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CHAPTER 1 

 

INTRODUCTION 

 

This chapter has been published as: How to get extra performance from a 

chromosome: recognition and modification of the X chromosome in male 

Drosophila melanogaster. Kong Y. and Meller V.H. (2007) The Encyclopedia of 

Genetics, Genomics, Proteomics and Bioinformatics. Part I Genetics. Section 1.3 

Epigenetics. It is reproduced here with updates that reflect recently published 

material.  

 

Differentiated sex chromosomes cause genetic imbalance 

Many organisms have a single X chromosome in males and two in 

females. The X chromosome is gene-rich and carries genes required in both 

sexes. By contrast, the Y is often gene-poor, and may carry genes only required 

in males. The resulting imbalance in the dosage of X-linked genes is fatal if not 

addressed early in life. Equalization of expression between the sexes is an 

essential  feature of differentiation in fl ies, mammals, and the worm 

Caenorhabditis elegans. Although the problem is common, the strategy used to 

solve it in each of these organisms is distinct (Figure 1-1). To equalize 

expression between C. elegans males (XO; one X chromosome but no Y 

chromosome) and XX hermaphrodites, hermaphrodites reduce transcription from 

both X chromosomes by 50%. Mammalian females silence most genes on a  
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Figure 1-1. Organisms use divergent strategies to compensate sex 
chromosome gene dosage. (A) C. elegans hermaphrodites (right) have 2 X 
chromosomes, whereas males have a single X chromosome and no Y 
chromosome (left). Association of the repressive DCC complex reduces 
expression of both hermaphrodite X chromosomes by about 50%. (B) 
Mammalian females (right) randomly silence a single X chromosome. The 
remaining active X chromosome is transcriptionally equivalent to the single X 
chromosome of males. (C) Drosophila males increase expression from their X 
chromosome by modulation of chromatin structure (left). Female X chromosomes 
remain unchanged. 
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single X chromosome. The remaining X chromosome is transcriptionally 

equivalent to the single X chromosome of males. By contrast, Drosophila males 

increase expression from their single X chromosome about two fold. Although 

these methods for equalizing expression are overtly very different, each 

organism regulates the X chromosome through modulation of chromatin 

architecture. 

These animals must accurately and selectively modulate a single 

chromosome or a pair of chromosomes in one sex. Interestingly, both mammals 

and flies use large noncoding RNAs to direct chromatin-modifying proteins that 

regulate expression. The large Xist (X inactive specific transcript) is transcribed 

from and directs silencing to the inactive X chromosome of mammalian females 

(reviewed by (Plath et al., 2002). As silencing of both X chromosomes would be 

lethal, this process is restricted to chromatin in cis to a single Xist allele. 

Drosophila males have two large, noncoding transcripts, roX1 (RNA on the X1), 

and roX2 (RNA on the X2), that are necessary for localization of a complex of 

proteins and roX RNA to the male X chromosome (Meller and Rattner, 2002). In 

both mammals and flies, this process likely involves two steps: recruitment of a 

protein complex, followed by modulation of gene expression. This review will 

focus on advances in understanding the process of recognition and modulation in 

flies. It will center on the role of the roX transcripts in recognition and modification 

of the X chromosome. 
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RNA and protein coat the X chromosome of Drosophila males 

Many of the genes necessary for dosage compensation in flies were 

identified through male-specific lethal (msl) mutations. These genes, maleless 

(mle), the male-specific lethals 1, 2, and 3 (msl1, 2, and 3), and males absent on 

first (mof), are collectively known as the male-specific lethals (reviewed by 

(Mendjan and Akhtar, 2007). Mutations in these genes cause developmental 

delay and lethality in males, but are not essential in females. The genes that 

encode the roX RNAs are X-linked and functionally redundant for dosage 

compensation. Both properties make them unlikely to be identified by 

conventional mutagenesis and phenotypic analysis. Accordingly, the roX genes 

were discovered serendipitously (Amrein and Axel, 1997; Meller et al., 1997). 

Immunolocalization of MSL proteins or in situ hybridization to roX on polytene 

preparations reveals finely banded enrichment along the X chromosome (Figure 

1-2). The MSL proteins and roX RNA coimmunoprecipitate, demonstrating that 

they form a complex (Meller et al., 2000; Smith et al., 2000). Removal of 

individual members of the complex disrupts its localization and can reduce the 

stability of remaining molecules. This is particularly dramatic for the roX RNAs, 

which are unstable upon elimination of any MSL protein (Amrein and Axel, 1997; 

Meller et al., 1997). Mutation of mle, msl3, or mof reduces X-chromosome 

binding by remaining members of the complex, but a subset of sites able to bind 

the remaining proteins is retained on the X chromosome. The most prominent of 

these sites are the roX genes themselves (reviewed by (Kelley, 2004). MSL1 and 

MSL2 have a more central role in regulation and assembly of the MSL complex  
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Figure 1-2. MSL proteins and roX RNA form a complex that binds to the 
Drosophila X chromosome. (A) Immunodetection of MSL2 on a polytene 
chromosome preparation from a male larva. The X chromosome binds MSL2, 
detected with Texas Red. DNA appears blue. (B) Molecular interactions between 
MSL proteins and RNA. Interactions between proteins are denoted by teeth. 
Potential interactions are modeled between a single roX transcript (black line) 
and proteins reported to have RNA-binding activity. Protein/protein and 
protein/RNA interactions are reported by Akhtar et al. (2000); Buscaino et al. 
(2003); Copps et al. (1998); Li et al. (2005); Morales et al. (2004); Scott et al. 
(2000). 
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as elimination of either of these proteins prevents all chromatin binding by 

remaining complex members (Lyman et al., 1997). In contrast, simultaneous 

elimination of both roX RNAs shifts the MSL proteins from the X chromosome to 

ectopic autosomal sites and results in reduced X-linked gene expression (Deng 

and Meller, 2006; Deng et al., 2005; Meller and Rattner, 2002). Recognition of 

the X chromosome is thus a property of the intact MSL complex, and is not 

attributable solely to a single participating molecule. 

 

Proteins associated with the MSL complex modify chromatin 

Increased expression of the male X chromosome is believed to result from 

changes in chromatin architecture induced by MSL complex. One member of the 

MSL complex, MOF, is an acetyltransferase specific for lysine 16 of histone H4 

(Akhtar and Becker, 2000; Hilfiker et al., 1997; Smith et al., 2000). This 

modification is generally associated with active chromatin, and is highly enriched 

on the male X chromosome of flies (Turner et al., 1992). Acetylation of H4K16 by 

MOF increases transcription in vitro and in vivo (Akhtar and Becker, 2000). 

Effector proteins that mediate transcriptional change bind to some modified 

histones, but none specific for H4K16ac has been found. A study demonstrated 

that acetylation of H4K16 inhibits the formation of highly compact chromatin by 

disrupting charge-based internucleosomal interactions (Shogren-Knaak et al., 

2006). This structural effect partially decondenses chromatin, thereby increasing 

the accessibility of the DNA template. In humans, H4K16ac is found ubiquitously 

on all chromosomes except for the inactive X chromosome (Jeppesen and 
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Turner, 1993). In flies, H4K16ac is found at the promoter region on both X-linked 

and autosomal genes in both sexes, but only in males displays a bimodal 

distribution to promoters and the 3’ ends of X-linked genes (Gelbart et al., 2009; 

Kind et al., 2008). These findings suggest that H4K16ac has a general role in 

Drosophila gene expression. However, the role of MOF, and even whether MOF 

is responsible for 5’ H4K16ac, remains controversial (Gelbart et al., 2009; Kind et 

al., 2008). On the male X chromosome, H4K16ac colocalizes with the MSL 

complex in the body of actively transcribed genes (Bone et al., 1994; Gelbart et 

al., 2009; Smith et al., 2001; Turner et al., 1992). However, the distribution of 

H4K16ac is much broader than MSL complex (Gelbart et al., 2009). It is 

supposed that broad H4K16ac distribution is due to transient association of the 

MSL complex, or chromosome looping that allows the complex to modify distant 

histones.    

