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INTRODUCTION 

According to the 2011 National Diabetes Fact Sheet [released in January, 2011] 

nearly 26 million children and adults in the United States [~8.3% of the population] have 

diabetes. In addition, recent estimates [using much stricter guidelines] suggest that ~ 79 

million people are prediabetic [American Diabetes Association website; 

http://www.diabetes.org/diabetes-basics/diabetes-statistics/]. Diabetes is now 

considered as the fourth leading cause of death by disease in this country. There are 

two principal forms of diabetes. Type 1 diabetes [previously known as juvenile diabetes] 

is typically diagnosed in children and young adults. In type 1 diabetes, the body does 

not produce insulin since the insulin-producing β-cells are lost due to autoimmune 

aggression-mediated by cytokines released by macrophages infiltrating the islet. In type 

2 diabetes, either the body does not produce adequate insulin or the cells that require 

insulin for glucose uptake become resistant to insulin [i.e., insulin resistance].  Chronic 

elevation in circulating glucose and lipids leads to diabetic complications, including 

retinopathy, nephropathy, neuropathy, hypertension and coronary heart disease.  

Therefore, efforts to understand the pathophysiology of this disease are highly relevant 

to future developments in care and therapeutics of this disease. In this context, it is 

becoming increasingly clear that the insulin-producing islet β-cell lesion in type 2 

diabetes is, probably, largely functional involving one or more defects in signal 

transduction. A better understanding of specific changes and defects in the signaling 

pathways leading to impaired insulin secretion should be useful in designing novel 

strategies for the prevention and treatment of type 2 diabetes.  
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ROS signaling and β-cell  
 

 

Mitochondria being the power house of the cell generate energy through TCA 

cycle and associated electron transport chain of the inner membrane. During the course 

of TCA cycle, the reducing equivalents [NADH and FADH2] formed are reoxidized via a 

process that involves transfer of electrons through electron transport chain [ETC] and 

associated translocation of protons across the mitochondrial inner membrane in 

generating the transmembrane electrochemical gradient. The generated gradient 

provides electrochemical potential to synthesize ATP from ADP and Pi. Under 

physiological conditions, the proton gradient is diminished by H+ ‘leak’ to the matrix 

either via protein-lipid interfaces, or by uncoupling proteins [UCPs]. However, due to 

oxidative phosphorylation mitochondria can generate excessive reactive oxygen 

species [ROS] and reactive nitrogen species. Superoxide anion [O2
-] produced as a 

byproduct of single electron reduction is considered to be the major contributor to other 

reactive species inside the mitochondrion [1]. 

 

Phagocytic cells such as macrophages and neutrophils express plasma 

membrane/phagosome-associated enzyme complex, the NADPH oxidase [Nox], to 

facilitate generation of O2
- for defense against pathogenic organisms. However, it is 

widely felt now that Nox is not confined only to immune system but alternative isoforms 

of this holoenzyme may be active in other cell types as an essential component in redox 

signaling. It is well established that the majority of cells are endowed with antioxidant 

systems/enzymes such as manganese superoxide dismutase [SOD], glutathione 

peroxidase, catalase to nullify the excessive intracellular ROS. Even though cells have 
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a number of antioxidant mechanisms available, it is likely that ROS might disturb the 

defense homeostasis, resulting in gradual cellular damage. Therefore, any imbalances 

in host oxidative defense mechanism will lead to cellular dysregulation and death 

resulting in oxidative stress-related diseases. However, the biochemical and molecular 

mechanisms that lead to oxidative stress-related defects and diseases remain relatively 

poorly understood. 

 
            The major source for cellular ROS generation is mitochondrial respiration and 

various oxidoreductases. Superoxide (•O2
-) generated during electron transport chain 

gets converted to a less reactive H2O2 by SOD, and finally to molecular oxygen and 

water by catalase, peroxiredoxin and glutathione peroxidases. Superoxide may even 

get converted to HO• by Fenton’s reaction or may react with nitric oxide to generate 

peroxynitrite (ONOO-) which further contributes to additional oxidative stress. Unlike 

other ROS, H2O2 is an ubiquitous intracellular messenger [2, 3] as it is stable, 

uncharged, freely diffusible molecule that can be rapidly generated and degraded in 

response to external stimuli [4]. Even though pancreatic β-cells are equipped with 

reasonable defense machinery for conversion of •O2
- to H2O2 in cytoplasm and 

mitochondria [5], H2O2 inactivating enzymes like glutathione peroxidase and catalase 

levels are exceptionally low, approximately 1% of its expression level in the liver [6]. 

Such an imbalance between •O2
- generation and H2O2 inactivating enzymes makes 

pancreatic β-cell more susceptible to oxidative stress and to H2O2 mediated signal 

transduction. The figure depicted below [taken from Pi and Collins; 7] further highlights 

the mechanisms underlying ROS generation and its detoxification by antioxidant 

machinery. 
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Figure 1: Schematic representation of ROS generated and antioxidant machinery. 

Oxidases like NADPH oxidase, Nox; or Xanthine oxidase, XOD and mitochondrial 

respiration are major sources of cellular ROS. Superoxide and its metabolites can be 

eliminated through several pathways, including superoxide dismutase, glutathione 

peroxidase, catalase, etc. 

 
 

Endogenous source of ROS 
 
 

Superoxides generated during the mitochondrial respiration upon increased 

substrate or decreased ADP concentration or increased intracellular Ca2+ concentration 

[8, 9] have been proposed to be a necessary stimulus for glucose stimulated insulin 

secretion [GSIS] [10]. On the other hand, ROS generated via Nox, is known for its role 

in the immune cell respiratory burst [11, 12]. Once activated, Nox takes an electron 

from donor NADPH and translocate it across the cell membrane to an extracellular O2 
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molecule generating •O2
-. Pancreatic islets express multiple Nox isoforms [13] which 

could possibly play a vital role in ROS generation during GSIS [14]. 

 

NADPH oxidases represent a group of superoxide-generating enzymes which transport 

electrons through biological membranes and catalyze the cytosolic NADPH-dependent 

reduction of molecular oxygen to O2
 •- [15].  Till date, Nox family comprises of seven 

members viz., Nox1, Nox2, Nox3, Nox4, Nox5, DUOX1 and DUOX2 [16]. The members 

of Nox family differ in their membrane and cytosolic protein components but have a 

similar ability to produce O2
 •-. According to structural and functional characteristics, the 

animal Nox family enzymes can be classified into three groups: (1) the Nox1 to Nox4 

group, characterized by the requirement for interaction with p22phox; (2) the Nox5 group, 

characterized by two calcium-binding EF-hand motifs in the cytosolic N-terminal region; 

and (3) the DUOX group, characterized by EF-hand calcium-binding domain and NH2-

terminal peroxidase domain [17, 18]. 

The Phagocytic Nox is a multicomponent enzyme complex, composed of two 

membrane components [catalytic glycosylated gp91phox and the regulatory non-

glycosylated p22phox], three cytosolic proteins [p47phox, p67phox, p40phox] and a small 

GTPase ras-related C3 botulinum toxin substrate, Rac 1/2 [16]. The catalytic 

glycosylated gp91phox has six transmembrane domains and is stable only in presence of 

p22phox. These two membranic components stabilize one another in a tightly associated 

heterodimer, referred to as flavocytochrome b558 [19]. Activation of Nox2 requires 

translocation of cytosolic components to the membrane and association with gp91phox 

/p22phox complex [20]. It is evident that, upon stimulation protein kinase C promotes 

phosphorylation of the cytosolic p47phox, which along with p67phox and p40phox interacts 

 



 

 

6

with membranic flavocytochrome b558. Concomitantly, Rac dissociates from its 

RhoGDP-dissociation inhibitor and is triggered for exchange of GDP to GTP in 

regulating the activity of the oxidase by a two-step process, directly via contact with 

gp91phox and by interaction with p67phox. Upon interaction of the cytosolic components 

with the flavocytochrome b558, the electron transfer from NADH to flavin adenine 

dinucleotide [FAD] and subsequently to molecular oxygen is regulated by the activation 

domain of p67phox [21, 22]. On the other hand, p40phox, a non-glycosylated cytosolic 

component, interacts with p47phox and p67phox with a 1:1:1 stoichiometry [23].  

 

Figure 2: 
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Furthermore, Nox1 was the first homologue of gp91phox (Nox2) to be described 

and it might require small GTPase Rac in its activation [24, 25, 26]. Nox4, another 

homologue of gp91phox exhibits about 39% homology to Nox2 [27]. A characteristic 

feature of Nox4 is its high level of constitutive production of hydrogen peroxide, which is 

partially dependent on the presence of p22phox [28, 29]. In contrast to Nox1, 2 and 3, 

Nox4 is a constitutively active enzyme and is activated without the necessity for 

GTPase Rac or the cytosolic components [29], and is regulated by protein expression 

level [30]. It has been demonstrated recently that Nox4 regulates cell differentiation in 

human and mouse pre-adipocytes suggesting a role for H2O2 production in adipocyte 

differentiation and maturation [31, 32, 33].  

 

In addition, the other endogenous sources of ROS consist of some cytochrome 

P-450 (CYP) enzymes and flavoproteins in endoplasmic reticulum, lipoxygenases, 

isoforms of nitric oxide synthase and prostaglandin synthase on plasma membrane, a 

diverse group of oxidases and flavoproteins in peroxisomes and Xanthine oxidases in 

cytoplasm. However, Nox-derived ROS and its implicated biochemistry in modifying the 

function of β-cell remain elusive. Despite the fact that Nox4 expression has been 

reported in pancreatic islets [4], its role in β-cell has yet to be determined. Recently, 

mRNA for NADPH oxidase components Nox1, Nox2 and Nox4, and protein for NADPH 

oxidase subunits NoxA1, p22phox, p47phox and p67phox, have been detected in human 

and rat pancreatic stellate cells [34, 35]. The physiological role of Nox enzymes in 

pancreatic islets is poorly understood. On the basis of studies using the selective 

flavoprotein inhibitor DPI and the antioxidant/Nox inhibitor apocynin [36], a role for Nox 

enzymes in insulin secretion [13, 37, 38, 39] has been suggested. Existing evidence 
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also suggests that a protein kinase C sensitive phosphorylation of p47phox is critical in its 

translocation to the membrane compartment. Further, recent data suggest that 

functional activation of Rac is important in the holoenzyme assembly and activation of 

Nox unit [40, 41, 42]. 

 
 

G-proteins and pancreatic β-cell 
 
 

Insulin secretion from the pancreatic β-cells is regulated by ambient 

concentrations of glucose. In pancreatic β-cells, GSIS is mediated largely through 

generation of soluble secondary messengers [cyclic nucleotides, hydrolytic products 

generated by phospholipases A2, C and D] [43 - 55] and changes in the intracellular 

calcium concentrations. These changes in intracellular calcium regulate various enzyme 

activities within the cell, including protein kinases, phosphodiesterases, adenylyl 

cyclases, and PLases [44 - 61] in insulin secretion. Even though many studies have 

shown the underlying mechanism[s] involved in stimulus-secretion coupling of GSIS, the 

precise molecular and cellular mechanism still remains profound. In addition, adenine 

nucleotides [e.g., ATP] and guanine nucleotides [e.g., GTP; [62 - 65]] regulate 

physiological insulin secretion.  

 
Classification of G-proteins in -cell 

Till date three major classes of G-proteins have been identified in pancreatic β-

cells [66 - 70]. The first class of G-proteins are heterotrimeric G-proteins, which are 

involved in coupling membrane-associated receptors to their intracellular effectors such 

as PLases, adenylyl cyclases, ion channels, and phosphodiesterases [71 - 73]. The 
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second class of G-proteins comprise of small monomeric G-proteins [17-30 kDa], which 

are ought to play a vital role in protein organization and trafficking of secretory vesicles 

in different cell types [74]. These small G-proteins undergo posttranslational 

modifications [isoprenylation and methylation] at their C-terminal residues (CAAX motif) 

[74 - 78] for their active confirmation. The third class of G-proteins are the elongation 

factors and Tau proteins, and are implicated in protein synthesis. 

 

Posttranslational Modifications 

The -subunits of the heterotrimeric G-proteins and most of the small G-proteins 

undergo a sequence of posttranslational alterations at their C-terminal (CAAX motifs, 

where C represents cysteine, A = aliphatic amino acid and X = terminal amino acid) [67] 

to attain the active confirmation. Incorporation of either a farnesyl [15 carbon derivative 

of mevalonic acid] or geranylgeranyl [20 carbon derivative of mevalonic acid] group to 

the C-terminal cysteine of proteins via a thioether linkage is the first step involved in the 

posttranslational modifications. Subsequently, the carboxylate anion of the prenylated 

cysteine is exposed once three amino acids after farnesylated/ geranylgeranylated 

cysteine are excised by Ras-converting enzyme 1 [Rec-1] mediated proteolysis [67, 79]. 

The exposed site is then methylated by the isoprenylcysteine-O-carboxyl 

methyltransferase. Several laboratories including ours have confirmed that 

carboxymethylation [CML] amplifies the hydrophobicity of the candidate protein. 

Besides these modifications, certain G-proteins undergo fatty acylation or palmitoylation 

at cysteine residues to have a firm anchoring into the cell membrane for optimal 

interaction of the candidate protein with their respective effectors [67, 79, 80]. 
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Figure 3: The above figure depicts the formation of farnesyl and geranylgeranyl 

pyrophosphates. Acetyl-CoA condenses with acetoacetyl-CoA to produce 3-hydroxy-3-

methylglutaryl-CoA [HMG-CoA], which is catalyzed by HMG-CoA synthetase. In 
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presence of NADPH, HMG-CoA gets reduced to mevalonic acid [MVA] by HMG-CoA 

reductase. This reaction occurs in cytosol and is considered to be a rate limiting step in 

cholesterol biosynthesis. The generated MVA serves as a precursor for biosynthesis of 

farnesyl pyrophosphate (farnesyl-pp) and geranylgeranyl pyrophosphate 

(geranylgeranyl-pp). [Taken from Kowluru, Endocr Rev. 2010]. 

 

Both the farnesylated and geranylgeranylated groups are derived from acetyl-

coenzyme-A and acetoacetyl-CoA of the cholesterol biosynthetic pathway (Figure 3). 

These are integrated in the candidate protein by farnesyl transferases [FTases] and 

geranylgeranyl transferases [GGTases] respectively. Examples of farnesylated proteins 

include Ras, nuclear lamins A/B, and the -subunits of heterotrimeric G-proteins, 

whereas, geranylgeranylated proteins include Cdc42, Rac1 and Rho.  

 

Till date three distinct prenylating enzymes i.e., FTase, GGTase-I and GGTase-II 

have been depicted in the literature [75 -78] and are heterodimeric in nature consisting 

of α- and β-subunits. FTase and GGTase-I are considered as CAAX prenyl transferases 

as their substrate proteins share a preserved CAAX motif at their C-terminal region, 

whereas, GGTase-II is considered as a non-CAAX prenyl transferase as it prenylates 

the Rab subfamily of G-proteins at a different motif [75 -78]. Both the FTase and 

GGTase-I share a common regulatory α-subunit but have distinct substrate specific β-

subunit. Krzysiak et al., explains that peptides having serine, glycine and methionine on 

their “X” residues of CAAX motifs are farnesylated, whereas, those bearing leucine are 

geranylgeranylated [81]. However, it has been shown that RhoB with a C-terminal 

CKVL CAAX box can be prenylated by either FTase or GGTase-I in mammalian cells 
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[82, 83]. Furthermore, involvement of this signaling cascade through the use of 

pharmacological inhibitors has been shown to play a vital role in GSIS in isolated β-cells 

[79]. Available evidence also shows the regulatory roles for carboxymethylation and 

palmitoylation in G-protein mediated effects on GSIS in pancreatic β-cells [see a recent 

review Kowluru, 84]. 
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Figure 4: The above figure explains prenylation i.e., either farnesylation by FTase or 

geranylgeranylation by GGTase-I of Ras and other-related proteins and consequential 

events.  

 



 13

Small G-proteins 

 

Based on the substantial evidences on the regulation of pancreatic islet β-cell 

function, small G-proteins are categorized into three major groups. Rho, Rac1, Cdc42 

and ADP-ribosylation factor-6 [Arf6] fall under the first category of small G-proteins and 

these play an important role in cytoskeletal remodeling and vesicular fusion [85 - 102]. 

The second category of small G-proteins comprises of Rap1 and Rab GTPases (Rab3A 

and Rab27) [see a recent review from Kowluru, 84]. These Rab GTPases assists in 

priming and docking of insulin-laden secretory granules on the plasma membrane [see 

a recent review from Kowluru, 84]. Unlike first category of small G-proteins, requisite for 

posttranslational modifications and mechanism[s] involved in the activation of Rab 

GTPases under the physiological insulin secretagogues remains elusive. However, 

Rap1 has been shown to get activated transiently by glucose [66] and undergoes 

carboxymethylation which is augmented by glucose and KCl [66, 103]. The third group 

of small G-proteins consists of Rab2, Rhes and Rem2 which are under-studied [104 - 

107], whereas, RalA appears to draw direct regulatory effects in exocytosis [108]. 
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Figure 5: The above figure shows the functions of different classes of small G-proteins 

in the physiology of insulin secretion in pancreatic β-cells. [taken from Kowluru, Endocr 

Rev. 2010]. 
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Activation and deactivation cycle of small G-proteins 

Like heterotrimeric G-proteins, small G-proteins also shuttle between their 

inactive (GDP-bound) and active (GTP-bound) conformations, which are tightly 

regulated by various G-protein regulatory factors/proteins. Till date, three such types of 

regulatory factors have been identified for small G-proteins, viz., guanine exchange 

nucleotide factors [GEFs], GDP-dissociation inhibitors [GDIs] and GTPase-activating 

proteins [GAPs]. GEFs facilitate the translation of the inactive GDP-bound forms of 

small G-proteins to their active GTP-bound forms, while, the GDIs avert the dissociation 

of GDP from the G-proteins, thereby keeping them in the inactive conformation. The 

final group of these regulatory factors for small G-proteins, GAPs, converts the active 

GTP-bound to their inactive GDP-bound conformation in the GTP hydrolytic cycle by 

inactivating the intrinsic GTPase activity of the candidate G-proteins. 

 

The efficiency of the G-protein activation cascade via a GTPase depends on the 

relative amounts of active to inactive GTPase. The activity of GTPase can be altered 

either by accelerating GDP dissociation by GEFs or by inhibiting GDP dissociation by 

GDIs, or by accelerating GTP hydrolysis by GAPs. The figure below depicts the 

functions of each regulatory factors/proteins in the activation and deactivation cycle of 

the G-proteins. Any imbalance in either of the regulatory factors distorts the hydrolytic 

cycle and normal physiological functions in pancreatic β-cells. 
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Figure 6: Regulatory factors/proteins involved in activation and deactivation cascade of 

G-proteins. [taken from Kowluru, Endocr Rev. 2010]. 
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Small G-proteins and insulin secretion 
 
 

Small G-proteins have been recognized as key regulatory molecules in vesicle 

trafficking and organelle dynamics coupled with proliferation, survival and demise of a 

cell. Recycling between GDP/GTP-bound forms, small G-proteins are coupled with their 

translocation between cytosol and membrane in carrying out their mechanistic roles. 

Published evidence from multiple laboratories has implicated small G-proteins [Cdc42, 

Rac1 and Arf6] in insulin secretion in clonal and islet β-cells.  

 

A] Role of Cdc42 in insulin secretion 

 

Regazzi and associates first reported [87] expression of Cdc42 in insulin-

secreting clonal β-cells [RINm5F and HIT-T15 cells]. Follow-up studies from other 

laboratories have demonstrated localization of Cdc42 in clonal pancreatic β-cells, 

normal rat islets and human islets [66, 88]. Furthermore, Cdc42 remains associated 

with Rho-GDI in the cytosol and upon exposure to prenylation inhibitor prevented the 

association, substantiating the importance of posttranslational modification in functional 

regulation of Cdc42 [87]. It has also been demonstrated that, glucose-induced 

carboxymethylation of Cdc42 results in its translocation to the membranic fraction and 

the effect is very rapid and transient [66]. A series of recent investigations from 

Thurmond’s laboratory have further substantiated novel regulatory roles for Cdc42 in 

islet function, including actin remodeling and insulin secretion [91].  
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B] Role of Rac1 in insulin secretion 

 

Like other small G-proteins, Rac also shuttles between inactive GDP and active 

GTP conformations to facilitate cellular function. Rac was first identified and implicated 

in cellular function by Didsbury et al [109], where they isolated two cDNAs encoding 

proteins [Rac1 and Rac2] with ~92% homology. Interestingly, both Rac1 and Rac2 

undergo ADP ribosylation by C3 component of botulinum toxin before their association 

with membrane. Potential role for Rac1 in GSIS was first demonstrated by using 

Clostridium difficile toxins A and B, which irreversibly monoglucosylate and inactivate 

specific G-proteins (Cdc42 and Rac1) [86]. Like Cdc42, Rac1 also undergoes 

posttranslational carboxymethylation and membrane translocation in the presence of 

stimulatory glucose concentrations [86]. Expression of an inactive mutant of Rac1 

(N17Rac1) in INS-1 cells resulted in significant morphological changes including 

alterations in F-actin structures, leading to inhibition of GSIS. These findings confirmed 

the involvement of Rac1 in cytoskeletal remodeling and reorganization [95]. As stated 

above, Rac1 also requires prenylation for its function. Experiments involving 

pharmacological and molecular biological inhibition of Rac1 prenylation indicated 

marked reduction in GSIS in a variety of insulin-secreting β-cells. For an instance, 

GGTI-2147, a specific inhibitor for geranylgeranylation, significantly augmented 

accumulation of Rac1 in cytosol and inhibited GSIS in INS 832/13 cells. Over 

expression of the regulatory α-subunit of protein prenyltransferase also attenuated 

glucose-induced insulin secretion in INS 832/13 cells [85]. Furthermore, Rac1-null mice 

[βRac1−/−] exhibited impaired glucose tolerance and hypoinsulinemia, suggesting key 
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regulatory roles for Rac1 in normal insulin function [97]. Taken together, all these 

evidence suggests regulatory roles of Rac1 in islet function including GSIS.  

