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INTRODUCTION

According to the 2011 National Diabetes Fact Sheet [released in January, 2011]
nearly 26 million children and adults in the United States [~8.3% of the population] have
diabetes. In addition, recent estimates [using much stricter guidelines] suggest that ~ 79
million people are prediabetic [American Diabetes Association website;
http://www.diabetes.org/diabetes-basics/diabetes-statistics/]. Diabetes is now
considered as the fourth leading cause of death by disease in this country. There are
two principal forms of diabetes. Type 1 diabetes [previously known as juvenile diabetes]
is typically diagnosed in children and young adults. In type 1 diabetes, the body does
not produce insulin since the insulin-producing B-cells are lost due to autoimmune
aggression-mediated by cytokines released by macrophages infiltrating the islet. In type
2 diabetes, either the body does not produce adequate insulin or the cells that require
insulin for glucose uptake become resistant to insulin [i.e., insulin resistance]. Chronic
elevation in circulating glucose and lipids leads to diabetic complications, including
retinopathy, nephropathy, neuropathy, hypertension and coronary heart disease.
Therefore, efforts to understand the pathophysiology of this disease are highly relevant
to future developments in care and therapeutics of this disease. In this context, it is
becoming increasingly clear that the insulin-producing islet B-cell lesion in type 2
diabetes is, probably, largely functional involving one or more defects in signal
transduction. A better understanding of specific changes and defects in the signaling
pathways leading to impaired insulin secretion should be useful in designing novel

strategies for the prevention and treatment of type 2 diabetes.



ROS signaling and B-cell

Mitochondria being the power house of the cell generate energy through TCA
cycle and associated electron transport chain of the inner membrane. During the course
of TCA cycle, the reducing equivalents [NADH and FADH2] formed are reoxidized via a
process that involves transfer of electrons through electron transport chain [ETC] and
associated translocation of protons across the mitochondrial inner membrane in
generating the transmembrane electrochemical gradient. The generated gradient
provides electrochemical potential to synthesize ATP from ADP and Pi. Under
physiological conditions, the proton gradient is diminished by H* ‘leak’ to the matrix
either via protein-lipid interfaces, or by uncoupling proteins [UCPs]. However, due to
oxidative phosphorylation mitochondria can generate excessive reactive oxygen
species [ROS] and reactive nitrogen species. Superoxide anion [O,] produced as a
byproduct of single electron reduction is considered to be the major contributor to other

reactive species inside the mitochondrion [1].

Phagocytic cells such as macrophages and neutrophils express plasma
membrane/phagosome-associated enzyme complex, the NADPH oxidase [Nox], to
facilitate generation of O, for defense against pathogenic organisms. However, it is
widely felt now that Nox is not confined only to immune system but alternative isoforms
of this holoenzyme may be active in other cell types as an essential component in redox
signaling. It is well established that the majority of cells are endowed with antioxidant
systems/enzymes such as manganese superoxide dismutase [SOD], glutathione

peroxidase, catalase to nullify the excessive intracellular ROS. Even though cells have



a number of antioxidant mechanisms available, it is likely that ROS might disturb the
defense homeostasis, resulting in gradual cellular damage. Therefore, any imbalances
in host oxidative defense mechanism will lead to cellular dysregulation and death
resulting in oxidative stress-related diseases. However, the biochemical and molecular
mechanisms that lead to oxidative stress-related defects and diseases remain relatively

poorly understood.

The major source for cellular ROS generation is mitochondrial respiration and
various oxidoreductases. Superoxide (*O,) generated during electron transport chain
gets converted to a less reactive H,O, by SOD, and finally to molecular oxygen and
water by catalase, peroxiredoxin and glutathione peroxidases. Superoxide may even
get converted to HO+ by Fenton’s reaction or may react with nitric oxide to generate
peroxynitrite (ONOO-) which further contributes to additional oxidative stress. Unlike
other ROS, H;O, is an ubiquitous intracellular messenger [2, 3] as it is stable,
uncharged, freely diffusible molecule that can be rapidly generated and degraded in
response to external stimuli [4]. Even though pancreatic B-cells are equipped with
reasonable defense machinery for conversion of <O, to H,O, in cytoplasm and
mitochondria [5], H2O, inactivating enzymes like glutathione peroxidase and catalase
levels are exceptionally low, approximately 1% of its expression level in the liver [6].
Such an imbalance between O, generation and H,O, inactivating enzymes makes
pancreatic B-cell more susceptible to oxidative stress and to H,O, mediated signal
transduction. The figure depicted below [taken from Pi and Collins; 7] further highlights
the mechanisms underlying ROS generation and its detoxification by antioxidant

machinery.
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Figure 1: Schematic representation of ROS generated and antioxidant machinery.
Oxidases like NADPH oxidase, Nox; or Xanthine oxidase, XOD and mitochondrial
respiration are major sources of cellular ROS. Superoxide and its metabolites can be
eliminated through several pathways, including superoxide dismutase, glutathione

peroxidase, catalase, etc.

Endogenous source of ROS

Superoxides generated during the mitochondrial respiration upon increased
substrate or decreased ADP concentration or increased intracellular Ca?* concentration
[8, 9] have been proposed to be a necessary stimulus for glucose stimulated insulin
secretion [GSIS] [10]. On the other hand, ROS generated via Nox, is known for its role
in the immune cell respiratory burst [11, 12]. Once activated, Nox takes an electron

from donor NADPH and translocate it across the cell membrane to an extracellular O,



molecule generating *O,". Pancreatic islets express multiple Nox isoforms [13] which

could possibly play a vital role in ROS generation during GSIS [14].

NADPH oxidases represent a group of superoxide-generating enzymes which transport
electrons through biological membranes and catalyze the cytosolic NADPH-dependent
reduction of molecular oxygen to O, " [15]. Till date, Nox family comprises of seven
members viz., Nox1, Nox2, Nox3, Nox4, Nox5, DUOX1 and DUOX2 [16]. The members
of Nox family differ in their membrane and cytosolic protein components but have a
similar ability to produce O, ". According to structural and functional characteristics, the
animal Nox family enzymes can be classified into three groups: (1) the Nox1 to Nox4
group, characterized by the requirement for interaction with p22°"°%; (2) the Nox5 group,
characterized by two calcium-binding EF-hand motifs in the cytosolic N-terminal region;
and (3) the DUOX group, characterized by EF-hand calcium-binding domain and NH2-
terminal peroxidase domain [17, 18].

The Phagocytic Nox is a multicomponent enzyme complex, composed of two
membrane components [catalytic glycosylated gp91°"* and the regulatory non-

Phox) ~ three cytosolic proteins [p47P"* p67°"°% p40P"**] and a small

glycosylated p22
GTPase ras-related C3 botulinum toxin substrate, Rac 1/2 [16]. The catalytic
glycosylated gp91°"°* has six transmembrane domains and is stable only in presence of
p22P"°* These two membranic components stabilize one another in a tightly associated
heterodimer, referred to as flavocytochrome b558 [19]. Activation of Nox2 requires
translocation of cytosolic components to the membrane and association with gp91°">

/p22P"°* complex [20]. It is evident that, upon stimulation protein kinase C promotes

phosphorylation of the cytosolic p47°"°*, which along with p67°"°* and p40P"°* interacts



with  membranic flavocytochrome b558. Concomitantly, Rac dissociates from its
RhoGDP-dissociation inhibitor and is triggered for exchange of GDP to GTP in
regulating the activity of the oxidase by a two-step process, directly via contact with

1Ph°% and by interaction with p67°"°*. Upon interaction of the cytosolic components

gp9
with the flavocytochrome b558, the electron transfer from NADH to flavin adenine
dinucleotide [FAD] and subsequently to molecular oxygen is regulated by the activation

domain of p67°" [21, 22]. On the other hand, p40°"*, a non-glycosylated cytosolic

component, interacts with p47°" and p67°" with a 1:1:1 stoichiometry [23].

Figure 2:
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Furthermore, Nox1 was the first homologue of gp91°"* (Nox2) to be described
and it might require small GTPase Rac in its activation [24, 25, 26]. Nox4, another
homologue of gp91P"™* exhibits about 39% homology to Nox2 [27]. A characteristic
feature of Nox4 is its high level of constitutive production of hydrogen peroxide, which is
partially dependent on the presence of p22°"* [28, 29]. In contrast to Nox1, 2 and 3,
Nox4 is a constitutively active enzyme and is activated without the necessity for
GTPase Rac or the cytosolic components [29], and is regulated by protein expression
level [30]. It has been demonstrated recently that Nox4 regulates cell differentiation in
human and mouse pre-adipocytes suggesting a role for H,O, production in adipocyte

differentiation and maturation [31, 32, 33].

In addition, the other endogenous sources of ROS consist of some cytochrome
P-450 (CYP) enzymes and flavoproteins in endoplasmic reticulum, lipoxygenases,
isoforms of nitric oxide synthase and prostaglandin synthase on plasma membrane, a
diverse group of oxidases and flavoproteins in peroxisomes and Xanthine oxidases in
cytoplasm. However, Nox-derived ROS and its implicated biochemistry in modifying the
function of B-cell remain elusive. Despite the fact that Nox4 expression has been
reported in pancreatic islets [4], its role in B-cell has yet to be determined. Recently,
mRNA for NADPH oxidase components Nox1, Nox2 and Nox4, and protein for NADPH
oxidase subunits NoxA1, p22P"* p47P"°* and p67°"* have been detected in human
and rat pancreatic stellate cells [34, 35]. The physiological role of Nox enzymes in
pancreatic islets is poorly understood. On the basis of studies using the selective
flavoprotein inhibitor DPI and the antioxidant/Nox inhibitor apocynin [36], a role for Nox

enzymes in insulin secretion [13, 37, 38, 39] has been suggested. Existing evidence



also suggests that a protein kinase C sensitive phosphorylation of p47°"°% is critical in its
translocation to the membrane compartment. Further, recent data suggest that
functional activation of Rac is important in the holoenzyme assembly and activation of

Nox unit [40, 41, 42].

G-proteins and pancreatic 8-cell

Insulin secretion from the pancreatic B-cells is regulated by ambient
concentrations of glucose. In pancreatic B-cells, GSIS is mediated largely through
generation of soluble secondary messengers [cyclic nucleotides, hydrolytic products
generated by phospholipases A2, C and D] [43 - 55] and changes in the intracellular
calcium concentrations. These changes in intracellular calcium regulate various enzyme
activities within the cell, including protein kinases, phosphodiesterases, adenylyl
cyclases, and PLases [44 - 61] in insulin secretion. Even though many studies have
shown the underlying mechanism(s] involved in stimulus-secretion coupling of GSIS, the
precise molecular and cellular mechanism still remains profound. In addition, adenine
nucleotides [e.g., ATP] and guanine nucleotides [e.g., GTP; [62 - 65]] regulate

physiological insulin secretion.

Classification of G-proteins in B-cell

Till date three major classes of G-proteins have been identified in pancreatic -
cells [66 - 70]. The first class of G-proteins are heterotrimeric G-proteins, which are
involved in coupling membrane-associated receptors to their intracellular effectors such

as PLases, adenylyl cyclases, ion channels, and phosphodiesterases [71 - 73]. The



second class of G-proteins comprise of small monomeric G-proteins [17-30 kDa], which
are ought to play a vital role in protein organization and trafficking of secretory vesicles
in different cell types [74]. These small G-proteins undergo posttranslational
modifications [isoprenylation and methylation] at their C-terminal residues (CAAX motif)
[74 - 78] for their active confirmation. The third class of G-proteins are the elongation

factors and Tau proteins, and are implicated in protein synthesis.

Posttranslational Modifications

The y-subunits of the heterotrimeric G-proteins and most of the small G-proteins
undergo a sequence of posttranslational alterations at their C-terminal (CAAX motifs,
where C represents cysteine, A = aliphatic amino acid and X = terminal amino acid) [67]
to attain the active confirmation. Incorporation of either a farnesyl [15 carbon derivative
of mevalonic acid] or geranylgeranyl [20 carbon derivative of mevalonic acid] group to
the C-terminal cysteine of proteins via a thioether linkage is the first step involved in the
posttranslational modifications. Subsequently, the carboxylate anion of the prenylated
cysteine is exposed once three amino acids after farnesylated/ geranylgeranylated
cysteine are excised by Ras-converting enzyme 1 [Rec-1] mediated proteolysis [67, 79].
The exposed site is then methylated by the isoprenylcysteine-O-carboxyl
methyltransferase. Several laboratories including ours have confirmed that
carboxymethylation [CML] amplifies the hydrophobicity of the candidate protein.
Besides these modifications, certain G-proteins undergo fatty acylation or palmitoylation
at cysteine residues to have a firm anchoring into the cell membrane for optimal

interaction of the candidate protein with their respective effectors [67, 79, 80].
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Figure 3: The above figure depicts the formation of farnesyl and geranylgeranyl
pyrophosphates. Acetyl-CoA condenses with acetoacetyl-CoA to produce 3-hydroxy-3-

methylglutaryl-CoA [HMG-CoA], which is catalyzed by HMG-CoA synthetase. In
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presence of NADPH, HMG-CoA gets reduced to mevalonic acid [MVA] by HMG-CoA
reductase. This reaction occurs in cytosol and is considered to be a rate limiting step in
cholesterol biosynthesis. The generated MVA serves as a precursor for biosynthesis of
farnesyl  pyrophosphate  (farnesyl-pp) and  geranylgeranyl  pyrophosphate

(geranylgeranyl-pp). [Taken from Kowluru, Endocr Rev. 2010].

Both the farnesylated and geranylgeranylated groups are derived from acetyl-
coenzyme-A and acetoacetyl-CoA of the cholesterol biosynthetic pathway (Figure 3).
These are integrated in the candidate protein by farnesyl transferases [FTases] and
geranylgeranyl transferases [GGTases] respectively. Examples of farnesylated proteins
include Ras, nuclear lamins A/B, and the y-subunits of heterotrimeric G-proteins,

whereas, geranylgeranylated proteins include Cdc42, Rac1 and Rho.

Till date three distinct prenylating enzymes i.e., FTase, GGTase-l and GGTase-ll
have been depicted in the literature [75 -78] and are heterodimeric in nature consisting
of a- and B-subunits. FTase and GGTase-l are considered as CAAX prenyl transferases
as their substrate proteins share a preserved CAAX motif at their C-terminal region,
whereas, GGTase-ll is considered as a non-CAAX prenyl transferase as it prenylates
the Rab subfamily of G-proteins at a different motif [75 -78]. Both the FTase and
GGTase-l share a common regulatory a-subunit but have distinct substrate specific 3-
subunit. Krzysiak et al., explains that peptides having serine, glycine and methionine on
their “X” residues of CAAX motifs are farnesylated, whereas, those bearing leucine are
geranylgeranylated [81]. However, it has been shown that RhoB with a C-terminal

CKVL CAAX box can be prenylated by either FTase or GGTase-l in mammalian cells
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[82, 83]. Furthermore, involvement of this signaling cascade through the use of
pharmacological inhibitors has been shown to play a vital role in GSIS in isolated 3-cells
[79]. Available evidence also shows the regulatory roles for carboxymethylation and
palmitoylation in G-protein mediated effects on GSIS in pancreatic B-cells [see a recent

review Kowluru, 84].

Ras and other

related GTPases —C—a—-—-a-—X%
*--é—un{e
FPP .~ ™ _GGPP
-/ (GoTaso

Farnesyl sGeranylgeranyl

*—-E‘—a—a—x *——&—a—a—x
\ /

Endoplasmic
Reticulum

Gibbs RA: Bioorg Med Chem Lett 20:767-70, 2010

Figure 4: The above figure explains prenylation i.e., either farnesylation by FTase or
geranylgeranylation by GGTase-| of Ras and other-related proteins and consequential

events.
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Small G-proteins

Based on the substantial evidences on the regulation of pancreatic islet 3-cell
function, small G-proteins are categorized into three major groups. Rho, Rac1, Cdc42
and ADP-ribosylation factor-6 [Arf6] fall under the first category of small G-proteins and
these play an important role in cytoskeletal remodeling and vesicular fusion [85 - 102].
The second category of small G-proteins comprises of Rap1 and Rab GTPases (Rab3A
and Rab27) [see a recent review from Kowluru, 84]. These Rab GTPases assists in
priming and docking of insulin-laden secretory granules on the plasma membrane [see
a recent review from Kowluru, 84]. Unlike first category of small G-proteins, requisite for
posttranslational modifications and mechanism[s] involved in the activation of Rab
GTPases under the physiological insulin secretagogues remains elusive. However,
Rap1 has been shown to get activated transiently by glucose [66] and undergoes
carboxymethylation which is augmented by glucose and KCI [66, 103]. The third group
of small G-proteins consists of Rab2, Rhes and Rem2 which are under-studied [104 -

107], whereas, RalA appears to draw direct regulatory effects in exocytosis [108].
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Figure 5: The above figure shows the functions of different classes of small G-proteins
in the physiology of insulin secretion in pancreatic B-cells. [taken from Kowluru, Endocr

Rev. 2010].
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Activation and deactivation cycle of small G-proteins

Like heterotrimeric G-proteins, small G-proteins also shuttle between their
inactive (GDP-bound) and active (GTP-bound) conformations, which are tightly
regulated by various G-protein regulatory factors/proteins. Till date, three such types of
regulatory factors have been identified for small G-proteins, viz., guanine exchange
nucleotide factors [GEFs], GDP-dissociation inhibitors [GDIs] and GTPase-activating
proteins [GAPs]. GEFs facilitate the translation of the inactive GDP-bound forms of
small G-proteins to their active GTP-bound forms, while, the GDIs avert the dissociation
of GDP from the G-proteins, thereby keeping them in the inactive conformation. The
final group of these regulatory factors for small G-proteins, GAPs, converts the active
GTP-bound to their inactive GDP-bound conformation in the GTP hydrolytic cycle by

inactivating the intrinsic GTPase activity of the candidate G-proteins.

The efficiency of the G-protein activation cascade via a GTPase depends on the
relative amounts of active to inactive GTPase. The activity of GTPase can be altered
either by accelerating GDP dissociation by GEFs or by inhibiting GDP dissociation by
GDls, or by accelerating GTP hydrolysis by GAPs. The figure below depicts the
functions of each regulatory factors/proteins in the activation and deactivation cycle of
the G-proteins. Any imbalance in either of the regulatory factors distorts the hydrolytic

cycle and normal physiological functions in pancreatic p-cells.
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Figure 6: Regulatory factors/proteins involved in activation and deactivation cascade of

G-proteins. [taken from Kowluru, Endocr Rev. 2010].



17

Small G-proteins and insulin secretion

Small G-proteins have been recognized as key regulatory molecules in vesicle
trafficking and organelle dynamics coupled with proliferation, survival and demise of a
cell. Recycling between GDP/GTP-bound forms, small G-proteins are coupled with their
translocation between cytosol and membrane in carrying out their mechanistic roles.
Published evidence from multiple laboratories has implicated small G-proteins [Cdc42,

Rac1 and Arf6] in insulin secretion in clonal and islet B-cells.

A] Role of Cdc42 in insulin secretion

Regazzi and associates first reported [87] expression of Cdc42 in insulin-
secreting clonal B-cells [RINm5F and HIT-T15 cells]. Follow-up studies from other
laboratories have demonstrated localization of Cdc42 in clonal pancreatic B-cells,
normal rat islets and human islets [66, 88]. Furthermore, Cdc42 remains associated
with Rho-GDI in the cytosol and upon exposure to prenylation inhibitor prevented the
association, substantiating the importance of posttranslational modification in functional
regulation of Cdc42 [87]. It has also been demonstrated that, glucose-induced
carboxymethylation of Cdc42 results in its translocation to the membranic fraction and
the effect is very rapid and transient [66]. A series of recent investigations from
Thurmond’s laboratory have further substantiated novel regulatory roles for Cdc42 in

islet function, including actin remodeling and insulin secretion [91].
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B] Role of Rac1 in insulin secretion

Like other small G-proteins, Rac also shuttles between inactive GDP and active
GTP conformations to facilitate cellular function. Rac was first identified and implicated
in cellular function by Didsbury et al [109], where they isolated two cDNAs encoding
proteins [Rac1 and Rac2] with ~92% homology. Interestingly, both Rac1 and Rac2
undergo ADP ribosylation by C3 component of botulinum toxin before their association
with membrane. Potential role for Rac1 in GSIS was first demonstrated by using
Clostridium difficile toxins A and B, which irreversibly monoglucosylate and inactivate
specific G-proteins (Cdc42 and Rac1) [86]. Like Cdc42, Rac1 also undergoes
posttranslational carboxymethylation and membrane translocation in the presence of
stimulatory glucose concentrations [86]. Expression of an inactive mutant of Rac1
(N17Rac1) in INS-1 cells resulted in significant morphological changes including
alterations in F-actin structures, leading to inhibition of GSIS. These findings confirmed
the involvement of Rac1 in cytoskeletal remodeling and reorganization [95]. As stated
above, Rac1 also requires prenylation for its function. Experiments involving
pharmacological and molecular biological inhibition of Rac1 prenylation indicated
marked reduction in GSIS in a variety of insulin-secreting (B-cells. For an instance,
GGTI-2147, a specific inhibitor for geranylgeranylation, significantly augmented
accumulation of Rac1 in cytosol and inhibited GSIS in INS 832/13 cells. Over
expression of the regulatory a-subunit of protein prenyltransferase also attenuated
glucose-induced insulin secretion in INS 832/13 cells [85]. Furthermore, Rac1-null mice

[BRac1-/-] exhibited impaired glucose tolerance and hypoinsulinemia, suggesting key
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regulatory roles for Rac1 in normal insulin function [97]. Taken together, all these

evidence suggests regulatory roles of Rac1 in islet function including GSIS.

i] Rac1-Nox signaling and insulin secretion

Recent evidence suggests that a tonic increase in generation is necessary for
GSIS [7, 110 - 113]]. Rac1 being a cytosolic component of Nox holoenzyme, its
functional activation [Rac1.GTP] has shown to be critical in holoenzyme assembly and
activation of Nox [16, 40 - 42, 114, 115]. In support of this, Gorzalczany and associates
[116] have shown the activation of Nox and subsequent generation of ROS by targeting
Rac1 to the membrane fraction. They also demonstrated that its prenylated, but not the
unprenylated, form of Rac1 binds to the phagocyte membrane more efficiently to
facilitate the generation of superoxides. Along these lines, Pi and Collins have recently
overviewed the existing evidence in supporting “secondary messenger” roles of ROS in
physiological insulin secretion [7]. Based on this and other supporting evidence, it is
concluded that a tonic increase in intracellular ROS is necessary for normal
physiological insulin secretion and that Rac1 initiates subsequent signaling steps

including Nox activation and insulin release [refer to a recent review from Kowluru, 117].

ii] Rac1-Nox signaling and metabolic dysfunction

Even though Rac1 has been shown to have positive modulatory effects in the
normal cellular function, a growing body of evidence also implicates negative
modulatory roles for Rac1 in the induction of metabolic dysfunction cells, particularly at
the level of its activation of Nox holoenzyme [118, 119]. For example, a significant

increase in Nox-mediated oxidative stress and caspase-3 activation was observed in
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retinal pericytes, which was attenuated by overexpressing dominant-negative mutants
of Rac1 and p67°". Furthermore, overexpression of constitutively active mutant of
Rac1 [V12Rac1] augmented Nox and caspase-3 activation, thereby creating more
oxidative stress environment and causing metabolic dysfunction of the retinal pericytes.
Studies by Shen and associates in cardiac myocytes [120] have also suggested
regulatory roles for Rac1 in the activation of Nox and associated generation of ROS in
animal models of diabetes. However, very little is known thus far with regard to
regulatory roles of Rac1 in the holoenzyme assembly and activation of Nox in islet (3-
cells following chronic exposure to glucose, saturated fatty acids or cytokines. This is
the basis of studies that | have carried out for my doctoral work and the data from these

studies are described in the following sections.
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Pancreatic B-cells and Glucotoxicity

Several lines of evidence in in vitro and in vivo model systems clearly suggest
that chronic exposure of the islet B-cell to elevated glucose concentrations leads to
significant alterations in the function ultimately leading to cell demise via apoptosis and

the onset of diabetes.

Glucose toxicity: Robertson and associates have defined glucose toxicity as
non-physiological and potentially irreversible 3-cell damage upon chronic exposure to
supra-physiological concentrations of glucose. This is characterized by early defective
insulin gene expression [121, 122] and a state of desensitization, which is referred to as
a transient state of cellular refractoriness to glucose stimulation induced by repeated or
prolonged exposure to elevated glucose levels. Interestingly, the later is reversed, in
time-dependent fashion, usually within minutes following restoration of normal glucose
levels. Glucose toxicity also affects other vital signaling steps including suppression of
glucokinase gene expression, decreased mitochondrial function, compromised
exocytotic mechanisms and accelerated apoptosis, impending from insulin gene

expression to insulin release into the circulation [123 - 125].

Pancreatic B-cell and oxidative stress

It has been shown that reactive oxygen species [ROS] are the basic ignition
factors in the pathogenesis of diabetes and more importantly in the development of
secondary complications. However, generation of ROS such as superoxide anion (O "),

hydroxyl radicals (*OH), hydrogen peroxide (H2O,) and associated generation of nitric
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oxide (NO) [126, 127] have been implicated in pancreatic 3-cell dysfunction and demise
in both type | [128] and type |l [129] diabetes. Generation of superoxide radical [O; "]
was first demonstrated in insulin-producing cell lines by cytochrome c¢ reduction method

[130].

Multiple lines of evidence in both in vitro and in vivo have confirmed continuous
generation of free radicals under the persistent hyperglycemic state during diabetes
[131 - 134]. Further, inhibition of ROS production using specific inhibitors of electron
chain complex Il, or by upregulating the expression of uncoupling protein-1 and
mitochondrial SOD [MnSOD], confirmed the involvement of ROS in the complications of
diabetes like retinopathy, neuropathy and nephropathy [135]. Many biochemical
pathways like hexosamine pathway, polyol pathway, advanced glycation end products
[AGEs] pathway and protein kinase-C pathway are activated under the conditions of

excessive ROS generation during hyperglycemia.

In the hexosamine biosynthetic pathway, fructose-6-phosphate gets converted to
N-acetylglucosamine-6-phosphate, which, in turn, is metabolized to N-
acetylglucosamine-1, 6-phosphate and to uridine diphosphate (UDP)-GIcNAc. Newly
formed UDP-GIc-NAc serves as a substrate for O-glycosylation of many cytosolic and
nuclear proteins together with transcription factors involved in signal transduction,
resulting in impairment of the activation of insulin receptor/substrates/PIK3 kinase
survival pathways [136]. Along these lines Kaneto et al have shown that under the
conditions of hyperglycemia, glucosamine increases H,O levels in the isolated rat islet

B-cells causing oxidative stress and B-cell dysfunction [137], which was reversed in the
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presence of antioxidants like N-acetyl-I-cysteine. The polyol pathway is also triggered by
elevated intracellular glucose, which is converted to sorbitol in the presence of aldose
reductase (AR). In this signaling system, AR utilizes nicotinamide adenine dinucleotide
phosphate (NADPH) as a cofactor for regenerating a critical intracellular pool of reduced
glutathione, thereby increasing the cytosolic NADH:NAD+ ratio [138]. Consequently, a
loss in the levels of reduced glutathione increases the vulnerability of (-cell to
intracellular oxidative stress [138]. Along these lines, it has also been shown that AGEs
produced as a result of the non-enzymatic protein glycation, and increased production
of diacylglycerol [DAG] via protein kinase-C activation under hyperglycemic conditions,

stimulate ROS generation and promote oxidative stress.
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Figure 7: Diagramatic representation of different pathways which are sensitive to
elevated glucose and generate ROS causing oxidative stress and ultimate pancreatic -

cell dysfunction [taken from Robertson et al., Diabetes Vol 52, 2003].
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Figure 8: This figure [taken from Robertson, JBC, 2004] further depicts different pathways
in glucose metabolism for the generation of ROS to induce oxidative stress leading to

pancreatic 3-cell dysfunction.
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In summary, it is evident from the above discussion that chronic exposure of
cells, including islet B-cells, to glucose leads to increased oxidative stress. Data from
antioxidant studies are encouraging. Unfortunately, unlike the majority of cell types, the
islet B-cell has an extremely low antioxidant capacity due to significantly low levels of
antioxidant enzymes, thus making them vulnerable to oxidative damage and demise. In
addition, relatively little is known with regard to roles of Nox as a potential source of
ROS and oxidative stress in the islet B-cell. Therefore, | propose studies in the following
sections to systematically evaluate this and to explore the underlying mechanisms

involved in the regulation of Nox under the duress of glucotoxicity.

Pancreatic B-cells and free fatty acids

In addition to hyperglycemia, type Il diabetic patients often have elevated free
fatty acids (FFAs). Even though the characteristic increase in basal insulin secretion
with reduced GSIS is well demonstrated following chronic exposure of pancreatic 3-cells
to high levels of FFAs, the precise mechanisms linking FFAs to dysregulation of B3-cell
function remain elusive [139 - 142]. In this context, it has been reported that short-term
exposure of pancreatic 3-cells to FFAs results in an increase of insulin secretion [143 -
145], whereas, long-term exposure leads to attenuation of insulin secretion [146, 147].
In the presence of high glucose, short-term exposure of FFAs synergistically increases
the insulin secretion as a result of accumulation of long chain CoA [LC-CoA] in the
cytosolic fractions [148] due to malonyl-CoA inhibition of carnitine palmitoyl transferase

I. The excessive formation of LC-CoA and several other lipid complexes which are
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critical effectors of insulin secretion during inhibition of fatty acid oxidation induces

protein kinase C activation, protein acylation [149], calcium influx [144, 150].

It is well established that high plasma levels of saturated fatty acids [e.g., palmitic
acid] promote abnormal islet function and type |l diabetes. Such effect has been proven
to associate with increase lipid esterification, production of ceramides [see Figure 10],
and oxidative stress [151], This, in turn, results in increased lipid peroxidation leading to
defective functions of proteins and DNA [152]. In addition, stimulating effects of FFAs
on ROS generation has been demonstrated in several cell types suggesting that FFAs
and their derivatives may modulate the cell function by increasing oxidative stress
intracellularly [153 - 155].

It has also been shown recently that elevated FFAs, over an extended period of
time, cause damage to cells by a variety of mechanisms, and oxidative stress being the
common link among all [156, 157]. Although, adverse effects of elevated FFAs on
insulin secretion and the mechanism[s] underlying have been reported in vitro [158], the
in vivo translational impact of FFA supplementation on pancreatic islet function is far
from being clear. In this context, based on the currently available information in in vitro
and in vivo model systems, Giacca et al have summarized the mechanisms of

lipotoxicity and glucolipotoxicity [Figure 9].
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Figure 9: In vivo studies via lipid infusion or high-fat diet in animals and humans have
shown to decrease pancreatic B-cell function and mass. The mechanistic insights on
FFA leading to oxidative stress [142, 159, 160] / ER stress [161] / Inflammation [162 -
165] resulting in B-cell failure has been reviewed by Giacca et al. Also depicted in the
figure are the potential inputs from glucotoxicity which cannot be separated from
lipotoxicity (i.e., glucolipotoxicity) in animal models of Type |l diabetes or Type Il diabetic
humans. In addition the role of ceramides in glucolipotoxicity has been explained by

Shimabukuro et al [166].



28

Palmitoyl CoA + Serine

Cycloserine, Myriocin —I Serine palmitoyltransferase

Y
Ketosphinganine

Ketosphinganine reductase

Y
Sphinganine

Fumonisin B1 —I Dihydroceramide synthase

\
Dihydroceramide

Dihydroceramide desaturase

Y
Ceramide

Figure 10: The above figure explains the de novo biosynthesis of ceramides from

palmitic acid [taken from Kowluru 2010, Endocrine Reviews].

In summary, available evidence clearly suggests that saturated fatty acids exert
deleterious effects on pancreatic [-cells at multiple levels. It also appears that
generation of excessive ROS leads to increased oxidative stress culminating in
mitochondrial dysfunction. These observations prompt further investigations to
determine relative regulatory roles of Nox in the signaling mechanisms leading to
palmitate or ceramide-induced metabolic dysfunction of the islet B-cell. | propose

studies in the following sections to address this question.
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Pancreatic B-cells and cytokines

Proinflammatory cytokines [e.g., IL-1B8, TNFa and IFNy] play a vital role in
pancreatic B-cell dysfunction and in the development of both type | and Il diabetes.
Emerging evidence also suggests that high glucose levels can augment cytokine
production in pancreatic islets [124]. Therefore, excessive cytokine levels not only exert
damaging effects on B-cells in the pathogenesis of type | diabetes, but also contribute to
the progressive decline in B-cell function typical feature of type Il diabetes, as they

promote accelerated B-cell apoptosis and demise.