A second modification linked to increased expression, phosphorylation of 

H3 on serine 10 (H3S10p), is also enriched on the male X chromosome (Jin et al., 

1999; Mahadevan et al., 2004). H3S10p, produced by the aurora kinase, is 

abundant on mitotic chromosomes (Adams et al., 2001; Giet and Glover, 2001).  

In interphase cells, H3S10p is directed by the JIL-1 kinase (Wang et al., 2001).  

Proper dosage compensation of the X-linked white gene requires JIL-1 function 

(Lerach et al., 2005). In addition to compensation of the male X chromosome, 

JIL-1 has a general role in maintenance of chromatin structure and limits the 

spread of heterochromatin into euchromatic regions (Zhang et al., 2006). 

Accordingly, JIL-1 is an essential gene required in both sexes (Wang et al., 2001).  
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The male X chromosome is therefore marked with at least two histone 

modifications that are associated with elevated transcription. Recently MSL2 was 

illustrated as an E3 ubiquitin ligase for histone H2B (Wu et al., 2011). This 

ubiquitylation then crosstalks with histone H3 K4 and K79 methylation. It is likely 

that the primary function of the MSL complex is to direct and control these 

modifications. 

 

The MSL complex increases transcription by a general method 

X chromosome compensation affects hundreds of genes with different 

expression levels and profiles. It must therefore be superimposed on genes with 

distinct regulatory strategies. Interestingly, chromatin immuno and affinity 

precipitation of DNA bound by the MSL complex detects modest levels of these 

proteins in promoter regions, but higher levels within the body of most actively 

transcribed X-linked genes in males, with a bias towards 3’ ends (Alekseyenko et 

al., 2006; Gilfillan et al., 2006; Legube et al., 2006). H4K16ac has also been 

found to be high in the body of X-linked genes in males (Gelbart et al., 2009; 

Kind et al., 2008; Smith et al., 2001). The reduced compaction of chromatin 

enriched with H4K16ac may increase the speed or processivity of RNA 

polymerase within the body of genes. Enhanced expression is thus likely to result 

from facilitation of transcriptional elongation, rather than increased initiation 

(Henikoff and Meneely, 1993). This hypothesis is verified by a recent genome-

wide gene run-on study from isolated nuclei to examine the effect of the MSL 

complex on RNA Polymerase II (Larschan et al., 2011). However, the possibility 
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that modifications at the 3’ end of transcription units enhances reinitiation by 

recycled RNA polymerase has not been eliminated (Dieci and Sentenac, 2003). 

A second theory for how the MSL complex enhances expression stems 

from a study of proteins copurifying with tagged MOF and MSL3 (Mendjan et al., 

2006). This study found no classical transcriptional factors but identified exosome 

components, interband binding proteins and nuclear pore components in 

association with MSL proteins. Knock down of the nuclear pore proteins Mtor and 

Nup153 disrupted the location of MSL proteins and compensation of some X-

linked genes, suggesting that interaction with the nuclear pore is important for 

localization of the MSL complex (Mendjan et al., 2006). An association with the 

nuclear pore might facilitate transcriptional elongation by affecting RNA 

processing and transportation. Alternatively, the nuclear pore might establish a 

transcriptionally active compartment, or a region of facilitated chromatin 

remodeling within the nucleus (Casolari et al., 2005; Feuerbach et al., 2002). 

Tethering transcription units to nuclear pores facilitates expression in yeast, 

supporting the involvement of this structure in activation (Cabal et al., 2006; 

Taddei et al., 2006). Recruitment of silenced genes into a repressive nuclear 

compartment has been proposed as the mechanism of X-chromosome 

inactivation in mammals. The inactive X chromosome (Xi) occupies a region 

adjacent to the nucleolus during replication (Zhang et al., 2007). This may ensure 

epigenetic maintenance of the silent state through replication. X-linked gene 

inactivation is accompanied by movement of individual genes from the outer 

fringe of the domain occupied by the Xi to a more interior position from which 
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RNA polymerase is excluded (Chaumeil et al., 2006). Thus X inactivation and its 

perpetuation may rely on recruitment of genes and the X chromosome into 

specific nuclear compartments. Recent studies suggest that dosage 

compensation in flies may involve repositioning of genes in a transcriptionally 

active domain (Grimaud and Becker, 2009). Dosage compensated genes on the 

X chromosome were closer together in interphase nuclei from males than in 

those from females. This was dependent on MSL proteins, indicating that these 

proteins promote a male-specific conformation of the X chromosome. The idea of 

a dosage compensated nuclear compartment is appealing as it provides a 

mechanism through which compensation can be superimposed on genes with 

different regulatory strategies on one chromosome. 

 

Large RNAs that control X chromosomes: powerful but mysterious 

molecules 

Regulatory RNAs that coat the X chromosome play a key role in dosage 

compensation in mammals and Drosophila. In spite of the central role of roX 

transcripts in fly dosage compensation, how they interact with the MSL proteins, 

and how this changes the properties of the MSL complex, remains speculative. A 

comparison with Xist may prove valuable. Xist is well studied and shares unusual 

properties with the roX RNAs. Both RNAs coat dosage-compensated X 

chromosomes, direct protein complexes to chromatin, and are able to recruit 

chromatin-modifying activities in cis to the site of RNA synthesis. 
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Xist is transcribed from the Xic (X inactivation center) and is essential for 

initiation and propagation of X-chromosome inactivation in mammals (reviewed 

by (Plath et al., 2002). Xist is selectively expressed from one X chromosome and 

spreads in cis from the site of synthesis to coat most of the inactive X 

chromosome (Xi). Xist recruits Polycomb proteins that introduce repressive 

histone modifications (Plath et al., 2004; Silva et al., 2003). Several days after 

the initiation of X inactivation, the inactivation becomes largely independent of 

Xist. Additional changes in chromatin, such as enrichment for variant histones 

and methylation of CpG islands, characterize the differentiated Xi (reviewed by  

(Lucchesi et al., 2005). Distinct sequences within Xist are responsible for 

localization to the X chromosome and for silencing (Figure 1-3 A, (Wutz et al., 

2002)). Several widely separated Xist sequences act cooperatively to direct X 

localization, and a repeated element that folds into short stem loops mediates 

silencing as well as localization (Wutz et al., 2002). This repeat is also necessary 

for relocalization of silenced genes inside the domain occupied by the Xi 

(Chaumeil et al., 2006). 

roX1 also has multiple regions necessary for function (Figure 1-3 B). In 

spite of their redundancy, roX1 and roX2 share little sequence similarity that can 

be used to identify potentially important sequences (Amrein and Axel, 1997; Park 

et al., 2003). Several highly conserved “roX boxes” (short GUUNUACG 

sequences) are present at the 3’ end of both roX RNAs (Franke and Baker, 1999; 