 

i] Rac1-Nox signaling and insulin secretion 

Recent evidence suggests that a tonic increase in generation is necessary for 

GSIS [7, 110 - 113]]. Rac1 being a cytosolic component of Nox holoenzyme, its 

functional activation [Rac1.GTP] has shown to be critical in holoenzyme assembly and 

activation of Nox [16, 40 - 42, 114, 115].  In support of this, Gorzalczany and associates 

[116] have shown the activation of Nox and subsequent generation of ROS by targeting 

Rac1 to the membrane fraction. They also demonstrated that its prenylated, but not the 

unprenylated, form of Rac1 binds to the phagocyte membrane more efficiently to 

facilitate the generation of superoxides. Along these lines, Pi and Collins have recently 

overviewed the existing evidence in supporting “secondary messenger” roles of ROS in 

physiological insulin secretion [7]. Based on this and other supporting evidence, it is 

concluded that a tonic increase in intracellular ROS is necessary for normal 

physiological insulin secretion and that Rac1 initiates subsequent signaling steps 

including Nox activation and insulin release [refer to a recent review from Kowluru, 117].  

 

ii] Rac1-Nox signaling and metabolic dysfunction 

Even though Rac1 has been shown to have positive modulatory effects in the 

normal cellular function, a growing body of evidence also implicates negative 

modulatory roles for Rac1 in the induction of metabolic dysfunction cells, particularly at 

the level of its activation of Nox holoenzyme [118, 119]. For example, a significant 

increase in Nox-mediated oxidative stress and caspase-3 activation was observed in 
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retinal pericytes, which was attenuated by overexpressing dominant-negative mutants 

of Rac1 and p67phox. Furthermore, overexpression of constitutively active mutant of 

Rac1 [V12Rac1] augmented Nox and caspase-3 activation, thereby creating more 

oxidative stress environment and causing metabolic dysfunction of the retinal pericytes. 

Studies by Shen and associates in cardiac myocytes [120] have also suggested 

regulatory roles for Rac1 in the activation of Nox and associated generation of ROS in 

animal models of diabetes. However, very little is known thus far with regard to 

regulatory roles of Rac1 in the holoenzyme assembly and activation of Nox in islet β-

cells following chronic exposure to glucose, saturated fatty acids or cytokines. This is 

the basis of studies that I have carried out for my doctoral work and the data from these 

studies are described in the following sections. 
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Pancreatic β-cells and Glucotoxicity 
 
 

Several lines of evidence in in vitro and in vivo model systems clearly suggest 

that chronic exposure of the islet β-cell to elevated glucose concentrations leads to 

significant alterations in the function ultimately leading to cell demise via apoptosis and 

the onset of diabetes. 

   

Glucose toxicity: Robertson and associates have defined glucose toxicity as 

non-physiological and potentially irreversible β-cell damage upon chronic exposure to 

supra-physiological concentrations of glucose. This is characterized by early defective 

insulin gene expression [121, 122] and a state of desensitization, which is referred to as 

a transient state of cellular refractoriness to glucose stimulation induced by repeated or 

prolonged exposure to elevated glucose levels. Interestingly, the later is reversed, in 

time-dependent fashion, usually within minutes following restoration of normal glucose 

levels. Glucose toxicity also affects other vital signaling steps including suppression of 

glucokinase gene expression, decreased mitochondrial function, compromised 

exocytotic mechanisms and accelerated apoptosis, impending from insulin gene 

expression to insulin release into the circulation [123 - 125]. 

 
 
Pancreatic β-cell and oxidative stress  
 
 

It has been shown that reactive oxygen species [ROS] are the basic ignition 

factors in the pathogenesis of diabetes and more importantly in the development of 

secondary complications. However, generation of ROS such as superoxide anion (O2
 •-), 

hydroxyl radicals (•OH), hydrogen peroxide (H2O2) and associated generation of nitric 
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oxide (NO) [126, 127] have been implicated in pancreatic β-cell dysfunction and demise 

in both type I [128] and type II [129] diabetes. Generation of superoxide radical [O2
 •-] 

was first demonstrated in insulin-producing cell lines by cytochrome c reduction method 

[130].  

 

Multiple lines of evidence in both in vitro and in vivo have confirmed continuous 

generation of free radicals under the persistent hyperglycemic state during diabetes 

[131 - 134]. Further, inhibition of ROS production using specific inhibitors of electron 

chain complex II, or by upregulating the expression of uncoupling protein-1 and 

mitochondrial SOD [MnSOD], confirmed the involvement of ROS in the complications of 

diabetes like retinopathy, neuropathy and nephropathy [135]. Many biochemical 

pathways like hexosamine pathway, polyol pathway, advanced glycation end products 

[AGEs] pathway and protein kinase-C pathway are activated under the conditions of 

excessive ROS generation during hyperglycemia.  

 

In the hexosamine biosynthetic pathway, fructose-6-phosphate gets converted to 

N-acetylglucosamine-6-phosphate, which, in turn, is metabolized to N-

acetylglucosamine-1, 6-phosphate and to uridine diphosphate (UDP)-GlcNAc. Newly 

formed UDP-Glc-NAc serves as a substrate for O-glycosylation of many cytosolic and 

nuclear proteins together with transcription factors involved in signal transduction, 

resulting in impairment of the activation of insulin receptor/substrates/PIK3 kinase 

survival pathways [136]. Along these lines Kaneto et al have shown that under the 

conditions of hyperglycemia, glucosamine increases H2O2 levels in the isolated rat islet 

-cells causing oxidative stress and -cell dysfunction [137], which was reversed in the 
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presence of antioxidants like N-acetyl-l-cysteine. The polyol pathway is also triggered by 

elevated intracellular glucose, which is converted to sorbitol in the presence of aldose 

reductase (AR). In this signaling system, AR utilizes nicotinamide adenine dinucleotide 

phosphate (NADPH) as a cofactor for regenerating a critical intracellular pool of reduced 

glutathione, thereby increasing the cytosolic NADH:NAD+ ratio [138]. Consequently, a 

loss in the levels of reduced glutathione increases the vulnerability of β-cell to 

intracellular oxidative stress [138]. Along these lines, it has also been shown that AGEs 

produced as a result of the non-enzymatic protein glycation, and increased production 

of diacylglycerol [DAG] via protein kinase-C activation under hyperglycemic conditions, 

stimulate ROS generation and promote oxidative stress. 
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Figure 7: Diagramatic representation of different pathways which are sensitive to 

elevated glucose and generate ROS causing oxidative stress and ultimate pancreatic β-

cell dysfunction [taken from Robertson et al., Diabetes Vol 52, 2003]. 

 

 

 

 

 

 

Figure 8: This figure [taken from Robertson, JBC, 2004] further depicts different pathways 

in glucose metabolism for the generation of ROS to induce oxidative stress leading to 

pancreatic β-cell dysfunction. 
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In summary, it is evident from the above discussion that chronic exposure of 

cells, including islet β-cells, to glucose leads to increased oxidative stress. Data from 

antioxidant studies are encouraging. Unfortunately, unlike the majority of cell types, the 

islet β-cell has an extremely low antioxidant capacity due to significantly low levels of 

antioxidant enzymes, thus making them vulnerable to oxidative damage and demise. In 

addition, relatively little is known with regard to roles of Nox as a potential source of 

ROS and oxidative stress in the islet β-cell. Therefore, I propose studies in the following 

sections to systematically evaluate this and to explore the underlying mechanisms 

involved in the regulation of Nox under the duress of glucotoxicity. 

 

Pancreatic β-cells and free fatty acids 

 

In addition to hyperglycemia, type II diabetic patients often have elevated free 

fatty acids (FFAs). Even though the characteristic increase in basal insulin secretion 

with reduced GSIS is well demonstrated following chronic exposure of pancreatic β-cells 

to high levels of FFAs, the precise mechanisms linking FFAs to dysregulation of β-cell 

function remain elusive [139 - 142]. In this context, it has been reported that short-term 

exposure of pancreatic β-cells to FFAs results in an increase of insulin secretion [143 - 

145], whereas, long-term exposure leads to attenuation of insulin secretion [146, 147]. 

In the presence of high glucose, short-term exposure of FFAs synergistically increases 

the insulin secretion as a result of accumulation of long chain CoA [LC-CoA] in the 

cytosolic fractions [148] due to malonyl-CoA inhibition of carnitine palmitoyl transferase 

I. The excessive formation of LC-CoA and several other lipid complexes which are 
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critical effectors of insulin secretion during inhibition of fatty acid oxidation induces 

protein kinase C activation, protein acylation [149], calcium influx [144, 150]. 

 

It is well established that high plasma levels of saturated fatty acids [e.g., palmitic 

acid] promote abnormal islet function and type II diabetes. Such effect has been proven 

to associate with increase lipid esterification, production of ceramides [see Figure 10], 

and oxidative stress [151], This, in turn, results in increased lipid peroxidation leading to 

defective functions of proteins and DNA [152]. In addition, stimulating effects of FFAs 

on ROS generation has been demonstrated in several cell types suggesting that FFAs 

and their derivatives may modulate the cell function by increasing oxidative stress 

intracellularly [153 - 155]. 

It has also been shown recently that elevated FFAs, over an extended period of 

time, cause damage to cells by a variety of mechanisms, and oxidative stress being the 

common link among all [156, 157]. Although, adverse effects of elevated FFAs on 

insulin secretion and the mechanism[s] underlying have been reported in vitro [158], the 

in vivo translational impact of FFA supplementation on pancreatic islet function is far 

from being clear. In this context, based on the currently available information in in vitro 

and in vivo model systems, Giacca et al have summarized the mechanisms of 

lipotoxicity and glucolipotoxicity [Figure 9]. 
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Giacca A et al. Am J Physiol Endocrinol Metab 2011;300:E255-E262Giacca A et al. Am J Physiol Endocrinol Metab 2011;300:E255-E262
 

Figure 9: In vivo studies via lipid infusion or high-fat diet in animals and humans have 

shown to decrease pancreatic β-cell function and mass. The mechanistic insights on 

FFA leading to oxidative stress [142, 159, 160] / ER stress [161] / Inflammation [162 - 

165] resulting in β-cell failure has been reviewed by Giacca et al. Also depicted in the 

figure are the potential inputs from glucotoxicity which cannot be separated from 

lipotoxicity (i.e., glucolipotoxicity) in animal models of Type II diabetes or Type II diabetic 

humans. In addition the role of ceramides in glucolipotoxicity has been explained by 

Shimabukuro et al [166]. 
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Figure 10: The above figure explains the de novo biosynthesis of ceramides from 

palmitic acid [taken from Kowluru 2010, Endocrine Reviews]. 

 

In summary, available evidence clearly suggests that saturated fatty acids exert 

deleterious effects on pancreatic β-cells at multiple levels. It also appears that 

generation of excessive ROS leads to increased oxidative stress culminating in 

mitochondrial dysfunction. These observations prompt further investigations to 

determine relative regulatory roles of Nox in the signaling mechanisms leading to 

palmitate or ceramide-induced metabolic dysfunction of the islet β-cell. I propose 

studies in the following sections to address this question.  
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Pancreatic β-cells and cytokines 
 
 

Proinflammatory cytokines [e.g., IL-1β, TNFα and IFN] play a vital role in 

pancreatic β-cell dysfunction and in the development of both type I and II diabetes. 

Emerging evidence also suggests that high glucose levels can augment cytokine 

production in pancreatic islets [124]. Therefore, excessive cytokine levels not only exert 

damaging effects on β-cells in the pathogenesis of type I diabetes, but also contribute to 

the progressive decline in β-cell function typical feature of type II diabetes, as they 

promote accelerated β-cell apoptosis and demise.  

 
During the progression of the disease, proinflammatory cytokines are released 

into islets of Langerhans by infiltrated, activated T-cells and macrophages [167 - 169].  

However, the exact cellular mechanisms by which cytokines induce β-cell demise is 

only partially understood [170]. Though cytokines modulate the activity of several 

destructive signaling cascades (i.e., apoptosis, necrosis, and autophagic cell death), 

apoptosis is considered as the primary mode of cell death in human and mouse models 

of diabetes [171 - 173]. Apoptosis is a highly regulated, genetically encoded and 

energy-dependant cell death process activated by extracellular signals [174 - 176]. 

Caspases, a family of cysteine proteases, play a critical role in apoptosis. In the 

presence of apoptotic stimuli, caspase cascade is activated, in which activation of 

initiator caspases (i.e., Caspase 8 and 9) leads to the downstream activation of 

executioner caspase (i.e., Caspase 3) and once activated, caspase 3 cleaves ~40 

different cellular substrates [170, 174, 176, 177].   
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Recent studies indicate that cytokines may signal apoptosis via intrinsic apoptotic 

pathway, which involves destruction of mitochondrial membrane and subsequent 

release of cytochrome C from the inter-membranous space to cytosol, leading to the 

activation of caspase cascade [169, 177]. Emerging evidence also suggests that up-

regulated oxidative stress from ROS and NO contributes to the damage in mitochondrial 

membrane eventually causing defects in membrane potential. Recently, members of the 

Nox family have been shown as one of the sources of ROS generation and oxidative 

stress in cells under the duress of cytokines [118]. Again, as in the case of gluco-, lipo-, 

or glucolipotoxicity, very little is known with regard to potential regulatory mechanisms 

underlying cytokine-induced, Nox-mediated and ROS-sensitive signaling pathways in β-

cell dysfunction.  

 

With this background information in mind, for my doctoral work, I have 

undertaken a series of investigations to methodically assess the friendly and non-

friendly roles of Nox-derived ROS in islet β-cell function. Data accrued from these 

studies are described in the following sections. 
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HYPOTHESIS 
 
 

The above review of literature clearly indicates that a tonic increase in 

intracellular ROS may be necessary for GSIS to occur. Further, it is also evident that 

chronic exposure of β-cells to high glucose [i.e., glucotoxicity], fatty acids [i.e., 

lipotoxicity], or both [i.e., glucolipotoxicity] results in increased oxidative stress leading to 

metabolic dysfunction and demise of the β-cell culminating in the onset of diabetes. 

Despite the above evidence, very little is known with regard to potential regulatory 

mechanisms underlying the holoenzyme assembly and functional activation of Nox by 

glucose, cytokines and/or palmitate under acute/chronic exposure conditions. 

Furthermore, putative mechanisms underlying ROS-mediated insulin secretion and 

cytotoxic effects on isolated β-cells remain largely unexplored. 

 

The overall objective of my PhD work is to study the regulation of islet β-cell 

function by ROS, specifically generated via the catalytic activation of Nox signaling 

cascade in isolated β-cells exposed to acute and/or long-term incubation conditions 

[See Figure 11 for my Working Model]. My goal is to test short term effects in the 

presence of nutrient secretagogues such as glucose or mitochondrial fuels. I propose to 

utilize glucose, palmitate, ceramide and a mixture of cytokines in the long-term 

incubation studies. Lastly, I plan to confirm my findings in in vitro model systems in 

islets derived from diabetic rodents [Zucker diabetic fatty rat; ZDF rat] and diabetic 

human islets, if they become available. I will accomplish my goals by conducting studies 

described under the following three Specific Aims. 
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Figure 11: The above figure depicts both the positive and negative modulatory roles of 

ROS generation mediated via Tiam1/Rac1/Nox signaling axis.  
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Specific Aim 1: To determine contributory roles of Nox-derived ROS in the sequence of 

events leading to insulin secretion. 

Specific Aim 2: To determine contributory roles of Nox-derived ROS in the onset of 

mitochondrial defects leading to the demise of the islet β-cell following exposure to 

elevated glucose, lipids, ceramide or a mixture of cytokines. 

Specific Aim 3: To determine the functional status of Nox signaling cascade in islets 

from animal models of obesity and diabetes. Also, to assess these signaling steps in 

islets from human donors with type 2 diabetes. 

 

I will use a number of biochemical, molecular and cell biological and 

immunological approaches in primary rat islets and glucose-responsive β [INS 832/13] 

cells to accomplish the above objectives. It is my hope that data derived from the 

proposed studies will provide fresh insights into regulatory roles of Nox signaling 

cascade in islet function following short term exposure to nutrient secretagogues. I also 

envision that data from my studies will provide much needed information on regulatory 

roles of Nox-derived ROS signaling steps in the onset of mitochondrial dysfunction 

leading to the demise of the β-cell under the duress of glucolipotoxic conditions. My 

long-term goal is to develop specific therapeutic modalities to prevent the 

establishment of these β-cell defects and the onset of diabetes. 
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Chapter I 

 

Introduction 

 

Glucose stimulated insulin secretion (GSIS) involves a series of metabolic and 

cationic events, leading to translocation of insulin-laden secretory granules from a distal 

site toward the plasma membrane for fusion and release of insulin into circulation. It is 

widely accepted that vesicular transport and fusion involves interplay between signaling 

proteins, including vesicle-associated membrane proteins on the secretory granule and 

docking proteins on the plasma membrane (44, 45, 49). Furthermore, interaction 

between these proteins is widely felt to require cytoskeletal remodeling, which is under 

the fine control of small molecular mass G proteins belonging to the Rho subfamily 

(e.g., Cdc42 and Rac1; see Ref. 84 for a recent review). Several effector proteins for 

these small G proteins have been identified in the islet β-cell, including phospholipases, 

p21-activated kinase-1 kinase, and ERK1/2 kinases (68, 74, 84). 

 

It is well established that G proteins undergo posttranslational modifications for 

optimal activation, membrane trafficking, and effector interactions. The majority of small 

G proteins undergo a series of modifications at their COOH-terminal cysteine residues, 

which include prenylation (i.e., farnesylation and geranylgeranylation), 

carboxylmethylation (CML), and palmitoylation. In addition to small G proteins, the -

subunits of trimeric G proteins undergo prenylation and CML (66, 74, 75, 79, 84). 

Indeed, using pharmacological and molecular biological approaches, several recent 

studies have confirmed the requisite nature of these modifications in GSIS in a variety 
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of insulin-secreting cells, including clonal β-cells, normal rodent islets, and human islets 

(see Ref. 84 for a recent review). 

 

A growing body of recent evidence implicated roles for reactive oxygen species 

(ROS) in metabolic dysfunction of the islet β-cell under the duress of glucolipotoxicity, 

cytokines, and ceramide (178 - 180). It has been shown that increased ROS generation 

seen under the above experimental conditions is derived from the activation of 

phagocyte-like NADPH oxidase (Nox), since inhibition of this enzyme by selective 

inhibitors [e.g., Diphenylene iodonium chloride (DPI) or apocynin] or transfection of 

short interfering RNA (siRNA) against individual subunits of Nox (e.g., p47phox) 

significantly attenuated deleterious effects of aforementioned Noxious stimuli (38, 39). 

 

Despite the negative modulatory role(s) of ROS in cell function, recent evidence 

appears to indicate that a tonic increase in the ROS generation may be necessary for 

GSIS and fatty acid-induced insulin secretion (7, 110 - 113). ROS have also been 

shown to modulate many physiological processes, including ion transport and protein 

phosphorylation (181 - 184). As reviewed recently by Pi and Collins (7), ROS plays 

“second messenger” role in modulating islet β-cell function. Along these lines, studies 

by Pi and coworkers (113) have demonstrated that glucose-mediated generation of 

H2O2 alters intracellular redox status, leading to augmented GSIS; such effects were 

attenuated by coprovision of antioxidants. These findings were further strengthened by 

Leloup and colleagues (10), suggesting that generation of mitochondrial ROS is a 

requisite stimulus for GSIS to occur. Together, these data implicate an essential role for 

Nox-derived ROS as a signaling molecule involved in the regulation of β-cell function, 
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specifically at the level of insulin secretion. The present studies are undertaken to 

determine potential mechanisms underlying nutrient-induced elevation of ROS levels in 

INS 832/13 cells and normal rat islets. Specifically, I have determined the roles of G 

proteins in this signaling cascade; this was accomplished by selective inhibitors of 

protein prenylation (e.g., GGTI-2147 and FTI-277), which have been used to verify the 

roles for G proteins in GSIS (84). In addition, I have examined permissive roles for 

endogenous GTP in nutrient-induced ROS generation. My findings implicate that 

prenylation-sensitive signaling steps are necessary for glucose- and mitochondrial fuel-

induced intracellular generation of ROS in INS 832/13 cells and normal rat islets. 