During the progression of the disease, proinflammatory cytokines are released
into islets of Langerhans by infiltrated, activated T-cells and macrophages [167 - 169].
However, the exact cellular mechanisms by which cytokines induce B-cell demise is
only partially understood [170]. Though cytokines modulate the activity of several
destructive signaling cascades (i.e., apoptosis, necrosis, and autophagic cell death),
apoptosis is considered as the primary mode of cell death in human and mouse models
of diabetes [171 - 173]. Apoptosis is a highly regulated, genetically encoded and
energy-dependant cell death process activated by extracellular signals [174 - 176].
Caspases, a family of cysteine proteases, play a critical role in apoptosis. In the
presence of apoptotic stimuli, caspase cascade is activated, in which activation of
initiator caspases (i.e., Caspase 8 and 9) leads to the downstream activation of
executioner caspase (i.e., Caspase 3) and once activated, caspase 3 cleaves ~40

different cellular substrates [170, 174, 176, 177].
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Recent studies indicate that cytokines may signal apoptosis via intrinsic apoptotic
pathway, which involves destruction of mitochondrial membrane and subsequent
release of cytochrome C from the inter-membranous space to cytosol, leading to the
activation of caspase cascade [169, 177]. Emerging evidence also suggests that up-
regulated oxidative stress from ROS and NO contributes to the damage in mitochondrial
membrane eventually causing defects in membrane potential. Recently, members of the
Nox family have been shown as one of the sources of ROS generation and oxidative
stress in cells under the duress of cytokines [118]. Again, as in the case of gluco-, lipo-,
or glucolipotoxicity, very little is known with regard to potential regulatory mechanisms
underlying cytokine-induced, Nox-mediated and ROS-sensitive signaling pathways in 3-

cell dysfunction.

With this background information in mind, for my doctoral work, | have
undertaken a series of investigations to methodically assess the friendly and non-
friendly roles of Nox-derived ROS in islet B-cell function. Data accrued from these

studies are described in the following sections.
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HYPOTHESIS

The above review of literature clearly indicates that a tonic increase in
intracellular ROS may be necessary for GSIS to occur. Further, it is also evident that
chronic exposure of B-cells to high glucose [i.e., glucotoxicity], fatty acids [i.e.,
lipotoxicity], or both [i.e., glucolipotoxicity] results in increased oxidative stress leading to
metabolic dysfunction and demise of the B-cell culminating in the onset of diabetes.
Despite the above evidence, very little is known with regard to potential regulatory
mechanisms underlying the holoenzyme assembly and functional activation of Nox by
glucose, cytokines and/or palmitate under acute/chronic exposure conditions.
Furthermore, putative mechanisms underlying ROS-mediated insulin secretion and

cytotoxic effects on isolated B-cells remain largely unexplored.

The overall objective of my PhD work is to study the regulation of islet B-cell
function by ROS, specifically generated via the catalytic activation of Nox signaling
cascade in isolated B-cells exposed to acute and/or long-term incubation conditions
[See Figure 11 for my Working Model]. My goal is to test short term effects in the
presence of nutrient secretagogues such as glucose or mitochondrial fuels. | propose to
utilize glucose, palmitate, ceramide and a mixture of cytokines in the long-term
incubation studies. Lastly, | plan to confirm my findings in in vitro model systems in
islets derived from diabetic rodents [Zucker diabetic fatty rat; ZDF rat] and diabetic
human islets, if they become available. | will accomplish my goals by conducting studies

described under the following three Specific Aims.



32

MEMBRANE

CYTOSOL Activation

Normal ROS
Generation Generation
Insulin Apoptosis
Secretion

Figure 11: The above figure depicts both the positive and negative modulatory roles of

ROS generation mediated via Tiam1/Rac1/Nox signaling axis.
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Specific Aim 1: To determine contributory roles of Nox-derived ROS in the sequence of

events leading to insulin secretion.

Specific Aim 2: To determine contributory roles of Nox-derived ROS in the onset of

mitochondrial defects leading to the demise of the islet B-cell following exposure to
elevated glucose, lipids, ceramide or a mixture of cytokines.

Specific Aim 3: To determine the functional status of Nox signaling cascade in islets

from animal models of obesity and diabetes. Also, to assess these signaling steps in

islets from human donors with type 2 diabetes.

| will use a number of biochemical, molecular and cell biological and
immunological approaches in primary rat islets and glucose-responsive 8 [INS 832/13]
cells to accomplish the above objectives. It is my hope that data derived from the
proposed studies will provide fresh insights into regulatory roles of Nox signaling
cascade in islet function following short term exposure to nutrient secretagogues. | also
envision that data from my studies will provide much needed information on regulatory
roles of Nox-derived ROS signaling steps in the onset of mitochondrial dysfunction
leading to the demise of the B-cell under the duress of glucolipotoxic conditions. My
long-term goal is to develop specific therapeutic modalities to prevent the

establishment of these (B-cell defects and the onset of diabetes.
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Chapter |

Introduction

Glucose stimulated insulin secretion (GSIS) involves a series of metabolic and
cationic events, leading to translocation of insulin-laden secretory granules from a distal
site toward the plasma membrane for fusion and release of insulin into circulation. It is
widely accepted that vesicular transport and fusion involves interplay between signaling
proteins, including vesicle-associated membrane proteins on the secretory granule and
docking proteins on the plasma membrane (44, 45, 49). Furthermore, interaction
between these proteins is widely felt to require cytoskeletal remodeling, which is under
the fine control of small molecular mass G proteins belonging to the Rho subfamily
(e.g., Cdc42 and Rac1; see Ref. 84 for a recent review). Several effector proteins for
these small G proteins have been identified in the islet B-cell, including phospholipases,

p21-activated kinase-1 kinase, and ERK1/2 kinases (68, 74, 84).

It is well established that G proteins undergo posttranslational modifications for
optimal activation, membrane trafficking, and effector interactions. The majority of small
G proteins undergo a series of modifications at their COOH-terminal cysteine residues,
which  include prenylation (i.e., farnesylation and  geranylgeranylation),
carboxylmethylation (CML), and palmitoylation. In addition to small G proteins, the y-
subunits of trimeric G proteins undergo prenylation and CML (66, 74, 75, 79, 84).
Indeed, using pharmacological and molecular biological approaches, several recent

studies have confirmed the requisite nature of these modifications in GSIS in a variety
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of insulin-secreting cells, including clonal B-cells, normal rodent islets, and human islets

(see Ref. 84 for a recent review).

A growing body of recent evidence implicated roles for reactive oxygen species
(ROS) in metabolic dysfunction of the islet B-cell under the duress of glucolipotoxicity,
cytokines, and ceramide (178 - 180). It has been shown that increased ROS generation
seen under the above experimental conditions is derived from the activation of
phagocyte-like NADPH oxidase (Nox), since inhibition of this enzyme by selective
inhibitors [e.g., Diphenylene iodonium chloride (DPI) or apocynin] or transfection of
short interfering RNA (siRNA) against individual subunits of Nox (e.g., p47°")

significantly attenuated deleterious effects of aforementioned Noxious stimuli (38, 39).

Despite the negative modulatory role(s) of ROS in cell function, recent evidence
appears to indicate that a tonic increase in the ROS generation may be necessary for
GSIS and fatty acid-induced insulin secretion (7, 110 - 113). ROS have also been
shown to modulate many physiological processes, including ion transport and protein
phosphorylation (181 - 184). As reviewed recently by Pi and Collins (7), ROS plays
“second messenger” role in modulating islet B-cell function. Along these lines, studies
by Pi and coworkers (113) have demonstrated that glucose-mediated generation of
H.O, alters intracellular redox status, leading to augmented GSIS; such effects were
attenuated by coprovision of antioxidants. These findings were further strengthened by
Leloup and colleagues (10), suggesting that generation of mitochondrial ROS is a
requisite stimulus for GSIS to occur. Together, these data implicate an essential role for

Nox-derived ROS as a signaling molecule involved in the regulation of (3-cell function,
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specifically at the level of insulin secretion. The present studies are undertaken to
determine potential mechanisms underlying nutrient-induced elevation of ROS levels in
INS 832/13 cells and normal rat islets. Specifically, | have determined the roles of G
proteins in this signaling cascade; this was accomplished by selective inhibitors of
protein prenylation (e.g., GGTI-2147 and FTI-277), which have been used to verify the
roles for G proteins in GSIS (84). In addition, | have examined permissive roles for
endogenous GTP in nutrient-induced ROS generation. My findings implicate that
prenylation-sensitive signaling steps are necessary for glucose- and mitochondrial fuel-

induced intracellular generation of ROS in INS 832/13 cells and normal rat islets.

These findings have been published in Am J Physiol Regul Integr Comp Physiol.

2011; 300(3):R756-762. Reprint of this publication is included as Appendix A.
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Materials and Methods

Materials

DPI, apocynin, pertussis toxin (Ptx), mycophenolic acid (MPA), cyclosporine A,
rapamycin, mono-methylsuccinate, a-keto-isocaproic acid, and 2', 7'-dichlorofluorescein
diacetate (DCHFDA) were from Sigma (St. Louis, MO). p47°"* siRNA and p47°P"
antiserum were from Santa Cruz Biotechnology (Santa Cruz, CA). FTI-277 and GGTI-
2147 were from Calbiochem (San Diego, CA). Rac1 activation kit was from

Cytoskeleton (Denver, CO).

Insulin-secreting cells

INS 832/13 cells were provided by Dr. Chris Newgard (Duke University Medical
Center, Durham, NC) and were cultured in RPMI-1640 medium containing 10% heat-
inactivated fetal bovine serum supplemented with 100 1U/ml penicillin and 100 1U/ml
streptomycin, 1 mM sodium pyruvate, 50 yM 2-mercaptoethanol, and 10 mM HEPES
(pH 7.4). The medium was changed twice, and cells were subcloned weekly. Islets from
normal Sprague-Dawley rats were isolated by collagenase digestion method described
previously (85). All animal experiments, including isolation of pancreatic islets from
normal Sprague-Dawley rats, were reviewed and approved by the Wayne State

University Institutional Animal Care and Use Committee.

Quantitation of ROS
This was carried out as our laboratory described recently in 179, 180. In brief,

INS 832/13 cells were seeded in six-well plate and treated with various insulin
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secretagogues and inhibitors (or their respective diluents), as indicated in the text.
Following incubation, the medium was removed, and cells were further incubated with
DCHFDA (10 uM) at 37°C for 30 min in RPMI. DCHFDA, being a nonpolar compound,
diffuses rapidly into the cells and hydrolyzes readily by cellular esterases into polar 2,
7'-dichlorofluorescein. In the presence of ROS, 2', 7'-dichlorofluorescein readily oxidizes
to fluorescent dichlorofluorescein. The cells were washed with ice-cold phosphate-
buffered saline and harvested, and equal amounts of protein were taken for
fluorescence measurements (emission wavelength: 535 nm and excitation wavelength:

485nm) using luminescence spectrophotometer (PerkinElmer, Waltham, MA).

Inhibition of Nox activity via molecular biological or pharmacological approaches

INS 832/13 cells were seeded in a 24-well plate and at 50-60% confluence either
mock transfected or transfected with antisense p47°"°* siRNA at a final concentration of
150 nM and cultured for 24 h. Following this, cells were stimulated with low glucose (2.5
mM) or high glucose (20 mM) for 1 h. At the end of stimulation, culture medium was
removed; cells were incubated further with DCHFDA (10 uM) at 37°C for 30 min in
RPMI, washed with ice cold PBS, and harvested; equal amount of proteins were taken;
and fluorescence was measured (excitation wavelength: 485 nm, and emission
wavelength: 535 nm) using luminescence spectrophotometer as described above.
Alternatively, Nox activity was inhibited via a pharmacological approach by incubating
INS 832/13 cells either with apocynin (100 uM; 12 h) or DPI (5 uM; 2 h) in low-serum,
low-glucose-containing medium. Following incubation, cells were stimulated with low
glucose (2.5 mM) or high glucose (20 mM) for 1 h in the continuous absence or

presence of inhibitors, and NADPH activity was measured by DCHFDA assay, as
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described above. The amount of fluorescence recorded is directly correlated with the

amount of superoxide radicals generated due to Nox activity.

Rac1 activation assay

This was accomplished using a pull-down assay that our laboratory described
recently [185]. Briefly, INS 832/13 cells were starved overnight in low-serum, low-
glucose-containing medium in either the presence or absence of MPA (10 uM). At the
end of incubation, cells were stimulated with low glucose (2.5 mM) or high glucose (20
mM) for 30 min in the continuous presence or absence of MPA. Lysates (~500 ug
protein) were clarified by centrifugation for 5 min at 4,800 g, and p21-activated kinase-
binding domain beads (20 ul) were added to the supernatant. The mixture was then
rotated for 1 h at 4°C and pelleted by centrifugation at 4,000 g for 3 min. The pellet was
washed once with lysis buffer followed by a rinse (3x) in wash buffer (25 mM Tris, pH
7.5, 30 mM MgCI2, 40 mM NaCl, and 150 mM EDTA). Proteins in the pellet were
resolved by SDS-PAGE and transferred onto a nitrocellulose membrane, and Western

blotting method determined the relative abundance of activated Rac1.

Other assays and statistical analysis of data

Protein concentrations were determined by Bradford's dye-binding method using
bovine serum albumin as the standard. Statistical significance of differences between
diluent and experimental groups was determined by Student's t-test and ANOVA

analysis. p < 0.05 was considered significant.
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RESULTS

Pharmacological inhibitors or siRNA-p47°"°* markedly attenuate glucose-induced
ROS generation in insulin-secreting cells

At the outset, | determined whether stimulatory glucose promotes the generation
of ROS, and whether selective inhibition of Nox attenuates such an effect in this model
system. Data in Fig. 12 demonstrated a significant increase (~1.7-fold) in glucose-
induced ROS generation in INS 832/13 cells, which was markedly attenuated by
inhibitors of Nox holoenzyme (e.g., apocynin and DPI; Panel A). The above
observations were further validated by knockdown of p47°"°% a cytosolic subunit of Nox.
Data in Fig. 12; Panel B indicated ~50% inhibition in the expression of p47P"°* subunit
after siRNA transfection, and under these conditions | noticed a marked attenuation of

glucose-induced ROS generation (Fig. 12; Panel C).

Selective inhibitors of protein prenylation markedly attenuate glucose-induced
ROS generation in INS 832/13 cells and normal rat islets

Several earlier studies have demonstrated that posttranslational farnesylation
and geranylgeranylation of specific G proteins are necessary for GSIS [68, 84]. With
this in mind, using a pharmacological approach, | examined whether glucose-induced
ROS generation in isolated B-cells is sensitive to inhibition of protein prenylation. Data in
Fig. 13 demonstrated a significant reduction in glucose-induced ROS generation by
selective inhibitors of farnesylation (e.g., FTI-277) or geranylgeranylation (e.g., GGTI-

2147) in INS 832/13 cells (A) or rat islets (B). Together, these findings suggested
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involvement of farnesylated and geranylgeranylated proteins in the signaling events,

leading to glucose-induced ROS generation.

Protein prenylation is also necessary for mitochondrial fuel-, but not KCl-induced
ROS generation

| next examined if a mixture of mitochondrial fuels (e.g., a-keto-isocaproic acid
and mono-methylsuccinate), which elicits insulin secretion from INS 832/13 cells [186],
also promotes Nox-mediated generation of ROS in these cells. Data in Fig. 14
demonstrated that mitochondrial fuels increased ROS generation in a manner akin to
glucose. Furthermore, | observed that such a signaling step was inhibited by FTI-277
and GGTI-2147, albeit to a lesser degree (Fig. 14) compared with glucose-induced ROS
generation (Fig. 13). Together, data in Figs. 13 and 14 implicate protein farnesylation
and geranylgeranylation in the cascade of events, leading to nutrient-induced
generation of ROS in INS 832/13 cells. It should be noted that ROS generation appears
to be specific for nutrient secretagogues, since a depolarizing concentration of KCI (40
mM), which facilitates insulin release via membrane depolarization and associated
increase in cytosolic calcium, failed to promote ROS generation. (i.e., 109 £ 1.2% of

control values; mean + SE; n = 3).

Depletion of intracellular GTP inhibits glucose-induced Rac1 activation and ROS
generation in INS 832/13 cells

Several previous studies have demonstrated a critical requirement for
endogenous GTP in physiological insulin secretion by selectively inhibiting inosine

monophosphate dehydrogenase (IMPDH) with MPA [62, 63]. Herein, using MPA, |



42

examined if endogenous GTP is required for glucose-induced Nox activation and
associated ROS generation in INS 832/13 cells. Cyclosporine A and rapamycin were
included as negative controls, which, like MPA, are endowed with immunosuppressive
actions, but not GTP-lowering properties. Data in Table 1 suggested a marked
attenuation in glucose-induced ROS generation by MPA, but not cyclosporine A or
rapamycin. These data indicate a critical requirement for endogenous GTP for glucose
to promote ROS generation in these cells. Together, data in Figs. 13, 14 and Table 1
indicate potential involvement of prenylated G protein, requiring newly synthesized GTP
due to the catalytic activation of IMPDH in the signaling events leading to ROS

generation.

| next examined if GTP depletion impedes glucose-induced activation of specific
G proteins involved in GSIS. To test this, | quantitated glucose-induced activation of
Rac1 in MPA-treated (i.e., GTP-depleted) INS 832/13 cells. The premise underlying the
selection of Rac1 in these studies is based on the evidence that 1) it has been shown to
be activated by glucose and involved in GSIS; 2) it undergoes geranylgeranylation, and
GGTI-2147 (above) inhibits glucose-induced Rac1 activation and GSIS; and 3) it is a
member of the Nox holoenzyme. Data shown in Fig. 15 demonstrated that stimulatory
concentration of glucose failed to activate Rac1 in INS 832/13 cells following depletion

of endogenous GTP using MPA.
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A Ptx-sensitive G protein mediates glucose-induced ROS generation in INS
832/13 cells

In the last series of studies, | determined the nature of the prenylated protein that
might be involved in glucose-induced ROS generation shown in Figs. 13 and 14. In this
context, our laboratory recently reported that coprovision of FTI-277 or FTI-2628 or
siRNA-mediated knockdown of farnesyl transferase B-subunit resulted in a significant
inhibition of glucose-stimulated activation of ERK1/2, Rac1, and insulin secretion,
further ruling out the potential involvement of Ras in these signaling steps [185]. Based
on these findings, | speculated a prenylated protein, most likely the y-subunit(s) of
trimeric G proteins, in the regulation of the above signaling cascade. Herein, | examined
if a Ptx-sensitive trimeric G protein is involved in glucose-induced ROS generation. Data
shown in Fig. 16 demonstrated marked attenuation of glucose-induced ROS generation

in INS 832/13 cells (A) and normal rat islets (B) treated with Ptx.
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Figure 12:
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Selective inhibitor of NADPH oxidase or short interfering RNA (SiRNA)-p47P"
inhibits glucose-stimulated reactive oxygen species (ROS) generation in insulin-
secreting cells. INS 832/13 cells were incubated with either diluent or apocynin (100 uM,
12 h; A) or Diphenylene iodonium chloride (DPI; 5 uM, 2 h; A) or transfected with
p47°"* siRNA (B and C), following which they were stimulated with either low (2.5 mM;
LG) or high glucose (20 mM; HG) for 1 h. ROS generated was quantified as
dichlorofluorescein (DCF) fluorescence and expressed as arbitrary units (AU). B:
p47°"°* knockdown efficiency was determined by immunoblotting. Values are means +
SE from three independent experiments done in triplicates in each case. *p < 0.05 vs.

LG alone or mock transfected LG. **p < 0.05 vs. HG alone or mock transfected HG.
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Figure 13:
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Selective inhibitors of protein farnesylation or geranylgeranylation markedly
attenuate glucose-induced ROS generation in INS 832/13 cells and normal rodent
islets. INS 832/13 cells (A) or normal rat islets (B) were incubated overnight in the
absence or presence of FTI-277 (5 uM; left) or GGTI-2147 (10 uM; right), followed by
stimulation with either LG (2.5 mM) or HG (20 mM) for 1 h. ROS generated was
quantified as DCF fluorescence and expressed as AU. Values are means + SE from
three independent experiments done in triplicates (in INS 832/13 cells) and in duplicates

(inislets) in each case. *p < 0.05 vs. LG alone. **p < 0.05 vs. HG alone.
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Selective inhibitors of protein prenylation inhibit ROS generation induced by a
mixture of mitochondrial (Mito) fuels in INS 832/13 cells. INS 832/13 cells were
incubated overnight in the presence or absence of FTI-277 (5 uM; A) and GGTI-2147
(10 uM; B), followed by stimulation with LG (2.5 mM) or a mixture of Mito fuels
[monomethyl succinate (MMS) = 20 mM and a-keto-isocaproic acid (KIC) = 5 mM] for 1
h in continuous presence or absence of inhibitors. ROS generated was quantified as
DCF fluorescence and expressed as AU. Values are means = SE from three
independent experiments done in triplicates in each case. *p < 0.05 vs. glucose alone.

**p < 0.05 vs. Mito fuels alone.
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Figure 15:
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Endogenous GTP levels are required for glucose-induced Rac1 activation and
subsequent ROS generation in pancreatic B-cells. INS 832/13 cells were incubated
overnight with either diluent or mycophenolic acid (MPA; 10 uM), followed by stimulation
with either LG (5 mM) or HG (20 mM) for 30 min. The degree of Rac1 activation was
determined by p21-activated kinase-binding domain (PAK-PBD) pull-down assay, as
described in materials and methods. A representative blot from two pull-down assays

yielding similar data is depicted here.
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Pertussis toxin (Ptx) pretreatment attenuates glucose-induced ROS generation in
INS 832/13 cells or normal rat islets. Untreated or Ptx-treated (100 ng/ml) INS 832/13
cells (A) or normal rat islets (B) were stimulated with either LG (2.5 mM) or HG (20 mM)
for 1 h. ROS generated was quantified as DCF fluorescence and expressed as AU.
Values are means + SE from three independent experiments done in triplicates (in INS
832/13 cell) and in duplicates (in islets) in each case. *p < 0.05 vs. LG alone. **p < 0.05

vs. HG alone.
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Table 1:
Degree of ROS generation
Conditions [fold over basal glucose]
Low glucose 1.00
High Glucose 1.58+ 0.06 **
Low glucose + mycophenolic acid 1.08+ 0.02*

High glucose + mycophenolic acid

1.16% 0.04 ***

Low glucose +cyclosporine A 1.06+0.09*
High glucose + cyclosporine A 146+ 0.14 **
Low glucose + rapamycin 1.05+ 0.08*
High glucose + rapamycin 142+ 015 **

INS 832/13 cells were incubated with low glucose [2.5 mM] low serum in the
presence or absence of mycophenolic acid [10 pM], cyclosporine-A [5 uM] and
rapamycin [100 nM] for 24 h. Following, cells were stimulated either with low [2.5 mM]
or high glucose [20 mM] for 1 h in continuous presence and or absence of the above
inhibitors as indicated in the Table 1. At the end of stimulation, cells were incubated with
DCHFDA [10 uM] for 30 min and harvested for DCF fluorescence. ROS generated was
quantified as DCF fluorescence and expressed as arbitrary units. Data are mean + SEM
from three independent experiments in each case. * represents no significant difference

vs. low glucose alone; ** p <0.05 vs. low glucose alone; *** p <0.05 vs. high glucose

alone.
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Discussion

The overall objective of the present study was to determine potential
mechanisms underlying nutrient-induced generation of ROS in isolated B-cells. Salient
features of my studies are as follows: 1) glucose and mitochondrial fuels, but not
membrane depolarizing KCI, increase ROS generation significantly; 2) an increase in
ROS seen under these conditions is derived from Nox, since pharmacological or
molecular biological inhibition of Nox inhibited ROS generation; 3) such a regulatory
effect of glucose requires the activation of farnesylated as well as geranylgeranylated
proteins; 4) MPA, but not rapamycin or cyclosporine A, completely inhibits glucose-
induced ROS generation, implying that endogenous GTP is necessary for such an
effect; and 5) inactivation of Ptx-mediated ADP ribosylation of an inhibitory G protein(s)
markedly attenuates glucose induced ROS generation. Taken together, these findings
provide insights into potential G protein-mediated regulation of ROS in the islet B-cells

under conditions in which they regulate physiological insulin secretion.

Nox is a highly regulated membrane-associated protein complex that facilitates
the one electron reduction of oxygen to superoxide anion involving oxidation of cytosolic
NADPH. The Nox holoenzyme is composed of membrane as well as cytosolic
components. The membrane-associated catalytic core consists of gp91°"*, p22°"** and
the small G protein Rap1. The cytosolic regulatory components include p47°"%%, p67°"*
p40P"* and the small G protein Rac. Following stimulation, the cytosolic components of
Nox translocate to the membrane fraction for association with the catalytic core for

holoenzyme assembly. Available evidence suggests that a protein kinase C-sensitive
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phosphorylation of p47°"°% |eads to its translocation to the membrane fraction (187). It
has also been shown that functional activation of Rac1 (Rac1.GTP) is vital for the

holoenzyme assembly and activation of Nox in insulin-secreting cells (179, 180).

Along these lines, Oliveira et al. (112) provided a detailed description of
localization, expression, and functional regulation of Nox within the islet. More recent
pharmacological and molecular biological observations by Morgan and coworkers (14)
have provided compelling evidence for a regulatory role for Nox in glucose-stimulated
insulin secretion in rat islets under static incubation and perifusion conditions. Follow-up
studies from this group have demonstrated key roles for Nox-derived ROS in palmitate-
induced insulin secretion in the presence of submaximal concentration of glucose in
islets (110). Under the above conditions, palmitate not only promoted translocation of
p47°"°* to the membrane fraction, but also upregulated the protein content of p47P"
and the mRNA levels of p22°"°% gp91°P"°% p47P"°* proinsulin, and the G protein-coupled
receptor 40. Essential role for Nox in palmitate-induced effects on B-cells was further
strengthened by their observations to indicate a marked inhibition of fatty acid
stimulation of insulin secretion in the presence of high-glucose concentration by
inhibition of Nox activity. Based on these findings, it is evident that Nox plays key roles

in islet function, including gene regulation and insulin secretion.

These observations also implicate roles for farnesylated and geranylgeranylated
proteins in nutrient-induced Nox activation and associated ROS generation; the
geranylated protein involved in nutrient-mediated activation of Nox might be Rac1, since

it is one of the components of the Nox holoenzyme (180). Pharmacological (i.e., generic
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as well as more selective inhibitors of geranylgeranylation of Rac1), as well as
molecular biological (i.e., dominant negative mutants of prenyltransferases; Ref. 95)
studies from our laboratory have clearly implicated Rac1 in islet function, including
insulin secretion (84 - 86). The identity of the farnesylated protein, which is required for
nutrient-induced ROS generation, remains to be determined. It is likely that it might
represent the y-subunit of a Ptx-sensitive G protein, since our laboratory has
demonstrated earlier regulation of Ptx-sensitive G proteins by glucose in clonal B-cells,
normal rat islets, and human islets (88, 188 - 190). Several earlier studies by Seaquist
et al (191), Robertson et al (69), and Sharp (192) have provided evidence for the
expression of inhibitory (e.g., Gi or Go) class of Ptx-sensitive heterotrimeric proteins in
the islet B-cell. Furthermore, studies from our laboratory (188) and those of Konrad and
coworkers (193) have demonstrated functionally active heterotrimeric G proteins on the
insulin granules in isolated B-cells. Lastly, using clonal B-cells, normal rat islets, and
human islets, our laboratory has been able to demonstrate activation of the CML of y-
subunits by glucose; such effects of glucose were shown to be sensitive to Ptx, GTP,

and extracellular calcium (190).

Existing experimental evidence also implicates role(s) for trimeric G proteins,
specifically the inhibitory Gi class of proteins in the regulation of NADPH-oxidase
activity. For example, using human fat cells, Kreuzer and coworker’s (194) demonstrate
insulin-induced activation of NADPH-dependent H,O, generation in human adipocyte
plasma membranes is mediated by Gai2, which is regulated via ADP-ribosylation by
Ptx. Additional studies are needed to conclusively determine the identity of this protein.

However, based on our laboratory’s recently published evidence (185), it is unlikely that
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the farnesylated protein is Ras, since inhibition of Ras (a farnesylated protein) had no
effects on glucose-induced ERK1/2 phosphorylation, Rac1 activation, and insulin

secretion.

These findings also suggested that depletion of endogenous GTP by MPA
results in a decreased activation of glucose-induced Rac1 and ROS generation. In this
context, original studies by Metz and coworkers (62, 63) have documented permissive
roles for endogenous GTP in physiological insulin secretion. MPA, which selectively
inhibits GTP biosynthesis by inhibiting IMPDH, has been shown to inhibit GSIS and
mastoparan-induced insulin secretion (62, 65). Even though inhibition of G protein
activation was speculated to be one of the underlying mechanisms in the inhibition of
insulin secretion following GTP depletion by MPA, very little information is available to
substantiate that speculation. In this context, our laboratory has described earlier the
inability of glucose to increase the CML (and activation) of small G proteins in GTP-
depleted cells (66). The present studies identify Rac1 as one of the target proteins for
glucose-mediated, endogenous GTP-dependent effects in B-cells. These present
findings are also in agreement with observations of Krotz et al. (195), demonstrating

inhibition of endothelial Nox by MPA via a Rac1- dependent mechanism.
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CHAPTER - 1I

Introduction

Several lines of evidence from multiple laboratories suggests that chronic
exposure of isolated B-cells to elevated saturated fatty acids [e.g., palmitic acid; PA]
leads to a significant metabolic dysregulation and eventual demise of the B-cell [158,
196, 197]. Multiple mechanisms have been put forth to explain PA-induced metabolic
defects; one of these include generation of intracellular oxidative stress [e.g., reactive
oxygen species; ROS; 118, 153, 198], albeit recent studies by Moore et al. [199] appear
to argue against fatty acid induced oxidative stress in the pancreatic -cell. A signaling
step involved in the increased generation of ROS and associated induction of
intracellular oxidative stress in the pancreatic p-cell is the activation of the phagocytic
Nox system, which is a highly regulated membrane-associated protein complex that
catalyzes the one electron reduction of oxygen to superoxide anion involving oxidation
of cytosolic NADPH. The phagocytic Nox is a multicomponent system comprised of
membrane as well as cytosolic components. The membrane-associated catalytic core is
a complex consisting of gp91°"*, p22°"°* and the small G-protein Rap1. The cytosolic
regulatory components include p47°"%, p67°" and the small G-protein Rac1 [16, 84,
111, 114, 115]. Following stimulation, the cytosolic components of NADPH oxidase
translocate to the membrane for association with the catalytic core for holoenzyme
assembly. Available evidence also suggests that a protein kinase C (-sensitive

phosphorylation of p47P"°* |eads to its translocation to the membrane fraction [187]. It
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has also been shown that functional activation of Rac [i.e., GTP-Rac] is vital for the

holoenzyme assembly and activation of NOX [40 - 42].

Several recent studies have demonstrated localization and functional activation
of the Nox in clonal B-cells, normal rat islets and human islets under the duress of
various stimuli including elevated levels of glucose, saturated fatty acids and
proinflammatory cytokines [13, 112, 198, 200]. It has also been demonstrated that
pharmacological inhibition of Nox by Diphenylene iodonium chloride [DPI] or anti-sense
oligonucleotides for p47°"°* markedly attenuated glucose-induced ROS production and
oxidative stress, suggesting a critical involvement of Nox in the metabolic dysfunction
induced by glucose [14]. These data implicate a significant contributory role for Nox in
the metabolic dysfunction of the B-cell under conditions of oxidative stress [31, 201,
202]. Furthermore, existing evidence implicates apoptotic signaling cascade in cytokine-
induced defects, which operate via an intrinsic pathway involving damage of the
mitochondrial membrane and subsequent release of cytochrome C leading to caspase-
3 activation [177, 169]. Unlike many other mammalian cell types, B-cells lack a strong

defense mechanism, making them more vulnerable to oxidative damage [31].

Despite the aforementioned compelling lines of evidence, very little has been
studied with regards to the potential contributory roles of small G-proteins [e.g., Rac1] in
the cascade of events leading to PA-induced Nox-mediated superoxides generation in
B-cells. With this in mind, | undertook the current study to test the hypothesis that
palmitate- or cytokine-induced ROS generation and subsequent oxidative stress in [3-

cells is mediated via functional activation of Rac1 [Rac1.GTP] since it is considered to
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represent one of the signaling steps necessary for the functional regulation and
activation of the Nox. To accomplish this, | investigated regulation of Nox activity in
insulin-secreting cells following exposure to palmitate or a mixture of cytokines. | also
examined potential contributory roles of ceramide, a biologically-active sphingolipid,
which is biosynthesized from palmitate via the de novo pathway [Figure 10], in the
regulation of Nox. Herein, | demonstrate that Nox signaling pathway plays a critical role
in the generation of superoxides and lipid peroxides in palmitate- or cytokines-mediated
effects on isolated B-cells. | also present the first evidence to suggest a modulatory role
for Tiam1, a guanine nucleotide exchange factor for Rac1 [207], in this signaling
pathway leading to the onset of mitochondrial dysfunction. Lastly, | report that post
translational modification of Rac1 is necessary for optimal Nox activation in insulin

secreting cells.

Please note that my observations on palmitate and ceramide-induced regulation
of Nox activation and metabolic dysfunction of the B-cell are published in Biochem
Pharmacol 2010. Furthermore, the work | have carried out in collaboration with Dr.
Wasanthi Subasinghe on cytokine-mediated Nox activation and mitochondrial
dysfunction of the islet B-cell is published in Am J Physiol Regul Integr Comp Physiol

2011. Reprints of these two publications are included as Appendices B & C.
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Materials and Methods

Materials

C2-Ceramide, Dihydroceramide, GGTI-2147 and NSC23766 were from
Calbiochem [San Diego, CA]. Apocynin, Nitroblue tetrazolinium salt, malondialdehyde,
thiobarbituric acid, diphenyleneiodonium chloride, butylated hydroxytoulene, oleic acid
and palmitic acid were from Sigma [St. Louis, MQO]. p47°"* siRNA and antibodies
directed against p47°"%* p67°"°* actin were from Santa Cruz Biotechnology [Santa
Cruz, CA]. Rac1 activation kit was purchased from Cytoskeleton Inc. [Denver, CO]. JC-
1 assay kit was from Cell Technology Inc. [Mountain View, CA]. Palmitate stock
solutions were prepared as described in Ref. [203]. Interleukin-13, IFN-y, and TNF-a
were obtained from R&D Systems (Minneapolis, MN). Caspase 3 antiserum was

obtained from Cell Signaling Technology (Danvers, MA).