Park et al., 2008).  A stem loop at the 3’ end of roX1 is formed in part by roX box 

sequences. These conserved 3’ “roX boxes” are able to form alternative stem 
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Figure 1-3. roX1 and Xist have distinct regions necessary for gene function. 
(A) The Xist transcript has a series of 15 short stem loops near the 5’ end that 
are necessary for silencing. Distributed elements that contribute to X localization 
are shown as gray and white boxes. The strongest of these are darkest. Figure is 
based on (Wutz, 2003; Wutz et al., 2002). (B) Functional and conserved regions 
of roX1 RNA (top) and DNA (bottom) are represented. One kb at the 5’ end of 
roX1 (open box on left) is necessary for wild-type localization of the MSL 
complex. Between this and the 3’ stem loop (right) there is no identified element 
necessary for RNA function. The 200 bp roX1 DNase hypersensitive site (DHS) 
is shown as a gray box on the roX1 DNA. This sequence attracts the MSL 
complex. The “roX boxes” (black) are at the right. This is based on (Kageyama et 
al., 2001; Park et al., 2003; Stuckenholz et al., 2003; Park et al., 2008). 
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loops (Kelley et al., 2008; Park et al., 2008). Transgenes deleted for the stem 

loop or with disrupted pairing of the stem have low rescue of roX1 roX2 males in 

spite of substantial recruitment of MSL proteins to the X chromosome 

(Stuckenholz et al., 2003). The stem loop is therefore expected to influence 

chromatin modification or gene activation by the MSL complex, rather than X 

chromosome targeting. This is supported by studies revealing that the histone 

acetyltransferase activity of the MSL complex requires elements in the 3' end of 

roX1 (Kelley et al., 2008; Park et al., 2008; Stuckenholz et al., 2003). A weakly 

conserved 200 bp sequence within each roX gene strongly attracts the MSL 

proteins and forms a male-specific DNaseI hypersensitive site (Kageyama et al., 

2001; Park et al., 2003). The roX1 DNaseI hypersensitive site (DHS) acts as an 

enhancer of roX1 transcription in males and a repressor in females (Bai et al., 

2004). However, internal deletions of roX1 lacking the DHS are still regulated in a 

sex-specific manner, and roX1 alleles and transgenes lacking this sequence 

retain full activity (Deng et al., 2005; Rattner and Meller, 2004; Stuckenholz et al., 

2003). Although the role of the DHS remains speculative, all evidence points to 

its function as DNA, rather than RNA.  

Deletion of 1 kb at the 5’ end of roX1 also destroys activity. When large 

portions of this region are removed by internal deletion, roX1 activity is reduced 

commensurate with the amount deleted (Deng et al., 2005). Small (<300 bp) 

deletions scanning the 5’ end have failed to identify discrete elements, 

suggesting redundancy (Stuckenholz et al., 2003). Males that carry a roX1 allele 

with a large part of the 5’ end missing display ectopic MSL binding and reduced 
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coverage of the X chromosome, suggesting that this region is necessary for 

recognition of the X chromosome (Deng et al., 2005). An internal deletion of 2.4 

kb that retains 0.8 kb of 5’ end and 0.6 kb of the 3’ end, including the stem loop, 

supports full male survival (Deng et al., 2005). However, simultaneous 

expression of separate 3’ and 5’ fragments of roX1 does not rescue either MSL 

localization or male survival (Meller and Rattner, 2002; Stuckenholz et al., 2003). 

Taken together, these observations suggest that roX activity requires 

simultaneous interaction with different molecules. An attractive model is that roX1, 

like Xist, has distinct domains necessary for X chromosome localization and 

gene activation. 

The major roX2 splice form is 600 bp, but a multitude of alternative roX2 

splice forms with decreased activity has been found (Park et al., 2005). roX2 

molecules with different levels of activity may modulate the activity of the MSL 

complex, thus fine-tuning the level of X chromosome activation. 

 

MSL proteins have RNA-binding activity 

MLE is an ATP-dependent RNA/DNA helicase with higher activity on RNA 

substrates (Lee et al., 1997). The ATPase activity is necessary for transcriptional 

enhancement by the MSL complex (Morra et al., 2008). The helicase activity of 

MLE is essential for normal localization of the MSL complex on the X 

chromosome, and for movement of the roX RNAs from their sites of synthesis, 

suggesting that MLE may integrate roX into the mature MSL complex (Gu et al., 

2000; Meller et al., 2000; Morra et al., 2008). MLE itself does not interact with 



15 
 

 
 

other MSL proteins and can only be coimmunoprecipitated under nonstringent 

conditions using antibodies that pull down other MSL proteins (Smith et al., 2000). 

MLE can be released from polytene chromosomes by RNase A digestion, 

suggesting that it associates with the MSL complex through an RNA (Figure 2B; 

(Richter et al., 1996)). The stability of roX1 is particularly dependent on MLE, 

supporting the idea of a direct interaction between these molecules (Meller, 

2003).  

Both MSL3 and MOF have RNA-binding activity in vitro and their 

localization on the X chromosome is destabilized by RNase digestion (Akhtar et 

al., 2000; Buscaino et al., 2003). Both proteins have variant chromo domains that 

have been implicated in RNA binding. Whereas the canonical chromo domains of 

Heterochromatin protein 1 (HP1) and Polycomb (Pc) contain aromatic residues in 

a recognition site that binds methylated histones, the variant structures found in 

MOF and MSL3, named chromo barrel domains, may have different functions 

(Bannister et al., 2001; Lachner et al., 2001). The MOF chromo barrel domain 

lacks particular residues that recognize methylated peptides (Nielsen et al., 

2005). This region contributes to MOF’s ability to bind RNA in vitro (Akhtar et al., 

2000). The chromo barrel domain of MSL3 has also been implicated in RNA 

binding, but retains the aromatic residues necessary for methyl group binding 

(Nielsen et al., 2005). A previous study showed that mutation of the MSL3 

chromo barrel domain prevents increased transcription of X-linked genes, but 

does not affect localization of the complex to the X chromosome (Buscaino et al., 

2006). However, a later study showed that the MSL3 chromo barrel domain binds 
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histone H3 Lysine 36 trimethylation (H3K36me3), and this is essential for MSL 

spreading into transcribed regions of the X chromosome (Sural et al., 2008). The 

failure of Buscaino et al. to see any effect of mutation of the MSL3 chromo barrel 

domain on binding of the complex to the X chromosome may due to the low 

resolution of polytene chromosome immunostaining. The decreased expression 

of X-linked genes in the MSL3 chromo barrel domain mutant is likely the result of 

failure of the MSL complex to spread onto active genes. 

The H4 acetyltransferase activity of MOF is greatly increased by 

association with MSL1 and MSL3, suggesting a mechanism for limiting MOF 

activity until it assembles with a regulatory complex (Morales et al., 2004). MSL1, 

2, 3, and MOF continue to associate in the absence of roX, but only low levels of 

H4K16ac are detected at sites bound by these proteins (Deng and Meller, 2006). 

This may reflect a reduced MOF activity in the absence of roX RNA. Taken 

together, these studies suggest that multiple RNA/protein and protein/protein 

contacts within the MSL complex are necessary for precise regulation of the 

activity of the MSL complex. 

 

Do roX and MLE recruit a preexisting chromatin-binding complex? 

The discovery that the yeast NuA4 transcriptional regulator contains 

subunits similar to MSL3 and MOF, and characterization of a mammalian 

complex containing MSL homologs suggests that the association of these 

proteins is ancient (Eisen et al., 2001; Marin and Baker, 2000; Smith et al., 2005; 

Taipale et al., 2005). Human MOF (hMOF) participates in multiple protein 
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assemblies and is required for normal function of human ATM (ataxia-

telangiectasia-mutated) protein in DNA repair (Gupta et al., 2005; Taipale et al., 

2005). 

roX RNAs have only been identified in closely related Drosophilids, but 

helicases with similarity to MLE have been identified from yeast to mammals 

(Park et al., 2003; Sanjuan and Marin, 2001). MLE homologs have not yet been 

isolated in complexes of MSL-like proteins outside of flies. MLE has a peripheral 

association with the fly MSL complex, and is presumably tethered by RNA. It thus 

seems plausible that the addition of MLE to the MSL complex depends on the 

presence of roX. The importance of roX in correct targeting of the MSL complex 

suggests that the addition of noncoding RNA was a major step in recruitment for 

the purpose of X chromosome compensation. 