 

These findings have been published in Am J Physiol Regul Integr Comp Physiol. 

2011; 300(3):R756-762. Reprint of this publication is included as Appendix A. 
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Materials and Methods 

Materials 

DPI, apocynin, pertussis toxin (Ptx), mycophenolic acid (MPA), cyclosporine A, 

rapamycin, mono-methylsuccinate, α-keto-isocaproic acid, and 2′, 7′-dichlorofluorescein 

diacetate (DCHFDA) were from Sigma (St. Louis, MO). p47phox siRNA and p47phox 

antiserum were from Santa Cruz Biotechnology (Santa Cruz, CA). FTI-277 and GGTI-

2147 were from Calbiochem (San Diego, CA). Rac1 activation kit was from 

Cytoskeleton (Denver, CO).  

 

Insulin-secreting cells 

INS 832/13 cells were provided by Dr. Chris Newgard (Duke University Medical 

Center, Durham, NC) and were cultured in RPMI-1640 medium containing 10% heat-

inactivated fetal bovine serum supplemented with 100 IU/ml penicillin and 100 IU/ml 

streptomycin, 1 mM sodium pyruvate, 50 μM 2-mercaptoethanol, and 10 mM HEPES 

(pH 7.4). The medium was changed twice, and cells were subcloned weekly. Islets from 

normal Sprague-Dawley rats were isolated by collagenase digestion method described 

previously (85). All animal experiments, including isolation of pancreatic islets from 

normal Sprague-Dawley rats, were reviewed and approved by the Wayne State 

University Institutional Animal Care and Use Committee.  

 

Quantitation of ROS 

This was carried out as our laboratory described recently in 179, 180. In brief, 

INS 832/13 cells were seeded in six-well plate and treated with various insulin 
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secretagogues and inhibitors (or their respective diluents), as indicated in the text. 

Following incubation, the medium was removed, and cells were further incubated with 

DCHFDA (10 µM) at 37°C for 30 min in RPMI. DCHFDA, being a nonpolar compound, 

diffuses rapidly into the cells and hydrolyzes readily by cellular esterases into polar 2′, 

7′-dichlorofluorescein. In the presence of ROS, 2′, 7′-dichlorofluorescein readily oxidizes 

to fluorescent dichlorofluorescein. The cells were washed with ice-cold phosphate-

buffered saline and harvested, and equal amounts of protein were taken for 

fluorescence measurements (emission wavelength: 535 nm and excitation wavelength: 

485nm) using luminescence spectrophotometer (PerkinElmer, Waltham, MA).  

 

Inhibition of Nox activity via molecular biological or pharmacological approaches 

INS 832/13 cells were seeded in a 24-well plate and at 50–60% confluence either 

mock transfected or transfected with antisense p47phox siRNA at a final concentration of 

150 nM and cultured for 24 h. Following this, cells were stimulated with low glucose (2.5 

mM) or high glucose (20 mM) for 1 h. At the end of stimulation, culture medium was 

removed; cells were incubated further with DCHFDA (10 µM) at 37°C for 30 min in 

RPMI, washed with ice cold PBS, and harvested; equal amount of proteins were taken; 

and fluorescence was measured (excitation wavelength: 485 nm, and emission 

wavelength: 535 nm) using luminescence spectrophotometer as described above. 

Alternatively, Nox activity was inhibited via a pharmacological approach by incubating 

INS 832/13 cells either with apocynin (100 µM; 12 h) or DPI (5 µM; 2 h) in low-serum, 

low-glucose-containing medium. Following incubation, cells were stimulated with low 

glucose (2.5 mM) or high glucose (20 mM) for 1 h in the continuous absence or 

presence of inhibitors, and NADPH activity was measured by DCHFDA assay, as 

 



 

 

39

described above. The amount of fluorescence recorded is directly correlated with the 

amount of superoxide radicals generated due to Nox activity.  

 

Rac1 activation assay 

This was accomplished using a pull-down assay that our laboratory described 

recently [185]. Briefly, INS 832/13 cells were starved overnight in low-serum, low-

glucose-containing medium in either the presence or absence of MPA (10 μM). At the 

end of incubation, cells were stimulated with low glucose (2.5 mM) or high glucose (20 

mM) for 30 min in the continuous presence or absence of MPA. Lysates (~500 μg 

protein) were clarified by centrifugation for 5 min at 4,800 g, and p21-activated kinase-

binding domain beads (20 μl) were added to the supernatant. The mixture was then 

rotated for 1 h at 4°C and pelleted by centrifugation at 4,000 g for 3 min. The pellet was 

washed once with lysis buffer followed by a rinse (3×) in wash buffer (25 mM Tris, pH 

7.5, 30 mM MgCl2, 40 mM NaCl, and 150 mM EDTA). Proteins in the pellet were 

resolved by SDS-PAGE and transferred onto a nitrocellulose membrane, and Western 

blotting method determined the relative abundance of activated Rac1.  

 

Other assays and statistical analysis of data 

Protein concentrations were determined by Bradford's dye-binding method using 

bovine serum albumin as the standard. Statistical significance of differences between 

diluent and experimental groups was determined by Student's t-test and ANOVA 

analysis. p < 0.05 was considered significant.  
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RESULTS 

 

Pharmacological inhibitors or siRNA-p47phox markedly attenuate glucose-induced 

ROS generation in insulin-secreting cells 

At the outset, I determined whether stimulatory glucose promotes the generation 

of ROS, and whether selective inhibition of Nox attenuates such an effect in this model 

system. Data in Fig. 12 demonstrated a significant increase (~1.7-fold) in glucose-

induced ROS generation in INS 832/13 cells, which was markedly attenuated by 

inhibitors of Nox holoenzyme (e.g., apocynin and DPI; Panel A). The above 

observations were further validated by knockdown of p47phox, a cytosolic subunit of Nox. 

Data in Fig. 12; Panel B indicated ~50% inhibition in the expression of p47phox subunit 

after siRNA transfection, and under these conditions I noticed a marked attenuation of 

glucose-induced ROS generation (Fig. 12; Panel C).  

 

Selective inhibitors of protein prenylation markedly attenuate glucose-induced 

ROS generation in INS 832/13 cells and normal rat islets 

Several earlier studies have demonstrated that posttranslational farnesylation 

and geranylgeranylation of specific G proteins are necessary for GSIS [68, 84]. With 

this in mind, using a pharmacological approach, I examined whether glucose-induced 

ROS generation in isolated β-cells is sensitive to inhibition of protein prenylation. Data in 

Fig. 13 demonstrated a significant reduction in glucose-induced ROS generation by 

selective inhibitors of farnesylation (e.g., FTI-277) or geranylgeranylation (e.g., GGTI-

2147) in INS 832/13 cells (A) or rat islets (B). Together, these findings suggested 

 



 41

involvement of farnesylated and geranylgeranylated proteins in the signaling events, 

leading to glucose-induced ROS generation. 

 

Protein prenylation is also necessary for mitochondrial fuel-, but not KCl-induced 

ROS generation 

I next examined if a mixture of mitochondrial fuels (e.g., α-keto-isocaproic acid 

and mono-methylsuccinate), which elicits insulin secretion from INS 832/13 cells [186], 

also promotes Nox-mediated generation of ROS in these cells. Data in Fig. 14 

demonstrated that mitochondrial fuels increased ROS generation in a manner akin to 

glucose. Furthermore, I observed that such a signaling step was inhibited by FTI-277 

and GGTI-2147, albeit to a lesser degree (Fig. 14) compared with glucose-induced ROS 

generation (Fig. 13). Together, data in Figs. 13 and 14 implicate protein farnesylation 

and geranylgeranylation in the cascade of events, leading to nutrient-induced 

generation of ROS in INS 832/13 cells. It should be noted that ROS generation appears 

to be specific for nutrient secretagogues, since a depolarizing concentration of KCl (40 

mM), which facilitates insulin release via membrane depolarization and associated 

increase in cytosolic calcium, failed to promote ROS generation. (i.e., 109 ± 1.2% of 

control values; mean ± SE; n = 3).  

 

Depletion of intracellular GTP inhibits glucose-induced Rac1 activation and ROS 

generation in INS 832/13 cells 

Several previous studies have demonstrated a critical requirement for 

endogenous GTP in physiological insulin secretion by selectively inhibiting inosine 

monophosphate dehydrogenase (IMPDH) with MPA [62, 63]. Herein, using MPA, I 
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examined if endogenous GTP is required for glucose-induced Nox activation and 

associated ROS generation in INS 832/13 cells. Cyclosporine A and rapamycin were 

included as negative controls, which, like MPA, are endowed with immunosuppressive 

actions, but not GTP-lowering properties. Data in Table 1 suggested a marked 

attenuation in glucose-induced ROS generation by MPA, but not cyclosporine A or 

rapamycin. These data indicate a critical requirement for endogenous GTP for glucose 

to promote ROS generation in these cells. Together, data in Figs. 13, 14 and Table 1 

indicate potential involvement of prenylated G protein, requiring newly synthesized GTP 

due to the catalytic activation of IMPDH in the signaling events leading to ROS 

generation.  

 

I next examined if GTP depletion impedes glucose-induced activation of specific 

G proteins involved in GSIS. To test this, I quantitated glucose-induced activation of 

Rac1 in MPA-treated (i.e., GTP-depleted) INS 832/13 cells. The premise underlying the 

selection of Rac1 in these studies is based on the evidence that 1) it has been shown to 

be activated by glucose and involved in GSIS; 2) it undergoes geranylgeranylation, and 

GGTI-2147 (above) inhibits glucose-induced Rac1 activation and GSIS; and 3) it is a 

member of the Nox holoenzyme. Data shown in Fig. 15 demonstrated that stimulatory 

concentration of glucose failed to activate Rac1 in INS 832/13 cells following depletion 

of endogenous GTP using MPA. 
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A Ptx-sensitive G protein mediates glucose-induced ROS generation in INS 

832/13 cells 

In the last series of studies, I determined the nature of the prenylated protein that 

might be involved in glucose-induced ROS generation shown in Figs. 13 and 14. In this 

context, our laboratory recently reported that coprovision of FTI-277 or FTI-2628 or 

siRNA-mediated knockdown of farnesyl transferase β-subunit resulted in a significant 

inhibition of glucose-stimulated activation of ERK1/2, Rac1, and insulin secretion, 

further ruling out the potential involvement of Ras in these signaling steps [185]. Based 

on these findings, I speculated a prenylated protein, most likely the γ-subunit(s) of 

trimeric G proteins, in the regulation of the above signaling cascade. Herein, I examined 

if a Ptx-sensitive trimeric G protein is involved in glucose-induced ROS generation. Data 

shown in Fig. 16 demonstrated marked attenuation of glucose-induced ROS generation 

in INS 832/13 cells (A) and normal rat islets (B) treated with Ptx.  
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Figure 12: 
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Selective inhibitor of NADPH oxidase or short interfering RNA (siRNA)-p47phox 

inhibits glucose-stimulated reactive oxygen species (ROS) generation in insulin-

secreting cells. INS 832/13 cells were incubated with either diluent or apocynin (100 μM, 

12 h; A) or Diphenylene iodonium chloride (DPI; 5 μM, 2 h; A) or transfected with 

p47phox siRNA (B and C), following which they were stimulated with either low (2.5 mM; 

LG) or high glucose (20 mM; HG) for 1 h. ROS generated was quantified as 

dichlorofluorescein (DCF) fluorescence and expressed as arbitrary units (AU). B: 

p47phox knockdown efficiency was determined by immunoblotting. Values are means ± 

SE from three independent experiments done in triplicates in each case. *p < 0.05 vs. 

LG alone or mock transfected LG. **p < 0.05 vs. HG alone or mock transfected HG.  
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Figure 13: 
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Selective inhibitors of protein farnesylation or geranylgeranylation markedly 

attenuate glucose-induced ROS generation in INS 832/13 cells and normal rodent 

islets. INS 832/13 cells (A) or normal rat islets (B) were incubated overnight in the 

absence or presence of FTI-277 (5 μM; left) or GGTI-2147 (10 μM; right), followed by 

stimulation with either LG (2.5 mM) or HG (20 mM) for 1 h. ROS generated was 

quantified as DCF fluorescence and expressed as AU. Values are means ± SE from 

three independent experiments done in triplicates (in INS 832/13 cells) and in duplicates 

(in islets) in each case. *p < 0.05 vs. LG alone. **p < 0.05 vs. HG alone.  
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Figure 14: 
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Selective inhibitors of protein prenylation inhibit ROS generation induced by a 

mixture of mitochondrial (Mito) fuels in INS 832/13 cells. INS 832/13 cells were 

incubated overnight in the presence or absence of FTI-277 (5 μM; A) and GGTI-2147 

(10 μM; B), followed by stimulation with LG (2.5 mM) or a mixture of Mito fuels 

[monomethyl succinate (MMS) = 20 mM and α-keto-isocaproic acid (KIC) = 5 mM] for 1 

h in continuous presence or absence of inhibitors. ROS generated was quantified as 

DCF fluorescence and expressed as AU. Values are means ± SE from three 

independent experiments done in triplicates in each case. *p < 0.05 vs. glucose alone. 

**p < 0.05 vs. Mito fuels alone.  
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Figure 15: 

 

 

 

 

 

 

 

 

 

 

Endogenous GTP levels are required for glucose-induced Rac1 activation and 

subsequent ROS generation in pancreatic β-cells. INS 832/13 cells were incubated 

overnight with either diluent or mycophenolic acid (MPA; 10 μM), followed by stimulation 

with either LG (5 mM) or HG (20 mM) for 30 min. The degree of Rac1 activation was 

determined by p21-activated kinase-binding domain (PAK-PBD) pull-down assay, as 

described in materials and methods. A representative blot from two pull-down assays 

yielding similar data is depicted here.  
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Figure 16: 
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Pertussis toxin (Ptx) pretreatment attenuates glucose-induced ROS generation in 

INS 832/13 cells or normal rat islets. Untreated or Ptx-treated (100 ng/ml) INS 832/13 

cells (A) or normal rat islets (B) were stimulated with either LG (2.5 mM) or HG (20 mM) 

for 1 h. ROS generated was quantified as DCF fluorescence and expressed as AU. 

Values are means ± SE from three independent experiments done in triplicates (in INS 

832/13 cell) and in duplicates (in islets) in each case. *p < 0.05 vs. LG alone. **p < 0.05 

vs. HG alone.  
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Table 1: 

                       
Conditions 

Degree of ROS generation 
[fold over basal glucose] 

 
Low glucose 

 
High Glucose 

 

 
1.00 

 

1.58± 0.06 ** 

 
Low glucose + mycophenolic acid  

 
High glucose + mycophenolic acid  

 

 

1.08± 0.02* 
 

1.16± 0.04 *** 

 
Low glucose +cyclosporine A  

 
High glucose + cyclosporine A  

 

 

1.06±0.09* 
 

1.46± 0.14 ** 

 
Low glucose + rapamycin  

 
High glucose + rapamycin  

 

 

1.05± 0.08* 
 

1.42± 0.15 ** 

 

INS 832/13 cells were incubated with low glucose [2.5 mM] low serum in the 

presence or absence of mycophenolic acid [10 μM], cyclosporine-A [5 μM] and 

rapamycin [100 nM] for 24 h. Following, cells were stimulated either with low [2.5 mM] 

or high glucose [20 mM] for 1 h in continuous presence and or absence of the above 

inhibitors as indicated in the Table 1. At the end of stimulation, cells were incubated with 

DCHFDA [10 µM] for 30 min and harvested for DCF fluorescence. ROS generated was 

quantified as DCF fluorescence and expressed as arbitrary units. Data are mean ± SEM 

from three independent experiments in each case. * represents no significant difference 

vs. low glucose alone; ** p <0.05 vs. low glucose alone; *** p <0.05 vs. high glucose 

alone. 
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Discussion 

 

The overall objective of the present study was to determine potential 

mechanisms underlying nutrient-induced generation of ROS in isolated β-cells. Salient 

features of my studies are as follows: 1) glucose and mitochondrial fuels, but not 

membrane depolarizing KCl, increase ROS generation significantly; 2) an increase in 

ROS seen under these conditions is derived from Nox, since pharmacological or 

molecular biological inhibition of Nox inhibited ROS generation; 3) such a regulatory 

effect of glucose requires the activation of farnesylated as well as geranylgeranylated 

proteins; 4) MPA, but not rapamycin or cyclosporine A, completely inhibits glucose-

induced ROS generation, implying that endogenous GTP is necessary for such an 

effect; and 5) inactivation of Ptx-mediated ADP ribosylation of an inhibitory G protein(s) 

markedly attenuates glucose induced ROS generation. Taken together, these findings 

provide insights into potential G protein-mediated regulation of ROS in the islet β-cells 

under conditions in which they regulate physiological insulin secretion. 

 

Nox is a highly regulated membrane-associated protein complex that facilitates 

the one electron reduction of oxygen to superoxide anion involving oxidation of cytosolic 

NADPH. The Nox holoenzyme is composed of membrane as well as cytosolic 

components. The membrane-associated catalytic core consists of gp91phox, p22phox, and 

the small G protein Rap1. The cytosolic regulatory components include p47phox, p67phox, 

p40phox, and the small G protein Rac. Following stimulation, the cytosolic components of 

Nox translocate to the membrane fraction for association with the catalytic core for 

holoenzyme assembly. Available evidence suggests that a protein kinase C-sensitive 
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phosphorylation of p47phox leads to its translocation to the membrane fraction (187). It 

has also been shown that functional activation of Rac1 (Rac1.GTP) is vital for the 

holoenzyme assembly and activation of Nox in insulin-secreting cells (179, 180).  

 

Along these lines, Oliveira et al. (112) provided a detailed description of 

localization, expression, and functional regulation of Nox within the islet. More recent 

pharmacological and molecular biological observations by Morgan and coworkers (14) 

have provided compelling evidence for a regulatory role for Nox in glucose-stimulated 

insulin secretion in rat islets under static incubation and perifusion conditions. Follow-up 

studies from this group have demonstrated key roles for Nox-derived ROS in palmitate-

induced insulin secretion in the presence of submaximal concentration of glucose in 

islets (110). Under the above conditions, palmitate not only promoted translocation of 

p47phox to the membrane fraction, but also upregulated the protein content of p47phox 

and the mRNA levels of p22phox, gp91phox, p47phox, proinsulin, and the G protein-coupled 

receptor 40. Essential role for Nox in palmitate-induced effects on β-cells was further 

strengthened by their observations to indicate a marked inhibition of fatty acid 

stimulation of insulin secretion in the presence of high-glucose concentration by 

inhibition of Nox activity. Based on these findings, it is evident that Nox plays key roles 

in islet function, including gene regulation and insulin secretion. 

 

These observations also implicate roles for farnesylated and geranylgeranylated 

proteins in nutrient-induced Nox activation and associated ROS generation; the 

geranylated protein involved in nutrient-mediated activation of Nox might be Rac1, since 

it is one of the components of the Nox holoenzyme (180). Pharmacological (i.e., generic 
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as well as more selective inhibitors of geranylgeranylation of Rac1), as well as 

molecular biological (i.e., dominant negative mutants of prenyltransferases; Ref. 95) 

studies from our laboratory have clearly implicated Rac1 in islet function, including 

insulin secretion (84 - 86). The identity of the farnesylated protein, which is required for 

nutrient-induced ROS generation, remains to be determined. It is likely that it might 

represent the -subunit of a Ptx-sensitive G protein, since our laboratory has 

demonstrated earlier regulation of Ptx-sensitive G proteins by glucose in clonal β-cells, 

normal rat islets, and human islets (88, 188 - 190). Several earlier studies by Seaquist 

et al (191), Robertson et al (69), and Sharp (192) have provided evidence for the 

expression of inhibitory (e.g., Gi or Go) class of Ptx-sensitive heterotrimeric proteins in 

the islet β-cell. Furthermore, studies from our laboratory (188) and those of Konrad and 

coworkers (193) have demonstrated functionally active heterotrimeric G proteins on the 

insulin granules in isolated β-cells. Lastly, using clonal β-cells, normal rat islets, and 

human islets, our laboratory has been able to demonstrate activation of the CML of -

subunits by glucose; such effects of glucose were shown to be sensitive to Ptx, GTP, 

and extracellular calcium (190). 

 

Existing experimental evidence also implicates role(s) for trimeric G proteins, 

specifically the inhibitory Gi class of proteins in the regulation of NADPH-oxidase 

activity. For example, using human fat cells, Kreuzer and coworker’s (194) demonstrate 

insulin-induced activation of NADPH-dependent H2O2 generation in human adipocyte 

plasma membranes is mediated by Gαi2, which is regulated via ADP-ribosylation by 

Ptx. Additional studies are needed to conclusively determine the identity of this protein. 

