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Objectives: Developing and validating a discrete event simulation model that is able to model patients with heart failure
managed with usual care or an early warning system (with or without a diagnostic algorithm) and to account for the impact
of individual patient characteristics in their health outcomes.

Methods: The model was developed using patient-level data from the Trans-European Network - Home-Care Management
System study. It was coded using RStudio Version 1.3.1093 (version 3.6.2.) and validated along the lines of the Assessment
of the Validation Status of Health-Economic decision models tool. The model includes 20 patient and disease
characteristics and generates 8 different outcomes. Model outcomes were generated for the base-case analysis and used
in the model validation.

Results: Patients managed with the early warning system, compared with usual care, experienced an average increase of 2.99
outpatient visits and a decrease of 0.02 hospitalizations per year, with a gain of 0.81 life years (0.45 quality-adjusted life
years) and increased average total costs of €11249. Adding a diagnostic algorithm to the early warning system resulted in
a 0.92 life year gain (0.57 quality-adjusted life years) and increased average costs of €9680. These patients experienced a
decrease of 0.02 outpatient visits and 0.65 hospitalizations per year, while they avoided being hospitalized 0.93 times. The
model showed robustness and validity of generated outcomes when comparing them with other models addressing the
same problem and with external data.

Conclusions: This study developed and validated a unique patient-level simulation model that can be used for simulating a
wide range of outcomes for different patient subgroups and treatment scenarios. It provides useful information for
guiding research and for developing new treatment options by showing the hypothetical impact of these interventions on

a large number of important heart failure outcomes.
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Decision-analytical models (henceforth models) are key
instruments in the toolbox of health economists. Models are the
resource by which researchers represent the complex reality in a
more simplistic and comprehensible manner or by which exper-
iments that are infeasible or impracticable are simulated.! In the
health-economic context, through exploring hypothetical sce-
narios and alternative treatment strategies to identify the most
efficient allocation of healthcare resources, models are used to
inform decisions when significant real-world data are not
available.?

Heart failure (HF) is a complex clinical syndrome that results
from any structural or functional impairment of ventricular filling
or ejection of blood.>* HF is characterized by typical symptoms
such as breathlessness, ankle swelling, and fatigue and signs such

as elevated jugular venous pressure, pulmonary crackles, and
peripheral edema.” The main disease severity indicator used to
describe HF is based on measurement of the left ventricular
ejection fraction, which results in a distinction between HF and
preserved, mid-range, and reduced ejection fraction - each with
different underlying etiologies, demographics, comorbidities, and
response to therapies.® The New York Heart Association (NYHA)
functional classification is an alternative classification system that
is used to describe the severity of symptoms and exercise intol-
erance, providing useful and complementary information about
the presence and severity of the disease and thus guiding patient
pathways in HF treatment.” HF is a major health concern associ-
ated with significant morbidity, mortality, and reduced quality of
life for patients. From a medical perspective, the goals of man-
aging patients with HF consist of improving their clinical status,
functional capacity, and quality of life; preventing hospital
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admissions; and reducing mortality.2!° Early warning systems
(EWS) in the context of healthcare are timely surveillance systems
that collect clinical information to anticipate health deterioration
and trigger prompt intervention, thus improving prognosis and
treatment outcomes.!! Broadly speaking, EWS consist of 3 main
elements: (1) monitoring and collection of clinical data (eg, vital
signs, biomarkers, self-reported health status); (2) a framework
allowing for the identification of patterns and trends in these data,
indicating significant changes in the health status of the patients;
and (3) the establishment of pre-determined conditions - such as
the existence of statistically uncommon patterns in the data,
threshold values or ranges for specific parameters within the
collected data, or the presence of a singular combination of signs
and symptoms - that trigger an alarm and follow-up actions.'

Diagnostic algorithms (DAs) are predictive mathematical re-
lationships that use a wide range of data collected by EWS for
calculating the likelihood of an event (eg, hospitalization or
death). These algorithms are used for assisting medical personnel
in their decision-making process'>'® by translating their output
into clinical decision rules for clinical practice, for instance, by
prioritizing patients according to their likelihood of having an
event or by raising an action-triggering alarm if the probability of
having that event exceeds a pre-defined threshold."”

A previous systematic literature review of models used in the
economic evaluation of EWS for the management of patients with
HF found that all published models were either decision trees or
Markov models.'” Nevertheless, owing to the specific features of
EWS in the context of HF, the flexibility for modeling complex
systems provided by discrete event simulation (DES) models
makes them an arguably better option for the assessment of the
(cost-)effectiveness of EWS.!®2? DES or patient-level models (both
terms will be used interchangeably henceforth) are a type of
model that has been increasingly used in the health economics
field, not only because of the advances in computing technology
and dedicated software but also because of their flexibility and
potential for modeling complex diseases.'®?>>*> One of the main
advantages of DES modeling is the ability to use individual patient
characteristics as explanatory variables for predicting disease
pathways of simulated patients. To compare the cost-effectiveness
of treatment strategies targeted at changing individual patient
characteristics, DES models accounting for those characteristics
and outputting a wide variety of (intermediate) outcomes are
desirable. Nevertheless, to be useful tools for decision making
regarding the problem at hand, DES models must accurately
reflect disease pathways and their management.>*

The 2 main objectives of this study were (1) developing a DES
modeling framework for patients with HF managed with EWS -
with and without a DA - that is able to model patients across the
whole treatment pathway until death, taking into account the
evolution and impact of individual patient characteristics in the
outcomes of each individual patient, and (2) justifying the model
structure chosen and validating the model through the use of the
Assessment of the Validation Status of Health-Economic
(AdVIiSHE) questionnaire and the model outcomes generated in
the base-case analysis.

