detection 
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Today, thanks to the advancement of modern non-destructive technology, 

acoustic emission has emerged as one of the best non-destructive evaluation methods 

for the detection, location, monitoring of the integrity of structures well befo

failure occurs.  Acoustic emission has wide application as diverse as monitoring critical 

nuclear plants, pressure vessels, and quality control in industrial plants.   

is shown an illustration on the principles of acoustic emissio

sensors are used to detect the elastic waves (acoustic emissions) generated when a 

nternal localized stimulus (at microscopic level) or external stimulus 

pressure, impact load, temperature changes, etc. These stimuli

es that travel at high frequencies in all directions

elastic stress waves can be detected (using acoustic emission 

sensors), located and characterized using an acoustic emission hardware/softwar

signals are characterized by elastic energy, wave speed, amplitude, 

location, number of events, etc.  

Acoustic Emission, Wave Propagation and Detection 

destructive technology, 

destructive evaluation methods 

for the detection, location, monitoring of the integrity of structures well before complete 

failure occurs.  Acoustic emission has wide application as diverse as monitoring critical 

 

is shown an illustration on the principles of acoustic emission.  AE 

sensors are used to detect the elastic waves (acoustic emissions) generated when a 

nternal localized stimulus (at microscopic level) or external stimulus 

ese stimuli can generate 

in all directions in the 

elastic stress waves can be detected (using acoustic emission 

sensors), located and characterized using an acoustic emission hardware/software. The 

signals are characterized by elastic energy, wave speed, amplitude, 

 

Acoustic Emission, Wave Propagation and Detection [91].   
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Table 3-4:  NDE Methods:  Applicability to Evaluation of Plaque Properties [92]. 

NDE Method Acoustic Emission Ultrasonic Laser 

 

 

 

 

Advantages 

• Capable of providing 

micromechanical 

information due to 

minute stress 

variations. 

• Very economical 

method for large 

specimens. 

• Stores history of the 

irregularity growth. 

• Allows precise 

and quantitative 

plaque shape 

analysis. 

• More reliable 

with older 

patients as they 

tend to move 

their body when 

scanning. 

• Higher 

accuracy. 

• Higher 

reproducibility 

• Laser is a 

sterilized tool; 

hence it’s 

suitable for both 

in-vivo and in-

vitro testing. 

• Remote sensing 

and control 

capability. 

• Limited operator 

knowledge 

required 

Disadvantages  • Can be used only for 

detecting the 

presence of 

irregularity. 

• Cannot be used to 

find the size and 

shape of defect. 

• Due to above factor, 

AE can be used only 

during initial stages. 

• Local vibration 

and heat 

generation 

impacts tissues. 

• Issues with 

usage for in-

vivo 

experiments. 

• Exposure to 

sensitive areas 

like retina etc. can 

produce potential 

damages. 

• Should be 

shielded from 

sensitive organs. 

•  Effects of laser 

on human organs 

are not 

completely 

known. 
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 Chungag and Ayorinde [93] investigated the pulsatile flow of corn oil suspension 

in water across a porous medium of random-woven glass fiber bed using a Vibration 

Assisted Liquid Composite Molding (VALCM) apparatus. They were able to characterize 

the flow of the non-Newtonian corn oil fluid suspension through the VALCM. The effects 

of varying flow properties such as pressure and frequency were investigated and 

correlated with the characteristics of the AE signals.  However, the VALCM setup was 

not completely immune from some system vibrations that arose from the chain-motor 

drive that powered its piston even though the system was installed on anti-vibration pad. 

Vones et al. [94] claimed to have designed and used a novel vascular-acoustic-

emission-based monitoring method for the identification of angioplasty-induced or 

stress-induced vascular injury.  Their research was based on the measurement of 

acoustic energy released due to the stress on the atherosclerotic arterial tissue during 

the angioplasty procedure for the characterization of the severity and assessment of 

trauma. Their method depended on the study of 32 postmortem human peripheral 

arteries.  Figure 3-8 shows the experimental setup used for assessing the damage on 

the atherosclerotic arterial tissue.  The investigators estimated the severity of the 

vascular trauma, namely, the presence and absence of dissection in the blood vessel 

(tissue) after applying the angioplasty-induced stimulus and the use of acoustic-

emission equipment.  

 



Figure 3-9:  An Experimental Setup for the Investigation of Angioplasty
Vascular Trauma Severity Estimation Using Acoustic
Content [94]. 

 

 The genesis and progression of stenosis or atherosclerosis in human coronary 

artery was investigated by several researchers using CFD techniques at times without 

sufficient experimental work to validate them.  However, Kim et al. 

CFD simulation and experimental AE tests on a 90

non-Newtonian viscosity effects in a coronary artery with different stenotic levels.  

However, their experimental setup 

mechanism for the piston pump

attached to the VALCM at one end and 

acoustic emission sensors were attached 

verification.   

 Ivantsiv et al. [96] conducted research on the applicability of acoustic emission in 

abrasive jet micromachining to determine the mass flow rate of abrasive jet particles by 
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An Experimental Setup for the Investigation of Angioplasty-Induced 
Vascular Trauma Severity Estimation Using Acoustic-Emission Energy 

The genesis and progression of stenosis or atherosclerosis in human coronary 

artery was investigated by several researchers using CFD techniques at times without 

ient experimental work to validate them.  However, Kim et al. [95] 

CFD simulation and experimental AE tests on a 90o-degree-bend glass tube to simulate 

Newtonian viscosity effects in a coronary artery with different stenotic levels.  

However, their experimental setup was not free from vibration due to the drive 

for the piston pump.  Thus, any AE signals measured from a

at one end and freely suspended at the other end and 

acoustic emission sensors were attached to its 90o-degree bend 

conducted research on the applicability of acoustic emission in 

abrasive jet micromachining to determine the mass flow rate of abrasive jet particles by 

 

Induced 
Emission Energy 

The genesis and progression of stenosis or atherosclerosis in human coronary 

artery was investigated by several researchers using CFD techniques at times without 

conducted both 

bend glass tube to simulate 

Newtonian viscosity effects in a coronary artery with different stenotic levels.  

vibration due to the drive 

rom a glass tube 

end and to which 

degree bend need further 

conducted research on the applicability of acoustic emission in 

abrasive jet micromachining to determine the mass flow rate of abrasive jet particles by 
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analyzing the acoustic emission signal data generated by the impact of the abrasive jet 

particles on a flat plate. Wu et al. [97] also used AE emission for the inspection of a 

pipeline by measuring and analyzing AE signals using wavelet analysis.  Akopyan et al. 

[98] used AE signals for the monitoring and detection of corrosion-induced damages in 

the inner surfaces of pipes in structures that cannot be easily accessed. 

Kalyanasundaram et al. [99] applied acoustic emission testing for the detection and 

location of path leaks in the inaccessible side of an end shield of a pressurized heavy 

water reactor. The authors were able to characterize the leakage or flow of water and 

air separately during their investigation.  

Miller et al [100] developed an acoustic emission standard for setting up and 

evaluating AE equipment for pipeline leak detection and proved it to be effective for 

characterizing source mechanisms as part of an integrated technological approach to 

quantitative acoustic emission for the detection and location of leaks.  

 Pulse wave velocity measurements have also been used for diagnosis of 

cardiovascular diseases by estimating the stiffness of arterial walls. The pulse wave 

velocity measurement depends on measuring the delay time of pressure, flow or wall 

displacement waves (generated at the ejection or contraction cycle of the left ventricle 

of the heart) over a given distance, L. Thus, the relationship for estimating the Young’s 

modulus or elasticity of the arterial wall is given by the Moens-Korteweg equation as 

follows [20]: 

  
D

Ee
c

ρ
=          (3-3) 



101 
 

 

where c is the pulse wave velocity, E is the modulus of elasticity of the tube or artery, e 

is wall thickness of tube, ρ is density of fluid (blood) and D is the inner diameter of the 

artery or tube.  However, the use of the pulse wave velocity method has its limitations 

as it has been derived based on the assumption of a long, straight, cylindrical and thin 

elastic tube carrying non-viscous fluid.  In real physiological conditions, the 

measurement of the delay time between two points in the CVS is affected by several 

factors including reflection or transmission of waves at arterial junctions [9].  

 Thus, the experimental setup for the detection and characterization of AE signals 

induced by the pulsatile flow within the arterial geometric models focuses on 

investigating the effects of stenosis severity by using different stenotic models (with 

different blockage ratios).  The effect of other physical properties such as elasticity and 

size of arterial models on the detection, location and characterization of the AE signals 

as induced by the pulsatile flows at different pumping frequencies are investigated. 

 

3.5.3  Viscoelasticity of Materials 

 Elastic materials are defined as those materials that exhibit elasticity under stress 

and quickly return to original state after the stress is removed.  On the other hand, 

viscous materials are defined as those materials that resist shear but would strain 

linearly with time when stress is applied [101].  It is believed that all materials do exhibit 

viscoelasticity at least to some extent.  Thus, the nature of the material would 

significantly affect the response to stress.  As shown in Figure 3-10 below, an elastic 

material has a linear relationship between the stress and strain as shown in (a) while a 

viscoelastic material would exhibit hysteresis during the cycle of loading and unloading. 



To differentiate between elastic and viscous material, small oscillatory strain is applied 

to both the elastic and viscous materials. The response of the elastic material is 

characterized by the fact that the strain and stress would be in phase while the strain 

and stress for the viscous material would be out of phase by 90

response of a viscoelastic material

understanding the properties of the materials under investigat

importance before conducting acoustic emission tests. 

Figure 3-10:  Stress-Strain Curve

 

3.5.4  Pressure Wave Transmission In Human Arterial Blood Vessels

 Many researchers have studied the cardiovascular system of mammals and 

humans in search for the treatment of 

example, Figure 3-11 shows the transmission of p

arterial system as measured at different points for different age groups.  Pressure 

amplifications in the arterial system for the young 
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the cardiovascular diseases in humans. For 

ressure wave along the human 

arterial system as measured at different points for different age groups.  Pressure 

increased by 60% while there was 



103 
 

 

almost none for the adult [8].  Such pressure wave study can help predict the condition 

of the blood vessel along the arterial system.   

 

Figure 3-11:  Arterial Pressure Wave Transmission along Human Arterial System [8]. 

 

Pressure wave transmission along the human arterial system as measured at different 

points and showing pressure amplification for young and adult human by age is shown 

in Figure 3-12. 
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Figure 3-12:  Pressure Wave Transmission along Human Arterial System as Measured 
at Different Points and Showing Pressure Amplification for the Young by 
60% and Almost none for the Adult [8]. 

 

Pressure pulse in a human cardiovascular model to study the effect of reflected 

waves on the aortic valve for hypotension, normal and hypertension cases in Figure 3-

13.  The red line is the observed pressure pulse.  Time from foot of the incident wave to 

the arrival of the reflected wave is the transmission time [8]. 



Figure 3-13:  Effect of wave Reflection on Aortic Pulse

3.6  Objectives of the Research

 As discussed in the previous sections, there is a need for a systematic approach 

to study pulsatile flows. It is with this background that the need for the design of an 

efficient experimental setup for the study of pulsatile flui

emission signals for the detection and location of defects in arterial models arises.  To 

address the gaps and concerns, numerical experiments are 

characterize pulsatile flows 

encompassing all flow regimes (laminar, transitional, and turbulent).  Next, experimental 

pulsatile flows in rigid and flexible tubes at different frequencies and blockage ratios are 
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Effect of wave Reflection on Aortic Pulse [8].  

 

Research  

As discussed in the previous sections, there is a need for a systematic approach 

to study pulsatile flows. It is with this background that the need for the design of an 

efficient experimental setup for the study of pulsatile fluid flow and flow-induced acoustic 

emission signals for the detection and location of defects in arterial models arises.  To 

address the gaps and concerns, numerical experiments are first 

characterize pulsatile flows and understand the fundamentals of pulsatile flows 

encompassing all flow regimes (laminar, transitional, and turbulent).  Next, experimental 

pulsatile flows in rigid and flexible tubes at different frequencies and blockage ratios are 
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induced acoustic 
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first conducted to 

als of pulsatile flows 

encompassing all flow regimes (laminar, transitional, and turbulent).  Next, experimental 

pulsatile flows in rigid and flexible tubes at different frequencies and blockage ratios are 
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conducted and flow and acoustic emission data gathered.  Two items of flow data 

information (i.e. inlet and outlet pressures of the test-section tube) will be used for the 

CFD simulation/prediction of a volumetric flow rate which will be compared to the 

experimental volumetric flow rate.  

Therefore the main objectives of this study (pulsatile flows in general and that of 

arterial blood flow in particular) are as follows: 

i. Investigation of harmonically-varying pulsatile flows using appropriate 

CFD model for the characterization of pulsatile flows. 

ii. Experimental characterization of pulsatile flows in stenotic and normal 

arterial models by 

a. Measurement of pulse pressure, 

b. Measurement of volumetric flow rate, 

c. Calculation of flow resistance, and 

d. Measurement of acoustic emission signals for the detection and 

location of defects in stenotic tubes and characterization of the 

flow.  

iii. Study of the effect of material properties on pulsatile flow and the 

associated acoustic emissions within the arterial models made of different 

materials.  

iv. Study of the effect of fluid viscosity on the pulsatile flow at different 

pulsation frequencies.  

Performance of fluid flow visualization to understand the flow regime of pulsating 

flows.  
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CHAPTER 4  

CFD SIMULATION OF PULSATILE FLOWS IN AXISYMMETRIC T UBES 

 

 In this chapter, the CFD simulation of harmonically and periodically varying 

pulsatile flows in an axisymmetric pipe and in 90o bent aneurysmal arterial models are 

presented.  These two simulations would give an insight into the fundamentals of 

pulsatile flows serving as a prelude to the experimental pulsatile flow test and choice of 

CFD simulation as presented in Chapter 6.  

4.1   Harmonically Varying Pulsatile Pipe Flow 

  There is a growing interest in pulsating fluid flows motivated by applications as 

diverse as the cardiovascular and respiratory systems, fluid-operated power-producing 

intermittent devices such as air motors, design of industrial processes, and heating or 

cooling systems. Thus a thorough study of the pulsatile flows requires the use of well-

developed efficient mathematical models to conduct computational fluid dynamic 

simulations (CFD). Varghese et al. [48-50] and Tan [51] studied time-varying 

physiological flows respectively using direct numerical simulations (DNS) or CFD 

turbulence models while others [53, 54] studied the application of different turbulence 

models for pulsatile channel flows. Hofmann et al. [55] also conducted CFD simulations of 

steady and pulsating impinging jets using 13 different Reynolds-averaged Navier-Stokes 

(RANS) based turbulence models and pointed out that the k-Omega-based transitional 

shear stress transport (SST) model was able to predict correctly the laminar-turbulent 

transition.  Abraham et al. [56-58] investigated pulsatile flows with emphasis on the 

breakdown of laminar flow into transitional intermittency and transition into fully developed 
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intermittent or turbulent flow and the associated friction factors.  Other researchers [44, 

51, 52, 57-74] have also either conducted experimental work or performed CFD 

simulations by direct application or adaptation of mathematical models to investigate 

oscillatory or pulsatile internal flows.   

 A thoroughgoing review of the relevant literature related to the current study was 

recently published by Lovik et al. [70].  Of particular note was the identification of the need 

to deal with pulsatile flows that span various flow regimes and transist among these 

regimes. Among the simulation methods described in [70], one that appeared particularly 

attractive and implementable was originally due to Menter et al. [102-105].  In the original 

Menter model, focus was directed towards steady-state external boundary layer flows.  In 

the study of Lovik et al. [70], the  tuning of constants in the Menter transitional model for 

internal pipe flow use was performed by using the steady-state friction factor [106, 107] 

information. The thus-modified Menter model was used to conduct the simulation of time-

varying flows encompassing all flow regimes for very low-frequency harmonic pulsations.  

The highest frequency considered in [70] was 0.025 Hz.   

 In practice, it is common to encounter pulsating flows having considerably higher 

frequencies.  This issue is the motivation for the present investigation. One of the goals of 

the study is to extend the frequency range up to a maximum value of 10 Hz.  Another 

issue to be addressed is the viability of the modified Menter model of [70] to these higher 

frequency pulsating flows.  In particular, unsteady flow solutions are carried out by making 

use of the transitional model of Menter in which both untuned and tuned constants are 

employed.   
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 The imposed pulsations are harmonic in character.  The velocity fluctuations have 

been chosen so that all possible flow regimes, laminar, intermittent, and turbulent are 

encountered. Of special relevance is the issue of backflow in the presence of unfavorable 

pressure gradient induced by the intermittent accelerations and decelerations of the flow 

[67, 77-79, 108-116]. The issue of deviations of the transient friction factor values from 

the quasi-steady values is also addressed.  

4.1.1  Physical and Mathematical Models 

 Envision a circular pipe through whose inlet a harmonically pulsating flow enters.  The 

equations governing the fluid flow can be grouped into three categories: (a) Reynolds-

averaged Navier–Stokes (RANS) equations for turbulent flow and the corresponding 

equation of continuity, (b) the equations for the selected turbulence model, and (c) a pair 

of flow transition equations.  It is noteworthy that the RANS equations are derived for 

turbulent flow but are applicable for laminar flow when the turbulent viscosity µt is zero. 

The transition equations automatically give rise to µt = 0 when the flow is laminar.   

4.1.2  General Governing Equations 

 The Reynolds-averaged Navier-Stokes equations (RANS) are well known and serve as 

a basis for the development of the turbulence models, and the same is true for the 

equation of continuity.  These equations can be found in [70] as Eqs. (1) and (2).  The 

choice of the Menter transition model also requires that the Shear Stress Transport model 

of turbulence be used since the two are inseparably linked, (see [70], Eqs. (3) – (6)).   
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 In this study, the k-ω-based shear stress transport (SST) turbulence model 

developed by Menter et al. [105] is employed to simulate the transient turbulent flow in a 

pipe.  On the other hand, the  Mentor transitional model (prepackaged in the Ansys 12.1 

CFX Software) is also used both in its unturned (default) and tuned forms of the tunable 

or adjustable constants for the simulation of the internal pipe flow encompassing 

different flow regimes as studied by Lovik et al. [70].   

   The complete RANS and continuity equations as well as the turbulence and the 

Menter transition models expressed in tensor notations for an incompressible fluid are 

summarized as follows:  

 RANS and Continuity Equations
  

The RANS based turbulent and continuity equations are given as [52, 117-119]:  
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A two-equation turbulence model provides the information about the viscosity tµ .  Since 

the present approach extends the analysis over all flow regimes, it is necessary to use 

the Shear Stress Transport (SST) two-equation model because it is the gate to a widely 

accepted all-flow-regime model. The SST model contains the time-dependent specific 

rate of turbulence dissipation ω and the turbulent kinetic energy k The governing 

equations for these quantities are: 
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These equations are linked to the transitional model by means of the intermittency .γ  It 

can be seen from Eq. (4-3) thatγ  is a multiplier of the production of turbulent .kP   Since

10 ≤≤ γ , it serves to attenuate the rate of production of turbulence. 

 Thus, the viscosity tµ  is obtained as follows: 

  
ω
ρκ

µ =t         (4-5) 

 

The Transition Model  

 The transition model consists of the transport equations for the intermittencyγ  

and the transition momentum thickness Reynolds number Reθt [102-105]. The transition-

model equations as presented in the Ansys CFX manual [117] is: 
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where the source terms 1γP  and 1γE  are defined as: 

3][21
γγργ

C
onsetlength FSFP Ω=             (4-8) 

γγγ 11 PE =                  (4-9) 

where S is the magnitude of strain rate and Flength is an empirical correlation that 

controls the length of the transition region. In addition, the destruction/laminarization 

sources are defined as:  

( ) turbFCP γργγ Ω= 12 2             (4-10) 

γγγγ 222 PCE =               (4-11) 
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 In the latter two equations, there are two tunable constants related to the 

turbulence production and destruction terms in the transition model, namely, cθ,t and cγ,2 

respectively. In the original transition model [74], the respective values of these constants 

are 0.03 and 50.  In [70], these constants were tuned to the values of 0.015 and 70 

respectively, for the simulation of the pulsatile internal pipe flows for the frequency range 

of 0.0015625 to 0.025 Hz. 

.  Boundary Conditions  

  In this study, since the flow is axisymmetric, the relevant velocities are ),,( trxu  

and ),,( trxv .  The pipe inlet corresponds to x = 0. The flow is incompressible with 

constant viscosity µ. The mathematical model is quantified by specifying the initial and 
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boundary conditions. The initial condition is that the fluid occupying the pipe at t = 0 is 

motionless.  At the pipe inlet, the velocities ),,0( tru  and ),,0( trv are: 

( ) Uftututru amp +== π2sin)(),,0(         (4-12)   

 

  0),,0( =trv            (4-13)  

 

where uamp is the amplitude of the pulsating velocity at the inlet, f is the frequency of the 

oscillation, t  is the time, and U is defined in the following paragraph. Note that the 

pulsating velocity is uniformly applied across the pipe inlet.   

 As there are two mean velocities in the present problem, the quantity U  requires 

careful definition.  It is one of the mean velocities that is needed to characterize the time-

varying flow.  The mean velocity U  is the cross-sectional area-weighted velocity that is 

standard for steady flows.  However, in the present instance, U  is a function of time 

defined as:  
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tU
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π

π∫
=       (4-14) 

This integration takes into account the sign of ).,,( trxu  This feature is pointed out since 

there is backflow (u < 0) at all streamwise locations at certain times during a cycle.   
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 When )(tU  is time averaged over a cycle, the quantity U is obtained as shown in Eq. 

(4-15).  
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=         (4-15) 

           

This quantity will serve a constant reference velocity.  

 The imposed pulsation is harmonic, and its time variation may be described in terms of 

the inlet Reynolds number Re(t) as: 

   µ
ρ DtU

t
)(

)Re( =        (4-16)  

In terms of the foregoing Reynolds number, the imposed inlet Reynolds number variation 

is: 

   ( ) Re2sinRe)Re( += ftt amp π       (4-17) 

       

where ampRe  is the amplitude of the timewise variation of the Reynolds number 

preselected in such a way that the pulsatile flow encompasses all flow regimes, whereas 

Re is the time-averaged Reynolds number based on U as defined in Eq. (4-15).  

 At the downstream end of the pipe, the opening boundary condition is applied.  The 

conventional outlet boundary condition requires that the flow leaves the solution domain. 

However, the opening boundary condition allows the flow either to enter or leave the 

domain.  Thus, the latter condition was adopted out of concern that the pressure 
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gradients created by the pulsating flow would give rise to fluid inflow at the downstream 

end of the pipe.   

 In addition to the specification of the opening boundary condition, it is necessary to 

specify the pressure at the downstream end of the pipe. It is common in the realm of 

numerical simulation of pipe flows to use gauge pressure and thereby to set 0=p .  

However, in the presence of a pulsating flow and a corresponding pulsating pressure, this 

practice requires reexamination. It would appear that the 0=p condition would place an 

artificial constraint on the pressure pulsations.  In this regard, a numerical experiment was 

performed in which a pressure-driven pipe flow was considered.  In that experiment, 

harmonically varying pressures were imposed at both the upstream and downstream end 

of the pipe, respectively ( )tgpu =  and ( )thpd = . The corresponding numerical solution was 

compared to another numerical solution whose upstream and downstream pressures 

were set to [ ( ) ( )thtg − ] and zero, respectively. It was found that the velocity solutions for 

the two problems are identical. This numerical experiment supported the use of the 

conventional 0=p  boundary condition at the downstream end.  A symmetry boundary 

condition was imposed on the two external radial faces of the solution domain whereas a 

no-slip wall boundary condition was applied at the walls. A reference pressure of 1 

atmosphere has also been used for the whole fluid domain.   

4.1.3  Numerical Solutions 

 The numerical solutions were performed using ANSYS CFX 12.1 finite-volume-based 

software. The solution domain was discretized into 460,000 elements after an extensive 

mesh independence study.  To make most efficient use of the available node capacity of 
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the software, the axisymmetry of the flow has been used.  In particular, the cross-

sectional portion of the solution domain was taken to be a circular sector with a vertex 

angle of one degree as shown in Figure 4-1.  A critical aspect of the CFX treatment of the 

near-wall region is that the wall-adjacent nodes satisfy the condition that the non-

dimensional distance +y from the wall, be ≤ 1, and this requirement was rigorously 

imposed.  The choice of the time step was based on subdividing the time period T

( )f/1= into steps equal to ( )1000/T . There is a start-up transient brought about by the 

uniform initial condition.  For each time step, a maximum of 50 iterations or a residual 

target value of 1.0E-05 (RMS) was used as the convergence criterion for all the transient 

simulations.  

 It was found that after two cycles of computation, a periodic steady state was 

established.  This finding was confirmed for all cases by running a third cycle.  

 The selected pulsatile frequencies were run in sequence starting from the smallest and 

proceeding step-by-step to the largest. To initiate the calculations for the smallest 

frequency, the default initial condition of zero was used.  For the next-to-lowest frequency, 

the calculations were initiated by making use of the converged solutions for the lowest 

frequency.  
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Figure 4-1:  Meshing of the One-Degree Sector Computational Domain.  

 

 The internal diameter of the pipe and its length were chosen so that the 200/ =DL .  In 

this simulation, the internal diameter of the pipe used was 10 mm. This choice reflects the 

goal of achieving a fully developed flow for all the investigated frequencies.  The selected 

frequencies are 1, 2, and 10 Hz.  As mentioned earlier, the varying amplitude of the 

imposed pulsation gives rise to a range of Reynolds numbers which span between 1000 

and 5000 with a mean value of 3000.  This range corresponds to Reamp = 2000 and Re= 

3000 in Eq. (4-17).  Figure 4-2 illustrates the timewise variation of the Reynolds  number 

for the three investigated frequencies over an interval of one second.  Note that during 
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this time interval, the f = 1 Hz curve passes through one cycle, while the f = 10 Hz curve 

displays ten cycles.  