Insulin-secreting cells

INS 832/13 cells were provided by Dr. Chris Newgard [Duke University Medical
Center, Durham, NC] and were cultured in RPMI 1640 medium containing 10% heat-
inactivated fetal bovine serum supplemented with 100 IU/ml penicillin and 100 [U/ml
streptomycin, 1 mM sodium pyruvate, 50 yM 2-mercaptoethanol, and 10 mM HEPES
[pH 7.4]. The medium was changed twice and cells were subcloned weekly. Islets were
isolated from normal Sprague—Dawley rats using the collagenases digestion method

described previously [203].
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Quantitation of superoxide generation by nitroblue tetrazolium [NBT] assay

INS 832/13 cells were plated in six-well plates and grown to subconfluence and
then treated with PA [100 pM], C2-CER [30 uM], FB-1 [10 uM], DPI [5 uM] or
NSC23766 [20 uM] in different combinations as described in the text. The medium was
then removed and the cells were washed once with PBS and further incubated with
0.25% NBT for 30 min at 37 °C. Cells were then harvested and pelleted by low-speed
centrifugation. The resulting pellet was resuspended in 50% acetic acid. The reduced
NBT formazan product was quantified by measuring the absorbance at 510 nm using

Beckman DUG40 spectrophotometer.

Quantitation of superoxide generation by malondialdehyde [MDA] assay

INS 832/13 cell lysates derived from control or treated cells [100 ug protein] were
treated with 10% trichloro acetic acid, 2% butylated hydroxytoulene, and freshly
prepared 0.67% thiobarbituric acid. Following this, the samples were boiled for 15-20
min and then allowed to cool down at 4-8 °C for 15-20 min. The samples were then
gently vortexed and centrifuged at 3500 rpm for 15 min. The resulting supernatant was
used to measure the absorbance at 532 nm. A standard concentration curve was used

to extrapolate MDA generated from various samples.

Nox assay

INS 832/13 cells were plated in six-well plates, grown to subconfluence and then
treated with either diluent or PA [100 uM] or C2-CER [30 uM] for 6 h. After treatment the
medium was removed and the cells were washed once with PBS and further incubated

with 5 yM of 2', 7'-dichlorodihydrofluorescein diacetate [DCHFDA] for 30 min at 37 °C.
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Cells were then harvested and pelleted by low-speed centrifugation and the protein
content of the pellet was determined using Bradford's assay. Following to this, equal
amount of proteins were taken and fluorescence in each condition was recorded
[excitation — 485 nm and emission — 530 nm]. The amount of fluorescence recorded is

directly correlated to the amount of superoxide radicals generated due to Nox activity.

Molecular biological or pharmacological inhibition of Nox activity

INS 832/13 cells were seeded in a 24-well plate up to 50% confluence and
transfected with mock or antisense siRNA-p47°"°* (150 nM) and allowed to grow up to
80% or higher confluence. Then the cells were treated either with diluent or cytomix for
a 12-h period. Following this, culture medium was removed, and cells were incubated
further in DCHFDA (10 pM) at 37°C for 30 min, washed twice with ice-cold PBS, and
harvested; equal amounts of proteins (50 ug) were taken, and fluorescence was
measured (Ex: 485 nm and Em: 535 nm) using luminescence spectrophotometer
(PerkinElmer, Waltham, MA). Alternatively, Nox was inhibited via a pharmacological
approach by treating INS 832/13 cells with either diluent or cytomix for 12 or 24 h in the
absence or presence of apocynin (75 pM), and Nox activity was measured with

DCFHDA assay, as described above.

Rac1 activation assay

INS 832/13 cells were treated with either diluent or NSC23766 [20 uM] or C2-
CER or PA or oleate or cytokines or GGTI-2147 [10 uM]. Before treatment, cells were
incubated overnight with either NSC23766 or GGTI-2147 in a low serum-low glucose

containing medium. Cells were further incubated with PA or C2-CER or cytokines as
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indicated in the text in the continuous presence of either NSC23766 or GGTI-2147 or
diluent. Lysates [500 ug protein] were clarified by centrifugation for 5 min at 4800 x g,
and PAK-PBD [p21-activated kinase-binding domain] beads [20 pl] were added to the
supernatant. The mixture was then rotated for 1 h at 4 °C and pelleted by centrifugation
at 4000 x g for 3 min. The resulting pellet was washed once with lysis buffer followed by
a rinse [3%] in wash buffer [25 mM Tris, pH 7.5, 30 mM MgCI2, 40 mM NaCl, and 150
mM EDTA]. Proteins in the pellet were resolved by SDS-PAGE and transferred onto a
nitrocellulose membrane, and Western blotting method determined the relative

abundance of activated Rac1.

Assessment of mitochondrial dysfunction by JC-1 assay

Loss of mitochondrial membrane potential in cells has been estimated using JC-1
assay kit. Briefly, INS 832/13 cells were grown at 80% confluence on the cover slips
and were incubated with and without NSC23766 [20 pM] or GGTI-2147 [10 uM]
overnight in low serum—-low glucose media. Cells were then treated with C2-CER [30
MM] or DHC [30 uM] for 6 h with or without NSC23766, or treated with cytomix for 12 or
24 h in the presence or absence of NSC23766 (20 uM) or GGTI-2147 (10 uM). At the
end of incubation, cells were washed twice with assay buffer (provided with the kit) and
were further incubated for 15 min with JC-1 dye [1x%]. Cells were then washed twice with
assay buffer and the cover slips were mounted onto a glass slide and images were
taken at 40x magnification using Olympus IX71 microscope [Olympus America Inc.,

Center Valley, PA].
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Other assays

Protein concentrations were determined by Bradford's dye-binding method using
bovine serum albumin as the standard. Statistical significance of differences between
diluent and experimental groups was determined by Student's t-test and ANOVA

analysis. p < 0.05 was considered significant.
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RESULTS

PA induces generation of lipid peroxides and ROS in insulin-secreting cells:

At the outset, | determined if exposure of isolated (3-cells to PA results in the
generation of superoxides and lipid peroxides. Data shown in Fig. 17 suggest that
incubation of INS 832/13 cells with PA [100 mM; 6 h] significantly increased lipid
peroxide levels [~2.5-fold; expressed as MDA equivalents; Panel A] and ROS levels
[~2.7-fold; Panel B]. Furthermore, coprovision of DPI, a known inhibitor of Nox
attenuated the PA-induced lipid peroxide levels [~37%] and ROS generation [~31%].
Together, these data suggest that PA-mediated generation of lipid peroxides and ROS

in isolated B-cells may, in part, be due to activation of Nox.

PA induces activation of Nox in pancreatic B-cells:

Data described above prompted me to further investigate potential regulation of
Nox activity by PA in insulin-secreting cells. As stated above, p47°"°* represents one of
the subunits of the Nox holoenzyme which is subjected to regulation in cells under the
duress of oxidative stress. It has been shown that small G protein Rac1, also a member
of the Nox assembly, is also activated under conditions of oxidative stress leading to
activation of Nox activity. Data described in Fig. 18 suggested that incubation of normal
rat islets [Panel A; left] or INS 832/13 cells [Panel A; right] with PA significantly
increased the activation [i.e., GTP-bound form] of Rac1 as determined by the PAK-
pulldown assay [see Material and Methods]. In addition, | observed a marked increase
in the expression of p47°"°* in these cells following exposure to PA [Fig. 18; Panel B].
Together, data in Panels A and B suggest upregulation of expression and function of

key components of Nox holoenzyme in cells exposed to PA. | next quantitated the Nox
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activity to determine if PA-induced activation of Rac1 [Panel A] and p47°"

expression
[Panel B] culminates in the functional activation of the enzyme. Indeed, findings
described in Fig. 18 [Panel C] suggested a significant increase [~97%] in the catalytic
activation of Nox in cells treated with PA. It should be noted that under these conditions,
oleate exerted a modest effect on the Nox activity [Fig. 18; Panel C] without significantly
affecting Rac1 activation in INS 832/13 cells [Fig. 18; Panel D]. Together, these findings

suggest that PA, but not oleate, elicits stimulatory effects on Rac1 activation and Nox

activity.

Tiam1, a GEF for Rac1, is involved in PA-induced Rac1 activation and generation
of superoxides and lipid peroxides in pancreatic B-cells:

It has been demonstrated in many cells types, and more recently in pancreatic 3-
cells, that Rac1 activation is mediated by GEFs, such as Tiam1 [204, 205]. Recent
studies from our laboratory have provided immunological evidence for Tiam1 in insulin
secreting cells, and further indicated that NSC23766, a specific inhibitor of Tiam1,
specifically inhibits GTP-loading onto Rac1, but not Cdc42 and Rho [204]. Therefore, |
next investigated if pretreatment of isolated B-cells to NSC23766 prevents PA-induced
Rac1 activation and associated increase in the generation of superoxides and lipid
peroxides. Data shown in Fig. 19 [Panel A] demonstrated a near complete inhibition of
PA-induced Rac1 activation by NSC23766 suggesting potential requirement for Tiam1
in PA-induced Rac1 activation. Furthermore, | observed that PA-induced generation of
lipid peroxides [Panel B] and reactive oxygen species [Panel C] in INS 832/13 cells was

also reduced [~20-30%] following inhibition of Tiam1-mediated activation of Rac1.
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Together, these data implicate a novel regulatory role(s) for Tiam1/Rac1 signaling

step(s) in PA-mediated generation of superoxides and lipid peroxides in isolated B-cells.

PA-induced generation of lipid peroxides and superoxides may, in part, be due to
intracellular generation of CER via the de novo pathway:

Since PA is the precursor for the de novo biosynthesis of CER, in the next series
of studies | investigated potential roles of intracellularly generated CER in
aforementioned PA-induced effects on isolated B-cells. To address this, | quantitated PA
induced generation of reactive oxygen species and lipid peroxides in cells pre-treated
with or without FB-1, a known inhibitor of de novo biosynthesis of CER from PA [207],
incubation of isolated B-cells with 100 uM PA in presence of FB-1 significantly reduced
PA-induced generation of ROS [~72%; Fig. 20; Panel A] and lipid peroxides [~62%; Fig.
20; Panel B] without significantly affecting these parameters in cells incubated with the
diluent. | next quantitated PA-induced effects on Nox activity as a function of period of
incubation and the concentration of PA. Data in Table 2 indicated that PA elicited
significant stimulatory effects on Nox activity. Maximal effects were seen between 3 and
6 h of incubation. Interestingly, PA effects were not seen beyond 6 h time point as the
Nox activity fell even below the control values. In addition, pre-incubation of these cells
with FB-1 resulted in a significant inhibition in Nox activity at 6 h time point suggesting
potential regulation of Nox activity by intracellularly generated CER [Table 2]. | next
quantitated Nox activity in these cells as a function of PA concentration [0—200 uM] in
the absence or presence of FB-1. Data in Fig. 20 [Panel C] suggested a concentration-
dependent activation of Nox by PA. Further, a significant inhibition of PA-induced Nox

activity by FB-1 was observed. Together, these data suggest that PA-induced effects on
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lipid and superoxide levels and Nox activity may, in part, be due to the intracellularly

generated CER.

A cell-permeable analog of CER mimics PA effects in isolated B-cells:

| next investigated if coprovision of a cell-permeable CER [e.g., C2-CER] mimics
PA-induced oxidative stress in INS 832/13 cells, and if such an increase is mediated via
activation of endogenous Nox. To address this, INS 832/13 cells were incubated with
diluent or C2-CER, which has been effectively used to determine CER-induced
metabolic dysfunction in isolated -cells [206, 207] in the absence or presence of DPI to
inhibit endogenous Nox. Data described in Fig. 21 showed a marked reduction in C2-
CER-induced ROS levels [~71%; Panel A] or lipid peroxides [~69%; Panel B] in cells
exposed to DPI. It should be noted that DPI exerted a modest increase in the
generation of lipid peroxides in the absence of C2-CER without significantly affecting
the basal superoxide generation [Panels A and B; lanes 1 vs. 3]. Taken together, these
findings implicate Nox activity in C2-CER-induced generation of ROS and lipid

peroxides in pancreatic (3-cells.

C2-CER mimics PA effects in inducing p47°"* expression and Nox activity in
isolated B-cells:

As a logical extension to the studies described in Fig. 21, | examined if C2-CER
induces p47°"°* expression and Nox activity in pancreatic B-cells. Data in Fig. 22 [Panel
A] show that incubation of INS 832/13 cells with C2-CER significantly increased p47°"™
expression. Moreover, in a manner akin to PA, C2-CER increased [more than 2-fold] the

Nox activity in INS 832/13 cells [Fig. 22; Panel B]. Together, these data in Figs. 21 and
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22 demonstrate that a cell-permeable analog of C2-CER mimics the effects of PA on

isolated B-cells by increasing the Nox activity.

C2-CER-induced generation of superoxides and lipid peroxides is mediated by
the Tiam1/Rac1 signaling pathway:

Herein, | have examined the possible involvement of Tiam1/Rac1 signaling
cascade in C2-CER-induced oxidative stress in B-cells. Data shown in Fig. 23
suggested a significant activation of Rac1 by C2-CER in INS 832/13 cells [Panel A; left]
and normal rat islets [Panel A; right]. Moreover, coprovision of NSC23766 substantially
inhibited C2-CER-induced Rac1 activation in both cell types. These data clearly suggest
that C2-CER-induced effects on isolated -cells may, in part, be due to activation of a
Rac1-dependent signaling mechanism. Furthermore, | have noticed that C2-CER
induced generation of lipid peroxides [Fig. 23; Panel B] or superoxides [Fig. 23; Panel
C] was reduced [~27-60%] by NSC23766, thus suggesting novel regulation of CER-

mediated effects by a Tiam1/Rac1-dependent signaling mechanism [see below].

C2-CER, but not its inactive analogue, promotes mitochondrial dysfunction in INS
832/13 cells in a Tiam1/Rac1 signaling pathway:

Our laboratory has recently reported that exposure of isolated -cells to C2-CER
results in significant abnormalities in mitochondrial function including loss in membrane
potential and leakage of cytochrome C into the cytosolic compartment [207]. Therefore,
in the last set of experiments | verified if Tiam1/Rac1 signaling step might underlie the
CER-induced mitochondrial dysfunction in INS 832/13 cells. To address this,

mitochondrial membrane potential [MMP] was quantitated by the JC-1 staining method
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in cells exposed to diluent or C2-CER in the absence or presence of NSC23766. To
determine the specificity of CER effects, | have also utilized Dihydroceramide [DHC], an
inactive analogue of CER, on MMP in INS 832/13 cells. Data in Fig. 24 indicated that
exposure of these cells to C2-CER [lower left panel], but not DHC [middle left panel]
significantly lowered the MMP as evidenced by staining of the majority of cells in green
due to reduced MMP. Furthermore, NSC23766 prevented C2-CER-induced loss in
membrane potential [as evidenced by a strong J-aggregation; red color] in these cells,
further supporting the hypothesis that Tiam1/Rac1 signaling pathway contributes to

CER-induced metabolic dysfunction in the pancreatic B-cells.

Cytomix induces phagocyte-like NADPH oxidase activation in INS 832/13 cell:

We quantitated NADPH oxidase activity in INS 832/13 cells exposed to Cytomix
(i.e., IL-1B, IFN-y, TNF-a; 10 ng/ml each). The amount of ROS generation and the
degree of expression of NADPH subunits (p47°"* and p67°"*) were determined
following a 12-h or 24-h incubation of these cells with Cytomix. Data in Fig. 25 showed a
significant increase in ROS generation at these time points (~60 and 85% above the
control at 12 h and 24 h, respectively). Compatible with these findings are data
presented in Fig. 26; Panel A and B, indicating a significant increase in the expression
of p47°"* in these cells following exposure to Cytomix. However, no effect of Cytomix
on the expression of p67°"°* was demonstrable under these conditions (Fig. 26; Panel

C and D).

To further assess whether the Cytomix-induced ROS are derived from NADPH

oxidase, we quantitated Cytomix-induced ROS generation following inhibition of NADPH
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oxidase via two independent approaches. In the first approach, we used apocynin, a
selective inhibitor of NADPH oxidase. Data from these studies indicated a marked
inhibition in Cytomix-induced ROS generation by apocynin. The values for Cytomix-
mediated ROS generation represented 154.0 + 3.9% and 167.8 £ 6.5% at 12 h and 24
h, respectively. The corresponding values in the presence of apocynin reached basal
levels (i.e., 98.1 £ 5.2% and 106.6 £ 9.1% at 12 and 24 h, respectively; n=3 experiments
in each case; P < 0.05). In the second approach, endogenous expression of the p47Phox
was knocked down by transfecting cells with siRNA-p47°"*. Under the current
experimental conditions employed in the study (see MATERIALS AND METHODS), we
were able to reduce p47°"°* expression by ~60—-70% in siRNA-p47°P"**-transfected cells.
Furthermore, the ability of Cytomix to induce ROS generation (following 12 h of
incubation) was completely abolished in siRNAp47°"*-transfected cells (i.e., 102.0 %
5.5% of control; n=3 experiments), suggesting that NADPH oxidase might be the

principal contributor in Cytomix-induced generation of ROS.

Cytomix transiently increases Rac1 activation in INS 832/13 cells: potential
requirement for Tiam1 as a guanine nucleotide exchange factor for Rac1:

As stated above, Rac1, a small G protein, is one of the components of the
NADPH oxidase holoenzyme assembly. Therefore, we next examined whether Cytomix-
induced activation of NADPH oxidase is mediated via activation of Rac1. This was
accomplished by quantitating the GTP-bound Rac1 (active configuration) by a pull-down
assay (see MATERIALS AND METHODS for additional details). Data depicted in Fig.
27; Panel A and B suggested a significant (~1.7-fold), but transient, activation of Rac1

(within 15 min) in INS 832/13 cells following exposure to Cytomix. Rac1.GTP levels
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reached basal levels at 30 min of exposure. These data implicate Rac1 activation as

one of the signaling steps involved in Cytomix mediated effects on isolated B-cells.

Recently, we reported the expression and functional activation of GEFs for small
G proteins in pancreatic B-cells [204]. The primary function of these proteins is to
facilitate GTP/GDP exchange. Our findings in INS 832/13 cells and primary rat islets
have indicated that Tiam1 serves as a GEF for Rac1 [204]. In the current study, we
investigated whether Tiam1 is required for Cytomix-induced activation of Rac1 in INS
832/13 cells. This was accomplished using pharmacological inhibitor, NSC23766, which
selectively inhibits Tiam1-mediated activation of Rac1, but not Cdc42 or Rho in insulin-
secreting B-cells [208]. Data in Fig. 27; Panel C suggested a significant reduction in
Cytomix-induced activation of Rac1 by NSC23766 in INS 832/13 cells. These findings
support the viewpoint that Tiam1 plays a key regulatory role in Rac1 activation elicited

by Cytomix in insulin-secreting cells.

It is well established that posttranslational geranylgeranylation is necessary for
optimal activation of Rac1 in pancreatic B-cells (see Ref 84, for a review). Therefore, we
examined whether geranylgeranylation of Rac1 is necessary for Cytomix-induced
activation of Rac1. This was accomplished via a pharmacological approach, which
involved quantitation of Cytomix-induced activation of Rac1 in cells exposed to diluent
or in the presence of GGTI-2147, a known inhibitor Rac1 geranylgeranylation [84, 85].
Data in Fig. 27; Panel D, showed a marked reduction in Cytomix-induced Rac1

activation in cells exposed to GGTI-2147. Together, data depicted in Fig. 27 suggested
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that Cytomix induces Rac1 activation in INS 832/13 cells, which is sensitive to inhibition

of Tiam1 activation and posttranslational geranylgeranylation.

NSC23766 and GGTI-2147 markedly reduce Cytomix-induced ROS generation in
INS 832/13 cells:

As a logical extension to the above studies, we asked whether inhibitors of Rac1
attenuate Cytomix-induced ROS generation. Data shown in Fig. 28 indicate a marked
reduction in Cytomix-induced ROS generation at both 12- and 24-h time points by
NSC23766 and GGTI-2147. It is noteworthy that GGTI-2147, but not NSC23766, also
reduced the ROS generated under basal conditions (Fig. 28). Taken together, our
findings establish a direct role for Tiam1-dependent, prenylation-sensitive
Rac1activation in the signaling cascade leading to Cytomix-induced NADPH oxidase

and ROS generation in INS 832/13 cells.

Inhibitors of Rac1 activation reduce Cytomix-induced mitochondrial defects in
INS 832/13 cells:

It is widely felt that cytokine-mediated effects on pancreatic B-cells may, in part,
be mediated via alterations in mitochondrial membrane properties, including loss of
MMP leading to cytochrome-c release and caspase-3 activation [171, 207, 217].
Therefore, we examined whether inhibitors of Rac1 activation exert protective effects on
Cytomix-induced loss in MMP. This was accomplished using JC-1 (5, 5°, 6, 6'-
tetrachloro-1, 1°, 3, 3 -tetraethylbenzimidazolyl-carbocyanineiodide) assay. JC-1 is a
lipophilic dye, which fluoresces red when aggregated above the critical concentration

within mitochondria. In cells in which mitochondrial membrane is damaged, JC-1



76

remains in the cytoplasm, as a green fluorescence monomer. Data from these studies,
which are depicted in Fig. 29, suggested a significant loss of MMP in INS 832/13 cells
treated with Cytomix following a 12- or 24-h exposure. Coprovision of NSC23766, a
Tiam1 inhibitor, and GGTI-2147, a prenylation inhibitor, modestly, but significantly
protected these cells against Cytomix-induced damage to the mitochondrial potential
(Fig. 29). Quantitation of fluorescence intensity ratios of red to green further confirmed
these conclusions (Fig. 30). Further, these data also suggested that the protective
effects were more prominent in the case of NSC23766 compared with GGTI-2147 (Figs.
29 and 30). It should be mentioned that NSC23766 exerted inhibitory effects on MMP in
control (i.e., diluent-treated cells). Regardless of this inhibitory effect, it markedly
prevented Cytomix-induced loss in MMP at both time points. Together, these data
indicate that Rac1 activation might be requisite for Cytomix-induced mitochondrial

defects in pancreatic 3-cells.

Tiam1/Rac1 signaling axis is not necessary for Cytomix-induced caspase 3
activation in INS 832/13 cells:

The observed protective effects of NSC23766 against Cytomix-induced loss in
MMP (Figs. 29 and 30) prompted us to investigate whether caspase 3 activation, which
is a hallmark of cellular apoptosis, is inhibited by Tiam1-mediated activation of Rac1. To
accomplish this, INS 832/13 cells were treated with Cytomix (as above) or IL-13 alone
(25 ng/ml) for 12 or 24 h. Activated caspase-3 in the lysates was determined by
Western blot analysis using an antiserum that identifies both the native procaspase and
degradative product of caspase-3. Under these conditions we noticed no significant

effects of NSC23766 on either Cytomix-induced or IL-1B-mediated caspase-3 activation
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at either time points. Cytomix-induced caspase-3 activation represented 1.55 + 0.11
units and 1.83 + 0.24 units at 12 and 24 h, respectively. The corresponding values in
the presence of NSC23766 were 1.40 + 0.14 units and 2.06 +0.32 units, respectively
(n=3 determinations in each case, not significantly different from each other). Likewise,
IL-1B-induced caspase-3 activation represented 1.27 £ 0.10 units and 1.65 + 0.23 units
at 12 and 24 h, respectively. The corresponding values in the presence of NSC23766
were 1.23 £ 0.09 units and 1.71 £ 0.22 units, respectively (n=3 determinations in each
case, not significantly different from each other). Together, these data indicate that
additional mechanisms might underlie caspase-3 activation in these cells elicited by

cytokines.

Evidence to further suggest that the Tiam1/Rac1 signaling step may not be
required for cytokine-induced NO release from INS 832/13 cells:

It is well established that cytokine-mediated effects on isolated B-cells are
mediated via inducible nitric oxide synthase (iNOS) expression and associated NO
release. It has also been suggested that NO exerts damaging effects on mitochondria
leading to caspase-3 activation. Therefore, in the last set of studies, we investigated
whether Tiam1/Rac1 activation is necessary for cytokine-induced NO release in INS
832/13 cells. Data in Fig. 31 demonstrated no significant effect of NSC23766 on either
IL-1B or Cytomix-induced NO release in INS 832/13 cells either at 12 or 24 h. Together,
the above data suggest that Tiam1/Rac1 signaling step is not involved in cytokine-
induced NO release and caspase-3 activation and that additional regulatory steps might

be necessary for these to occur.
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PA induces generation of lipid peroxides and superoxides in INS 832/13 cells:
protection by DPI. INS 832/13 cells were incubated [6 h] with either diluent or PA [100
pMM] and/or DPI [5 uM] as indicated in the figure. Lipid hydroperoxide levels were
measured as MDA equivalents [Panel A] and superoxide levels [Panel B] were
quantitated as formazan equivalents. Data are mean + SEM from three independent
determinations. Values were considered significant at p < 0.05. *Significant effect of PA
to diluent. & Significance between DPI and DPI + PA. **Significance between PA and

DPI + PA.
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Figure 18:
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PA, but not oleate, induces Rac1 activation and Nox activation in B-cells. Normal
rat islets and INS 832/13 cells were treated with diluent or PA [100 yM; Panel A]. The
relative amounts of activated Rac1 [i.e., Rac1-GTP] were determined from these lysates
by PAK-PBD pull down assay. Data are representative of two independent experiments.
Panel B: lysates derived from INS 832/13 cells treated in the absence or presence of
PA [100 pM] were separated by SDS-PAGE, and probed for p47°"* and actin
expressions. A representative blot from two independent experiments is shown here.
Panel C: lysates derived from INS 832/13 cells treated in the absence or presence of
PA or oleate [100 uM each] were processed for Nox activity and were quantitated by the
DCHFDA assay and are expressed as DCF fluorescence units. Data are mean + SEM
from two individual measurements for DCF fluorescence. *,**p < 0.05 vs. diluent. Panel
D: INS 832/13 cells were treated with diluent and/or oleate [100 yM] or PA [100 uM] and
the relative amounts of activated Rac1 were determined by PAK-PBD pull down assay.
Data presented in here are densitometric analysis of the blots and are mean + SEM

from four independent experiments. *p < 0.05 vs. diluent.
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Figure 19:
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NSC23766, a specific inhibitor of Tiam1-mediated activation of Rac1, markedly
attenuates PA-induced Rac1 activation in INS 832/13 cells. INS 832/13 cells were
incubated overnight with either diluent or NSC23766 [20 uM]. The cells were further
incubated [3 h] in the presence of either low glucose [5 mM] or PA [100 uM] in the
continuous presence of NSC23766 or diluent. The degree of Rac1 activation was
determined by PAK-PBD pull down assay. Panel A: Data are representative of two
independent experiments. Levels of lipid hydroperoxides [Panel B] or ROS [Panel C]

generated in PA or diluent-treated INS 832/13 cells in the absence or presence of
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NSC23766 were measured as MDA equivalents or formazan equivalents, respectively.
Data are mean + SEM from three determinations. Values were considered significant at
p < 0.05. *Significant effect of PA to diluent. & Significance between NSC and NSC +

PA. **Significance between PA and NSC + PA.
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Fumonisin B-1, an inhibitor of de novo biosynthesis of CER from PA, markedly
reduces PA-induced generation of lipid peroxides and superoxides in INS 832/13 cells.
INS 832/13 cells were pre-treated in the presence or absence of FB-1 [10 uM] prior to
the addition of PA [100 yM] and lysates derived from these cells were assessed for
generation of superoxides and lipid peroxides. Superoxide generation was quantitated
by NBT method and expressed as formazan equivalents [Panel A]. Lipid peroxide levels
were quantitated by the MDA assay, and expressed as nmoles of MDA formed/100 ug
protein [Panel B]. Data are mean + SEM from three determinations. Values were
considered significant at p < 0.05. *Significant effect of PA to diluent. & Significance
between FB1 and FB1 + PA. **Significance between PA and FB1 + PA. Furthermore,
cells were pretreated in the presence or absence of FB1 [10 uM] prior to the addition of
PA at different concentrations [0-200 uM]. Lysates derived were processed for Nox
activity and were quantitated by the DCHFDA assay [Panel C] and are expressed as
DCF fluorescence. Data are mean + SEM from three determinations. Graph with
different symbols is statistically significant at p < 0.001. * PA-induced ROS vs. diluent. &

PA + FB1 induced ROS vs. FB1.
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C2-CER promotes generation of lipid peroxides and ROS in INS 832/13 cells by
activating endogenous NADPH oxidase activity. INS 832/13 cells were treated with
either diluent or C2-CER [30 uM] and/or DPI [5 uM] in various combinations as
indicated in the figure. The degree of ROS generation was quantitated by the NBT
method and is expressed as formazan equivalents [Panel A]. The amount of lipid
hydroperoxide generation was quantitated by the MDA assay and is expressed as MDA
equivalents [Panel B]. Data are mean £ SEM from three determinations in each case.
Values were considered significant at p < 0.05. *Significant effect of C2-CER vs. diluent.
o Significance between DPI and DPI + C2-CER. **Significance between C2-CER and

DPI + C2-CER.
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C2-CER increases the expression of p47°"* and Nox activity in INS 832/13 cells.
INS 832/13 cells were treated with either diluent or C2-CER [30 pyM] and examined for
relative increases in p47°"°* expression and NADPH oxidase activity. Panel A: lysate
proteins derived from diluent or C2-CER-treated cells were separated by SDS-page and
probed for p47°"° and actin expression. A representative blot from two independent
experiments is shown here. Panel B: Nox activity in diluent or C2-CER-treated cells was
quantitated by the DCHFDA fluorescence assay and is expressed as DCF fluorescence.

Data are mean + SEM from two independent determinations. *p < 0.05 vs. diluent.
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Figure 23:
(A) INS 832/13 Islet
- - Rac1.GTP F”” ———
S S SR G| Total Ract ”-I
C2-CER, 30 yM - - + + . . + +
NSC23766, 20puM - + . + . ) . +
(B) — C2-CER
=== NSC+C2-CER
@ 300 T
=]
$ 200 *
o
% 100
o
g o
E
? 400 — ; |
3
(=]
(51
£ 300 5
e
@
o,
@ 200
=
2
(]
=
3 1004
L
<
o
=
O v



91

(C) — C2-CER
EES NSC+C2-CER

® 120 T
[1-]
2
& 80 *
=
(=]
$ 40
;-]
E
250 erke € o
| | Kt
200+
g _ 3
s D
£ £ 150-
S o
5 o
)
c
=
E g 100
w QO
E R
L 50
0_
&

NSC23766 inhibits C2-CER-induced Rac1 activation and generation of lipid
peroxides and superoxides in pancreatic B-cells. INS 832/13 cells and rat islet were
treated with either diluent or NSC23766 [20 pyM] and cultured overnight in low
glucose/low serum media. Cells were further incubated in the presence of C2-CER [30
pMM] for 30 min in INS 832/13 cells and 3 h in Islets in the continuous presence of
NSC23766 or diluent. The relative amounts of activated Rac1 [i.e., Rac1-GTP] were

determined by PAK-PBD pull down assay. Data are representative of two independent
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experiments [Panel A]. Panel B: INS 832/13 cells were incubated [6 h] with either
diluent or with C2-CER [30 uM] or NSC23766 [20 uM; alone or in combination]. Lipid
hydroperoxides were measured as MDA equivalents and plotted as increase over basal.
Panel C: INS 832/13 cells were incubated [6 h] with either diluent or with C2-CER [30
MM] or NSC23766 [20 uM; alone or in combination as indicated in the figure].
Superoxide generation was measured as formazan equivalents and plotted as increase
over basal. Data in the insets represent incremental response to C2-CER in the
absence or presence of NSC23766. Data are mean + SEM from three determinations in
each case. Values were considered significant at p < 0.05. *Significant effect of C2-CER
vs. diluent. d Significance between NSC and NSC + C2-CER. ** Significance between

C2-CER and NSC + C2-CER.
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Figure 24:

CON -NSC

DHC - NSC CER -NSC

CON + NSC

DHC + NSC CER + NSC

NSC23766 inhibits C2-CER-induced mitochondrial dysfunction in pancreatic -
cells: INS 832/13 cells were treated with either diluent or NSC23766 [20 uM] and
cultured overnight in low glucose and low serum media. Cells were further incubated in
the presence of C2-CER [30 uM] and/or DHC [30 uM] for 6 h in the continuous
presence of NSC23766 or diluent. Mitochondrial dysfunction was determined by JC-1

assay. Data are representative of two independent experiments.
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Figure 25:
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Incubation of INS 832/13 cells with Cytomix leads to a time-dependent increase
in reactive oxygen species (ROS). INS 832/13 cells were incubated with either diluent or
Cytomix for 12 or 24 h, as indicated in the figure, and ROS generation was measured
using 2', 7"-dichlorofluorescein diacetate (DCFHDA) assay. Intracellular levels of ROS in
treated cells were expressed as a percent of control cells. Data are means = SE from

four independent experiments. * Significantly different (P < 0.05) from control.
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Panel A: INS 832/13 cells were exposed to Cytomix for 12 or 24 h as indicated.
Relative degree of expression of p47°" was determined by Western blot analysis.
p47°"°* expression was normalized to actin content in individual lanes. Pooled data from
three independent experiments are provided in Panel B. * significantly different (p <
0.05) from control. Panel C: INS 832/13 cells were exposed to Cytomix for 12 or 24 h as
indicated in the figure. Relative degree of expression of p67°"°* was measured by
Western blot analysis. p67°"°% expression was normalized to actin content in individual

lanes. Pooled data from three independent experiments are provided in Panel D.
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Figure 27:
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Cytomix induces transient activation of Rac1 in INS 832/13 cells: inhibition of this
signaling step by NSC23766 and GGTI-2147. Panel A: Cytomix causes transient
activation of small G-protein Rac1 in INS 832/13 cells, as determined by the pull-down
assay followed by Western blot analysis (see materials and methods). Total Rac1 in the
lysates is also provided as a loading control. A representative blot of three independent
experiments is shown here. Panel B: pooled activation data from three independent
experiments are shown here. Panel C: NSC23766 inhibition of Cytomix-induced
activation of Rac1. Pooled data from three independent studies are depicted in the
figure. Panel D: GGTI-2147 inhibits Cytomix-induced Rac1 activation in INS 832/13
cells. Pooled data from three independent studies are depicted in the figure.
*Significantly different (P < 0.05) from control. *, **Different symbols represent the

values that are significantly different at P < 0.05.
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Cytomix-induced ROS generation is inhibited by NSC23766 and GGTI-2147 in
INS 832/13 cells. INS 832/13 cells were treated with either diluent or Cytomix in the
presence and absence of NSC23766 (20 uM) or GGTI-2147 (10 uM) for 12 h (Panel A)
and 24 h (Panel B), as indicated in the figure and intracellular levels of ROS was
measured using DCHF-DA assay. Data are representative of three independent
experiments, expressed as a percentage of control cells and represent means + SE.