The starting population of the model consisted of the patients
who participated in the Trans-European Network - Home-Care
Management System (TEN-HMS) study.?® This trial investigated
the impact of using home telemonitoring (HTM; n = 168), nurse
telephone support (NTS; n = 173), and usual care (UC; n = 85) in
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hospital admissions, hospital days, and rates of mortality. Patient-
level data from the trial were used in the construction and vali-
dation of the model.

The simulated model population consisted of a set of randomly
drawn patients (with replacement) from the database containing
the patient-level data of the starting population. The baseline
characteristics of the starting population and of the simulated
model population for 1000 patients are presented in Table 1.

Three interventions were considered in the model: (1) UC,
patient management plan implemented by the patient’s primary
care physician; (2) EWS (EWS without a DA), proxied by HTM
(described in detail in the TEN-HMS original publication®); and
(3) EWS + DA (EWS with a DA), intervention, (2) with the addition
of a DA (described in the following section).

We conceptualized the EWS and the DA for the management of
HF in the model from a clinical perspective; that is, we have not
simulated their impact in the actual pathogenetic process of the
disease but rather how they manifest in clinical practice through
their impact on each of the events considered in the model. In the
scope of HF, the EWS collects clinical information such as vital
signs, biomarkers, and inputs from surveys - daily in our
case - and uses it for changing the chance of death and hospi-
talization. The effect of the EWS is captured by the difference of
time-to-hospitalization and time-to-death of HTM (the EWS in the
context of our analysis) compared with UC. The additional effect of
the DA is captured by the possibility of avoiding hospitalizations
as described in the following paragraphs.

In our instance, the DA is a mathematical feature that uses
clinical data for calculating the likelihood of hospitalization and
raises an action-triggering alarm if the probability of being hos-
pitalized exceeds a pre-defined threshold. It is added to the EWS
as a way of automatically analyzing the collected data in the EWS.
In this framework, we can interpret the alarm as a diagnostic test:
if an alarm is raised, the test is positive; if not, the test is negative.
We can then consider the event of interest (hospitalization) as
“having disease” and not being hospitalized as “not having
disease.”

The interpretation of the statistical measures of the perfor-
mance of a binary classification test in the context of the model
can be described as follows: (1) when the simulated event is a
hospitalization, the sensitivity represents the probability of
correctly detecting that hospitalization. The final probability of
avoiding a hospitalization can be achieved by multiplying the
sensitivity of the test by the probability of avoiding a hospitali-
zation in the case of having correctly predicted it (eg, assuming
the sensitivity of the alarm is 0.8 and that 80% of the correctly
predicted admissions can be avoided, then 0.8 x 80% = 64% is the
overall probability of avoiding a hospitalization). (2) Regardless of
the simulated event, there are as many diagnostic tests as there
were days elapsed between the previous event and the current
one. The model calculates the number of false positives (alarms for
which there were no hospitalization) in that period by multiplying
the number of elapsed days by the false-positive rate (FPR) of the
DA (eg, if there were 45 days between the previous and the cur-
rent events and the FPR of the DA is 0.40, there were 18 false
alarms during the period between both events).

The main elements of the model are entities, attributes, events,
procedures, outcomes, and relationships. The entity is the
modeling representation of the patient (hereafter treated in the
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Patient and disease characteristics of the starting population and of the simulated model population of 1000 patients.

Sample size

EF, % (mean)

Age, years (mean)

SBP, mm Hg (mean)

BMI, kg/m? (mean)

Creatinine, pmol/L (mean)
NYHA class 1, %

NYHA class 2, %

NYHA class 3, %

NYHA class 4, %

Gender (male), %

Smoker, %

Diabetes, %

Chronic obstructive pulmonary disease, %
Recent diagnosis, %

No beta-blocker medication, %
No ACE-inhibitor medication, %
Myocardial infarction, %

Chronic atrial fibrillation, %

426 1000
25.06 24.86
67.56 67.76

114.24 114.53
26.17 25.94

135.71 136.49
18.5 17.5
43.4 42.8
31.0 333

7.1 6.4
77.5 75.8
12.2 11.9
35.0 37.3
24.4 21.2
43.9 41.8
37.3 36.7
18.5 17.5
56.8 56.2
26.3 27.8