 

Figure 4-2:  Timewise Variation of the Cross-Sectional Mean Reynolds Number at 
Different Frequencies (f = 1, 2, 10 Hz). 

 

 The actual fluid chosen for the simulations is water at a constant temperature of 25 oC.  

As the fluid properties were taken to be constant and the results are presented in terms of 

dimensionless variables, the reported information is universal and applicable to any fluid 

under similar flow assumptions and conditions without any phase changes.  
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4.1.4  RESULTS AND DISCUSSION 

4.1.4.1   Friction Factor  

 The first issue to be explored is the relevance of a quasi-steady model as a means 

of representing the time-varying results of the present numerical simulations.  The 

motivation for this focus stems from a key finding of [70].  There, it was found that for the 

investigated frequencies of pulsation (f ≤ 0.025 Hz), the spatially fully developed friction 

factors could be very accurately represented by the quasi-steady-state model.  This 

outcome can be attributed to the slowness of the oscillations so that the fluid was able to 

closely follow the timewise variations.  From the standpoint of practice, this outcome is 

highly favorable because it obviates the need for detailed numerical calculations of the 

unsteady flow.  

 Figure 4-3 has been prepared to explore this issue.  The figure is a plot of the 

instantaneous, fully developed friction factor as a function of dimensionless time during 

one period of oscillation. The three uppermost curves convey results for the three 

investigated frequencies, f = 1, 2, and 10 Hz, which are ordered from lowest to the 

highest frequency in the figure.  The time-dependent friction factor F is defined as: 

     
( ) ( )221 U

Dxp

ρ

∂∂
=F       (4-18) 

       

   In addition to the aforementioned three curves from the numerical simulations, the 

lowermost curve depicts the friction factor results for a quasi-steady model. The latter 

curve has been constructed by taking well-accepted, steady-state friction factor results 
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and applying them instantaneously. It may be noted that for the respective laminar, 

transitional, and turbulent regimes, the corresponding friction factors are functions of the 

Reynolds number (see [70] for the steady-state friction factor formulas).  The equations 

for these friction factors were evaluated at the instantaneous Reynolds numbers that 

correspond to each time instant t/T.    

 

Figure 4-3:  Timewise Variation of the Fully Developed Friction Factor and Comparison 
with Quasi-Steady Results. 
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  An overview of the figure indicates that there are significant deviations between the 

actual time-dependent fully developed friction factors and those given by the quasi-steady 

model. This outcome can be contrasted with that of [70].  Clearly, the success of the 

quasi-steady model displayed in [70] is due to the slowness of the timewise variations 

considered there.  However, it can be seen that the friction factor is sensitive to the 

dimensionless time and to the frequency magnitude.  

 To provide further perspective for the results of Figure 4-3, it is worthwhile to provide a 

correspondence between the values of t/T and the prevailing flow regimes. For 0 ≤ t/T ≤ 

0.09, 0.42 ≤ t/T ≤ 0.55, and 0.94 ≤ t/T ≤ 1, the flow is in the transitional (intermittent) 

regime.  For times 0.09 ≤ t/T ≤ 0.42, the flow is turbulent, and when 0.55 ≤ t/T ≤ 0.94, 

laminar flow prevails.  The trends displayed by the curves are driven by the values of the 

pressure gradient ( )xp ∂∂ , which is the only time-dependent quantity in the definition of 

the friction factor.  Increasing values of the gradient correspond to decelerations of the 

flow, while the decreasing values are linked to flow accelerations.  In other words, 

decreasing values of the friction factor are indicative of flow acceleration, while the 

opposite trend suggests flow deceleration.  For example, a transitional flow becoming 

turbulent is an accelerating flow so that the corresponding friction factor curve has a 

negative slope. Not unexpectedly, the higher the frequency of oscillation, the larger the 

magnitude of the friction factor.    

4.1.4.2  Pressure Oscillations  

 Another interesting facet of the numerical results is the response of the fluctuating 

pressure to the changes in the frequency of the oscillating flow.  This issue is quantified in 
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Figure 4-4.  In the figure, the dimensionless pressure is plotted as function of the 

dimensionless time for the three investigated frequencies and at two streamwise 

locations.   The dimensionless pressure is defined as:  

  ( )2
'

U

p
p

ρ
=         4-19 

 

Figure 4-4:  Dimensionless Pressure Oscillations in Response to Imposed Harmonic 
Inlet Velocity Variations.  At Each Frequency, the Two Curves 
Respectively Correspond to x/L = 0 and 0.5, with the Larger Amplitude 
Associated with the Former.  
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It can be seen from the plot that the higher the frequency, the higher is the amplitude of 

the resulting pressure variation.  The figure also provides information about the diminution 

of the amplitude in the streamwise direction as seen from the separate curves that are 

plotted for the pressure variation at the inlet (x/L = 0) and at the mid length of the pipe (x/L 

= 0.5).  The pressure variation at the downstream end of the pipe is zero for all 

frequencies.   

4.1.4.3   Presence and Absence of Wall-Adjacent Backflow  

 As mentioned earlier, there is wall-adjacent backflow during half of the cycle (from mid 

deceleration to mid acceleration of the cycle). To support this assertion and demonstrate 

the absence of back flow during the other half of the cycle (from mid acceleration to mid 

deceleration of the cycle), Figures 4-5 through 4-12 have been prepared.  

 For the purpose of investigating the presence and absence of backflows over a period, 

six critical points are selected on the graph where the dimensionless area-averaged 

velocity is plotted as a function of the dimensionless time as shown in Figure 4-5.  Curve 

a-b-c shows the deceleration phase of the flow, while d-e-f depicts the accelerating 

phase.  In each of the flow phases (deceleration and acceleration), three points are 

selected for discussion, namely, the early, mid or late events (acceleration or 

deceleration) of the flow phases.  

 At point a, the flow begins to decelerate and thereby encounters an adverse pressure 

gradient.  The flow is able to overcome the adverse pressure gradient by means of the 

momentum that it carries.  However, the momentum decreases in the flow direction so 

that there comes a time at which the near-wall momentum is not sufficient to overcome 
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the adverse pressure gradient. When this happens, backflow occurs near the wall. 

Further investigation reveals that the onset of backflow occurs after point b and continues 

within the deceleration phase until point c.  The flow begins its acceleration phase near 

point d, but the backflow continues until the mid-acceleration point e.  As the acceleration 

of the flow continues from e to f, there is no backflow.  

 

Figure 4-5:  Dimensionless Mean Velocity vs. Dimensionless Time for the 
Frequency  of f = 10 Hz.   

 

 Figure 4-6 is a dimensionless velocity profile that spans the cross section from the 

centerline to the wall and thereby reveals the details of the flow in the near-wall region. 

The figure shows the presence of backflow near the wall at time t/T = 1.76 (point d in 
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Figure 4-5) during the early acceleration.  The dimensionless velocity plotted in the figure 

is defined as:  

U

trxu
u

),,(' =            (4-20) 

Although the presented figure corresponds to a specific case of the pulsatile pipe flow, the 

message it delivers is general and applicable to pulsatile flows with significant-amplitude-

imposed velocity oscillations. 

  The presence of flow reversal in the near-wall region corroborates prior 

investigations which also identified such occurrences in pulsatile or oscillatory flows [67, 

77, 78, 108-115].  This strong reinforcement from the literature adds confidence to the 

results presented in this study.  

 

 

 

   Figure 4-6:  Evidence of Near-Wall Backflow. 
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 Another perspective of the encountered backflow is provided by means of velocity 

vector plots that are presented in Figure 4-7.  The figure includes results at four axial 

locations. It can be seen that the near-wall velocities are pointing backwards, indicative 

of backflow.  At the instant of time t/T = 1.76 to which the figure corresponds, the flow 

has just completed its deceleration and is beginning to accelerate. Although the results 

of Figure 4-7 correspond to the pulsation frequency of f = 10 Hz, the qualitative features 

shown there are repeated for f = 1 and 2 Hz. 

 

Figure 4-7:  Near-Wall Backflow: Vector Diagrams of Velocity at Various Locations for 
the Frequency f = 10 Hz, Early Acceleration, t/T = 1.76 (Point d in Fig. 4-5).   

 

 The counterpart of Figure 4-7 which presents an alternative view of the results is 

provided by Figure 4-8. It shows the velocity contour in the one-degree wedge in which 

the solutions were performed.  Figures 4-7 and 4-8 convey the same message but in 

different terms.  
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Figure 4-8:  Near-Wall Backflow: Contour Diagrams of Velocity at Various Locations for 
the Frequency f = 10 Hz, Early Acceleration, t/T = 1.76. 

 

 The presence of backflow is not necessarily confined to the near-wall region as 

witnessed by Figure 4-9.  This evidence is conveyed by vector diagrams at two 

downstream locations.  This event occurs at t/T = 1.92 (point e in Figure 4-5) which is a 

mid-acceleration time as the flow approaches the mean value velocityU .  At this time, the 

flow is in the process of building momentum.  

In the late-acceleration phase, at time t/T = 2.14 (Point f in Figure 4-5), the flow 

possesses sufficient moment to support forward flow at all cross-sectional locations.  This 

flow situation is portrayed in Figure 4-10. 

 

x/L = 0.01                     0.5                      1
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Figure 4-9:  Far-from-Wall Backflow: Vector Diagrams of Velocity at Various Locations 
for the Frequency f = 10 Hz, Mid-Acceleration, t/T = 1.92, (Point e in Fig. 4-
5).  

 

Figure 4-10:  No Near-Wall Backflow: Vector Diagrams of Velocity at Various Locations 
for the Frequency f = 10 Hz, Late Acceleration, t/T = 2.14 (Point f in Fig.4-
5).  
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 During the early-deceleration phase of the pulsatile flow (line ab), there is no 

evidence of the expected backflow as might be expected as the flow decelerates.  The 

flow continues to flow in the forward direction without any reversal until the bulk velocity 

U of the flow reaches its mean velocity valueU .  This behavior is witnessed by the 

vector diagrams displayed in Figure 4-11 at three axial locations.  

 

 

Figure 4-11:  Absence of Near-Wall Backflow: Vector Diagrams of Velocity at Various 
Locations for the Frequency f = 10 Hz, Early-Deceleration, t/T = 1.3 (Point 
a in Figure 4-5). 
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On the other hand, during the decelerating phase of the flow (between the mid- and late-

deceleration points, line bc), Figures 4-12 and 4-13 confirm the presence of near-wall 

reversed flows at all cross sections.  Comparison of these figures shows the region of 

reversed flow increases as the deceleration advances from the mid-deceleration to the 

late-deceleration events.  

 

Figure 4-12:  Near-Wall Backflow: Vector Diagrams of Velocity at Various Locations for 
the Frequency f = 10 Hz, Mid-Deceleration, t/T = 1.5 (Point b in Figure 4-
5). 
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Figure 4-13:  Near-Wall Backflow: Vector Diagrams of Velocity at Various Locations for 
the Frequency f = 10 Hz, Late-Deceleration, t/T = 1.73 (Point c in Figure 4-
5). 

 

4.1.4.4  Wall Shear Stress and Shear Strain Rate  

 Both the wall shear stress and the wall shear strain rate play significant roles in 

cardiovascular diseases such as thrombosis and hemolysis.  The wall shear stress Wτ

in the x direction has the same units as the pressure, so it is non-dimensionalized in the 

same way.  Therefore, 
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2
' UWW ρττ         (4-21) 
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The dimensionless wall shear stress is plotted as a function of time in Figure 4-14 for 

four different axial locations along the pipe.  The change of signs in the wall shear 

stress are indicative of the flow directions, with the positive shear values corresponding 

to forward flow near the wall and the negative values indicating backflow. 
    

 

 Figure 4-14:  Dimensionless Wall Shear Stress Variations with Time at Various Axial 
Locations for the Frequency f = 10 Hz. 

 

  The dimensionless shear strain 
'







 •

γ  rate at the wall is given by 
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where 
•

γ  is the wall shear strain rate and, D is the internal diameter of the pipe. 

  

 

 Figure 4-15 shows the timewise variation of the magnitude of the dimensionless wall 

shear strain rate at various axial locations.  Inspection of the figure reveals that aside 

from the immediate neighborhood of the inlet, the wall shear strain rate results are 

essentially independent of the axial location.  The pulsatile nature of the flow is also 

manifested by the periodic pattern of the strain rate.  

 

 Figure 4-15:  Magnitude of the Dimensionless Wall Shear Strain Rate Variations with 
Time at Various Axial Locations for the Frequency f = 10 Hz. 
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4.1.4.5  Correlation of Pressure and Axial Velocity Pulsatio n Phases  

  It is relevant to elucidate the phase relationships between the imposed velocity 

pulsations and the resultant pressure responses at two different axial locations. These 

relationships are shown in Figure 4-16.  In this figure, the imposed axial velocity 

pulsations at x/L = 0 and the corresponding pressure variations at x/L = 0 and 0.5 are 

brought together as functions of time.  Both the pressure and the velocity variations are 

presented in dimensionless form. It can be seen that there is a phase lag between the 

velocity and pressure pulsations.  This phase lag is 0.5π radians. On the other hand, 

the pressure pulsations at the inlet and the mid-length of the pipe are in phase.  

  The dimensionless pressure values at the pipe inlet and at the mid-length are 

equal to each other when the velocity function experiences extremums. At the 

extrmums, the velocity transits from deceleration to acceleration and vice-versa and, in 

turn, the acceleration/deceleration values are zero. These qualitative observations, 

deduced for f = 10 Hz, also hold for f = 1 and 2 Hz. This observations are in-line with 

previous studies that indicate the dependence of the phase lag on the Womersley 

number and other parameters. 
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Figure 4-16:  Correlation of Dimensionless Pressure with Dimensionless Axial Velocity 
Pulsations for the Frequency f  = 10Hz. 

 

4.1.4.6  Tuning of Constants in the Menter Transition Model  

 The next issue of importance is the investigation of the effect of the tuning of certain 

constants in the Menter transitional model.  The tuning of the constants in question is 

described in the second paragraph of Section 2. To demonstrate the quantitative effect 

of the tuning, separate numerical results were obtained for two cases: (a) the original 

Menter (untuned) constants and (b) the tuned constants of [70]. The demonstration is 

exhibited for the time-dependent, cross-sectional averaged pressure as shown in 

Figures 4-17 and 4-18, respectively for f = 1 and 10 Hz.   In each figure, the 

dimensionless pressure is shown at two streamwise locations, x/L = 0 and 0.5.  Curves 

are plotted for both the aforementioned cases (a) and (b).  
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 Very careful inspection is needed to identify the difference between the two cases. 

For case of f = 1, there are slight deviations between the respective curves at t/T = 1.  

However, for f = 10 Hz, the deviations cannot be identified within the scale of the figure.   

 

Figure 4-17:  Effect Of Tuning of Constants in the Menter Transitional Model on the 
Cross-Sectional-Averaged Dimensionless Pressure Oscillations for the 
Frequency f = 1Hz.   
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Figure 4-18:  Effect of Tuning of Constants in the Menter Transitional Model on the 
Cross-Sectional-Averaged Dimensionless Pressure Oscillations for the 
Frequency  f= 10Hz.  The Results from the Two Models Overlap.  

 

4.1.4.7  Concluding Remarks 

 The goal of this numerical-simulation-based investigation is to apply the modified 

Menter transitional model to higher frequency pulsatile flows than those considered in 

the past [70] and to determine time-varying fluid flow properties and other derived flow 

characteristics.  The frequencies used in this investigation ranged from 1 to 10 Hz.  The 

previous investigation [70] considered frequencies confined to values ≤ 0.025 Hz (T = 

40 seconds) only and demonstrated that a quasi-steady model could be used to predict 

the time-varying fully developed friction factors in particular and the simulation of 

pulsatile flows encompassing all flow regimes in general to a high degree of conformity.  

 The initial focus of the present study is to identify whether the foregoing conclusion 
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drawn from [70] is valid for the present higher frequencies. It is found that for all the 

frequencies investigated here, the friction factor results significantly deviate from those 

of the quasi-steady model.  The magnitude of the deviations increases markedly with 

increasing frequency.  The finding of this study conform (in principle) to the observations 

of Zielke [73] and Akavan et al. [74] and other researchers [61, 77-79, 108-110] on the 

behavior of pulsatile or unsteady flows.  

  Another focus of this study is to determine the presence or absence of backflows 

as the pressure varies with time in response to the imposed harmonic variation of the 

inlet velocity.  Backflow did, in fact, occur near the wall as the flow transists from 

deceleration to acceleration.  This transition gave rise to a change in the sign of both the 

axial pressure gradient and the wall shear stress.  The presence of backflow was 

manifested in the axial velocity profile.  

  The pressure oscillations created by the imposed velocity variations demonstrate 

diminished amplitudes with increasing downstream distance from the pipe inlet.  

Additionally, the amplitude of the pressure is highly sensitive to the frequency of 

pulsation. It was also found that the resulting pressure pulsations lag behind the 

imposed pulsations of the inlet velocity.  

  The primary transitional model used here is a modification of that of 

Menter [103, 104].  The main difference between these models is the tuning of the 

constants in one of the equations of the model.  In order to identify whether the tuning of 

constants is significant for higher frequency oscillatory flows, separate numerical 

solutions were carried out for both models.  The pressure oscillations corresponding to 
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the respective models were compared and it is found that the deviations are 

insignificant.   
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4.2  Pulsatile Flow in 90 o-Bend Tubes  

 In this preliminary study, the flow property changes such as velocity profile, 

pressure and the shear stresses in healthy and diseased (aneurysmal) arteries with 90o- 

bend geometry are investigated using a finite element-based ADINA software.  The 

main purpose of this study is to investigate the effect of periodically varying inlet 

boundary conditions on the compliance of blood vessels. 

4.2.5   Fluid Solid Interaction (FSI) Simulation  

 In this subsection, the numerical study focuses on the effect of compliant blood 

vessels in order to understand the changes in flow properties in a 90o-bend healthy and 

diseased (aneurysmal) blood vessels.   

The scopes of the CFD simulations are as follows: 

i. Conduct 3D Transient CFD analysis  

ii. Demonstrate fluid-solid interaction  or compliance 

Water Properties @ T = 37 0C (isothermal case) has been used to simulate blood flow 

as blood flow in large arteries is assumed as Newtonian and plasma is the major 

component of blood.  The fact that the major component of blood is plasma and that in 

turn consists of 90% water is behind this assumption.  

4.2.5.1  Basic Assumptions/Input Parameter 

i. Fluid Model 

1. Density,  ρ = 993 kg/m3    

2. Dynamic Viscosity,  
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3. µ = 7.75E-04Ns/m2 (Newtonian) 

ii. Solid Structure/Blood Vessel properties:   

1. E=1.0E+06 N/m2,   

2. ρ = 1120 kg/m3,   

3. thickness, t = 0.1 mm,  

4. Poisson Ratio, v = 0.45  

4.2.6  Solid/Fluid Models for Normal/Diseased Geometric Mo dels 

To conduct the fluid-structure interaction study, each fluid-structure interaction 

simulation in ADINA requires that two models are created, namely, the solid model 

(blood vessel) and fluid model (blood).  Figure 4-19 below shows, the solid geometric 

model (vessel) for a healthy artery with 90 a degree bend.   

 

Figure 4-19:  Solid Model - Healthy Geometric Arterial Model (90 Degree Bend) 
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Figure 4-20 below shows, the solid geometric model for a diseased artery with 

90o bend with a mean diameter of 15 mm having a radius of curvature of 15 mm 

including a parent artery with a 10 mm ID lumen size.   

 

Figure 4-20:  Solid Model - Diseased (Aneurysm) Geometric Model (90o Bend) 

 

Figure 4-21:  Meshed Fluid Model - Diseased (Aneurysm) Geometric Model (90o Degree 
Bend). 
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Figure 4-22:  Meshed Solid Model - Diseased (Aneurysm) Arterial Geometric Model (90o 
Bend) Fixed at Both Ends.  

  

4.2.7  Mathematical Modeling of Fluid Solid Interaction 

4.2.7.1  Governing Equation for Fluid Domain(Navier-Stokes E quations)   

The simulation of fluid flow within moving or deformable boundaries requires close 

attention as the Eulerian method of description is no longer valid.  Thus, at the moving 

boundaries the Lagrangian coordinate system or method of description is used while in 

the rest of the fluid domain the Arbitrary Lagrangian-Eulerian (ALE) method of 

description is applied in an effort to freeze the computational domain [120, 121]:.  For 

the isothermal fluid flow condition, the respective continuity and momentum equations 

using the (ALE) formulation for the fluid domain are as follows [120, 121]:  
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0=•∇ U                     (4-23) 

UPUUcU
t

U 2])([ ∇+∇=∇•−+
∂
∂

µρ       (4-24)  

where U is the fluid velocity vector, P is the pressure, ρ  is the fluid density, Uc is the 

moving coordinate velocity and µ is the fluid viscosity.  On the other hand the 

formulation for the solid structure based on the Langragian coordinate system is given 

by Equation (4-25) as follows [120, 121]: 

4.2.7.2  Mathematical Modeling of Solid Structure   

•

=•∇ css Uρσ               (4-25) 

Boundary conditions – Fluid  Domain  

)(tUU
inlet

=                             (4-26) 

Figure 4-23 shows a plot of typical human blood flow rate curve that has been used in 

this case as the inlet boundary condition - pulstatile velocity curve [121]. 

0=
outletnσ                            (4-27) 

Boundary conditions – Solid/Fluid Interface  

fs dd =                              (4-28) 

cUU =                      (4-29) 

ffss nn •=• σσ                      (4-30)  

where d, σ, and n with associated subscripts s and f denoting fluid and solid are the 

displacement, stress tensor and boundary normals of the solid and fluid domains 

respectively.  The arterial solid models are also fixed at both ends.  



145 
 

 

 

Figure 4-23:  Physiological Waveform of Inlet Velocity Boundary Condition [121]. 

 

4.2.8  Results and Discussion - Laminar Flow Case 

4.2.8.1  Pulsatile Flow in a 90 o-Bend without Aneurysm 

 Figures 4-24 through 4-27 show the contour plots for a laminar pulsatile flow 

case with a peak Reynolds number of 2000 at inlet (i.e. the pulsatile inlet boundary 

condition was reduced by a factor of 10 to simulate laminar flow).   
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Figure 4-24:  Velocity Plot [Max. = 0.2278m/s, [Laminar Flow Case, Remax~ 2000, With 
Fluid Domain Inlet velocity Reduced by a factor of 10, @ t = 0.2s] 

 

 

Figure 4-25:  Nodal Pressure Plot [Max = 420.8 Pa]; Laminar Flow Case, Remax~ 2000, 
With Fluid Domain Inlet velocity Reduced by a factor of 10, @ t = 0.2s] 
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Figure 4-26:  Displacement Plots [Max = 0.1379 mm]; Laminar Flow Case, Remax~ 2000, 
With Fluid Domain Inlet velocity Reduced by a factor of 10, @ t = 0.2s].  

 

 

Figure 4-27:  Effective Stress Plot [max. 16677 Pa]; [Laminar Flow Case, Remax~ 2000, 
With Fluid Domain Inlet velocity Reduced by a factor of 10, @ t = 0.2s] 
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4.2.8.2  Pulsatile Flow in- 90 o-Bend Aneurysmal Arterial Model 

 

Figure 4-28:  Displacement Plots [Max = 0.1379 mm]; Laminar Flow Case, Remax~ 2000,   
With Fluid Domain Inlet velocity Reduced by a factor of 10, @ t = 0.2s]. 

 

 

Figure 4-29:  Velocity Plot [Max. = 0.2278m/s, [Laminar Flow Case, Remax~ 2000, With 
Fluid Domain Inlet velocity Reduced by a factor of 10, @ t = 0.2s] 
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4.2.8.3  Pulsatile Flow in 90 o Bend Aneurysmal Models Transient Effects 

  Figure 4-30 below shows the transient nodal pressure, displacement, velocity, 

shear stress variations at the outlet of the fluid Domain for a an aneurysmal arterial 

model with a 90o -Bend.  

 

 

Figure 4-30:  Nodal Pressure, Displacement, Velocity, Shear Stress Variations at the 
Outlet of the Fluid Domain for a 90o -Bend (with Aneurysm).  
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Figure 4-31:  Nodal Pressure, Displacement, Velocity, Shear Stress Variations at the 
Outlet of the Fluid Domain for a 90o Bend (without Aneurysm).  

 

Figure 4-32:  Displacement Plots [max. 0.1426mm];  [Laminar Flow Case, Remax~ 2000 , 
@ t = 0.2s]. 
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Figure 4-33:  Displacement Plots [max. 0.1426mm];  [Laminar Flow Case, Remax~ 2000 , 
at t = 1.00s]. 

 

 

Figure 4-34:  Max Shear Stress Plot [max. 9629 Pa];  [Laminar Flow Case, Remax~2000, 
@ t = 1.00s]. 
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Figure 4-35:  Max Shear Stress Plot [max. 12035 Pa];  [Laminar Flow Case, Remax~ 
2000 , @ t = 0.20s]. 