 

Recognition of X chromosomes 

A mechanism that targets changes in expression to a single chromosome 

is a fundamental requirement of dosage compensation. Two distinct strategies 

for accomplishing this have been described. The chromosome may be controlled 

by a cis-acting element. The Xic is a strong cis-acting element capable of 

directing silencing to the entire X chromosome (Figure 1-4 A). The Xic can also 

silence autosomal chromatin if inserted on an autosome (Lee and Jaenisch, 1997; 

Lee et al., 1996; Wutz and Jaenisch, 2000). Xist RNA produced from the Xic 

does not work in trans, thus protecting one X chromosome from inactivation. An 

alternative  mechanism  for  distinguishing  a  chromosome  is  finely  dispersed 
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Figure 1-4. Strategies for X chromosome recognition in mammals, flies and 
worms. (A) One of two X inactivation centers present in females produces Xist 
RNA (top left). The chromosome carrying this allele becomes the inactive X 
(shaded). A transgene carrying Xist can silence autosomal chromatin in cis 
(shaded, right). (B) The C. elegans X chromosome is distinguished by sequence 
elements (gray shading). The distribution of these elements is uneven, leaving 
large gaps (white). The repressive DCC spreads into these gaps from flanking 
regions. Segments separated from the rest of the X chromosome attract the DCC 
if they have X-recognition sequences (autosomal insertion, top) but remain 
uncompensated if they lack these elements (autosomal insertion, bottom). (C) 
The Drosophila X chromosome is finely marked by sequences that attract the 
MSL complex (gray). Translocated X chromosome fragments are recognized 
accurately (autosomal insertion, bottom). Weak and scattered MSL-binding sites 
on the autosomes do not attract the MSL complex in normal males (gray lines, 
right). roX1 and roX2 (vertical black lines) produce roX RNA and are cis-acting 
elements that enhance recognition of the X chromosome. A roX transgene (top 
right) enables MSL binding to closely linked autosomal sites. The roX transgene 
also produces transcript that acts in trans to compensate an X chromosome. 
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sequence elements. Two short sequences that participate in recognition of the C. 

elegans X chromosome have been identified (McDonel et al., 2006). Interestingly, 

these are not exclusive to the X but are found near one another on the X 

chromosome. This suggests that cooperativity between multiple DNA-binding 

molecules underlies recognition X chromatin in worms. However, large regions of 

the C. elegans X chromosome fail to bind the repressive dosage compensation 

complex (DCC) when separated from the X chromosome, but are coated by it 

when on the X chromosome (Figure 1-4 B) (Csankovszki et al., 2004). This 

indicates that the ability of the DCC to spread in cis is necessary for a complete 

coverage of the C. elegans X chromosome. 

Translocated segments of the Drosophila X chromosome are faithfully 

recognized by the MSL complex, indicating the presence of finely distributed 

sequences marking this chromosome (Figure 1-4 C, (Fagegaltier and Baker, 

2004; Oh et al., 2004)). In addition, autosomal roX transgenes can fully rescue 

male viability, indicating that roX RNA can act in trans to its site of synthesis. But 

under some conditions, autosomal roX insertions also direct MSL binding to 

chromatin flanking the insertion site (Kelley et al., 1999; Park et al., 2002). 

Regional spreading of chromatin modification from the roX genes can also be 

observed on the X chromosome (Bai et al., 2007; Oh et al., 2003). It therefore 

appears that recognition of the Drosophila X chromosome involves strong, cis-

acting elements as well as sequences identifying the X chromosome. 

Subdivision of DNA clones that recruit the MSL complex and a functional 

assay for MSL recruitment have identified short sequences that contribute to 
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MSL binding (Dahlsveen et al., 2006; Gilfillan et al., 2007; Oh et al., 2004). These 

sequences are divergent and display a wide range in affinity for the MSL proteins. 

More recently, ChIP-chip and ChIP-seq studies identified over one hundred MSL 

High Affinity Sites (HAS), also called Chromatin Entry Sites (CES) on the X 

chromosome (Alekseyenko et al., 2008; Straub et al., 2008). These are regions 

that retain residual MSL binding in an msl3 mutant background. A GA-rich MSL 

recognition element (MRE) has been identified within the CES (Alekseyenko et 

al., 2008). However, the MRE consensus is only two-fold enriched on the X 

chromosome, compared to the autosomes (Alekseyenko et al., 2008; Straub et 

al., 2008). Many MREs on the X chromosome do not reside within a CES. 

Therefore, the MRE is not the only feature that forms a CES or distinguishes X 

and autosomal chromatin. An attractive hypothesis is that a dense distribution of 

MREs and weak recruitment sites act cooperatively to mark the X chromosome 

(Dahlsveen et al., 2006; Demakova et al., 2003; Fagegaltier and Baker, 2004). 

Local elevation of the MSL complex by strong sites will enable weaker ones to be 

bound. The DHS within the roX1 and roX2 genes are extraordinarily strong MSL 

recruitment sites (Kageyama et al., 2001). Both roX genes can induce binding of 

the MSL complex in autosomal chromatin flanking transgene insertions, likely 

due to enhancement of weak autosomal binding sites (Dahlsveen et al., 2006; 

Kelley et al., 1999). Although not absolutely essential for compensation, the 

situation of the roX DHS on the X chromosome will enhance recognition of the X. 

Additional features, such as features linked to actively expressed genes might be 

also important to distinguish functional MREs on X chromosome. 
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X chromosome binding of the MSL proteins is disrupted in roX1 roX2 

males, but these proteins continue to colocalize at ectopic autosomal sites. The 

roX transcripts are therefore not essential for chromatin binding, but ensure high 

selectivity of the intact MSL complex for the X chromosome. Assembly with roX 

might enhance the ability of the MSL complex to recognize sequence elements 

on the X chromosome. Alternatively, a change in the complex following roX 

incorporation could promote cooperative binding at closely situated sites. This 

would favor the X chromosome, proposed to have dense mix of strong and weak 

sites, over the autosomes, which have more scattered sites capable of recruiting 

MSL proteins (Demakova et al., 2003).  

The distribution of the MSL complex in the body of active genes suggests 

that localization is largely established by transcriptional activity (Alekseyenko et 

al., 2006; Gilfillan et al., 2006; Legube et al., 2006). This could occur by 

association with the transcription machinery or interaction with nascent 

transcripts. Alternatively, the MSL complex could be targeted to modified 

histones in the wake of a transcribing polymerase. The MSL3 chromodomain 

binds histone H3 Lysine 36 trimethylation (H3K36me3), which marks active 

genes, supporting this mechanism (Sural et al., 2008). These methods would 

identify transcribed regions, but are unable to distinguish between X-linked and 

autosomal genes. The current model for establish MSL binding is a two step 

model: first, sequence-dependent MSL recognition of specific chromatin entry 

sites on the X chromosome occurs, followed by sequence-independent 

spreading to active genes. Closely linked genes will be transcribed in proximity to 
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one another, and thus may be influenced by their neighbors. Linked mammalian 

genes often associate at “transcription factories” (Osborne et al., 2004). Although 

there is no evidence for analogous transcription factories in Drosophila, 

identification of nuclear pore proteins in association with the MSL complex 

suggests recruitment to a particular region of the nucleus. It is possible that some 

elements marking the X chromosome direct transcribed genes to regions where 

MSL loading can occur, rather than interacting directly with the MSL complex 

itself. For example, a male-specific conformation of the X chromosome that 

clusters the CES may facilitate distribution of the MSL complex along the X 

chromosome (Grimaud and Becker, 2009). 

 

Concluding remarks 

Dosage compensation in Drosophila is a remarkable model for the study 

of epigenetic regulation. It is also rich in common principles of chromatin-based 

transcription control. Regulation of the male X chromosome involves histone 

modifications that are proposed to act by increasing the speed, processivity, or 

reinitiation rate of RNA polymerase. Similar mechanisms will be relevant for the 

regulation of all eukaryotic genes. Modification of the Drosophila X chromosome 

is directed by cues including cis-acting DNA elements, transcriptional activity and 

possibly recruitment to regions where MSL loading is promoted or transcription is 

facilitated. Together these produce highly selective recognition and modulation of 

a single chromosome. Understanding how noncoding RNAs such as roX 
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coordinate this process will enhance our understanding of epigenetic processes 

in all eukaryotes. 