Bars with different symbols (*, **, ***) are significantly different at p < 0.05.
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Figure 29:
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D]
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Cytomix-induced loss in mitochondrial membrane potential is partially prevented
by NSC23766 and GGTI-2147. INS 832/13 cells were treated with either diluent alone
or Cytomix for 12 (Panel A and C) and 24 h (Panel B and D) in the presence and
absence of NSC23766 (20 uM) or GGTI-2147 (10 uM), as indicated in the figure. The
mitochondrial membrane potential was measured with JC-1 assay kit. Data are

representative of three independent experiments with comparable results.
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Cytomix-induced loss in mitochondrial membrane potential is partially prevented
by NSC23766 and GGTI-2147. Cytomix induced changes in mitochondrial membrane
potential was measured with JC-1 assay kit, as described in Fig. 29 and red: green
fluorescence ratio was calculated by sampling (n = 10 data points per image) for three
independent experiments with comparable results. *, **Bars with different symbols are
significantly different p < 0.05. Panel A: data from cells treated with NSC23766 (20 pM).

Panel B: data from cells treated with GGTI-2147 (10 uM).
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Figure 31:
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NSC23766 fails to inhibit Cytomix-induced NO release in INS 832/13 cells. INS
832/13 cells were treated with diluent, Cytomix (Panel A) or IL-1p3 (Panel B) for 12 or 24
h. NO released into the medium was measured using Griess assay. Data are expressed

as means = SE from three independent experiments. *, **Bars with different symbols
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Table 2:
Time (hr) 0 3 6 12 24
Treatment
PA 100£3.11 | 4574+573% | 145+299% | 7241417 | 62+506"T
PA+FB1 | 109%227 | 456,370% | 113%£184 | 65.464"T | 602002"T
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DISCUSSION

Existing evidence from the literature suggest that damaging effects of elevated
glucose, palmitate and cytokines on isolated (B-cells are, in part, due to their ability to
increase ROS-derived oxidative stress and mitochondrial dysfunction [153, 178, 198].
The main objective of this specific aim was to study the contributory roles for Nox-
mediated ROS generation in the onset of mitochondrial dysfunction leading to demise of
the islet B-cell, and that it requires activation of Tiam1/Rac1 signaling axis. Data
accrued in my current studies suggested that: [i] exposure of isolated B-cells to
palmitate and inflammatory cytokines leads to the generation of ROS, and this involves
the intermediacy of Tiam1/Rac1 signaling axis; [ii] and that palmitate-induced effects are
mediated through de novo synthesis of ceramide; [iii] inhibition of Tiam1/Rac1 signaling
axis leads to restoration of mitochondrial membrane potential. Together, my findings
provide the first evidence for Tiam1/Rac1 signaling cascade in palmitate- or cytokine-
induced oxidative stress and metabolic dysfunction in pancreatic B-cells. | have also
demonstrated that inhibition of Tiam1/Rac1 signaling axis leads to restoration of

palmitate- or cytokine-induced mitochondrial dysfunction to a large degree.

As stated above, our current findings implicate the involvement of Tiam1 in PA-
or C2-CER-induced activation of Rac1. In the context of potential regulation of Rac1,
multiple GEFs have been identified in other cell types. These constitute the diffuse B
cell lymphoma [Dbl] family of GEFs, including Trio and Tiam1. Recently, Zheng and co-
workers have developed NSC23766, which is a soluble first generation small molecule

inhibitor of Tiam1-mediated activation of Rac1 [208]. These investigators have reported
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significant inhibition of Rac1-GTP-loading by NSC23766 without significantly affecting
the GTP-loading onto other small G-proteins including Cdc42 and Rho A. Under these
conditions, NSC23766 also attenuated cell proliferation induced by Tiam1, which is a
Rac1-specific GEF. Based on these data, they concluded that NSC23766 represents a
specific inhibitor of Tiam1-mediated activation of Rac1. Several other laboratories have
utilized NSC23766 since then to decipher the potential contributory roles for
Tiam1/Rac1 signaling pathway in cellular functions [120, 204 and references therein].
Recently, we have confirmed the selectivity of NSC23766-mediated inhibition of Rac1
activation in insulin-secreting cells [204]. In the present study, | have demonstrated that
NSC23766 not only attenuated PA or C2-CER induced Rac1 activation, but also
markedly reduced PA or C2-CER induced generation of superoxides and lipid
peroxides, implicating novel regulatory roles for Tiam1/Rac1 signaling pathway in the
activation of phagocytic-like Nox in -cells. Using molecular biological approaches Yi et
al. [209] have recently demonstrated roles of Vav2, another GEF for Rac1, in

homocysteine-induced Rac1/Nox activation in mesangial cells.

Several recent studies have demonstrated regulatory roles of Rac1 in high
glucose-induced metabolic dysregulation and cell death. For example, Shen et al. [120]
have recently reported a significant increase in cardiomyocyte apoptosis under
hyperglycemic conditions. Using cultured myocytes, these investigators demonstrated a
significant upregulation of Rac1 and Nox activity which was attenuated in cells
overexpressing a dominant negative mutant of Rac1. Moreover, treatment of diabetic
animals with NSC23766 significantly reduced Nox activity and cell demise followed by

restoration of myocardial function [120]. These findings further support the involvement
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of Tiam1/Rac1 signaling pathway in hyperglycemia-induced metabolic dysfunction and
demise of myocytes. It may be germane to point out that unpublished observations from
our laboratory have suggested similar regulatory roles of Rac1 in high glucose-induced
activation of Nox activation and the associated increase in oxidative stress in INS832/13

cells and normal rat islets [Syed and Kowluru, unpublished].

Along these lines, studies by Cacicedo et al. in cultured retinal pericytes have
demonstrated a role for NOX in PA-induced apoptosis [119]. A significant increase in
Nox activity, oxidative stress and caspase-3 activity was demonstrable in cells exposed
to PA. Overexpression of dominant negative mutants of p67°" and Rac1 [N17Rac1]
markedly inhibited the increase in caspase-3 activation. Furthermore, overexpression of
an active mutant of Rac1 [V12Rac1] increased caspase-3 activity suggesting that
constitutive activation of Rac1 results in Nox activation culminating in the generation of

oxidative stress and metabolic dysfunction in these cells.

In the first set of studies, using FB-1, a specific inhibitor of de novo synthesis of
CER from PA, | have demonstrated that PA-induced effects may, in part, be due to
intracellularly generated CER. Data accrued in studies using C2-CER further support
this postulation. Published evidence along these lines suggests that CER-mediated
effects are indeed mediated via activation of Rac1 in many cell types. For example,
using C2-CER, Kim and Kim have reported activation of c-fos serum response element
via the Rac1 signaling pathway in Rat-2 fibroblasts [210]. Interestingly, using NIH 3T3
cells, Embade et al. have demonstrated novel relationships between FasL generation

and CER production in Rac1-induced apoptosis [211]. In another study, Deshpande et
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al. [212] have demonstrated intermediacy of intracellularly generated CER in Rac1-
induced mitochondrial oxidative stress and premature senescence in human umbellical
vein endothelial cells. Together, these data appear to implicate CER/Rac1 signaling
pathways in oxidative stress and metabolic dysfunction in multiple cells types.
Therefore, based on these and other supporting evidence presented in this study, |
believe that PA effects on lipid peroxides, superoxides and Nox activity are specific and
that they require the intermediacy of Tiam1/Rac1 signaling pathway. It should be noted
that | also observed modest effects of oleate on Nox activity without significantly
affecting the Rac1 activation [Fig. 18] suggesting a clear distinction between the modes

of action of these two fatty acids.

In second set of studies, we observed similar Tiam1/Rac1-mediated activation of
Nox holoenzyme in cytokine-induced oxidative stress in pancreatic B-cells. However, it
should be taken into account that, transient activation of Rac1 under cytokine stimulus
is adequate to initiate Nox signaling. It appears that Rac1 activation during Cytomix
treatment might be primarily due IL-1B8 present in the Cytomix, as we observed a
significant Rac1 activation (2 £ 0.4 fold stimulation) in INS 832/13 cells when exposed to
IL-18 (25 ng/mL) alone, whereas, no significant effects were observed with either TNF-a
or INF-y. And also, our findings suggests that prenylation of Rac1 is necessary for such
mediatory effects, and incubation of INS 832/13 cells with geranylgeranylation inhibitor,
GGTI-2147, markedly subdued Cytokines-mediated Rac1 and Nox activation. In this
context, using molecular biological (e.g., dominant-negative Rac1 mutant or siRNA-
Rac1) and pharmacological (e.g., GGTI-2147 and 3-allyl or vinyl geranyl geraniols)

probes, our laboratory have shown that geranylgeranylation of Rac1 is necessary for its
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optimal activation and membrane association in clonal B-cells and normal rats islets
[85]. Furthermore, it should be considered that, small G-protein Rap1 is an integral part
of the membrane component of Nox, and the inhibitory effects of GGTI-2147 on
cytokine-induced Nox might be in part due to inhibition of geranylgeranylation of Rap1
too. However, our findings accrued from NSC23766 studies directly support the
involvement for Taim1/Rac1 in this signaling cascade, since Tiam1 serves as a GEF for
Rac1, but not other small G proteins. Taken together, on the basis of the current data
amassed from NSC23766 and GGTI-2147 studies, we put forth that Tiam1-mediated
and geranylgeranylation-sensitive Rac1 activation is necessary for cytokine-mediated

effects of Nox and generation of oxidative stress in the islet 3-cell.

In general, it is important to note that numerous recent studies have implicated
physiological roles for a tonic increase in Nox activation and subsequent ROS
generation in the stimulus-secretion coupling of GSIS [113]. Moreover, Newsholme et al
demonstrated an increase in insulin secretion by fatty acids under acute conditions
[200]. Therefore, one might ask if increase in Tiam1/Rac1 activation and Nox activation
could contribute towards the physiological insulin secretion rather than inducing
metabolic abnormalities in the isolated B-cell. Even though it appears likely, under
definite experimental conditions, chronic activation of Nox by specific stimuli [e.g., high
levels of glucose, fatty acids, CER or cytokines] leads to metabolic dysfunction and
demise of the B-cell. For example, recent observations [207] from our laboratory have
suggested significant abnormalities in mitochondrial function [i.e., loss in MMP] in cells
exposed to C2-CER under acute conditions. In addition, it should be noted that our

current observations [Figs. 24 and 29] indicate mitochondrial dysfunction in presence of
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C2-CER and cytokines, and that NSC23766 and GGTI-2147 prevented it to a large
degree, implicating the Tiam1-Rac1-Nox signaling in the onset of metabolic dysfunction.
Therefore, we speculate that early biochemical and cellular changes that we reported

herein might be paving way to metabolic dysfunction and demise of the islet 3-cell.

However, NSC23766 affords a better protection in cytokines-induced
mitochondrial dysfunction compared to GGTI-2147. Therefore, it appears that additional
signaling mechanisms might be controlling mitochondrial membrane potential, which are
distinct from Nox-derived ROS. Attuned with these observations are our findings that
demonstrated relative lack of effects of NSC23766 on caspase 3 activation. As in the
context of Rac1 activation mentioned above, such steps may be related to direct
metabolic effects of IL-13, but not TNF-a or IFN-y (also present in the Cytomix), since
IL-1B-mediated caspase 3 activation and NO release were not affected by Tiam1
inhibition. It may be germane to point out that recent studies by Moore et al. [199] have
provided compelling evidence to argue against potential involvement of oxidative stress
in fatty acid-induced metabolic dysfunction of the islet B-cell. It is, therefore, likely that
additional regulatory mechanisms might underlie B-cell demise seen under the duress of
lipotoxic conditions including those involving progressive alterations in the mitochondrial
membrane permeability transition pore as suggested by recent studies of Koshkin et al.

[213] in MING and INS-1 cells.

In summary, we present the first evidence for a novel role of Tiam1/Rac1
signaling pathway in PA-induced, CER-sensitive and cytokine-mediated metabolic

activation of Nox and associated production of superoxides and lipid peroxides in
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pancreatic B-cells. It is likely that Tiam1 could serve as a novel drug target for inhibition
of generation of superoxides and lipid peroxides in isolated B-cells under such duress.
Based on these data we propose a working model [Fig. 39] to suggest that PA/CER and
cytokines increase the Rac1 activation [GTP-bound active form] to generate signals that
may be necessary for triggering cellular events leading to Nox activation, increased
oxidative milieu, mitochondrial dysregulation in the pancreatic B-cell. It should be noted
that while the proposed model principally addressed the roles of Tiam1-Rac1-Nox
connection in PA/CER-mediated and cytokine-mediated effects, relative contributory
roles of other sources of reactive oxygen species, including the glutathione peroxidase,
manganese-sensitive superoxide dismutase, catalase signaling cascades must also be
recognized as key contributors to the mitochondrial dysfunction in isolated B-cells under
the duress of lipotoxic conditions [158, 196, 197, 216]. However, additional studies are

needed to further understand these signaling steps in the islet B-cell.
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Chapter Il

Introduction

Glucose-stimulated insulin secretion [GSIS] involves a cascade of metabolic and
cationic events leading to translocation of insulin-containing secretory granules toward
the plasma membrane for fusion and release of insulin into circulation. It is well
established that granule transport and fusion involves interplay between vesicle-
associated membrane proteins on the insulin granules and docking proteins on the
plasma membrane [44, 45, 49]. In addition, a significant cross-talk among multiple
small G-proteins including Arf6, Cdc42 and Rac1 has been shown to be critical for GSIS
[84, 100, 218]. Several effector proteins for these G-proteins have been identified in the
islet B-cell, including phospholipases, Pak-1 and ERK1/2 kinases [68, 74, 84]. Recent
evidence also implicates regulatory roles for G-proteins [e.g., Rac1] in the activation of
phagocyte-like NADPH oxidase [Nox] and generation of reactive oxygen species [ROS]

leading to GSIS [219].

Excessive ROS generation is considered central to the development of diabetes
and its associated complications. Under normal physiological conditions, generation of
free radicals is relatively low, however increased levels of circulating glucose promote
intracellular accumulation of superoxides leading to metabolic dysfunction. Although,
mitochondria remain the primary source for free radicals, emerging evidence implicates
Nox as one of the major sources of extra-mitochondrial ROS. Nox is a highly regulated
membrane-associated protein complex that promotes one electron reduction of oxygen

to superoxide anion involving oxidation of cytosolic NADPH. The Nox holoenzyme is
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comprised of membrane and cytosolic components [Figure 2]. The membrane-
associated catalytic core consists of gp91phox and p22phox and the cytosolic
regulatory core includes p47phox, p67phox, p40phox and Rac1 [or Rac2]. Following
stimulation, the cytosolic core translocates to the membrane for association with the
catalytic core for functional activation of Nox. Immunological localization and functional
regulation of Nox have been described in clonal B-cells, rat and human islets [13, 14,

110, 112].

Findings from multiple laboratories suggest that ROS-derived from Nox play
regulatory “second-messenger” roles in GSIS, a concept overviewed recently by Pi and
Collins [7]. Along these lines, recent studies have highlighted roles for Nox in
physiological insulin secretion. For example, Diphenylene iodonium [DPI], a selective
inhibitor of Nox, inhibited glucose-induced Nox activity and GSIS [112]. These
observations were further confirmed by Morgan and associates [14] suggesting that DPI
or p47°"°* antisense-induced inhibition of Nox attenuated GSIS under static or perifusion
conditions. Graciano and coworkers [110] demonstrated regulatory roles for Nox in
palmitate-induced superoxide generation and insulin secretion in rat islets. Furthermore,
my recent findings suggested that prenylation and activation of Rac1 are critical for
glucose- and mitochondrial fuel-induced Nox-dependent ROS generation in INS 832/13
cells and rodent islets [219]. Together, the above observations support the overall
hypothesis that Nox-mediated, Rac1-sensitive ROS generation is requisite for insulin

secretion.
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In addition to the above described “friendly” roles for ROS in islet function, recent
evidence also suggests paradoxical “non-friendly” roles for ROS in the induction of
oxidative stress and metabolic dysregulation of the islet B-cell under the duress of
glucolipotoxicity, cytokines, and ceramide [117]. The generation of ROS seen under
these experimental conditions appear to be largely due to the activation of Nox, since
inhibition of Nox [e.g., DPI, apocynin or siRNA-p47°"° ] or Rac1 activation [e.g., GGTI-
2147, NSC23766] markedly attenuated deleterious effects of these stimuli [179, 180].
Despite these in vitro evidence, potential roles of Nox in islet dysfunction in animal
models of type 2 diabetes remains unexplored. Therefore, | undertook the current study
to systematically examine the functional status of Nox in islets from Zucker Diabetic
Fatty [ZDF] rat, which develops obesity, hyperinsulinemia, hyperglycemia and a decline
in B-cell function. Further, the ZDF rat is an excellent in vivo model for glucolipotoxicity-
mediated metabolic dysfunction of the islets. Herein, | present evidence to suggest
significant alterations in the Nox function in the diabetic islet, which promote ROS
generation and mitochondrial dysregulation. Furthermore, these findings suggest similar
metabolic defects in islets from a human donor with type 2 diabetes. | also present
evidence to implicate roles for glucolipotoxicity in the induction of Nox-mediated cellular

and metabolic defects in ZDF islets.

These findings have been submitted for peer review in Diabetes 2011.
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MATERIALS AND METHODS

Materials

2, 7'-dichlorofluorescein diacetate [DCHFDA] was from Sigma [St. Louis, MO].
Antisera for p47°" and phospho-p47°"°* were from Santa Cruz Biotechnology [Santa
Cruz, CA] and Abcam [Cambridge, MA], respectively. gp91ph°x and Rac1 antisera were
from BD Bioscience [Rockville, MD]. Antisera for Caspase-3, JNK1/2 and ERK1/2 were
from Cell Signaling Technology [Boston, MA]. GLISA Rac1 activation kit was from
Cytoskeleton [Denver, CO]. Horseradish peroxidase conjugates and ECL kits were from

Amersham Biosciences [Piscataway, NJ].

Pancreatic islets and INS 832/13 B-cells

Male [9-11 wks] ZDF and ZLC rats were from Charles River laboratories
[Wilmington, MA] and maintained in a 12-h light/dark cycle with free access to water and
food [Purina Diet no. 5008; Charles River Laboratories]. All animal protocols were
reviewed and approved by the Wayne State University Institutional Animal Care and
Use Committee. Hyperglycemia in diabetic rats was confirmed prior to sacrifice by tail
vein puncture using Glucometer Elite from Bayer [Leverkusen, Germany]. Body weights
of ZLC and ZDF rats were 300 + 6 g and 396 * 12 g respectively [n=11; p <0.05]. Islets
were isolated by collagenase digestion method [220]. INS 832/13 cells [provided by Dr.

Chris Newgard] were cultured and processed using protocols described in [180].

Human islets from normal and diabetic donors were obtained from Prodo
Laboratories, Inc. [Irvine, CA]. Control islets [from a 54 year old male donor; 85-90%

purity] and diabetic islets [from a 45 year old male donor; ~60% purity] were
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homogenized with Tris-HCI buffer [50 mM, pH 7.4] containing sucrose [250 mM], EDTA
[1 mM], DTT [1 mM], and protease inhibitor cocktail. Lysate proteins were resolved on

12% SDS-PAGE, and used for Western blot analysis.

Quantitation of ROS

ZLC, ZDF or human islets were incubated with DCHFDA (10 uM) at 37°C for 30
min in RPMI-1640 media without serum and glucose [219]. Following incubation, islets
were washed with ice-cold phosphate-buffered saline and sonicated. Equal amounts of
protein were utilized for fluorescence measurements [Aesm 485 nm and Agx 535 nm] using

PerkinElmer luminescence spectrophotometer.

Rac1 activation assay

Activated Rac1 was quantitated using a GLISA activation assay kit according to
the manufacturer's instructions. Briefly, lysates were clarified by centrifugation at 14,000
rom for 2 min. Equal amounts of islet lysate protein were incubated in the Rac1-GTP
affinity plate for 30 min at 4 “'C. The wells were washed twice with washing buffer and
then incubated with antigen presenting buffer provided with the kit. The contents in
Rac1-GTP affinity labeled plate were then successively incubated with anti-Rac1
primary antibody and secondary antibody for 45 min followed by additional incubation
with HRP-detection reagent for 20 min. The reaction was terminated by adding HRP-

stop buffer and the absorbance was measured at 490 nm using a microplate reader.
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Other assays and statistical analysis of data

Western blot protein bands were visualized using a Kodak Imaging System and
analyzed densitometrically using UN-SCAN-IT software [Orem, Utah]. Statistical
significance of differences between control and experimental groups was determined by

Student’s t-test and ANOVA analysis. P < 0.05 was considered significant.
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RESULTS

ROS levels, expression and phosphorylation of p47°"°*

are significantly increased
in ZDF islets

The ZDF rats presented a four-fold increase in blood glucose levels compared to
their age-matched ZLC rats [323 +15 mg/dL vs. 85 +1 mg/dL]. Quantitation of ROS by
the DCHFDA fluorescence method, showed a significant increase [>60%] in superoxide
generation in ZDF rat islets compared to the ZLC islets [Figure 32; Panel A]. Since
recent evidence indicated a significant increase in Nox-derived ROS generation in
isolated B-cells following exposure to high glucose, palmitate or cytokines [179, 180], |

next investigated functional regulation and involvement of Nox as a source of increased

ROS in ZDF rat islet.

The Nox holoenzyme is comprised of membrane-associated and cytosolic
components [Figure 2]. Evidence from multiple laboratories including our own suggests
that the cytosolic components require post-translational modifications, including
phosphorylation of p47°"* and prenylation of Rac1 for the holoenzyme assembly [219,
221]. Recent studies also demonstrated that the expression of p47°"* is significantly
increased in isolated B-cells following exposure to high glucose, palmitate or cytokines
[117, 179, 180]. Therefore, | have next determined the expression levels and the
degree of phosphorylation of p47°" in islets from ZLC and ZDF rats. Pooled data
accrued from multiple islet preparations described in Figure 32 [Panels B-C] indicated a
significant increase (~40%) in the expression of p47°"°* in ZDF islets compared to ZLC

islets. Furthermore, the levels of phosphorylated p47°"* were also increased
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significantly [~50%] in ZDF islets [Figure 32; Panels D-E]. These findings of an increase
in expression and phosphorylation of p47°"* in ZDF islets are comparable to those
accrued from in vitro studies of incubation of pancreatic B-cells with palmitate or

glucose.

Rac1, a cytosolic component of Nox, is activated in ZDF islets

| next quantitated Rac1 expression and activation in ZLC and ZDF islets. The
underlying premise here is that an increase in the Nox-derived ROS generation in the
diabetic islet [Figure 32; Panel A] requires activation of Rac1. Data in Figure 33 [Panel
A] indicated a marked increase [>60%] in the expression of Rac1 in ZDF islets
compared to ZLC islets. | also observed that the abundance of activated Rac1 is
significantly higher [~2.25 fold] in ZDF islets compared to ZLC islets [Figure 33; Panel
B]. It should be noted that increase in Rac1 activation [Figure 33; Panel C] may not be a
reflection of increased Rac1 expression in ZDF islet [Figure 33; Panel A] since the ratio
of activated to total Rac1 also indicated a significant increase [>40%] in ZDF islet
compared to ZLC rat islets [Figure 33; Panel D]. Together, data in Figures 32 and 33
indicate increase in the phosphorylation status of p47P"* and activation of Rac1 in the
ZDF islet, which are required for holoenzyme assembly and activation of Nox and

subsequent increase in ROS generation [Figure 32; Panel A].

Increased expression of gp91°"°* in the ZDF islet
While numerous studies have focused on potential alterations in the expression
of the cytosolic components of Nox in B-cells under the duress of glucolipotoxicity and

cytokines [118, 179, 180], relatively little is understood with regard to potential changes
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in the expression of the membrane components of Nox under such conditions.
Therefore, | next quantitated expression levels of gp91°"* in islets from ZLC or ZDF
rats. Data obtained from multiple islet preparations indicated an increase in the

expression of gp91P"

subunit in ZDF islets [Figure 34; Panel A] and densitometrical
analysis showed more than 40% increase in gp91°"™* expression in ZDF islets
compared to ZLC [Figure 34; Panel B]. Together, these findings support the overall
hypothesis that an increase in the intracellular ROS in diabetic islet may, in part, be due

to increased activation of Nox via increase in the expression and phosphorylation of

individual subunits.

Assessment of mitochondrial damage in ZDF islets

Using in vitro model systems of glucolipotoxicity and chronic cytokine exposure,
Subasinghe et al and | have recently proposed that Nox activation leads to loss of
mitochondrial membrane potential and subsequent caspase-3 activation [179, 180]. We
also demonstrated that inhibition of Rac1 activation either by attenuating the function of
Tiam1, a guanine nucleotide exchange factor for Rac1 by NSC23766 or inhibition of
prenylation of Rac1 by GGTI-2147 leads to partial restoration of mitochondrial
dysfunction induced by a mixture of cytokines [179]. Therefore, | next quantitated
caspase-3 activation, a hallmark of mitochondrial dysregulation, in ZLC or ZDF rat
islets. Data from these studies [Figure 34; Panels C-D] indicated a significant activation
of caspase-3 in islets from ZDF, but not from ZLC rats. These data are suggestive of
mitochondrial defects in the ZDF islet at an age where significant changes in Nox

activation are observed [see above].
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Differential regulation of JNK 1/2 and ERK 1/2 in ZDF islet

It has been shown that stress-activated JNK activation lies upstream to
mitochondrial dysfunction, including cytochrome C release and caspase-3 activation
[222]. Further, constitutive activation of Rac1 promotes JNK phosphorylation and
activation [223, 224]. Emerging evidence also implicates a significant cross-talk
between ROS and JNK1/2 [225]. Therefore, | next determined the degree of expression
and phosphorylation of JNK1/2 in islets from the ZLC and ZDF rats. In these studies, |
utilized an antiserum that detects phosphorylated Tyr-185 [54 kDa; JNK-2] and
phosphorylated Thr-183 [46 kDa; JNK-1]. Western blot analysis of islet lysates from
ZLC and ZDF rats indicated consistently higher levels of phosphorylated JNK-1 and
JNK-2 in ZDF rat islets [Figure 35; Panel A]. The ratios of phosphorylated to total JNK-1
and JNK-2, which are provided in Figure 35 [Panel B] indicated a significant increase [>
60%] in the activities in diabetic islets.

| next quantitated ERK1/2 phosphorylation in ZLC and ZDF islets to further
determine if diabetic conditions elicit regulatory effects on this enzyme cascade, since it
has been implicated in islet B-cell function at multiple levels, including insulin gene
expression, GSIS and B-cell proliferation [185, 226]. Data shown in Figure 35 [Panels
C-D] indicated a significant attenuation in ERK1/2 phosphorylation in ZDF islets
compared to ZLC islets. Together, data described in Figure 35 suggest differential
regulation of JNK1/2 and ERK1/2 in diabetic islets; such conditions might favor pro-
apoptotic and non-proliferative events in the diabetic islets. Based on my recently
published observations on increased Nox activity in B-cells under the duress of

glucolipotoxic conditions [180] and current observations in the ZDF islets, | hypothesize
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that glucolipotoxic distress may elicit such dual regulatory effects on JNK1/2 and
ERK1/2 phosphorylation and activation. This hypothesis was further tested via studies

described below in clonal B-cells.

In vitro exposure to high glucose or palmitate exerts differential effects on JNK1/2
and ERK1/2

To assess if differential regulatory effects on JNK1/2 and ERK1/2 seen in the
ZDF islets are due to gluco- or lipotoxicity, INS 832/13 cells were incubated with either
high glucose [20 mM; 48 h] or palmitate [400 uM; 48 h] and relative abundance of total
and phospho JNK1/2 and ERK1/2 was determined by Western blotting. Pooled data in
Figure 36 [Panel A] indicated a marked increase [~40-87%] in JNK-1 and JNK-2
phosphorylation in high glucose- [lanes 3 and 4] or palmitate- [~ 30-34%; lanes 5 and 6]
treated B-cells compared to their counterparts under basal conditions [lanes 1 and 2].
However, total levels of JNK 1/2 remained unchanged under these conditions. Further, |
observed a significant reduction [~22-48%] in ERK1/2 phosphorylation in INS 832/13
cells treated with high glucose or palmitate [~60%]; such conditions did not affect the
abundance of total ERK1/2 in INS 832/13 cells [Figure 36; Panel B]. Together, these in
vitro findings in INS 832/13 cells, which are comparable to what | have observed in the
ZDF islet [Figure 35], suggest differential regulation of JNK1/2 and ERK1/2 under the

duress of gluco- or lipotoxic conditions.

Regulation of Nox in human islets
| next studied regulation of Nox under glucotoxic conditions in human islets. First,

ROS generation and Rac1 activation were quantitated in normal human islets incubated
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with either 5.8 mM or 30 mM glucose for 48 h. Data depicted in Figure 37 [Panel A]
indicated ~2.2 fold increase in ROS generation in human islets following incubation with
high glucose, which is compatible with my earlier observations in INS 832/13 cells and
normal rat islets [219] and ZDF rat islets [current studies]. | have also observed that
incubation of human islets with high glucose resulted in a significant [~1.5 fold]
activation of Rac1 [Figure 37; Panel B]. Interestingly, | also noticed a marked increase
in Rac1 expression, JNK1/2 activation and caspase-3 degradation in islets from a
diabetic donor [Figure 37; Panel C, D and F, respectively]; findings are compatible with
ZDF islet data. However, relative abundance of phosphorylated or total p47P"°* and

phox [Figure 37; Panel C and E, respectively] was comparable between normal and

gp91
diabetic human islets. Limited availability of diabetic human islets precluded me from
quantitation of Nox and Rac1 activities. Nonetheless, these preliminary data in human

islets support my current findings in the ZDF islets and in INS 832/13 cells following

exposure to glucolipotoxic conditions.
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Figure 32:
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ROS levels were measured in isolated islets from ZLC and ZDF rats following
incubation with DCHFDA [10 uM] for 30 min. Islets were washed with ice-cold PBS and
sonicated. An equal amount of protein was used to quantitate DCF fluorescence. Data
are expressed as percent control [Panel A] and are mean + SEM from islets from four
rats in each group.* p< 0.05 vs. ZLC islets. In a separate experiment, islets from ZLC or
ZDF rats were lysed using RIPA buffer. Equal amount of lysate proteins were resolved
by SDS-PAGE. Expression of phosphorylated and total p47°"* was determined by
Western blotting. A representative blot is provided in Panel B for total p47°"* and Panel
D for phospho-p47°"*. Densitometric quantitation of total p47°"* and phosphorylated
p47°"* is provided in Panels C and E, respectively. Data are mean + SEM from islets

from four rats in each group. * p< 0.05 vs. ZLC rat islets.
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Figure 33:
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Total Rac1 expression in islets from ZLC and ZDF rats was determined by
Western blotting [Panel A] and quantitated densitometrically [Panel B]. The degree of
Rac1 activation [Panel C] was quantitated by GLISA method. Data are expressed as
percent change in Rac1 activation over total Rac1 [Panel D] and are mean £ SEM from

islets from six rats in each group. * p< 0.05 vs. ZLC rat islets.
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Figure 34:
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Lysates derived from ZLC and ZDF rats were used for the determination of
expression of gp91"h°X by Western blotting [Panel A]. p-actin was used as loading
control. The protein bands were analyzed densitometrically, expressed as percent
increase over lean control [Panel B]. Data are mean + SEM from islet preparations from
five rats in each group. * p< 0.05 vs. ZLC islets. In a separate set of studies, islet lysates
from ZLC and ZDF rats were resolved by SDS-PAGE and immunoprobed for caspase-3
activation. B-actin was used as loading control. A representative blot from three
independent experiments yielding similar results is shown here [Panel C]. The density of
the procaspase and its hydrolytic product-bands was quantitated and expressed as
percent control [Panel D]. Data in Panel D are mean £ SEM from islet lysates from three
rats in each group. * p< 0.05 vs. procaspase values of lean control. ** p< 0.05 vs.

caspase cleavage product of ZLC islets.
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Figure 35:
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Islet lysates from ZLC and ZDF rats were prepared in RIPA buffer. Total and
phospho-JNK1/2 were determined by Western blotting [Panel A] and analyzed
densitometrically. Data are expressed as fold change in phosphorylation over total JNK
1/2 [Panel B]. Data are mean + SEM from islet lysates derived from six rats in each
group are shown herein. * p< 0.05 vs. ZLC islets. Lysates of islets from ZLC and ZDF
rats were prepared in RIPA buffer. An equal amount of lysate protein was resolved by
SDS-PAGE. Relative abundance of total and phospho-ERK1/2 were determined by
Western blotting [Panel C] followed by densitometry [Panel D]. Data are expressed as
fold change in phosphorylation over total ERK 1/2 and are mean + SEM from islets from

six rats in each group. * p< 0.05 vs. ZLC islets.
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INS 832/ 13 cells were cultured in the presence of low glucose [LG; 2.5 mM],
high glucose [HG; 20 mM] or palmitate [PA; 400 uM] for 48 h. At the end of incubation
cells were lysed and the expression of total and phosphorylated JNK 1/2 [Panel A] and

ERK 1/2 [Panel B] was determined by Western blotting.
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Figure 37:
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Normal human islets were cultured in PMI medium in presence of 5.8 mM or 30
mM glucose for 48 h. Generation of ROS [Panel A; mean value from triplicate
measurements] was quantitated by DCF fluorescence. Rac1 activation [Panel B; mean
value from duplicate measurements] was quantitated by GLISA. In a separate set of
studies, islets derived from control or diabetic human donors were lysed in RIPA buffer
and lysate proteins were resolved by SDS-PAGE. The expression of total Rac1 and
gp91P"°* [Panel C], phosphorylated and total JNK 1/2 [Panel D], phosphorylated and
total p47°"°* [Panel E] and caspase-3 [Panel F] were determined by Western blotting.
Corresponding house keeping genes were also measured in parallel to confirm equal

loading.