 

4.2.9  Concluding Remarks  

The fluid-solid-interaction-based CFD simulation of pulsatile flows in 90o-bend 

tubes is of significant importance for the understanding of periodic or pulsatile blood 

flow in large arteries such as the ascending aorta, aortic arch and the descending aorta 

to mention few.  Thus, in this section from the fluid-solid-interaction or tube compliance 

study, the following conclusion have been drawn as follows: 

i. Investigation of the transient results for healthy arterial models shows that 

the fluid shear stress is in phase with the mean inlet velocity. 

ii. The mean inlet velocity and pressure are not in phase for both arterial 

models (with aneurysm and without aneurysm).  
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iii. The displacement and pressure magnitudes in aneurysmal models is 

larger than the respective values in healthy arterial models for the same 

inlet and outlet boundary conditions.  

iv. Fluid pressure and displacement of the tube/vessel are in phase. 
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CHAPTER 5  

PULATILE FLOW TEST APPARATUS, INSTRUMENTATION, EXPE RIMENTAL 

SETUP, AND PROCEDURES  

5.1   Introduction  

An experimental investigation has been undertaken to extend and elucidate the 

numerical simulations conducted in Chapter 4 and implement the objectives of this 

dissertation as outlined in subsection 3.6 of Chapter 3.  Thus, the experimental setup 

was designed to fulfill two goals:  (a) to support the objectives of the dissertation and (b) 

to obtain definitive and novel results for the detection and characterization of pulsatile-

flow-induced acoustic emissions.  To enable the determination of results of such 

breadth, a unique experimental setup was designed and implemented.  In the sections 

that follow, the experimental setup will first be viewed globally, and thereafter the details 

of the various components of the apparatus and instrumentation will be detailed.  

5.2  Design of Simple Model of Cardiovascular System Hyd raulics  

 The experiments performed here have been configured so as to generate a 

periodic pulsatile flow having frequencies that range from 0.0625 to 25 Hz. This range 

encompasses the normal human heartbeat frequency of 1.2 Hz as well the heartbeat 

frequencies of mammals in general which are beyond the human physiological 

conditions.  This choice was made to simulate strenuous blood flows in mammals in 

general.  The experimental model does not simulate the autonomic control system of 

the cardiovascular system in any way.  It is purely a mechanical model capable of 

generating pulsatile flows in geometric arterial models.  This CVS model could be 



important in understanding normal and diseased CVS compo

development of biofluidic solutions

cardiovascular insufficiencies.  

5.2.1  Physiological Heart and Mechanical Pum

In order to select the features

necessary to distinguish the major types of pump 

must take account of the pumping 

system in general.  Figure 5-

with that of a mechanical pump while Fig

have been simulated in the model with a ball valve. 

Figure 5-1:  Comparison of Physiological A
Mechanical Pump 
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important in understanding normal and diseased CVS component functions and the 

solutions such as implants (valves, stents, etc)

.   

and Mechanical Pum p Activities 

he features of a pump that would simulate the he

to distinguish the major types of pump designs. Additionally, pump selection 

pumping characteristics of the heart and of the cardiovascular 

-1 shows the similarity in the physical activities of a heart 

mechanical pump while Figure 5-2 shows a network of blood v

have been simulated in the model with a ball valve.  

Comparison of Physiological Activities of the Heart with Those of a
Mechanical Pump [15]. 

nent functions and the 

such as implants (valves, stents, etc) for 

pump that would simulate the heart, it is 

Additionally, pump selection 

the cardiovascular 

al activities of a heart 

lood vessels that 

 

Those of a 



Figure 5-2:  Networks Small Vessels 

 

5.3   Overall View of the Experimental Setup

 An overall block diagram showing the experimenta

5-3.  As shown there, the heart of the experimental apparatus is the test section which 

is a circular tube which may be made either of rigid or flexible material. The test section 

is instrumented to collect information for both fluid flow and acoust

number of auxiliary devices are built into the setup to monitor, control, and post process 

the data.  Operator control of the experiment is achieved by informing the function 

generator of the desired frequency of 

duration of the data collection, and data file storage specification.
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all Vessels [122] - Replaced with a an Equivalent Resistance

Overall View of the Experimental Setup  

An overall block diagram showing the experimental setup is presented in 

.  As shown there, the heart of the experimental apparatus is the test section which 

is a circular tube which may be made either of rigid or flexible material. The test section 

instrumented to collect information for both fluid flow and acoustic emission.  A 

number of auxiliary devices are built into the setup to monitor, control, and post process 

Operator control of the experiment is achieved by informing the function 

or of the desired frequency of pulsation and by setting the start time, the 

duration of the data collection, and data file storage specification. 

 

Replaced with a an Equivalent Resistance. 

l setup is presented in Figure 

.  As shown there, the heart of the experimental apparatus is the test section which 

is a circular tube which may be made either of rigid or flexible material. The test section 

ic emission.  A 
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Operator control of the experiment is achieved by informing the function 

e start time, the 
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Figure 5-3:  Overall Block Diagram of the Experimental Setup. 

 

The operator is able to monitor the progress of the experiment by viewing the screen of 

the data acquisition PC.   

 The fluid flows in a continuous loop.  The reservoir is a closed transparent tank 

which serves as the starting and ending points of the loop.   The tank is large enough so 

that it damps any fluctuations in the fluid that is delivered to it.  From the reservoir, the 

fluid is delivered to a solenoid pump whose function is to impose the pulsatile flow.  The 

pump is informed of the frequency desired by the operator via a function generator 

which controls the output of the power supply to the pump. From the pump, the fluid 

passes through a large-L/D delivery tube into the test section.   
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Two different types of results were obtained for the test-section flow.  One has to 

do with the flow—pressure drop characteristics. In this regard, the timewise variation of 

the pressure was measured independently at the inlet and exit cross sections of the test 

section.  Additionally, a calibrated flow meter was installed downstream of the test 

section.  The second type of result that was collected was the flow-induced acoustic 

emission.  To take account of the presence of installed blockages and their effects, two 

acoustic emission sensors were put in place at the mid-length of the test section.  

5.4   Description of the Hydraulics of the Closed Loop T est Apparatus  

  A schematic drawing of the hydraulics of the test apparatus and its major 

components is provided in Figure 5-4.  The hydraulic model for the experimental 

simulation of the pulsatile flow is a closed system similar to a mammalian circulatory 

system. In the latter, blood carrying oxygen and nutrients flow from the heart via the 

large elastic artery (aorta) and a network of branching medium and small arteries. 

Ultimately, the blood reaches the organs and other underlying tissues which consist of 

small arteries called the capillaries. In the present model, the series of branching 

arteries is simulated by a ball valve which serves as a flow resistance in addition to the 

flow resistance of the system. In this CVS model, distilled water and 40% glycerin 

solution in distilled water are used as a working media. The plastic fluid tank equipped 

with a filter as shown in Figure 5-4 represents the veins as a passage and storage site 

for the circulating fluid before it enters the pump that simulates the left ventricle of the 

heart. The solenoid pump is isolated from the support table using foam strips to limit the 

transmission of vibration from the pump itself to the test section.  The pump is 

connected to a programmable DC voltage power supply (XHR 1000, Sorenson). In turn 
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the power supply is connected to a function generator (Stanford Research systems, 

Model DS345). The function generator was set at a sinusoidal input voltage of ±4V for 

all the tests in this study.   

  The inlet of the suction tube (hard polyethylene), also seen in Figure 5-4, is 

submerged in the two-gallon tank about 60 mm below the water surface and maintained 

at the same level throughout the test. The water enters the suction side of the pump by 

a combination of slight gravity and suction due to the reciprocating (solenoid) pump 

through the 1390-mm-long polyethylene tube (1/4-inch ID).  Then, the distilled water or 

water/ glycerin solution is discharged to a 5/8-inch ID, 300-mm-long curved flexible 

viscoelastic tygon tube (hardness value of 50A, Shore Durometer). The downstream 

end of the tygon tube is connected to the inlet side of the test section via a ¼-inch ID, 

150mm-long polyethylene. The aforementioned viscoelastic tygon tube simulates the 

function of a mammalian aorta and also serves to minimize the transmission of pump 

vibration effects to the test section.  

  The test section of the CVS hydraulic model has an overall length of about 

640 mm and is located between P1 and P2 as shown on Figure 5-4.  At each of the 

extreme ends of the test section, a pressure transducer (Omega, Model PX209 with 0 

– 5V voltage output) is installed to measure fluid pressure variations. These 

pressures are denoted as P1 and P2, respectively at the upstream and downstream 

ends of the test section. In the test section, between the two pressure transducers, 

the 570-mm-long arterial models (with different diameters and materials) with or 

without flow restrictions (stenotic models) are installed.   
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  The arterial models that simulate normal or stenosed arteries respectively 

are installed one at a time. To avoid damage to the tubes, the specially machined 

blockages or stenotic insertions were lubricated using glycerin before they were 

pressed into the tubes.   

 The tubes were minimally stretched and firmly secured/connected to the T-

connectors, each of which served the dual purposes as a pressure tap and a 

throughflow into the test section.  Each of the pressure taps was fitted with a 

transducer to measure the respective inlet and outlet pressures of the flowing liquid 

through the test section.  The T-connectors were securely fixed to the support panel. 

Downstream of the test section, about 325 mm from the outlet pressure transducer, a 

flow meter (Omega, Model FLR 1000 Series) was installed to measure the fluid 

volumetric flow rate.   

 The table that supports the hydraulic model is isolated from any floor vibration 

interference using viscoelastic foam material. The test-section tube is minimally 

supported from underneath by strips of viscoelastic foam materials at two locations 

which are respectively adjacent to the positions S1 and S2 shown in Figure 5-4.  S1 and 

S2 are the acoustic emission sensor locations which are 36 mm apart.  The support 

panel upon which the test section rests is also isolated from the support table by means 

of strips of viscoelastic foam materials.     

 The design of the physical model used in this research depends on the following 

basic considerations and assumptions: 

1. The fluid (blood) is assumed Newtonian; hence, distilled water and a 40% 

glycerin/water solution by weight are used as working media as shown in Table 5-1.  
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The reasons underlying these choices are (a) water has lower viscosity and thereby 

enables the simulation of Reynolds numbers which correspond to transitional and 

turbulent flow and (b) glycerin/water mixture provides viscosity that is close to that of 

blood.  

Table 5-1:  Physical Properties of Test Fluids.  

 

 

2. The pump in the experimental setup simulates the function of the left ventricle of the 

heart.  

3. The hydraulic resistance of capillaries and arterioles are modeled by an adjustable 

ball valve (that controls system resistance). 

4. The blood storage role of venules and veins is replaced by a two-gallon reservoir.  

Item 
No. 

Physical Properties Pure Glycerin
Pure Distilled 

Water
40% Glycerin/Distilled 

Water Solution

1 Density, kg/m 3̂ 1258 997 1101

2 Dynamic viscosity,  Pa-s 1.41 0.0008899 0.003200

5 Thermal conductivity, W/(m-K) 0.285 0.6069 Not Availa ble

6 Specific heat , J/(kg-K) 2430 4181 3568
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Figure 5-4:  Schematic Diagram of the Hydraulics of the Pulsatile Flow Test Apparatus 
and Components. 

 

5.5  Description of the Test Section  

 The first of the experimental apparatus sub-systems to be described is the test 

section shown in Figure 5-5.  The test-section tube, its instrumentation, and auxiliary 

components are seen to be mounted on a vibration-isolated support table. Secondary 

isolation is provided by foam pads mounted on the upper surface of the table and the 

support panel.  Fluid from the pump enters the test section through the straight-through 

passage of the T-connector.  The side passage of the T-connector is used to transmit 

the inlet pressure to a transducer.  At the downstream end of the test section, another 
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T-connector is used in a manner similar to that used at the upstream end.  The length of 

the test-tube is 570 mm for all the experimental runs.   

 

Figure 5-5:  Detailed Diagram of the Test Section Components. 

 

 The test-section tube material properties and dimensions are presented in Table 

5-2.  All the tube-wall materials are non-metallic, either polymetric or rubber.  The 

internal diameters for the fluid flow range from 0.250 to 0.375 inches.  The modulus of 

elasticity for the participating materials ranges over two orders of magnitude.  The 

significance of this range is that the materials offer a different response to the imposed 

fluid pulsations.  On the other hand, the yield stress values vary by a factor of three.  
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Table 5-2:  Diameters and Material Properties of Test-section Tubes. 

 

 

 At a distance from the inlet of the tube that is about half its overall length, a 

blockage is installed for a subset of the data runs. The position of the installed blockage 

is flanked at all times both upstream and downstream by acoustic emission (AE) 

sensors for the detection and location of flow- induced AE signals.  The axial location of 

the blockage in the test-section tube is illustrated in Figure 5-6. As shown there, the 

blockage is centered in tube length.  The actual blockage is 16 mm long.  It is made of a 

solid delrin cylinder into which a center hole is machined with a counterbore at the 

respective ends which joins the centerhole  by means of a filet of radius of 0.8 mm. 

Polyethylene 0.250 0.375 920 0.237 24.20 0.33

Polyethylene 0.250 0.375 920 0.237 24.20 0.33

Polyethylene 0.250 0.375 920 0.237 24.20 0.33

Polyethylene 0.250 0.375 920 0.237 24.20 0.33

Latex (Rubber) 0.250 0.375 925 0.001 21.72 0.50

Latex (Rubber) 0.250 0.375 925 0.001 21.72 0.50

Latex (Rubber) 0.250 0.375 925 0.001 21.72 0.50

Latex (Rubber) 0.250 0.375 925 0.001 21.72 0.50

Sillicone Rubber 0.375 0.500 1200 0.003 7.58 0.49

Sillicone Rubber 0.375 0.500 1200 0.003 7.58 0.49

Sillicone Rubber 0.375 0.500 1200 0.003 7.58 0.49

Natural Gum Rubber 0.375 0.625 925 0.002 24.13 0.50

Natural Gum Rubber 0.375 0.625 925 0.002 24.13 0.50

Natural Gum Rubber 0.375 0.625 925 0.002 24.13 0.50

Material Properties of Arterial Geometric Models (Tube) & Stenotic Models

Mateial Name 
Density 

[kg/m^3]

 Elastic 

Modulus 

[GPa]

Yield Stress  

[MPa]

Poisson's 

Ratio

Arterial 

Geometric Model 

(Tube) ID 

[in]

Arterial 

Geometric Model 

(Tube) OD 

[in]
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Figure 5-6:  Test-Section Tube Showing the Installation of a Blockage Simulating 
Stenosis. The Blockage is a 16-mm-Long a Delrin Cylinder Center Hole.   

 

Table 5-3 shows details of section C in Figure 5-6 to specify the dimensions of the 

machined delrin cylinder for the 75% and 98% blockage ratios.  

Table 5-3:  Dimensions of Machined Stenotic Model and Tube Assembly. 
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The dimensions D1 and D2 are, respectively, the internal diameter of the open flow area 

of the blockage and the internal diameter of the test-section tube.  

 The blockages installed in the test-section tube were selected on the basis of a 

blockage ratio defined as the blocked cross-sectional area to that of the unblocked tube. 

Table 5-4 displays the various blockage ratios used in the experiments. The blockage 

ratio � is defined as the blocked area (A2 - A1) to the total cross-sectional area of the 

unblocked tube: 

2
2

2
1

2
2

2

12 )(

D

DD

A

AA
R

−
=

−
=                                    (5-1) 

where A1   is the open area for flow with the blockage in place, A2  is the cross-sectional 

area of the unblocked tube, and  D1 and D2  are the corresponding diameters.  The 

blockage ratio � varies from 0 to 98%, as listed in Table 5-4.  

Table 5-4:  Blockage Specification and Tube-Blockage Assembly Designation. 

 

0% No Blockage R00 Polyethylene 0.250 0.375 P00

50% 0.177 R50 Polyethylene 0.250 0.375 P50

75% 0.125 R75 Polyethylene 0.250 0.375 P75

98% 0.039 R98 Polyethylene 0.250 0.375 P98

0% 0.250 R00 Latex (Rubber) 0.250 0.375 L00

50% 0.177 R50 Latex (Rubber) 0.250 0.375 L50

75% 0.125 R75 Latex (Rubber) 0.250 0.375 L75

98% 0.125 R98 Latex (Rubber) 0.250 0.375 L98

0% No Blockage R00 Sillicone Rubber 0.375 0.500 S00

50% 0.265 R50 Sillicone Rubber 0.375 0.500 S50

75% 0.187 R75 Sillicone Rubber 0.375 0.500 S75

0% No Blockage R00 Natural Gum Rubber 0.375 0.625 G00

50% 0.265 R50 Natural Gum Rubber 0.375 0.625 G50

75% 0.187 R75 Natural Gum Rubber 0.375 0.625 G75

Specifications of Stenotic Model (Blockage) and Tube-Blockage Assembly Designation

Blockage 

Ratio

Nominal 

Blockage Hole 

ID (in) 

Blockage 

Designation

Arterial 

Geometric Model 

(Tube) ID 

[in]

Arterial 

Geometric Model 

(Tube) OD 

[in]

Tube-

Blockage

Assembly 

Designation

Tube

 Material
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5.5.2  Description of other Unique Components  

5.5.2.1  Solenoid Pump 

   The pump used in this experimental setup is a reciprocating solenoid pump 

without any integrated circuit or control board powered by a DC voltage power supply.  

This solenoid pump is a production version fuel pump without a controller (Model FRB-

22, Walbro Engine Management, Cass City, MI  48726) which is used on small gasoline 

engines. The main features of the pump as used in the experimental setup are 

summarized as follows: 

i. The pump receives the fluid on its suction side by a combination of gravity and 

suction effects generated by the reciprocating action of the pump.  

ii. The pump receives the fluid and then ejects it to a flexible tube mounted on the 

discharge side of the pump.  

iii. The pump generates the pulsatile flow depending on the function generator input 

at different frequencies.   

iv. The pump’s volumetric flow is a function of its stroke volume and stroke rate 

(frequency).  The flow rate versus frequency characteristics is an inverted 

parabola.  The frequency at which the flow rate peaks depends on the system 

overall flow resistance. In the human and other mammalian hearts, as the 

frequency increases, the cardiac output increases until a maximum is achieved; 

then the output decreases slowly, thereafter. The pump has a maximum output at 

the stroke rate of 10 Hz for a test tube with a blockage ratio R = 0%.  Thus, the 
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flow characteristics of the pump is parabolic with the stroke rate or driving 

frequency as shown in Figure 5-8.  

v. Voltage input range:  0 – 20.0 vdc max 
 

vi. Maximum flow rate:  162 liters per hour (43 gallons per hour) 
 

vii. Deadhead pressure:   56 to 76 kPa (8 to 11 psi) 
 

viii. Mean maximum current draw:  2.3 amps 

 

5.5.2.2  Data Acquisition Systems 

 The hydraulic model is equipped with two data acquisition systems. One is the 

Fracture Wave Detector based acoustic-emission-monitoring software and hardware 

and the other is the Labview-based, computer-controlled, pulsatile-flow-property 

monitoring and data acquisition system.  Figure 5-7 shows a snap shot of the Labview-

based data acquisition and monitoring computer screen.  The main parameters that are 

recorded are upstream and downstream test-section pressures, the pump voltage, 

pump flow meter, and the function generator input voltage are shown on the top left 

hand side of the figure.  On the right hand side of the figure is shown (bottom left 

counter clockwise)  the volumetric flow rate, pump DC voltage, next is the downstream 

pressure reading, followed by the upstream pressure measured at the inlet to the test-

section.  The top most on the right is the cumulative plot of all parameters.  
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Figure 5-7:  A Snap Shot of Data Acquisition and Monitoring. 

 

5.5.2.3  Flow Monitoring and Regulating Devices 

 The pressure and flow within the system are controlled using a mechanical check 

ball valve in conjunction with the function generator that controls the function/amplitude 

of the input power to the pump.  The flow rate is measured using a digital flow meter 

whose calibration was validated by the bucket--stop watch method. The two pressure 

transducers mounted upstream and downstream of the test section measured the inlet 

and outlet fluid pressures.   

5.5.2.4  Other accessories 

a. Two graduated cylinders, 500 and 1000 ml,  

b. A stop watch, and 

c. Length scale. 
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5.6  Fluid Flow Visualization Tools and Accessories 

 During the pulsatile flow investigation, the following equipment and accessories 

were employed for the flow visualization techniques.   The two techniques employed are 

the dye trace and air bubble trace methods.  

A high-speed, high-resolution camera was used to capture the dye traces at 1000 

frames/second and 600x800 pixels resolution.  The model of the camera used was 

Phantom v7.3 vision camera (Vision Research Inc., 100 Dey Road, Wayne, New Jersey 

07470, USA).  The camera has the following specifications: 

a. 600x800 pixels (maximum resolution), 

b. A speed of 6688 frames per second at maximum resolution, 

c. Up to 222,222 frames per second (standard mode) and 500,000 frames per 

second at reduced resolution speed (turbo mode).  

The Phantom v7.3 camera is used a qualitative tool for the visualization of the pulsatile 

flows at different frequencies.  

 Food dyes (red and green) were injected into the flow by a hypodermic needle to 

make the flow pattern (laminar/turbulent) visible inside glass tubes, specifically for the 

flow visualization purposes. The needle was either operator-activated or partial-vacuum 

assisted depending on the pulsation frequency.  At lower frequencies (f ≤ 5 Hz), the 

food dye or air was self-injected into the tube due to the partial vacuum within the tube.  

 The hypodermic needle was also used for the injection of air bubbles into the 

glass tube for fluid flow visualization and estimation of pulsating flow velocities. The 
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Phantom V7.3 camera was setup at a speed of 1000 frames per second at the highest 

resolution of 600x800 pixels. 

 

5.6.3  Flow Characteristics of the Model  

The flow characteristics of the hydraulic model were measured as function of the 

pulsation frequency and are shown on Figure 5-7.   The experimental data are shown 

as discrete points and the continuous line is a curve fit.  From the figure, it seen that the 

maximum flow rate occurs at f = 10 Hz, and this frequency was also the upper limit of 

the frequencies for which detailed flow and acoustic emission data are presented and 

corresponding CFD simulations were performed. The experimental setup for which the 

data of Figure 5-8 were collected included a rigid test-section tube without blockage.  

 

Figure 5-8:  Flow Characteristics of Pump in CVS Hydraulic Model with 0.25-inch ID 
Polyethylene Tube in Test Section.  
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Figures 5-9 shows the mean electrical inputs (DC current and voltage) measured at the 

pump terminals at various frequencies.  On the other hand, Figure 5-10 shows the  input 

power as function of time over two cycles at frequency, f = 1 Hz.  

 

Figure 5-9:  Mean Current and Voltage Variations with Frequency  

 

Figure 5-10:  Typical Pump Power Demand versus Time. 
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 Figure 5-11 shows the vapor pressure vs. temperature for monitoring the critical 

vapor pressure for water in order to monitor the presence or absence of cavitation in the 

stenotic models with higher restrictions at higher frequencies.  The same curve is used 

for checking the CFD simulation results (sub atmospheric pressure oscillations).  

 

  Figure 5-11:  Vapor Pressure of Water vs. Temperature [123].  

 

5.7  Test Procedures  

In this section, the procedures followed during the execution of the tests are 

presented.  
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5.7.4  General Protocol  

1. The test fluid level (water or 40% glycerin solution in water) in the fluid reservoir 

tank is checked.  

2. The suction and outlet tubes leading to the suction side of the pump and 

reservoir, respectively, are checked to make sure they are submerged under the 

test fluid in the reservoir.  

3. The operator turns on the PC computer and the data acquisition device 

connected to the computer in sequence.  

4. The function generator is turned on after which the settings for the voltage 

function and amplitude are made. 

5. The power supply is turned on to start the solenoid pump.  

6. The system is allowed to run at least for 10 to 30 minutes in order to stabilize it.  

7. The desired voltage function and frequency are set at the function generator. 

8. The data sampling rate for the pressure and flow rate as well as the collection 

time are set at the PC computer (DAQ 2).  

9. A data file (pressure, flow rate, pump voltage, pump current, as well as voltage 

input into the function generator over time) is generated and saved for each 

collection time for a given pumping frequency.  

5.7.5  Acoustic Emission Data Sampling and Collection  

In the detection, location, and measurement of the flow-induced AE signals, one 

set of sensors and associated hardware/software was used for the study of the 

detection and location of flow-induced AE signals in pulsatile flows.  This study involved 
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the use of different tubes with different sizes and material properties. The equipment 

used the Fracture Wave Detector Software (Digital Wave Corporation, Englewood, CO 

80111, USA) for the setup of the test parameters and the acquisition of the AE signals.  

The Wave Explorer software (Digital Wave Corporation) was employed for the post 

processing of the data. The data collected from these experiments included, the AE 

signal indicators such, energy, number of events, wave form, and FFT spectra of the 

signals.  The Digital Wave Acoustic emission equipment made use of the Fracture 

Wave Detector software along with two different sensors (model R15 with frequency 

range of 50 to 200 kHz and the model S9225 pico sensor with 300 to 1800 kHz) that 

were installed upstream and downstream of the stenotic model, respectively.   

A second set of AE equipment replaced the first set because the software for the 

latter malfunctioned. The second AE setup made use of acoustic emission equipment 

supplied by the Mistras Group, formerly Physical Acoustics Corporation (Princeton 

Junction, New Jersey). The two acoustic emission sensors used in this equipment were 

two identical pico sensors with the same resonant frequency range (model number 

S9225 with an operating resonant frequency range of 300 to 1800 kHz).  The new 

equipment also used new software, the Mistras.  In both sets of the AE experiments, 

similar procedures were used as follows: 

10. The two AE sensors in each setup were used to detect the flow-induced AE 

signals by installing them equidistant from the middle of the tube with or without 

blockage, about 36 mm from each other.  