 

Project outline 

Non-coding RNAs are postulated to be involved in gene regulation in 

many different ways. One of the important ways is the involvement of roX RNA in 

the chromosome-wide gene regulation that occurs during dosage compensation 

in Drosophila. In this dissertation, I present my work on the structural and 

functional analysis of roX1 RNA. In Chapter 1, I introduce background 

information about dosage compensation, the MSL complex, recognition of X 

chromosome and how the MSL binding pattern is established.  

In Chapter 2, I examine whether roX RNA contributes to the expression of 

autosomal genes in Drosophila females. I show that roX1 has no detectable 

affect on gene expression in females, although present in female embryos. I also 

analyze candidate regions suspected of involvement in regulating autosomal 

genes.  

In Chapter 3, I dissect the function of the 5' end of roX1, a region critical 

for localization of the MSL complex. I describe the generation and analysis of 

roX1 transgenes containing different sections of the 5’ end. I show that multiple 

redundant elements contributing to X chromosome targeting are present 

throughout the 5’ end of roX1. I also show that the extreme 5’ roX1 region has a 

unique function that promotes MSL complex spreading from sites of roX1 

transcription. Paradoxically, a transgene containing this region is unable to recruit 
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MLE to the X chromosome. I then show that all of the 5’ roX1 transgenes display 

different stability, but all can partially restore X-linked gene expression in roX 

mutant. roX1 has multiple transcription start sites that produce several isoforms. 

My work suggests that the choice of transcription start site will have a striking 

effect on roX1 function. 

Data from these studies provide initial insight into the mechanism of a 

chromosome-wide regulation by a large non-coding RNA. Our results generate 

some interesting questions. Chapter 4 is a summary of my study and 

perspectives for future study that are based on my findings. 
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CHAPTER 2 

 

FUNCTION OF roX RNAS IN REGULATION OF AUTOSOMAL GENES IN 
DROSOPHILA  

 

Part of the work described in this chapter has been published in ‘Deng X., 

Koya S.K., Kong Y., and Meller V.H. (2009) Coordinated regulation of 

heterochromatic genes in Drosophila melanogaster males. Genetics. 182(2): 

481-491.’ 

 

INTRODUCTION 

 

Many organisms have two X chromosomes in females but only one X 

chromosome and a Y chromosome in males. The X chromosome is gene-rich 

and majorly euchromatic. By contrast, the Y chromosome is often gene-poor, and 

largely heterochromatic (Charlesworth, 1991). Highly differentiated sex 

chromosomes result in imbalance of the dosage of X-linked genes that is fatal if 

not addressed early in life. Dosage compensation is the process which equalizes 

expression of X-linked genes between males and females. Although strategies 

for equalizing expression differ between species, there is a unifying theme which 

involves a coordinated regulation of the whole X chromosome through 

modulation of chromatin architecture. This is mediated by selective recruitment of 

chromatin modifying proteins (Lucchesi et al., 2005). In Drosophila, the male 

specific lethal (MSL) complex is the chromatin modifying complex which 
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selectively binds the male X chromosome and increases expression from the 

male X chromosome about two fold to achieve the dosage compensation. 

The MSL complex is composed of both proteins and noncoding RNAs. 

Two noncoding RNAs, roX1 and roX2 (RNA on the X 1 and -2), are essential 

components of MSL complex (Meller and Rattner, 2002). roX RNAs assemble 

with five MSL proteins, the Male Specific Lethals 1, -2, and -3 (MSL1, MSL2, and 

MSL3), Maleless (MLE) and Males Absent On First (MOF), to form the complex. 

The MSL complex binds numerous sites on the X chromosome and acetylates 

histone H4 on lysine 16 (H4K16ac), which ultimately increases expression of the 

whole X chromosome (Akhtar and Becker, 2000). roX1 and roX2 RNAs are 

functionally redundant. Deletion of a single roX gene shows no phenotype, but 

simultaneous mutation of both roX genes is lethal in males (Meller and Rattner, 

2002). A microarray study of roX1 roX2 male larvae revealed a global decrease 

of X-linked gene expression, which confirmed that roX RNAs are necessary for 

full expression of dosage compensated genes in males (Deng and Meller, 2006). 

The highly specific binding of the MSL complex to the X chromosome 

suggested the idea that the MSL components contribute solely to X-linked gene 

expression. However, expression of virtually all genes on the small fourth 

chromosome also decreased in the absence of both roX transcripts (Figure 2-2A, 

B, (Deng et al., 2009)). This finding suggested that there are other functions of 

MSL components beyond dosage compensation. In agreement with this, some of 

the MSL proteins act as general transcriptional regulators outside of the complex. 

Both MLE and MOF are found at autosomal sites of active transcription in males 
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and females (Kind et al., 2008; Kotlikova et al., 2006). But their role as general 

transcriptional regulators is not essential, as mutations in mle and mof are not 

lethal in females. 

The fourth chromosome of Drosophila is a tiny chromosome, containing 

only around 100 genes. It is enriched for heterochromatin, consisting of 

interspersed heterochromatic and euchromatic regions (Locke et al., 1999; 

Riddle and Elgin, 2006). Many fourth-linked genes contain these heterochromatic 

regions. Genes within or near heterochromatin have specialized regulatory 

features that enable their expression in this repressive environment (Yasuhara 

and Wakimoto, 2006). It is possible that the heterochromatic feature of the fourth 

chromosome contributes to its regulation by roX RNAs. Studies in our lab 

confirmed that roX RNAs are required for full expression of heterochromatic 

genes in male larvae, including those on the fourth chromosome and in 

heterochromatic regions of the second and third chromosomes (Figure 2-3A, 

(Deng et al., 2009)). 

Investigation of the genetic basis of heterochromatic regulation revealed 

that MSL1, MSL3 and MLE, but not MSL2, are also necessary for normal 

expression of heterochromatic genes in males (Deng et al., 2009). MSL2 is the 

only member of the MSL complex that is only expressed in males, thus limiting 

MSL complex assembly to males (Rastelli et al., 1995). Regulation of 

heterochromatic genes is therefore not mediated by the intact MSL complex. All 

of the MSL proteins necessary for regulation of heterochromatic genes are 

present in females (Rastelli et al., 1995). roX1 is also present in female embryos 
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(Meller, 2003). Since females have roX1, and the MSL proteins necessary for 

regulation of heterochromatic genes, I asked if roX RNA also regulates 

heterochromatic gene expression in females. To do this, I compared genome-

wide expression in roX1 roX2 females with that of control females. I discovered 

that roX RNAs do not affect expression of the female fourth chromosome and 

heterochromatic genes, revealing that regulation of these genes by roX RNAs is 

male-limited.  