However, based on our laboratory’s recently published evidence (185), it is unlikely that 
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the farnesylated protein is Ras, since inhibition of Ras (a farnesylated protein) had no 

effects on glucose-induced ERK1/2 phosphorylation, Rac1 activation, and insulin 

secretion. 

 

These findings also suggested that depletion of endogenous GTP by MPA 

results in a decreased activation of glucose-induced Rac1 and ROS generation. In this 

context, original studies by Metz and coworkers (62, 63) have documented permissive 

roles for endogenous GTP in physiological insulin secretion. MPA, which selectively 

inhibits GTP biosynthesis by inhibiting IMPDH, has been shown to inhibit GSIS and 

mastoparan-induced insulin secretion (62, 65). Even though inhibition of G protein 

activation was speculated to be one of the underlying mechanisms in the inhibition of 

insulin secretion following GTP depletion by MPA, very little information is available to 

substantiate that speculation. In this context, our laboratory has described earlier the 

inability of glucose to increase the CML (and activation) of small G proteins in GTP-

depleted cells (66). The present studies identify Rac1 as one of the target proteins for 

glucose-mediated, endogenous GTP-dependent effects in β-cells. These present 

findings are also in agreement with observations of Krotz et al. (195), demonstrating 

inhibition of endothelial Nox by MPA via a Rac1- dependent mechanism. 
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CHAPTER – II  
 
 
Introduction 
 
 

Several lines of evidence from multiple laboratories suggests that chronic 

exposure of isolated β-cells to elevated saturated fatty acids [e.g., palmitic acid; PA] 

leads to a significant metabolic dysregulation and eventual demise of the β-cell [158, 

196, 197]. Multiple mechanisms have been put forth to explain PA-induced metabolic 

defects; one of these include generation of intracellular oxidative stress [e.g., reactive 

oxygen species; ROS; 118, 153, 198], albeit recent studies by Moore et al. [199] appear 

to argue against fatty acid induced oxidative stress in the pancreatic β-cell. A signaling 

step involved in the increased generation of ROS and associated induction of 

intracellular oxidative stress in the pancreatic β-cell is the activation of the phagocytic 

Nox system, which is a highly regulated membrane-associated protein complex that 

catalyzes the one electron reduction of oxygen to superoxide anion involving oxidation 

of cytosolic NADPH. The phagocytic Nox is a multicomponent system comprised of 

membrane as well as cytosolic components. The membrane-associated catalytic core is 

a complex consisting of gp91phox, p22phox and the small G-protein Rap1. The cytosolic 

regulatory components include p47phox, p67phox and the small G-protein Rac1 [16, 84, 

111, 114, 115]. Following stimulation, the cytosolic components of NADPH oxidase 

translocate to the membrane for association with the catalytic core for holoenzyme 

assembly. Available evidence also suggests that a protein kinase C ζ-sensitive 

phosphorylation of p47phox leads to its translocation to the membrane fraction [187]. It 
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has also been shown that functional activation of Rac [i.e., GTP-Rac] is vital for the 

holoenzyme assembly and activation of NOX [40 - 42].  

 

Several recent studies have demonstrated localization and functional activation 

of the Nox in clonal β-cells, normal rat islets and human islets under the duress of 

various stimuli including elevated levels of glucose, saturated fatty acids and 

proinflammatory cytokines [13, 112, 198, 200]. It has also been demonstrated that 

pharmacological inhibition of Nox by Diphenylene iodonium chloride [DPI] or anti-sense 

oligonucleotides for p47phox markedly attenuated glucose-induced ROS production and 

oxidative stress, suggesting a critical involvement of Nox in the metabolic dysfunction 

induced by glucose [14]. These data implicate a significant contributory role for Nox in 

the metabolic dysfunction of the β-cell under conditions of oxidative stress [31, 201, 

202]. Furthermore, existing evidence implicates apoptotic signaling cascade in cytokine-

induced defects, which operate via an intrinsic pathway involving damage of the 

mitochondrial membrane and subsequent release of cytochrome C leading to caspase-

3 activation [177, 169]. Unlike many other mammalian cell types, β-cells lack a strong 

defense mechanism, making them more vulnerable to oxidative damage [31]. 

 

Despite the aforementioned compelling lines of evidence, very little has been 

studied with regards to the potential contributory roles of small G-proteins [e.g., Rac1] in 

the cascade of events leading to PA-induced Nox-mediated superoxides generation in 

β-cells. With this in mind, I undertook the current study to test the hypothesis that  

palmitate- or cytokine-induced ROS generation and subsequent oxidative stress in β-

cells is mediated via functional activation of Rac1 [Rac1.GTP] since it is considered to 
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represent one of the signaling steps necessary for the functional regulation and 

activation of the Nox. To accomplish this, I investigated regulation of Nox activity in 

insulin-secreting cells following exposure to palmitate or a mixture of cytokines. I also 

examined potential contributory roles of ceramide, a biologically-active sphingolipid, 

which is biosynthesized from palmitate via the de novo pathway [Figure 10], in the 

regulation of Nox. Herein, I demonstrate that Nox signaling pathway plays a critical role 

in the generation of superoxides and lipid peroxides in palmitate- or cytokines-mediated 

effects on isolated β-cells. I also present the first evidence to suggest a modulatory role 

for Tiam1, a guanine nucleotide exchange factor for Rac1 [207], in this signaling 

pathway leading to the onset of mitochondrial dysfunction. Lastly, I report that post 

translational modification of Rac1 is necessary for optimal Nox activation in insulin 

secreting cells.  

 

Please note that my observations on palmitate and ceramide-induced regulation 

of Nox activation and metabolic dysfunction of the β-cell are published in Biochem 

Pharmacol 2010. Furthermore, the work I have carried out in collaboration with Dr. 

Wasanthi Subasinghe on cytokine-mediated Nox activation and mitochondrial 

dysfunction of the islet β-cell is published in Am J Physiol Regul Integr Comp Physiol 

2011. Reprints of these two publications are included as Appendices B & C. 
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Materials and Methods 

 

 
Materials 

C2-Ceramide, Dihydroceramide, GGTI-2147 and NSC23766 were from 

Calbiochem [San Diego, CA]. Apocynin, Nitroblue tetrazolinium salt, malondialdehyde, 

thiobarbituric acid, diphenyleneiodonium chloride, butylated hydroxytoulene, oleic acid 

and palmitic acid were from Sigma [St. Louis, MO]. p47phox siRNA and antibodies 

directed against p47phox, p67phox, actin were from Santa Cruz Biotechnology [Santa 

Cruz, CA]. Rac1 activation kit was purchased from Cytoskeleton Inc. [Denver, CO]. JC-

1 assay kit was from Cell Technology Inc. [Mountain View, CA]. Palmitate stock 

solutions were prepared as described in Ref. [203]. Interleukin-1β, IFN-γ, and TNF-α 

were obtained from R&D Systems (Minneapolis, MN). Caspase 3 antiserum was 

obtained from Cell Signaling Technology (Danvers, MA). 

 

Insulin-secreting cells 

INS 832/13 cells were provided by Dr. Chris Newgard [Duke University Medical 

Center, Durham, NC] and were cultured in RPMI 1640 medium containing 10% heat-

inactivated fetal bovine serum supplemented with 100 IU/ml penicillin and 100 IU/ml 

streptomycin, 1 mM sodium pyruvate, 50 μM 2-mercaptoethanol, and 10 mM HEPES 

[pH 7.4]. The medium was changed twice and cells were subcloned weekly. Islets were 

isolated from normal Sprague–Dawley rats using the collagenases digestion method 

described previously [203]. 

 

 

 



 63

 

Quantitation of superoxide generation by nitroblue tetrazolium [NBT] assay 

INS 832/13 cells were plated in six-well plates and grown to subconfluence and 

then treated with PA [100 μM], C2-CER [30 μM], FB-1 [10 μM], DPI [5 μM] or 

NSC23766 [20 μM] in different combinations as described in the text. The medium was 

then removed and the cells were washed once with PBS and further incubated with 

0.25% NBT for 30 min at 37 °C. Cells were then harvested and pelleted by low-speed 

centrifugation. The resulting pellet was resuspended in 50% acetic acid. The reduced 

NBT formazan product was quantified by measuring the absorbance at 510 nm using 

Beckman DU640 spectrophotometer. 

 

Quantitation of superoxide generation by malondialdehyde [MDA] assay 

INS 832/13 cell lysates derived from control or treated cells [100 μg protein] were 

treated with 10% trichloro acetic acid, 2% butylated hydroxytoulene, and freshly 

prepared 0.67% thiobarbituric acid. Following this, the samples were boiled for 15–20 

min and then allowed to cool down at 4–8 °C for 15–20 min. The samples were then 

gently vortexed and centrifuged at 3500 rpm for 15 min. The resulting supernatant was 

used to measure the absorbance at 532 nm. A standard concentration curve was used 

to extrapolate MDA generated from various samples. 

 

Nox assay 

INS 832/13 cells were plated in six-well plates, grown to subconfluence and then 

treated with either diluent or PA [100 μM] or C2-CER [30 μM] for 6 h. After treatment the 

medium was removed and the cells were washed once with PBS and further incubated 

with 5 μM of 2′, 7′-dichlorodihydrofluorescein diacetate [DCHFDA] for 30 min at 37 °C. 
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Cells were then harvested and pelleted by low-speed centrifugation and the protein 

content of the pellet was determined using Bradford's assay. Following to this, equal 

amount of proteins were taken and fluorescence in each condition was recorded 

[excitation – 485 nm and emission – 530 nm]. The amount of fluorescence recorded is 

directly correlated to the amount of superoxide radicals generated due to Nox activity. 

 

Molecular biological or pharmacological inhibition of Nox activity 

INS 832/13 cells were seeded in a 24-well plate up to 50% confluence and 

transfected with mock or antisense siRNA-p47phox (150 nM) and allowed to grow up to 

80% or higher confluence. Then the cells were treated either with diluent or cytomix for 

a 12-h period. Following this, culture medium was removed, and cells were incubated 

further in DCHFDA (10 μM) at 37°C for 30 min, washed twice with ice-cold PBS, and 

harvested; equal amounts of proteins (50 μg) were taken, and fluorescence was 

measured (Ex: 485 nm and Em: 535 nm) using luminescence spectrophotometer 

(PerkinElmer, Waltham, MA). Alternatively, Nox was inhibited via a pharmacological 

approach by treating INS 832/13 cells with either diluent or cytomix for 12 or 24 h in the 

absence or presence of apocynin (75 μM), and Nox activity was measured with 

DCFHDA assay, as described above.  

 

Rac1 activation assay 

INS 832/13 cells were treated with either diluent or NSC23766 [20 μM] or C2-

CER or PA or oleate or cytokines or GGTI-2147 [10 μM]. Before treatment, cells were 

incubated overnight with either NSC23766 or GGTI-2147 in a low serum–low glucose 

containing medium. Cells were further incubated with PA or C2-CER or cytokines as 
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indicated in the text in the continuous presence of either NSC23766 or GGTI-2147 or 

diluent. Lysates [500 μg protein] were clarified by centrifugation for 5 min at 4800 × g, 

and PAK-PBD [p21-activated kinase-binding domain] beads [20 μl] were added to the 

supernatant. The mixture was then rotated for 1 h at 4 °C and pelleted by centrifugation 

at 4000 × g for 3 min. The resulting pellet was washed once with lysis buffer followed by 

a rinse [3×] in wash buffer [25 mM Tris, pH 7.5, 30 mM MgCl2, 40 mM NaCl, and 150 

mM EDTA]. Proteins in the pellet were resolved by SDS-PAGE and transferred onto a 

nitrocellulose membrane, and Western blotting method determined the relative 

abundance of activated Rac1. 

 

Assessment of mitochondrial dysfunction by JC-1 assay 

Loss of mitochondrial membrane potential in cells has been estimated using JC-1 

assay kit. Briefly, INS 832/13 cells were grown at 80% confluence on the cover slips 

and were incubated with and without NSC23766 [20 μM] or GGTI-2147 [10 μM] 

overnight in low serum–low glucose media. Cells were then treated with C2-CER [30 

μM] or DHC [30 μM] for 6 h with or without NSC23766, or treated with cytomix for 12 or 

24 h in the presence or absence of NSC23766 (20 μM) or GGTI-2147 (10 μM). At the 

end of incubation, cells were washed twice with assay buffer (provided with the kit) and 

were further incubated for 15 min with JC-1 dye [1×]. Cells were then washed twice with 

assay buffer and the cover slips were mounted onto a glass slide and images were 

taken at 40× magnification using Olympus IX71 microscope [Olympus America Inc., 

Center Valley, PA]. 
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Other assays 

Protein concentrations were determined by Bradford's dye-binding method using 

bovine serum albumin as the standard. Statistical significance of differences between 

diluent and experimental groups was determined by Student's t-test and ANOVA 

analysis. p < 0.05 was considered significant. 
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RESULTS 
 
 
PA induces generation of lipid peroxides and ROS in insulin-secreting cells: 

At the outset, I determined if exposure of isolated β-cells to PA results in the 

generation of superoxides and lipid peroxides. Data shown in Fig. 17 suggest that 

incubation of INS 832/13 cells with PA [100 mM; 6 h] significantly increased lipid 

peroxide levels [~2.5-fold; expressed as MDA equivalents; Panel A] and ROS levels 

[~2.7-fold; Panel B]. Furthermore, coprovision of DPI, a known inhibitor of Nox 

attenuated the PA-induced lipid peroxide levels [~37%] and ROS generation [~31%]. 

Together, these data suggest that PA-mediated generation of lipid peroxides and ROS 

in isolated β-cells may, in part, be due to activation of Nox. 

 

PA induces activation of Nox in pancreatic β-cells: 

Data described above prompted me to further investigate potential regulation of 

Nox activity by PA in insulin-secreting cells. As stated above, p47phox represents one of 

the subunits of the Nox holoenzyme which is subjected to regulation in cells under the 

duress of oxidative stress. It has been shown that small G protein Rac1, also a member 

of the Nox assembly, is also activated under conditions of oxidative stress leading to 

activation of Nox activity. Data described in Fig. 18 suggested that incubation of normal 

rat islets [Panel A; left] or INS 832/13 cells [Panel A; right] with PA significantly 

increased the activation [i.e., GTP-bound form] of Rac1 as determined by the PAK-

pulldown assay [see Material and Methods]. In addition, I observed a marked increase 

in the expression of p47phox in these cells following exposure to PA [Fig. 18; Panel B]. 

Together, data in Panels A and B suggest upregulation of expression and function of 

key components of Nox holoenzyme in cells exposed to PA. I next quantitated the Nox 
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activity to determine if PA-induced activation of Rac1 [Panel A] and p47phox expression 

[Panel B] culminates in the functional activation of the enzyme. Indeed, findings 

described in Fig. 18 [Panel C] suggested a significant increase [~97%] in the catalytic 

activation of Nox in cells treated with PA. It should be noted that under these conditions, 

oleate exerted a modest effect on the Nox activity [Fig. 18; Panel C] without significantly 

affecting Rac1 activation in INS 832/13 cells [Fig. 18; Panel D]. Together, these findings 

suggest that PA, but not oleate, elicits stimulatory effects on Rac1 activation and Nox 

activity. 

 

Tiam1, a GEF for Rac1, is involved in PA-induced Rac1 activation and generation 

of superoxides and lipid peroxides in pancreatic β-cells: 

It has been demonstrated in many cells types, and more recently in pancreatic β-

cells, that Rac1 activation is mediated by GEFs, such as Tiam1 [204, 205]. Recent 

studies from our laboratory have provided immunological evidence for Tiam1 in insulin 

secreting cells, and further indicated that NSC23766, a specific inhibitor of Tiam1, 

specifically inhibits GTP-loading onto Rac1, but not Cdc42 and Rho [204]. Therefore, I 

next investigated if pretreatment of isolated β-cells to NSC23766 prevents PA-induced 

Rac1 activation and associated increase in the generation of superoxides and lipid 

peroxides. Data shown in Fig. 19 [Panel A] demonstrated a near complete inhibition of 

PA-induced Rac1 activation by NSC23766 suggesting potential requirement for Tiam1 

in PA-induced Rac1 activation. Furthermore, I observed that PA-induced generation of 

lipid peroxides [Panel B] and reactive oxygen species [Panel C] in INS 832/13 cells was 

also reduced [~20–30%] following inhibition of Tiam1-mediated activation of Rac1. 
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Together, these data implicate a novel regulatory role(s) for Tiam1/Rac1 signaling 

step(s) in PA-mediated generation of superoxides and lipid peroxides in isolated β-cells. 

 

PA-induced generation of lipid peroxides and superoxides may, in part, be due to 

intracellular generation of CER via the de novo pathway: 

Since PA is the precursor for the de novo biosynthesis of CER, in the next series 

of studies I investigated potential roles of intracellularly generated CER in 

aforementioned PA-induced effects on isolated β-cells. To address this, I quantitated PA 

induced generation of reactive oxygen species and lipid peroxides in cells pre-treated 

with or without FB-1, a known inhibitor of de novo biosynthesis of CER from PA [207], 

incubation of isolated β-cells with 100 μM PA in presence of FB-1 significantly reduced 

PA-induced generation of ROS [~72%; Fig. 20; Panel A] and lipid peroxides [~62%; Fig. 

20; Panel B] without significantly affecting these parameters in cells incubated with the 

diluent. I next quantitated PA-induced effects on Nox activity as a function of period of 

incubation and the concentration of PA. Data in Table 2 indicated that PA elicited 

significant stimulatory effects on Nox activity. Maximal effects were seen between 3 and 

6 h of incubation. Interestingly, PA effects were not seen beyond 6 h time point as the 

Nox activity fell even below the control values. In addition, pre-incubation of these cells 

with FB-1 resulted in a significant inhibition in Nox activity at 6 h time point suggesting 

potential regulation of Nox activity by intracellularly generated CER [Table 2]. I next 

quantitated Nox activity in these cells as a function of PA concentration [0–200 μM] in 

the absence or presence of FB-1. Data in Fig. 20 [Panel C] suggested a concentration-

dependent activation of Nox by PA. Further, a significant inhibition of PA-induced Nox 

activity by FB-1 was observed. Together, these data suggest that PA-induced effects on 
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lipid and superoxide levels and Nox activity may, in part, be due to the intracellularly 

generated CER. 

 

A cell-permeable analog of CER mimics PA effects in isolated β-cells: 

I next investigated if coprovision of a cell-permeable CER [e.g., C2-CER] mimics 

PA-induced oxidative stress in INS 832/13 cells, and if such an increase is mediated via 

activation of endogenous Nox. To address this, INS 832/13 cells were incubated with 

diluent or C2-CER, which has been effectively used to determine CER-induced 

metabolic dysfunction in isolated β-cells [206, 207] in the absence or presence of DPI to 

inhibit endogenous Nox. Data described in Fig. 21 showed a marked reduction in C2-

CER-induced ROS levels [~71%; Panel A] or lipid peroxides [~69%; Panel B] in cells 

exposed to DPI. It should be noted that DPI exerted a modest increase in the 

generation of lipid peroxides in the absence of C2-CER without significantly affecting 

the basal superoxide generation [Panels A and B; lanes 1 vs. 3]. Taken together, these 

findings implicate Nox activity in C2-CER-induced generation of ROS and lipid 

peroxides in pancreatic β-cells. 

 

C2-CER mimics PA effects in inducing p47phox expression and Nox activity in 

isolated β-cells: 

As a logical extension to the studies described in Fig. 21, I examined if C2-CER 

induces p47phox expression and Nox activity in pancreatic β-cells. Data in Fig. 22 [Panel 

A] show that incubation of INS 832/13 cells with C2-CER significantly increased p47phox 

expression. Moreover, in a manner akin to PA, C2-CER increased [more than 2-fold] the 

Nox activity in INS 832/13 cells [Fig. 22; Panel B]. Together, these data in Figs. 21 and 
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22 demonstrate that a cell-permeable analog of C2-CER mimics the effects of PA on 

isolated β-cells by increasing the Nox activity.  

 

C2-CER-induced generation of superoxides and lipid peroxides is mediated by 

the Tiam1/Rac1 signaling pathway: 

Herein, I have examined the possible involvement of Tiam1/Rac1 signaling 

cascade in C2-CER-induced oxidative stress in β-cells. Data shown in Fig. 23 

suggested a significant activation of Rac1 by C2-CER in INS 832/13 cells [Panel A; left] 

and normal rat islets [Panel A; right]. Moreover, coprovision of NSC23766 substantially 

inhibited C2-CER-induced Rac1 activation in both cell types. These data clearly suggest 

that C2-CER-induced effects on isolated β-cells may, in part, be due to activation of a 

Rac1-dependent signaling mechanism. Furthermore, I have noticed that C2-CER 

induced generation of lipid peroxides [Fig. 23; Panel B] or superoxides [Fig. 23; Panel 

C] was reduced [~27–60%] by NSC23766, thus suggesting novel regulation of CER-

mediated effects by a Tiam1/Rac1-dependent signaling mechanism [see below]. 