11. The two acoustic emission sensors are installed upstream and downstream of 

the mid-section of the tube (distal and proximal from the stenotic model) and 
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were checked prior to each test for location and attachment/fixation to the tube 

was achieved using bees wax and tape.  

12. The two sensors were checked prior to the test for connection/wiring to their 

respective preamplifiers and channels using test signals.  

13. The pulsatile flow in the tube was allowed to stabilize for at least one minute at a 

given pumping frequency prior to the start of each AE signal test measurement 

(AE data monitoring and acquisition or recording).   

14. After stabilization of the flow, the AE signal and flow information (pressure at the 

inlet and outlet to the test section and the flow rate) were acquired for monitoring 

and recoding. The acoustic emission signal measurement and flow information 

were simultaneously monitored and recorded via their respective data acquisition 

systems DAQ1 and the DAQ2 as shown in the experimental setup.   

15. The AE signals from the two sensors were channeled through two pre-amplifiers 

to the data acquisition computer (DAQ1) for test monitoring or for display of the 

raw data in real time and for recording purposes. 

16.  The operation (setup, on-line data monitoring and recording) of the AE data 

acquisition system (DAQ1) was accomplished by a second operator.  In addition 

to overseeing the proper function of the data setup and data acquisition the 

operator also works in tandem with the operator for the pulsatile who controls the 

(DAQ 2).  

17. The AE signal test measurement was recorded at least for five minutes. 
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5.7.6  Acoustic Emission Setup for the Mistras Software 

The software setup for the Mistras acoustic emission equipment was as follows: 

a) First the velocity of the longitudinal wave in the medium was calculated.  

b) The location of the pressure transducer located at the inlet of the test section 

tube was set as the beginning of the reference axis (x) from which the location of 

the sensors (installed proximal and distal to the stenotic tube) was measured. 

c) Other parameters were setup as shown in Figure 5-12. 

 

 
 

Figure 5-12:  Software Setup for the Mistras Acoustic Emission Equipment. 
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CHAPTER 6  

EXPERIMENTAL AND CFD SIMULATION RESULTS AND DISCUSS ION 

6.1  Introduction  

  In this chapter, the experimental pulsatile flow and CFD simulation results 

for some selected experimental test runs are presented. The simulation test matrix was 

selected from the experimentation test run in such a way that the adequacy of the flow 

regime and associated models for solving pulsatile flows in healthy and diseased 

arterial models can be evaluated.  

 For the CFD simulations, two experimental flow measurement data, namely, the 

inlet and outlet test--section pressures were used for the specification of the inlet and 

outlet boundary conditions.  The third measurement that was simultaneously measured 

during the inlet and outlet test--section tube pressure measurements is the volumetric 

flow rate.  It is this experimental volumetric flow rate as recorded by the flow meter and 

described in the experimental setup in Chapter 5 which is used for comparison with the 

CFD simulation results.  Furthermore, the CFD simulation results such as pressure and 

velocity distributions, wall shear stress, etc. in the solution domain (the test--section 

tubes) are also used for the investigation of the flow-induced--acoustic emission results 

and the characterization and complete specification of the fluid flow within the test--

section tube itself. 

 In Section 6-2, a summary of the experimental test runs is presented. In Section 

6-3, the experimental test results (temporal or transient as well as time-averaged 

values) for limited cases are presented. In Section 6-4, the CFD simulation results for 
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selected experimental flow test runs are presented.   The details of the preliminary CFD 

work (mesh optimization and selection of CFD models) are also discussed and the 

validation procedures and results presented.  The CFD simulation of the pulsatile flows 

for selected rigid (polyethylene) and flexible (latex) tubes with and without blockage is 

also conducted based on the description of the CFD simulation as shown in Table 6.2.  

Thus, the CFD simulation is aimed at showing the capability of various flow regime and 

turbulence models to characterize and investigate the transient fluid flow properties 

within the test--section tubes.  Ultimately, the CFD results will be used to demonstrate 

the adequacy of the flow regime and turbulence models for the simulation of pulsatile 

flows as well as for the critical investigation and understanding of the fluid-flow-induced 

acoustic emission test results which are presented in Chapter 7.  

 In this chapter, the details of the numerical simulations will be set forth to provide 

information about the essential features that underlie them.  Results extracted from the 

CFD simulations will be conveyed by means of graphical displays and tabulations.  The 

results of the experimentation will be brought together and compared to those of the 

simulation. The major comparison will be between the mean volumetric flow rates as 

obtained from the two foci of the investigation.  In addition, flow visualization results will 

be exhibited to support the selection of the flow-regime models that were used in the 

numerical simulations.  

6.2  Tabulation of the Investigated Experimental Cases 

 The number of cases investigated here is very large so that it is necessary to 

organize them in a systematic tabular form.  The first table, Table 6-1, lists the 
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description of the experimental data runs.  The first column of the table identifies the 

case that is described in the other columns to the right.  A number of abbreviations have 

been made to achieve a compact presentation.   The second column lists the pulsation 

frequency of the case in question.  The extent of the blockage of the tube is represented 

by the blockage ratio R.  R is defined as the ratio of the blocked cross section to the 

total free flow area of the tube.  With regard to the various tube materials, the symbols 

L, P, G, and S are the respective abbreviations for latex, polyethylene, gum rubber, and 

silicone rubber.  The last column of the table shows the fluid medium used for the 

specified cases.  Distilled water and a 40% (by weight) glycerin solution in distilled water 

have been used as test fluids.  

 It can be seen from Table 6.1 that if all the listed cases were performed, over one 

thousand experimental runs would have been performed.  In reality, runs were not 

performed for the R = 98% blockage for the gum and silicone rubber tubes.   
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Table 6-1:  Description of the Experimental Data Runs .   

 

6.3  Experimental Pulsatile-Flow Results for Rigid and F lexible Tubes  

6.3.1  Temporal Results  

 To illustrate the nature of the measured time-varying results for a typical case, 

Figure 6-1 has been prepared.  The figure is subdivided into four sections, which 

correspond respectively to the pressures at the inlet and the exit of the tube, the 

volumetric flow rate passing through the tube, the voltage input to the pump, and the 

corresponding current flow.  The operating conditions are a 0.25-inch polyethylene tube 

with a blockage ratio R of 75% for few cycles at a pulsation frequency f = 1 Hz. The time-

averaged mean values were calculated using numerical methods taking into consideration 



the area under the curves.  These averages are displayed as horizontal lines in each of 

the graphs that comprise the figure. 

Figure 6-1:  Information for Fluid Flow for the C
and f = 1Hz. (a) Pressure V
Voltage; and (d) Pump Current. 

 Figures 6-2 through 6

Figure 6-1.  Those figures all correspond to a no blo

frequencies of f = 1, 5, 10, and 25 Hz. 

0.25-inch ID polyethylene tube
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These averages are displayed as horizontal lines in each of 

the graphs that comprise the figure.  

rmation for Fluid Flow for the Case of Polyethylene Tube with
. (a) Pressure Variation at Inlet and Exit; (b) Flow Rate; (c) Pump 

Voltage; and (d) Pump Current.   

 

through 6-5 continue the presentation in a form similar to that of 

1.  Those figures all correspond to a no blockage, R = 0%, and for successive 

frequencies of f = 1, 5, 10, and 25 Hz.  All of these results were obtained for the same 

polyethylene tube.  
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Figure 6-2:  Information for Fluid Flow for the Case of Polyethylene Tube with R = 0 %, 
and  f = 1Hz. (a) Pressure Variation at Inlet and Exit; (b) Flow Rate; (c) 
Pump Voltage; and (d) Pump Current. 

 

 

Figure 6-3:  Information for Fluid Flow for the Case of Polyethylene Tube with R = 0 %, 
and  f = 5 Hz. (a) Pressure Variation at Inlet and Exit; (b) Flow Rate; (c) 
Pump Voltage; and (d) Pump Current. 
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Figure 6-4:  Information for Fluid Flow for the Case of Polyethylene Tube with R = 0 %, 
and  f = 10 Hz. (a) Pressure Variation at Inlet and Exit; (b) Flow Rate; (c) 
Pump Voltage; and (d) Pump Current. 

 

 

Figure 6-5:  Information for Fluid Flow for the Case of Polyethylene Tube with R = 0 %, 
and  f = 25 Hz. (a) Pressure Variation at Inlet and Exit; (b) Flow Rate; (c) 
Pump Voltage; and (d) Pump Current. 
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 The next figure, Figure 6

flexible gum rubber tube for R = 75% and f = 1Hz.  

inches and the outer diameter 

same pattern as that of Figures 6

regularity of the results with time. 

Figure 6-6:  Information for Fluid Flow for the Case of Gum Rubber Tube  with R = 75 
%, and  f = 1 Hz. (a) Pressure Variation at Inlet and Exit; (b) Flow Rate; (c) 
Pump Voltage; and (d) 

 

  To show the effect of frequency on the gum rubber tube, attenti

7.  The figure corresponds to f = 25 Hz, R = 75%.

The consequence of this number of cycles is the crowding o
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The next figure, Figure 6-6, changes the focus from a rigid polyethylene tube to a 

tube for R = 75% and f = 1Hz.  The tube inner diameter is 0.375 

inches and the outer diameter is 0.625 inches. The presentation of the results uses the 

same pattern as that of Figures 6-1 to 6-6.  Of particular note in Figure 6

esults with time.  

Information for Fluid Flow for the Case of Gum Rubber Tube  with R = 75 
%, and  f = 1 Hz. (a) Pressure Variation at Inlet and Exit; (b) Flow Rate; (c) 
Pump Voltage; and (d) Pump Current. 

To show the effect of frequency on the gum rubber tube, attention is directed to Figure 6

The figure corresponds to f = 25 Hz, R = 75%.  The number of cycles displayed is 750.  

The consequence of this number of cycles is the crowding of the results.  

 

6, changes the focus from a rigid polyethylene tube to a 

The tube inner diameter is 0.375 

The presentation of the results uses the 

.  Of particular note in Figure 6-6 is the 

 

Information for Fluid Flow for the Case of Gum Rubber Tube  with R = 75 
%, and  f = 1 Hz. (a) Pressure Variation at Inlet and Exit; (b) Flow Rate; (c) 

on is directed to Figure 6-

The number of cycles displayed is 750.  

f the results.   
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Figure 6-7:  Information for Fluid Flow for the Case of Gum Rubber Tube  with R = 75 
%, and f = 25 Hz. (a) Pressure Variation at Inlet and Exit; (b) Flow Rate; (c) 
Pump Voltage; and (d) Pump Current. 

 

6.3.2  Time-Averaged Results 

 The next set of results to be presented is for those that are time-averaged.  The 

time averaging was performed by utilizing Matlab-based software employing between 

50,000 to 100,000 temporal data points.  The first figure in the presentation of the time-

averaged results is Figure 6-8.  This figure consists of six graphs which, respectively, 

present information for the inlet pressure P1, the exit pressure P2, the pressure 

difference P2-P1, the volumetric flow rate Q, the pump power, and the flow resistance 

defined as (P2-P1)/Q.  For the sake of clarity, the graphs are ordered according to 

letters (a) through (f).  The legend in each graph describes the tube material/type (P = 



Polyethylene, L = Latex, and S = Silicone), an

sampling rate, and AEav = Acoustic emission averaged data.  The presented 

Figure 6-8:  Time-Averaged Pump 
Latex Tubes and for a 0375
0%, 50% & 75%
P1-P2, (d) Flow Rate, (e) Pump Power, and (f) Flow Resistance = Delta 
P/Q.   

 

Information is plotted as the imposed frequencies over the range from 1 to 25 Hz. All the 

fluid-flow results (P1, P2, P2
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Polyethylene, L = Latex, and S = Silicone), and Rxx = blockage with xx%, H = high

sampling rate, and AEav = Acoustic emission averaged data.  The presented 

Pump and Flow Data for 0.25-Inch-ID Polyethylene 
Tubes and for a 0375-Inch-ID Silicone Tube with Blockage Ratios of 

%. (a) Inlet Pressure P1, (b) Exit Pressure P2, (c) Delta P = 
P2, (d) Flow Rate, (e) Pump Power, and (f) Flow Resistance = Delta 

Information is plotted as the imposed frequencies over the range from 1 to 25 Hz. All the 

flow results (P1, P2, P2-P1, and Q) display a common trend with regard to 

d Rxx = blockage with xx%, H = high-

sampling rate, and AEav = Acoustic emission averaged data.  The presented  

 

ID Polyethylene and 
with Blockage Ratios of 

(a) Inlet Pressure P1, (b) Exit Pressure P2, (c) Delta P = 
P2, (d) Flow Rate, (e) Pump Power, and (f) Flow Resistance = Delta 

Information is plotted as the imposed frequencies over the range from 1 to 25 Hz. All the 

P1, and Q) display a common trend with regard to 
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frequency. At low frequency values, low values of the plotted variables are encountered. 

With increasing frequency, the values increase in a non-linear pattern, reaching a 

maximum at approximately f = 10 Hz. Thereafter, the plotted variables decrease 

monotonically as frequency increases.  With regard to the pump-related results, the 

power graph displays a remarkable independence from the tube material.  In this 

regard, it is noteworthy that the fluid power and pumper are related as: 

( )
EfficiencyPump

QPP

encyPumpEffici

PowerFluid
PumpPower

21−
==      (6-1) 

  

 In the next figure, Figure 6-9, a comparison is made between the results for 0.25-

inch-ID polyethylene and latex tubes.  This information contains only four graphs 

because it was deemed unnecessary to display the P1 and P2 separately since the 

driving pressure, P1-P2, is the essential parameter for the CFD simulation work.  For 

the interpretation of the results, it is helpful to recall that the polyethylene is rigid and 

maintains its shape in the presence of pulsation. On the other hand, the latex tube, 

owing to its flexibility and the location of the delrin blockage at the tube midpoint, 

responds to the pulsations by exhibiting antinodes on either side of the midpoint.  This 

phenomenon generates an additional flow resistance.  It is also noteworthy to mention 

that the power versus frequency graphs in Figures 6-8 and 6-9 are virtually identical 

regardless of the rigidity or diameter of the tubes.  

 

 



Figure 6-9:  Time-Averaged Pump 
Latex Tubes with Blockage Ratios of 0%, 50% & 75%. (a) Del
(b) Flow Rate, (c) Pump Power, and (d)

 The last figure in the present set is Figure 6

for 0.375-inch-ID gum and silicone

The respective outer diameters are 0.625 and 0.500 inches. 

the pressure difference results, it is seen that for the silicone rubber tube, the response 

displays an oscillatory behavior which appears to repeat every 5 Hz.  The gum rubber 
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Pump and Flow Data for 0.25-Inch-ID Polyethylene 
Tubes with Blockage Ratios of 0%, 50% & 75%. (a) Del

(b) Flow Rate, (c) Pump Power, and (d) Flow Resistance = Delta P/Q.

 

The last figure in the present set is Figure 6-10.  This figure compare

ID gum and silicone rubber tubes, both of which are relatively flexible. 

The respective outer diameters are 0.625 and 0.500 inches.  If attention is first turned to 

the pressure difference results, it is seen that for the silicone rubber tube, the response 

atory behavior which appears to repeat every 5 Hz.  The gum rubber 

 

Polyethylene and 
Tubes with Blockage Ratios of 0%, 50% & 75%. (a) Delta P = P1-P2, 

Flow Resistance = Delta P/Q. 

10.  This figure compares the results 

rubber tubes, both of which are relatively flexible. 

If attention is first turned to 

the pressure difference results, it is seen that for the silicone rubber tube, the response 

atory behavior which appears to repeat every 5 Hz.  The gum rubber 



does not display such behavior.  The power versus frequency curve is, once again, 

independent of the tube material and diameter. 

Figure 6-10:  Time-Averaged Flow and Pump Data for 0.375
and Silicone (S) 
Delta P = P1-P2, (b) Flow Rate, (c) Pump Power, and (d) Flow 
Resistance = Delta P/Q.
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such behavior.  The power versus frequency curve is, once again, 

independent of the tube material and diameter.  

Averaged Flow and Pump Data for 0.375-Inch-ID Gum 
and Silicone (S) Tubes with Blockage Ratios of 0%, 50% & 75%. (a) 

P2, (b) Flow Rate, (c) Pump Power, and (d) Flow 
Resistance = Delta P/Q. 

such behavior.  The power versus frequency curve is, once again, 

 

ID Gum Rubber (G) 
Tubes with Blockage Ratios of 0%, 50% & 75%. (a) 

P2, (b) Flow Rate, (c) Pump Power, and (d) Flow 
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6.4  CFD Simulation  

 This section begins with a listing of the CFD simulation runs that were performed 

to support the experimental data. This listing is set forth in Table 6-2.  Subsequently, 

critical details relating to the execution of the simulation are described.  With this 

background in place, the results extracted from the simulations are presented and 

discussed.  In view of the great number of results that are available from the wide range 

of simulation parameters, only representative samples of importance are selected for 

presentation and discussion. The experimental results are also compared to the 

predicted values.  Table 6-2 consists of four major parts, each of which corresponds to 

a designated fluid flowing medium/specified tube material. 

 The predicted fluid flow results (mean flow rates) for a given fluid/tube 

specification and mathematical model were obtained in two steps.  First, the numerical 

temporal area-averaged velocity was extracted from the CFD simulation by Eq. (4-14): 

2
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π

π∫
=         (4-14) 

Then )(tU  was time averaged over a cycle, to obtain the mean velocity U using: 

T
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U

T
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0
∫

=           (4-15) 

Finally, the numerically predicted volume flow rate Q over one cycle was calculated by: 

URQ 2π=           (6-2) 



Table 6-2: CFD Simulation Details 
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Details and Comparison of Predicted and Measured and Comparison of Predicted and Measured Results. 
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6.4.3  Details of the Numerical Methods and Procedures 

 In Table 6-2, aside from last four columns, all the remaining information deal with 

details of the numerical simulation.  The first of the four columns specifies the number 

elements used in the numerical simulation of the case in question.  The number of 

elements ranges from about 200000 to 600000. The difference in the selected numbers 

of elements is due to the geometry of the case which, in turn, is affected by the 

blockage ratio R.  The next column describes the type of element used.  These types 

encompassed hexagonal or tetrahedral-dominant elements mixed with prism elements. 

In some cases, hybrid meshing (hexagonal, tetrahedral element) has been used to 

conform to the geometry of the constriction and for better resolution of the high gradient 

flow.   

 The flow-regime model for each of the simulated cases is specified in column 

number three.  The regimes that were investigated included laminar, transitional, and 

fully turbulent.  The laminar model is represented by the Navier-Stokes equations and 

the continuity equation.  However, for turbulent flow, there are numerous available 

models.  Among the available models, there is considerable evidence that suggest that 

the Shear Stress Transport model (SST) is highly effective for predicting pipe flows. For 

this reason, the SST model was selected as primary means of simulating turbulent flows 

in this study as dye- and air-bubble-test-based flow visualization test showed revealed 

that the flow was predominantly turbulent. However, other models, such as the εκ − , 

RNG εκ − , and ωκ − , have been considered for comparison purposes.  To 

accommodate flow in the transition regime between laminar and fully turbulent, a CFD 

technique based on an extension of the SST turbulence model was used [104]. This 
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model is believed to be the only RANS-based model for treating the transitional regime.  

The next two columns specify the blockage ratio R and the oscillation frequency f.    

 The next column is a composite in which the boundary conditions at both the inlet 

and outlet cross sections of the tube are specified.  Note that these boundary conditions 

are expressed as pressure specifications.  From the numerical standpoint, it is well 

established that the use of a pressure specification at the tube inlet gives rise to a more 

demanding solution task than a specification of an inlet velocity.  The specified pressure 

boundary conditions for the simulations were taken from the measurement data.  The 

measurements included data collected at both the inlet and the outlet.  Initial simulations 

were performed using this pressures applied respectively at the inlet and outlet. 

Subsequently, the outlet pressure variation was subtracted from the inlet pressure 

variation and the difference was applied at the inlet, while the outlet pressure was set to 

zero.  Both approaches yielded identical results.  To take advantage of rapid 

convergence of the latter approach, it was adopted for all simulations.  The 

aforementioned difference pressure is listed in the table as PDP = [P1(t) - P2(t)].  This 

approach can also minimize any interpolation related truncation errors. 

 The subtractive procedure is illustrated for a specific case in Figure 6-11.  The 

figure displays P1 = P1(t), P2 = P2(t), and PDP = [P1(t) - P2(t)].   
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Figure 6-11:  Illustration of the Method of Reducing the Pressure P1(t) and P2(t) to the 
Pressure Difference PDP = [P1(t) - P2(t)]. Latex Tube (f = 1 Hz, R = 75 
%).   

 

  The CFX software does not directly accommodate axisymmetric models.  In 

order to perform axisymmetric-based calculations, it is necessary to employ a circular 

sector as the projection of the solution domain in the cross section.  Figure 6-12 shows 

a one-degree sector and the mesh which was used in the discretization of the solution 

domain.  Axisymmetric boundary condition was imposed on the radial boundaries of the 

solution domain. The particular mesh that is illustrated corresponds to an unblocked 

tube with a blockage ratio R of 0%.  Inspection of the figure shows a high density of 
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elements adjacent to the tube wall.   This concentration of elements was created by a 

command termed inflation.   

 

Figure 6-12:  Meshing of A One-Degree Sector Fluid Domain without any Blockage with 
Inflation Layer. The Mesh Consists of Hexagon-Dominant Elements. The 
Tube L/D = 90.  

 

 It is a well-established fact that the accuracy of numerical solutions for fluid in a 

tube is strongly affected by the mesh density in the near neighborhood of the tube wall.  

In particular, the SST turbulence model suggests a quantitative criterion for the quality 

of near-wall mesh.  That criterion is expressed in terms of a dimensionless distance 

from the wall, termed as Y+.   That criterion is  Y+ ≤  1.0.  In practice,  Y+ varies with the 

streamwise direction.  This because Y+ is a dimensionless group defined as  ρyu*/µ.  

The quantity u* is termed as the friction velocity.  It is proportional to the square root of 

the local wall shear stress.  Since the latter is varies in the streamwise direction, so 

does Y+.     
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 Experience has shown that high values of Y+ occur at locations where there are 

rapid geometric/velocity changes.  In the cases of unblocked tubes, the most rapid 

velocity changes occur near the tube inlet.  In those cases, the largest, Y+ values are 

encountered in the entry region.  However, those values can be moderated by suitable 

placement of the nearest node to the wall.  For tubes with blockages, the largest 

velocity variations are found at the beginning of the constriction.  Figure 6-13, illustrates 

such a constriction with a high mesh density near the constriction.  

 

Figure 6-13:  Illustration of a Typical Constriction Due to Blockage with Tetrahedral  
Elements in Place.  

 

Figure 6-14:  Illustration of a Typical Constriction Due to Blockage with Hybrid Meshing - 
Hex Dominant Elements upstream and downstream of Constriction; 
Tetrahedral Elements in Junction.  
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The streamwise variation of Y+ for a tube with a blockage of the type in Figures 6-13 

and 14 is presented in Figure 6-15.  The streamwise coordinate x has its origin at the 

tube inlet.  A small peak of Y+ can be seen in the neighborhood of x = 0.  Downstream 

of the inlet small values of Y+ prevail until the sharp reduction in cross sectional area 

occurs at the entrance to the blockage.  At that point, there is a sharp spike in Y+ 

despite the sharpness of the peak; the magnitude of Y+ does not exceed 0.4.  This is 

well below the recommended criterion that Y+ does not exceed 1.    

 

Figure 6-15:  Streamwise Variation of Y+ in the Presence of a Blockage for f = 10 Hz, 
and Blockage Ratio R = 98%) for a 0.25-Inch ID Tube.  

 

 Experience has taught that the rate of convergence depends critically on the 

distribution of the dependent variables at the starting of the iterative process.  In this 



200 
 

 

light, a strategy was devised to obtain starting values for the simulations that would 

expedite convergence.  This strategy was to use mean values of the time dependent 

pressure conditions at the inlet and outlet of the tubes.  These steady pressures 

boundary conditions were used to achieve a steady solution for the flow field within the 

tube. These steady solutions were used as the starting values for the unsteady 

solutions.    

 To test the efficacy of the numerical methodology, some test runs were 

performed for the limiting case of a fully developed laminar flow.  That case yields a 

well-known analytical solution.  Figure 6-16 displays the comparison of analytical and 

two numerical solutions for an incompressible fluid flow with a Reynolds number Re = 

1070 and inlet turbulence intensity of 5%.  One of the displayed numerical solutions is 

based on the Navier-Stokes equations plus the mass conservation equation for a 

laminar flow.  It can be seen from the figure that there is a very close agreement 

between the numerical and analytical laminar solutions.  In addition, there is a third 

curve which represents the transitional model.  That model was constructed to reduce to 

laminar flow for Reynolds numbers which lie in the traditional laminar flow range.  The 

figure shows that the construction of the transitional model clearly was successful in its 

intent.  This outcome verifies the adequacy of the meshing and CFD numerical model.  

 In the solution or solver control setup of the finite-volume-based commercial 

software (CFX 13.0) in the advanced settings option, the high-resolution Rhie-Chow 

velocity-pressure coupling was used.  The advection term in the momentum equations 

were also set to high resolution while the transient scheme was set to the second order 

backward Euler formulation.  
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Figure 6-16:  Dimensionless Velocity Profiles for the Laminar, Transitional SST Model, 
and Fully Turbulent SST Models with Analytic Solution, (Incompressible 
Fluid, Reynolds Number Re = 1070, Turbulence Intensity, TU = 5%).  