Figure 38:

147

Hyperglycemia & Hyperlipidemia
[Invitro, ZDF, T2DM Human Islets]

f Rac1 Activation

A ROS generation

f Stress Activated Kinases [JNK 1/2]

|

{ Mitochondrial Function

|

A Caspase - 3 Activity

} ‘ B - Cell Dysfunction |




148

Based on the data accrued from the current studies [Chapter Ill], | propose a
model for the Nox-ROS-JNK signaling in the metabolic dysfunction of pancreatic p-cell
under the duress of hyperglycemia and hyperlipidemia. Glucolipotoxicity induces Nox
activation by promoting the phosphorylation of p47°"™* and Rac1 activation. Nox
activation and excessive ROS generation leads to the activation of stress-activated
kinases [JNK 1/2] culminating in mitochondrial dysfunction and caspase-3 activation. |
hypothesize that the collective effects of ROS generation, ERK1/2 inhibition and JNK1/2

activation may elicit maximal damaging effects on islet B-cell in diabetes.
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DISCUSSION

Existing evidence in multiple cell types, including the pancreatic 3-cell clearly
implicates post-translational modification [e.g., phosphorylation and prenylation] of
individual components as a requisite for the optimal activation of Nox [219, 221]. The
main objective of the current study was to determine functional status of Nox in islets
derived from ZDF rat, a well established model for obesity and type 2 diabetes, and to
determine potential regulation of Nox components in human islets under the duress of
glucolipotoxicity and diabetes. Salient findings of the current study include
demonstration of increased expression and phosphorylation of p47°"°% subunit; Rac1
activation; gp91ph°" subunit expression and associated increase in ROS generation in
the ZDF islet. These findings also suggested that differential regulation of JNK1/2 [i.e.,
activation] and ERK1/2 [i.e., inhibition] in the ZDF islet may, in part, be due to the gluco
or lipotoxic effects, since in vitro exposure of INS 832/13 cells or normal human islets to
high glucose or palmitate elicited similar effects. Lastly, data in diabetic human islets

corroborated my findings in ZDF islets.

Several recent studies have demonstrated activation of Nox following exposure
to physiological concentrations of glucose in a variety of insulin-secreting cells [13, 14,
110, 112]. Pharmacological and molecular biological inhibition of Nox revealed that a
tonic increase in Nox-derived ROS is necessary for GSIS [14, 118]. In addition, recent
findings demonstrated that prenylation of Rac1 is necessary for glucose-induced Nox
activation and ROS generation in isolated B-cells [219]. Recent studies have also

implicated Nox in metabolic dysfunction of the islet B-cell under conditions of
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glucolipotoxicity and exposure to cytokines [179, 180]. These studies demonstrated an
increase in the expression and phosphorylation of Nox subunits [i.e., p47P"o", together
with significant activation of Rac1. In addition, the activation status of Rac1 was shown
to be under precise control of Tiam1, a known guanine nucleotide exchange factor for
Rac1, but not Cdc42 and Rho G-proteins in isolated B-cells [204]. In further support of
this, we observed a marked reduction in high glucose-, high palmitate- cytokine-
induced Rac1 and Nox activation and ROS generation in isolated [B-cells following
exposure to NSC23766, a selective inhibitor of Tiam1/Rac1 signaling axis [179, 180].
Furthermore, using selective inhibitors of protein prenylation, Subasinghe et al
demonstrated a critical requirement of prenylation of Rac1 for Nox-mediated [B-cell
dysfunction [179]. Taken together, previous in vitro findings clearly implicated
participatory roles of Nox in exerting effects at the mitochondrial level including loss in
membrane potential, cytochrome C release and activation of caspase-3 culminating in

islet B-cell dysfunction [179].

phox phox

In addition to an increase in p47 and gp91 expression, Rac1 activation,
and ROS generation, | observed a significant increase in the phosphorylation of JNK1/2
in the ZDF islets compared to the ZLC islets. | also observed a marked inhibition in
ERK1/2 phosphorylation in cognate cellular preparations. It is noteworthy that similar
changes in the phosphorylation status of JNK1/2 [activation] and ERK1/2 [inhibition]
were demonstrable in INS 832/13 cells following incubation with either high glucose or
palmitate. Together, these findings suggest that glucolipotoxicity may promote cellular

dysfunction in the ZDF islet. However, whether JNK1/2 activation and ERK1/2 inhibition

lie upstream to mitochondrial defects remains to be determined. Along these lines, a
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recent study by Kim and associates [222] suggested roles for Nox-ROS-JNK1/2
signaling pathway in the onset of mitochondrial dysfunction induced by genipin in FaO
rat hepatoma cells and hepatocarcinoma Hep3B cells. SP600125, a selective inhibitor
of JNK1/2, suppressed genipin-induced apoptosis in these cells suggesting a role for
JNK1/2 activation in genipin-induced cell demise. Further, DPI significantly attenuated
genipin-induced ROS generation, JNK1/2 and caspase activation and cell death thereby
establishing a role for ROS in genipin-induced, JNK1/2-mediated cell death. In this
context, several recent studies have also demonstrated inhibition of caspase-3
activation following inhibition of JNK 1/2 activation in models of cellular apoptosis [227 -

229].

The observed reduction of ERK1/2 activation under glucolipotoxic conditions in
the ZDF rat islets in vivo and INS 832/13 cells in vitro are indicative of impaired
metabolic function and B-cell proliferation. These current findings on reduction in
ERK1/2 phosphorylation in INS 832/13 cells are in accord with studies of Costes and
associates [230] who demonstrated a significant reduction in ERK1/2 phosphorylation in
MING cells following exposure to 25 mM glucose for 24 h. Based on further studies,
these investigators concluded that glucotoxic conditions downregulate ERK1/2-CREB

signaling pathway leading to the apoptotic demise of the 3-cell.

Recent studies by Zhang and associates [231] demonstrated a significant
increase in JNK 1/2 phosphorylation and reduction in ERK 1/2 phosphorylation during
mevastatin-induced apoptosis of salivary adenoid carcinoma cells, suggesting a

potential inverse relationship between JNK 1/2 and ERK 1/2 phosphorylation in the
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induction of cellular apoptosis. Together, my observations in INS 832/13 cells, ZDF
islets and diabetic human islets support involvement of Nox-ROS-stress activated
signaling axis in the metabolic dysfunction. However, additional studies are needed to
substantiate this formulation. Recent studies by Nakayama et al [232] demonstrated the
functional activation of Nox in islets of db/db mice and Otsuka Long-Evans Tokushima
Fatty rats. Treatment of these animals with angiotensin Il type-1 receptor antagonists
reduced Nox activation and oxidative stress. It may be germane to point out that Valle
and coworkers [233] recently examined potential changes in Nox in islets derived from
high fat-fed obese animals. In contrast to islets from db/db mice and Otsuka Long-
Evans Tokushima Fatty rats [232] and ZDF rat [current study], islets from high fat-fed
animals exhibited markedly lower expression levels of p47°"* and gp91P"°* subunits
and ROS production compared to control rat islets. These investigators attributed this
toward increased glucose oxidation and GSIS seen in islets from high fat fed animals in

response to glucose [233].

Lastly, Fontes and coworkers [226] have reported a significant stimulation in
ERK1/2 phosphorylation in MIN6 cells and normal rat islets when cultured in the
presence of glucose and palmitate. Similar increase in the phosphorylation of Erk1/2
was seen in the presence of ceramide, a biologically active sphingolipid, which is
biosynthesized from palmitate via the de novo pathway. Based on data accrued from
additional studies these investigators concluded that ERK 1/2 activation represents one
of the signaling steps involved in palmitate-induced inhibition of insulin gene expression.

These findings are in contrast to my current findings of inhibition of ERK 1/2
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phosphorylation by palmitate. Additional studies are needed to address potential
differences between these findings.

Based on the existing information and current findings, | propose a model for
Nox-mediated induction of B-cell dysfunction in diabetes [Figure 38]. Herein, | propose
that exposure of isolated B-cells to glucolipotoxic conditions or islets derived from the
diabetic condition in ZDF rats or humans, results in increased activation of Rac1 and
Nox. Consequential generation of ROS and the associated oxidative stress, in turn,
promote activation of JNK1/2 and mitochondrial dysregulation. Alternatively, activation
of cytosolic Nox-ROS-JNK1/2 signaling pathway increases superoxide generation that
impairs the functional efficiency of mitochondria; this proposal is supported by findings
of Bindokas and associates [133] demonstrating excessive superoxide levels in islet

mitochondria from the ZDF rat.

In summary, my current findings implicate Nox as one of the sources of oxidative
stress in the diabetic islet. It will be interesting to determine if pharmacological
intervention of Nox activation seen in islets under diabetic conditions can be restored to
its normal function. Such intervention modalities include NSC23766, a selective inhibitor
of Tiam1/Rac1, which | have utilized in in vitro experiments to restore mitochondrial
function in B-cells exposed to elevated glucose, lipids and cytokines [179, 180]. In this
context, recent investigations have successfully utilized NSC23766, a selective inhibitor
of Tiam1-Rac1 signaling axis to correct Nox-mediated effects on cellular function in vitro
and in vivo [117 for a review]. Using streptozotocin diabetic mouse model, Shen et al
[120] have demonstrated a regulatory role for Rac1 in hyperglycemia-induced

apoptosis in cardiomyocytes. They demonstrated upregulation of Rac1, Nox activity,
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increased ROS generation leading to apoptosis of cardiomyocytes under the duress of
hyperglycemia. Treatment of diabetic db/db mice with NSC23766 significantly inhibited
Nox activity and cell apoptosis [231]. Additional studies are needed to pin-point
regulatory roles of Tiam1-Rac1-Nox-ROS signaling in the metabolic dysfunction in the

diabetic islet.
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WORKING MODEL

Based on the available evidence and my current findings, | propose that Nox-
mediated ROS generation requires intermediacy of Tiam1/Rac1 signaling axis in
isolated pancreatic B-cells following long-term exposure to glucose, palmitate or
inflammatory cytokines. Under lipotoxic conditions, activation of Rac1 may, in part, be
due to de novo synthesis of ceramide from palmitate, since Fumonisin B1, a selective
inhibitor of ceramide biosynthesis from palmitate, markedly attenuated the increase in
palmitate-induce ROS generation. As | observed, glucotoxic conditions also elicit
Tiam1/Rac1 activation in Nox-mediated ROS generation. In this context, it is possible
that such effects of glucose on Tiam1/Rac1 are direct, and not mediated via ceramide;
however, this needs to be verified. Alternatively, activation of endogenous
sphingomyelinases or endoplasmic stress may lead to accumulation of intracellular
ceramide during glucotoxic conditions. This needs to be verified as well. Lastly, my data
also identified similar involvement of Tiam1/Rac1 activation in inflammatory cytokine-
induced Nox activation and ROS in pancreatic 3-cells. A potential role for ceramide in

this signaling needs to be examined further.

Under the conditions of oxidative stress in pancreatic (3-cells, Nox-mediated ROS
generation gets amplified, thus creating an environment in which mitochondrial
membrane potential is reduced leading to the release of cytochrome c, activation of
caspase-3 thereby leading to loss in cell viability and demise of the pancreatic B-cells.
Coprovision of inhibitors for Nox [e.g., apocynin and DPI], Rac1 [e.g., GGTI-2147 and
NSC23766] or siRNA mediated knockdown of p47P"* leads to inhibiton of Nox

activation and partial restoration of mitochondrial dysfunction. Not included in this



156

current model are the other known mechanisms through which chronic hyperglycemia
exerts damaging effects on B-cells, presumably not involving the Nox activation [158]. A
recent review by Kowluru highlights the importance of Tiam1/Rac1 signaling axis in the
generation of ROS under short-term conditions in the presence of stimulatory glucose
and under conditions of long-term exposure to supra-physiological glucose
concentrations leading to the metabolic regulation of the islet [117]. As recently
suggested by Poitout and Robertson [158] other mechanisms such as oxidative
phosphorylation, sorbitol metabolism, hexosamine metabolism, protein kinase C
activation by DAG etc., may also underlie the generation of oxidative stress in the -

cells during the duress of glucolipotoxicity.
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Figure 39: Proposed model illustrating potential involvement of Tiam1/Rac1 signaling
axis in high glucose-, palmitate-, ceramide- or cytokines-induced metabolic dysfunction

of the islet B-cell.
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Nox-mediated oxidative stress, Potential Therapeutic Targets and

Interventional Modalities

Inhibition of Nox holoenzyme assembly

Data accrued from my studies clearly suggested positive and negative
modulatory roles for Nox-derived ROS in islet B-cell function. The holoenzyme assembly
could represent a novel therapeutic drug target for either minimizing or halting
excessive generation of Nox-mediated ROS and subsequent oxidative damage to the
islet during hyperglycemia and/or hyperlipidemia. El-Benna and associates [234]
recently proposed that gp91°"®, p47P"* and p67°"* might serve as potential drug
targets due to their selective association in the Nox holoenzyme complex, but not other

NADPH oxidases.

Along these lines Mizrahi et al developed p47°"°*-p67°"°“-Rac1 chimera as a
quintessential single molecule activator of Nox [235] to study the effects of Nox
activation, and suggested that a prenylation step is critical for Rac1 regulatory roles.
These observations are in agreement with my findings, where | have demonstrated a
decrease in glucose-mediated Nox-induced ROS generation in the presence of
prenylation inhibitors. Developing inhibitors for such activators might provide a novel

therapeutics to minimize Nox-mediated 3-cell dysfunction.

Inhibition of Tiam1/Rac1/Nox signaling axis

It may be germane to point out that, many investigators have utilized NSC23766,

an inhibitor for Tiam1-mediated Rac1 activation to inhibit Nox-induced ROS generation
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both in vitro and in vivo [179, 180, 207]. Shen et al for the first time using
streptozotocin-induced diabetic model demonstrated a regulatory role for Rac1 in
hyperglycemia-induced apoptosis in cardiomyocytes [120]. Under these conditions,
Rac1 and Nox activation were significantly augmented which were attenuated by
pharmacological and microbiological approaches. Moreover, treatment of diabetic db/db
mice with NSC23766 showed a decrease in Nox activity and cell death via apoptosis.
Additional support for regulatory roles for Rac1 in the onset of myocardial remodeling in
type 1 diabetes, came from Li et al who have demonstrated that Rac1 knockout or
apocynin-treatment considerably attenuated Nox subunit[s] expression and activation,
ROS production and cardiac collagen deposition. Moreover, Rac1 deficiency in
myocardiocytes led to decreased hypertrophy and myocardial fibrosis and improved
myocardial function [236]. Together, these studies provide compelling evidence in
support of the hypothesis that Tiam1/Rac1 signaling axis plays a critical role in Nox-
mediated cell dysfunction in diabetes. These facts also elevate the possible need for the
development of more specific modalities to exclusively inhibit this signaling pathway.
However, as discussed above, at least in the context of the islet B-cell, this strategy may
not be ideal since the Tiam1/Rac1/Nox signaling pathway is also implicated in the
signaling cascade leading to physiological insulin secretion, including actin remodeling,
granule mobilization and tonic increase in ROS [84, 219]. On the other hand, it is
expected that slight decrease in the Tiam1/Rac1 signaling pathway might be beneficial
to the islet function. This needs experimental verification. Moreover, Bosco and
associates [237] recently demonstrated that Rac1 regulates various cellular functions

including microtubule stability, actin organization, transcription, superoxide generation
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and nuclear signaling in normal physiological states. Together, the above mentioned
positive modulatory roles of Rac1 in normal cell function implicate Rac1 as low priority

target protein for therapeutic development.

Use of antioxidants

Proper maintenance of antioxidant defenses might be effective for slowing
progression of diabetes itself by sustaining functional pancreatic B-cells. As islet p-cells
hold a poor antioxidant defense mechanism as reviewed by Acharya and Ghaskadbi
[238], counterbalancing oxidative environment by antioxidant treatment or
overexpressing antioxidant enzymes proves to be useful in regulating B-cell function.
Such approaches have been successful in preserving the number of insulin-positive [3-
cells in presence of antioxidants. Quantitation of gene expression profiles of antioxidant
enzymes in rodent islets yielded very low values compared to their respective
counterparts in the liver. For an instance, relative abundance of CuZn superoxide
dismutase, Mn-superoxide dismutase and glutathione peroxidase in islets corresponds
only to 38%, 30% and 15% of the liver values, respectively. Catalase activity was
undetectable in islets [238 and references therein]. In addition, studies by Modak et al.
[239] have demonstrated very poor DNA repair mechanism in p-cells due to oxidative

stress compared to other cell types [e.g., liver cells].

Moreover, treatment with antioxidants like a-lipoic acid has been demonstrated to
improve functional outcomes, like insulin sensitivity in type 2 diabetic subjects [240]. As
an antioxidant, vitamin E improves outcomes related to pancreas physiology in diabetes

[241], which may improve functional outcomes of diabetes in animal models. Asayama
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et al found that rats deficient in vitamin E, selenium, or both had decreased insulin
secretory reserves, suggesting that vitamin E status can directly affect pancreatic islet
function. In a mouse model of type Il diabetes, treatment with vitamin E combined with
vitamin C and n-acetyl cysteine resulted in large number of pancreatic islets than
controls at 10 and 16 weeks [242]. Along these lines, studies from Robertson's
laboratory have capitulated valuable insights into positive effects of overexpression of
anti-oxidant enzymes like glutathione peroxidase against the damaging effects of
oxidative stress [243, 244]. Studies from Xiao and group in humans [159] have also
suggested beneficial effects of antioxidant therapy [e.g., taurine], which affectively
restored lipid-induced reductions in plasma biomarkers of oxidative stress, insulin
sensitivity and B-cell function. A recent review by Giacca et al. [245] provides additional
advances in the area of lipid-induced pancreatic 3-cell dysfunction, specifically focusing
on in vivo studies. Moreover, it has been shown that NAC prevents impairment of GSIS
in vivo in perfused pancreas of 96-h Intralipid-infused rats [160]. Together these studies
further highlight antioxidant therapy as one of the feasible options in attenuating

glucolipotoxicity-induced oxidative stress in the islets.

Use of polyphenolic extracts

Studies by Tao et al demonstrated an increase in Nox expression in the heart
from adiponectin knockout mice [246]. In addition, studies by Dong et al reported
significant increase in the expression Nox protein by leptin in murine cardiomyocytes
[247]. In this milieu, beneficial effects of polyphenolic grape seed extract [GSE] against
high-fat diet mediated obesity, adiponectin—leptin disparity and oxidative stress markers

in hamsters have been demonstrated [248]. Following GSE therapy, these studies have
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shown a marked reduction in high-fat-induced abdominal fat, plasma glucose,
triglycerides and insulin resistance in these animal models; furthermore, plasma levels
of adiponectin and leptin were normalized, in the conditions where there is increased
cardiac production of superoxides and Nox expression. Together, these findings
implicate regulatory roles of adiponectin and leptin in Nox activity. Further, they provide
evidence for the therapeutic efficacy of grape phenolics in the prevention of Nox-
mediated effects on cellular functions. Potential roles of Tiam1/Rac1 axis in this

signaling cascade remains to be examined.

Use of angiotensin receptor antagonists

Studies from Nakayama et al have demonstrated a significant enhancement in
islet function in diabetic OLETF rats and db/db mice following treatment with
angiotensin1 receptor antagonist [232]. Following treatment with Valsartan, a known
angiotensin1 receptor antagonist, they demonstrated attenuation in the expression of
gp91P"* and p22°"°* and associated oxidative stress. These conclusions are compatible
with in vitro observations by Hirata et al demonstrating a significant activation of Nox-
mediated and superoxide generation in rat pancreatic islets subsequent to exposure
with angiotensin Il [221]. Collectively, these data are indicative of novel cytoprotective
effects of angiotensin receptor antagonists against cell damage induced by

glucolipotoxicity and/or proinflammatory cytokines.

Inhibition of JNK signaling pathway

Under diabetic conditions, oxidative stress activates JNK cascade, which in turn

suppresses insulin biosynthesis [249]. Thus, the hemin-dependent reduction of JNK
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and subsequent increase of insulin are important mechanisms for the enduring
antidiabetic effects. In agreement with this is a recent study to suggest that
hemeoxygenase system abates JNK activity [250]. Lastly, the regulation of insulin
release by the hemeoxygenase system has been well documented in the Goto-kakizaki

rat, a nonobese model for type Il diabetes [251, 252].
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CONCLUSION

GSIS involves a series of metabolic events involving interaction between a
variety of signaling pathways to facilitate the transport of insulin-laden granules to the
plasma membrane for fusion and release of insulin. Compelling evidence supports
involvement of small G-proteins like Rac1 and Cdc42 in the cytoskeletal reorganization,
which is necessary for GSIS to occur. Findings from our laboratory further validate that
Tiam1 represents one of the GEFs for Rac1 and that Tiam1/ Rac1 signaling axis is
requisite for GSIS. Nox appears to be an effector protein for Tiam1/Rac1 signaling and
that its activation leads to a tonic increase in the generation of ROS under the
stimulatory conditions of glucose and fatty acids leading to insulin release. In addition to
this, Tiam1/Rac1 signaling axis appears to play an important role in the generation of
Nox-mediated ROS generation under the duress of excessive glucose, palmitate,
ceramide and cytokines culminating in oxidative stress and metabolic dysfunction of
pancreatic [3-cells. Together, my findings suggest positive and negative modulatory
roles for Tiam1-Rac1-Nox signaling pathway in islet function. Therefore, it may be
difficult to pin-point as to how much of ROS generation is good for the normal function
of the islet as opposed to and how much is bad to elicit damaging effects on the
pancreatic B-cell. The Figure 40 depicted below is indicative of potential effects of ROS
on islet at different stages. It also indicates known metabolic alterations at each stage. It
is likely that there may be a “window of opportunity” or “point of return” for the islet -cell
to recover from the Noxious effects of excessive ROS due to accelerated Tiam1-Rac1-
Nox signaling pathway in the presence of elevated glucose, FFA, ceramide or

cytokines.
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Despite the fact that, Nox is identified as a cause for development of oxidative
stress, its possible loci for the action of ROS and mechanistic insights into the cytosolic
subunits within the B-cells require a thorough study. However, published evidence from
our laboratory [96] demonstrated roles for biologically active phospholipids in the
dissociation of Rac1/GDI complexes, which is ought to be essential for activation and
translocation of Rac1 to the membrane; and this step involves intermediacy of Tiam1.
Moreover, post-translational geranylgeranylation of Rac1 is essential for activation of
Nox complex as manifested by inhibition of Nox-mediated ROS generation in presence
of GGTI2147. It should also be noted that Rap1, one of the membranic components of
Nox holoenzyme, also gets geranylgeranylated and is inhibited by GGTI2147. A recent
review by Kowluru [117] suggests that activation of Rac1 is necessary for Nox
activation, and that very little is known about potential regulatory roles of Rap1 in this
signaling cascade. Further, Rap1 could potentially be under the control of specific GEFs

[e.g., Epac?2] and related mechanisms.

In summary, | believe that my findings provide fresh insights into potential
therapeutic targets and interventional modalities to prevent these metabolic defects.
The in vitro observations are supported by my finding in islets derived from the diabetic
rodents [the ZDF rat] and diabetic human islets. | truly hope that these findings form
basis for the development of small molecule inhibitors in halting the metabolic defects,

thereby retaining normal (3-cell mass.
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ROS Equivalents
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Figure 40: Hypothetical model for ROS generation in identifying the effects on

pancreatic 3-cells.
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Phagocyte-like NADPH oxidase generates ROS in INS 832/13 cells and rat

islets: role of protein prenylation
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oxidase genermies ROE in INS 832713 cells and mt islots: moke of protein
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Recent evidence suggesis thal an acute increase in the genemtion of
phagocyte-like MNADPH-oxidase (Moxp-mediated reactive oxygen
spocies (RIS} may be mecessary for glacose-stimulated insulin secre-
bon. Using mt islets and INS B33 cells, we iesied the hy pothesis
that activation of specific (G proleins is necessary for nutrient-medi-
mled intracellular generation of RS, Stomulation of B-cells with
ghicose or a mixtare of micchondnal fuels (mono-methylseocinate
plus o-keisocaproic acid) markedly elevaied intracellalar accumu-
lation of KOS, which was attenuated by sebective inhibitors of Nox
(e.g., apocynin or diphenyleneiodonium chloride) or short interfering
BN A-medizied knockdown of pd TP ope of the subumits of Mox.
Selective imhibilors of protein prenylation (FT1-277 or GGTI-2147)
muarkedly inhibited nainent-induced ROS generntion, suggesting that
activation of one (or mone) preoylaied small G proteins amdior
y-subunits of tmimeric § prolemns is invodved in this signaling axis.
Depletion of endogenous GTP kevels with mycophemolic scid sigmif-
icamly reduced ghicose-induced activation of Kacl and FOS gener-
ation in these cells. Other immunosuppressants, like cyclosporine A or
rapamycin, which do mot depleie endogenous GTF levels, failed w
affect glucese-induced ROS genermiion, suggesting that endogenoas
GTP is mecessary for glocose-induced MNox activation amd ROS
gemeration. Treatment of NS 832713 cells or rat islets with pertussis
wxin (P}, which ADP ribosylses amd inhibits inhibitory class of
trimeric O proteins (ie. (& or Gol. significantly attenamed glucose-
imduced ROS gencration in these cells, implicating activation of a
Pta-semsitive G prolein in these sigmaling cascade. Together. our
fAndimgs suggest a prenylated Pix-sensitive signalimg step couples
Fac] activabien in the signaling steps necessary for glucose-mediated
geeeration of ROS m the pancreatic PBcells.

G pmotwin; pancreatic islets; Bacl activation; penussis toxim; inosine
maraphosphate dehvdrogenase

CLUODSE-PDUCED BSULIN sEcusmmos (GS18) involves a series of
metabolic and cationic events, leading to translocation of
insnlin-laden secretory granules from a distal site toward the
plasma membrane for fusion and rebease of insulin into circe-
lation. It is widely accepted that vesicular transpodt and fusion
involves interplay between signaling proteins, including vesi-
cle-associaied membrane proteins on the secretory granulbe and
docking proteins on the plasma membrane (23, 28, 33). Fur-
thermore, interaction between these proteins is widely felt o
require cytoskeletal remodeling. which is under the fine control
of small molecular mass O proteins belonging io the Rho
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Phamacetical Sciences, Eugene Applebaum College of Pharmarcy and Health
Sciences, Wayne State Usiv_ 759 Mack Awe | Detroit, MI 48200 (e-mail:
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subfamily fe.g., Cdcd? and Racl; see Ref. 17 for & recent
review ). Sewveral effector proteins for these small G proteins
have been identified in the islet B-cell, including phospho-
lipases, p2l-activated kinase-1 kinase, and ERK 12 kinases
(17, 40, 42).

In the context of G proteins, it is well established that they
undergo posttranslational modifications for optimal activation,
membrne trafficking, and effector interactions. The majority
of small G proteins undergoes a series of modifications at their
CH-terminal cysteine residoes, which include prenylation
{i.e.. farnesylation and germnylgeranylation), carboxylmethyla-
tion (CML), and palmitoylation. In addition to small G pro-
teins, the its of trimeric G proteins undergo prenylation
and CML (2, 13, 16, 17, 400 Indead, using pharmacological
and molecular biclogical approaches, several recent studies
have confirmed the reguisite natare of these modifications in
GSEIS in a varnety of insulin-secreting cells, including clonal
B-cells, mormal rodent isleds. and human islets (see Ref. 17 for
a recent review ).

A growing body of recent evidence implicated roles for
reactive oxygen species (RO5) in metabolic dysfunction of the
islet B-cell under the dwress of glucolipotoxicity, cytokines,
and ceramide (26, 38, 3%). It has been shown that increased
ROS generation seen under the above experimental conditions
iz derived from the activation of phagocyte-like MADPH oxi-
dase (Mox). since inhibition of this enzyme by selective inhib-
itors [eg.. diphenyleneisdonium chlonde (DPI or apocynin]
or transfection of short interfering RMA (siRMNA) against indi-
vidual subunits of Mox (e.g., pA7F=*) significantly attenuated
deleterious effects of aforementioned noxioos stimuli (38, 39).

Diespite the negative modulatory role(s) of ROS in cell
function, recent evidence appears to indicate that a tonmic
increase in the ROS generation may be necessary for G315 and
fatty acid-induced insulin secretion (5, 29-32). ROS have also
been shown o modulate many physiological processes. inclod-
ing ion transport and protein phosphorylation (1, 4, 9, 210 As
revigwed recently by Pi and Collins (32), RO plays “second
messenger” role in moduolating islet B-cell function. Along
these lines, studies by Pi and coworkers (31) have demon-
strated that glucose-mediated generation of Hz0: alters intra-
cellular redox status, leading to augmented GS15: such effects
were gitenuated by coprovision of antioxidants. These findings
were further strengthened by Leloup and colleagues (200,
suggesting that generation of mitochondrial FOS is a reguisite
stimulus for GS1S to oocur. Together, these data implicaie an
essential role for Mox-derived ROS as a signaling molecule
imvolved in the regulation of B-cell function, specifically at the
level of insulin secretion. The present studies are underiaken to
determine potentiol mechanisms underlying nutrient-induced
elevation of ROS levels in INS 832713 cells and normal rat

Betp:Nerww gjpregu og.
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islets. Specifically, we have determined the roles of G proteins
in this signaling cascade; this was accomplished by selective
inhibitors of protein prenylation fe.z., GGTI-2147 and FTI-
XTT), which have been used to verify the roles for G proteins
in G515 (170 In addition, we have examined permissive roles
for endogenous GTP in nuirient-induced ROS generation. Our
findings implicate that prenylation-sensitive signaling sieps ane
necessary for glocose- and mitochondrial fuel-induced intra-
cellular generation of ROS in INS 832/13 cells and normal rat
islets.

MATERIALS AND METHODS

Materialy. VL, apocynin, pertassis toxin (Pix), mycophenolic aced
IMPA), cychsporine A, rapamycin, mono-methylsuccinate, o-keto-
isocaproic acid, and 2',7'-dichlomfluorescein discetate (INCHFIA)
were from Sigma (St Lowis, MO) pd7P™ @BRNA and pd7m™
mtiserum were from Santn Cruz Biotechnology (Sant Cruz, CA)L
FI1-277 amd GGT1-2147 were from Calbiochem (San Diego, CA).
Rac] activation kit was from Cytoskeloion (Denver, 0],

Inrulin-secreting cells. INS 832/13 cells were provided by Dr.
Chris Newgard {Duke University Medical Center, Dusham, NC) amd
were caltured in EPMI-1640 medivom cominining 10% beat-mact-
vated fetal bovine serum supplemented with 100 1LVl penicillin amd
100 Vel strepomycin. 1 mM sodiam pyruvate, 50 pM X-mercap-
ioethanol, and 10 mM HEPES (pH 7.4). The mediom was changed
taice, and cells were subhcloned weekly. Islets from nomal Sprague-
Dawley rats were isolated by collagenase digestion method descoribed
previously (413, All experiments, including isolation of pancreatic
islets from normal Spragee-Dawley s, were reviewed and approved
by the Wayne Stmte University Institutional Amimal Care and Use
‘Commitiee.