 

C2-CER, but not its inactive analogue, promotes mitochondrial dysfunction in INS 

832/13 cells in a Tiam1/Rac1 signaling pathway: 

Our laboratory has recently reported that exposure of isolated β-cells to C2-CER 

results in significant abnormalities in mitochondrial function including loss in membrane 

potential and leakage of cytochrome C into the cytosolic compartment [207].  Therefore, 

in the last set of experiments I verified if Tiam1/Rac1 signaling step might underlie the 

CER-induced mitochondrial dysfunction in INS 832/13 cells. To address this, 

mitochondrial membrane potential [MMP] was quantitated by the JC-1 staining method 

 



 72

in cells exposed to diluent or C2-CER in the absence or presence of NSC23766. To 

determine the specificity of CER effects, I have also utilized Dihydroceramide [DHC], an 

inactive analogue of CER, on MMP in INS 832/13 cells. Data in Fig. 24 indicated that 

exposure of these cells to C2-CER [lower left panel], but not DHC [middle left panel] 

significantly lowered the MMP as evidenced by staining of the majority of cells in green 

due to reduced MMP. Furthermore, NSC23766 prevented C2-CER-induced loss in 

membrane potential [as evidenced by a strong J-aggregation; red color] in these cells, 

further supporting the hypothesis that Tiam1/Rac1 signaling pathway contributes to 

CER-induced metabolic dysfunction in the pancreatic β-cells. 

 

 

Cytomix induces phagocyte-like NADPH oxidase activation in INS 832/13 cell: 

We quantitated NADPH oxidase activity in INS 832/13 cells exposed to Cytomix 

(i.e., IL-1β, IFN-, TNF-α; 10 ng/ml each). The amount of ROS generation and the 

degree of expression of NADPH subunits (p47phox and p67phox) were determined 

following a 12-h or 24-h incubation of these cells with Cytomix. Data in Fig. 25 showed a 

significant increase in ROS generation at these time points (~60 and 85% above the 

control at 12 h and 24 h, respectively). Compatible with these findings are data 

presented in Fig. 26; Panel A and B, indicating a significant increase in the expression 

of p47phox in these cells following exposure to Cytomix. However, no effect of Cytomix 

on the expression of p67phox was demonstrable under these conditions (Fig.  26; Panel 

C and D). 

 

To further assess whether the Cytomix-induced ROS are derived from NADPH 

oxidase, we quantitated Cytomix-induced ROS generation following inhibition of NADPH 
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oxidase via two independent approaches. In the first approach, we used apocynin, a 

selective inhibitor of NADPH oxidase. Data from these studies indicated a marked 

inhibition in Cytomix-induced ROS generation by apocynin. The values for Cytomix- 

mediated ROS generation represented 154.0 ± 3.9% and 167.8 ± 6.5% at 12 h and 24 

h, respectively. The corresponding values in the presence of apocynin reached basal 

levels (i.e., 98.1 ± 5.2% and 106.6 ± 9.1% at 12 and 24 h, respectively; n=3 experiments 

in each case; P < 0.05). In the second approach, endogenous expression of the p47phox 

was knocked down by transfecting cells with siRNA-p47phox. Under the current 

experimental conditions employed in the study (see MATERIALS AND METHODS), we 

were able to reduce p47phox expression by ~60–70% in siRNA-p47phox-transfected cells. 

Furthermore, the ability of Cytomix to induce ROS generation (following 12 h of 

incubation) was completely abolished in siRNAp47phox-transfected cells (i.e., 102.0 ± 

5.5% of control; n=3 experiments), suggesting that NADPH oxidase might be the 

principal contributor in Cytomix-induced generation of ROS. 

 

Cytomix transiently increases Rac1 activation in INS 832/13 cells: potential 

requirement for Tiam1 as a guanine nucleotide exchange factor for Rac1: 

As stated above, Rac1, a small G protein, is one of the components of the 

NADPH oxidase holoenzyme assembly. Therefore, we next examined whether Cytomix-

induced activation of NADPH oxidase is mediated via activation of Rac1. This was 

accomplished by quantitating the GTP-bound Rac1 (active configuration) by a pull-down 

assay (see MATERIALS AND METHODS for additional details). Data depicted in Fig. 

27; Panel A and B suggested a significant (~1.7-fold), but transient, activation of Rac1 

(within 15 min) in INS 832/13 cells following exposure to Cytomix. Rac1.GTP levels 
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reached basal levels at 30 min of exposure. These data implicate Rac1 activation as 

one of the signaling steps involved in Cytomix mediated effects on isolated β-cells.  

 

Recently, we reported the expression and functional activation of GEFs for small 

G proteins in pancreatic β-cells [204]. The primary function of these proteins is to 

facilitate GTP/GDP exchange. Our findings in INS 832/13 cells and primary rat islets 

have indicated that Tiam1 serves as a GEF for Rac1 [204]. In the current study, we 

investigated whether Tiam1 is required for Cytomix-induced activation of Rac1 in INS 

832/13 cells. This was accomplished using pharmacological inhibitor, NSC23766, which 

selectively inhibits Tiam1-mediated activation of Rac1, but not Cdc42 or Rho in insulin-

secreting β-cells [208]. Data in Fig. 27; Panel C suggested a significant reduction in 

Cytomix-induced activation of Rac1 by NSC23766 in INS 832/13 cells. These findings 

support the viewpoint that Tiam1 plays a key regulatory role in Rac1 activation elicited 

by Cytomix in insulin-secreting cells. 

 

It is well established that posttranslational geranylgeranylation is necessary for 

optimal activation of Rac1 in pancreatic β-cells (see Ref 84, for a review). Therefore, we 

examined whether geranylgeranylation of Rac1 is necessary for Cytomix-induced 

activation of Rac1. This was accomplished via a pharmacological approach, which 

involved quantitation of Cytomix-induced activation of Rac1 in cells exposed to diluent 

or in the presence of GGTI-2147, a known inhibitor Rac1 geranylgeranylation [84, 85]. 

Data in Fig. 27; Panel D, showed a marked reduction in Cytomix-induced Rac1 

activation in cells exposed to GGTI-2147. Together, data depicted in Fig. 27 suggested 
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that Cytomix induces Rac1 activation in INS 832/13 cells, which is sensitive to inhibition 

of Tiam1 activation and posttranslational geranylgeranylation.  

 

NSC23766 and GGTI-2147 markedly reduce Cytomix-induced ROS generation in 

INS 832/13 cells: 

As a logical extension to the above studies, we asked whether inhibitors of Rac1 

attenuate Cytomix-induced ROS generation. Data shown in Fig. 28 indicate a marked 

reduction in Cytomix-induced ROS generation at both 12- and 24-h time points by 

NSC23766 and GGTI-2147. It is noteworthy that GGTI-2147, but not NSC23766, also 

reduced the ROS generated under basal conditions (Fig. 28). Taken together, our 

findings establish a direct role for Tiam1-dependent, prenylation-sensitive 

Rac1activation in the signaling cascade leading to Cytomix-induced NADPH oxidase 

and ROS generation in INS 832/13 cells.  

 

Inhibitors of Rac1 activation reduce Cytomix-induced mitochondrial defects in 

INS 832/13 cells: 

It is widely felt that cytokine-mediated effects on pancreatic β-cells may, in part, 

be mediated via alterations in mitochondrial membrane properties, including loss of 

MMP leading to cytochrome-c release and caspase-3 activation [171, 207, 217]. 

Therefore, we examined whether inhibitors of Rac1 activation exert protective effects on 

Cytomix-induced loss in MMP. This was accomplished using JC-1 (5, 5`, 6, 6`-

tetrachloro-1, 1`, 3, 3`-tetraethylbenzimidazolyl-carbocyanineiodide) assay. JC-1 is a 

lipophilic dye, which fluoresces red when aggregated above the critical concentration 

within mitochondria. In cells in which mitochondrial membrane is damaged, JC-1 
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remains in the cytoplasm, as a green fluorescence monomer. Data from these studies, 

which are depicted in Fig. 29, suggested a significant loss of MMP in INS 832/13 cells 

treated with Cytomix following a 12- or 24-h exposure. Coprovision of NSC23766, a 

Tiam1 inhibitor, and GGTI-2147, a prenylation inhibitor, modestly, but significantly 

protected these cells against Cytomix-induced damage to the mitochondrial potential 

(Fig. 29). Quantitation of fluorescence intensity ratios of red to green further confirmed 

these conclusions (Fig. 30). Further, these data also suggested that the protective 

effects were more prominent in the case of NSC23766 compared with GGTI-2147 (Figs. 

29 and 30). It should be mentioned that NSC23766 exerted inhibitory effects on MMP in 

control (i.e., diluent-treated cells). Regardless of this inhibitory effect, it markedly 

prevented Cytomix-induced loss in MMP at both time points. Together, these data 

indicate that Rac1 activation might be requisite for Cytomix-induced mitochondrial 

defects in pancreatic β-cells. 

 

 

Tiam1/Rac1 signaling axis is not necessary for Cytomix-induced caspase 3 

activation in INS 832/13 cells: 

The observed protective effects of NSC23766 against Cytomix-induced loss in 

MMP (Figs. 29 and 30) prompted us to investigate whether caspase 3 activation, which 

is a hallmark of cellular apoptosis, is inhibited by Tiam1-mediated activation of Rac1. To 

accomplish this, INS 832/13 cells were treated with Cytomix (as above) or IL-1β alone 

(25 ng/ml) for 12 or 24 h. Activated caspase-3 in the lysates was determined by 

Western blot analysis using an antiserum that identifies both the native procaspase and 

degradative product of caspase-3. Under these conditions we noticed no significant 

effects of NSC23766 on either Cytomix-induced or IL-1β-mediated caspase-3 activation 
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at either time points. Cytomix-induced caspase-3 activation represented 1.55 ± 0.11 

units and 1.83 ± 0.24 units at 12 and 24 h, respectively. The corresponding values in 

the presence of NSC23766 were 1.40 ± 0.14 units and 2.06 ±0.32 units, respectively 

(n=3 determinations in each case, not significantly different from each other). Likewise, 

IL-1β-induced caspase-3 activation represented 1.27 ± 0.10 units and 1.65 ± 0.23 units 

at 12 and 24 h, respectively. The corresponding values in the presence of NSC23766 

were 1.23 ± 0.09 units and 1.71 ± 0.22 units, respectively (n=3 determinations in each 

case, not significantly different from each other). Together, these data indicate that 

additional mechanisms might underlie caspase-3 activation in these cells elicited by 

cytokines.  

 

Evidence to further suggest that the Tiam1/Rac1 signaling step may not be 

required for cytokine-induced NO release from INS 832/13 cells: 

It is well established that cytokine-mediated effects on isolated β-cells are 

mediated via inducible nitric oxide synthase (iNOS) expression and associated NO 

release. It has also been suggested that NO exerts damaging effects on mitochondria 

leading to caspase-3 activation. Therefore, in the last set of studies, we investigated 

whether Tiam1/Rac1 activation is necessary for cytokine-induced NO release in INS 

832/13 cells. Data in Fig. 31 demonstrated no significant effect of NSC23766 on either 

IL-1β or Cytomix-induced NO release in INS 832/13 cells either at 12 or 24 h. Together, 

the above data suggest that Tiam1/Rac1 signaling step is not involved in cytokine-

induced NO release and caspase-3 activation and that additional regulatory steps might 

be necessary for these to occur. 
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Figure 17: 
 
 
 
 
 

 
 
 

PA induces generation of lipid peroxides and superoxides in INS 832/13 cells: 

protection by DPI. INS 832/13 cells were incubated [6 h] with either diluent or PA [100 

μM] and/or DPI [5 μM] as indicated in the figure. Lipid hydroperoxide levels were 

measured as MDA equivalents [Panel A] and superoxide levels [Panel B] were 

quantitated as formazan equivalents. Data are mean ± SEM from three independent 

determinations. Values were considered significant at p < 0.05. *Significant effect of PA 

to diluent. δ Significance between DPI and DPI + PA. **Significance between PA and 

DPI + PA.  
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Figure 18: 
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PA, but not oleate, induces Rac1 activation and Nox activation in β-cells. Normal 

rat islets and INS 832/13 cells were treated with diluent or PA [100 μM; Panel A]. The 

relative amounts of activated Rac1 [i.e., Rac1-GTP] were determined from these lysates 

by PAK-PBD pull down assay. Data are representative of two independent experiments. 

Panel B: lysates derived from INS 832/13 cells treated in the absence or presence of 

PA [100 μM] were separated by SDS-PAGE, and probed for p47phox and actin 

expressions. A representative blot from two independent experiments is shown here. 

Panel C: lysates derived from INS 832/13 cells treated in the absence or presence of 

PA or oleate [100 μM each] were processed for Nox activity and were quantitated by the 

DCHFDA assay and are expressed as DCF fluorescence units. Data are mean ± SEM 

from two individual measurements for DCF fluorescence. *,**p < 0.05 vs. diluent. Panel 

D: INS 832/13 cells were treated with diluent and/or oleate [100 μM] or PA [100 μM] and 

the relative amounts of activated Rac1 were determined by PAK-PBD pull down assay. 

Data presented in here are densitometric analysis of the blots and are mean ± SEM 

from four independent experiments. *p < 0.05 vs. diluent. 
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Figure 19: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 83

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NSC23766, a specific inhibitor of Tiam1-mediated activation of Rac1, markedly 

attenuates PA-induced Rac1 activation in INS 832/13 cells. INS 832/13 cells were 

incubated overnight with either diluent or NSC23766 [20 μM]. The cells were further 

incubated [3 h] in the presence of either low glucose [5 mM] or PA [100 μM] in the 

continuous presence of NSC23766 or diluent. The degree of Rac1 activation was 

determined by PAK-PBD pull down assay. Panel A: Data are representative of two 

independent experiments. Levels of lipid hydroperoxides [Panel B] or ROS [Panel C] 

generated in PA or diluent-treated INS 832/13 cells in the absence or presence of 
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NSC23766 were measured as MDA equivalents or formazan equivalents, respectively. 

Data are mean ± SEM from three determinations. Values were considered significant at 

p < 0.05. *Significant effect of PA to diluent. δ Significance between NSC and NSC + 

PA. **Significance between PA and NSC + PA. 

 
 
 
 
Figure 20: 
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Fumonisin B-1, an inhibitor of de novo biosynthesis of CER from PA, markedly 

reduces PA-induced generation of lipid peroxides and superoxides in INS 832/13 cells. 

INS 832/13 cells were pre-treated in the presence or absence of FB-1 [10 μM] prior to 

the addition of PA [100 μM] and lysates derived from these cells were assessed for 

generation of superoxides and lipid peroxides. Superoxide generation was quantitated 

by NBT method and expressed as formazan equivalents [Panel A]. Lipid peroxide levels 

were quantitated by the MDA assay, and expressed as nmoles of MDA formed/100 μg 

protein [Panel B]. Data are mean ± SEM from three determinations. Values were 

considered significant at p < 0.05. *Significant effect of PA to diluent. δ Significance 

between FB1 and FB1 + PA. **Significance between PA and FB1 + PA. Furthermore, 

cells were pretreated in the presence or absence of FB1 [10 μM] prior to the addition of 

PA at different concentrations [0–200 μM]. Lysates derived were processed for Nox 

activity and were quantitated by the DCHFDA assay [Panel C] and are expressed as 

DCF fluorescence. Data are mean ± SEM from three determinations. Graph with 

different symbols is statistically significant at p < 0.001. * PA-induced ROS vs. diluent. δ 

PA + FB1 induced ROS vs. FB1. 
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Figure 21: 
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C2-CER promotes generation of lipid peroxides and ROS in INS 832/13 cells by 

activating endogenous NADPH oxidase activity. INS 832/13 cells were treated with 

either diluent or C2-CER [30 μM] and/or DPI [5 μM] in various combinations as 

indicated in the figure. The degree of ROS generation was quantitated by the NBT 

method and is expressed as formazan equivalents [Panel A]. The amount of lipid 

hydroperoxide generation was quantitated by the MDA assay and is expressed as MDA 

equivalents [Panel B]. Data are mean ± SEM from three determinations in each case. 

Values were considered significant at p < 0.05. *Significant effect of C2-CER vs. diluent. 

δ Significance between DPI and DPI + C2-CER. **Significance between C2-CER and 

DPI + C2-CER. 
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Figure 22:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C2-CER increases the expression of p47phox and Nox activity in INS 832/13 cells. 

INS 832/13 cells were treated with either diluent or C2-CER [30 μM] and examined for 

relative increases in p47phox expression and NADPH oxidase activity. Panel A: lysate 

proteins derived from diluent or C2-CER-treated cells were separated by SDS-page and 

probed for p47phox and actin expression. A representative blot from two independent 

experiments is shown here. Panel B: Nox activity in diluent or C2-CER-treated cells was 

quantitated by the DCHFDA fluorescence assay and is expressed as DCF fluorescence. 

Data are mean ± SEM from two independent determinations. *p < 0.05 vs. diluent.
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Figure 23: 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 91

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NSC23766 inhibits C2-CER-induced Rac1 activation and generation of lipid 

peroxides and superoxides in pancreatic β-cells. INS 832/13 cells and rat islet were 

treated with either diluent or NSC23766 [20 μM] and cultured overnight in low 

glucose/low serum media. Cells were further incubated in the presence of C2-CER [30 

μM] for 30 min in INS 832/13 cells and 3 h in Islets in the continuous presence of 

NSC23766 or diluent. The relative amounts of activated Rac1 [i.e., Rac1-GTP] were 

determined by PAK-PBD pull down assay. Data are representative of two independent 
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experiments [Panel A]. Panel B: INS 832/13 cells were incubated [6 h] with either 

diluent or with C2-CER [30 μM] or NSC23766 [20 μM; alone or in combination]. Lipid 

hydroperoxides were measured as MDA equivalents and plotted as increase over basal. 

Panel C: INS 832/13 cells were incubated [6 h] with either diluent or with C2-CER [30 

μM] or NSC23766 [20 μM; alone or in combination as indicated in the figure]. 

Superoxide generation was measured as formazan equivalents and plotted as increase 

over basal. Data in the insets represent incremental response to C2-CER in the 

absence or presence of NSC23766. Data are mean ± SEM from three determinations in 

each case. Values were considered significant at p < 0.05. *Significant effect of C2-CER 

vs. diluent. δ Significance between NSC and NSC + C2-CER. ** Significance between 

C2-CER and NSC + C2-CER. 
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Figure 24: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NSC23766 inhibits C2-CER-induced mitochondrial dysfunction in pancreatic β-

cells: INS 832/13 cells were treated with either diluent or NSC23766 [20 μM] and 

cultured overnight in low glucose and low serum media. Cells were further incubated in 

the presence of C2-CER [30 μM] and/or DHC [30 μM] for 6 h in the continuous 

presence of NSC23766 or diluent. Mitochondrial dysfunction was determined by JC-1 

assay. Data are representative of two independent experiments. 
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Figure 25: 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Incubation of INS 832/13 cells with Cytomix leads to a time-dependent increase 

in reactive oxygen species (ROS). INS 832/13 cells were incubated with either diluent or 

Cytomix for 12 or 24 h, as indicated in the figure, and ROS generation was measured 

using 2′, 7′-dichlorofluorescein diacetate (DCFHDA) assay. Intracellular levels of ROS in 

treated cells were expressed as a percent of control cells. Data are means ± SE from 

four independent experiments. * Significantly different (P < 0.05) from control. 

 

 

http://ajpregu.physiology.org/content/300/1/R12/F1.large.jpg�
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Figure 26: 
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Panel A: INS 832/13 cells were exposed to Cytomix for 12 or 24 h as indicated. 

Relative degree of expression of p47phox was determined by Western blot analysis. 

p47phox expression was normalized to actin content in individual lanes. Pooled data from 

three independent experiments are provided in Panel B. * significantly different (p < 

0.05) from control. Panel C: INS 832/13 cells were exposed to Cytomix for 12 or 24 h as 

indicated in the figure. Relative degree of expression of p67phox was measured by 

Western blot analysis. p67phox expression was normalized to actin content in individual 

lanes. Pooled data from three independent experiments are provided in Panel D.  
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Figure 27: 
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Cytomix induces transient activation of Rac1 in INS 832/13 cells: inhibition of this 

signaling step by NSC23766 and GGTI-2147. Panel A: Cytomix causes transient 

activation of small G-protein Rac1 in INS 832/13 cells, as determined by the pull-down 

assay followed by Western blot analysis (see materials and methods). Total Rac1 in the 

lysates is also provided as a loading control. A representative blot of three independent 

experiments is shown here. Panel B: pooled activation data from three independent 

experiments are shown here. Panel C: NSC23766 inhibition of Cytomix-induced 

activation of Rac1. Pooled data from three independent studies are depicted in the 

figure. Panel D: GGTI-2147 inhibits Cytomix-induced Rac1 activation in INS 832/13 

cells. Pooled data from three independent studies are depicted in the figure. 