 

 To demonstrate the approach used to test the sufficiency of the mesh, results in 

the form of velocity contour diagram are displayed in Figures 6-17 and 6-18.  The first of 

these figures corresponds to a mesh consisting of 201770 elements, while the second is 

from a solution in which 698803 elements were employed.  A visual comparison 

indicates a very good agreement between the two sets of the results.  A quantitative 

comparison can be made by observing the maximum velocity that relates to each of the 
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differently based mesh solutions.  In both cases, the maximum velocities are 1.045 m/s 

and 1.080 m/s, respectively, with a deviation of approximately 2%.  

 

Figure 6-17:  Steady state:  Velocity contour for a steady state condition, Number of 
Elements = 201770. 

 

Figure 6-18:  Steady state: Velocity contour for a steady state condition, Number of 
Elements = 698803. 
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 The sufficiency of the selected time step, ∆t = T/1000, was tested by utilizing a 

much smaller time step, ∆t = T/10000.  At each time step, convergence of the numerical 

solution was achieved by setting a convergence criterion of 1.0E-05 (RMS value) or 50 

iterations whichever comes first. A comparison was made of cross-sectional-area-

averaged velocity at the inlet for these two cases.  It was found that these results were 

within 2% of each other.  All simulations were run for three cycles and a periodic state 

condition was reached after two cycles.  

 Another verification of the numerical solution methodology is provided by the 

information conveyed by Figure 6-19.  That figure exhibits the time-varying, cross-

sectional-area-averaged velocity at three axial locations.  As shown in the figure, the 

three curves are precisely congruent. This outcome demonstrates that mass 

conservation is perfectly satisfied at all time and positions.  

 

 

 

 

 

 

 

Figure 6-19:  Demonstration of the Fulfillment of Mass Conservation at all Times and 
Locations.  
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6.4.4  CFD Simulation Results  

 The presentation of the CFD results begins with the most global result, which is 

the time-averaged volumetric flow that corresponds to a given pressure difference PDP. 

This information is exhibited in the rightmost five columns of Table 6.2. The first two of 

these columns list the experimental and simulation results, respectively.  The deviations 

of these results are conveyed in the adjacent column.  The percentage deviation was 

calculated from the following expression: 

%100*
Pr

Pr
%

RatesFlowedictedandalExperimentofAverage

RateFlowedictedRateFlowalExperiment
Deviation

−
=        (6-3) 

The last two columns of the table show the Reynolds number of the experiments based 

on the inlet diameter of the tube and the inlet velocity and the Reynolds number in the 

constriction based on local parameters (constriction diameter and velocity).  It is 

relevant to display the relationship between the inlet-based Reynolds number and the 

Reynolds number in the constricted section of the blockage. After algebraic 

manipulation, the relationship becomes as follows: 

( )
( )R

DU InletonConstricti
onConstricti

−
==

1

Re
Re

µ
ρ

       (6-4) 

where R is the blockage ratio and  

( )
µ

ρ Inlet
Inlet

DU
=Re           (6-5) 

  It can be seen from Eq. (6-2) that the Reynolds number based on the 

constriction conditions is greater than the inlet-based Reynolds number by a factor of 

( ))1(/1 RM −= . When R is large, the multiplication factor of Reinlet in Eq. (6-5) is large 
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enough to suggest that a change of flow regime as the fluid enters the constriction zone. 

For example, when R = 0.98, the multiplication factor in Eq. (6-5) becomes 7.07.  The 

consequence of this finding is that for any laminar flow whose inlet Reynolds number 

exceeds 325 (325*7.07 = 2300), the corresponding Reynolds number in the constricted 

region will exceed the traditional laminar breakdown Reynolds number of 2300 

(325*7.07 = 2300).  A plot of the multiplication factor M vs. blockage ratio is shown in 

Appendix E. 

 The preceding discussion has important practical ramifications on the selection of 

the flow-regime model.  If the flow upstream of the blockage is laminar, it is clear that 

the flow regime in the constriction zone is likely not to be laminar.  In order to deal with 

this situation, it is necessary that a transition model be available.  In the published 

literature on pulsatile flows in the presence of blockage, there is hardly any evidence of 

the use of a transition model. Therefore the use of a transition model in this 

investigation constitutes one of the few approaches in dealing with such transient flows 

that transist through a wide range of Reynolds number encompassing laminar, 

transitional or turbulent flows due to time and spatial changes. 

6.4.4.1  Flow in Non-Stenosed Arterial Models  

In this sub-section the CFD results for non-stenosed arterial models is for 0.25-inch-

Id polyethylene and latex tubes are presented.  Figure 6-20 shows the pressure 

difference PDP (t) = [P2(t) - P1(t) ]  vs. time which is used as the inlet boundary 

condition for the pressure driven water flow CFD simulation in a 0.25-inch-ID latex tube 

with a blockage ratio, R = 0 %, f = 1 and 10 Hz.  As discussed in the details section of 



the CFD simulation procedure, the outl

pressure P(t) = 0.0.  The mean p

one.  This implies mean positive flow as well. 

Figure 6-20:  Pressure Difference, PDP = P2
for a Pressure Driven Water Flow. 
Tube with R = 0 % and f = 1 Hz

 

The CFD simulation results are presented in the next few plots.  

area-averaged velocity as obtained from the CFD simulation.  
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the CFD simulation procedure, the outlet of the fluid domain has been set to relative 

The mean pressure value at the inlet of the tube is a non

one.  This implies mean positive flow as well.  

re Difference, PDP = P2-P1 vs. Time used as Boundary Condition 
or a Pressure Driven Water Flow. CFD Simulation in a 0.25

Tube with R = 0 % and f = 1 Hz.  

The CFD simulation results are presented in the next few plots.  Figure 6

averaged velocity as obtained from the CFD simulation.    

et of the fluid domain has been set to relative 

ressure value at the inlet of the tube is a non-negative 

  

P1 vs. Time used as Boundary Condition 
in a 0.25-Inch Latex 

Figure 6-21 shows the 



Figure 6-21:  Area-Averaged Velocity in a Latex Tube as Obtained from CFD Simulation
for a 0.25-Inch Latex Tube with R = 0 % and f = 1 Hz

 

Note:  There is a phase difference between the inlet pressure boundary condition

the area averaged velocity. This phase difference or shift is about 

The wall shear stress is an important parameter 

of the health of blood vessels in the 

stenosed or aneurysmal blood vessels

for the transient variation of the wall shear stress at three streamwise locations is 

depicted in Figure 6-22 over three cycles.  

inlet of the tube is much higher than the downstream values and this 

that the flow at inlet is not fully developed.  However, the wall shear stress 
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Averaged Velocity in a Latex Tube as Obtained from CFD Simulation
Inch Latex Tube with R = 0 % and f = 1 Hz.  

:  There is a phase difference between the inlet pressure boundary condition

the area averaged velocity. This phase difference or shift is about π/4.   

The wall shear stress is an important parameter in the diagnosis and monitoring 

od vessels in the cardiovascular system.  In the recirculation zones 

stenosed or aneurysmal blood vessels, the wall shear stress values are very low

for the transient variation of the wall shear stress at three streamwise locations is 

22 over three cycles.  The amplitude of the shear stress near the 

inlet of the tube is much higher than the downstream values and this is due 

that the flow at inlet is not fully developed.  However, the wall shear stress 

 

Averaged Velocity in a Latex Tube as Obtained from CFD Simulation 

:  There is a phase difference between the inlet pressure boundary condition and 

in the diagnosis and monitoring 

cardiovascular system.  In the recirculation zones of  

, the wall shear stress values are very low. A plot 

for the transient variation of the wall shear stress at three streamwise locations is 

The amplitude of the shear stress near the 

is due to the fact 

that the flow at inlet is not fully developed.  However, the wall shear stress graphs for 



the two downstream locations overlap with each other

developed.  The transient wall shear stress graphs also show that 

phase with the velocity graph. 

Figure 6-22:  Wall Shear Stress Variation at Three Streamwise Locations, x/L = 0.001, 
0.5 and 0.99 for a 

 

 The contour plots for the pressure and velocity distributions for a 0.25

latex tube with R = 0 % and pulsation frequency f = 1 Hz, corresponding to the peak 

pressure value (at t/T = 2.33) are shown in Figure 6
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he two downstream locations overlap with each other showing that the flow is fully 

transient wall shear stress graphs also show that wall shear

phase with the velocity graph.  

Wall Shear Stress Variation at Three Streamwise Locations, x/L = 0.001, 
for a 0.25-Inch Latex Tube with R = 0 % and f = 1 Hz

The contour plots for the pressure and velocity distributions for a 0.25

latex tube with R = 0 % and pulsation frequency f = 1 Hz, corresponding to the peak 

pressure value (at t/T = 2.33) are shown in Figure 6-23.  

showing that the flow is fully 

wall shear stress is in 

 

Wall Shear Stress Variation at Three Streamwise Locations, x/L = 0.001, 
Inch Latex Tube with R = 0 % and f = 1 Hz.  

The contour plots for the pressure and velocity distributions for a 0.25-Inch-ID 

latex tube with R = 0 % and pulsation frequency f = 1 Hz, corresponding to the peak 



(a) Pressure Contour Plot

 (b) Velocity Contour Plot in Tube Section near Outlet. 

Figure 6-23:  Contour Plots of Pressure and Velocity for a 0.25
R = 0 % and f = 1 Hz, at t/T = 2.33 (Peak Pressure). 

 

The contour plots for the pressure and velocity distributions for a 0.25

latex tube with R = 0 % and pulsation frequency 

pressure value (at t/T = 2.51) are shown in Figure 6
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Pressure Contour Plot  

Velocity Contour Plot in Tube Section near Outlet.  

Contour Plots of Pressure and Velocity for a 0.25-Inch-ID Latex Tube with 
R = 0 % and f = 1 Hz, at t/T = 2.33 (Peak Pressure).  

The contour plots for the pressure and velocity distributions for a 0.25

ube with R = 0 % and pulsation frequency f = 1 Hz, corresponding to the minimum

) are shown in Figure 6-24. 

 

 

ID Latex Tube with 

The contour plots for the pressure and velocity distributions for a 0.25-Inch-ID 

f = 1 Hz, corresponding to the minimum 
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(a) Contour Plot of Pressure 

 

(b) Contour Plot of Velocity (Midsection of Tube 

Figure 6-24:  Contour Plots of Pressure and Velocity for a 0.25-Inch-ID Latex Tube with 
R = 0 % and f = 1 Hz, at t/T = 2.51 (Min Pressure).  

 

The spatial pressure variation at the peak and minimum value of pressure 

corresponding to the time cycles of t/T = 2.33 and 2.51 are shown in Figure 6-25. While 

the peak pressure generates a negative or favorable pressure gradient, the negative 

pressure yields unfavorable pressure gradient which can slow down the flow or cause a 

near-wall back flow or a disturbed flow in the deceleration phase of the flow cycle.  



Figure 6-25:  Pressure vs. Streamwise Location a 0.25
1 Hz, at t/T = 2.511 and 

 

Figure 6-26 displays the normalized velocity vector plot to demo

any bulk/net or near-wall backflows.  This 

equipped with a check valve to prevent any backward leakage. 
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Pressure vs. Streamwise Location a 0.25-Inch-ID Latex Tube, R = 0%, f
1 Hz, at t/T = 2.511 and t/T = 2.33. 

displays the normalized velocity vector plot to demonstrate the absence of 

wall backflows.  This is in agreement with the fact that the pump is 

equipped with a check valve to prevent any backward leakage.  

 

ID Latex Tube, R = 0%, f = 

nstrate the absence of 

with the fact that the pump is 



(a)  

Figure 6-26:  Normalized Velocity Vector Plots in 
1 Hz, No Eviden
at t/T = 2.33; (b) Velocity Vector Plot at t/T = 2.51

 

6.4.4.2  Comparison of Different 

Figure 6-27 shows comparison of Laminar and transitional SST based 

results over three cycles.  The same boundary pressure boundary conditions were used 

in all cases.  

Figure 6-27:  Comparison of Laminar
1Hz, and R = 0%
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       (b) 

Normalized Velocity Vector Plots in a 0.25-Inch-ID Latex Tube, R = 0%,
1 Hz, No Evidence of Backflow at Low Pressure; (a) Velocity Vector Plot 
at t/T = 2.33; (b) Velocity Vector Plot at t/T = 2.51. 

Comparison of Different Flow Regime Models 

shows comparison of Laminar and transitional SST based 

cycles.  The same boundary pressure boundary conditions were used 

Comparison of Laminar- and Transitional-SST-Based Velocity Results
1Hz, and R = 0%. 

 

ID Latex Tube, R = 0%, f = 
Velocity Vector Plot 

shows comparison of Laminar and transitional SST based velocity 

cycles.  The same boundary pressure boundary conditions were used 

 

Based Velocity Results, f = 



The next few presentations are on the experimentation

that were conducted on a pulsatile flow of water in a 0.

First, the area-averaged simulation result from three cases of CFD simulations 

using laminar, transitional SST and the k

28.  The plot clearly displays that 

steps as well as element type and size, 

more than the other two.  In Figures 6

and velocity as well as the velocity vector plots for the 

model are presented. 

Figure 6-28:  Comparison of Area
Regime Models in a 0.25
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The next few presentations are on the experimentation-based CFD simulation

that were conducted on a pulsatile flow of water in a 0.25-incg-ID polyethylene tube. 

averaged simulation result from three cases of CFD simulations 

using laminar, transitional SST and the k-ω turbulence model is presented in Figure 6

.  The plot clearly displays that for the same pressure boundary condition and time 

steps as well as element type and size, the laminar flow does over predict the result 

In Figures 6-29 through 6-30, the contour plots for pressure 

and velocity as well as the velocity vector plots for the k-ω (k-Omega) t

Area-Averaged Transient Velocities Using three Flow 
Regime Models in a 0.25-Inch-IDPolyethylene Tube, f = 1 Hz

based CFD simulations 

ID polyethylene tube.  

averaged simulation result from three cases of CFD simulations 

 turbulence model is presented in Figure 6-

undary condition and time 

the laminar flow does over predict the result 

30, the contour plots for pressure 

Omega) turbulence 

 

ansient Velocities Using three Flow 
f = 1 Hz, R = 0%. 
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(a)  Pressure Contour at t/T = 2.1 (Peak Velocity). 

 

(b) Pressure Contour, at t/T = 2.25 (Min. Velocity). 

Figure 6-29:  Pressure Contour Plots at Two Cycle Points for the k-ω Turbulence. 



Figure 6-30:  Velocity Vector Plot at Different Streamwise Locations: 
Belief that Negative 
as Confirmed in the 

 

6.4.4.3  Pressure and Velocity Variations with Time in a

Pressure and velocity variations at two streamwise locations in a

polyethylene tube at f = 1 Hz are shown in Figure 6

work presented in Chapter 4 

with distance from the inlet, the 

each other confirming the law of conservation of mass or continuity equation. 
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Velocity Vector Plot at Different Streamwise Locations: Contrary to the 
Negative Pressure at Inlet Yields Backflow, there is no Net 

onfirmed in the Flow Visualization (Bubble and Dye Test

Pressure and Velocity Variations with Time in a  Polyethylene Tube

Pressure and velocity variations at two streamwise locations in a

at f = 1 Hz are shown in Figure 6-31. Consistent with the fundamental 

work presented in Chapter 4 of this dissertation work, the pressure variations diminish 

the area-averaged velocity at the two locations overlap with 

each other confirming the law of conservation of mass or continuity equation. 

 

Contrary to the 
Pressure at Inlet Yields Backflow, there is no Net Flow 

ests). 

Polyethylene Tube  

Pressure and velocity variations at two streamwise locations in a 0.25-inch-ID 

31. Consistent with the fundamental 

his dissertation work, the pressure variations diminish 

ations overlap with 

each other confirming the law of conservation of mass or continuity equation.  



Figure 6-31:  Pressure and Velocity Variations with Time at Inlet and Midsection of a 
0.25-Inch-Id Polyethylene Tube 

 

6.4.4.4  Flow in S tenosed Arterial Models

The next set of plots focus on 

inch-ID latex tube.  Figure 6-32

the inlet of the solution domain at f = 1 Hz and a blockage ratio of 98%. 

216 
 

 

Pressure and Velocity Variations with Time at Inlet and Midsection of a 
Id Polyethylene Tube at f = 1 Hz.  

 

tenosed Arterial Models  

 

The next set of plots focus on the CFD simulation results for water flow in a

32 shows the inlet pressure boundary condition imposed at 

the inlet of the solution domain at f = 1 Hz and a blockage ratio of 98%.  

 

Pressure and Velocity Variations with Time at Inlet and Midsection of a 

the CFD simulation results for water flow in a 0.25-

shows the inlet pressure boundary condition imposed at 
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Figure 6-32:  Pressure Difference, PDP = P2-P1 vs. Time used as Boundary Condition 
for a Pressure Driven Water Flow in a 0.25-Inch Latex Tube with R = 98% 
constriction and f = 1 Hz.  

 

The area-averaged velocity as function of time for three cycles is displayed in Figure 6-

33.  This CFD result has been computed at three locations to verify if the mass 

conservation equation has been upheld.  This requirement has been met at all cross 

sections at all times after the periodic state has been achieved.   
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Figure 6-33:  Area-Averaged Inlet Velocity for a Pulsatile Water Flow in a 0.25-Inch-ID 
Latex Tube with R = 98% and f = 1 Hz].  

 

On the other hand, the pressure and velocity distribution at critical times corresponding 

to the early acceleration and late acceleration and deceleration are displayed using the 

contour plots shown in Figures 6-34 and 6-37 show the contour plots for pressure and 

velocity for the late deceleration and acceleration points b and c as shown in Figure 6-

33..  
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Figure 6-34:  Contour Plot of Pressure
with R =98% and f = 1 Hz], t/T = 2.8 (Late Deceleration, point c

Figure 6-35:  Contour Plot of Velocity for
with R =98% and f = 1 Hz], t/T = 2.8 (Late Deceleration, point c), 
Downstream Reattachment length x/L = 0.552.
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Pressure for a Pulsatile Water Flow in a 0.25
with R =98% and f = 1 Hz], t/T = 2.8 (Late Deceleration, point c

Contour Plot of Velocity for a Pulsatile Water Flow in a 0.25
with R =98% and f = 1 Hz], t/T = 2.8 (Late Deceleration, point c), 
Downstream Reattachment length x/L = 0.552. 

 

for a Pulsatile Water Flow in a 0.25-Inch Tube 
with R =98% and f = 1 Hz], t/T = 2.8 (Late Deceleration, point c). 

 

a Pulsatile Water Flow in a 0.25-Inch Tube 
with R =98% and f = 1 Hz], t/T = 2.8 (Late Deceleration, point c), 



Figure 6-36:  Contour Plot of Pressure for a 
with R = 98%, f = 1 Hz], t/T = 2.25 (Late Acceleration,  point b).

Figure 6-37:  Velocity Contour Plot for a Pulsatile Water Flow in a 0.25
R = 98%, f = 1 Hz], t/T = 2.25 (Late Acceleration,  point b).
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Contour Plot of Pressure for a Pulsatile Water Flow in a 0.25
98%, f = 1 Hz], t/T = 2.25 (Late Acceleration,  point b).

Velocity Contour Plot for a Pulsatile Water Flow in a 0.25-Inch Tube with 
f = 1 Hz], t/T = 2.25 (Late Acceleration,  point b). 

 

Pulsatile Water Flow in a 0.25-Inch Tube 
98%, f = 1 Hz], t/T = 2.25 (Late Acceleration,  point b). 

 

Inch Tube with   
 



6.4.4.5  Glycerin Solution Flow Test in a Non

In this subsection, the flow of 

0.25-inch-ID latex tube is briefly presented.  Figure 6

condition PDP used for the pressure driven CFD simulation and the pressures at inlet 

and outlet as a function of time

Figure 6-38:  Pressure Boundary Conditions for a 
Tube (Glycerin 40% sol

  

The area-averaged velocity over three cycles as obtained from the CFD 

simulation of the pressure-driven flow is presented in Figure in Figure 6

pressure and velocity contour plots are presented in Figures 6
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Flow Test in a Non -Stenotic Latex Tube 

In this subsection, the flow of 40% Glycerin Solution (by weight in distilled) 

ID latex tube is briefly presented.  Figure 6-36 displays the pressure boundary 

PDP used for the pressure driven CFD simulation and the pressures at inlet 

and outlet as a function of time.    

Pressure Boundary Conditions for a Pulsatile Flow in a 0.25
Tube (Glycerin 40% solution, and F = 1Hz, R = 0%] . 

averaged velocity over three cycles as obtained from the CFD 

driven flow is presented in Figure in Figure 6

and velocity contour plots are presented in Figures 6-40 and 6-41.

40% Glycerin Solution (by weight in distilled) in a 

the pressure boundary 

PDP used for the pressure driven CFD simulation and the pressures at inlet 

 

atile Flow in a 0.25-Inch-ID Latex 

averaged velocity over three cycles as obtained from the CFD 

driven flow is presented in Figure in Figure 6-39 while the 

41.  



Figure 6-39:  Area averaged Velocity vs. Time for a 40%Glycerine solution Latex with 
R=0% and f = 1 Hz. 

Figure 6-40:  Pressure Contour Plot for 
with 0.25-Inch ID and R
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Area averaged Velocity vs. Time for a 40%Glycerine solution Latex with 
R=0% and f = 1 Hz.  

Pressure Contour Plot for a 40%Glycerine Solution Flow in a Latex Tube 
Inch ID and R = 0% and f = 1 Hz at t/T = 2.55. 

 

Area averaged Velocity vs. Time for a 40%Glycerine solution Latex with 

 

olution Flow in a Latex Tube 
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Figure 6-41:  Velocity Contour Plot for a 40%Glycerine Solution Flow in a Latex Tube 
with 0.25-Inch ID and R = 0% and f = 1 Hz at t/T = 2.55. 

 

6.4.4.6  Glycerin Solution Flow in a Stenotic Latex Tube  

In this sub-section, the discussion of flow test results for 40% glycerin (by weight) 

solution in distilled water in a stenotic latex tube with a 0.25-inch-ID, R = 75% and 98% 

blockage ratios respectively is presented.  

a) Glycerin Solution (40% by weight) at f = 1Hz and R = 75% 

The area-averaged velocity for the flow of the fluid over three cycles is shown in 

Figure 6-42.  On the other hand, the pressure streamwise pressure variation is shown in 

Figure 6-43 for the dimensionless time t/T = 2.26 corresponding the to the peak velocity 

in Figure 6-42. 



Figure 6-42:  Area-Averaged Velocity vs. Time for a 40% Glycerin Solution in a 0.25
Inch-ID Latex Tube with 75% Blockage. 

 

Figure 6-43:  Streamwise Pressure Variation of Tube at t/T = 2.26. 
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Averaged Velocity vs. Time for a 40% Glycerin Solution in a 0.25
ID Latex Tube with 75% Blockage.  

Streamwise Pressure Variation of Tube at t/T = 2.26. 

 

Averaged Velocity vs. Time for a 40% Glycerin Solution in a 0.25-

 

Streamwise Pressure Variation of Tube at t/T = 2.26.  



b) Glycerin Solution Flow in S

The area-averaged velocity for the pulsatile flow of glycerin/water solution (40% by 

weight) in a 0.25-Inch-ID latex tube with R=75% at a pumping frequency f = 10 Hz is 

shown in Figure 6-44.  

Figure 6-44:  Pulsatile Flow of Glycerin/Water Solution (40% by weight): Area
Velocity for R=75% and f = 10 Hz in a 0.25

 

The contour plots for pressure and velocity 

peak area-averaged velocity graph (

45 and 6-46.  On the other hand, the streamline velocity 

in Figure 6-47. 
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Glycerin Solution Flow in S tenotic Latex Tube at f = 10 Hz and R = 75%

averaged velocity for the pulsatile flow of glycerin/water solution (40% by 

ID latex tube with R=75% at a pumping frequency f = 10 Hz is 

Pulsatile Flow of Glycerin/Water Solution (40% by weight): Area
Velocity for R=75% and f = 10 Hz in a 0.25-Inch-ID Latex Tube

for pressure and velocity distributions corresponding to the 

graph (t/T = 2.0, Figure 6-44) are presented in Figures 6

46.  On the other hand, the streamline velocity plot for the pulsatile flow 

at f = 10 Hz and R = 75%  

averaged velocity for the pulsatile flow of glycerin/water solution (40% by 

ID latex tube with R=75% at a pumping frequency f = 10 Hz is 

 

Pulsatile Flow of Glycerin/Water Solution (40% by weight): Area-Averaged 
ID Latex Tube.  

corresponding to the 

are presented in Figures 6-

pulsatile flow shown 
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Figure 6-45:  Pressure Contour Plot for a 40%Glycerine Solution Flow in a Latex Tube 
with 0.25-Inch ID and R=  75% and f = 10 Hz at t/T = 2.0. 

 

Figure 6-46:  Velocity Contour Plot for a 40%Glycerine Solution Flow in a Latex Tube 
with 0.25-Inch ID and R= 75% and f = 10 Hz at t/T = 2.0. 
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Figure 6-47:  Pulsatile Flow of Glycerin/Water Solution (40% by weight), Streamlines 
Proximal to stenosis for R=75% and f =10 Hz in a Latex Tube, t/T = 2. 