ACE indicates angiotensin-converting enzyme; BMI, body mass index; EF, ejection fraction; NYHA, New York Heart Association; SBP, systolic blood pressure; TEN-HMS,

Trans-European Network - Home-Care Management System.

masculine form). Attributes are the characteristics of that patient,
which can either be fixed throughout the simulation (eg, history of
myocardial infarction) or change over time (eg, age). Events are
relevant moments in the simulation that are recorded for recon-
structing the clinical history of the entity; the model determines
which event will happen next by calculating the lowest
time-to-event of competing events. Procedures are the means by
which the model processes events, following a decision-analytical
logic that simulates the clinical pathway of the entity. During each
procedure, attributes of the entity are re-evaluated and updated,
and outcomes are generated and recorded. Outcomes are the el-
ements that aggregate the information generated by the model
and that allow for drawing conclusions from the performed sim-
ulations. Relationships are the model elements that link entities,
attributes, events, procedures, and outcomes together through
mathematical and logical terms defined in the model’s code.

For ease of description of the model flow, elements are
enclosed within <>, each with a subscript, depending on the type
of element we are referring to (Ent, entity; A, attribute; E, event;
Proc, procedure; O, outcome). At the start of simulation, a
<patient>g,, is randomly drawn (with replacement) from the
database containing the patient-level data of the starting popu-
lation (patients participating in the TEN-HMS trial). Attributes are
assigned to <patient>g,; based on the patient characteristics
found at baseline in the dataset and calculates the time-to-event
for each of the following competing events: <outpatient.visit>g,
<hospitalisation>g, and <death>g. Time-to-event depends on the
individual attributes of the <patient>g, at the time of the
simulation. The lowest time-to-event determines which event will
be processed next. The event is renamed as a procedure and a
decision-analytical logic for each of the different procedures de-
termines the pathway of the patient. In <outpatient.visit>proc,

time, costs, life years, and quality-adjusted life years (QALYs) are
recorded, the selected attributes are updated, and the updated
<patient>g,.  goes back to <next.event>pc. For
<hospitalisation>p,.., the model starts by determining whether
<hospitalisation>r was avoided (<avoided.hospitalisation>k,
which is an intermediate outcome conditional on
<hospitalisation>¢ that can only happen in the EWS + DA
intervention). If so, <patient>g,; moves to <outpatient>p; if
not, the model records time, costs, life years, and QALYs before
determining if the <patient>g,, dies in  hospital
(<death.in.hospital>g, which is also an intermediate outcome
conditional on <hospitalisation>g). If he does, <patient>gy;
moves to <death>p.; if not, the model updates attributes and
the <patient>g,; goes back to <next.event>p... In <death>p,
the model follows these sequential steps: (1) recording time, costs,
life years, and QALYs; (2) updating attributes; (3) computing total
outcomes for the simulation; and (4) removing <patient>g, from
the simulation (see Fig. 1 for a diagrammatic representation of the
model structure).

Each <patient>g,; created in the model runs through the
simulation 3 times - one for each of the interventions under
analysis.

A study by Pocock et al*® identified the following as significant

independent predictors of mortality in patients with HF: age,
ejection fraction, NYHA class, serum creatinine, diabetes, not
prescribed beta-blocker, systolic blood pressure, body mass index,
time since diagnosis, smoking status, chronic obstructive pulmo-
nary disease, gender, and not prescribed angiotensin-converting
enzyme inhibitor or angiotensin-receptor blockers. These
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Model structure (<avoided.hospitalisation>¢, dashed in <hospitalization>p,, is only possible for EWS+DA).

Start of simulation

Create

<patient>g. Assign attributes

<next.event>pyo

<outpatient.visit>g

To <next.event>p,,

To <outpatient.visit>p,q.

| To <hospitalisation>p,,,

Y

v

| To <death>p,¢ |

*Since the events are mutually exclusive, the order of the boolean operators is irrelevant.

<outpatient.visit>p ¢

Record time
Assign costs, life
years, and QALYs

Update
attributes

<hospitalisation>p,

Record time
Assign costs, life
ears, and QALYs

,-7 <avoided. -
*~ _hospitalisation>g . -

=N

To <next.event>p,,

<death.in.hospital>¢

Update

To <next.event>
attributes Proc

| To <death>po, |

<death>p o

Record time
Assign costs, life
years, and QALYs

Update
attributes

variables were all present in our dataset and were used in the
model to predict time-to-death. We also used these variables to
predict time-to-hospitalization, because it seems reasonable to
assume that the pathophysiological mechanisms leading to death
in HF are the same that lead to hospitalizations. The summary and
the definitions of the parameters used in the regression equations
and in the model are presented in Table 2.

Compute total
outcomes for
patient

Remove from
simulation

We estimated Kaplan-Meier (KM) curves for death and hos-
pitalization using the patient-level data for the UC and HTM
populations of the TEN-HMS trial. We then fitted the most com-
mon parametric distributions - exponential, Weibull, log-normal,
log-logistic, Gompertz, and generalized gamma - to the KM curves
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Definition of parameters in the model.