What limits roX-dependent regulation of heterochromatic genes to males 

is still mysterious. Our preliminary data suggested a candidate roX1 region that 

might contribute to regulation of heterochromatic genes. I tested this by 

comparing gene expression in roX1 roX2 males carrying transgenes with and 

without this region. I found that this region has no influence on the expression of 

heterochromatic genes. Sexlethal (SXL) is a multifunctional RNA-binding protein 

that controls sexual differentiation in flies. The SXL protein is only expressed in 

females and determines the sexual development by modulating the expression of 

a set of downstream genes (reviewed in (Salz and Erickson, 2010)). It is 

expected that all sex-limited processes will be directly or indirectly regulated by 

SXL. SXL inhibits expression of MSL2 in females (Bashaw and Baker, 1997; 

Kelley et al., 1997; Penalva and Sanchez, 2003). MSL2 is, in turn, essential for 

roX expression and stability in older animals, but not in embryos (Rattner and 

Meller, 2004). roX1 has two potential SXL binding sites in a small intron (Figure 

2-5A, (Meller et al., 1997)). The function, if any, of these sites is unknown, but it is 

possible that they bind SXL in females, limiting the ability of roX1 to regulate 
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heterochromatin. I examined the possibility that SXL binding to roX1 inhibits its 

function in female heterchromatin by comparing gene expression in females 

carrying transgenes lacking the SXL binding site to wild type females. I 

demonstrated that deletion of the SXL binding site did not enable roX1 to 

regulate heterochromatic genes in females. 
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MATERIALS AND METHODS 

 

Drosophila strains 

Flies were maintained in vials containing standard cornmeal agar media at 

25°C. The roX1SMC17A and roX1ex33A mutations have been previously described 

(Deng et al., 2005). Df(1)52 is a lethal deletion of roX2 and essential flanking 

genes. Elimination of roX2 is accomplished by complementing Df(1)52 with 

[w+4∆4.3], a cosmid insertion carrying essential deleted genes but lacking roX2 

(Meller and Rattner, 2002). For convenience this combination is referred to as 

roX2.  

 

Generation of a full length roX1 expression construct  

To create a full length roX1 transgene, the 5’ end of a slightly truncated 4.1 

kb roX1 genomic fragment (roX1 bp 42-4165, numbering from (Amrein and Axel, 

1997) is used throughout) was replaced by a fragment containing the entire 5’ 

end of roX1 (starting from roX1 bp -78). The missing 5’ fragment was generated 

by PCR amplification of genomic DNA from wild type flies using oligonucleotides 

roX1 F-78 and roX1 R1262 (Table 2-1), and subcloned into pCR4-TOPO 

(Invitrogen). A BamHI site is present in roX1 F-78 and a MluI site is present in 

roX1 R1262. A 1.3 kb roX1 BamHI-MluI fragment from the pCRT-TOPO clone 

was used to replace a 1.2 kb BamHI-MluI fragment from the existing roX1 clone. 

The full length roX1 was released by EcoRI and ligated into a modified pUASTB. 

pUASTB is a transformation vector carrying an attB site and a mini-white gene 
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(Groth et al., 2004). pUASTB was modified by introducing the strong and 

constitutive hsp83 promoter. The hsp83 promoter was amplified from the 

pCasper HS83T3 vector (Meller et al., 2000) by PCR (primers in Table 2-1). A 

KpnI site was introduced at the 5’ end and BamHI, EcoRI and SacII sites were 

introduced at the 3’ end. A KpnI-SacII fragment containing the hsp83 promoter 

was subcloned in the pUASTB vector. The unique BamHI and EcoRI sites were 

used to clone roX1 adjacent to the promoter. 

 

Generation of transgenic flies 

The full length roX1 transgene was integrated at 16C1 on the X 

chromosome and at 68A4 on the third chromosome using the site-specific C31 

integrase system (Groth et al., 2004). Stocks with an insertion of an attP landing 

site P[y+CaryattP] at 68A4 were obtained from the Bloomington Drosophila stock 

center. Mobilization of this P element was accomplished by introducing a 

transposase source (TMS, Sb P[ry+t7.2∆2-3]99B) and selecting for insertions on 

the X chromosome (P. Frolov, unpublished). The exact location of the 16C1 X-

linked insertion was determined by inverse PCR and sequencing (Inverse PCR 

Protocol available from Berkeley Drosophila Genome Project; http://www.fruitfly. 

org/about/methods/inverse.pcr.html). My construct was injected into Drosophila 

embryos derived from mating female virgins carrying P[y+CaryattP] with males 

having a C31 integrase transgene on the third chromosome. Adult flies derived 

from injected embryos were mated to yw, and transgenics expressing the mini-

white marker identified in their offspring. Transgenics were made homozygous, 
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Table 2-1.  Primers used for creation and confirmation of roX1 transgenes, 
and for confirmation of integration. 
 

Primers Sequences (5’ – 3’) 

roX1 F-78 AGGATCCGAATTCGCGGCGTTACCGGCTCG 

roX1 R1262 GTACGCGTCTTCTCGAAACGCAAGTGGCGA 

hsp83 Link F ATGGTACCGATGATCCTTAACGGGGAACTTG 

hsp83 Link R AGCCGCGGGAATTCGGATCCTCGACGGTATCGATAAGCTAG 

hsp83 662F TTCGGACCACTTAGACGAATTT 

roX1 F8 TCAGTGTTCAGCACCTCGTC 

roX1 R8 TTTTGGGCACTTGGTGAAG 

y1456F GGTCCACCGTTATATACGAAACA 

BPR08wh TAGCTCCTGATCCTCTTG 

attB_210R TGACCGTCGAGAACCCGCTGACG 
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and integration of the transgenes was verified by single fly PCR using primers in 

the P[y+CaryattP] target site (y1456F) and pUASTB transgene (BPR08wh) (Table 

2-1). 

 

Generation of roX1 roX2 and control females with identical genetic 

background 

The genotype of mutant females used for the Microarray gene expression 

study is roX1SMC17A roX2. roX1SMC17A is a severe roX1 allele that has a complex 

rearrangement with bp 204–2362 replaced by a LacZ gene, the SV40 poly 

adenylation signal and 3’ P-element end (Deng et al., 2005). All subsequent 

studies in this chapter use this allele. A previous study to compare gene 

expression in roX1 roX2, roX1+ roX2 and roX1 roX2+ females produced 

ambiguous results, probably because of differences in genetic background 

between strains. To eliminate this effect, roX1SMC17A roX2 mutant and control 

females that have identical genetic background were generated. Control females 

contain the same roX1SMC17A roX2 X chromosome, but carry a [w+Hsp83-roX1+] 

transgene. The [w+Hsp83-roX1+] transgene is a 4.1 kb roX1 genomic fragment 

(roX1 bp 42-4165) driven by the hsp83 promoter. It rescues both male survival 

and X localization of the MSL proteins (V. Meller, data unpublished). The genetic 

crossing scheme to generate control females is shown in Figure 2-1. 

 

Total RNA isolation  

Total RNA was extracted from three groups of fifty third instar larvae of  
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Figure 2-1. The crossing scheme for generating mutant and control females 
with identical genetic background for microarray study. “+” represents a wild 
type chromosome, X means cross. 

 
 

 
 
 
 
 
 
 



35 
 

 
 

each genotype using TRIzol (Invitrogen). Briefly, fifty third instar larvae were 

homogenized in 1ml of TRIzol by Tissue Tearor (Model 985-370, Biospec 

Products, Inc.). After centrifugation at 12000 rpm for 12 minutes, the supernatant 

was transferred into a new tube, mixed with 0.2ml chloroform and centrifuged 

again at 12000 rpm for 15 minutes. The aqueous phase was transferred into a 

new tube. Total RNA was precipitated by adding 0.5ml of isopropanol to the 

aqueous phase. The RNA pellet was washed with 75% ethanol, air dried, and 

dissolved in 50µl RNase-free water. Total RNA was then purified using the 

RNeasy Mini Kit following instructions (Qiagen).  

 

Quantitative RT–PCR 

1µg of total RNA was reverse transcribed at 42 °C for 1 hour using random 

hexamers and ImProm-II reverse transcriptase (Promega). The reverse 

transcription reaction consisted of 1 µg RNA template, 0.5 µg random hexamers 

(primers), 3 mM MgCl2, 0.5 mM dNTP mix, 0.5 µl Recombinant RNasin (RNase 

inhibitor), 1 µl ImProm-II reverse transcriptase (Promega) and 4 µl 5XImProm-II 

reaction buffer in a total volume of 20 µl. Quantitative PCR was performed as 

previously described (Deng et al., 2005) using an Mx3000P Realtime PCR 

system (Stratagene). Briefly, two PCR reactions for each template were 

performed in parallel. Each PCR reaction consisted of 5 µl cDNA template (1:20 

dilution), 0.3 µM of each primer, and 12.5 µl 2XSYBR Green PCR Master Mix 

(Applied Biosystem) in a total volume of 25 µl. Q-RT–PCR data were analyzed 

by the efficiency corrected comparative quantification method (Pfaffl, 2001). Ct 
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Table 2-2.  Primers used for Q-RT-PCR analysis of gene expression*. 