 

 

6.4.4.1  Glycerin Solution Flow in a Stenotic Polyethylene T ube  

In this subsection, the CFD simulation results for the pulsatile flow of glycerin/water 

mixture in a 0.25-inch-ID polyethylene tube with R = 98 at f = 1Hz and f = 10 Hz  is 

presented. 

a) Glycerin Solution (40% by weight) at f = 1 Hz and  R = 98% 

    The inlet pressure boundary condition PDP, defined as PDP (t) = P1(t) –P2(t), 

for the specification of the CFD setup is shown in Figure 6-48 along with the pressure 

variations at inlet and outlet of the test-section polyethylene tube.   



Figure 6-48:  Pressure Boundary Conditions: 
ID Polyethylene Tube with R = 98 at f = 1 Hz. 

 Figures 6-49 through 6-51 show the area

velocity variation at two different dimensionless times t/T = 0.1 and 0.5 as well as the 

wall shear stress variation for the

respectively.  
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ressure Boundary Conditions: 40% Glycerin Solution Flow in 
Polyethylene Tube with R = 98 at f = 1 Hz.  

 

show the area-averaged velocity, the stream wise centerline 

velocity variation at two different dimensionless times t/T = 0.1 and 0.5 as well as the 

wall shear stress variation for the SST and Transitional SST turbulence models 

 

Glycerin Solution Flow in a 0.25-Inch-

averaged velocity, the stream wise centerline 

velocity variation at two different dimensionless times t/T = 0.1 and 0.5 as well as the 

SST and Transitional SST turbulence models 



Figure 6-49:  Area-Averaged Velocity for a Stenotic Polyethylene with R = 98% and f = 
1 Hz.  

Figure 6-50:  Centerline Velocity Variation with Streamwise Distance at Different 
Dimensionless Times for 0.25
f = 1 Hz. 
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Averaged Velocity for a Stenotic Polyethylene with R = 98% and f = 

Velocity Variation with Streamwise Distance at Different 
Dimensionless Times for 0.25-Inch-ID Polyethylene Tube with R = 98 and 

 

Averaged Velocity for a Stenotic Polyethylene with R = 98% and f = 

 

Velocity Variation with Streamwise Distance at Different 
ID Polyethylene Tube with R = 98 and  
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Figure 6-51:  Wall Shear Stress for the Transitional SST and SST Models at x/L = 0.5 for 
Glycerin Solution (40% by weight) at f = 1 Hz and R = 98%. 

 

b) Glycerin Solution (40% by weight) at f = 10 Hz an d R = 98% 

  Next, the CFD simulation results based on the SST turbulence model for the 

pulsatile flow of glycerin/water solution in polyethylene at  a pulsation frequency f = 10 

Hz is presented.  Figures 6-52 and 6-53 display the contour plots for the pressure and 

velocity distributions at dimensionless time t/T = 0.5. 
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Figure 6-52:  Pulsatile Flow of a Glycerin/Water Solution (40% by weight)  at f =10 Hz 
and R =98% In Polyethylene, Pressure Contour for t/T = 0.5, SST Model.

 

Figure 6-53:  Pulsatile Flow of a Glycerin/Water Solution (40% by weight)  at f =10 Hz 
and R =98% In Polyethylene, Velocity Contour for t/T = 0.5, SST Model.
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Pulsatile Flow of a Glycerin/Water Solution (40% by weight)  at f =10 Hz 
and R =98% In Polyethylene, Pressure Contour for t/T = 0.5, SST Model.

Pulsatile Flow of a Glycerin/Water Solution (40% by weight)  at f =10 Hz 
and R =98% In Polyethylene, Velocity Contour for t/T = 0.5, SST Model.

 

Pulsatile Flow of a Glycerin/Water Solution (40% by weight)  at f =10 Hz 
and R =98% In Polyethylene, Pressure Contour for t/T = 0.5, SST Model. 

 

Pulsatile Flow of a Glycerin/Water Solution (40% by weight)  at f =10 Hz 
and R =98% In Polyethylene, Velocity Contour for t/T = 0.5, SST Model. 
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6.4.5  Flow Visualization in a 0.25-Inch Glass Tube 

In this subsection the results of the fluid flow visualization results are discussed.  

While there are several flow visualization techniques such as the particle image 

velocimetry (PIV) or Laser Doppler Velocimetry (LDV) that can be used for the 

measurement of the velocity distribution in a flowing medium as a function of spatial 

position and time, in this study however, some alternative versatile tools (high speed 

camera) was used for tracking the flow of dye and air bubbles to study pulsatile flows.  

Figure 6-54 shows, a partial view of the experimental setup where a hypodermic needle 

is used for the entrainment of air or food dye into the pulsating flow of distilled water and 

glycerin at different pulsating frequencies ranging from 1 to 25 Hz.  

 

Figure 6-54:  Flow Visualization Setup for a Pulsatile Flow using Food Dye or Air 
Bubbles that are Periodically Injected into the Fluid Flow by Entrainment 
(Partial Vacuum) from a Hypodermic Syringe, at Different Frequencies). 

 



The entrainment of air bubbles

shown in Figure 6-55.  From the experiment, it 

bubbles entering the flow was at r

at lower frequencies. From this test it was possible to 

the following relationship: 

Lf
T

L
Vb ∆=

∆
=   

where ∆L is the distance between two successive air 

is the pumping or pulsation frequency. 

velocity of the pulsating flow. 

frequencies is presented in Table 6

flow.  

Figure 6-55:  Pulsatile Flow Visualization using Air Bubble Entrainment in 
Water at Pulsation Frequency
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rainment of air bubbles or food dye into a pulsating flow of distilled water is 

.  From the experiment, it was observed that the velocity of the 

bubbles entering the flow was at regular intervals in that the bubbles would stop and go 

lower frequencies. From this test it was possible to establish the bubble 

       

L is the distance between two successive air bubbles and T is the period and f 

ation frequency. Equation (6-5) can provide an approximate mean 

velocity of the pulsating flow.  A summary of the mean velocity of bubbles at different 

frequencies is presented in Table 6-3.  For f ≥ 7 Hz, no bubbles were observed in the 

Pulsatile Flow Visualization using Air Bubble Entrainment in 
at Pulsation Frequency f = 1 Hz in a Glass Tube. 

a pulsating flow of distilled water is 

that the velocity of the 

the bubbles would stop and go 

the bubble velocity from 

 (6-6) 

bubbles and T is the period and f 

an approximate mean 

A summary of the mean velocity of bubbles at different 

7 Hz, no bubbles were observed in the 

 

Pulsatile Flow Visualization using Air Bubble Entrainment in Distilled 



Table 6-3:  Mean Bubble Velocity 

The second flow visualization technique that was used in the experimental setup 

(as discussed in Chapter 5) was the use of a high speed and high resolution camera to 

study the flow pattern of food dye 

hypodermic syringe.  The flow visualization results showed that the dye quickly spread 

in all directions regardless of frequency of the pulsatile flow

revealed that the flow regime of the pulsatile flows 

experimental setup as shown in Figure 6

Figure 6-56:  Flow Visualization of a Pulsatile Flow using Food Dye
Periodically Entrainment (
Syringe.  
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:  Mean Bubble Velocity Chart at Different Frequencies 

The second flow visualization technique that was used in the experimental setup 

(as discussed in Chapter 5) was the use of a high speed and high resolution camera to 

study the flow pattern of food dye or air that was entrained/injected into the flow via a 

hypodermic syringe.  The flow visualization results showed that the dye quickly spread 

in all directions regardless of frequency of the pulsatile flow and the type of fluid

revealed that the flow regime of the pulsatile flows were turbulent flows fo

experimental setup as shown in Figure 6-56.   

Flow Visualization of a Pulsatile Flow using Food Dye/Air Bubble
Entrainment (Partial Vacuum), at f = 1 Hz from a Hypodermic 

 

 

The second flow visualization technique that was used in the experimental setup 

(as discussed in Chapter 5) was the use of a high speed and high resolution camera to 

that was entrained/injected into the flow via a 

hypodermic syringe.  The flow visualization results showed that the dye quickly spread 

and the type of fluid.  This 

turbulent flows for this 

 

/Air Bubble -  
at f = 1 Hz from a Hypodermic 
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6.5  Conclusions 

 From the experimental pulsatile flow test and the CFD simulation results, the 

following conclusions have been drawn 

i. Contrary to usual expectation, flow visualization technique (dye and air bubble 

tests), for all pulsatile flow tests using distilled water and 40% glycerin/distilled 

water solution with corresponding Reynolds number values ranging from 663 to 

6885 and 204 to 1671 based on the inlet conditions) for tubes without blockages 

showed the presence of a disturbed flow that resembled a turbulent flow.   

ii. As pumping (pulsating frequency) increases the amplitude of the flow diminishes 

and the flow tends to approach quasi-steady state for a given pump power.  

iii. The percentage deviation [(Experimental Flow - Predicted Flow)/Mean value] 

was higher for those pulsating flows at lower frequencies (f = 1 Hz) as compared 

to those at higher frequencies ( f = 10 Hz).  

iv. From this study, contrary to common practice, the use of a laminar flow regime 

assumption for the simulation of low Reynolds number blood flow (based on inlet 

conditions), in stenosed and non-stenosed arteries has been found to be 

inadequate.  Thus, the use of such an assumption leads to over prediction of the 

flow properties and other critical flow-derived parameters such as wall shear 

stress, shear strain rates, etc.   

v. For steady state flows, the transitional SST model has been found to be the most 

flexible model in that it adjusts itself automatically for the simulation of fluid flows 

encompassing different flow regimes (laminar-transitional-turbulent, based on 

Reynolds numbers).  However,  for unsteady state flows in this experimental 
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work (based on the flow visualization test), in that turbulence occurred in low 

Reynolds number  pulsatile flows (at low pulsation frequencies with non-stenotic 

tubes and at high frequencies for tubes with high blockage ratios) the use of the 

SST turbulence model yielded better results compared to the transitional SST 

model.  Thus, the SST turbulence model is better suited for the low-Reynolds 

number pulsatile flows as shown in Table 6.2.  

vi. The percentile deviations for the predictions from the experimental values ranged 

from 2.4 to 77%.  The highest deviations were noted in pulsatile flows with f = 1 

Hz and without any blockages. Better prediction results were observed in 

constricted arterial models at higher frequencies (10 Hz). 

vii. Comparison of pulsatile flow in 0.25-inch-ID rigid and flexible tubes, namely, 

polyethylene and latex respectively, shows that the pressure/flow amplitudes for 

the rigid tube is 25% higher than that of the flexible tube, latex.   

viii. All the flow models predicted peak wall shear stress within the constriction and 

low wall shear and strain rate values proximal and distal to the stenosis (within 

the recirculation zones). 

ix. The inlet pressure and velocity at the constriction are about 0.92π out of phase 

for the pulsatile flow with 98% blockage and f = 10 Hz.  
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CHAPTER 7  

PULSATILE FLOW-INDUCED ACOUSTIC EMISSION SIGNAL MEA SUREMENT 

RESULTS 

7.1   Introduction  

 In the following sections and subsections acoustic emission signal measurement 

results for different materials at different frequencies are presented.   

 AE sensors are used to detect the elastic waves (acoustic emissions) generated 

during the pulsatile fluid flow in the arterial geometric models. These waves are 

characterized by elastic energy, wave speed, amplitude, location, number of events, 

etc. In this study, in-situ AE tests were conducted for the detection and characterization 

of the signals generated during the pulsatile fluid flow measurement at different 

pumping frequencies in the arterial geometric models.  The computational fluid 

dynamics (CFD) investigation results of Chapter 6  on the fluid dynamic property 

variations, namely, velocity, pressure, wall shear stress contours, etc. along the fluid 

channel are used to analyze the AE measurement results. The experimental tests in this 

study mainly focus on understanding the detection and characterization of the acoustic 

emissions or pulse wave propagation in normal and diseased/stenosed arterial 

geometric models. The pressure pulse, flow rate and the elastic waves or AE signals 

generated due to the pulsatile flow using Newtonian fluids (distilled water and 40% 

glycerin/distilled water solution) are simultaneously monitored and recorded. The 

authors believe that extracting and correlating such signals to defects in the geometric 

arterial models may have a potential clinical application for the early detection of risky 
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vascular abnormalities such as atherosclerosis or stenosis before any fatalities could 

occur.  These NDE techniques including the physical CVS model could help in the 

design and development of cardiovascular implants such as endovascular stents, heart 

valves, or artificial heart (pump), etc. Therefore, the use of NDE (non-invasive) detection 

techniques such as acoustic emission could be applied to qualitatively and quantitatively 

measure the flow characteristics of normal and diseased arterial models.  Such 

preliminary research work is also believed to lay some ground work for future studies 

and development of AE devices for locating or diagnosing critical vascular abnormalities 

that occlude the flow of blood. 

7.2  Acoustic Emission Results for Rigid and Flexible Tu bes  

The acoustic emission results presented in this section were exclusively done on 

two tubes with 0.25-inch-ID and different materials, namely, latex and polyethylene 

whose material properties have been presented in Chapter 5.  This acoustic emission 

test has also been conducted using the second set of acoustic emission equipment as 

discussed in the experimental setup.   

Representative acoustic emission signal measurement results for pulsatile flows 

within two tubes  (latex and polyethylene) with 0.25-Inch-ID and having a blockage ratio 

R = 98 % are provided in Figures 7-1 and 7-2 for distilled water and 40% glycerin/Water 

solution, respectively at f = 10 Hz.  Large amplitudes of signals are recorded at higher 

frequency where maximum amplitudes of flow parameters are observed.  As displayed 

in the graphs, the amplitudes of the wave form are higher at the specified frequency of 

pumping pulsations.   



Figure 7-1:  Acoustic Emission Signal Measurement for 0.25
= 98 % and f = 10 Hz, Using Distilled Water. 

Figure 7-2:  Acoustic Emission Signal Measurement for 
with 40% Glycerin/Water Solution for 
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Acoustic Emission Signal Measurement for 0.25-Inch-ID Latex Tube with R 
= 98 % and f = 10 Hz, Using Distilled Water.  

Acoustic Emission Signal Measurement for a 0.25-Inch Polyethylene Tube 
th 40% Glycerin/Water Solution for R = 98 %. 

 

ID Latex Tube with R 

 

Inch Polyethylene Tube 



The next set of acoustic emission signal measurements show the absence of 

frequent and consistent signals in two tubes (latex and polyethylene) carrying two 

different pulsatile fluids with different pump pulsati

3 and 7-4.  It has been observed that as the pumping frequency increase (> 13 Hz), the 

amplitudes of the flow parameters (pressure and volumetric flow rate) diminish and the 

flow tends to become steady. Under such circum

follow the same trend and complete fade. 

Figure 7-3:  Acoustic Emission Signal Measurement in Pulsatile Flow of 40% Glycerin 
Solution in a in 0.25
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The next set of acoustic emission signal measurements show the absence of 

frequent and consistent signals in two tubes (latex and polyethylene) carrying two 

different pulsatile fluids with different pump pulsation frequencies as shown in Figure 7

4.  It has been observed that as the pumping frequency increase (> 13 Hz), the 

amplitudes of the flow parameters (pressure and volumetric flow rate) diminish and the 

flow tends to become steady. Under such circumstances, the acoustic e

follow the same trend and complete fade.  

Acoustic Emission Signal Measurement in Pulsatile Flow of 40% Glycerin 
Solution in a in 0.25-Inch-ID Latex Tube with R = 0% and f = 1 Hz . 

 

The next set of acoustic emission signal measurements show the absence of 

frequent and consistent signals in two tubes (latex and polyethylene) carrying two 

on frequencies as shown in Figure 7-

4.  It has been observed that as the pumping frequency increase (> 13 Hz), the 

amplitudes of the flow parameters (pressure and volumetric flow rate) diminish and the 

stances, the acoustic emission signals 

 

Acoustic Emission Signal Measurement in Pulsatile Flow of 40% Glycerin 
with R = 0% and f = 1 Hz .  



Figure 7-4:  Acoustic Emission Signal Measurement in Pulsatile Flow of Distilled Water 
in a 0.25-Inch-ID 

 

 The CFD simulation resu

emission results in explaining the flow behavior that is responsible for the generation of 

the acoustic emissions.  These important parameters that are related to the impact 

loads that are responsible for the generation of elastic waves are pressure at the 

constriction, wall shear stress and the presence of turbulence at the constrictions. 

 Thus, the AE signal measurements are affected by several factors such as the 

fluid flow properties (transmural pr

materials from which the arterial geometric models are made (Young's modulus, 

density, etc.) and dimensions of the tubes (wall thickness and inner diameter). The fluid

induced stress on the tube is 

signal in the tube.  The stress in the tube is expressed as:
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Acoustic Emission Signal Measurement in Pulsatile Flow of Distilled Water 
ID Polyethylene Tube with R = 0% and f = 25 

The CFD simulation results presented in Chapter 6 are tied in to the acoustic 

emission results in explaining the flow behavior that is responsible for the generation of 

the acoustic emissions.  These important parameters that are related to the impact 

for the generation of elastic waves are pressure at the 

constriction, wall shear stress and the presence of turbulence at the constrictions. 

Thus, the AE signal measurements are affected by several factors such as the 

fluid flow properties (transmural pressure, flow rate, etc.) as well as the properties of the 

materials from which the arterial geometric models are made (Young's modulus, 

density, etc.) and dimensions of the tubes (wall thickness and inner diameter). The fluid

induced stress on the tube is related to the transmural pressure that induces the AE 

signal in the tube.  The stress in the tube is expressed as: 

 

Acoustic Emission Signal Measurement in Pulsatile Flow of Distilled Water 
 Hz .  

lts presented in Chapter 6 are tied in to the acoustic 

emission results in explaining the flow behavior that is responsible for the generation of 

the acoustic emissions.  These important parameters that are related to the impact 

for the generation of elastic waves are pressure at the 

constriction, wall shear stress and the presence of turbulence at the constrictions.  

Thus, the AE signal measurements are affected by several factors such as the 

essure, flow rate, etc.) as well as the properties of the 

materials from which the arterial geometric models are made (Young's modulus, 

density, etc.) and dimensions of the tubes (wall thickness and inner diameter). The fluid-

related to the transmural pressure that induces the AE 



 
t

Pr
=σ   

Where σ is the stress, t is wall thickness and r is inner radius of tube, P is the 

transmural pressure or pressure difference across the tube wall.

7.2.1  Transient Flow CFD Simulation Results 

 Figure 7-5 displays the pressure variation at the midsection of the 

and the area averaged inlet velocity of the tube.  The first observation is that the 

midsection pressure at the constriction is about 

velocity.  This result has important implication to the generation 

timing. This implies that the acoustic emission signal would lag behind the inlet velocity. 

Figure 7-5:  Pulsatile Water Flow in a Latex Tub
Averaged Velocity at Inlet is about 
Midsection Pressure [SST Turb
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 is the stress, t is wall thickness and r is inner radius of tube, P is the 

transmural pressure or pressure difference across the tube wall. 

Transient Flow CFD Simulation Results  

displays the pressure variation at the midsection of the 

and the area averaged inlet velocity of the tube.  The first observation is that the 

midsection pressure at the constriction is about 0.92π radians out of phase with the inlet 

velocity.  This result has important implication to the generation of acoustic emission 

timing. This implies that the acoustic emission signal would lag behind the inlet velocity. 

Pulsatile Water Flow in a Latex Tube, with R = 98% and f = 10 Hz. 
Averaged Velocity at Inlet is about 0.92π Radians out of Phase with the 
Midsection Pressure [SST Turbulence Model].   

      (7-1) 

 is the stress, t is wall thickness and r is inner radius of tube, P is the 

displays the pressure variation at the midsection of the constriction 

and the area averaged inlet velocity of the tube.  The first observation is that the 

 radians out of phase with the inlet 

of acoustic emission 

timing. This implies that the acoustic emission signal would lag behind the inlet velocity.  

 

e, with R = 98% and f = 10 Hz. Area-
out of Phase with the 



However, it should be clear that the inlet and midsection velocities are in phase.  

However, the amplitude of the midsection velocity

( ))1(/1 RM −=  which is about 7.07 after substituting the R = 98% value as discussed in 

Chapter 6. 

 Figure 7-6 shows streamwise

and C, Late Acceleration and Late Deceleration

pulsatile flow of water in a 0.25

Figure 7-6:  Streamwise Pressure Variation for t/T = 2.25 and 2.8 (Points b and C, Late 
Acceleration and Late Deceleration
Water Flow in a 0.25
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However, it should be clear that the inlet and midsection velocities are in phase.  

However, the amplitude of the midsection velocity is amplified by a factor of 

which is about 7.07 after substituting the R = 98% value as discussed in 

shows streamwise pressure variation for t/T = 2.25 and 2.8 (Points b 

and C, Late Acceleration and Late Deceleration points shown in Figure 6

pulsatile flow of water in a 0.25-inch tube with R = 98% and f = 1 Hz. 

Streamwise Pressure Variation for t/T = 2.25 and 2.8 (Points b and C, Late 
Acceleration and Late Deceleration Points of Figure 6-33 ) for Pulsatile 
Water Flow in a 0.25-Inch Tube with R =98% and f = 1 Hz.  

However, it should be clear that the inlet and midsection velocities are in phase.  

is amplified by a factor of 

which is about 7.07 after substituting the R = 98% value as discussed in 

pressure variation for t/T = 2.25 and 2.8 (Points b 

Figure 6-33) for 

 

Streamwise Pressure Variation for t/T = 2.25 and 2.8 (Points b and C, Late 
for Pulsatile 
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7.2.2  Stead-State Fluid Flow CFD Simulation Results  

  In this section,  CFD the steady state flow analysis, the mean pulse pressure 

values from the experimental test have been used as the input boundary conditions at 

the inlet of each of the flow domains with a zero pressure gradient while the outlet 

boundary condition has been set to zero static pressure at the extreme flow conditions 

of 1Hz and 10 Hz.  Figures 7-7 through 7-14 show the pressure, velocity and wall shear 

stress contours in the stenotic section of the arterial models with R=75%.  

 

Figure 7-7:  Pressure Contour in Stenotic Arterial Models at 75% Blockage Ratio: (a) f  = 
1Hz, (b) f = 10Hz. 
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Figure 7-8:  Pressure Contour in Stenotic Arterial Models at 75% Blockage Ratio: (a) f 
= 1Hz, (b) f = 10Hz. 

 

Figure 7-9:  Velocity Contour in Stenotic Arterial Models at 75% Blockage Ratio: (a)       
f = 1Hz, (b) f = 10Hz. 
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Figure 7-10:  Velocity Vector in Stenotic Arterial Models at 75% Blockage Ratio: (a)        
f = 1Hz , (b) f = 10Hz. 

 

 

Figure 7-11:  Velocity Contour in Stenotic Arterial Model at X=0.285m and for 75% 
Blockage Ratio: (a) f  = 1Hz, (b) f = 10Hz. 
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Figure 7-12:  Wall Shear Stress Contour in Stenotic Arterial Models at 75% Blockage 
Ratio: (a) f = 1Hz, (b) f = 10Hz. 

 

 

Figure 7-13:  Pressure Variation along Stenotic Arterial Models at 75% Blockage Ratio: 
(a) f = 1Hz, and (b) f = 10Hz. 
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Figure 7-14:  Velocity Variation along Stenotic Arterial Models at 75% Blockage Ratio: 
(a) f = 1Hz and (b) f = 10Hz. 

 

7.3  Acoustic Emissions in Arterial Models with Differen t Stiffnesses  

 As discussed in the experimental setup in Chapter 5, the acoustic emission 

equipment used for the detection, location, characterization of the flow-induced acoustic 

emissions in this section is the Fracture Wave Detector equipment (Digital Wave 

Corporation).  The investigation focuses on different healthy and stenotic arterial models 

with different stages of stenosis (blockage ratios), material properties (modulus of 

elasticity and density) and sizes in order to characterize the pulsatile flows over a wide 

range of  pulsation frequencies (1 to 25 Hz) which is beyond the average human 

physiological heart rate of 1.2 Hz.   

 

  The effects of the pulsatile flow properties (pressure pulse and flow rate) and 

different elastic moduli and sizes of the test section tubes (arterial models) on the 
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detection and strength of the acoustic emission (AE ) signal using acoustic emission 

sensors (to detect elastic waves in the arterial models)  have been investigated and the 

AE signals in each model characterized over a range of pumping frequencies.   

 The experimental test result in this study mainly focuses on understanding the 

detection of the acoustic emissions in different normal and stenosed arterial models by 

monitoring or measuring the pressure pulse, flow rate. The elastic waves were 

generated due to the pulsatile flow of a Newtonian fluid, distilled water or 40% 

glycerin/distilled water solution. The author believes that extracting and correlating such 

signals to defects in the geometric arterial models may have a potential clinical 

application for the early detection of risky vascular abnormalities such as stenosis or 

atherosclerosis before any fatalities could occur. This principle may also be extended to 

industrial applications where the integrity of pipes can be checked by generating 

pulsatile flows.  Therefore, the use of such non-invasive techniques could be applied in 

characterizing fluid flow in arterial models.  Such preliminary research work is also 

believed to lay some ground work for future studies in the search or development of AE 

devices for locating or diagnosing critical vascular abnormalities. 

 In this experimental setup for the detection and characterization AE signals of 

pulsatile flow in different arterial geometric models, tube materials with different elastic 

moduli values but with the same order of magnitude to that of the human vascular 

tissue, (which exhibits viscoelastic behavior) have been selected. However, for 

comparison purposes, polyethylene tube with a higher Young’s modulus (with 2 to 3 

orders of magnitude higher than that of the human tissue (modulus of elasticity, E = 

1.0MPa) was added to the matrix of materials. Thus, the scope of this test is to 
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understand the effect of material viscoelasticity and thickness on the detection, location 

and characterization of internal pulsatile flows and analysis of AE signals at different 

pumping frequencies. 