*Significantly different (P < 0.05) from control. *, **Different symbols represent the 

values that are significantly different at P < 0.05.  
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Figure 28: 
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Cytomix-induced ROS generation is inhibited by NSC23766 and GGTI-2147 in 

INS 832/13 cells. INS 832/13 cells were treated with either diluent or Cytomix in the 

presence and absence of NSC23766 (20 µM) or GGTI-2147 (10 µM) for 12 h (Panel A) 

and 24 h (Panel B), as indicated in the figure and intracellular levels of ROS was 

measured using DCHF-DA assay. Data are representative of three independent 

experiments, expressed as a percentage of control cells and represent means ± SE. 

Bars with different symbols (*, **, ***) are significantly different at p < 0.05.  
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Figure 29: 
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Cytomix-induced loss in mitochondrial membrane potential is partially prevented 

by NSC23766 and GGTI-2147. INS 832/13 cells were treated with either diluent alone 

or Cytomix for 12 (Panel A and C) and 24 h (Panel B and D) in the presence and 

absence of NSC23766 (20 µM) or GGTI-2147 (10 µM), as indicated in the figure. The 

mitochondrial membrane potential was measured with JC-1 assay kit. Data are 

representative of three independent experiments with comparable results.  
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Figure 30: 
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Cytomix-induced loss in mitochondrial membrane potential is partially prevented 

by NSC23766 and GGTI-2147. Cytomix induced changes in mitochondrial membrane 

potential was measured with JC-1 assay kit, as described in Fig. 29 and red: green 

fluorescence ratio was calculated by sampling (n = 10 data points per image) for three 

independent experiments with comparable results. *, **Bars with different symbols are 

significantly different p < 0.05. Panel A: data from cells treated with NSC23766 (20 µM). 

Panel B: data from cells treated with GGTI-2147 (10 µM).  
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Figure 31:  
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NSC23766 fails to inhibit Cytomix-induced NO release in INS 832/13 cells. INS 

832/13 cells were treated with diluent, Cytomix (Panel A) or IL-1β (Panel B) for 12 or 24 

h. NO released into the medium was measured using Griess assay. Data are expressed 

as means ± SE from three independent experiments. *, **Bars with different symbols 

represent the values that are significantly different.  
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Table 2: 

 
 
  

  
Time (hr) 

 
Treatment 

 
0  

 
3  

 
6  

 
12  

 
24  

 
PA 

 
100 ± 3.11 

 

157 ± 5.73 

 

 

145 ± 2.99 

 

 

72 ± 1.41 
†

 

 

62 ± 5.06 
†

 

 
PA + FB1 

 
109 ± 2.27 

 

156 ± 3.70 

 

 
113 ± 1.84 

 

65 ± 4.64 
†

 

 

60 ± 9.02 
†
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DISCUSSION 

 

Existing evidence from the literature suggest  that damaging effects of elevated 

glucose, palmitate and cytokines on isolated β-cells are, in part, due to their ability to 

increase ROS-derived oxidative stress and mitochondrial dysfunction [153, 178, 198]. 

The main objective of this specific aim was to study the contributory roles for Nox-

mediated ROS generation in the onset of mitochondrial dysfunction leading to demise of 

the islet β-cell, and that it requires activation of Tiam1/Rac1 signaling axis. Data 

accrued in my current studies suggested that: [i] exposure of isolated β-cells to 

palmitate and inflammatory cytokines leads to the generation of ROS, and this involves 

the intermediacy of Tiam1/Rac1 signaling axis; [ii] and that palmitate-induced effects are 

mediated through de novo synthesis of ceramide; [iii] inhibition of Tiam1/Rac1 signaling 

axis leads to restoration of mitochondrial membrane potential. Together, my findings 

provide the first evidence for Tiam1/Rac1 signaling cascade in palmitate- or cytokine-

induced oxidative stress and metabolic dysfunction in pancreatic β-cells. I have also 

demonstrated that inhibition of Tiam1/Rac1 signaling axis leads to restoration of 

palmitate- or cytokine-induced mitochondrial dysfunction to a large degree. 

 

As stated above, our current findings implicate the involvement of Tiam1 in PA- 

or C2-CER-induced activation of Rac1. In the context of potential regulation of Rac1, 

multiple GEFs have been identified in other cell types. These constitute the diffuse B 

cell lymphoma [Dbl] family of GEFs, including Trio and Tiam1. Recently, Zheng and co-

workers have developed NSC23766, which is a soluble first generation small molecule 

inhibitor of Tiam1-mediated activation of Rac1 [208]. These investigators have reported 
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significant inhibition of Rac1-GTP-loading by NSC23766 without significantly affecting 

the GTP-loading onto other small G-proteins including Cdc42 and Rho A. Under these 

conditions, NSC23766 also attenuated cell proliferation induced by Tiam1, which is a 

Rac1-specific GEF. Based on these data, they concluded that NSC23766 represents a 

specific inhibitor of Tiam1-mediated activation of Rac1. Several other laboratories have 

utilized NSC23766 since then to decipher the potential contributory roles for 

Tiam1/Rac1 signaling pathway in cellular functions [120, 204 and references therein]. 

Recently, we have confirmed the selectivity of NSC23766-mediated inhibition of Rac1 

activation in insulin-secreting cells [204]. In the present study, I have demonstrated that 

NSC23766 not only attenuated PA or C2-CER induced Rac1 activation, but also 

markedly reduced PA or C2-CER induced generation of superoxides and lipid 

peroxides, implicating novel regulatory roles for Tiam1/Rac1 signaling pathway in the 

activation of phagocytic-like Nox in β-cells. Using molecular biological approaches Yi et 

al. [209] have recently demonstrated roles of Vav2, another GEF for Rac1, in 

homocysteine-induced Rac1/Nox activation in mesangial cells. 

 

Several recent studies have demonstrated regulatory roles of Rac1 in high 

glucose-induced metabolic dysregulation and cell death. For example, Shen et al. [120] 

have recently reported a significant increase in cardiomyocyte apoptosis under 

hyperglycemic conditions. Using cultured myocytes, these investigators demonstrated a 

significant upregulation of Rac1 and Nox activity which was attenuated in cells 

overexpressing a dominant negative mutant of Rac1. Moreover, treatment of diabetic 

animals with NSC23766 significantly reduced Nox activity and cell demise followed by 

restoration of myocardial function [120]. These findings further support the involvement 
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of Tiam1/Rac1 signaling pathway in hyperglycemia-induced metabolic dysfunction and 

demise of myocytes. It may be germane to point out that unpublished observations from 

our laboratory have suggested similar regulatory roles of Rac1 in high glucose-induced 

activation of Nox activation and the associated increase in oxidative stress in INS832/13 

cells and normal rat islets [Syed and Kowluru, unpublished].  

 

Along these lines, studies by Cacicedo et al. in cultured retinal pericytes have 

demonstrated a role for NOX in PA-induced apoptosis [119]. A significant increase in 

Nox activity, oxidative stress and caspase-3 activity was demonstrable in cells exposed 

to PA. Overexpression of dominant negative mutants of p67phox and Rac1 [N17Rac1] 

markedly inhibited the increase in caspase-3 activation. Furthermore, overexpression of 

an active mutant of Rac1 [V12Rac1] increased caspase-3 activity suggesting that 

constitutive activation of Rac1 results in Nox activation culminating in the generation of 

oxidative stress and metabolic dysfunction in these cells. 

 

In the first set of studies, using FB-1, a specific inhibitor of de novo synthesis of 

CER from PA, I have demonstrated that PA-induced effects may, in part, be due to 

intracellularly generated CER. Data accrued in studies using C2-CER further support 

this postulation. Published evidence along these lines suggests that CER-mediated 

effects are indeed mediated via activation of Rac1 in many cell types. For example, 

using C2-CER, Kim and Kim have reported activation of c-fos serum response element 

via the Rac1 signaling pathway in Rat-2 fibroblasts [210]. Interestingly, using NIH 3T3 

cells, Embade et al. have demonstrated novel relationships between FasL generation 

and CER production in Rac1-induced apoptosis [211]. In another study, Deshpande et 
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al. [212] have demonstrated intermediacy of intracellularly generated CER in Rac1-

induced mitochondrial oxidative stress and premature senescence in human umbellical 

vein endothelial cells. Together, these data appear to implicate CER/Rac1 signaling 

pathways in oxidative stress and metabolic dysfunction in multiple cells types. 

Therefore, based on these and other supporting evidence presented in this study, I 

believe that PA effects on lipid peroxides, superoxides and Nox activity are specific and 

that they require the intermediacy of Tiam1/Rac1 signaling pathway. It should be noted 

that I also observed modest effects of oleate on Nox activity without significantly 

affecting the Rac1 activation [Fig. 18] suggesting a clear distinction between the modes 

of action of these two fatty acids. 

 

In second set of studies, we observed similar Tiam1/Rac1-mediated activation of 

Nox holoenzyme in cytokine-induced oxidative stress in pancreatic β-cells. However, it 

should be taken into account that, transient activation of Rac1 under cytokine stimulus 

is adequate to initiate Nox signaling. It appears that Rac1 activation during Cytomix 

treatment might be primarily due IL-1β present in the Cytomix, as we observed a 

significant Rac1 activation (2 ± 0.4 fold stimulation) in INS 832/13 cells when exposed to 

IL-1β (25 ng/mL) alone, whereas, no significant effects were observed with either TNF-α 

or INF-. And also, our findings suggests that prenylation of Rac1 is necessary for such 

mediatory effects, and incubation of INS 832/13 cells with geranylgeranylation inhibitor, 

GGTI-2147, markedly subdued Cytokines-mediated Rac1 and Nox activation. In this 

context, using molecular biological (e.g., dominant-negative Rac1 mutant or siRNA-

Rac1) and pharmacological (e.g., GGTI-2147 and 3-allyl or vinyl geranyl geraniols) 

probes, our laboratory have shown that geranylgeranylation of Rac1 is necessary for its 
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optimal activation and membrane association in clonal β-cells and normal rats islets 

[85]. Furthermore, it should be considered that, small G-protein Rap1 is an integral part 

of the membrane component of Nox, and the inhibitory effects of GGTI-2147 on 

cytokine-induced Nox might be in part due to inhibition of geranylgeranylation of Rap1 

too. However, our findings accrued from NSC23766 studies directly support the 

involvement for Taim1/Rac1 in this signaling cascade, since Tiam1 serves as a GEF for 

Rac1, but not other small G proteins. Taken together, on the basis of the current data 

amassed from NSC23766 and GGTI-2147 studies, we put forth that Tiam1-mediated 

and geranylgeranylation-sensitive Rac1 activation is necessary for cytokine-mediated 

effects of Nox and generation of oxidative stress in the islet β-cell.  

 

In general, it is important to note that numerous recent studies have implicated 

physiological roles for a tonic increase in Nox activation and subsequent ROS 

generation in the stimulus-secretion coupling of GSIS [113]. Moreover, Newsholme et al 

demonstrated an increase in insulin secretion by fatty acids under acute conditions 

[200]. Therefore, one might ask if increase in Tiam1/Rac1 activation and Nox activation 

could contribute towards the physiological insulin secretion rather than inducing 

metabolic abnormalities in the isolated β-cell.  Even though it appears likely, under 

definite experimental conditions, chronic activation of Nox by specific stimuli [e.g., high 

levels of glucose, fatty acids, CER or cytokines] leads to metabolic dysfunction and 

demise of the β-cell. For example, recent observations [207] from our laboratory have 

suggested significant abnormalities in mitochondrial function [i.e., loss in MMP] in cells 

exposed to C2-CER under acute conditions. In addition, it should be noted that our 

current observations [Figs. 24 and 29] indicate mitochondrial dysfunction in presence of 
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C2-CER and cytokines, and that NSC23766 and GGTI-2147 prevented it to a large 

degree, implicating the Tiam1-Rac1-Nox signaling in the onset of metabolic dysfunction. 

Therefore, we speculate that early biochemical and cellular changes that we reported 

herein might be paving way to metabolic dysfunction and demise of the islet β-cell.  

 

However, NSC23766 affords a better protection in cytokines-induced 

mitochondrial dysfunction compared to GGTI-2147. Therefore, it appears that additional 

signaling mechanisms might be controlling mitochondrial membrane potential, which are 

distinct from Nox-derived ROS. Attuned with these observations are our findings that 

demonstrated relative lack of effects of NSC23766 on caspase 3 activation. As in the 

context of Rac1 activation mentioned above, such steps may be related to direct 

metabolic effects of IL-1β, but not TNF-α or IFN-γ (also present in the Cytomix), since 

IL-1β-mediated caspase 3 activation and NO release were not affected by Tiam1 

inhibition. It may be germane to point out that recent studies by Moore et al. [199] have 

provided compelling evidence to argue against potential involvement of oxidative stress 

in fatty acid-induced metabolic dysfunction of the islet β-cell. It is, therefore, likely that 

additional regulatory mechanisms might underlie β-cell demise seen under the duress of 

lipotoxic conditions including those involving progressive alterations in the mitochondrial 

membrane permeability transition pore as suggested by recent studies of Koshkin et al. 

[213] in MIN6 and INS-1 cells. 

 

In summary, we present the first evidence for a novel role of Tiam1/Rac1 

signaling pathway in PA-induced, CER-sensitive and cytokine-mediated metabolic 

activation of Nox and associated production of superoxides and lipid peroxides in 
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pancreatic β-cells. It is likely that Tiam1 could serve as a novel drug target for inhibition 

of generation of superoxides and lipid peroxides in isolated β-cells under such duress. 

Based on these data we propose a working model [Fig. 39] to suggest that PA/CER and 

cytokines increase the Rac1 activation [GTP-bound active form] to generate signals that 

may be necessary for triggering cellular events leading to Nox activation, increased 

oxidative milieu, mitochondrial dysregulation in the pancreatic β-cell. It should be noted 

that while the proposed model principally addressed the roles of Tiam1–Rac1–Nox 

connection in PA/CER-mediated and cytokine-mediated effects, relative contributory 

roles of other sources of reactive oxygen species, including the glutathione peroxidase, 

manganese-sensitive superoxide dismutase, catalase signaling cascades must also be 

recognized as key contributors to the mitochondrial dysfunction in isolated β-cells under 

the duress of lipotoxic conditions [158, 196, 197, 216]. However, additional studies are 

needed to further understand these signaling steps in the islet β-cell. 
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Chapter III 

 

Introduction 

Glucose-stimulated insulin secretion [GSIS] involves a cascade of metabolic and 

cationic events leading to translocation of insulin-containing secretory granules toward 

the plasma membrane for fusion and release of insulin into circulation. It is well 

established that granule transport and fusion involves interplay between vesicle-

associated membrane proteins on the insulin granules and docking proteins on the 

plasma membrane [44, 45, 49].  In addition, a significant cross-talk among multiple 

small G-proteins including Arf6, Cdc42 and Rac1 has been shown to be critical for GSIS 

[84, 100, 218]. Several effector proteins for these G-proteins have been identified in the 

islet β-cell, including phospholipases, Pak-1 and ERK1/2 kinases [68, 74, 84]. Recent 

evidence also implicates regulatory roles for G-proteins [e.g., Rac1] in the activation of 

phagocyte-like NADPH oxidase [Nox] and generation of reactive oxygen species [ROS] 

leading to GSIS [219].  

 

Excessive ROS generation is considered central to the development of diabetes 

and its associated complications. Under normal physiological conditions, generation of 

free radicals is relatively low, however increased levels of circulating glucose promote 

intracellular accumulation of superoxides leading to metabolic dysfunction. Although, 

mitochondria remain the primary source for free radicals, emerging evidence implicates 

Nox as one of the major sources of extra-mitochondrial ROS.  Nox is a highly regulated 

membrane-associated protein complex that promotes one electron reduction of oxygen 

to superoxide anion involving oxidation of cytosolic NADPH. The Nox holoenzyme is 
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comprised of membrane and cytosolic components [Figure 2]. The membrane-

associated catalytic core consists of gp91phox and p22phox and the cytosolic 

regulatory core includes p47phox, p67phox, p40phox and Rac1 [or Rac2]. Following 

stimulation, the cytosolic core translocates to the membrane for association with the 

catalytic core for functional activation of Nox. Immunological localization and functional 

regulation of Nox have been described in clonal β-cells, rat and human islets [13, 14, 

110, 112].  

 

Findings from multiple laboratories suggest that ROS-derived from Nox play 

regulatory “second-messenger” roles in GSIS, a concept overviewed recently by Pi and 

Collins [7]. Along these lines, recent studies have highlighted roles for Nox in 

physiological insulin secretion. For example, Diphenylene iodonium [DPI], a selective 

inhibitor of Nox, inhibited glucose-induced Nox activity and GSIS [112]. These 

observations were further confirmed by Morgan and associates [14] suggesting that DPI 

or p47phox antisense-induced inhibition of Nox attenuated GSIS under static or perifusion 

conditions. Graciano and coworkers [110] demonstrated regulatory roles for Nox in 

palmitate-induced superoxide generation and insulin secretion in rat islets. Furthermore, 

my recent findings suggested that prenylation and activation of Rac1 are critical for 

glucose- and mitochondrial fuel-induced Nox-dependent ROS generation in INS 832/13 

cells and rodent islets [219]. Together, the above observations support the overall 

hypothesis that Nox-mediated, Rac1-sensitive ROS generation is requisite for insulin 

secretion.  
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In addition to the above described “friendly” roles for ROS in islet function, recent 

evidence also suggests paradoxical “non-friendly” roles for ROS in the induction of 

oxidative stress and metabolic dysregulation of the islet β-cell under the duress of 

glucolipotoxicity, cytokines, and ceramide [117]. The generation of ROS seen under 

these experimental conditions appear to be largely due to the activation of Nox, since 

inhibition of Nox [e.g., DPI, apocynin or siRNA-p47phox] or Rac1 activation [e.g., GGTI-

2147, NSC23766] markedly attenuated deleterious effects of these stimuli [179, 180].  

Despite these in vitro evidence, potential roles of Nox in islet dysfunction in animal 

models of type 2 diabetes remains unexplored. Therefore, I undertook the current study 

to systematically examine the functional status of Nox in islets from Zucker Diabetic 

Fatty [ZDF] rat, which develops obesity, hyperinsulinemia, hyperglycemia and a decline 

in β-cell function. Further, the ZDF rat is an excellent in vivo model for glucolipotoxicity-

mediated metabolic dysfunction of the islets. Herein, I present evidence to suggest 

significant alterations in the Nox function in the diabetic islet, which promote ROS 

generation and mitochondrial dysregulation. Furthermore, these findings suggest similar 

metabolic defects in islets from a human donor with type 2 diabetes. I also present 

evidence to implicate roles for glucolipotoxicity in the induction of Nox-mediated cellular 

and metabolic defects in ZDF islets. 

 
These findings have been submitted for peer review in Diabetes 2011. 
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MATERIALS AND METHODS 

Materials 

2`, 7`-dichlorofluorescein diacetate [DCHFDA] was from Sigma [St. Louis, MO]. 

Antisera for p47phox and phospho-p47phox were from Santa Cruz Biotechnology [Santa 

Cruz, CA] and Abcam [Cambridge, MA], respectively.  gp91phox and Rac1 antisera were 

from BD Bioscience [Rockville, MD]. Antisera for Caspase-3, JNK1/2 and ERK1/2 were 

from Cell Signaling Technology [Boston, MA]. GLISA Rac1 activation kit was from 

Cytoskeleton [Denver, CO]. Horseradish peroxidase conjugates and ECL kits were from 

Amersham Biosciences [Piscataway, NJ]. 

 

Pancreatic islets and INS 832/13 β-cells 

Male [9-11 wks] ZDF and ZLC rats were from Charles River laboratories 

[Wilmington, MA] and maintained in a 12-h light/dark cycle with free access to water and 

food [Purina Diet no. 5008; Charles River Laboratories]. All animal protocols were 

reviewed and approved by the Wayne State University Institutional Animal Care and 

Use Committee. Hyperglycemia in diabetic rats was confirmed prior to sacrifice by tail 

vein puncture using Glucometer Elite from Bayer [Leverkusen, Germany]. Body weights 

of ZLC and ZDF rats were 300 ± 6 g and 396 ± 12 g respectively [n=11; p <0.05]. Islets 

were isolated by collagenase digestion method [220].  INS 832/13 cells [provided by Dr. 

Chris Newgard] were cultured and processed using protocols described in [180].  

 

Human islets from normal and diabetic donors were obtained from Prodo 

Laboratories, Inc. [Irvine, CA]. Control islets [from a 54 year old male donor; 85-90% 

purity] and diabetic islets [from a 45 year old male donor; ~60% purity] were 
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homogenized with Tris-HCl buffer [50 mM, pH 7.4] containing sucrose [250 mM], EDTA 

[1 mM], DTT [1 mM], and protease inhibitor cocktail. Lysate proteins were resolved on 

12% SDS-PAGE, and used for Western blot analysis.   

 

Quantitation of ROS  

ZLC, ZDF or human islets were incubated with DCHFDA (10 µM) at 37°C for 30 

min in RPMI-1640 media without serum and glucose [219]. Following incubation, islets 

were washed with ice-cold phosphate-buffered saline and sonicated. Equal amounts of 

protein were utilized for fluorescence measurements [λem 485 nm and λex 535 nm] using 

PerkinElmer luminescence spectrophotometer. 