Patient attributes
Intervention
EF
Age
SBP
BMI
Creatinine
NYHA class
Gender
Smoker
Diabetes
COPD
Recent diagnosis
Beta-blocker medication
ACE-inhibitor medication
Age X EF

SBP X EF
Myocardial infarction
Chronic atrial fibrillation

Previous hospitalization

Utility

General model inputs (set by user)

Number of patients
Parametric distributions

Time-to-outpatient visit
Utility multipliers
Discount rates
Resource costs

DA characteristics
Sensitivity

False-positive rate

Avoid hospitalization

Number of events (intermediate outcomes)

Outpatient visits
Hospitalizations
Avoided hospitalizations
Deaths

Model (final) outcomes
Costs
Life years
QALYs

EWS=1,UC=0

EF (%)

Age in years; updated at every event

SBP in mm Hg

BMI calculated as weight/height? (kg/m?)

Serum creatinine in umol/L

NYHA classification | to IV (1, 2, 3, or 4)

Male = 1, Female =0

Current smoker = 1, non-smoker = 0

Diabetic = 1, non-diabetic = 0

COPD present =1, no COPD =0

Diagnosis < 18 mo from baseline = 1, diagnosis > 18 mo from baseline = 0

Without beta-blocker medication = 1, on beta-blocker medication = 0

Without ACE inhibitor medication = 1, on ACE inhibitor medication = 0

Variable describing the interaction between age and the EF through the product of these
variables

Variable describing the interaction between SBP and the EF through the product of these
variables

History of myocardial infarction

History of chronic atrial fibrillation

Number of hospitalizations that already occurred for the simulated patient; updated at
every event

EQ-5D-3L utility measured at baseline; updated with utility multipliers at every event

Number of patients in the simulation

Choice of parametric distribution - exponential, Weibull, log-normal, log-logistic, and
Gompertz - for time-to-death and time-to-hospitalization calculations
Time-to-outpatient visit

Utility multipliers for updating patient utility at each outpatient visit and hospitalization
Yearly discount rates for costs and for health outcomes (life years and QALYs)

Yearly cost of maintenance treatment: composite costs associated with the intervention
(different for UC and EWS). Alarm management costs: costs of a telephonic consultation.
Event costs: individual costs for an outpatient visit, a hospitalization, and death

Proportion of people who have the disease and are identified as having the disease, that is,
the probability of correctly detecting a hospitalization

Proportion of all the people who do not have the disease who will be identified as having
the disease (= 1 - specificity)

Probability of avoiding a hospitalization in the case of having correctly predicted it

Number of outpatient visits

Number of effective hospitalizations

Number of avoided hospitalization (only in the EWS + DA intervention)
Mortality (split in hospital mortality and mortality from other causes)

Total costs accrued during the simulation

Life years accrued. Time spent in the simulation before death

QALYs accrued. QALYs are obtained by weighing life years with the utilities during
simulation for each patient.

ACE indicates angiotensin-converting enzyme; BMI, body mass index; COPD, chronic obstructive pulmonary disease; DA, diagnostic algorithm; EF, ejection fraction; EWS,
early warning system; NYHA, New York Heart Association; QALY, quality-adjusted life year; SBP, systolic blood pressure; UC, usual care.

(see Appendix 1 in Supplemental Materials found at https://doi.
org/10.1016/j.jval.2021.04.004 for further details).

Time-to-outpatient visit (for both UC and EWS) is a model
input that can be set by the user, because it may change according
to the setting of the analysis, whereas <avoided.hospitalization>g
(see section on the conceptualization of the DA for the details of
its calculation) and <death.in.hospital>g (see section Death in
hospital) are intermediate outcomes conditional on
<hospitalization>.

When a patient is hospitalized, there is a chance of dying in the
hospital. For predicting it, we ran a logistic regression where the
probability of dying in the hospital is explained by age, gender,
history of myocardial infarction, history of chronic atrial fibrilla-
tion, comorbidities (diabetes or chronic obstructive pulmonary
disease), and the number of previous hospitalizations (see
Appendix 2 in Supplemental Materials found at https://doi.org/1
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Input costs in base-case analysis.

UC outpatient visit

EWS outpatient visit

Hospitalization

Death

Management of false-positive alarm

UC cost of maintenance treatment per year

EWS cost of maintenance treatment per year

OCTOBER 2021

46.33 iMTA costing tool®*
44.63 iMTA costing tool**
4937.36 Stevanovic 2014
1 Assumption (set to 1 for allowing PSA)
18 iMTA costing tool**
705.71 Grustam 2018%®
2621.70 Grustam 2018°®

EWS indicates early warning system; iMTA, Institute for Medical Technology Assessment; PSA, probabilistic sensitivity analysis; UC, usual care.

0.1016/j.jval.2021.04.004 for further details on the regression
model).