Genes Primers Sequences (5’ - 3’) Primer work Con. (nM) Efficiency (%) 

Dmn Dmn F GACAAGTTGAGCCGCCTTAC 300 98.5 
 Dmn R CTTGGTGCTTAGATGACGCA 300  
Ytr Ytr F ATTTTGGACCAGCACCACTC 300 90.6 
 Ytr R CAAAATCCCTGCAATTTCGT 300  
LanB1 LanB1 F TCAACGAGCACCTGATTCAC 300 94.5 
 LanB1 R GCAAATGGATGTTTCCCAAT 300  
Xbp1 Xbp1 F GGGAGAGCAACTTTGACGAG 300 97.1 
 Xbp1 R GCCGGCCAAACTTAACAATA 300  
Atp-a Atp-a F ACCCACACTGCTACACTCCC 300 106.3 
 Atp-a R TCCTGGTTGCTCTTGTTGTG 300  
Dip-B Dip-B F AGGATCACGCCAGAAGACTG 300 92.8 
 Dip-B R AGTCACTGGGACGGAGAATG 300  
CKII CKII F CCTGGTTCTGTGGACTTCGT 300 98.4 
 CKII R GTAGTCCTCATCCACCTCGC 300  
skpA skpA F CTAAAAGTCGACCAGGGCAC 300 90.4 
 skpA R CCAGATAGTTCGCTGCCAAT 300  
CG1702 CG1702 F GACATCTTTGCAGCCTGTGA 300 92.7 
 CG1702 R GCCCTGATCTTGGGGTACTT 300  
Ppv Ppv F TTGACCACCCATGAACTCAA 300 94.2 
 Ppv R GTGTTTGCTATGCTTGGGGT 300  
Arc70 Arc70 F ATCGTACAACAACGAGCCCT 300 86.4 
 Arc70 CAGCGTGAAAGAAACGTCAA 300  
cals cals F AGTTTGTCAGCCCTCACCTT 500 89.2 
 cals R CTCCTATGCATTGCGACAGA 500  
Ephrin Ephrin F TTGCAATTCTTGGCATTCAC 300 95.2 
 Ephrin R CATAGAGGTCGCGGTGATTT 300  
plexA plexA F AAAGCAGCGATTGGCTTTTA 500 86 
 plexA R GGCGCAGCTCTTATTCTGAC 500  
plexB plexB F AACGGAACCACAAAAGATCG 300 98.8 
 plexB R ATGTTACCGAGCGAACCAAC 300  
Rad23 Rad23 F GCGGATAACGAAGACTTGGA 300 99 
 Rad23 R TAGCCGTTCTATTGCGTCCT 300  
Crk Crk F AACATTAATGGGCAATGGGA 300 92.6 
 Crk R CATCGACAAATTCAACGTGC 300  
unc-13 unc-13 F GCGTTGGACGACTTAGCTTC 300 99.9 
 unc-13 R CATGTCTCCAAGTTCTCGCA 300  
Ank Ank F TGCAGAGTTTGGCACTCATC 300 100.1 
 Ank R TCGCCATCTTTTTCAATTCC 300  
Mav Mav F GATAAAATCGACGAGGCCAA 300 104.4 
 Mav R TTTTCCTAGATCCTGGCCCT 300  

 
*Information from X. Deng dissertation. 
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values for three biological replicates (each containing two technical replicates) 

per genotype were averaged into one Ct value per gene (performed by Mx3000P 

software, Stratagene). Statistical significance was assessed by performing an 

unpaired two-tail t test. A total of 19 genes were selected from three different 

gene groups (Autosomal, fourth chromosomal, and X chromosomal). The 

selected genes were expressed at moderate levels, displayed uniform 

absorbance in arrays of the same genotype, and reflected the average change in 

expression for their gene group in roX1 roX2 males. The autosomal gene Dmn 

was selected as a reliable transcript for expression normalization (data not 

shown). The primers used in this study are presented in Table 2-2. 

 

Gene expression microarrays  

Total RNA was prepared from three groups of 50 third instar larvae of both 

genotypes. Each RNA preparation served as a template for probe synthesis. A 

total of six probes were made: three from female roX1 roX2 larvae, and three 

from female roX1 roX2 larvae carrying the [w+Hsp83-roX1+] transgene. Probes 

were synthesized at the ATGC core facility following manufacturer’s instructions 

(www.Affymetrix.com). Hybridization of Affymetrix Drosophila Genome 2.0 chips 

(Santa Clara, CA) was also performed at the core facility. Background corrected 

intensity values were quantile normalized (Irizarry et al., 2003). In brief, all probe 

intensities from mutant and control arrays were assembled into a single ranking. 

Probes from individual chips were assigned the value of the corresponding 

quantile, thus preserving the rank order within a chip and standardizing intensity 
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distribution across all chips. Signal intensities were summarized into one 

expression value per sample and probe set using the robust multi-array average 

(RMA) algorithm. The Affymetrix MAS5.0 Present/Absent calls were used to filter 

out probe sets not present in at least two out of three replicates of each genotype. 

Genes and probe sets (Berkeley Drosophila Genome Project annotation 

release 5.8) were sorted to enrich for heterochromatic genes on the basis of the 

boundaries between heterochromatic and euchromatic regions (Hoskins et al., 

2007; Smith et al., 2007). The coordinates of these boundaries are: 2R;1-

1285689, 2L;22000975-23011544, 3R;1-378656, 3L;22955576-24543557, 

X;22030326-22422827. The coordinates for heterochromatin that is not 

contiguous with assembled arm sequences are 2LHet;1-368872, 2RHet;1-

3288761, 3LHet;1-2555491, 3RHet;1-2517507, XHet;1-204112, YHet; 1-347038. 

Only probe sets assigned to a chromosome were used. Genes and probe sets 

assigned to heterochromatic regions were obtained from FlyBase GBrowse. The 

corresponding gene and probe set information was obtained from the Affymetrix 

Drosophila_2 annotation file (Drosophila_2.na25) released on March 17, 2008 

(Liu et al., 2007). Detailed microarray information is present in Appendix A. 

 

Statistical methods and descriptions 

The log2 fold change of each gene was computed as the log2 mean RMA 

expression of mutant samples minus the log2 mean RMA expression of control 

samples. The significance of differences between groups was assessed by the 

Wilcoxon test. Analyses were performed in the R software environment (www.r-
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project.org) using Bioconductor (www.bioconductor.org) (Gautier et al., 2004). 