 The stenosis models have different restriction or blockage ratios (0%, 50% and 

75%, 98%) where a a tube with a blockage ratio of 0% signifies a normal/healthy artery.  

7.4  Acoustic Emission in Tubes with Different Materials  

  Figure 7-15 below shows a plot of the measured flow data including electrical 

inputs across the solenoid pump to generate the pusaltile flow for natural gum rubber 

tube with a blockage ratio R = 75%  and f = 1Hz.  The function generator was setup at a 

sinusoidal voltage input with an amplitude of 4V at all times which translated to an 

available DC voltage input ranging from 0 to 16V at the pump (calibration).  During the 

test, the frequency of the pump varied from 1 through 25 Hz generating laminar, 

transitional and turbulent pulsatile flows.  The overall restriction of the system was 

maintained constant except at the test section where the stenotic models of machined 

delrin tubes with different blockage ratios were press fitted into the arterial models to 

conduct the flow-induced AE signal measurement test. The flow properties were 

recorded during the AE signal measurement using DAQ1 data acquisition system. The 

temporal data was plotted and the time average mean values calculated using 

numerical methods.  
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Figure 7-15:  Time Plots of Flow Properties [Natural Gum Rubber Tube, Blockage Ratio 
R = 75%, f = 1Hz].  

 

 At 75% Blockage ratio, the stenotic effect and flow property variations are large and 

well pronounced.  During the test it was observed that the most flexible tubes showed high 

wall displacement (elastic deformation or movement) at the center of the tube in the 

absence of the stenotic model insertions.  But when the stenotic models were inserted, 

the movement at the center was reduced causing the flow behavior to change.  That 

implies the arterial models fixed at both ends (without stenotic model insertions) oscillated 

differently from those arterial models with stenotic model insertions.  The authors believe 

the 16mm long surface of the stenotic model acts as a nodal surface (with no or minimal 

displacement) and hence divides the arterial model (tube) into two segments of tubes 

oscillating independent of each other.  The damping effect of the mass of the stenotic 

models may not be excluded.  It is believed that this would explain the complexity of the 
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flow at 0 and 50% blockage ratios and why there was not a clear trend in the variation of 

the flow properties at low and high frequency ranges.   

  Figure 7-16 shows the temporal plots of large samples of flow properties including 

electrical inputs measured at the pump for natural gum rubber at a flow blockage ratio of 

75% and f = 25Hz. These data was used for the aggregation or calculation of the time 

averaged mean flow properties using numerical methods (Matlab)  

  After computing the time averaged flow properties and  pump electrical 

consumption from several temporal plots at different pumping frequencies for each 

Blockage ratio (R = 0, 50 and 75%), the mean values are plotted to characterize the 

hydraulics of the CVS model. Thus as shown on Figure 7-17, as the frequency increases, 

the mean flow rate, pressure at inlet and outlet of the arterial geometric model (tube) 

increase and then decline as the frequency significantly increases.  The peak values are 

measured at f = 10Hz. 

 

Figure 7-16:  Time Plots of Large Sample - Flow properties and Pump DC Current and 
Voltage [Natural Gum Rubber Tube with 75% Blockage Ratio, f = 25Hz].  
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Figure 7-17:  Mean Flow Property and Pump Input (Current & Voltage) vs. Frequency for 
Natural Gum Rubber at 75% Blockage Ratio.  

 

  Figure 7-18, shows the comparison of the flow properties for natural gum rubber 

at different blockage ratios (0%, 50% and 75%).  As shown in the plot,  as the Blockage 

ratio increases, the flow rate decreases significantly.  However, at low blockage ratios 

(0% and 50% ) the pattern is not well established and this may be attributed to the effect 

of the stenotic model insertions which change the wall displacement pattern at the 

center of the arterial models and hence the flow dynamics.  
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Figure 7-18:  Mean Flow Property Variations for Natural Gum Rubber Tube with 
Different Blockage Ratios (0, 50, and 75%). 

  

  In Figure 7-19, the wave form for the AE signal is plotted. The acoustic emission 

signals were monitored or measured at the highest pumping frequency (f = 25Hz) at two 

locations (distal and proximal to the stenotic model with 75% Blockage ratio) using the 

two AE sensors.  
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Figure 7-19:  Acoustic Emission Measurement - Wave Form of AE signal for Natural 
Gum Rubber with 75% Blockage Ratio and f = 25Hz. 

 

For the same flow condition above, the FFT of the AE signal measurement result is 

shown in Figure. 7-20. 
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Figure 7-20:  Acoustic Emission Measurement - FFT of AE Signal for Natural Gum 
Rubber with 75% Blockage Ratio and f= 25Hz. 

 

  Figure 7-21 shows the cumulative AE events as function of time whereas the 

number of events recorded by each sensor (channel) is shown in Figure 7-22.  The 

event plot indicates that there are more signals coming from the second sensor, installed 

distal to the stenotic model.  This suggests the presence of highly turbulent flow distal to 

the stenosis. Thus, the recording of higher strength signals by the AE sensor installed 

distal to the stenotic model than the one installed proximal to it suggest that the tube wall 

distal to the stenosis is severely stressed by the oscillating dynamic loads compared to 

the proximal wall. 
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Figure 7-21:  Acoustic Emission Measurement - Event vs. Time for Natural Gum 
Rubber with 75% Blockage Ratio, f = 25Hz. 

 

 

Figure 7-22:  Acoustic Emission Measurement - Event by Channel or Sensor Location 
for Natural Gum Rubber [75% Blockage Ratio, f = 25Hz, Highest Events 
Recorded at Sensor Distal to Stenosis].  

 

  Figures 7-23 and 7-24 show the strength and distribution of the relative AE 

energy at the two sites (sensors 1 and 2 which are located distal and proximal to the 
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stenotic model, respectively).  Figures 7-25 and 7-26 show the dispersion curves, 

namely, extensional and flexural velocities respectively. 

 

Figure 7-23:  Acoustic Emission Measurement - AE Energy Measured at Sensor 1 
(Distal to Stenosis) for Natural Gum Rubber with 75% Blockage Ratio, f = 
25Hz.  

 

 

Figure 7-24:  Acoustic Emission Measurement - AE Energy Measured at Sensor 2 
(Proximal to Stenosis) for Natural Gum Rubber with 75% Blockage Ratio,    
f = 25Hz,  Distal to Stenosis.  
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Figure 7-25:  AE Measurement - Dispersion (Extensional Vel. Natural Gum Rubber with 
75% Blockage Ratio and f = 25Hz. 

 

Figure 7-26:  AE Measurement - Dispersion (Flexural Velocity) Natural Gum Rubber with 
75% Blockage Ratio and f = 25Hz. 
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The time plots for flow properties measured at the test section of the SCHM model are 

shown on Figures 7-27 and 7-28 for large sample from which the time averaged or mean 

values of the flow properties are calculated. 

 

Figure 7-27:  Time Plots of Large Sample - Flow Properties and Pump DC Current & 
Voltage [Silicone Rubber Tube, 75% Blockage Ratio,   f = 25Hz]. 

 

 

Figure 7-28:  Time Plots of Flow Properties and Pump DC Current and Voltage 
[Silicone Rubber Tube with 75% Blockage Ratio, f = 25Hz]. 
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 On the other hand the mean flow data and pump power for the 0.375-inch-ID 

silicone tube as function of frequency are shown in Figures 7-29 through 7-33.  The 

general trend for the mean flow properties shows that as the Blockage Ratio increases 

the pressure drop increases and the flow rate decreases.   

 

Figure 7-29:  Summary of Mean Flow Property Variations for Silicone Rubber Tube with 
Different Blockage Ratios (0, 50, and 75%). 

 

Figure 7-30:  Mean Flow Properties & Pump Electrical Inputs vs. Frequency for Silicone 
Rubber Tube at a Blockage Ratio, R = 0%. 
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Figure 7-31:  Mean Flow Property Variations for Silicone Rubber Tube at a Blockage 
Ratio, R = 50%. 

 

Figure 7-32:  Mean Flow Property Variations for Silicone Rubber Tube at a Blockage 
Ratio, R = 75%. 
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Figure 7-33:  Comparison of Summary of Mean Flow Property Variations for Silicone and 
Natural Rubber Tubes with Different Blockage Ratios (0, 50, and 75%). 

 

Figures 7-34 through 7-38 show the AE emission signal measurements that were taken 

at a pumping frequency, f = 25Hz and R=75% for a silicone tubing. 

 

Figure 7-34:  Acoustic Emission Measurement - Wave Form of AE signal for Silicone 
Rubber with 75% Blockage Ratio and f = 25Hz. 
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Figure 7-35:  Acoustic Emission Measurement - FFT of AE signal for Silicone Rubber 
with 75% Blockage Ratio andf= 25Hz. 

 

Figure 7-36:  Acoustic Emission Measurement - AE Energy Measured at Sensor 1 
(Proximal to Stenosis) for Silicone Rubber with 75% Blockage Ratio and   
f= 25Hz. 
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The hydraulic resistance, Φ, is defined by               
Q

P∆
=Φ                    (7-2) 

 where ∆P is the pressure gradient and Q is the flow rate.  The total hydraulic resistance 

is a combination of vascular resistance, viscosity, and turbulence.  

 

Figure 7-37:  Acoustic Emission Measurement - AE Energy Measured at Sensor 2 
(Distal to Stenosis) for Silicone Rubber with 75% Blockage Ratio, f = 25Hz. 

 

 

Figure 7-38:  Acoustic Emission Measurement - Event vs. Time for Silicone Rubber with 
75% Blockage Ratio, f = 25Hz. 
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The following plots (Figures 7-39 through 7-43) show the flow test data measurement 

result that were taken during the AE test on a 0.25-inch-ID polyethylene tube material. 

 

Figure 7-39:  Time Plots of Large Sample - Flow properties and Pump DC Current and 
Voltage [Polyethylene Tube with 75% Blockage Ratio, f= 10Hz]. 

 

 

Figure 7-40:  Time Plots of Flow Properties and Pump DC Current and Voltage 
Polyethylene Tube with 75% Blockage, f = 10Hz]. 
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Figure 7-41:  Mean Flow Property Variation and Pump Input (Current & Voltage)- 
Polyethylene Tube, 0% Blockage Rate .  

 

 

Figure 7-42:  Mean Flow Property Variation and Pump Input (Current & Voltage) for 
Polyethylene with 75% Blockage Ratio. 
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Figure 7-43:  Comparison of Summary of Mean Flow Property Variations for 
Polyethylene tube with Different Blockage Ratios (0, 50, and 75%). 

 

 Figures 7-44 through 7-47 show the AE emission signal measurements for 

polyethylene corresponding to the above flow properties at R = 75% and 10 Hz.  At 

10Hz, the maximum flow rate and peak values of the flow properties were measured.  

Findings show that the AE signals tend to increase until the frequency of the pump 

reaches around 10Hz where the peak values of the flow properties occur.  
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Figure 7-44:  Acoustic Emission Measurement - FFT of AE Signal for Silicone Rubber 
with 75% Blockage Ratio and f = 10Hz. 

 

  As the frequency increases beyond 12Hz, the flow properties rapidly decrease.  

However, the sensor installed distal to the stenosis consistently records the high AE 

emission signals (energy, number of events).  

 

Figure 7-45:  Acoustic Emission Measurement - Event vs. Time for Polyethylene Tube 
(75% Blockage Ratio and f= 10Hz). 
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Figure 7-46:  Acoustic Emission Measurement - AE Energy Measured at Sensor 1 
(Proximal to Stenosis) for Polyethylene Tube with 75% Blockage Ratio and 
f = 10 Hz. 

 

 

Figure 7-47:  Acoustic Emission Measurement - AE Energy Measured at Sensor 2 
(Distal to Stenosis) for Polyethylene Tube with 75% Blockage Ratio and f = 
10 Hz. 
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  For comparison purposes, the acoustic emission signal and flow measurement 

results for polyethylene tube at blockage ratio, R=75% and pumping frequency of 1Hz 

are shown in Figures 7-48 through 7-53. The reader should be able to see the 

significance of AE based non-destructive method for the detection and characterization of 

stenosis in geometric models of diseased vasculature.   

 

 

Figure 7-48:  Time Plots of flow properties & Pump Current & Voltage [Polyethylene 
Tube (75% Blockage Ratio, f = 1Hz). 
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Figure 7-49:  Acoustic Emission Measurement - Wave Form of AE signal for 
Polyethylene Tube (75% Blockage Ratio, f = 1Hz). 

 

 

Figure 7-50:  FFT of the AE signal for Polyethylene Tube (75% Blockage Ratio, f = 
1Hz). 
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The flow property data was simultaneously measured while the AE signal measurement 

was in progress to see the correlation between the AE signal and flow properties.  

 

Figure 7-51:  Acoustic Emission Measurement - AE Energy Measured at Sensor 1 
(Proximal to Stenosis) for Polyethylene Tube with 75% Blockage Ratio and 
f = 1 Hz. 

 

 

Figure 7-52:  Acoustic Emission Measurement - AE Energy Measured at Sensor 2 
(Distal to Stenosis) for Polyethylene Tube, 75% Blockage Ratio, f = 1 Hz. 
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Figure 7-53:  Acoustic Emission Measurement - Event by Channel or Sensor Location 
for Polyethylene Tube [75% Blockage Ratio = 1Hz, Sensor Distal to 
Stenosis has highest recorded events]. 

 

 Figures 7-54 through 7-60 show the temporal and mean flow property variation 

as well as the AE emission test results for the arterial model made of latex rubber with a 

0 % Blockage Ratio. 

 

Figure 7-54:  Time Plots of Flow properties & Pump Current & Voltage [Latex Rubber 
Tube, 0 % Blockage Ratio, f= 25Hz]. 
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Figure 7-55:  Mean Flow Property Variation and Pump Input (Current & Voltage) [Latex 
Rubber Tube, 0 % Blockage Ratio]. 

 

Figure 7-56:  Acoustic Emission Measurement - Wave Form of AE signal for Latex Tube 
[0% Blockage Ratio, f= 10Hz]. 
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Figure 7-57:  Acoustic Emission Measurement - FFT of the AE signal for Latex Tube, 
0% Blockage Ratio, f = 10Hz. 

 

Figure 7-58:  Acoustic Emission Measurement - AE Energy Measured at Sensor 1 
(Proximal to Stenosis) Latex Tube, 0% Blockage Ratio, f = 10Hz]. 
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Figure 7-59:  Acoustic Emission Measurement - AE Energy Measured at Sensor 2 
(Distal to Stenosis) Latex Tube, 0% Blockage Ratio, f = 10Hz]. 

 

Figure 7-60:  Summary of Mean Flow Property and Pump Input (Current & Voltage) 
Variation with Frequency for Polyethylene, Silicone & Latex at [0, 50 & 
75% Blockage Ratios]. 
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Another important parameter in pulsatile flow is the Womersely number.  The plot of the 

Womersley number for four different tubes is displayed in Figure 7-61.  

 

Figure 7-61:  Womersley Number vs. Frequency Plot for Two Sets of Tubes. 

 

7.5  Pressure Pulse and Wave Speeds in Different Materia ls 

 The speed of the pressure waves propagating in the incompressible fluid (water 

or 40% glycerin/water solution) with mass density of ρ, inner diameter D, and thickness 

to inner diameter ratio of e/D in elastic tubes is given by: 

D

eE
c

ρ
=           (7-3) 

 

Per the Joukowsky equation, it is clear that the peak pressure in the latex tube is 

much lower than the peak pressure of the polyethylene tube. From the experimental test 
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it was determined that the peak pressure for latex was 

polyethylene tube.  Comparison of the pressure gradient

time) for the two tubes also shows that the pressure 

much higher than that of the latex tube.  This can be 

derivative of the pressure from the Joukowsky equation

  cup ρ=    

dt

du
c

dt

dp
ρ=   

 

where p is the dependent variable pressure and 

density of the medium (fluid) and velocity of sound in the medium. 

maximum pressure occurs at a point on the velocity versus time function where 

maximum and the vice versa. 

Table 7-1:  Wave Velocity in Water and 40% Glycerin/water Solution. 
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it was determined that the peak pressure for latex was about 25% lower than that in the 

Comparison of the pressure gradients (pressure rise wit

also shows that the pressure rise for the polyethylene tube is 

the latex tube.  This can be can be explained

derivative of the pressure from the Joukowsky equation in Equation 7-5. 

       

       

is the dependent variable pressure and u is the velocity and ρ

density of the medium (fluid) and velocity of sound in the medium.  This implies the 

maximum pressure occurs at a point on the velocity versus time function where 

 

Wave Velocity in Water and 40% Glycerin/water Solution.  

25% lower than that in the 

(pressure rise with respect to 

for the polyethylene tube is 

can be explained using the 

 

  (7-4) 

 (7-5) 

is the velocity and ρ and c are the 

This implies the 

maximum pressure occurs at a point on the velocity versus time function where du/dt  is 
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7.6  Summary  of Test Results and Conclusions  

7.6.3  Summary and Conclusions  

1. This experimental setup can be used to detect, locate and characterize defects in 

arterial geometric models. Hence this acoustic emission results suggest that an 

acoustic emission based equipment in combination with a pulsatile flow 

generator has a big potential for the detection of defects in rigid and flexible pipes 

and tubes for both industrial and biomedical applications. 

2. Results show that for a given arterial model, the flow properties (pressure, flow 

rate, resistance, etc.) are dependent on the pumping frequency of the 

reciprocating pump. As the pumping frequency increases from 1Hz to 11Hz, the 

mean flow properties for both water and 40% glycerin solution increase 

significantly and then pulsation decreases gradually for frequency between 10 

and 25 Hz at a given blockage ratio.  

3. The pressure pulse, PDP(t) = P1(t) - P2(t) depends on the dimensions and 

elasticity of the arterial geometric model, as well as the blockage (occlusion) ratio 

of the stenotic tube. The amplitudes of the pressure measurements at inlet and 

outlet for high frequencies (f ≥ 12 Hz) were less than 25% of the maximum 

amplitude measured at lower frequencies. 

4. AE emission signals are stronger and more frequent at higher blockage ratios (R 

= 75, 98% ) than those measured at lower blockage ratios (0% & 50%) for a 

given arterial geometric model. 

5. For R = 75 and 98%, stronger AE signals are measured at sensor 1 (proximal to 

stenosis) at lower frequencies ( f ≤ 7 Hz) compared to readings in channel 2 or 



281 
 

 

sensor 2 (distal of the stenosis). As frequency increases, stronger signals are 

measured in the range of 8 ≤ f ≤ 12 Hz.  
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CHAPTER 8   

CONCLUSIONS AND RECOMMENDATIONS  

8.1  Conclusions 

From a close observation of the CFD simulation and experimental work, the 

following conclusions are presented in different sections as follows: 

a. Numerical Simulation of Pulsatile Flow 

i. Numerical simulations show that there is a marked difference between the 

friction factor results for unsteady state and quasi-steady-state behavior of 

fluid flows. Therefore, the use of steady-state-based mathematical models 

would not be justifiable for the study of unsteady state fluid flow behavior 

in general including high frequency pulsatile flows that transist between all 

flow regimes.  

ii. For a pulsatile flow with an imposed inlet boundary condition defined as:  

( ) Uftututru amp +== π2sin)(),,0(
 
or ( ) Re2sinRe)Re( += ftt amp π , where 

the amplitude and mean values are defined as constants, the pressure 

oscillations at different cross sections of an axisymmetric, uniform, and rigid 

tube are proportional to the frequency of the inlet velocity.  

iii. For unsteady state flows, the transitional SST model was found to be the 

most flexible model in that it adjusts itself automatically for the simulation 

of fluid flows encompassing different flow regimes (laminar-transitional-

turbulent, based on Reynolds numbers).   
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iv. CFD simulation of a pulsatile flow in a rigid pipe that transists over all the 

flow regimes (laminar, transition, and turbulent) showed the presence of 

near-wall backflows during certain critical phases of the flow cycle (mid- 

deceleration to mid-acceleration) due to low momentum (below the mean 

value velocity/Reynolds number) or the existence of steep or unfavorable 

pressure gradients.   

 

b. Experimental Work/CFD Simulation  

 

i. As evidenced by the flow visualization technique (dye and air bubble tests), the 

experimental flow tests (distilled water and 40% glycerin/distilled water solution 

with Reynolds numbers ranging from 663 to 6885 and 204 to 1671 respectively 

based on inlet conditions) for tubes without blockages were found to exhibit 

turbulence, in that the dye would mix quickly with the flowing fluid in all directions.   

Therefore the justification for the use of the SST turbulence model as an 

alternative for the prediction of the flow was not coincidental. This model in most 

cases provided better results compared to other models 

i. The percentage deviation [(Experimental Flow - Predicted Flow)/Mean value] 

was higher for those pulsating flows at lower frequencies (f = 1 Hz) as compared 

to those at higher frequencies ( f = 10 Hz). The percentile deviations for the 

predictions from the experimental values ranged from 2.4 to 77%.  The highest 

deviations were noted in pulsatile flows with f = 1 Hz and without any blockages. 
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Better prediction results were observed in constricted arterial models at higher 

frequencies (10 Hz).    

ii. The use of a laminar flow regime assumption for the simulation of low Reynolds 

number blood flow (based on inlet conditions), in stenosed and non-stenosed 

arteries has been found to be inadequate.  Thus, such an assumption leads to 

over prediction of the flow properties and other critical flow-derived parameters 

such as wall shear stress, shear strain rates, etc.   

iii. For unsteady state flows in this experimental work  (based on the flow 

visualization test), in that turbulence occurred in low Reynolds number  pulsatile 

flows (at low pulsation frequencies with non-stenotic tubes and at high 

frequencies for tubes with high blockage ratios) the use of the SST turbulence 

model yielded better results compared to the transitional SST model.   

iv. All the flow models predicted peak wall shear stress within the constriction and 

low wall shear and strain rate values proximal and distal to the stenosis (within 

the recirculation zones).   

 

c. Acoustic Emission  

i. The experimental results produced a quantitative linkage between the intensity of 

the acoustic emissions and the amplitude and frequency of the pulsation, the 

mean volumetric flow rate, and the extent of the arterial model blockage.  

ii. Acoustic emission (AE) in combination with a pulsatile flow generator can be 

used as an alternative non-destructive evaluation technology for the detection of 
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partial or near-complete blockages or obstructions in arterial models as well as 

industrial applications.  

iii. Results show that for a given arterial model, the flow properties (pressure, flow 

rate, resistance, etc.) are dependent on the pumping frequency of the pulsation 

generator (reciprocating pump).  As the pumping frequency increases from 1Hz 

to 10Hz, the flow properties increases non-linearly and then gradually decrease 

with frequency between 10 Hz and 25 Hz for a given blockage ratio.   

iv. The pressure difference between inlet and outlet of the test-section tube, PDP(t) 

= P1(t) - P2(t), depends on the dimensions and elasticity of the arterial geometric 

models, as well as the blockage (occlusion) ratio of the stenotic tube. 

v. Stronger and more frequent AE emission signals occur at higher blockage ratios   

(R = 75, 98% ) than those of lower blockage ratios (0% & 50%) for a given 

arterial geometric model.  

 
  

8.2  Recommendations for Future Work 

The following investigation may be conducted using the newly designed simple 

cardiovascular hydraulic model (SCHM) after upgrading the model with additional flow 

meters (such transonic flow meter) and equipping the experimental setup with  an 

upgraded PIV system capable of visualizing unsteady flows:  

i. Further investigation on fundamental behavior of pulsatile flows. 

Since pulsatile flows exhibit very unique behavior compared to steady state 

flows which can be classified into three flow regimes, namely, laminar, 
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transitional or turbulent, it is important to investigate whether we can draw 

parallel conclusions on the nature of pulsatile flows based on the steady state 

findings.  

ii. Conduct pulsatile flow experiments in 90o bends to study the effect of arterial 

radius of curvature on flow behavior. 

iii. Investigate the effect of arterial branching on the detection of acoustic emission: 

a. using smaller diameter viscoelastic tubes. 

b. using smaller diameter rigid tubes. 

iv. Conduct experimental pulsatile flow tests on aneurysmal geometric models: 

a. to investigate the detection and generation of acoustic emission. 

b. understand the flow behavior. 

v. Conduct further CFD simulation of fluid-solid-interaction: 

a. to investigate the effect of tube material compliance on fluid flow. 

b. to investigate the distribution of mechanical stresses in the arterial 

models and their correlation to acoustic emission signals. 
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APPENDIX A 

FLOW MEASUREMENT DURING ACOUSTIC EMISSION TEST 

 

Figure A-1:  Flow Property & Pump Power Measurements in a Healthy Arterial 
Geometric Model  [f = 1Hz, R=0%]. 

 

Figure A-2:  Flow Property & Pump Power Measurements on a Healthy Arterial 
Geometric Model  [f = 5Hz, R=0%]. 
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Figure A-3:  Flow Property & Pump Power Measurements on a Healthy Arterial 
Geometric Model  [f = 1Hz, R=0%]. 

 

 

Figure A-4:  Flow Property & Pump Power Measurements on a Healthy Arterial 
Geometric Model  [f = 5Hz, R=0%]. 

 



Figure A -5:  Pressure PDP = P1(t) 
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Pressure PDP = P1(t) – P2(t) Measurement at f =0.125 Hz. 

 

P2(t) Measurement at f =0.125 Hz.  
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APPENDIX B 

STEADY STATE FLOW VIZUALIZATION USING PIV   

 

 Introduction  

In this appendix, the experimental setup, procedures and numerical simulation 

results on a fluid flow in a straight tube using a Particle Image Velocimetry (PIV) 

equipment is presented.  First, the experimental setup and procedures for the PIV-

based experimental work will be presented then the PIV measurement results followed 

by the CFD simulation for comparison purposes.  