The model distinguishes among yearly cost of maintenance
treatment for UC and for EWS, costs related to the management of
false-positive alarms, and event costs (outpatient visit, hospitali-
zation, and death). Costs of maintenance treatment and alarm
management depend on the time elapsed between simulated
events and are continuously discounted, whereas event costs are
accounted for at time of occurrence and are discretely discounted.

Utility is a patient attribute assigned at the start of the simu-
lation according to the NYHA class at baseline. The mean utility
values per NYHA class used were reported elsewhere?’ (0.88, 0.71,
0.61, and 0.49 for NYHA classes I, II, I, and IV, respectively). Every
time an outpatient visit or a hospitalization is processed, the pa-
tient utility is updated via a multiplier. For instance, if the utility at
the start of the simulation is 0.80 and the multiplier for hospi-
talization is 0.85, the updated utility of that patient after being
hospitalized is 0.80 x 0.85 = 0.68, which remains the utility for the
patient until the next event is processed. The decrease in utility in
the simulation is limited to the utility found for NYHA class IV.

The following outcomes are calculated from the model: num-
ber of events per type (referred to as intermediate outcomes),
total costs, total life years, total QALYs, and incremental cost-
effectiveness ratios.

The costs in the model are calculated by adding the discrete
costs for each event (outpatient visit, hospitalization, and death)
and the cost of maintenance treatment for the intervention. Life
years correspond to the elapsed time between the creation of the
patient and his death and consequent removal from the simula-
tion. QALYs are obtained through weighing life years with patient
utilities over time. The incremental cost-effectiveness ratios were
calculated as the difference in the total average costs per patient
divided by the difference in the average number of QALYs per
patient (€/QALY) between 2 alternative treatment options.

Because outcomes are recorded for each simulated patient, the
model allows for extracting the individual patient history for
every simulation. See Table 2 for a summary of the parameters
used in the model.

The base-case number of simulations in the deterministic
analysis was set to 1000 patients, because this number gave

stable results while keeping the running time reasonable. For
the base-case analysis, the Weibull distribution was used for
extrapolating time-to-death and the log-normal distribution for
extrapolating time-to-hospitalization. Distributions were cho-
sen according to the recommendations issued by the Decision
Support Unit commissioned by the National Institute for Health
and Care Excellence®® (details can be found in Appendix 1 in
Supplemental Materials found at https://doi.org/10.1016/j.jval.2
021.04.004). The time-to-outpatient visit was set to 0.234 years
(approximately every 2.8 months) for UC and 0.141 years
(approximately every 1.7 months) for EWS, following the data
reported in the TEN-HMS study.?® The utility multipliers were
set to 1 for an outpatient visit (assuming no utility changes
resulting from an outpatient visit) and 0.82 for hospitalization,
which corresponds to the decrease in utility resulting from a
transition from NYHA class 3 to 4 that was found in a previous
study estimating QALY weights based on NYHA functional class
in an elderly population with HF?>° The sensitivity of the DA
was set to 0.96 and the FPR to 0.54, representing the Youden
point of the receiver operating characteristic curve provided by
the manufacturer. The probability of avoiding a hospitalization
in the case of having correctly predicted it was set to 0.5, as
reported elsewhere.> A summary of input costs and respective
sources is presented in Table 3. The costs are reported in euros
and adjusted to 2020 rates based on the Dutch consumer price
index.?! The costs presuppose a healthcare perspective, because
it is likely that in The Netherlands there will be healthcare
insurers that will decide upon the availability of EWS to pa-
tients.>” Costs and health outcomes were discounted at 4.0%
and 1.5%, respectively, according to Dutch guidelines.*?

In addition to the patient heterogeneity stemming from the
variation in the patient population at baseline, the model includes
2 other types of uncertainty: (1) stochastic uncertainty, which is
the uncertainty owing to the randomness of drawing values from
probability distributions during the simulation, and (2) parameter
uncertainty, which is the uncertainty associated with the co-
efficients of the regression equations and with the remaining
model input parameters.

Accounting on the above, the probabilistic sensitivity analysis
was implemented as a double loop: an inner loop in which a pre-
determined number of patients are sampled with replacement
from the baseline population and an outer loop in which values of
the input parameters of the model are randomly drawn. This
approach is similar to other published and validated patient-level
simulation models.>*


https://doi.org/10.1016/j.jval.2021.04.004
https://doi.org/10.1016/j.jval.2021.04.004
https://doi.org/10.1016/j.jval.2021.04.004

Model results for the base-case analysis.

Events (per year)

Outpatient visits 3.61
Hospitalizations 1.69
Avoided hospitalizations -
Death type

Death in the hospital, % 43.2
Death (other), % 56.8

Final outcomes
Total costs, €
95% confidence interval*

17191

Total life years 2.07
95% confidence interval* [1.58-2.89]
Total QALYs 1.19
95% confidence interval* 0.94-1.72
ICERs'

EWS vs UC, €/QALY
EWS + DA vs UC, €/QALY
EWS + DA vs EWS, €/QALY

[13390-22904]
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6.60 6.58
1.67 1.02
- 0.93
61.5 47.4
38.5 52.6
28440 38120
[20898-34036] [28799-45197]
2.88 3.80
[2.32-3.85] [2.96-5.05]
1.64 2.21
1.37-2.27 1.79-3.07
25367
20522
16794

DA indicates diagnostic algorithm; EWS, early warning system; ICER, incremental cost-effectiveness ratio; PSA, probabilistic sensitivity analysis; QALY, quality-adjusted life

year; UC, usual care.