Cuantiioiion of £05 This was camied out as our laboratory
described necently in Bef. 39, In bricf, INS B32'12 cells were seeded
im six-well plate and treated with various insalin secrebxpogues and
inhihiiors (or their respective diluenis), as indicated in the fext
Following incubation. the medivm was removed, and cells were
further incubated with DCHFDMA (10 M) st 37°C for 30 min in
EFMI. DCHFID A, being a monpoelar compound. diffuses rapidly into
the cells and hydrolyzes readily by cellular esterases inio polar
', 7' -dichlorofluorescein. In the presence of ROS, 27 -dichlora-
fluorescein readily oxidizes o fluorescent dichlorofworescein. The
oells were washed with oe-cold phosphate-buffered salime and
harvested, and equal amounts of prowin were taken for fluores-
CENCE Measurements (emission wavelength: 485 nm and excitation
wavelength: 535 nm) uwsing luminescence spectrophoiometer
(PerkinElmer, Waltham, MA).

Inhibition aof Nox activity via molecular bivlopical or pharmarso-
lopical approaches. INS 832713 cells were seeded in a 24-well plate
mnd a4 50-60% confluence sither mock ransfected or tmasfected with
mnfisense pA7PE giRMA ot a final concentration of 150 nM and
cubtured for 24 b Following this, cell wenn stimalated with low
glucose (2.5 mM) or high glucose (200 mM) for 1 b At the end of
stimulation, culture medivm was removed; cells were incubated fur-
ther with DCHFDMA (10 pubd) at 37°C for 30 min in RPMI, washed
with ice cold PBS, and harvested; equal amount of proleins were
tnken; and floorescence was measured (excitation wavelempth: 455
nm. amd emission wavelength: 535 nm) using luminescence spectro-
pheotometer as described above. Alemnatively, Nox activity was in-
hibited via a pharmacological approach by incubating INS E313
oells cither with apocynin (100 phd; 12 h) or DPF1 (5 pM: 2 h) i
low -serumi, low-glucose-containing mediom. Fellowing mcubation,
oelks were stimulated with low glucose (2.5 mM) or high glecoss (3]
mM} fior | b in the contineous absence or presence of inhibilors, and
MADPFH activity was measured by DCHEDA assay. as described

R757

above. The amount of flusrescence recorded is directly correlated with
the amount of superoxide mdicals generaied due o Mox actvity.

Racl ectivation assay. This was sccomplished using o pull-down
assay that owur laborstory described recently (1B). Briefly, INS 832713
oells were starved ovemight i low-serum, low-glucose-containing
medium in either the presence or absence of MPA (10 pM). At the
end of incubation. cells were stimulated with low glocose (2.5 mM) or
high glocose (20 mM) for 30 min in the continuous presence or
absence of MPA. Lysates (500 pg prodein) were clarfied by
centrifugation for 5 min ot 4,800 g, and p21-activaied kinase-binding
domain beads (20 pl) were added o the supematant. The mixture was
then rotated for 1 b at 4™C and pelieted by centrifugation at 4000 g for
3 min. The pellet was washed once with bysis baffer followed by o
rimse {33} in wash buffer (25 mM Tris, pH 7.5, 30 mM MgCls, 40
mi MaCL amd 150 mM EIFTA). Proteins in the pellet were resolved
by SD-PAGE and mansfemed onto a nitocellulose membrane, and
Wesiern blotting method determined the relative abundance of acti-
vated Racl.

e axxays and statintical aaalyris of data. Prolein concentrations
were determimed by Bradiord s dye-binding method using bovine
serum albumin as the standard. Statistical significance of differcnces
between dileent and experimental groups was determined by Stu-
dent’s i-est and ANOYA mnalysis. F <2 0.05 was considered signif-
icanL.

RESULTS

Phammacelogical inhibilors or siRNA-pd 7% markedly at-
fennate plucose-induced ROS peneration in inslin-secreting
ceils. At the ootset, we determined whether stimulatory glucose
promotes the geperation of ROGS, and whether selective inhi-
bition of Mox attenuates such an effect in this model system.
Diata in Fig. 14 demonstrated a significant increase {— 1.7-fold)
in glucose-induced ROS generation in INS 832713 cells, which
was markedly attenuated by inhibitors of Mox holoenzyme
{e.g_, apocynin and DFI). The above observations were further
validated by knockdown of pd TP a cytosolic subunit of Mox.
Data in Fig. 18 indicated ~50% inhibition in the expression of
pd TP sybunit after siRMA transfection, and under these
conditions we noticed a marked atienuation of glucose-induced
ROE generation (Fig. 1C).

Selective inhibilors of protein preaylation marked'y atfenn-
ate plucose-induced ROS peneration in INS 53213 cells and
normal rat islets. Several earlier studies have demonsirated
that postiranslational farmesylation and germnylgemnylation of
specific (G proteins are necessary for G515 (17, 42). With this
in mind, using a pharmacological approach, we examined
whether glucose-induced ROS generation in isolated B-cells is
sensitive to inhibition of protein prenylation. Data in Fig. 2
demonstrated a significant reduction in glocose-induced ROS
generation by selective inhibitors of famesylation (eg., FTI-
277) or peranylgeranylation (e.g.. GOTI-2147) in INS E32/13
cells (A) or rat islets {B). Together, these findings suggested
involvement of famesylated and geranylgeranylated prodeins in
the signaling events, leading to glocose-induced ROS penera-
tion

Protein preaylation i5 also necessary for mitochordrial
Juel-, but mot KCl-induced ROS peneration. We next examined
if & mixture of mitochondrial fuels fe.g., o-keto-isocaproic acid
and mono-methylsuccinaie), which elicits insulin secretion
from IMNS 83213 cells (6), also promotes Mox-mediated gen-
eration of ROS in these cells. Data in Fig. 3 demonstrated that
mitochondrial fuels increased ROS generation in a manner akin
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to glucose. Furthermore, we observed that such a signaling step
was inhibited by FTI1-277 and GGTI-2147, albeit to o lesser
degree (Fig. 3) compared with glocose-induced ROS genera-
tion (Fig. 2). Together, data in Figs. 2 and 3 implicate protein
farmesylation and geranylgeranylation in the cascade of events,
leading to nutrient-induced generation of ROS in IN5 832713
cells. It should be noted that ROS generation appears to be
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specific for nuirient secretagogues, since o depolarizing con-
centration of KCl (40 mM), which facilitates insulin release via
membrane depolarization and associated increase in cytosolic
calcium, failed o promote ROS generation. (e, 109 = 1.2%
of control values; mean = 5E; m = 3; additional data not
shown ).

Depletion of intracellular GTP inhibits plucose-induced
Racl activation ard BOS generation in INS 83iX13 cells.
Several previous studies have demonstrated a critical require-
ment for endogenous GTF in physiclogical insulin secredion by
selectively inhibiting imosing monophosphate dehydrogenase
(IMPDH) with MPA (24, 25). Herein, using MPA, we exam-
ined if endogenous GTF is reguired for glocose-induced Mox
activation and sssociated ROS generation in INS 83213 cells.
Cyclosporine A and rapamycin were included as negative
controls, which, like MPA, are endowed with immunosuppres-
sive actions, but not GTP-lowering properties. Data in Table |
suggested a marked attenuation in glocose-induced ROS pen-
eration by MPA, but not cyclosporine A or repamycin. These
data indicate a crtical requirement for endogenous GTP for
glucose to promote ROS generation in these cells. Together,
data in Figs. 2 and 3 and Table | indicate potential involvement
of prenylated G protein, requiring newly synthesized GTF due
to the catalytic activation of IMPDH in the signaling events
leading o ROS generation.

We next examined if GTF depletion impedes glocose-in-
duced activation of specific G proteins imvolved in GSIS. To
test this, we guantitated glucose-induced activation of Racl in
MPA-treated (i.e., GTP-depleted) IN5 832/13 cells. The prem-
ize underlying the selection of Rac] in these studies is based on
the evidence that I} it has been shown to be activaied by
glucose and involved in GSI5; 2) it undergoes geranylgerany-
lation, and GGTI-2147 {above) inhibits glocse-induced Racl
activation and G5IS; and 7} it is a member of the MNox
holoenzyme. Data shown in Fig. 4 demonstrated that stimula-
tory concentration of glocose failed to activate Bacl in INS
8313 cells following depletion of endogenous GTF using
MPA.

A Pir-sensitive G protein medigies glncose-inguced ROS
generaiion in INS 83213 ceils. In the last series of studies, we
determined the nature of the prenylated protein that might be
involved in glucose-induced KOS generation shown in Figs. 2
and 3. In this context, our laboratory recently reponted that
coprovision of FTI-277 or FTI1-2628 or siRMA-mediated
knockdown of famesyliransferase p-subunit resulted in a sig-
nificant inhibition of glocose-stimulated activation of ERK1/2,
Racl, and insulin secretion, further muling owt the potential
involvement of Ras in these signaling steps (18). Based on

Fig. 1. Seleciive inhibitors of NAINPH cwidese or shor inlefiering BNA
(siRMNA)pdTre=s iphibits glacose-stimulated reaciive oxygen species (RO}
gereration in insulin-secreting colls. NS 832113 cells wers inoabaisd with
either diluent or apocysin (100 g, 12 k; A} or diphenylensindonium ciloride
(130 5 pM, 2 h; A} or transfecied with pI7F= slENA (B and C), following
which they were stimalated with either low (2.5 mM; LG) or high glucoss (20
mbd; H(G) for 1 h. RO% genersted wes guantifisd as dichlorofluorescein (DCF)
fuorescence and expressed os arhitrary waits (AL E: transfection efficiency
of pd 7P sifiN A ws determined by immunobloiting. Values ar mesns + 5E
from three independest experimenis done in tripliceles in eack cose. *F = D05
s, L0 lone or mock transfecied LG, **P < 005 vs. HG alone or mock
irensfzcied HG.
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these findings, we speculated a prenylated protein, most likely
the ~y-subunit(s) of trimeric O proteins, in the regulation of the
above signaling cascade. Herein, we examined if a Ptx-sensi-
tive trimeric G protein is involved in glocose-induced ROS
generation. Data shown in Fig. 5 demonstrated marked atien-
uation of glocose-induced ROS genemtion in INS 832713 cells
(A} and normal rat islets (&) treated with Pix.

DISCUSSI0N

The overall objective of the present study wes 0 determine
potential mechanisms underlying nutrient-induced generation
of KOS in isolated B-cells. Salient featwres of our studies are as
follows: 1) glocose and mitochondrial fuels, but not membmane-
depolanizing KCL increase ROS generation significantly: 2} an
increase in ROS seen under these conditions is derived from
Mox, since pharmacological or molecular biclogical inhibition
of Mox inhibited ROS generation; 3) such a regulatory effect of
glucose requires the activation of famesylated as well as
geranylgeranylated proteins; ) MPA, but not rapamycin or
cyclosponne A, completely inhibits glocose-induced ROS gen-
eration, implying that endogenous GTP is necessary for such
an effect; and 5) inactivation of Ptx-mediated ADP ribosylation
of an inhibitory G protein(s) markedly atemates glocose-
induced ROS generation. Taken together, our findings provide
insights into potential G protein-mediated regulation of ROS in

AJP-Bepul [ntepr Comp Firyciod « vl

the islet B-cells under conditions in which they regulate phys-
iological insulin secretion.

Mox is a highly regulated membrane-associated protein com-
plex that facilitates the one elactron reduction of oxvgen io
superoxide anion imvolving oxidation of cytosolic HMADFH.
The Nox holeenzyme = composed of membrane as well as
cytosolic components. The membrane-associated catalytic core
consists of gp91F™== p22F=*_ and the small G protein Rapl.
The cytosolic regulatory components include pdTR=, phTF==
pd0r== angd the small G protein Rac. Following stimulation,
the cytosolic components of Mox translocate to the membrane
fraction for association with the catalytic core for holoenzyme
assembly. Available evidence suggests that a protein kinase
C-sensitive phosphorylation of pd7eb=® Jeads 1o its transloca-
tion to the membrane fraction (3). 1t has also been shown that
functional activation of Bacl (Recl.GTP) is vital for the
holoenzyme assembly and activation of Nox in insulin-secret-
ing cells (38, 390

Along these lines, Oliveira et al. (30} provided a detailad
description of localization, expression, and functional reg-
ulation of Mox within the islet. More recent pharmacological
and molecular biological observations by Morgan and co-
workers (27) have provided compelling evidence for a
regulatory male for Mox in glucose-stimulated insulin secre-
tion im rat islets wnder static incobation and perifusion
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Fig. 3. Selective inhibitors of pmizin prenylation inhibit RS gen=ration
induced by o mirture of mitochondrisl (mita) fisels in INS 83213 cells INS
E3XN3 cells wene incubated ovemight in the presence or absence of FTT-277
(5 uh; A) end GGTE-2147 (10 pM; B, followed by stimulation with LG (1.5
mM} or 2 mintare of mile fuek |mesometky] succinete (MME} = 20 mM and
a-keinisocaproic acid (KIC) = 5 mM] for 1 b in continuous presesce o
shernce of inhibitors. KOS genersisd was quantified = DCF fluorescence and
expressed @ ALL ¥ahoes ore means = SE from tee § | Experiments
done in riplicales in cach case. *F < L05 v= glucose alone. **F < 005 vs.
mile fizels zlone.

conditions. Follow-up studies from this group have demon-
strated key roles for Mox-derived ROS in palmitate-induced
insulin secretion in the presence of submaximal concentra-
tion of glucose in islets (5). Under the above conditions,
palmitate mot only promoted translocation of pd7rbes (o the
membrane fraction, but also upregulated the protein content
of pd7rk=2 and the mRMNA levels of p22pkez gpdjpbas
pd 7P nroinsulin, and the G protein-coupled receptor 40.
Essential role for Mox in palmitate-induced effects on
B-cells was further strengthened by their observations to
indicate 8 marked inhibition of fatty acid stimulation of
insulin secretion in the presence of high-glucose concentra-

G-PROTEN-DEPENDENT EOS GEMERATION IN INSULIN SECRETION

Table 1. Depletion of eadopenous GTFP markedly atfenuales
glicose-induced ROF geacration in INS §32A 71 celly

Degree of ROS Cenenlion,
Condlion ol over hasal gluooes

Low giucoss 104y

High glhacose 1.58 + 006G
Low glucose + myoophenolic acid 1.08 + 002=
High ghacose + mymphenclic acd 116 + 00§
Low glucose +cyclosporine A 106 = 009"
High ghscose + cyclosporine A 146 = 0144
Low gluoose + rapamycin 105 + 00E=
High ghacose + mpamiycin 142 = 0154

Values ar= means + SE from three indzpendent iments in each case.
N5 B33 cells were inoobated with low glucos= (2.5 mM) end low serum in
U':pmﬂ:nrtm:mcnfm\mpinnﬂxnd[l'ﬂw] cyclosporine-& (3
M), and rapamycin {100 sM) for 24 b Following this, cells were stimulsied
either with bow (1.5 mM) or bigh plucos= (30 mM) for | h = the continuous
presence and or sbeence of the inhibitors, = indicolsd AL the end of
stimmalation, cells were inosbated with 2', 7 -dichlorofluor=scein discstaie (10
M) For 30 min and hereesied Tor dichboro@ecresorin Seonscence. RS

raied was tified as dichlomfieorsoein Beomrescence and
Ftuh:wrmmﬁlzmrmlddﬁumm]uwghmdm 1'?-")".?‘?“
low ghocose alone §F < 0005 v high gluoose alome.

tion by inhibition of Mox activity. Based on these findings,
it is evident that Mox plays key roles in islet function,
including gene regulation and insulin secretion.

Our present obsarvations also implicate roles for farne-
sylated and geranylgeranylated proteins in nutrient-induced
Mox activation and associated ROS generation; the gerany-
lated protein involved in nuotrient-mediated activation of
Mox might be Racl, since it is one of the components of the
Mox holoenzyme (39). Pharmacological (ie., generic as well
= more selective imhibitors of geranylgeranylation of
Racl)y, as well as molecular biological {i.e., dominamt-
negative mutants of prenyltransferases; Ref. 22) studies
from ouwr labomtory have clearly implicated Racl in islet
function, including insulin secretion (17, 15, 41). The iden-
tity of the farnesylated protein, which is reguired for notri-
ent-induced ROS generation. remains to be determined. It is
likely that it might represent the y-subunit of a Pix-sensitive
3 protein, since our labomatory has demonstrated earlier
regulation of Ptx-sensitive & proteins by glucose in clonal
B-cells, normal rat islets, and homan islets {10-12, 14).
Several earlier studies by Seaquist et al. {35), Roberison et

— W s | MAc1GTE

CAT-PHE=FBD

Glucose; Z5mM + + - -
Ghucose; FmM - - + +
MPA; 10 pW - + -

Fig. 4. Endopemous (Z1P levels sre mguired for glacose-induced Bocl active-
tion and subssquent RS gensmtion in pancreatic pcells. NS EV23 cells
were inoebaled owemight with either dilsenl or myoophenclic acid (MPA; 10
phdl, Followed by stimulation with either LG (5 mM) or HG (20 mb} foc 30
min. The of Racl activation was delermined by p2]-activaled kinase-
hinding domain (PAK-PRIY) pulldown assay, a5 described in MATIRIALS AMI
s A represestafive blot from two pall-down assays yielding similer
data is depicied here.
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A NS 83213 Cells
A
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b= In
1 ]

DCF Flusrescence [ALT)
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B 1skets
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Fig. 5. Pertussisz foxin (Px) pretrestment stenuaies ghocose-indoced KOS
generation in INS B33 celk or normal ral islets. Unirsalsd or Pix-frealed
{10} mgfmli NS B32713 pells {4) or nonmal mi slets (8) were stimulaled with
ither L0 (2.5 mM} or BG (30 mM) for | b ROS was tified as
IXCF fuorescence and expressed as ALL Yalues ore means + SE from three
indle iments done i triplicates (m INS E32713 cell) and in
duplicaies (in islets) in cach case. *F == 005 vs. LG alone. **F =2 005 v HG
slone.

al. (34}, and Sharp (36) have provided evidemce for the
expression of inhibitory {(e.g.. G, or G_.) class of Pix-
senzitive heterotrimeric proteins in the islet B-cell. Further-
meare, studies from our labomtory {10 and those of Konrad and
coworkers (7) have demonsirated functionally active heterotri-
mernic G proteins on the insulin granules in isolated B-cells.
Lastly, using clonal B-cells, normal rat isleds, and human islats,
we have been able to demonstrate activation of the CML of
vy-subunits by glucose: such effects of glucose were shown to
be sensitive to Pix, GTP, and extracellular calcium (14).

R761

Existing experimental evidence also implicates rodeds) for tri-
meric G proteins, specifically the inhibitory G class of proteins
in the regulation of MADPH-oxidase activity. For example,
using human fat cells, Kreuzer and coworker's (19 demon-
strate insulin-induced activation of NADPH-dependent HaO:
generation in human adipocyte plasma membranes is mediated
by Gogy. which is regulated via ADP-ribosylation by Prx
Additional studies are needed to conclusively determine the
identity of this protein. However, based on our laboratory’s
recently published evidence (18), it is unlikely that the
farnesylated protein is Bas, since inhibition of Ras {a farne-
sylated protein) had no effects on glucose-induced ERK 12
phosphorylation, Bacl activation, and insulin secretion.

Car findings also suggesied that depletion of endogenous
GTP by MPA results in a decreased activation of glocoss-
induced Racl and RO5 genemtion. In this context, original
studies by Metr and coworkers (24, 25) have documented
permissive roles for endogenous GTP in physiological insulin
secretion. MPA, which selectively inhibits GTP biosynthesis
by inhihiting IMPDH. has been shown to inhibit G315 and
mastoparan-induced insulin secretion (24, 37). Even though
inhibition of G protein activation was speculated to be one of
the uwnderlying mechanisms in the inhibition of insulin secre-
tion following GTP depletion by MPA, very little information
i available to suhstantiate that speculation. In this coatext, our
laboratory has described earlier the inability of glucose o
increase the CML (and activation) of small G proteins in
GTP-depleted cells (13). The present studies identify Racl as
one of the target proteins for glucose-mediated. endogenous
GTP-dependent effects in B-cells. Our present findings are also
in agreement with observations of Krotz et al. (19a), demon-
strating inhibition of endothelial Mox by MPA via a Racl-
dependent mechanism.

Perspectives and Sipaificance

Owr studies provide the first evidence to suggest that
prenylation-dependent, Mox-mediated generation of ROS is
necessary for nutrient-induced insulin secretion in the pan-
creatic B-cell. Our findings also suggested that IMPIXH-
derived generation of GTP is necessary for glucose-induced
ROS generation and subsequent activation of Racl in insu-
lin-secreting cells. Data accmed in studies involving Pix
suggested that glocose-induced Mox activation and ROS
generation are under the fine control of a Pix-sensitive G
protein. Potential identity of the prenylated protein whose
activation appears to be required for glucose-induced ROS
generation (present study) and ERK1/2 phosphorylation,
Racl activation, and insulin secretion {13) remains to be
glucidated.
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Tiam1/Racl signaling pathway mediates palmitate-induced, ceramide-sensitive
generation of superoxides and lipid peroxides and the loss of mitochondrial
membrane potential in pancreatic B-cells™
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1. Introducton

ABSTRACT

The phagocytic HADPH axidaze |[MNE] has been implicatad in the generation of superaxides in the
pancreatic f-oslL Hersin, using normal rat islets and clonal INS 83213 aells, we tested the hypothesis
that activation of the small G- protein Bacl, which is 2 member of the NOB{ holoencyme, is necessary for
palmit ate | PA}-induced generation of supemxides in pancreatic §-oells. Incuba tion of ol ated Becells
with PA potentdy increassd the NOX activity cul minating in a significant increase in the generation of
supermiides and lipid peroxides in these cells; such effects of PA were atbenuated by diphenylene io-
o wm [DXP1]L aknovven imhbi tor of RO In addition, PAcaused a transient, but significant activation |ie,
CTP-baenad form) of Racl in these cells NSC23766, 2 s=lactive inhibitor of Racl, but not Cded2 or Rho
activation, inhibited Racl activation and the generation of supenaides and Lipid perasides induced by
PA. Fumonisin Be-1 [FB- 1] which inhibits de novo synthesis of ceramide [CER] from PA, also attenuabed
PA-induced superaxide and lipid peroxide generation amd NOX sctivity implicating intrace Tul arly
generated CER inthe metabolice Fects of PA; such effects were also demans trable in the presence of the
oel l-per maable C2-CER Further, NSC23766 prevented C2-CER-indwoad Racl activation and production
of sugrerod des and lipid peroaides. Lasthy, C2-CER but not its inactive analog ue, s gnificantly reduoeed the
mitochondrial membrane potential, whichwas prevented to a large degre e by NSC23766. Together, our
findings suggest that Tiam1 fRacl signaling pathway regul ates PA-induwoed, CER-dependent superaxide
generation and mitochondrial dysfunction in pancreatic B-cells.

Published by Elevier Inc

mechanisms have been put forth to explain PA-ind uoed metabolic
defects; ane of these include meneration of intracellular oxidat ive

Several lines of evidence from multiple laboratories suggests
that chmonic exposure of isolated B-cells to elevated saturated fatty
acids [eg, palmitic acid; PA] leads to a significant metabaolic
dysregulation and eventual demise of the B-cell [1-3]. Multiple
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diaceqrs DHC Ditydrocsramics; DPL O phemylensisdoni um; FB-1, B mind sin
B-1; CEF, goanine mcleanids ewchange fonor; MDA, malondialdepde; MMP,
mitcchcndrial memibrane poenmial; NET, nimobloe srazoliom; PA, paiminc aod;
Facl, Ras-neated C3 bomlinom woin subsorae 1; RS, reactive ooygen species;
Tiam 1, T-lymphoma irvasion and meastasis 1.
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stress |egg, reactive oxygen species; ROS;, 4-6], albeit recent
stwdies by Moore et al. |7] appear to argue against fatty acid-
imduced oockd ative stress in the pancreatic B-cell. A signaling step
imvolwed in the inceased generation of ROS and associated
imduction of intracellular oeid ative stress in the pancreatic B-cell
i the activation of the phagooytic MOX system, which iz a highly
regulated membrane-associated protein complex that catalyzes
the oneelect mn red uction of ceyEen to su peroc de anion invobring
oxidation of oytoselic NADPH The phagooptic MOX i a multicom-
ponent systern comprised of membrane as well as optosolic
components. The membrane-asseciated catalytic core is a complex
caonsisting of gp91™™==, p22 ¥ and the small G-protein Rapl. The
cytosalic regulatory components include padT ™™, paT™= and the
small G-protein Racl [8-12] Following stmulation, the cytosolic
compaonents of MADPH oodd ase translocate o the membrane for
association with the catalytic core for holeenzyme assermbly.
Available evidence also suggests that a protein kinase C[-sensit ive
phosphorylation of p47™* leads to its transkcation to the
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membrane fracton [13). It has also been shown that funchional
activation of Rac [Le. GTP-Rac] is vital for the holoenzyme
assembly and activation of NOX [14-16].

Several recent studies have demonstrated localization and
functional activation of the NOX in clonal B-celk, normal rac
izlets and human islets under the duress of various stimuli
including elevated levels of glucose, saturated fatty acids and
proinflaimmatory cytokines [6,17-19). i has also been demon-
strated that pharmacological inhibidon of NOX by diphenyle-
neipdoniurn chloride [DPI) or anti-sense oligonuclectides for
pd = markedly attenuated glucose-induced ROS production
and oxidartive stress, suggesting a critcal involement of MOX in
the metabolic dysfunction induced by gucose [20]. These data
implicate a significant contributory role for NOX in the
metabolic dysfunction of the B-cell under conditions of
oxidative stress [21-23]

Despite the aforementioned compelling lines of evidence,
very little has been studied with regands to the potential
ooniribu tory roles of small G-preteins [eg, Racl ] in the cascade
of events leading o PA-induced NOX-mediated superoxides
generation in f-cells. Based on this reasoning, we undermook the
current investigation to test our overall hypotheszis that PA
induces generation of superoxides and lipid peroxides in INS
B3213 cells and rodent islets by increasing Racl activation,
which represents one of the signaling events necessary for the
functional regulation of the endogenous NOX holoenzyme
assembly and its catalytic activity. Herein, we describe evidence
to implicate NOX signaling pathway in the generation of
supemxides and lipid peroxides in PA-mediated effects on
izolated f-cells. We also present the fist evidence to suggest a
critical modulatory rolke for Tiam1, a guanine nucleotide
exchange factor | GEF) for Rac1 [28], in this signaling pathaway
leading to the onset of mitechondrial dysfuncton

2 Materals and methods
21, Marerials

C-Ceramide, Dihydroceramide and MSCXIT66 were from
Calbiochem [San Diego, CAJ]. Nitroblue tetrazolinium salt, mal-
ond ialdehyde, thioharbituric acid, diphenyleneiodonium chloride,
butylated hydrocgrtoulene, oleic acid and palmitic acid were from
Sigma [S¢ Louwis, MO] Antibodies directed against pd 7P and
actin were from Santa Cruz Biotech nology |Santa Cruz, CA) Racl
activation kit was punchased from Cytoskeleton Inc. |Demmeer, C0).
JE-1 assay kit was from Cell Technology Inc. | Mountain View, CA).
Palmitate stock solutions were prepared as we described in Ref.
[24]

22 [nsulin-secrening cells

INS E32(13 celk were provided by Dr. Chris Newgand |Duke
University Medical Center, Durham, NC |and wereculturedin RPMI
1640 medium containing 10% heat-inac tivated fetal bovine serum
supplemented with 100 1U/ml penicillin and 100 1U/ml strepio-
miycin, 1 mi sodium pyruvate, 50 pM 2-mercaptoethanol and
10 mbd HEPES [pH TA]. The med ium was changed twice and cells
were subcloned weekly. Islets were isolated from normal Sprague—
Dawley rats using the collagenazes digesion method described
previowsly [24].

23, Quantraton of superacide generanon by mimblee remazediem
[MET] asay

IMS B32(13 cells were plated in six-well plates and grown to
subconfluency and then treated with PA 100 pM), C-CER

|30 M) FE-1 [10 pM]) DPl |5 pM] or NSCITE6 |20 wM] in
different combinations as described in the text. The medium was
then removed and the cells weme washed once with PES and furt her
incubated with 0255 NET for 30min at 37°C Celk were then
harvested and pelleted by low-speed centrifugation The resulting
pellet was resuspended in 50% acetic acid. The reduced MET
formazan product was quantified by measuring the absorhance at
510 nm weing Beckman DUS0 spect mphotometer.

24, Quantarion of supendde generarion by malondialdefyde
IMDA] assay

M5 832(13 cell lysates derived from control o treated cells
[100 g protein ] were treated with 10 trichlomn acetic acid, 2%
butylated hyd moytoulens, and freshly prepared 0UBTE thioharhi-
turic acid. Following this, the samples were boiled for 15-20 min
and then allowed to cool down at 4-8 °C for 15-20min. The
sam ples were then gently vortexed and centrifuged at 3500 rpm
for 15 min. The resulting supematant was used to measure the
absorbance at 532 nme Astandand concentration curvewas used to
extrapolate MDA generated from various samples.

25 NOX mssay

M5 83213 cells were plared in six-well plares, gown o
subconfluency and then treated with either diluent or P [ 100 pM)
or C2CER [30pM] for 6h Afier mreatmment the medium was
rermoved and the cells were washed once with FBS and further
incubated with 5 ph of 27,7 -dic hloredi hyd mfluorescein diacet ate
|[DCHFDA] for 30 min at 37°C Cells were then harvested and
pelleted by low-speed centrifugation and the protein content of
the pelletwasdetermined using Bradford's assay. Following to this,
equal amount of proteins were taken and fluorescence in each
condition was mecorded |[excitation — 485 nm and emission -
530nm). The amount of fluorescence recorded is directly
correlated to the amount of superoxide radicals generated due
to MO activity.

26, Racl acrivarion @&say

M5 B32/13 cells were treated with either diluent or NSC2 3766
|20 M) or C2-CER or PA or oleate. Before treatment, cells were
incubared overnight with N5C23766 in a low serum- low gucose
containing medium. Cells were furt her incubated with PA or C2-
CER as indicated in the text in the continuouws presence of either
MNSC2 3766 or diluent Lysates [-500 g protein | were clarified by
cenitrifugation for 5 min at 4800 =« g, and PAK-PBED | p21-activated
kinase-binding domain] beads [20pl] were added to the
supernatant The mirure was then rotated for 1h ar 4°C and
pelleted by centrifugation at 4000 =« g for 3 min The resulting
pellet waswashedonoe with lysis buffer follwed by arinse |3 <] in
wash buffer [25 mM Tris, pH 7.5, 30 mM MgClk, 40 mM NaCl, and
150 mM EDTA] Proteins in the pellet were resolved by S05-PAGE
and transferred onto a nitrocellulose membrane, and Western
blotting met hod determined the relative abundance of activated
Racl.