 

I. Particle Image Velocimetry (PIV) Experimental Se tup 

A picture of the experimental setup for the particle image velocimetry (PIV) 

equipment and accessories is shown in Figure B-1. This setup is for the investigation of 

fluid flow in and stenotic and non-stenotic arterial models using a steady state flow.  The 

schematic of the experimental setup is also shown in Figure B-2.  
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  Figure B-1 Pictorial View of the Experimental Setup of PIV.  
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 Figure B-2  Pictorial Experimental Setup of PIV (Main Components) [124].  

 

Figure B-3  Schematic Diagram of Experimental Setup of PIV (Main Components).  
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II. Description of  The PIV System  

 The current Particle Image Velocimetry (PIV) technique is a 2-dimensional flow 

visualization tool used to measure velocity fields in a fluid flow seeded with light 

scattering particles.  The seeded flow field is illuminated with double pulsed Nd:Yag 

laser light. The pulse duration is 4 ns - 20 ns.  A 2MP CCD Camera is used to take 2 

pictures (Frame A and Frame B) separated by a pulsation duration, ∆t as shown on 

Figure E-4. The pictures shown in Frames A & Frame B are taken at the first and 

second laser pulses respectively.  Then a pre and post-processing algorithms are 

applied on the images to determine the velocity vectors of the flow field. Fast Fourier 

Transform (FFT) Cross-Correlation is used to analyze the displacement/velocity of the 

particle within a given interrogation region.   

 

   Figure B-4 Cross-correlation Processing [125]. 
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III. Technical Description of the PIV System (TSI) [125]: 

• Low power Nd:YAG Laser  

• 10 mJ - 400 mJ per pulse (Current Experiment at 100 mJ) 

• 4 ns - 20 ns pulse duration 

• Freezes the particle images 

• Wide range of ∆t to measure low (creep flows) and high velocities (supersonic 

speeds) 

• 10 - 30 Hz Pulse Repetition Rate 

• 532 nm Wavelength (Frequency Doubled) 

IV. Particle Image Velocimetry (PIV) Techniques 

 The PIV techniques are summarized as follows [125]: 

• Small tracer particles follow fluid flow 

• Images of particle positions, illuminated by a pulsed laser, are captured at 

separate times 

• Particle displacements are calculated across ∆t, the time between laser pulses, 

to determine velocity. 
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  Figure B-5  Particle Image Velocity Measurement Principles [125]. 

   

  Figure B-6  Sequence Diagram of Frame Straddling Mode [125]. 
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V. Calibration of PIV System - Procedures & Tools  

 Before any PIV experiment is conducted, the region of interest within the flow 

needs to be identified and the camera focused on the plane containing the region of 

interest.  This process is called the calibration process.  As part of the calibration 

process, the following procedures are followed through according to the PIV system 

calibration guidelines for the ME3300 Fluid [124]Lab for the visualization of turbulent 

wake, and TSI manuals [125]. 

• “The hardware (Camera, synchronizer, & laser) connected, configured and 

powered on.  

• Insight 3G software installed and  

• Experimental setup (flow, seeding particles & laser light) in place.  

• Next creating the Experiment Folder and Run within Insight 3G” 

    Adjusting Camera and Lenses [TSI [125]: 

• ‘’Running the camera in free mode using room light 

• Within the Capture tab, set application to PIV, exposure to Free mode, and set 

capture to continuous.  

• Aim camera at a special calibration target - could be a ruler (as used in this 

experiment). 

• Adjusting camera until the area of interest is fully covered and the picture is 

sharp.  

• The next critical step is fine tuning using laser light with the following steps: 
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• To avoid the damage to the CCD camera make sure the camera is fitted with its 

screen and the cap is placed on it to prevent damage from any diffuse laser light 

before the laser is turned on or the capture button is pressed.  

• Shield the CCD camera with a white paper and check for any diffuse laser that 

can harm the camera.  If there is any direct laser light on the paper, align the 

laser light by adjusting the mirrors until the light vanishes. 

• Next the target is removed from the measurement plane. 

• Fine tuning task is done by adjusting the screen until the particles are focused by 

using the laser light.  

• The fine tuning is done by setting the application to PIV, the exposure to 

synchronize and capture to continuous finally the laser is set to low.  

• Select the smallest aperture (the smallest hole 1/32) 

• Then press the capture button to take continuous pictures 

• The aperture is selected in increments of one click until a clear picture is 

obtained.  (Note: The aperture setup shall not be greater than what was adjusted 

to room light.  This is as a precaution to prevent camera damage.  

• Go back one click if you see saturated pictures.  

• If the image at the aperture setting for the room light then increase laser power.  

• For best focus, particle images are viewed with full size zoom of 1:1. 

• Finally, a calibration is image is taken by using an object with known markings by 

setting the application to PIV, exposure to Free, and the capture to continuous.  

Then click stop.  (Note: laser power is off!) 

• Save the picture image.  
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• While the image is open, go to the processing tab,  

• Create new under spatial calibration 

• Click on two know points on the image 

• Now the system is ready for flow field measurements.  The captured images can 

be processed using different pre and post processing algorithms. For example, 

the Deformation Grid Analysis would be recommended [126] for the following 

reasons:  

o Improved correlation 

o Better accuracy 

o Steep Velocity Gradients 

o High Shear Flows”: 

 

 Figure B-7 Calibration Image - A Picture of a Ruler Inside an Arterial Model  



Figure B-8  Two Pictures of an Arterial Stenotic Model Taken at Time Interval, 

VI. Selection of Seeding Particles

The selection of the seeding particles is based on the followi

The particle settling speed or velocity inside the tank needs to be small so that the 

particles remain suspended for a longer time. 

The particles ability to remain suspended in the pipe flow (vertical and horizontal pipes) 

during the experimental test.  

 Particle Sizing - Calculation of settling velocity  

The settling velocity is calculated using Stoke's theorem for a low Reynolds 

number fluid as follows [127] 
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Two Pictures of an Arterial Stenotic Model Taken at Time Interval, 

Selection of Seeding Particles  

The selection of the seeding particles is based on the following criteria as follows:

The particle settling speed or velocity inside the tank needs to be small so that the 

particles remain suspended for a longer time.  

The particles ability to remain suspended in the pipe flow (vertical and horizontal pipes) 

 

Calculation of settling velocity   

The settling velocity is calculated using Stoke's theorem for a low Reynolds 

 

 

Two Pictures of an Arterial Stenotic Model Taken at Time Interval, ∆t. 

ng criteria as follows: 

The particle settling speed or velocity inside the tank needs to be small so that the 

The particles ability to remain suspended in the pipe flow (vertical and horizontal pipes) 

The settling velocity is calculated using Stoke's theorem for a low Reynolds 



Figure B-9 Streamlines for Creeping Flow Past a Sphere with Drag and Gravity Forces
[128]: 

   d RVF πµ6=

Where Fd is the frictional force acting on the spherical particle, R is the radius of the 

spherical object, VS is the settling velocity

gRF Pg ρπ 3

3

4
=    

gRF fB ρπ 3

3

4
=    

where FB is the bouyancy force and g is the gravitational acceleration.  Equating the 

drag force and the bouyancy to the gravity force yielsds the settling velocity equation as 

follows: 

( ) 2

9

2
gRV fP

S µ

ρρ −
=    
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9 Streamlines for Creeping Flow Past a Sphere with Drag and Gravity Forces

SRV        

is the frictional force acting on the spherical particle, R is the radius of the 

is the settling velocity and µ is the fluid viscosity. 

       

       

is the bouyancy force and g is the gravitational acceleration.  Equating the 

drag force and the bouyancy to the gravity force yielsds the settling velocity equation as 

       

9 Streamlines for Creeping Flow Past a Sphere with Drag and Gravity Forces 

  (B-1) 

is the frictional force acting on the spherical particle, R is the radius of the 

 (B-2) 

 (B-3) 

is the bouyancy force and g is the gravitational acceleration.  Equating the 

drag force and the bouyancy to the gravity force yielsds the settling velocity equation as 

 (B-4) 
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 Thus, the settling velocities of the particles for the experimental setup were 

determined using the above equation.  Thus, the TSI model 10089 hollow-glass spheres 

as shown in the seed particle specification table Table B-1 were chosen instead of the 

aluminium oxide particles which were much denser than the former.  The settling 

velocities of the hollow-glass spherical particles was 6.2429E-09 m/s and that of the 

aluminum oxide was 4.8 times higher than that of the spherical hollow glass particles.  

Experimental settling tests over a 24 hour period showed that there was significant 

aluminum oxide particles that settled over night compared to the colorless solution of 

hollow-glass spherical particles.  Thus, there was a high contamination rate of the flow 

passage for aluminum oxide based solutions which would require frequent cleaning 

compared to the latter which requires none.  

 The author also wants to mention that there is a minimum velocity requirement 

for the transport of particles in horizontal and vertical pipes that is worth noting in the 

selection of particles for PIV systems.  This would enable the pipeline in this case the 

glass tube to remain under all circumstances self-cleaning. When solids start to settle 

and contaminate the surface of the glass tube to such extent that the laser light may not 

be scattered by the particles that are of interest to the test. Thus, avoiding the 

contamination of the inner surface of the tube is of high importance. 
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Table B-1 Seed Particle Specification [125]. 

 

 Experimental PIV Test – Procedures  

 The following routine procedures were followed to conduct the PIV based flow 

measurements per the ME3300 laboratory [124], TSI manuals [125] and other 

procedures developed by the author (due to changes in the experimental setup): 
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i. Turning on hardware (Synchronizer and laser power supply) as well as the 

Insight 3G data acquisition software, in the same order.  

ii. Opening flow valves located at the bottom of the tank and pump outlet. 

iii. Turning on recirculation pump and running at least for 1 hour before starting flow 

measurement test to make sure that there is a homogenous solution of particles 

and avoid risks of particle settlement.  

iv. After turning on the laser power supply, setup the following within Insight 3G:  

v. Set application to PIV. 

vi. Exposure to synchronized 

vii. Set capture to sequence  

viii. Timing setup is completed as follows [125]: 

• PIV Frame Mode = Straddle 

• Pulse Rep Rate = 7.5 HZ 

• Laser Pulse Delay = 400 µs  

• Delta t =  10 µs to 700 µs depending on the flow field (velocity range) 

• PIV Exposure = 405 µs 

• Next turn on Laser A and B to low and ready to capture images.  
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Figure B-10  Capture Timing Setup. 

VII. Experimental PIV Test - Preliminary Results 

     In the following subsections the experimental test results conducted on the flow 

measurement of 4 arterial models will be presented.  The four arterial models of blood 

flow are as follows summary: 

• Arterial geometric model 1 - Glass tube with no stenotic model  

• Arterial geometric model 2 - Glass tube with a 3.5mm ID stenotic model.  

• Arterial geometric model 3 - Glass tube with a 2.5mm ID stenotic model.  

• Arterial geometric model 4 - Glass tube with a 1.5mm ID stenotic model.  

VIII. Experimental PIV Test - Arterial Geometric Mo del without Stenosis 
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 Figure B-11 below shows the processed velocity vector for a single capture. The 

velocity contour is shown on Figure B-12 for a fully developed water flow in a straight 

tube with a 5mm nominal internal diameter. The maximum velocity magnitude that has 

been measured is about 4.6 m/s.  At the outset of this experimental PIV test, the mean 

flow rate of the water through the 5mm diameter glass tube have been measured using 

the bucket and stop watch method and the corresponding mean velocity, flow rate and 

Reynolds number were recorded.  The maximum Reynolds number when the test setup 

is fully opened is Re = 14203.107 at a mean velocity of 2.54m/s .   

 

Figure B-11 A Snapshot  of Velocity Vector (5mm ID Straight Glass Tube). 
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 Figure B-12 Velocity Contour in a 5mm ID Straight Arterial Model - No Stenosis. 

 

Figure B-13  Velocity Vector Plot in a 5mm ID Straight Arterial Model - No Stenosis. 
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 Figure B-14 Streamlines in a 5mm ID Straight Arterial Model - No Stenosis. 

 

 Figure B-15 Velocity Contour in a 5mm ID Straight Arterial Model - No Stenosis. 
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 Figure B-16 Vorticity Contour Plot in a 5mm ID Arterial Model - No Stenosis. 

 

Figure B-17 Velocity Magnitude (5mm ID Arterial Model - No Stenosis, sEt 060.5 −=∆ ). 
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Figure B-18 Velocity Magnitude (5mm ID Arterial Model - No Stenosis, sEt 060.5 −=∆ ). 

 

 Figure B-19  Axial Velocity Histogram (5mm ID Glass Tube - No Stenosis). 
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Figure B-20  Magnitude of Velocity Scatter in a 5mm ID Tube - No Stenosis. 

 

IX. Steady State CFD Simulations of Stenotic Arteri al Models  

 The SST model has been used to simulate the flow at and near the stenosis 

region to understand the genesis of turbulence and/or cavitation which could in turn 

initiate impulse in the solid structure resulting in acoustic emissions. The SST model is 

characterized by the following features: 

• It is based on the k-ω (k-omega) model.  

• SST model accounts for the transport of shear stress and predicts more 

accurately the onset and amount of separation in complicated geometries than 

other turbulence models.  
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• The SST transitional model is also capable of simulating internal and external 

flows.   

The CFD analysis was done on a quarter model using symmetry of the problem to save 

computational time. 

 To simulate progression of stenosis in an arterial models,  first simulation in a 

healthy arterial model is conducted.   The PIV test was first conducted first the boundary 

values obtained from the experiment were used for the CFD simulation. In all cases the 

inlet velocity boundary condition or mass flow boundary condition was obtained from the 

mean flow measurement of the water using bucket and stop watch method.  

 

Figure B-21  Velocity and Pressure Contours in a 4.9 mm ID Glass without Stenotic     
Model in Tube. 
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Figure B-22 Pressure Variation  with Axial distance - No Stenotic Model in Tube 

 

Figure B-23   Velocity and Pressure Contours in a 4.9mm ID Tube with 3.5mm ID   
Stenotic  Model, 
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Figure B-24  Wall Shear Contour in a 3.5-mm-ID Stenotic Model, 4.9mm ID Tube. 

 

Figure B-25  Pressure contour (2.5-mm-ID Stenotic Model in a 4.9-mm-ID Glass Tube). 
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Figure B-26 Pressure contour (2.5-mm-ID Stenotic Model in a 4.9-mm-ID Glass Tube). 

 

Figure B-27  Pressure Variation along Tube with 2.5-mm-ID Stenotic Model in a 4.9-
mm-ID Glass Tube. 
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 Figure B-28 Velocity Variation along Tube with Stenosis (ID = 2.5 mm). 

 

 Figure B-29 Streamline in a Tube with Stenosis (ID = 2.5 mm).  
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APPENDIX C 

SHEAR STRESS TRANSPORT (SST) TURBULENCE MODEL VERIF ICATION  

  In this subsection, the k-ω-based shear stress transport (SST) turbulence model 

by Menter [105] is employed to verify the adequacy of the model for steady state 

turbulent flow simulation in a 4.9 mm ID glass tube.  The particle-image-velocimetry-

based experimental flow test is used to verify the capability of the commercial software 

by visualizing the velocity field in the tube. 

i. Boundary conditions  

The boundary conditions for the simulation of the turbulent flow are provide below.  

• Inlet Boundary Conditions 

o Normal Speed = 2.54 [m/s] – (using stop watch and bucket method) 

o Turbulence Option = Medium Intensity and Eddy Viscosity Ratio (5%). 

• Outlet Boundary Conditions:  

o Boundary Type = Opening 

o Option = Normal to Boundary Condition       

o Option = Opening Pressure and Direction 

o Relative Pressure = 0.0 [Pa] 

• Wall Boundary Condition: No Slip Wall  

Fluid Input Values 

o Fluid (water) density, 
3/0.997 mkg=ρ  

o Fluid (water) viscosity,   s) kg/(m 4-8.899E=µ  
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o Specific Heat Capacity of water, K)  /(kgJ 4181.7=PC  

o Thermal Conductivity of water, K)  W/(m0.6069=k      

    

ii. Modeling Assumptions and Specifications 

Turbulent flow with inlet Reynolds Number Re,   

   14,203.107
 s) kg/(m 4-8.899E

1000/5*/54.2*/997
Re

3

===
smmkgDV

µ
ρ  

• Isothermal Heat Transfer Model, i.e. fluid temperature = 25 [C]. 

• The problem is also modeled as a 3-D steady-state flow.  

• SST model with medium (5%) intensity used for all turbulent cases.  

• Wall Roughness:  Smooth Wall. 

• Reference Pressure:  1 [ atm ]. 

• Convergence Criteria: Residual Target, RMS = 1.e-06. 

 

iii. Solution Domain/Model 

All the problems in this investigation have been modeled as 3-dimensional by 

taking a quarter model of the tube in Ansys/CFX setup.    
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 Figure C-1  Straight/Healthy Arterial Model (L/D =180) 

iv. CFD Simulation Results for Healthy Arterial Mod els  

 

Figure C-2  Pressure Contour Plot for Straight/healthy Arterial Model. 

900 +/-2.5mm

ID = 5 mm, Wall thickness t = 1 mm
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Figure C-3  Velocity Contour Plot for a Straight/healthy Arterial Model. 

 

Figure C-4  Wall Shear Stress Contour Plot for a Straight/healthy Arterial Model.
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APPENDIX D 

CFD SIMULATION OF FLOW IN 90 0-BEND TUBES  

  In this appendix, the main focus is on the CFD simulation of steady-state fluid 

flow in a 90o-bend tube connecting the pump outlet and tube inlet into the main test-

section tube for the optimum design of the hydraulics of the cardiovascular system 

model.  That piping includes a straight sections of pipes upstream and downstream of a 

90o bend upstream of the T-connector junction before the main test section.  The fluid 

flow in the bend is such a complex flow that predicting the effect of the secondary flows 

created by the centrifugal action associated with the curvature of the streamlines that 

pass through the bend is of paramount importance.  Figure D-1 through D-12 show the 

effect of curvature or geometry of the bend in general on the pressure and velocity 

distributions in the tubes with different radius of curvature (20 mm and 40 mm and inlet 

diameter of 5 mm) the tube upstream or downstream of the bend with L/D = 60. The 

figures show the velocity and pressure contours at different cross sections.   

 The CFD simulation of flow in 90o bend arterial models, shows a stark difference 

in the distribution of pressure, velocity and other flow properties.  As the radius of 

curvature increases, the centrifugal action or effect increases.  Thus, the pressure 

increases towards the outer wall.  Taking multiple cross sections along the ben also 

reveals quite interesting press and velocity distributions.  
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Figure D-1 Healthy Arterial Models, R20 and R40: Pressure Contour at Z= 0.0 mm. 

 

 

Figure D-2 Healthy Arterial Models, R20 and R40, at x = 0.0 mm, Pressure Contour. 
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Figure D-3 Healthy Arterial Models, R20 and R40, at x = 2.5mm, Pressure Contour. 

 

Figure D-4 Healthy Arterial Models, R20 and R40, at x = 2.5 mm, Velocity Contour. 
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Figure D-5 Healthy Arterial Models, R20 and R40, at x = 10 mm, Velocity Contour. 

 

Figure D-6 Ninety Degree Bends, R20 and R40,  at x = 10 mm, Pressure Contour. 
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Figure D-7 Healthy Arterial Models R20 and R40 at x = 15 mm, Velocity Contour. 

 

Figure D-8 Healthy Arterial Models R20 and R40, at x = 20 mm, Velocity Contour. 
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Figure D-9 Healthy Arterial Models R20 and R40, at x = 20mm, Pressure Contour. 

 

Figure D-10 Healthy Arterial Models R20 & R40, at x = 50 mm, Pressure Contour. 
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Figure D-11 Healthy Arterial Models R20 & R40, at x = 50mm, Velocity Contour. 

 

Figure D-12 Healthy Arterial Models R20 & R40, at x = 50mm, Velocity Curl. 



REYNOLDS NUMBERS AT 

  As discussed in 

mean inlet Reynolds number with the mean Reynolds number calculated at 

conditions in a stenotic arterial model based on the continuity equation.  The two 

Reynolds numbers are correlated

the area blockage ratio (%). Figure E

with blockage ratio R.  As R approaches 100%, the value of M approaches infinity. 

 

     

Figure E-1  Correlation of Reynolds Number
Arterial Model – M

 

( )Constricti
onConstricti

DU
Re =

µ
ρ
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APPENDIX E 

REYNOLDS NUMBERS AT INLET AND CONSTRICTION

 subsection 6.4.3 of Chapter 6, Eq. (6-5) correlates the 

with the mean Reynolds number calculated at 

arterial model based on the continuity equation.  The two 

correlated by a multiplication factor ( )1(/1 RM −=

the area blockage ratio (%). Figure E-1 show the variation of the multiplication factor M 

As R approaches 100%, the value of M approaches infinity. 

       

 

Correlation of Reynolds Numbers at Inlet and Constriction for a
Multiplication Factor M vs. Blockage Ratio R. 

( ) Inlet
InletonConstricti M

R
Re

1

Re
=

−
=

ON  

correlates the 

with the mean Reynolds number calculated at constriction 

arterial model based on the continuity equation.  The two 

))  where R is 

1 show the variation of the multiplication factor M 

As R approaches 100%, the value of M approaches infinity.  

 (6-5) 

 

for a Stenotic 
actor M vs. Blockage Ratio R.  



Figure E-2 shows the variation of the Reynolds number in 

stenotic arterial model with prescribed 

blockage ratios. 

 

 
Figure E-2  Variation of Reynolds No.

Prescribed Laminar 
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2 shows the variation of the Reynolds number in the constricted

prescribed “laminar” inlet Reynolds numbers for different 

Reynolds No. at a Constriction for a Stenotic Arterial Model 
Prescribed Laminar Inlet Reynolds Number. 

 

the constricted zone of a 

for different 

 

Arterial Model with 
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APPENDIX F 

SOLENOID PUMP SPECIFICATION  

 WALBRO ENGINE MANAGEMENT  

FRB-22 Solenoid Pump Specification as obtained from Walbro Engine Mangement ): 

“Performance 

Voltage:  12 Volt (9.0 min – 16.0 vdc max) 

Minimum Flow Rate:  162 liters per hour (43 gph) 

Deadhead Pressure:   56 to 76 kPa (8.0 to 11.0 psi) 

Maximum Current Draw:  2.3 amps 

Dry Lift:  48 inches; Life: >18,000 hours 

Compatible Fuels : No-lead regular gasoline, premium gasoline, gasoline-alcohol 
blends, diesel and biodiesel fuels (20% and 100%), and E85 

Corrosion Resistance:  1,000 hour salt spray test (ASTM B-117) 

Operating Temperature Range:  -40ºF to 155ºF (-40ºC to 68.3ºC) 

Reverse Voltage Protected 

Transient Voltage Protection 

Electrical Connection :  Flying Leads (2); No Connector 

Fuse:  5 amp recommended 

Inlet & Outlet Size:  1/4-18 NPSF 

Inlet Filter Screen:  70 micron  - (Not used in this experiment) 

Magnetic Trap:  Yes 

Outlet Check Valve:  None 

Adjustable Pressure Regulator 135-631 

Outlet Check Valve Fitting 128-3220 (5/16 Hose Barb)”. 



SOLENOID PUMP DRAWIN
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APPENDIX G 

SOLENOID PUMP DRAWING  
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 The primary motivation for this dissertation is the fluid flow and structural 

response to unsteady blood flow in the human body. The research work is a synergistic 

merging of numerical simulation and experimentation. For the experiments, an all-

encompassing, highly flexible experimental apparatus was designed and fabricated to 

facilitate a wide range of operating conditions, the range of which was chosen to 

accommodate mammalian cardiovascular system for both human and animal species. 

The parameters that were varied during the course of the experimentation include the 

frequency of the flow pulsation, tubular materials having various structural properties, 

and blockages of the tube cross sections to simulate the presence of plaque in arteries. 

The main outcome of the experimentation was a connection between the amplitude and 

frequency of the pulsations and the volumetric flow rate of the flowing fluid. Of equal 

importance is the extent of the response of the wall to the nature of the pulsating flow 
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which was detected, located and characterized using a non-invasive acoustic emission 

equipment.   

 The simulations that were performed represent a major advance over prior 

attempts to simulate pulsating flows in flexible- and rigid-walled tubes. That advance 

was embodied in the model that was used to characterize the flow.  In most of prior 

studies, a particular flow regime was selected and used throughout the entire solution 

domain. This selection ignored the fact that flowing fluids passing through variable cross 

sections undergo changes of flow regime.  In particular, a flow initiated in a relatively 

large upstream cross section may be laminar based on inlet conditions.  However, as 

the fluid travels downstream and enters a constricted cross section, the laminar regime 

may undergo a transition and subsequently experience turbulence.  The capability to 

accommodate all these flow regimes by a single model was first accomplished in this 

research. Of special relevance is that the capability to simulate the proper flow regime 

enabled a more realistic response of the bounding wall of the tube to the imposed 

pulsations.  

 Comparisons were made between the experimental results and the predictions of 

the simulations for two purposes. One was to establish the ranges of applicability of the 

simulation model. The other established a body of archival-quality information based on 

confirming experimental and simulated results.  Another unique contribution of this 

research is the determination of the presence of flow-induced acoustic emissions. The 

motivation for this part of this work is the development of a diagnostic tool to detect, 

locate, and characterize blockages in arterial models.  
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