*The 95% confidence intervals lower and upper bounds are the 5th and 95th percentiles, respectively, resulting from a PSA with an inner loop of 200 patients and an

outer loop of 200 iterations.
TEWS is extendedly dominated by EWS + DA.

The model was developed using the R software® and it consists
of 4 R files: (1) the survival analyses; (2) the logistic regression
model for calculating the probability of a patient dying in the hos-
pital; (3) the model functions, which can be seen as the model en-
gine; and (4) the model script where the user can define the model
inputs, run the model, and output results. The full code can be found
on GitHub (https://github.com/fernandoalbuquerquealmeida/EWS_
HF_DES_model).

We used the AdViSHE decision models tool for having a
structured view on the main topics regarding the validation of the
model.>®

The average model results per patient over lifetime are pre-
sented in Table 4. UC patients experienced on average 3.61
outpatient visits per year and 1.69 hospitalizations per year, with
an average cost of 17191€ over 2.07 life years (1.19 QALYs). Of

Outcome comparison with Grustam et al.?®

Total costs EWS €28440
Total costs UC €17191
Total LYs EWS 2.88
Total LYs UC 2.07
Total QALYs EWS 1.63
Total QALYs UC 1.19

these, 43.2% of patients died in the hospital and the remaining
56.8% died of other causes. Patients treated with the EWS expe-
rienced on average 6.60 outpatient visits per year and 1.67 hos-
pitalizations per year, with an average cost of 28 440€ over 2.88
life years (1.64 QALYs). 61.5% of them died in the hospital and
38.5% from other causes. Patients who had the DA added to the
EWS lived on average 3.80 years (2.21 QALYs) with an average cost
of 38120€ over that period. During that same period, patients
experienced 6.58 outpatient visits per year and 1.02 hospitaliza-
tions per year and avoided being hospitalized 0.93 times per year.
47.4% of them died in the hospital and 52.6% from other causes.

The validation of the model outcomes found a slightly higher
mortality for the simulated population than the available data
from the TEN-HMS trial®>: 52.8% and 40.8% in our simulation
versus 51.0% for UC and 34.0% for EWS at day 450 in the trial. The
percentage of estimated deaths in our simulation was also slightly
higher than what would be predicted using the model published
by Pocock et al.?® The percentage of deaths after 1 year in our
population estimated by the KM method was 37.8% for UC and

€27186 4.61
€14414 19.27
4.02 —-28.36
2.71 —-23.62
2.93 —44.37
1.91 —37.70

EWS indicates early warning system; LY, life year; QALY, quality-adjusted life year; UC, usual care.
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23.8% for EWS. A population with these 1-year probabilities of
death in the model estimated by Pocock et al*® would have a 3-
year probability of death between 69.2 and 72.5% for UC and
49,0 and 52.3% for EWS. The estimated probabilities of death after
3 years in our simulation were 77.5% and 65.4%, respectively. In
spite of this observation, it should be stressed that comparing
mortality with the figures published by Pocock et al*® should not
yield exactly the same results, because the considered populations
are not exactly the same, both in terms of the patient character-
istics at baseline, which are predictors of their survival, and the
sample size generating the results. It is still worthwhile
mentioning that the direction of the impact of the predictors for
mortality in our model was the same as observed by Pocock et al*®
for all variables except smoking and time of diagnosis. In our
model, smoking was associated with a lower probability of dying
(although with almost no effect) and the time since the first
diagnosis of HF being lower than 18 months (see Appendix 1A in
Supplemental Materials found at https://doi.org/10.1016/j.jval.
2021.04.004 for further details).

There were 1.69 hospitalizations per life year in the UC popu-
lation and 1.67 hospitalizations per life year in the EWS population
observed in the model. These hospitalization rates were about
one-third higher than those observed in the TEN-HMS trial®” (1.25
and 1.22, respectively, for UC and EWS). The increased hospitali-
zation rates can be partly explained by the additional survival
considered in the model compared with the TEN-HMS trial,
especially when weighing in the fact that increased age reduces
time-to-hospitalization, and by the lower time-to-outpatient visit
used in the base-case analysis than the input used for selecting the
parametric model (see Appendix 1B in Supplemental Materials
found at https://doi.org/10.1016/j.jval.2021.04.004 for further
details).

When comparing the outcomes of the model with other
models addressing similar problems, we found comparable
deterministic results with the ones found by Grustam et al.?’
Nevertheless, it should be noted that their study did not esti-
mate the (cost-)effectiveness of EWS + DA. The comparisons
among total costs, life years, and QALYs for UC and EWS are pre-
sented in Table 5.