27 Assessment of mitochondrial dysfiuncrion by JO-1 amay

Loss of mitochondrial membmanpe potential in cells has been
estimated using JC-1 assay kit Briefly, IN5 83213 cells were gmwn
at B confluency on the cover slips and were incubated with and
withoutr MSC23766 |20 pM] ovemnight in bow serum- low gucose
media Celk were then treated with C2-CER |30 pM] or DHC
|30 M) for &h with or without NSC23766. At the end of
incubation, cells were washed twice with assay buffer (provided
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Fig. 1. PA induces generaiion of liped perosddes and superooodes in INS E32113 cells: protection by DPL INS 2332113 cells were inoubatsd |6 h] wath emther dilosnt or PA
(100 M| andior OP1 |5 M) 2 indicated in the figure. Lipid bydropencocds |avels wer measured 2 MDA squivalens [Paned A and supsrood e levels [Pans B] were

gquantitaed as formazan equivalenss. Data ane mean + 56 fiom gree indepen dent defemm inations. Values werne oonsidersd ignifiantatp « 005 Signifiant effert of PA to
diluant Bs.ngjdum'b-rmemnﬂ and [OF1 = PA. “Sgnificance: between PA and DF] = PA.

with the kit ] and were further incubated for 15 min with JC-1 dye 28 Orcher assays
|1 ] Cells were then washed taice with assay buffer and the cover

slips were mounted onio a glass slide and images were taken at Protein concentrations were determined by Bradford's dye-
A= magnification using Olympus X717 micmoscope [Olym pus binding method using bovine serum albumin as the standand.
America Inc, Center Valley, PA). Statistical significance of differences between diluent and experi-
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Fig-Z PA, but not ol eate, inducesRac ] activaton and MOX acovationinf cells Bormalrat islersand INS E32] 13 cells were treated with diluentorPA | 100 jub; FanelA|. The
relative amounss of acivaed Facl |Le, Fac]-CTF) wene determined from thess hesates by PAK-FED pull down azay. Daa o repressniaive of two independsnt
experiman . Panel B: lysaes derived ifrom IN3 E22/ 13 cells meaied in the absenos or presence of PA 100 M| were separaed by 30E-page and F\:‘h-e-di\:i_pd.‘.l'""""‘ and adn
expresion A repnes sniadive bikot fmm e indspendent experimean s is shown here Pans C lysates derived fom | NS E32 N3 cells meaed in the abizen o or pres enoeof PAor
odeare | 100 M 2ach] wene processed for MO activity and were quanstased by the DOHFDA assay and are expressed 25 DCF fluorescenc s unl & D353 are mean + SEMimm o
imcividua | mea suements far DOF flucrescence **p - 005 w. diloent. Pane] Or IN5 23213 ool kowere e ed with difuent andjor oleate (100 M | arPA | 100 juUM | 2mdthe relatise
am o i of 3ot saed Rac] werns detenm ined by PAK-PED pull down assay. Dag presentsd inhene ane densiometne anahysis of the blos and are mean + SEW nom Sour nde en dent:
expeaments. "p .« 005w diluend.
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equivalents or formazan aquoivalen s, respeciively. Data are mean = SEM from thnee detenm inations. Valees wee oonsidenad sipnificant a p- 005 "Signihantefed of PAD

diluent.

mental groups was determined by Student’s r-tesr and ANOWA
analysis. p < 005 was considered significant

3. Hesulis

3.1. PA induces genenanion of lpid peroxides and ROS in
inslin-secrering cells

At the outset, we determined if exposure of solated f-cells to
PA rezults in the generation of superoxides and lipid percxides
Diata shown in Fig. 1 suggest that incubation of INS B32/13 cells
with PA [ 100 M, & h] significantly increased lipid perocide levels
|~2.5-fold; expressed as MDA equivalents; Panel A) and ROS levels
|~2.7-fald; Panel B]. Furthermaore, coprovision of DPFl, a lnown
inhibitor of NOX attenvated the PA-induced lipid perocide levels
|~37%) and ROS generation |~31%]). Together, these data suggest
that PA-mediated generation of lipid perosxid es and ROS in isolared
B-cell may, in part, be due to activation of MO
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ance between NI and NEC = PA ""Sgnificance beteeen PAand N3C =PA

32 PAindwces acovanon of NOX in pancreanc fi-cells

Data described abowe prompied ws to further inwestigate
potential regulation of MOX activity by PA in insulin-secreting
cells. As stated above, pd7"™" represents one of the subunits of the
NOX holoenzyme which is subjected to regulation in cells under
the duress of cxddative stress. It has been shown that amall G-
protein Racl, aleo a memberof the NOX azsembly, is also activated
under conditions of mddative stress leading to activation of WO
activity. Data described in Fig 2 sugppested thar incubation of
normal rat islers [Panel A; left] or INS 83213 cells [Panel A; right]
with PA significantly increased the activation |ie. GTP-bound
form | of Racl az determined by the PAK-pulldown assay [see
Section 2 foraddidonal details). In addition, we observed a marked
increase in the expression of pd7™™ in these cells following
exposure to PA [Fig. 2; Panel B]. Together, data in Panek A and B
suggest upregulation of expression and function of key oom po-
nents of WNOX holeenzyme in cell exposed to PAL We next

;ﬁ:;qluﬂm'r affects of PA sn NOX activity in INS E32013 cells: potential roles for ceramide.
Trezment Time ()
a 3 6 12 24
PA 00+211" 157+ 5730 1454298 T2+ 1410 621506
PA=HE1 M+ 156+ 3 113+1.241 &5+ 454 B0+£9)

INSERZNE cells weere meaed with PA | 100 wh | in the absence or presenoe of FB-1 | 10w for diflersnm gme interals 25 indicaed. BOK activily was quandaied by e
DCHADA a5 ay. Dara are expressed a5 DOF flucescence units and are mean +58\ from thres defenminasons.

a Mo significant diffsrence betsseen the Wi Treahment gnou e
- P 005 berwesn PA induced ROE v conial (0h)
! pe 005 between PA induced ROS in the presence of FE1 ws PA done
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quantitated the NOX activity to determine if PA-induced activation
of Racl [Panel A] and p47™* expression | Panel B] culminates in
the functional activation of the enzyme. Ind eed, findings described
in Fig. 2 [Panel C] suggested a significant increase | -97%] in the
catalyric activarion of NOX in cells treated with PA It should be
noted that under these conditions, oleate ewerted a modest effect
on the MOX activity [Fig. 2; Panel C] without significantly affecting
Racl activation in IN5 832(13 cells [Fig. 2; Panel D]. Together, our
findings suggest that PA but not oleate, elicits stimulatony effects
on Racl activation and MO activiry

33 Tiaml, a GEF for Racl, & imvolved in PA-induced Racl acovaton
and generarion of superaxdde s and lipid peroxdes in pancrearic B-cells

It has been demonstrated in many celk types, and maore
recently in pancreatic f-cells, that Racl activation is mediated by
GEFs, such as Tiam1 [25.26). Recent studies from our laboratony
have provided immunological evidence for Tiaml in insulin-
secreting cells, and further indicated that NSCX3766, a specific
inhibitor of Tlam1, specifically inhibits GTP-loading onto Racl, but
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not Cded? and Rho [25) Therefore, we investigated if pre-
treatment of isolated B-cells to NSCX3IT766 prevents PA-induced
Racl activaton and associated increase in the generaton of
supemxides and lipid percides. Data shown in Fig 3 [Panel A)
demonsirated a near complete inhibition of PA-induced Racl
activation by MSC23T66 suggesting potential requirement for
Tiam1 in PA-induced Racl activation Furthermore, we obsened
that PA-induced genermtion of lipid pemeides |[Panel B] and
reactive oxygen species [Papel C] in IMS 83213 cells was also
reduced |-20-30%] following inhibition of Tiam 1-mediated
activation of Racl. Together, these data implicate a nowel
regulatory mle(s) for Tiam (Racl signaling stepds) in PA-mediated
generation of superocides and lipid permxides in isolated f-cells.

34, PA-induced generarion of pid peroxdde s and supe o des may, in
part, be diee to inmracel wlor generan anaf CER via the de nove parioaay

Since PA is the precursor for the de nove biosynthesis of CER, in

the next seres of studies we investigated potential mles of
intracellulary generated CER in aforementioned PA-induced
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IFig- 4. Fuamcanids inB < 1, 2 inih ihienor of s me Bl yinsh =5 ks of OER incm PA, marioedly redocss PA-induced generanion of |iped pemad =5 2nd 5 operoockdes in NS Z320 3cdls . INS
3213 cells were pretreated in the prasence or abmence of FE-1 [10 ] prior to the addimon of PA [100 wM] and bysates deneed from these cells were astesed for
generaonof supercocid es and lipid penood des. 5o peoc de generation was quantitaed by NET method and expressedas formazan equivalkents | Pan s A] Lipid perocide levels
wae quanmtaed by the MDA axsy, and expressed 25 nanomaoles of MDA fommed 00 jog protedn |Pans B). Data are mean £ 5EM from shree deerminasons. Valoes wee
coreshdemed signifl cant 3t < Q05 "Sign ficant offsct of PA mdﬂmm.’ﬁpd:nebuﬂ&nﬂ]am F81 = PA. "Significance betaesn PAand M1+ PA Forfermoe, cells were pire-
meated in the pesence of abssnceof FET [10 WM | pricr o &e additon of PA 2 diflerent concenhousons ||0-200 (U] Lys ates derfed wene processed for BN acivity and wer
quantitated by e CHADA 2ty |Paned C] and are & & DOF flucescence. DaQ are mean + SEM from three detenmin srions. Craph with different symbolks i soosoclly
significant & p < Q001 “PA-induced ROS vi dil uent. "PA-=FE] induosd ROG w. FE.



179

L Fyed o ol [ Bechem gl Pharmacsdegy &0 (2010) E74-852

i

-
]
=&
—
=]

S F L
&

b1
e el

® ,_ E— 1
€
3
z 5
5 2
g
2
Z
E 1
=

o -

& &

P

Fig 5. C2-C R promates generation of lipid paroockdes andROS in1NS E32113 cedls by acthvaning on dogen ous MADPH cocidase activity. INS 83213 cellls were meaedw ith et er
dilwent arC2-0FR |30 0| andkor DPT |5 00 i earious combinations 25 indicated in the figore. The dagree of RIS ganeraion was quanstaed by the NET methad and is
expressedasionmazan equival anis [PanslA ). The amoontof 1ipid ydnopenoockdes gansrationwas quantiated by the MDA 2say and isexpresesd 25 MDA squivalents || Fana B).
Dara are mean + SEM fim e detenm inanions in each cse. Values we e consbdered significant atp < 005, *Signl ficant efecrod C2-CER v, diluerr. “Signi ficance berween DP and

DFl = C2-CER. ""Spniflcance batwaen C2-CER and DF] = C2-CER.

effects on isolated B-cells. To address this, we quantitated PA-
induced genemtion of reactive oxymen species and lipid pemoides
in cells pre-treated in the ahsence or presence of FB-1, a known
inhibitor of de rove bicsyn thesis of CER from PA| 28], incubation of
izolated P-cell with 100 pM PA in presence of FE-1 significantly
reduced PA-induced generation of ROS [~72%; Panel A] and lipid
peroddes |~62%; Panel B) without simificantly affecting these
parameters in cells incubated with the diluent

‘We next quantitated PA-induced effects on MOX activity as a
function of period of incubation and the concentration of PA. Data
in Tahle 1 indicated that PA elicited significant stimu latory effects
on MOK activity. Maximal effects were seen between 3 and & h of
incubation Interestingly, PAeffects were not seen beyond & h time
point as the NOX activity fell ewen below the contral values. In
addition, pre-incubation of these cells with FB-1 mesulted in a
significant inhibition in MOX activity at & h time point suggesing
potential regulation of MOX activity by intracellularly generated
CER |Table 1]. We next guantitated NOX activity in these cellz az a
function of PA concentration [0-200 pM] in the absence or
presence of FB-1. Data in Fig. 4 [Panel C] suggested a concentma-
tion-dependent activation of MOX by PA Further, we noticed a
significant inhibition of PA-induced MNOX activity by FB-1.

(A

. R N
e S | Actin
CON C2-CER

(@) B

DCF Fluorescence

Together, these data suggest that PA-induced effects on lipid
and superoxide levels and NOX activity may, in part, be dueto the
intracellularly generated CER.

35, A cell-permeable analog of CER mimics PA gffecrs in
olared P-cells

We next investigated if coprovision of a cell-permeable CER
|eg., C2-CER] mimics PA-induced oxdative siress in IMS B32/13
cells, and if such an incease is mediated vio activation of
endogenous NOX To address this, INS 83 2{13 cells were incub.ated
with diluent or C2-CER, which has been effectively used to
determine CER-induced metabolic dysfunction in isolated B-celk
|27.28] in the absence or presence of DPI to inhibit endoge nows
NOX. Data described in Fig. 5 showed a marked reduction in C2-
CER-induced ROS levels | -7 1%; Panel A) orlipid peroxides |69,
Panel B] in cells exposed to DPL. It should be noted that DPl exerted
a modest increase in the generation of lipid pemexides in the
absence of C2-LER withowt significantly affecting the basal
superosdde generation [Panels A and B lanes 1 va 3] Taken
together, these findings im plicate MOX activity in C2-CER-induced
generation of ROS and lipid peroxides in pancreatic B-oells.
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Flg- & C2-CERinareas es the expression of p477 an dND X actwiity inINS E32)13 cellls | NS 53213 aellls wene treaved with afther difuent or C2-0FR | 30 M | and exaimin ed for
relagve incEases in pa7 “ expression and NADPH cxoid #se acivity. Pane] A hysate prowinsdenfved from diloent or C2-CER-treated cells wer separated by SUS-page and
[proibed for pL7P an daonin expness on. A repressngtive blot from e independent scperimens is shown here Pand B: MOX acgwny ind iluent or C2-0ER Srezed cdlswas
quanmtaed by the DOHFADA flucresoence amsay and is exprassad as DOF flooreseence. Data ae mean £ SEM fmm s indspendentdatenminatians. e < 005 w. dileent
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36 (2-CER mimics PA effecrs in inducing pd 7= expression and
NOX actvity in solared B-celk

As a logical extension o the studies described in Fig 5 we
examined if C2-CER induces pd7™™* expresion and NOX activity
in pancreatic f-cells. Data in Fig. & [Panel A] show that incubation
of INS 832/13 celk with C2-CER significantly increased pd 77"
expression. Moreover, in a manner akin to PA, C2-CER increased
|mvre than 2-fold] the MOX activicy in INS 3213 celk [Fig. &;
Panel B]. Together, these data in Figs. 5 and & demonstrate that a
cell-permeable analeg of C2-LER mimics the effects of PA on
wolated B-cells by increasing the NOX activity.

3.7 - -indwced generation of superaxddes and lpid penooddes is
medarad by the Tlam1/Racl signaling patnaay

Herein, we examined the possible irvolvement of Tiam1 [Ract
signaling cascade in C2-CER-induced oxidative siress in Brcells
Data shown in Fig. T suggested a significant activation of Racl by
C3-CER im INS B32(13 cells [Panel A; left] and normal mrt islers
|Pamel &; right ] Moreover, coprovision of NSC2 3766 substantialby
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inhibited C2-CER-induced Racl activation in both cell fypes. These
data clearly suggest that C2-LER-induced effects on Eolated -
cells may, in part, be due to activarion of a Racl-dependent
signaling mechanism. Furthermaore, we notced that C2-CER-
induced generation of lipid peroxides [Fig. 7; Panel B] or
supemeides |Fig. 7, Panel C] was meduoced [-27-60%] by
NSCXITeE, thus suggesting nowel regulation of CER-mediated
effects by a Tiaml/Racl-dependent signaling mechanism |see
balow].

38 (2-CER bur nor (s inacrive analogies, promotes miochondriol
dysfuncrion in INS 832/13 cells in a Tiam1Rac? signaling parfway

We have recently reported that exposure of isolated B-cells to
C2LER mesults in significant abnormmalities in mdtochondrial
function including loss in membrane potential and leakage of
cytochrome-L into the oyosolic comparmment | 28] Therefore, in
the last set ofexpermentswe verified if Tiam1 [Racl signaling step
might underie the CER-induced mitechondrial dysfunction in 1NS
B32013 cells. To address this, mitchondrial membrane potential
| MMP] was guantitated by the JC-1 smining method in cells
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Flg. 7. MRCEETES inhibits C2-(FR-induced Rac 1 acgvation and generation of lipld p enoockdes and supenoooides in panoreatic ﬁ.—cﬂs NS Z3Z113 cells andrat sl e were treated
weith aither dil uen ¢ or NS 765 | 20 (M| and oolmed cvennd ghitin bow glocase o sarom media. Celis were forther inoub atedin the presence of C2-0ER [20 M| for 20 min
i INS EEE13 cellls and 2 hin skt in ghe oon Snoows presence of NS 766 or dfleent. The relative amounts of achivared Eacl pr.,hc1-¢.‘]?|mcbtmntdbr?ﬂm
jpull dowen assay. Dara are representat e of tao independent experiments [Panel A). Fand B: INS E32/13 cells were incubated & h] with either diluent or with C2-CER
[30 M | or NSCZ376E [20 wM; alone or in combinason]. Lipid hyd rgpencocid es were measured 25 MDA equivalens and plotied a5 increase over basal. Faned C: INS 232013
cellls were incubated | & h) with eitherdi luent or with C2-0FR [30 M) or NSCE 3766 [20 UM alone or in combin aion 25 indicesd in the figars | S0 panowid & gens@mion was
measured 2 fomazan equivalentsand ploged 25 inorease ower hasal Data in the insets represent i noremental resp onse © C2-CER in the absence or presence of NS 23766
Dfa are mean + M froan three detemm narions in sach mse Values were consi dened significant & p o 005 *Signifi cant eflect of (2068 v diluent. 9 gnifi cance benwesn NS

and NSC = (L. “Significance: betaeen C24ER and NEC = O,
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CON + NEC

DHE - NG CER - MISC

CER + NFE

Fig. & WS(I376E inh ibits C2-0R-induced mitochondrial dys fun otion in pancreatic f-cells: INS 23213 cells were treated with aither diluent or NSC2 3765 |20 wM| and
cuburad owernight in kow gloooss and low semm media. Cells wwere furdher inoobased in the presence of CECER |30 | andjor DHC 30 8] for & e the: ooni@n oo
presence of NRC23IT6S or diluent. Mitochondrial dysfuncgon was detemined by )01 azay. Data are repessntadve of Do indspendent exparimenms

exposed to diluent or C-CER in the absence or presence of
NSCXITE6. To determine the specificity of CER effects, we also
utilized Dihydroceramide [DHC], an inactive analogue of CER on
MMP in IN% 83213 cells. Data in Fig. B indicated that exposure of
these cells to C2-CER [lower left panel], but not DHC | middle laft
panel] @gnificantly lowered the MMP as evidenced by staining of
the majonty of cells in green due to reduced MMP. Furt hermore,
NECX3T66 prevented C2-CER-induced loss in membrane potential
|as evidenced by a strong [-agoremtion; red colar] in these cells,
further supporing the hypothesis that Tiaml/Racl signaling
pathway coniributes to CER-induced metabolic dysfunction in
the pancreatic B-cell.

4. Discussion

One of the main objectives of this smdy was to test the
hypaothesis that activation of the Tiam1/Racl signaling pathway is
necessary for PA-mediated generation of superoxides and lipid
peroxides inisolated f-cells. The salient findings of our smdy are:
|i] exposure of isolated B-cells to PA leads to the generation of
reactive oooygen species and lipid perosides, which may, in part, be
due to increased NOX activity; [ii] PA-induced effects on MOX
activwiry are largely due to intrace|lularly generated CER from the de
nove biosynthetic pathway; [il] PA-induced, CER-mediated
activation of NOX and the mesultant increase in intracellular
oxidarive stress require activation of Racl; [iv] PA-induced, CER-
sensitive activation of Rac 1 requires the intermediacy of Tiam1, a
GEF for Rac1; |w] inhibition of Tiam 1/Racl signaling pathwayleads
to restoration of mitochond rial membrane potential Together, our
data provide the first evidence for Tiam1/Rac1 signaling pathway
in PA-induced, CER-mediated increase in the oxidative environ-
ment in NS 832(13 cells and normal redent islets.

As stated above, our current findings implicate the imol vement
of Tiaml in P& or C-CER-induced activation of Racl. In the
context of potential regulation of Racl, multiple GEFs have been
identified in other cell types. These constitute the diffuse B cell
Iymphoma |[Dhl] family of GEFs, including Tro and Tiaml.
Recenithy, Zhengand co-workers have developed NSC23766, which

iz a soluble fist generation small molecule inhibitor of Tiam1-
mediated activation of Racl [29) These inwestgators have
reported  simificant  inhibidon of Racl-GTP-loading by
MSC23TEE without significantly affecting the GTP-loading onto
other small G-pmteins including Cded? and Rho A Under these
oond itions, NSCXATE6 also amenuated cell proliferation induced by
Tiam1, which iz a Racl-specific GEF. Based on these data, Zheng
and co-workers concluded that NSCXITEE represents a specific
inhibitor of Tiamil-mediated activation of Racl. Several other
laboratores hawve utilized MSCXITEE since then to decipher the
potential contributory mles for Tiam1 (Racl signaling pathway in
cellular funcrions 25,30 and references therein]. Recently, we have
confirmed the selectivity of NSC23T66 -mediated inh ibition of Racl
activation in insulin-secreting cells | 25]. In the present sudy, we
demonstrated that NSCXA3T66 not only amenuated PA or C2-CER-
induced Racl activation, but also marked by red ueed PA or C2-CER-
induced generation of superodddes and lipid perosddes, implicating
novel regulatory roles for Tiam1/Racl signaling pathnway in the
activation of phagooytic-like NOX in B-cells. Using molecular
biolegical approaches ¥i et al [31] have recently demonstrated
miles of Vav2, another GEF for Racl, in hormoc ysteine- induced
Racl/NOX activation in mesangial cells.

Several recent studies have demonstrated regulatory rokes of
Racl in high glucose-indwced metabolic dysrepulation and cell
death. For example, Shen et al. [30] have mecently reported a
significant increase in cardiomyooyte apoptosis under hyperzly-
cemic conditions. Using cultured myocytes, these investgarors
demonstrated a significant upregulation of Racl and NOX activity
wihic hwas attenated incells overexpressing a dominant negative
miutant of Racl. Moreover, treatment of diabetic animals with
MSC23TEE significantly reduced WOX activity and cell demise
followed by restoration of myocand ial function | 30]. These findings
further support the invohement of Tiam1/Racl signaling pathmray
in hyperglyoemia-induced metabolic dysfunction and demise of
myocytes. |t may be germane fo point out that unpublished
observations from our labomtory have suggested similar regula-
tory roles of Racl in high glucose-induced activation of NOX
actihvation and the associated increase in oxidative stress in INS
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B32{13 cells and normal rat islets [Syed and Kowlun, unpub-
lizhed).

Along these lines, studies by Cacicedo et al. in cultured retinal
pericytes have demonstrated a role for NOX in PA-induced
apopiosis [32] A significant increase in NOX activity, oxidative
stress and caspase-3 activity was demaonstrable incells exposed to
PA Overexpression of dominant negative mutants of p&7™" and
Racl [M17Rac1] markedly inhibited the increase in caspase-3
activation Furthermore, overexpression of an active mutant of
Racl |V12Racl] increased caspase-3 activity suggesting that
constitutive activation of Racl results in MOX activation culmi-
nating in the generation of oxidatve stress and metabolic
dysfunction in these cells.

Using FB-1, aspecific inhibitor of de nove synthesis of CER from
PA, we have dernonstrated that PA-induced effects may, in part, be
due to infracellulady generated CER. Data accrued in studies using
C2-CER further support this postulation. Published evid ence along
these lines sugmests that CER-mediated effects are indeed
mediated via activation of Racl in many cell types. For example,
using C2-CER Kim and Kim have reported activat ion of c-fos serum
response element wig the Racl signaling parhway in Rat-2
fibroblasts [33]. Interestingly, using MIH 3T3 cells, Embade et al.
have demonstrated novel relationships benween Fasl generation
and CER production in Racl-induced apoptosis [34] In another
sy, Deshpande et al. [35] have demonstrated intermediacy of
intracellularly generated CER in Racl-induced mifochondal
oxidative stress and premature senescence in human umbellical
wein endothelial cells. Together, these data appear to implicate
CER/Racl signaling pathways in oxidative stress and metabolic
dysfunction in multiple cells types. Therefore, hased on these and
other sup porting evidence we presented in this study, we believe
that PA effects on lipid perosid es, superodides and NOX activity are
specific and that they require the infermediacy of Tiaml [Racl
signaling pathnray. It should be noted that we ako ohsered
msdest effects of oleate on NOX actwity without significanthy
affecting the Rac1 activation | Fig. 2] suggesting a clear distinction
between the modes of action of these two fatty acids.

It i& imporant m note that several mecent sudies hawve
implicated physolegical mles for a fonic increase in NOX
activation and subsequent generation of reactive axygen species
in the stimulus-secretion coupling of glucose-stimulated insulin
secretion [36). Besides this, existing evidence in the literature
clearly demonstrates increase in the insulin sec retion by fatty acids
under acute incubation conditions [17). Therefore, one might ask
the question if increase in Taml/Racl actvation and NOX
activation could contribute towards the physiclogical insulin
secretion rather than inducing metabolic abnormalities in the
molated B-cell. While it ap pears likely, und er specific experimental
cond itions chronic activation of NOX by specific stimuli [eg, high
levels of glucose, By acids, CER or cytokines] leads to metabolic
dysfunction and demise of the B-cell For example, our recent
observations |2B] suggested significant abnormalities in mito-
chondrial function [ie. loss in MMP) in cells exposed o C2-LCER
under acute conditions. Further, we have repored significant
kealage of mitechondral cytochrome-£ into the cytosolic com-
parmment in C2-CER-treated cells [28). Furthermore, it should be
noted that our cument obszervations |Fig. 8] indicate that
mitechondrial dysfunction, which is demonstrable in cells
incubated with C2-LER but not DHC i prevented, m a large
degree, by inhibition of Tiam1/Racl sgnaling patbwway, further
irmplicating the Tiam1 -Racl -MOX signaling pathway in the onset of
metabolic dysfunction in the presence of C-CER Therefore, we
speculate that early bischemical and cellular changes thar we
reported herein might be paving way 1o metabolic dysfunction and
demise of the islet B-cell. i may be germane to point out that
recent studies by Moore et al |7] have provided compelling

evidence roargue against potential imvohiement of oxid ative stress
infattyacid-induced metabolic dysfunction of the islet B-cell. Itis,
therefore, likely that addifional regulatory mechanisms might
underlie fi-cell demise =en under the duress of lipotxic
conditions including those imvolving progressive alterations in
the mitochondrial membrane permeability transition pore as
sugrested by recent studies of Koshkinet al [37]in MING and IN5-
1 cells. Furthermaore, PA-ind ueed CER-mediated effects might also
include regulation of key target proteins such as the CER-activated
pmtein phosphatase XA that we have characterized in isolated -
cells [27,38], leading to the inactivation of key cellular events
including inhibition of eoxracellular-regulated kinase and inhibi-
tion of proinsulin gene expression [34]

In conclusion, we present the first evidence for a novel role of
Tiarm1/Rac signaling pathaway in PA-induced, CER-sensitive meta-
baic activation of MOK and associated production of superoxides
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Flg 8. A model © implicae Tiam1Racl sipnaling pathway in PA-induced, CER-
mediaed offeas on isolaed focells Based on the da@ acoued in the coment
5 mud e we propos e thart i noo hation of isolaed B-cd s o efther PA |t notoleate]
o C2-CFR | bt not DHC | beads to Tiam 1-mediatad activanion of Racl, whichis a key
memberof the MO X 25sembly. |naddition, PA or C2-CERp mmotes the expres sion of
4T in these celis Togerhes, these signaliing seps promoe the zsambly and
aotfvation of MO holeenzyme leading o the production of supenocides and lipid
peromides. These, in turn, seert damag@ng effecs on the minchandria indoding
reduction in MMP keading to the onset of mitoch ondrial dysiunct on. Ap propriae
sies of inhibimon of these signaling sweps by -1, NSC23 766 and DPI are alsa
imdicated in the figure.
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and lipid perctides in pancreatic J-cells 1t is likely that Tiam could
serve as a nowel dreg target for inhibition of geremtion of
superoeddes and lipid pemetides in izolated f-cells under ipotooic
conditions. Based on these data we propose a working madel [Fig 9]
o suggest that PANCER increase the Racl activation |GTP-bound
active form) and deactivation |GDP-bound inactive form)] to
generate signalsthat may be necessary for triggening cellular events
leading to MO activation, increased ocddative miliew mitoc hondrial
dysregulation in the pancreatic B-cell. It should be noted that while
the proposad mode] principally addressed the rolesof Tiam1-Racl -
NOX connection in PA'CER-med iated effects, relative coniri butory
roles of other sources of meactive oxygen species, including the
glutathione perxidase, manganese-sensitive supemxide dismu-
tase, catalase signaling cascades must ako be recomized as key
contributors to the mitschondnal dysfunction in isolated B-cells
under the duress of lipotoctic conditions [1-340]. Howewer,
additional studies are needed to further understand these signaling
steps in the idet B-cell
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Subasinghe W, Syed L. Kowloru A. Phagocyte-like MADPH
oxidase promotes cytokine-induced mitochondrial dysfunction in pan-
creatic B-cells: evidence for regulation by Racl. Am J Physiol Fegul
Integr Comp Plysiel 300: R12-R20, 2011. First published October
13, 2000; doi: 101152 ajpregu (0421 20 10.—Reactive oxygen spe-
cies (RO5) are imporant mediators of cellular signal transdwction
cascades such as proliferation, migration, and apoptosis. Chronic
exposure of isolated B-cells to proinflammatory cylokines elevates
intracellular oxidative stress leading to the demise of pancreatic
B-cells culminating in the onset of diabetes. Although the mitochon-
drial electron transpodt chain is felt to be the primary source of ROS,
severnl lines of recent evidence suggest that phagocyle-like MADPH
oxidase plays a central role in cytokine-mediated ROS generation and
apoptosis of B-cells. However, the precise mechanisms underlying the
regulation of NADPH oxidase remain unknown To address this,
insulin-secreting NS 83213 cells were treated with cytomix (TL- 1§,
IFMN-y, and THF-a: 10 ng/ml each) for different time intervals
(—24 h). A significant, time-dependent increase in NADPH oxidase
activation/intmcellular ROS production, pd7P=* subunit, but ot
p&iTr=r sybanit, expression of the phagocyte-like NADPH oxidase
were demonstrable under these conditions. Furnthermore, siRMA-
pd 7P pransfection or exposure of INS B32/13 cells to apocynin, a
selective inhibitor of NADPH oxidase, markedly attenuated cytomix-
induced ROS generation in these cells. Cytomix-mediated mitochon-
drial dysfunction in INS B32/13 cells was evident by a significant loss
of mitochondrial membrane potential {MMP) and upregulated caspase
3 activity. Cybomixn treatment also caused a transient (within 15 min)
activation of Racl, a component of the NADPH oxidase holoenzyme.
Furthermore, GIGTI-2147 and MSC23766, known Rac] inhibitors, not
oaly attenuated the cytomiz-induced Racl activation but also signif-
icantly prevented loss of MMP (NSC23766 = GOTI-2147). However,
MNECI3T66 had mo effect on cytomix-induced MO genemtion or
caspase 3 activation, suggesting additional regulatory mechanisms
might underlie these signaling steps. Together, these findings sug-
gested that Racl-mediated regulation of phagocyte-like NADPH ox-
idase contributes to cytokine-mediated mitochondrial dysfunction in
the B-cell.

T-lymphoma invasion; metastasis 1; geranylgeranylation; mitochon-
drial membrane potential; pancreatic g-cell

TYPE] IHABETES 15 CHARACTERITD by an absolute msulin deficiency
ansing from progressive autommmune destruction of pancreatic
Bcells (2-3, &, 22). Dunng the progression of the discase, proin-
flammatory cytokines, particulady IL- 1B, TNF-a. and IFN-y, arc
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released into islets of Langerhans by infilirated, activated T
cells and macrophages (8B, 25, 27). However, the exact cellular
mechanisms by which cytokines induce B-cell demise is only
partially understood (3). Though cytokines modulate the sctiv-
ity of several destructive signaling cascades, apoptosis is con-
sidered as the primary mode of cell death in human and mouse
models (2, 21-22). Apopiosis 15 a highly regulated, genetically
encoded, and energy-dependent cell death process activated by
extracellular signals (11, 13, 24). Caspases, a family of cys-
teine profeases, play a critical role in apoptosis. In the presence
of apoptotic stimull, caspase signaling axis i= activated, in
which activation of initiator caspases (Le., caspases & and 9)
leads to the downstream activation of executioner caspases
{c.g.. caspase 3). It 1s well established that once activated,
caspase 3 cleaves ~—40 different cellular substrates (3, 6.
11, 24}

There are three possible mechanisms by which cells undergo
death via apoptosis. BEecent studies indicate cytokines may
signal apoptosis via an intnnsic apoptotic pathway, which
involves damage to the mitochondrial membrane and subse-
quent release of cytochrome © from the intermembranous space
into cytosol, leading to the activation of caspase cascade (6,
27 A growing body of recent evidence suggests upregulated
oxidative stress from reactive oxygen species (ROS), and nitnc
oxide (N contnbutes to the damage in mitochondral mem-
brane, eventually causing defects in the membrane potental. In
contrast with most other mammalian cell tvpes, B-cells com-
prse relatively lower levels of redox-regulating enzymes, mak-
ing them more vulnerable to oxidative damage (7). Recently,
members of the NADPH oxidase family have emerged as one
of the sources of redox signaling and pathological oxidative
stress. Under basal condiions, this multicomponent cnzyme
system is inactive, and its respective subunits are dispersed
between the soluble and membranous companments. The
membrane-bound catalvtic core consists of flavocvtochrome
besg components p22F* and gp@ 1P and small G-protein
Rapl. The regulatory core consisting of pd7PT pETRCT and
p40F™ eybunits and the small G-protein Bacl reside in the
cytosol. Upon simulation, the cytosolic components are trans-
located to the membrane for holocnzyme assembly and act-
vation of the enzyme (7). It has also been suggesied that
functional activation of Racl (i.c., GTP-Rac) is vital for the
NADPH holocnzyme assembly (93,

Several recent studies have demonstrated localization and
functional activation of the phagocyte-like NADPH in clonal
B-cells, normal rat islets, and human islets under the duress of
wvanous stimuli, including elevated levels of glucose, saturated
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fatty acids, and proinflammatory cytokines (14). It has also
been documenied that pharmacological inhibition of NADPH
oxidase by diphenylenciodonium chlonde (DPD) or anti-sense
oligonucleotides for p47P™* markedly attenuate glucose-in-
duced ROS production and oxidative stress, suggesting critical
invalvement of NADPH oxidase in the metabolic dysfunction
induced by long-term exposure to clevated glucose (14, 155
These data implicated a significant contnbutory role for
MNADPH oxidase in the onset of metabolic dysfunchion of the
B-cell under a conditon of oxidative stress (17, 19-20, 26).
Despite the aforementioned compelling lines of evidence, very
little has been studied with regard to the potential contnbutory
roles of Racl in the cascade of events leading to cytokine-
induced NADPH oxidase-mediated superoxide generation and
mitochondnal dysfunchion in pancreatic B-cells. On the basis
of this reasoning, we undertook the current study to test the
iy pothesis that cytokines induce ROS generation and oxidative
stress in pancreatic Pcells by promotng Racl activation,
which represents one of the signaling events necessary for the
functional regulation of the endogenous phagocyte-like
MNADPH oxidase holoenzyme assembly and s catalytic activ-
ity. Herean, we describe the first evidence to suggest a critical
modulatory role for Tiaml, & guanine nucleotide exchange
factor (GEF) for Racl (30, in this signaling pathway lcading
to the onset of mitochondnal dvsfunction. We also report that
posttranslational prenvlation of Racl is also necessary for the
optimal activation of NADPH oxidase elicited by cytomix in
insulin-secreting cells.