 

Rac1 activation assay 

Activated Rac1 was quantitated using a GLISA activation assay kit according to 

the manufacturer's instructions. Briefly, lysates were clarified by centrifugation at 14,000 

rpm for 2 min. Equal amounts of islet lysate protein were incubated in the Rac1-GTP 

affinity plate for 30 min at 4 ˚C. The wells were washed twice with washing buffer and 

then incubated with antigen presenting buffer provided with the kit. The contents in 

Rac1-GTP affinity labeled plate were then successively incubated with anti-Rac1 

primary antibody and secondary antibody for 45 min followed by additional incubation 

with HRP-detection reagent for 20 min. The reaction was terminated by adding HRP-

stop buffer and the absorbance was measured at 490 nm using a microplate reader.  
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Other assays and statistical analysis of data 

Western blot protein bands were visualized using a Kodak Imaging System and 

analyzed densitometrically using UN-SCAN-IT software [Orem, Utah]. Statistical 

significance of differences between control and experimental groups was determined by 

Student’s t-test and ANOVA analysis. P < 0.05 was considered significant. 
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RESULTS 

 

ROS levels, expression and phosphorylation of p47phox are significantly increased 

in ZDF islets 

The ZDF rats presented a four-fold increase in blood glucose levels compared to 

their age-matched ZLC rats [323 ±15 mg/dL vs. 85 ±1 mg/dL]. Quantitation of ROS by 

the DCHFDA fluorescence method, showed a significant increase [>60%] in superoxide 

generation in ZDF rat islets compared to the ZLC islets [Figure 32; Panel A].  Since 

recent evidence indicated a significant increase in Nox-derived ROS generation in 

isolated β-cells following exposure to high glucose, palmitate or cytokines [179, 180], I 

next investigated functional regulation and involvement of Nox as a source of increased 

ROS in ZDF rat islet.  

 

The Nox holoenzyme is comprised of membrane-associated and cytosolic 

components [Figure 2].  Evidence from multiple laboratories including our own suggests 

that the cytosolic components require post-translational modifications, including 

phosphorylation of p47phox and prenylation of Rac1 for the holoenzyme assembly [219, 

221]. Recent studies also demonstrated that the expression of p47phox is significantly 

increased in isolated β-cells following exposure to high glucose, palmitate or cytokines 

[117, 179, 180]. Therefore, I have next determined the expression levels and the 

degree of phosphorylation of p47phox in islets from ZLC and ZDF rats.  Pooled data 

accrued from multiple islet preparations described in Figure 32 [Panels B-C] indicated a 

significant increase (~40%) in the expression of p47phox in ZDF islets compared to ZLC 

islets. Furthermore, the levels of phosphorylated p47phox were also increased 
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significantly [~50%] in ZDF islets [Figure 32; Panels D-E]. These findings of an increase 

in expression and phosphorylation of p47phox in ZDF islets are comparable to those 

accrued from in vitro studies of incubation of pancreatic β-cells with palmitate or 

glucose. 

 

Rac1, a cytosolic component of Nox, is activated in ZDF islets  

I next quantitated Rac1 expression and activation in ZLC and ZDF islets.  The 

underlying premise here is that an increase in the Nox-derived ROS generation in the 

diabetic islet [Figure 32; Panel A] requires activation of Rac1. Data in Figure 33 [Panel 

A] indicated a marked increase [>60%] in the expression of Rac1 in ZDF islets 

compared to ZLC islets.  I also observed that the abundance of activated Rac1 is 

significantly higher [~2.25 fold] in ZDF islets compared to ZLC islets [Figure 33; Panel 

B]. It should be noted that increase in Rac1 activation [Figure 33; Panel C] may not be a 

reflection of increased Rac1 expression in ZDF islet [Figure 33; Panel A] since the ratio 

of activated to total Rac1 also indicated a significant increase [>40%] in ZDF islet 

compared to ZLC rat islets [Figure 33; Panel D]. Together, data in Figures 32 and 33 

indicate increase in the phosphorylation status of p47phox and activation of Rac1 in the 

ZDF islet, which are required for holoenzyme assembly and activation of Nox and 

subsequent increase in ROS generation [Figure 32; Panel A].  

 

Increased expression of gp91phox in the ZDF islet 

While numerous studies have focused on potential alterations in the expression 

of the cytosolic components of Nox in β-cells under the duress of glucolipotoxicity and 

cytokines [118, 179, 180], relatively little is understood with regard to potential changes 
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in the expression of the membrane components of Nox under such conditions. 

Therefore, I next quantitated expression levels of gp91phox in islets from ZLC or ZDF 

rats. Data obtained from multiple islet preparations indicated an increase in the 

expression of gp91phox subunit in ZDF islets [Figure 34; Panel A] and densitometrical 

analysis showed more than 40% increase in  gp91phox expression in ZDF islets 

compared to ZLC [Figure 34; Panel B]. Together, these findings support the overall 

hypothesis that an increase in the intracellular ROS in diabetic islet may, in part, be due 

to increased activation of Nox via increase in the expression and phosphorylation of 

individual subunits.  

 

Assessment of mitochondrial damage in ZDF islets 

Using in vitro model systems of glucolipotoxicity and chronic cytokine exposure, 

Subasinghe et al and I have recently proposed that Nox activation leads to loss of 

mitochondrial membrane potential and subsequent caspase-3 activation [179, 180]. We 

also demonstrated that inhibition of Rac1 activation either by attenuating the function of 

Tiam1, a guanine nucleotide exchange factor for Rac1 by NSC23766 or inhibition of 

prenylation of Rac1 by GGTI-2147 leads to partial restoration of mitochondrial 

dysfunction induced by a mixture of cytokines [179]. Therefore, I next quantitated 

caspase-3 activation, a hallmark of mitochondrial dysregulation, in ZLC or ZDF rat 

islets.  Data from these studies [Figure 34; Panels C-D] indicated a significant activation 

of caspase-3 in islets from ZDF, but not from ZLC rats. These data are suggestive of 

mitochondrial defects in the ZDF islet at an age where significant changes in Nox 

activation are observed [see above].  
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Differential regulation of JNK 1/2 and ERK 1/2 in ZDF islet 

It has been shown that stress-activated JNK activation lies upstream to 

mitochondrial dysfunction, including cytochrome C release and caspase-3 activation 

[222]. Further, constitutive activation of Rac1 promotes JNK phosphorylation and 

activation [223, 224].  Emerging evidence also implicates a significant cross-talk 

between ROS and JNK1/2 [225]. Therefore, I next determined the degree of expression 

and phosphorylation of JNK1/2 in islets from the ZLC and ZDF rats. In these studies, I 

utilized an antiserum that detects phosphorylated Tyr-185 [54 kDa; JNK-2] and 

phosphorylated Thr-183 [46 kDa; JNK-1].  Western blot analysis of islet lysates from 

ZLC and ZDF rats indicated consistently higher levels of phosphorylated JNK-1 and 

JNK-2 in ZDF rat islets [Figure 35; Panel A]. The ratios of phosphorylated to total JNK-1 

and JNK-2, which are provided in Figure 35 [Panel B] indicated a significant increase [> 

60%] in the activities in diabetic islets.   

I next quantitated ERK1/2 phosphorylation in ZLC and ZDF islets to further 

determine if diabetic conditions elicit regulatory effects on this enzyme cascade, since it 

has been implicated in islet β-cell function at multiple levels, including insulin gene 

expression, GSIS and β-cell proliferation [185, 226]. Data shown in Figure 35 [Panels 

C-D] indicated a significant attenuation in ERK1/2 phosphorylation in ZDF islets 

compared to ZLC islets. Together, data described in Figure 35 suggest differential 

regulation of JNK1/2 and ERK1/2 in diabetic islets; such conditions might favor pro-

apoptotic and non-proliferative events in the diabetic islets. Based on my recently 

published observations on increased Nox activity in β-cells under the duress of 

glucolipotoxic conditions [180] and current observations in the ZDF islets, I hypothesize 
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that glucolipotoxic distress may elicit such dual regulatory effects on JNK1/2 and 

ERK1/2 phosphorylation and activation. This hypothesis was further tested via studies 

described below in clonal β-cells. 

 

In vitro exposure to high glucose or palmitate exerts differential effects on JNK1/2 

and ERK1/2  

To assess if differential regulatory effects on JNK1/2 and ERK1/2 seen in the 

ZDF islets are due to gluco- or lipotoxicity, INS 832/13 cells were incubated with either 

high glucose [20 mM; 48 h] or palmitate [400 µM; 48 h] and relative abundance of total 

and phospho JNK1/2 and ERK1/2 was determined by Western blotting. Pooled data in 

Figure 36 [Panel A] indicated a marked increase [~40-87%] in JNK-1 and JNK-2 

phosphorylation in high glucose- [lanes 3 and 4] or palmitate- [~ 30-34%; lanes 5 and 6] 

treated β-cells compared to their counterparts under basal conditions [lanes 1 and 2]. 

However, total levels of JNK 1/2 remained unchanged under these conditions. Further, I 

observed a significant reduction [~22-48%] in ERK1/2 phosphorylation in INS 832/13 

cells treated with high glucose or palmitate [~60%]; such conditions did not affect the 

abundance of total ERK1/2 in INS 832/13 cells [Figure 36; Panel B]. Together, these in 

vitro findings in INS 832/13 cells, which are comparable to what I have observed in the 

ZDF islet [Figure 35], suggest differential regulation of JNK1/2 and ERK1/2 under the 

duress of gluco- or lipotoxic conditions.  

 

Regulation of Nox in human islets 

I next studied regulation of Nox under glucotoxic conditions in human islets. First, 

ROS generation and Rac1 activation were quantitated in normal human islets incubated 
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with either 5.8 mM or 30 mM glucose for 48 h. Data depicted in Figure 37 [Panel A] 

indicated ~2.2 fold increase in ROS generation in human islets following incubation with 

high glucose, which is compatible with my earlier observations in INS 832/13 cells and 

normal rat islets [219] and ZDF rat islets [current studies]. I have also observed that 

incubation of human islets with high glucose resulted in a significant [~1.5 fold] 

activation of Rac1 [Figure 37; Panel B]. Interestingly, I also noticed a marked increase 

in Rac1 expression, JNK1/2 activation and caspase-3 degradation in islets from a 

diabetic donor [Figure 37; Panel C, D and F, respectively]; findings are compatible with 

ZDF islet data. However, relative abundance of phosphorylated or total p47phox and 

gp91phox [Figure 37; Panel C and E, respectively] was comparable between normal and 

diabetic human islets.  Limited availability of diabetic human islets precluded me from 

quantitation of Nox and Rac1 activities. Nonetheless, these preliminary data in human 

islets support my current findings in the ZDF islets and in INS 832/13 cells following 

exposure to glucolipotoxic conditions.  
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Figure 32: 
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ROS levels were measured in isolated islets from ZLC and ZDF rats following 

incubation with DCHFDA [10 µM] for 30 min. Islets were washed with ice-cold PBS and 

sonicated. An equal amount of protein was used to quantitate DCF fluorescence. Data 

are expressed as percent control [Panel A] and are mean ± SEM from islets from four 

rats in each group.* p< 0.05 vs. ZLC islets. In a separate experiment, islets from ZLC or 

ZDF rats were lysed using RIPA buffer. Equal amount of lysate proteins were resolved 

by SDS-PAGE.  Expression of phosphorylated and total p47phox was determined by 

Western blotting. A representative blot is provided in Panel B for total p47phox and Panel 

D for phospho-p47phox.  Densitometric quantitation of total p47phox and phosphorylated 

p47phox is provided in Panels C and E, respectively. Data are mean ± SEM from islets 

from four rats in each group.  * p< 0.05 vs. ZLC rat islets.   
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Figure 33: 
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Total Rac1 expression in islets from ZLC and ZDF rats was determined by 

Western blotting [Panel A] and quantitated densitometrically [Panel B].  The degree of 

Rac1 activation [Panel C] was quantitated by GLISA method. Data are expressed as 

percent change in Rac1 activation over total Rac1 [Panel D] and are mean ± SEM from 

islets from six rats in each group. * p< 0.05 vs. ZLC rat islets. 
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Figure 34: 
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Lysates derived from ZLC and ZDF rats were used for the determination of 

expression of gp91phox by Western blotting [Panel A]. β-actin was used as loading 

control. The protein bands were analyzed densitometrically, expressed as percent 

increase over lean control [Panel B]. Data are mean ± SEM from islet preparations from 

five rats in each group. * p< 0.05 vs. ZLC islets. In a separate set of studies, islet lysates 

from ZLC and ZDF rats were resolved by SDS-PAGE and immunoprobed for caspase-3 

activation. β-actin was used as loading control.  A representative blot from three 

independent experiments yielding similar results is shown here [Panel C]. The density of 

the procaspase and its hydrolytic product-bands was quantitated and expressed as 

percent control [Panel D]. Data in Panel D are mean ± SEM from islet lysates from three 

rats in each group. * p< 0.05 vs. procaspase values of lean control. ** p< 0.05 vs. 

caspase cleavage product of ZLC islets. 
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Figure 35: 
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Islet lysates from ZLC and ZDF rats were prepared in RIPA buffer. Total and 

phospho-JNK1/2 were determined by Western blotting [Panel A] and analyzed 

densitometrically. Data are expressed as fold change in phosphorylation over total JNK 

1/2 [Panel B]. Data are mean ± SEM from islet lysates derived from six rats in each 

group are shown herein. * p< 0.05 vs. ZLC islets.  Lysates of islets from ZLC and ZDF 

rats were prepared in RIPA buffer. An equal amount of lysate protein was resolved by 

SDS-PAGE.  Relative abundance of total and phospho-ERK1/2 were determined by 

Western blotting [Panel C] followed by densitometry [Panel D]. Data are expressed as 

fold change in phosphorylation over total ERK 1/2 and are mean ± SEM from islets from 

six rats in each group. * p< 0.05 vs. ZLC islets. 
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Figure 36: 
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INS 832/ 13 cells were cultured in the presence of low glucose [LG; 2.5 mM], 

high glucose [HG; 20 mM] or palmitate [PA; 400 µM] for 48 h. At the end of incubation 

cells were lysed and the expression of total and phosphorylated JNK 1/2 [Panel A] and 

ERK 1/2 [Panel B] was determined by Western blotting. 
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Figure 37: 
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Normal human islets were cultured in PMI medium in presence of 5.8 mM or 30 

mM glucose for 48 h. Generation of ROS [Panel A; mean value from triplicate 

measurements] was quantitated by DCF fluorescence. Rac1 activation [Panel B; mean 

value from duplicate measurements] was quantitated by GLISA. In a separate set of 

studies, islets derived from control or diabetic human donors were lysed in RIPA buffer 

and lysate proteins were resolved by SDS-PAGE. The expression of total Rac1 and 

gp91phox [Panel C], phosphorylated and total JNK 1/2 [Panel D], phosphorylated and 

total p47phox [Panel E] and caspase-3 [Panel F] were determined by Western blotting. 

Corresponding house keeping genes were also measured in parallel to confirm equal 

loading. 
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Figure 38: 
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Based on the data accrued from the current studies [Chapter III], I propose a 

model for the Nox-ROS-JNK signaling in the metabolic dysfunction of pancreatic -cell 

under the duress of hyperglycemia and hyperlipidemia. Glucolipotoxicity induces Nox 

activation by promoting the phosphorylation of p47phox and Rac1 activation. Nox 

activation and excessive ROS generation leads to the activation of stress-activated 

kinases [JNK 1/2] culminating in mitochondrial dysfunction and caspase-3 activation. I 

hypothesize that the collective effects of ROS generation, ERK1/2 inhibition and JNK1/2 

activation may elicit maximal damaging effects on islet β-cell in diabetes. 
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DISCUSSION 
 

Existing evidence in multiple cell types, including the pancreatic β-cell clearly 

implicates post-translational modification [e.g., phosphorylation and prenylation] of 

individual components as a requisite for the optimal activation of Nox [219, 221]. The 

main objective of the current study was to determine functional status of Nox in islets 

derived from ZDF rat, a well established model for obesity and type 2 diabetes, and to 

determine potential regulation of Nox components in human islets under the duress of 

glucolipotoxicity and diabetes.  Salient findings of the current study include 

demonstration of increased expression and phosphorylation of p47phox subunit; Rac1 

activation; gp91phox subunit expression and associated increase in ROS generation in 

the ZDF islet. These findings also suggested that differential regulation of JNK1/2 [i.e., 

activation] and ERK1/2 [i.e., inhibition] in the ZDF islet may, in part, be due to the gluco 

or lipotoxic effects, since in vitro exposure of INS 832/13 cells or normal human islets to 

high glucose or palmitate elicited similar effects. Lastly, data in diabetic human islets 

corroborated my findings in ZDF islets.  

 

Several recent studies have demonstrated activation of Nox following exposure 

to physiological concentrations of glucose in a variety of insulin-secreting cells [13, 14, 

110, 112]. Pharmacological and molecular biological inhibition of Nox revealed that a 

tonic increase in Nox-derived ROS is necessary for GSIS [14, 118]. In addition, recent 

findings demonstrated that prenylation of Rac1 is necessary for glucose-induced Nox 

activation and ROS generation in isolated β-cells [219]. Recent studies have also 

implicated Nox in metabolic dysfunction of the islet β-cell under conditions of 
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glucolipotoxicity and exposure to cytokines [179, 180]. These studies demonstrated an 

increase in the expression and phosphorylation of Nox subunits [i.e., p47phox], together 

with significant activation of Rac1. In addition, the activation status of Rac1 was shown 

to be under precise control of Tiam1, a known guanine nucleotide exchange factor for 

Rac1, but not Cdc42 and Rho G-proteins in isolated β-cells [204]. In further support of 

this, we observed a marked reduction in  high glucose-, high palmitate- cytokine-

induced Rac1 and Nox activation and ROS generation in isolated β-cells following 

exposure to NSC23766, a selective inhibitor of Tiam1/Rac1 signaling axis [179, 180]. 

Furthermore, using selective inhibitors of protein prenylation, Subasinghe et al 

demonstrated a critical requirement of prenylation of Rac1 for Nox-mediated β-cell 

dysfunction [179]. Taken together, previous in vitro findings clearly implicated 

participatory roles of Nox in exerting effects at the mitochondrial level including loss in 

membrane potential, cytochrome C release and activation of caspase-3 culminating in 

islet β-cell dysfunction [179].   

 

In addition to an increase in p47phox and gp91phox expression, Rac1 activation, 

and ROS generation, I observed a significant increase in the phosphorylation of JNK1/2 

in the ZDF islets compared to the ZLC islets. I also observed a marked inhibition in 

ERK1/2 phosphorylation in cognate cellular preparations. It is noteworthy that similar 

changes in the phosphorylation status of JNK1/2 [activation] and ERK1/2 [inhibition] 

were demonstrable in INS 832/13 cells following incubation with either high glucose or 

palmitate. Together, these findings suggest that glucolipotoxicity may promote cellular 

dysfunction in the ZDF islet.  However, whether JNK1/2 activation and ERK1/2 inhibition 

lie upstream to mitochondrial defects remains to be determined. Along these lines, a 
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recent study by Kim and associates [222] suggested roles for Nox-ROS-JNK1/2 

signaling pathway in the onset of mitochondrial dysfunction induced by genipin in FaO 

rat hepatoma cells and hepatocarcinoma Hep3B cells. SP600125, a selective inhibitor 

of JNK1/2, suppressed genipin-induced apoptosis in these cells suggesting a role for 

JNK1/2 activation in genipin-induced cell demise. Further, DPI significantly attenuated 

genipin-induced ROS generation, JNK1/2 and caspase activation and cell death thereby 

establishing a role for ROS in genipin-induced, JNK1/2-mediated cell death. In this 

context, several recent studies have also demonstrated inhibition of caspase-3 

activation following inhibition of JNK 1/2 activation in models of cellular apoptosis [227 - 

229]. 

 

The observed reduction of ERK1/2 activation under glucolipotoxic conditions in 

the ZDF rat islets in vivo and INS 832/13 cells in vitro are indicative of impaired 

metabolic function and -cell proliferation. These current findings on reduction in 

ERK1/2 phosphorylation in INS 832/13 cells are in accord with studies of Costes and 

associates [230] who demonstrated a significant reduction in ERK1/2 phosphorylation in 

MIN6 cells following exposure to 25 mM glucose for 24 h. Based on further studies, 

these investigators concluded that glucotoxic conditions downregulate ERK1/2-CREB 

signaling pathway leading to the apoptotic demise of the β-cell.  