For a systematic overview on the topics related to the model
validation, please consult the filled-in AdViSHE questionnaire in
the Supplemental Material II (available online).

This study aimed at developing a health-economic patient-
level simulation model for HF that included a wide variety of HF
patient characteristics and that simulated changes in these char-
acteristics and their subsequent impact on a broad set of out-
comes. The modeling framework should be able to model patients
managed with an EWS, with or without the use of a DA.

We had access to a comprehensive patient-level dataset
generated in the TEN-HMS study®® that contained the critical
factors for prognosis as identified previously by Pocock et al.>® The
limitations of the database consisted of the relatively small sample
size, the inevitable missing data on some of the variables, and
referring to 2005,%° which can overlook the changes in clinical
practice that occurred ever since.>’ Nevertheless, it ought to be
mentioned that patient-level simulation modeling in R has the
clear advantage of allowing the adaptation of the code for using
other available databases - as long as they include the patient and
disease characteristics used in the model - for estimating the
regression equations and for performing an external validation of
the model results without changing the core model structure.
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In total, we included 20 patient and disease characteristics and
8 different outcomes in the model, which allowed for an adequate
description of patients with HF across their treatment pathway
until death. These characteristics make our model unique,
because, to the best of our knowledge, there are not any previ-
ously published models in HF that are able to take into account
individual patient characteristics for generating suitable outcomes
for our target population.'” Disease pathways and health out-
comes in HF - alike other chronic diseases - are strongly influ-
enced by the individual characteristics of the patients.>26-8-40
Therefore, it is crucial that the type of model chosen allows for
recording the individual patient experience and the variation of
their individual characteristics over time. In this regard, Markov
models have 3 critical shortcomings compared with patient-level
simulations: (1) the definition of health states may preclude
considering inter-patient variability, (2) the fixed cycle length
does not allow for exploring the effects of changing the frequency
of events that impact individual patient characteristics (eg,
outpatient visits), and (3) the “lack of memory” regarding the
treatment history of a patient when in fact the treatment options
of chronic patients normally depend on the previous treatment
sequencing and experiences with those treatments.?' Conversely,
DES models can address a wide range of problems, because
health-economic modeling using events is a more flexible
approach than using health states. Furthermore, DES models use
patient attributes, which can change over time and affect time-to-
event calculation, to properly model competing risks. Because the
DES models approach patients individually, they are a better
alternative for dealing with heterogeneous populations. DES
models are perceived as a better option for conveying the message
to non-modeling experts, because they consist of a more compact
representation of the conceptual model, avoiding, for instance, the
problem of overcomplicated Markov chains through state explo-
sion. Furthermore, in the eventuality of limited data, DES models
also provide a substantial advantage, because the inadequacy of
the data is not built into the structure of the model; the simulation
can be designed to properly reflect the problem under analysis
and perform exploratory analyses with limited data and best-
guess estimates.*>*> Therefore, although there is a need of a
detailed and comprehensive database for estimating the regres-
sion equations governing the time-to-event calculations, after the
development and validation of the model, which was the goal of
our study, it is possible to test a wide variety of scenarios and
perform subgroup analyses by changing the settings of the model
and the simulated model population.

Building on the specific features of DES modeling, it is of the
utmost importance to stress the ability of our model to estimate
health outcomes for the EWS + DA intervention, with particular
attention to its DA feature. In an EWS setting, clinical information
is usually assessed by a clinical team who is prompted to act based
on clinical decision rules defined for specific combinations of the
monitored parameters and the assessment of the clinical picture
at any given time. Nevertheless, evidence shows that data-driven
approaches such as DAs looking at trends and patterns of recorded
parameters change seem to improve the accuracy of detecting
events compared with clinical decision rules.** When taking
into account the conceptualization of the DA (see Methods sec-
tion), because the model only needs a figure for sensitivity and
specificity for accounting for the DA, it easily allows for analyzing
the (cost-) effectiveness of the EWS + DA intervention at any
given point of the receiver operating characteristic curve of the
DA. In other words, the model permits judging on the best oper-
ating point for the DA to optimize the cost-effectiveness of the
intervention, which is crucial for making informed decisions on
the adoption of a particular DA. Additionally, we can think of our
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model as a bridge between cost-effectiveness and the huge po-
tentialities of artificial intelligence and machine learning for
improving the quality of those decisions, not only by reducing
uncertainty through the continuous incorporation of big data
collected by the EWS and other data sources but also by constantly
improving the DA prediction capabilities through machine
learning, thereby determining the best follow-up actions from the
results of the DA.°*>! We can further envision a more compre-
hensive model to which our model is only but a piece that is
generating the cost-effectiveness results. Going one step deeper,
we can think of the cost-effectiveness results themselves as
another piece of information used by the DA for improving its
predictions.