MATERIALS AND METHODS

Materials. Interlenkin- 18, IFMN-v, and TNF-u were obtained from
RE&D Systems (Minneapolis, MMN). Racl activation assay kit was
obtained from Cytoskeleton (Denver, OO0 JC-1 mitochondrial mem-
brane potential detection kit was obtained from Cell Technology
(Mountain View, CA). Caspase 3 antiserum was obtained from Cell
Signaling Technology (Danvers, MA). pdTF=* sRNA, pd7F and
pOTP™* antisera were obtained from Santa Cruz Biotechnology (Santa
Crz, CA) NSC23T66 and GOTI-2147 were obtained from Calbio-
chem (San Diego. CA). Apocynin was obtained from Sigma-Aldrich
(5. Louis, M.

Cell lines and culture conditions. INS 83213 cells (kindly pro-
vided by Dr. Chrs Mewgard, Duke University Medical Center,
Durham, NC) were cultured in RPMI 1640 mediom containing 105
heat-inactivated FRS supplemented with 100 TUSml penicillin and 100
1U/ml streptomycin, | mM sodium pymavate, 50 pb 2-mercaptoetha-
nol, and 10 mb HEPES (pH 7.4). The cultured cells were subcloned
twice weekly following trypsinization and passages 53-61 were
used for the study. For the inhibitor studies, [NS 832713 cells were
cultured up to 70-80% confluence in RPMI medium supplemented
with 104 heat-inactivated FBS prior to inhibitor exposure. Cells were
then incubated overnight with low serum-low glucose (LS-L0) media
in the presence or absence of NSC23766 and GOTI-2147 at 20 pM
and 10 pM, respectively.

Cuantitation of cytokire-induced NO' release. NS B3I213 cells
were incubated with cytomix (IL-1B, IFN-y, TNF-a; 10 ng/ml; each)
of IL-1§ (25 ngfml), for 12 and 24 h in the presence and absence of
inhibitors. s indicated in the text. At the end of incubation period, the
medium was collected and centrifuged at 1,000 g for 5 min. Equal
volumes of media and Griess reagent were mixed, and absorbance
(540 nm) was measured using microplate reader (Molecular Devices,
Sunmywvale, CTA).

Cuantifation of ROS. INS 832113 cells were seeded in a G-well
plate and treated with either diloent or cytomix in the presence and

R13

ahsence of inhibitors (e, KSCX3766, GGTI-2147) for a 12- and 24-h
period, as indicated in the text Following that, media wene removed,
and cells were incubated further in 2", 7" -dichlorofluorescein discetate
(DCHF-DaA) (10 b)) at 37°C for 30 min. DCHE-DA i= a nonpolar
compound that diffuses rapidly inbo the cells and hydrolyzes readily
by cellular esterases into polar DCFH. In the presence of ROS, DCFH
is readily oxidized to fluorescent DCF (1. 6). The cells were washed
twice with ice-cold PBS and harvested; aqual amounts of proteins (50
pel were taken, and fluorescence was measured (Em: 485 nm and Ex:
535 nm) uwsing a luminescence spectrophotometer (PerkinElmer.
Waltham, MA).

Molecular Bislogical or pharmacelogical inkibition of NADPH
oxidase achivity. INS 832713 cells were seaded in a 24-well plate up
o 50% confluence and transfected with mock or antisense siRMA-
pd7ebe= (150 nM) and allowed to grow wp to 80% or higher conflu-
ence. Then the cells were treated either with diluent or cytomix for a
12-h pericd. Following this. culture mediom was removed, and cells
were incubated further in DCHE-DA (10 pM) at 37°C for 30 min,
washed twice with ice-cold PEBS, and harvested: equal amounts of
proteins (50 way were taken, and Aucrescence was measured (Ex: 485
nm and Em: 535 nm) uosing lominescence spectrophotometer
(PerkinElmer, Waltham. MA). Alternatively, NADPH oxidase was
inhibited via a pharmacological approach by treating [NS 832713 cells
with either diloent or cytomix for 12 or 24 h in the absence or
presence of apocynin (75 pM), and NADPH activity was measured
with [MCFH-DA assay, as described above.

Racl activafion assqy. The melative degree of Racl activation
(GTP-bound form) was determined using Racl poll-down assay. as
described by Syed et al. (230 In brief, INS 83213 cells were
pretreated with either the diluent or pharmacological inhibitors fol-
lowed by treatments with either diluent or Cytomix for 15 min in the
ahsence and presence of NSC23766 (20 pM) or GOTI-2147 (10 pM).
Cell lysates (~-250-300 pg) were clanfied by centrifugation. Then
PAK-PBD (p2l-activated kinase-p21-binding domain) beads (20 pl)
were added to the supernatant, rotated for | b at 4°C, and pelleted. The
resultant pellet was washed and reconstituted in Laemmli boffer
Proteins were resolved by SDE-PAGE and immunohlotted for Racl.

Determination of mitochoadrial membrane potential. INS 832713
cells were plated on sterile glass cover slips placed in 6-well plates
and pretreated with cytomix for 12 and 24 h in the presence and
absence of NSC23766 (20 pM) or GGTI-Z147 (10 pM). At the end
of treatment, cells were incubated with JC-1 (1: 2000 dye for 15 min
at 37°C in & 5% (O0; incubator. Cells were washed with assay buffer,
mounted onto glass slides. and observed under 1X71 inverted fluo-
rescence microscope {3100, Olympus America, Center Valley, Penn-
sylvania), a5 we described previously (23). The ratios of red-to-grean
fluprescence emissions were quantitated to further estimate the extent
of mitochondrial membrane damage.

Western blof aralysis. Treated [NS 832713 cells were harvested and
homogenized in mannitol-protease inhibitor cockiail buffer (250 mb
mannitol, T0 mM sucrose, 5 mM HEFES, | mM EGTA, | mM DTT,
and protease inhibitor cocktail). Protein samples {(—20-30 pg) were
resolved by SDS-PAGE and transfemed onto nitrocellulose mem-
brane. The blots, after blocking with 5% BSA in 20 mM Tris-HCI, pH
7.5, 137 mM NaCl, and 0.1% Tween 20, were immunoprobed with
corresponding primary antibody followed by secondary polyclonal
rabbit'mouse  antibody  comjugated to  horseradish peroxidase
{1:1,0000). The protein signal band was detected with enhanced chemi-
luminescence system (ECL, Amersham Biosciences, Little Chalfont,
UK and developed using Kodak Pro Image 400 R (Mew Haven, CT).
The hlots were stripped and reprobed for B-actin to ensure egual
loading and transfer of proteins.

Statistical aralyses. Data are presented s means = SE. Statisti-
cally significant differences between values were evaluated by Stu-
dent’s f-test or ANOYA whene appropriate. P < 0,05 was considered
to be statistically significant.

AJP-Repul Intepr Comp Physicd « V0L 300 « JANUARY 3011 « Www.aj preg L.org



186

El4

200 4

&
*
160 o
120
100
B0

40

20

a

Contral Cytl2h  Cyl-Zdh

Fig. 1. Incubation of INS B32/13 cells with cytomix keads to a time-dependent
incremse i reactive oxygon spocics (ROS). INS B3013 oolls were incubated
with ither dilsent ar cytomix for 12 or 24 h, os indicabed in the fgure, and
ROS gencrotion wos measurcd using 2.7 -dichloroflsoncscrin - disoctale
(IMTFH-1DA) assay. Intracelbular lewels of ROS in reated cells wene expressed

s 2 porcent of contral cells. Dala represent means * 5E from four independent
cxperiments. *Significantdy differest (P <2 0.05) from cantrol.

ROE generation (% of control)

RESULTS

Cyiomix induces phagocyie-like NADPH oxidase activaiion
i INS 832412 cells. At the outset, we quantitated MADPH
oxidase activity in INS 332/13 cells exposed to cytomix (1e.,
IL-1B, IFN-y, TMF-x; 10 ng/ml each). The amount of ROS
generation and the degree of expression of NADPH subunits
(pd7P% and phTFY) were determined following a 12-h or

A

Cantrol
12h

Racl-DEFENDENT PHAGOUCYTE-LIKE NADPH OXIDASE IN B-CELLS

24-h incubation of these cells with cytomix. Data in Fig. |
showed a significant increase in ROS gencration at these tme
points (60 and 25% above the control at 12 h and 24 h,
respectively). Compatible with these findings are data pre-
senied in Fig. 2, A and B, indicating a significant increase in the
expression of pd7P* in these cells following exposure to
cytomix. However, no effect of cytomix on the expression of
pE7F was demonstrable under these conditions (Fig. 2, ©
and ).

To further assess whether the cytomix-induced ROS are
derved from NADPH oxidase, we guantitated cytomix-in-
duced ROS generanion follovwing inhibition of NADPH oxidase
via two independent approaches. In the first approach, we used
apocymn, a sclective inhibitor of NADPH oxidase. Data from
these studies indicated a marked imhibition in cytomix-induced
ROS generation by apocynin. The values for oytomix-mediated
RO5 gencration represented 1540 = 39% and 1678 = 6.5%
at 12 h and 24 h, respectively. The commesponding values in the
presence of apocynin reached basal levels (e, 98,1 = 3.2%
and 1066 = 9.1% at 12 and 24 h. respectively; n = 3
expenments in cach case; P < 0.05). In the second approach,
endogenous expression of the pd7F™* was knocked down by
transfecting cells with siIRNA-p47"*, Under the currcnt cx-
perimental conditions employed in the study (sce MATERIALS
ANI} METHODS), we were able to reduce pd7F™* expression by
~H0-T0% in siRNA-pdTM*_transfected cells. Furthermore,
the ability of cytomix to induce ROS gencration (following
12 h of incubation) was completely abolished in siENA-
pd 7P yransfected cells (e, 102.0 + 3.5% of control; n =
3 expeniments), suggesting that NADPH oxidase might be

the principal contnbutor in cytomix-induced generation of
ROS.

24 h

Fig. I Incubation of IN% B32/13 cclls with
cylnmix incroases caprossion of pdTR=Y b
nol phTF™* subunils of NADPH-oxidase.
Az INS B32/13 oclls were exposed o cylomix
for 12 or 24 h ax indicated in the figurs.
Relative dogree of exprossion of pd7P™ was
detcrmined by Wesicm blod analysis. pd TF=2
caprossion was normalized o actin contont in
individual lancs. Pooled data From threo inde-
pendent experimonts are provided in B, *Sig-
mificantly difforent (P <2 U5) fem control.
i INS E32'13 cells were exposed io cylomix
for 12 or 24 h as indicated in the figuro.
Helative degree of expression of peTP™ was
meassred by Wiosicrn blob snolysis. paTF=®
cxprossion was normalized o actin conbent in
individual lancs. Pooled dala From. thneo inde-
pendent experiments are provided in D,
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Cytomix transiently increases Racl activation in INS 832/13
cells: potential reguirement for Tiaml as a puanine nucleotide
exchange factor for Racl. As stated above, Racl, a small G
protein, 15 one of the components of the NADPH oxidase
holoenzyme assembly. Therefore, we next examined whether
cytomix-induced activation of NADPH oxidase 1= mediated via
activation of Racl. This was accomplished by guantitating the
GTP-bound Racl (active configuration) by a pull-down assay
{see MATERIALS AND METHODS for additional details). Data de-
picted in Fig. 3 suggested a significant {~— 1.7-fold), but tran-
sient, activation of Racl (within 15 min) in INS 83213 cells
following exposure to cytomix. Racl GTP levels reached basal
levels at 30 min of exposure. These data implicate Racl
activation as one of the signaling steps involved in cytomix-
mediated effecis on isolated B-cells.

Recently, we reported the expression and functional activa-
tion of GEFs for small G proteins in pancreatic B-cells (29).
The pomary function of these proteins 1s to facilitate GTR
GDP exchange. Our findings in INS 832713 cells and primary
rat islets have indicated that Tiam serves as a GEF for Racl
(29). In the current study, we investigated whether Tiaml is
required for cytomix-induced activation of Racl in INS 832713
cells. This was accomphshed using pharmacological inhibator,
NSC23766, which selectively inhibits Tiam | -mediated activa-
tion of Racl, but not Cded2 or Rho in insulin-secreting B-cells
(3). Data i Fig. 3C suggested a significant reduction in
cytomix-induced activation of Racl by NSC23766 in INS
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£32/13 cells. These findings support the viewpoint that Tiam
plays a key regulatory role in Racl activation elicited by
cytomix in insulin-secreting cells.

It 15 well established that posttranslational gerany|geranyla-
tion is necessary for optimal activation of Racl in pancreatic
B-cells {see Ref. 12, for a review). Therefore, we examined
whether geranylgeranylation of Racl 15 necessary for cytomix-
induced activation of Racl. This was accomplished via a
pharmacological approach, which involved quantitation of cy-
tomix-induced activation of Racl in cells exposed to diluent or
in the presence of GGTI-2147, a known inhibitor Racl gera-
nylgeranylation {12, 28). Data in Fig. 30 showed a marked
reduction in cytomix-induced Racl activation in cells exposed
to GGTI-2147. Together, data depicted m Fig. 3, A-D sug-
gested that cytomix induces Racl activabon in INS 832713
cells, which is sensitive to inhibition of Tiaml activation and
posttranslational geranylgerany lation.

NSC23760 and GGTI-2147 markedly reduce cviomix-in-
duced ROS generation in INS 832/13 cells. As a logical
extension to the above studies, we asked whether inhibitors of
Racl attenuate cytomix-induced ROS generation. Data shown
in Fig. 4 indicate a marked reduction in cytomix-induced ROS
ceneration at both 12- and 24-h ttme points by NSC23766 and
GGTI-2147. It s noteworthy that GGTI-2147. but  not
MNSC23766, also reduced the ROS generated under basal con-
dions (Fig. 4, A and B). Taken together, our indings establish
a direct role for Tiam |-dependent, prenylation-sensitive Racl

Fig. 3. Cytomix induccs transicnl activation af
Racl in INS E3X13 cclls: inhibiion of this signal-
ing stop by NSC23766 and G{ITI-2147. A: cytomix
cawscs transicet activation of small G-protein Racl
in IN§S B33 cells, as detormined by tho pull-
down assay followod by Westcrn blol analysis (soo
MATERLALS AND METHODG). Total Bacl in the lysates
is also provided as o leading control. A represon-
tative blot of thme indopendonl cxperimenls is
shown here. B: pooled activation data from threo
indcpondenlt  cxperiments ame shown  henc
iz NSCI3766 inhibition of cytomix-indwoed acti-
vation aof Fiac]. Poaoled data from throe independent
sindics are depicled in the figure. O (0IT1-2147
imhibils cytomix-induced Racl activation in INS
E3X13 cells. Poolod datn from three indepemdent
Wk stndics are dopicted i the figure. *Significantly
diffcront (P <2 0UD3) from control. *, **Diffcrcnt
symbols represent the values thal are significantly
diffcront at P < D05,

18 min 30 miin
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activation in the signaling cascade leading to cyvtomix-induced
MNADPH oxidase and ROS generation in INS 832712 cells.

Inhibators of Racl activation reduce cytomuoc-induced mito-
chondnal defects in INS 832713 cells. It 15 widely felt that
cytokine-mediated effects on pancreatic B-cells may. in part,
be mediated via alteratons in mitochondnal membrane prop-
erties, including loss of MMP leading to cytochrome-c release
and caspase 3 activation (2, 16, 30). Therefore, we examined
whether inhibitors of Racl activation exert protective effects
on cytomix-induced loss in MMP. This was accomplished
using JC-1 (3.5 6.6 tetrachloro-1,1"3 3" -tetracthy lbenzimida-
zolyl-carbocyamine 1odide) assay. JC-1 1= a hipophilic dye,
which fluoresces red when aggregated above the cntical con-
centration within mitochondna. In cells in which mitochondrial
membrane 15 damaged, JC-1 remains in the cyvtoplasm, as a
green fluorcscence monomer. Data from these studies, which
are depicted in Fig. 5, sugpested a significant loss of MMP in
INS 832/13 cells weated with cyvtomix following a 12- or 24-h
cxposure. Coprovision of NSC23766, a Tiam| inhibitor, and
GGTI-2147, a prenylation inhibitor, modestly, but significantly
protected these cells against cyvtomix-induced damage to the
mitochondrial potential (Fig. 5). Quantitation of fluorescence
intensity ratios of red to green further confirmed these
conclusions (Fig. 6). Further, these data also suggested that
the protective effects were more prominent in the case of
NSC23766 compared with GGTI-2147 (Fig. 5, A-D, Fig. &,
A and B). It should be mentioned that NSC23766 exerted
inhibitory effects on MMP in control {1.c., diluent-treated
cells). Regardless of this inhibitory effect, it markedly
prevented cytomix-induced loss in MMP at both ime points.
Together, these data indicate that Racl activation might be
requisite for cytomix-induced mitochondnal defects in pan-
creatic P-cells.

TiamI/Racl signaling aas is not necessary for cviomix-
induced caspase 3 activation in INS 832713 cells. The observed
protective effects of NSC23766 aganst cytomix-induced loss
mn MMP (Figs. 5 and &) prompied us to inveshgate whether
caspase 3 activation, which 15 a hallmark of cellular apoptosis,
15 inlabited by Tiaml-mediated activation of Bacl. To accom-

plish this, INS B3Z13 cells were treated with cytomix (as
above)d or IL-1R alone (25 ng/ml) for 12 or 24 h. Activated
caspase 3 in the lysates was determined by Western blot
analysis uzing an antiserum that identifies both the native
procaspase and degradaiive product of caspase 3. Under these
conditions we noticed no significant effects of NSC23766 on
either cytomix-induced or [L- | B-mediated caspase 3 activation
at either time points. Cytomiz-induced caspase 3 activation
represented 155 = 0,11 units and 123 £ 0.24 uniis at 12 and
24 h. respectively. The corresponding values in the presence of
NSC23766 were 1,40 = 0.14 units and 2.06 * 032 units,
respectively (n = 3 deferminabions in each case, not signifi-
cantly different from each other). Likewase, [L-1E-induced
caspase 3 activation represented 1.27 & 0010 units and 1.65 +
0.23 units at 12 and 24 h, respectively. The comesponding
values in the presence of NSC23766 were 1.23 = 009 units
and 1.71 £ 022 units, respectively (v = 3 determinations in
cach casc, not significantly different from cach other). To-
cether, these data indicate that additonal mechanisms mght
underhe caspase 3 activation in these cells elicited by cvto-
kines.

Evidence to further suggest that the TiamIl/Racl signaling
step mury not be reguired for cytokine-induced NO release from
INS 832713 cells. It i1s well established that cyvtokine-medi-
ated effects on 1solated B-cells are mediated via inducible
nmitric oxide synthase (INOS) expression and associated NO
release. It has also been suggested that NO exens damaging
effects on mitochondria leading to caspase 3 activation.
Therefore, in the last set of studies, we investigated whether
Tiaml/Racl activation is necessary for cytokine-induced
NO release in INS 832413 cells. Data in Fig. 7 demonstrated
no significant effect of NSC23766 on either IL-1B or cyto-
mix-induced NO release in INS 83213 cells either at 12 or
24 h. Together, the above data suggest that Tiaml/Bacl
signaling step 15 not involved in cvtokine-induced WO
release and caspase 3 activation and that additional regula-
tory steps might be necessary for these o occur (see the
proposed model below).
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65 and (GGOTI-2147. INS 83213 oclls were ncated with cither

diluent alone or cytomix for 12 (A and ) and 24 b (8 and ) in the presenoe and absence of NSCZ3766 (20 pM) or GOTI-2147 (10 pM), as indicated in the

DISCUSSION

A growing body of evidence supports the hypothesis that
damaging effects of elevaied glucose, saturated fatty acids
it palmitate), or proinflammatory cyvtokines on isolated
f-cells may, in part, be duc to their ability to increase the
gencration of superoxides and lipid peroxides leading to in-
creased intracellular oxidative stress culminating in mitochon-
dral dysfunction and the demise of the effeie B-cell (10, 14,
200, More recent evidence (14, 18) suggests that intracellular
oxidative stress 15 largely due to the activation of phagocyte-
like NADPH oxidase in these cells. Such a postulaton was
further supported by pharmacological (e.g.. DPI) and molecu-
lar biological (e.g.. antisense pd7P%%) approaches. Using apo-
cynin and siENA-pd7™" we have demonstrated herein that
the majority of ROS generated in INS B3213 cells in the
presence of cyvtomix s denved via the activation of NADPH
oxidase. Furthermore, as descnbed in the following sections,

"

tochondrial membrane potential was measured with JC-1 assay kit. Data are represcniative of three independent experiments with comparable

our current fndings provide addittional novel insights into
regulatory mechanizms underlying the regulation of NADPH
oxidase by cytokines in the islet B-cell.

Owr findings implicate a requirement for Tiaml i the
cascade of events leading to cytokine-induced activation of
REacl mn insulin-secreting cells. Using a selective mhibitor of
Tham-mediated activation of Racl (Le., NSC23T66), we have
becn able to demonstrate that Tiaml serves as a GEF for Racl
activation induced by cytomix. These data were further sub-
stantiated by our observations o demonstrate a significant
reduction i cyvtomix-induced ROS pencration™ADPH ox-
dase activity by NSC23766. It should be noted in this context
that Racl sctivation is transient in nature and that it might be
adequate to “mmitiate” signaling cascade leading to activation of
MNADPH oxidase. It appears that activation of Racl by cyvtomix
seen in the current studies may be attnbutable primanly to the
effects of IL-1B in the cytomix, since we observed a significant
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{and transient) activation of Bacl (2 + 04-fold stimulation;
n = 3 determinations) in INS 83213 cells exposed to IL-1
(25 ng/ml}). No significant effects were chserved with either
TNF-e {10 ng/ml} or IFN-y {10 ng/ml} under these conditions
{additional data not shown). Our findings also suggest that
IL-1B-mediated Tiaml/Racl signaling pathway may not be
necessary  for INOS  expression and NO  release  since
NSC23T66 failed to exert any significant effects on IL-1B (or
cytomix )-induced NO release in INS 832713 cells. Lastly, in
the context of transient activation of Racl by cytokines, it must
be noted that carhier studies from our laboratory and others
have demonstrated a sigmificant translocation and membrane
association of Racl following its activation (see Ref. 12, for a
recent review). Therefore, it is likely that the activated Racl
translocates to the membrane fraction for the NADPH oxidase
holoenzyme assembly and activation. However, this remains to
be verified.

Our findings provide the fist evidence to suggest that
prenylation of Racl is necessary for cytokine-mediated activa-
tion of Racl and subsequently the NADPH oxidase. We found
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Fig. 7. NSCI3766 fuils 1o imhibit cytomix-
induocd WO relcasc in INS E32713 odls. INS
B33 cells were trecated with diluent, oylo-
mix (A} or IL-1 (B) for 12 or 24 h. NO
relcascd inlo the medium was meassncd us-
ing Circss assay. Daia arc cxprosscd as
means + SE from 3 independent experi-
ments. *, **Bars with difforenl symbols nep-
resenl the valees that are  significantly
diffcrenl.
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that GGTI-2147, a selective inhibitor of protein gerany lgera-
nylation, but not farnesylation, markedly attenuated Racl and
NADPH oxidase activation mediated by cytokines. In this
context, using molecular biological (e.g., dominant-negative
Racl mutant or siENA-Racl) and pharmacological (e.g..
GGTI-2147 and 3-allyl or vinyl geranyl geramols), we have
shown recently that gemnylgeranylation of Racl 15 necessary
for its optimal activation and membrane association in clonal
B-cells and normal rats islets (28). It must be poanted out that
the NADPH oxidase membrane core component 15 comprised
of Rapl, which also undergoes geranylgeranylation like Racl.
Therefore, the mhibitory effects of GGTI-2147 on cyvtokine-
induced NADPH oxidase may, in part, be due to inhibition of
geranylgeranylation of Racl and Rapl. Our findings accrued
from NSC23766 studies directly support the invelvement for
Taim1/Racl in this signaling cascade since Tiam| serves as a
GEF for Racl. but not other small G proteins. Taken together,
on the basis of the current data accrued from NSC23766 and
GGTI-2147 studies, we propose that Tiaml-mediated and
geranylgeranylation-sensitive activation of Racl 1s necessary
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for cytokine-mediated effects of NADPH oxidase and gencra-
tion of oxidative stress in the slet B-cell.

The currently described evidence (Figs. 5 and 6) 15 also
suggestive of protective effects of the Racl inhibitors against
cvtokine-induced loss in MMP. Our data sugpested that
NSC23766 affords a betier protection compared with GGTI-
2147. Therefore, it appears that additional signaling mecha-
ni=ms might be controlling mitochondnal membrane potential,
which are distinct from NADPH oxidase-derived ROS. Com-
patible with thesc obscrvations are our findings that demon-
strated relative lack of cffects of NSC23T66 on caspase 3
activation. As in the context of Racl activation mentioned
above, such steps may be related to direct metabolic effects of
IL-1B, but not THF-a or IFN-7y (also present in the cytomix),
since [L-1p-mediated caspase 3 activation and NO release
were not affected by Tiam | inhibition.

O the basis of these observations, we propose a model for
cvtokine-mediated effects on islet B-cell as they relate to
MNADPH oxidase and ROS generation (Fig. ). Cytomix in-
duces NADPH oxidase activation by promoting the expression
of pd7F gnd activation of Racl. The Racl activation step not
only requires the intermediacy of Tiaml, but also prenviation
as cvidenced by inhibition of the slgnalmg sicp b}' GGTI-2147.
MNADPH oxidase activation leads to an increase in the oxidative
stress, resulting in alterations in mitochondnal membrane
properiies. [L-1B-mediated effects also include an increase in
the expression of INOS and subsequent release of NO, which
has been shown to affect mitochondnial function directly lead-
ing to further damage and release of cytochrome ¢ followed by
activation of caspase 3. Please note that iNOS expression and
MO release were found to be independent of Tiaml/Racl
signaling pathway. It 15 lhikely that combined effects of intra-
cellularly generated NO (via activation of iINOS) and ROS (via
activation of NADPH oxidase) contnbute to maximal damage
of the mitochondrial membrane properties leading to caspase 3
activation and metabolic dysfunction of the B-cell.

CYTOMIX
GGTR214T
KSC 23766
Racl.GO# Racl GTRT pazPos
T wox
1 ros - IO
Hlﬂ
Mitochondrial Defocts
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[t may be permane to point out that addional regulatory
mechanisms might underhie cytokine-mediated stimulatory ef-
fects on NADPH oxidase. These include phosphorylation of
the cytosolic pd7P"* which appears to be necessary for its
translocation to the membrane. Published evidence implicates
PKEC in the phosphorylation of this protein (4). Indeed, studies
by Morgan et al. (14) have demonstrated partial restoration of
IL-1g-induced ROS to normal levels following exposure to
GEIMWI03X, a known inhibitor of PRC. (ther regulatory
mechanisms might also include regulation of Tiaml/Racl/
MADPH oxidase signaling cascade by sphingolipids, such as
ceramide. In this context, we have recently reported pEllrth:'
acid-mediated activation of Tiaml/Bacl and associated in-
crease in NADPH oxidase activation in insulin-secreting
B-cells (23). Palmitate effects were inhibited by fumonisin-Bl,
a known inhibitor of de novo biosynthesis of ceramide from
palmitate. In addition, we observed that C2-ceramide, a cell-
permeable analog of ceramide exerted similar stmulatory ef-
fects on NADPH oxidase in a NSC23766-sensitive manner
(23). Additional studics are necded to detcrmine whether
intracellular generation of ceramide represents a regulatory
mechanism in cytokine-challenged B-cells. Together, these
data sccrued in the current studies suggest that Bacl-mediated
regulation of NADPH oxidase function contributes to cyto-
kinc-mediated mitochondnial dysfunction in the B-cell.

Perspectives and Significance

A growing bodv of evidence supports the hypothesis that
damaging effects of clevated proinflammatory factors on 150-
lated P-cells involves increased oxidative siress leading to
demise of the B-cell. This may, in part, be due to activation of
phagocyte-hke NADPH oxidase endogenous to the islet B—u:ll
On the basis of the extant data snd owr current findings, 1t 1=
reasonable to speculate that NADPH oxidase-derived oxidative
stress exeris cviotoxic effects on the islet B-cell under the

Fig. 8. A madel for Rac]-dependent NADPH-oxidasc-medialed
cylomix-induced mitochondrinl  dysfunction in  pancrealic
B-oells. On the basis of the data accrued from the cument studics,
wo propose a model for te Bocl-medisted megulaton aof
NAIDNH axidase activity under the duress of cytokines. Cytomix
induoes NADPH orxidase activation by promoting the cxpression
of p47P* and activation of Racl. The Rac] activation sicp not
only reguines the imtermediacy of Tiaml (ic. inhibition by
NSI3THE). but alse prenylation, as evidenced by inhibition af
the signaking sicp by GGTI-2147. NADPH axidase activation
lcads o an incresse in the oxidative stress culminating in loss of
milnchondrial membrune polcntial. 11.-13-medioted cficcts also
include on increase in the cxpressicn of iNOS and subsequent
release of MO, which has boen shown o affocl milochondrial
funclion directly leading 1o further damage and release of
cyinchrome ¢ Followod by activation of caspase 3. Our findings
suggesicd thal iNOS expression and N release anc independent

Othar #

Caspasa=1 Activation

Coll Dysfunction

of Tiaml/Mac] signaling pathway. It is likely that combined
cifocts of intmecllulady goncrated MO (via activation of iNOS)
and ROS (via scivabon of NADPH oxidasc) coniribule o
maximal domage of the milochomdrial membrane propertics
lcading to caspasc 3 activation and metabolic dysfunction of the
B-cell. NOX, phagocyie-like NADPH oxidase; iNOS, inducible
milric oxide synthase; NO), nitric oxide.
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duress of noxous stimull, including chronically elevated glu-
cose, saturated fatty acids, ceramides, and cytokines. From
these studies, 1t 15 becoming increasingly evident that Racl
signaling axis plavs a critical role in the functonal regulation
of NADPH oxidase. Further, 1t appears that imhibition of
Tiam|-mediated activation (using NSC23766) or inhibition of
postiranslational geranvlgeranvlation of Racl (using GGTI-
2147) restores some of these toxic effects. Unfortunately,
however, these signaling stepsfenzymes cannot be used as drug
targeis since they have been shown to play key roles in the
normal functioming of the islet B-cells, including glucose-
stimulated insulin secretion. Therefore, additional studies are
needed to develop novel tools/probes to prevent the constibu-
tivedchronic activation of NADPH oxidase and generation of
oxidative stress following exposure of the 1slet B-cell to afor-
cstated stimuli and prevent the associated metabolic dysfunc-
tion, loss of B-cell mass, and the onset of diabetes.
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ABSTRACT
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Glucose stimulated insulin secretion (GSIS) involves a series of metabolic and cationic
events, leading to translocation of insulin-laden secretory granules from a distal site
toward the plasma membrane for fusion and release of insulin into circulation. Vesicular
transport and fusion events are tightly regulated by signals which coordinate between
vesicle- and membrane-associated docking proteins. It is now being accepted that
reactive oxygen species [ROS] plays a second messenger role in islet B-cell function.
Further, evidence from multiple laboratories suggests a tonic increase in ROS
generation is necessary for GSIS and fatty acid-induced insulin secretion. On the other
hand, excessive ROS generated during glucolipotoxic / exposures to cytokines and
ceramide have proved to be detrimental for islet B-cells. Recent studies have shown
activation of phagocyte-like NADPH oxidase [Nox] to be underlying cause for increased

ROS generation observed under the above pathological conditions.

The overall objective of the present study is to i) determine potential mechanism]s]

underlying nutrient-induced generation of ROS; ii) contributory roles of Tiam1-Rac1-
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Nox signaling in free fatty acid (e.g., palmitate) and cytokines- induced [-cell
dysfunction. Findings from current study suggest that posttranslational prenylation is a
requisite for signaling G-proteins involved in the activation of Nox and generation of
ROS for nutrient-induced insulin secretion from islet B-cells. Studies with pertussis toxin
[Ptx] suggested that glucose-induced Nox-mediated ROS generation is regulated by
inhibitory class of G-proteins [Go/Gi]. Our next set of studies, directed towards
understanding the mechanism of Nox activation under chronic exposure to high
palmitate, cytokines and C2-ceramide implicate increased expression of Nox subunits to
precede the functional activation of the holoenzyme and excessive ROS generation
resulting in mitochondrial dysfunction. This study also provide first evidence for a critical
modulatory role of Tiam1, a guanine nucleotide exchange factor [GEF] in Rac1-Nox

signaling axis.

The next set of studies validated the above observations in Zucker Diabetic Fatty [ZDF]
rat model, which mimics type2 diabetes in humans, characterized by obesity,
hyperinsulinemia, hyperglycemia and gradual decline in B-cell function. The results
obtained were comparable with clonal B-cells. Islets derived from ZDF-rats presented

high levels of Nox subunit expression [p47°", gp91P"o*

, Rac1] which constitutively
activated Nox-holoenzyme and augmented ROS levels. The increased oxidative stress
under conditions of diabetes activated Jun-N-terminal kinases [JNK 1/2, stress-activated
kinases] leading to mitochondrial abnormalities and eventual demise of islet B cells. A
similar pattern of induction in Nox subunit expression/activation, ROS generation and

JNK 1/2 were also observed in type 2 diabetes human islets. Taken together, herein |

propose that high levels of oxidative stress, activation of stress-activated kinases
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[UNK1/2] and mitochondrial abnormalities underlies pancreatic B-cell dysfunction[s]
during diabetes. Additional studies are needed to understand the precise regulatory
roles for Tiam1-Rac1-Nox-ROS-JNK1/2 signaling to develop therapeutic strategies in

the treatment of metabolic disorder.
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