 

Recent studies by Zhang and associates [231] demonstrated a significant 

increase in JNK 1/2 phosphorylation and reduction in ERK 1/2 phosphorylation during 

mevastatin-induced apoptosis of salivary adenoid carcinoma cells, suggesting a 

potential inverse relationship between JNK 1/2 and ERK 1/2 phosphorylation in the 
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induction of cellular apoptosis. Together, my observations in INS 832/13 cells, ZDF 

islets and diabetic human islets support involvement of Nox-ROS-stress activated 

signaling axis in the metabolic dysfunction. However, additional studies are needed to 

substantiate this formulation. Recent studies by Nakayama et al [232] demonstrated the 

functional activation of Nox in islets of db/db mice and Otsuka Long-Evans Tokushima 

Fatty rats. Treatment of these animals with angiotensin II type-1 receptor antagonists 

reduced Nox activation and oxidative stress. It may be germane to point out that Valle 

and coworkers [233] recently examined potential changes in Nox in islets derived from 

high fat-fed obese animals. In contrast to islets from db/db mice and Otsuka Long-

Evans Tokushima Fatty rats [232] and ZDF rat [current study],  islets from high fat-fed 

animals exhibited markedly lower expression levels of p47phox and gp91phox subunits 

and ROS production compared to control rat islets. These investigators attributed this 

toward increased glucose oxidation and GSIS seen in islets from high fat fed animals in 

response to glucose [233].  

 

Lastly, Fontes and coworkers [226] have reported a significant stimulation in 

ERK1/2 phosphorylation in MIN6 cells and normal rat islets when cultured in the 

presence of glucose and palmitate. Similar increase in the phosphorylation of Erk1/2 

was seen in the presence of ceramide, a biologically active sphingolipid, which is 

biosynthesized from palmitate via the de novo pathway. Based on data accrued from 

additional studies these investigators concluded that ERK 1/2 activation represents one 

of the signaling steps involved in palmitate-induced inhibition of insulin gene expression. 

These findings are in contrast to my current findings of inhibition of ERK 1/2 
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phosphorylation by palmitate. Additional studies are needed to address potential 

differences between these findings.  

Based on the existing information and current findings, I propose a model for 

Nox-mediated induction of -cell dysfunction in diabetes [Figure 38]. Herein, I propose 

that exposure of isolated -cells to glucolipotoxic conditions or islets derived from the 

diabetic condition in ZDF rats or humans, results in increased activation of Rac1 and 

Nox. Consequential generation of ROS and the associated oxidative stress, in turn, 

promote activation of JNK1/2 and mitochondrial dysregulation. Alternatively, activation 

of cytosolic Nox-ROS-JNK1/2 signaling pathway increases superoxide generation that 

impairs the functional efficiency of mitochondria; this proposal is supported by findings 

of Bindokas and associates [133] demonstrating excessive superoxide levels in islet 

mitochondria from the ZDF rat.   

 

In summary, my current findings implicate Nox as one of the sources of oxidative 

stress in the diabetic islet. It will be interesting to determine if pharmacological 

intervention of Nox activation seen in islets under diabetic conditions can be restored to 

its normal function. Such intervention modalities include NSC23766, a selective inhibitor 

of Tiam1/Rac1, which I have utilized in in vitro experiments to restore mitochondrial 

function in -cells exposed to elevated glucose, lipids and cytokines [179, 180]. In this 

context, recent investigations have successfully utilized NSC23766, a selective inhibitor 

of Tiam1-Rac1 signaling axis to correct Nox-mediated effects on cellular function in vitro 

and in vivo [117 for a review]. Using streptozotocin diabetic mouse model, Shen et al 

[120] have demonstrated  a regulatory role for Rac1 in hyperglycemia-induced 

apoptosis in cardiomyocytes. They demonstrated upregulation of Rac1, Nox activity, 
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increased ROS generation leading to apoptosis of cardiomyocytes under the duress of 

hyperglycemia. Treatment of diabetic db/db mice with NSC23766 significantly inhibited 

Nox activity and cell apoptosis [231]. Additional studies are needed to pin-point 

regulatory roles of Tiam1-Rac1-Nox-ROS signaling in the metabolic dysfunction in the 

diabetic islet.  
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WORKING MODEL 
 
 

Based on the available evidence and my current findings, I propose that Nox-

mediated ROS generation requires intermediacy of Tiam1/Rac1 signaling axis in 

isolated pancreatic β-cells following long-term exposure to glucose, palmitate or 

inflammatory cytokines. Under lipotoxic conditions, activation of Rac1 may, in part, be 

due to de novo synthesis of ceramide from palmitate, since Fumonisin B1, a selective 

inhibitor of ceramide biosynthesis from palmitate, markedly attenuated the increase in 

palmitate-induce ROS generation. As I observed, glucotoxic conditions also elicit 

Tiam1/Rac1 activation in Nox-mediated ROS generation. In this context, it is possible 

that such effects of glucose on Tiam1/Rac1 are direct, and not mediated via ceramide; 

however, this needs to be verified. Alternatively, activation of endogenous 

sphingomyelinases or endoplasmic stress may lead to accumulation of intracellular 

ceramide during glucotoxic conditions. This needs to be verified as well. Lastly, my data 

also identified similar involvement of Tiam1/Rac1 activation in inflammatory cytokine-

induced Nox activation and ROS in pancreatic β-cells. A potential role for ceramide in 

this signaling needs to be examined further.   

 

Under the conditions of oxidative stress in pancreatic β-cells, Nox-mediated ROS 

generation gets amplified, thus creating an environment in which mitochondrial 

membrane potential is reduced leading to the release of cytochrome c, activation of 

caspase-3 thereby leading to loss in cell viability and demise of the pancreatic β-cells. 

Coprovision of inhibitors for Nox [e.g., apocynin and DPI], Rac1 [e.g., GGTI-2147 and 

NSC23766] or siRNA mediated knockdown of p47phox leads to inhibition of Nox 

activation and partial restoration of mitochondrial dysfunction. Not included in this 
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current model are the other known mechanisms through which chronic hyperglycemia 

exerts damaging effects on β-cells, presumably not involving the Nox activation [158]. A 

recent review by Kowluru highlights the importance of Tiam1/Rac1 signaling axis in the 

generation of ROS under short-term conditions in the presence of stimulatory glucose 

and under conditions of long-term exposure to supra-physiological glucose 

concentrations leading to the metabolic regulation of the islet [117]. As recently 

suggested by Poitout and Robertson [158] other mechanisms such as oxidative 

phosphorylation, sorbitol metabolism, hexosamine metabolism, protein kinase C 

activation by DAG etc., may also underlie the generation of oxidative stress in the β-

cells during the duress of glucolipotoxicity. 
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Figure 39: Proposed model illustrating potential involvement of Tiam1/Rac1 signaling 

axis in high glucose-, palmitate-, ceramide- or cytokines-induced metabolic dysfunction 

of the islet β-cell. 
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Nox-mediated oxidative stress, Potential Therapeutic Targets and 

Interventional Modalities 

 
 
Inhibition of Nox holoenzyme assembly 
 

Data accrued from my studies clearly suggested positive and negative 

modulatory roles for Nox-derived ROS in islet β-cell function. The holoenzyme assembly 

could represent a novel therapeutic drug target for either minimizing or halting 

excessive generation of Nox-mediated ROS and subsequent oxidative damage to the 

islet during hyperglycemia and/or hyperlipidemia. El-Benna and associates [234] 

recently proposed that gp91phox, p47phox and p67phox might serve as potential drug 

targets due to their selective association in the Nox holoenzyme complex, but not other 

NADPH oxidases.  

 

Along these lines Mizrahi et al developed p47phox-p67phox-Rac1 chimera as a 

quintessential single molecule activator of Nox [235] to study the effects of Nox 

activation, and suggested that a prenylation step is critical for Rac1 regulatory roles. 

These observations are in agreement with my findings, where I have demonstrated a 

decrease in glucose-mediated Nox-induced ROS generation in the presence of 

prenylation inhibitors. Developing inhibitors for such activators might provide a novel 

therapeutics to minimize Nox-mediated β-cell dysfunction. 

 

Inhibition of Tiam1/Rac1/Nox signaling axis 

It may be germane to point out that, many investigators have utilized NSC23766, 

an inhibitor for Tiam1-mediated Rac1 activation to inhibit Nox-induced ROS generation 
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both in vitro and in vivo [179, 180, 207]. Shen et al for the first time using 

streptozotocin-induced diabetic model demonstrated a regulatory role for Rac1 in 

hyperglycemia-induced apoptosis in cardiomyocytes [120]. Under these conditions, 

Rac1 and Nox activation were significantly augmented which were attenuated by 

pharmacological and microbiological approaches. Moreover, treatment of diabetic db/db 

mice with NSC23766 showed a decrease in Nox activity and cell death via apoptosis. 

Additional support for regulatory roles for Rac1 in the onset of myocardial remodeling in 

type 1 diabetes, came from Li et al who have demonstrated that Rac1 knockout or 

apocynin-treatment considerably attenuated Nox subunit[s] expression and activation, 

ROS production and cardiac collagen deposition. Moreover, Rac1 deficiency in 

myocardiocytes led to decreased hypertrophy and myocardial fibrosis and improved 

myocardial function [236]. Together, these studies provide compelling evidence in 

support of the hypothesis that Tiam1/Rac1 signaling axis plays a critical role in Nox-

mediated cell dysfunction in diabetes. These facts also elevate the possible need for the 

development of more specific modalities to exclusively inhibit this signaling pathway. 

However, as discussed above, at least in the context of the islet β-cell, this strategy may 

not be ideal since the Tiam1/Rac1/Nox signaling pathway is also implicated in the 

signaling cascade leading to physiological insulin secretion, including actin remodeling, 

granule mobilization and tonic increase in ROS [84, 219]. On the other hand, it is 

expected that slight decrease in the Tiam1/Rac1 signaling pathway might be beneficial 

to the islet function. This needs experimental verification. Moreover, Bosco and 

associates [237] recently demonstrated that Rac1 regulates various cellular functions 

including microtubule stability, actin organization, transcription, superoxide generation 
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and nuclear signaling in normal physiological states. Together, the above mentioned 

positive modulatory roles of Rac1 in normal cell function implicate Rac1 as low priority 

target protein for therapeutic development. 

 

Use of antioxidants 
  

Proper maintenance of antioxidant defenses might be effective for slowing 

progression of diabetes itself by sustaining functional pancreatic β-cells. As islet β-cells 

hold a poor antioxidant defense mechanism as reviewed by Acharya and Ghaskadbi 

[238], counterbalancing oxidative environment by antioxidant treatment or 

overexpressing antioxidant enzymes proves to be useful in regulating β-cell function. 

Such approaches have been successful in preserving the number of insulin-positive β-

cells in presence of antioxidants. Quantitation of gene expression profiles of antioxidant 

enzymes in rodent islets yielded very low values compared to their respective 

counterparts in the liver. For an instance, relative abundance of CuZn superoxide 

dismutase, Mn-superoxide dismutase and glutathione peroxidase in islets corresponds 

only to 38%, 30% and 15% of the liver values, respectively. Catalase activity was 

undetectable in islets [238 and references therein]. In addition, studies by Modak et al. 

[239] have demonstrated very poor DNA repair mechanism in β-cells due to oxidative 

stress compared to other cell types [e.g., liver cells].  

 
Moreover, treatment with antioxidants like α-lipoic acid has been demonstrated to 

improve functional outcomes, like insulin sensitivity in type 2 diabetic subjects [240]. As 

an antioxidant, vitamin E improves outcomes related to pancreas physiology in diabetes 

[241], which may improve functional outcomes of diabetes in animal models. Asayama 
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et al found that rats deficient in vitamin E, selenium, or both had decreased insulin 

secretory reserves, suggesting that vitamin E status can directly affect pancreatic islet 

function. In a mouse model of type II diabetes, treatment with vitamin E combined with 

vitamin C and n-acetyl cysteine resulted in large number of pancreatic islets than 

controls at 10 and 16 weeks [242]. Along these lines, studies from Robertson's 

laboratory have capitulated valuable insights into positive effects of overexpression of 

anti-oxidant enzymes like glutathione peroxidase against the damaging effects of 

oxidative stress [243, 244]. Studies from Xiao and group in humans [159] have also 

suggested beneficial effects of antioxidant therapy [e.g., taurine], which affectively 

restored lipid-induced reductions in plasma biomarkers of oxidative stress, insulin 

sensitivity and β-cell function. A recent review by Giacca et al. [245] provides additional 

advances in the area of lipid-induced pancreatic β-cell dysfunction, specifically focusing 

on in vivo studies. Moreover, it has been shown that NAC prevents impairment of GSIS 

in vivo in perfused pancreas of 96-h Intralipid-infused rats [160]. Together these studies 

further highlight antioxidant therapy as one of the feasible options in attenuating 

glucolipotoxicity-induced oxidative stress in the islets.  

 
Use of polyphenolic extracts 
 

Studies by Tao et al demonstrated an increase in Nox expression in the heart 

from adiponectin knockout mice [246]. In addition, studies by Dong et al reported 

significant increase in the expression Nox protein by leptin in murine cardiomyocytes 

[247]. In this milieu, beneficial effects of polyphenolic grape seed extract [GSE] against 

high-fat diet mediated obesity, adiponectin–leptin disparity and oxidative stress markers 

in hamsters have been demonstrated [248]. Following GSE therapy, these studies have 
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shown a marked reduction in high-fat-induced abdominal fat, plasma glucose, 

triglycerides and insulin resistance in these animal models; furthermore, plasma levels 

of adiponectin and leptin were normalized, in the conditions where there is increased 

cardiac production of superoxides and Nox expression. Together, these findings 

implicate regulatory roles of adiponectin and leptin in Nox activity. Further, they provide 

evidence for the therapeutic efficacy of grape phenolics in the prevention of Nox-

mediated effects on cellular functions. Potential roles of Tiam1/Rac1 axis in this 

signaling cascade remains to be examined. 

 
Use of angiotensin receptor antagonists 
 

Studies from Nakayama et al have demonstrated a significant enhancement in 

islet function in diabetic OLETF rats and db/db mice following treatment with 

angiotensin1 receptor antagonist [232]. Following treatment with Valsartan, a known 

angiotensin1 receptor antagonist, they demonstrated attenuation in the expression of 

gp91phox and p22phox and associated oxidative stress. These conclusions are compatible 

with in vitro observations by Hirata et al demonstrating a significant activation of Nox-

mediated and superoxide generation in rat pancreatic islets subsequent to exposure 

with angiotensin II [221]. Collectively, these data are indicative of novel cytoprotective 

effects of angiotensin receptor antagonists against cell damage induced by 

glucolipotoxicity and/or proinflammatory cytokines. 

 
Inhibition of JNK signaling pathway 
 

Under diabetic conditions, oxidative stress activates JNK cascade, which in turn 

suppresses insulin biosynthesis [249]. Thus, the hemin-dependent reduction of JNK 
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and subsequent increase of insulin are important mechanisms for the enduring 

antidiabetic effects. In agreement with this is a recent study to suggest that 

hemeoxygenase system abates JNK activity [250]. Lastly, the regulation of insulin 

release by the hemeoxygenase system has been well documented in the Goto-kakizaki 

rat, a nonobese model for type II diabetes [251, 252].  
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CONCLUSION 

 

GSIS involves a series of metabolic events involving interaction between a 

variety of signaling pathways to facilitate the transport of insulin-laden granules to the 

plasma membrane for fusion and release of insulin. Compelling evidence supports 

involvement of small G-proteins like Rac1 and Cdc42 in the cytoskeletal reorganization, 

which is necessary for GSIS to occur. Findings from our laboratory further validate that 

Tiam1 represents one of the GEFs for Rac1 and that Tiam1/ Rac1 signaling axis is 

requisite for GSIS. Nox appears to be an effector protein for Tiam1/Rac1 signaling and 

that its activation leads to a tonic increase in the generation of ROS under the 

stimulatory conditions of glucose and fatty acids leading to insulin release. In addition to 

this, Tiam1/Rac1 signaling axis appears to play an important role in the generation of 

Nox-mediated ROS generation under the duress of excessive glucose, palmitate, 

ceramide and cytokines culminating in oxidative stress and metabolic dysfunction of 

pancreatic β-cells. Together, my findings suggest positive and negative modulatory 

roles for Tiam1-Rac1-Nox signaling pathway in islet function. Therefore, it may be 

difficult to pin-point as to how much of ROS generation is good for the normal function 

of the islet as opposed to and how much is bad to elicit damaging effects on the 

pancreatic β-cell. The Figure 40 depicted below is indicative of potential effects of ROS 

on islet at different stages. It also indicates known metabolic alterations at each stage. It 

is likely that there may be a “window of opportunity” or “point of return” for the islet β-cell 

to recover from the Noxious effects of excessive ROS due to accelerated Tiam1-Rac1-

Nox signaling pathway in the presence of elevated glucose, FFA, ceramide or 

cytokines. 



 165

Despite the fact that, Nox is identified as a cause for development of oxidative 

stress, its possible loci for the action of ROS and mechanistic insights into the cytosolic 

subunits within the β-cells require a thorough study. However, published evidence from 

our laboratory [96] demonstrated roles for biologically active phospholipids in the 

dissociation of Rac1/GDI complexes, which is ought to be essential for activation and 

translocation of Rac1 to the membrane; and this step involves intermediacy of Tiam1. 

Moreover, post-translational geranylgeranylation of Rac1 is essential for activation of 

Nox complex as manifested by inhibition of Nox-mediated ROS generation in presence 

of GGTI2147. It should also be noted that Rap1, one of the membranic components of 

Nox holoenzyme, also gets geranylgeranylated and is inhibited by GGTI2147. A recent 

review by Kowluru [117] suggests that activation of Rac1 is necessary for Nox 

activation, and that very little is known about potential regulatory roles of Rap1 in this 

signaling cascade. Further, Rap1 could potentially be under the control of specific GEFs 

[e.g., Epac2] and related mechanisms.  

 

In summary, I believe that my findings provide fresh insights into potential 

therapeutic targets and interventional modalities to prevent these metabolic defects. 

The in vitro observations are supported by my finding in islets derived from the diabetic 

rodents [the ZDF rat] and diabetic human islets. I truly hope that these findings form 

basis for the development of small molecule inhibitors in halting the metabolic defects, 

thereby retaining normal β-cell mass. 
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Figure 40: Hypothetical model for ROS generation in identifying the effects on 

pancreatic β-cells. 
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Glucose stimulated insulin secretion (GSIS) involves a series of metabolic and cationic 

events, leading to translocation of insulin-laden secretory granules from a distal site 

toward the plasma membrane for fusion and release of insulin into circulation. Vesicular 

transport and fusion events are tightly regulated by signals which coordinate between 

vesicle- and membrane-associated docking proteins. It is now being accepted that 

reactive oxygen species [ROS] plays a second messenger role in islet β-cell function. 

Further, evidence from multiple laboratories suggests a tonic increase in ROS 

generation is necessary for GSIS and fatty acid-induced insulin secretion. On the other 

hand, excessive ROS generated during glucolipotoxic / exposures to cytokines and 

ceramide have proved to be detrimental for islet β-cells. Recent studies have shown 

activation of phagocyte-like NADPH oxidase [Nox] to be underlying cause for increased 

ROS generation observed under the above pathological conditions. 

 

The overall objective of the present study is to i) determine potential mechanism[s] 

underlying nutrient-induced generation of ROS;  ii)  contributory roles of Tiam1-Rac1-
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Nox signaling in free fatty acid (e.g., palmitate)  and cytokines- induced β-cell 

dysfunction.  Findings from current study suggest that posttranslational prenylation is a 

requisite for signaling G-proteins involved in the activation of Nox and generation of 

ROS for nutrient-induced insulin secretion from islet β-cells. Studies with pertussis toxin 

[Ptx] suggested that glucose-induced Nox-mediated ROS generation is regulated by 

inhibitory class of G-proteins [Go/Gi]. Our next set of studies, directed towards 

understanding the mechanism of Nox activation under chronic exposure to high 

palmitate, cytokines and C2-ceramide implicate increased expression of Nox subunits to 

precede the functional activation of the holoenzyme and excessive ROS generation 

resulting in mitochondrial dysfunction. This study also provide first evidence for a critical 

modulatory role of Tiam1, a guanine nucleotide exchange factor [GEF] in Rac1-Nox 

signaling axis. 

  

The next set of studies validated the above observations in Zucker Diabetic Fatty [ZDF] 

rat model, which mimics type2 diabetes in humans, characterized by obesity, 

hyperinsulinemia, hyperglycemia and gradual decline in β-cell function. The results 

obtained were comparable with clonal β-cells. Islets derived from ZDF-rats presented 

high levels of Nox subunit expression [p47phox, gp91phox, Rac1] which constitutively 

activated Nox-holoenzyme and augmented ROS levels. The increased oxidative stress 

under conditions of diabetes activated Jun-N-terminal kinases [JNK 1/2, stress-activated 

kinases] leading to mitochondrial abnormalities and eventual demise of islet β cells. A 

similar pattern of induction in Nox subunit expression/activation, ROS generation and 

JNK 1/2 were also observed in type 2 diabetes human islets. Taken together, herein I 

propose that high levels of oxidative stress, activation of stress-activated kinases 
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[JNK1/2] and mitochondrial abnormalities underlies pancreatic β-cell dysfunction[s] 

during diabetes. Additional studies are needed to understand the precise regulatory 

roles for Tiam1-Rac1-Nox-ROS-JNK1/2 signaling to develop therapeutic strategies in 

the treatment of metabolic disorder. 
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