Although it reflects the disease pathways in HF and uses HTM
as an example of an EWS, the model was developed to be easily
adaptable for other type of EWS interventions used in chronic
disease management. For instance, the time-to-outpatient visit,
which can be easily changed in the model by the user, can be set
according to the specific treatment guidelines for any given pop-
ulation suffering from a chronic disease. In our case, the EWS had
an effect in both time-to-hospitalization and time-to-death.
Nevertheless, other events can be considered when conceptual-
izing the model for other chronic diseases; the logic used for
modeling hospitalization and death in our model can be repeated
for as many events as needed. Focusing on the DA, it should be
noted that this feature affected the outcomes of the simulated
patient by avoiding hospitalizations (having an impact in costs
and health outcomes). Avoiding hospitalizations, in turn, affects
the disease pathways of the simulated patient and has an impact
on recorded outcomes. This logic can be used with other EWS for
events a DA is intended to avoid in the management of any other
chronic disease.

Concerning the validation of the model, the face validity of the
conceptual model was underpinned by the opinions of both ex-
perts in the field of health-economic modeling and a multidisci-
plinary team of experts in the field of clinical technical solutions
development for HF. All the performed tests revealed that our
model was robust and able to generate health outcomes compa-
rable with those estimated by other models addressing similar
problems and those obtained from empirical data. On the com-
parison with other models, it should be stressed that we found
fewer life years and QALYs than Grustam et al.>’ In their study, the
authors assumed that the transition probabilities measured in the
time frame of 240 to 450 days in the original study continue un-
altered for 20 years. Given the average age of the patients included
in the model (67 years old) and their very poor health state, it
seems unlikely that their transition probabilities would remain
the same for the following 20 years. Therefore, the fewer QALYs
found in our study are a consequence of the higher mortality that
was found using the parametric survival modeling approach that
we took and the assumption that there is a utility change similar
to the one observed for a change to the next worse NYHA class
from a hospitalization, which occurs more frequently than the
health state transitions in the study by Grustam et al.?’ The
AdViSHE questionnaire proved to be a useful tool in the process of
model validation, both for guiding in the model development and
for identifying areas for improvement (see Appendix II in Sup-
plemental Materials found at https://doi.org/10.1016/j.jval.2021.
04.004 for further details). On that note, there are a few short-
comings of the model that ought to be discussed.

Although the model allows for updating patient characteristics
at the occurrence of each event, we did not have information on
the evolution of some patient characteristics and we could not
update patient attributes accordingly. Conceptually, it would be
ideal to have equations describing the trends of the patient
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characteristics, eventually with a link to changes in the medication
that could be modeled during the outpatient visit procedure.

The model outcomes are representative for the group of pa-
tients who participated in the TEN-HMS trial, which are mainly
patients with severe HF who have been previously hospitalized. It
ought to be said that patients with HF enrolled in clinical trials of
EWS usually have similar characteristics to the TEN-HMS patients
and, as such, results could be projected for those patients using
the model. Nevertheless, because regression equations were
estimated using the database obtained from the TEN-HMS trial,
extrapolation of the results to the general HF population should be
done with care. It would be interesting to re-estimate the model
equations using real-world evidence for a more representative HF
population to assess whether there are significant differences in
estimated outcomes. In doing so, the model would be able to be
used for a larger proportion of patients with HF - for example, an
HF population with milder symptoms and treated in primary care
- who could also be candidates for an EWS. Nevertheless, it should
be noted that building a DES model is an extensively data-
demanding exercise that requires a wide range of patient-level
data for building and validating the model. Unfortunately,
patient-level data are not widely available, particularly in the real-
world setting, and they tend to be characterized by a lot of missing
data, which leave the developer with a dilemma on how to handle
those without biasing the outcomes of the model.>*~>°

Further on the issue of data, in our particular case, we did not
have information that would allow us to determine the impact of
patient characteristics in outpatient visits. If we would have been
able to do so, we could have incorporated in the model a rela-
tionship between patient characteristics and outpatient visits,
which could result, for instance, in a change in medication. The
change in medication in turn could impact the disease pathways
in the model and, as a consequence, the outcomes of simulated
patients. This would arguably be of added value from a conceptual
point of view and for the sake of increased face validity of the
model in the eyes of the layperson in health economics - as it is
often the case of some decision makers.

We also regret not having access to another database with
patient-level data, which would have been worthwhile for
increasing the sample size of our data inputs (thus reducing
uncertainty) and for validating the model through assessing
outcomes using alternative input data. Yet again, data availability
and the real world hardly go hand in hand.

In conclusion, the developed model is a unique patient-level
simulation model that includes many of the patient and disease
characteristics that are considered important for prognosis and
treatment of patients with HE. The model can be used for simu-
lating a wide range of outcomes for different patient subgroups.
More specifically, the model can provide useful information for
guiding research and for the development of new treatment op-
tions, with a particular focus on EWS and the operationalization of
DA, by showing the possible impact of these interventions on a
large number of important HF outcomes.

Supplementary data associated with this article can be found in the
online version at https://doi.org/10.1016/j.jval.2021.04.004
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