The raw data can be downloaded from the Gene Expression Omnibus (http:// 

www.ncbi.nlm.nih.gov/geo,GSE12076). 
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RESULTS 

 

Females do not require roX for full expression of genes in heterochromatic 

environments 

Simultaneous mutation of roX1 and roX2 is lethal for male adults, but 

males mutated for only one roX gene are normal with full survival. A microarray 

study conducted to compare genome wide expression in roX1 roX2 males (null 

for roX function) and roX2 (control) males primarily showed a global decrease of  

expression from the entire fourth chromosome, as well as X chromosome (Figure 

2-2, A and B, (Deng et al., 2009; Deng and Meller, 2006)). The roX RNAs are 

redundant for their effect on fourth-linked genes, as well as for dosage 

compensation (Deng et al., 2009). The data that suggested a roX-dependent 

fourth chromosome regulation is based on a study of male flies. However, the 

idea that autosomal genes are regulated the same way in males and females is 

more plausible. roX1 is abundant in early development stages of both sexes, and 

thus might contribute to the expression of fourth-linked genes in both sexes 

(Meller, 2003). Studies by our lab showed that MSL1, MSL3 and MLE are also 

necessary for normal expression of fourth-linked genes in males. All MSL 

proteins, except MSL2, which is not necessary for regulation of fourth-linked 

genes, are also present in females (Deng et al., 2009; Rastelli et al., 1995). To 

investigate the effect of loss of roX transcripts on expression of fourth-linked 

genes in females, microarrays were performed to compare the genome wide 

expression between roX1 roX2 and roX1 roX2; [w+Hsp83-roX1+] female larvae.  
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Figure 2-2. Expression of the fourth chromosome is reduced in roX1 roX2 
males but not in females. (A) In roX1SMC17A roX2 males the expression of 
fourth-linked genes (blue) decreases in comparison with the rest of the genome 
(gray). Points represent the log2 of the ratio of gene expression in roX1SMC17A 
roX2 males to control males (roX2) plotted against expression level (log2 
absorbance). There are 9880 non-fourth-linked genes and 74 fourth-linked genes 
plotted. (B) The density distribution of log2 expression (mutant/control) for fourth-
linked genes (blue) and second and third chromosome genes (gray) in males. 
The distribution of fourth-linked genes differs significantly from the remaining 
autosomal genes (adjusted P-value 6.6X10-16; Wil-coxon test). (C) In roX1SMC17A 
roX2 females the expression of fourth-linked genes (blue) is unchanged. The rest 
of the genome is shown in gray. Data is presented as the log2 of the ratio of gene 
expression in roX1SMC17A roX2 females to control females (roX1SMC17A roX2; 
[w+Hsp83-roX1+]) plotted against expression level (log2 absorbance). Genes 
contributing to this analysis are 8433 non-fourth-linked and 69 fourth-linked 
genes. (D) The density distribution of log2 expression (mutant/control) for fourth-
linked genes (blue) and second and third chromosome genes (gray) in female 
larvae. The distribution of fourth-linked genes is not significantly different from 
that of the second and third chromosomes (adjusted P-value 0.92). Only genes 
called as present in at least two out of three replicates were included. Microarray 
data was analyzed by S. K. Koya and A. Tarca. 
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This strategy enabled me to compare expression in roX1 roX2 females with 

control females of virtually identical genetic background but carrying a roX1 

transgene, which rescues male survival and expression of both X-linked and 

fourth-linked genes of roX1 roX2 males (Meller, unpublished, (Deng et al., 2009)). 

This minimizes inconsistency due to differences in genetic background. Two 

different plots were used to show this data. In figure 2-2 C, every gene is 

presented as a dot with expression level (X axis) plotted against log2 ratio of 

expression change (mutant : control) on the Y axis. The range of expression 

ratios is narrower in females than males (compare Figure 2-2, A and C). This is 

consistent with the fact that females are not developmentally disrupted by 

elimination of both roX RNAs. The expression of fourth-linked genes did not 

change in roX1 roX2 females as compared to control females that express roX1 

from the [w+Hsp83-roX1+] transgene (Figure 2-2 C). A plot of the log2 of the 

expression ratio (mutant : control) of euchromatic genes on the second and third 

chromosomes has a distribution centered near zero. In contrast, the distribution 

of fourth-linked genes is shifted left in males (Figure 2-2 B), but is not significantly 

different from that of the second and third chromosomes in females (Figure 2-2 

D). Therefore, the presence of the constitutively expressed roX1 transgene did 

not affect expression of fourth-linked genes in roX1 roX2 females. Quantitative 

RT-PCR of cDNAs from the same templates confirmed the microarray results 

(Table 2-3). I conclude that roX RNA are only required for full expression of 

fourth-linked genes in males. 

The fourth chromosome is enriched for heterochromatin (reviewed in  
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Table 2-3. Q-RT-PCR validation of microarray analysis 

Genes 
 

   Name          Chip_ID          Position        

Microarray Average 
 

 Mutant            Control 

Fold Change 
 ∆Array          ∆QPCR 

 (p-value)       (std. dev.) 

Xbp1 1635355 57C3-4 10.45 10.38 1.01 
(0.41) 

1.10 
(0.13) 

ytr 1623384 60A3 10.24 10.28 1.00 
(0.68) 

1.08 
(0.22) 

bigmax 1628490 97F1 9.42 9.32 1.01 
(0.71) 

1.00 
(0.32) 

skpA 1625801 1B14 12.04 12.04 1.00 
(0.98) 

0.98 
(0.23) 

Sgs4 1626630 3C10 14.06 13.98 1.01 
(0.35) 

1.09 
(0.20) 

plexB 1623432 102A1 7.92 7.85 1.01 
(0.55) 

1.05 
(0.14) 

Rad23 1625068 102B3 11.05 11.03 1.00 
(0.85) 

1.11 
(0.15) 

Crk 1634217 102A8 11.39 11.38 1.00 
(0.95) 

1.15 
(0.16) 

Ank 1635711 102A3 9.94 9.96 1.00 
(0.91) 

1.09 
(0.16) 

cals 1628842 102F8 10.15 10.16 1.00 
(0.91) 

1.10 
(0.27) 

 
To validate the microarray data of female roX1SMC17A roX2 flies, expression of 
selected genes was examined by Q-RT-PCR. cDNA templates used for Q-RT-
PCR were generated from the same RNA samples used for microarray analysis. 
For each genotype, three independent RNA samples were used. Two PCR 
reactions per template were performed in parallel using an Mx3000P Realtime 
PCR system (Stratagene). Dmn was used as the normalizing gene. The 
microarray gene expression data was background corrected, normalized and 
summarized into a one expression value per sample and probeset using the 
RMA (robust multi-array average) algorithm. The microarray average is the 
average of three samples per genotype. The p-value of microarray analysis is 
generated by t-test. P-value > 0.2 means no significant changes.  
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Figure 2-3. Genes situated in proximal heterochromatin require roX RNA for 
full expression in males but not in females. (A) Genes in proximal 
heterochromatin have reduced expression in roX1SMC17A roX2 male larvae. Box 
plots were generated using the log2 expression ratios (mutant/control) presented 
in Figure 2-2 A. The mean expression of genes in proximal heterochromatin on 
the second and third chromosomes decreases by 0.17 in roX1SMC17A roX2 males 
(adjusted P-value of 0.003). The mean expression of X-linked genes decreases 
by 0.24, and expression of fourth-linked genes decreases by 0.58. Changes of 
the X and fourth chromosome have an adjusted P-value of < 6.6X10-16. Only 
genes called as present in at least 2 out of 3 arrays contributed to this analysis 
(8347 in second and third euchromatin; 1533 in X euchromatin, 73 in second and 
third heterochromatin, and 74 on the fourth chromosome). (B) fourth-linked and 
heterochromatic genes do not require roX RNA for full expression in females. 
Box plots were generated using the log2 expression ratios (mutant/control) 
presented in Figure 2-2 C. The mean change in expression of X-linked genes in 
roX1SMC17A roX2 females is -0.04. Second and third chromosome 
heterochromatic genes and fourth-linked genes have a slight average increase 
(0.06 and 0.01, respectively) that is not statistically significant. Only genes called 
as present in at least 2 out of 3 arrays contributed to this analysis (7097 in 
second and third euchromatin, 1336 in X euchromatin, 57 in second and third 
heterochromatin, and 69 on the fourth chromosome). Microarray data was 
analyzed by S. K. Koya and A. Tarca.  
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(Riddle and Elgin, 2006)). Genes located in heterochromatic regions are 

presumed to have specialized regulatory features that enable their expression 

from repressive heterochromatic environment (Yasuhara and Wakimoto, 2006). It 

is possible that the involvement of roX RNAs in a general pathway to antagonize 

heterochromatin accounts for fourth-linked regulation. Reanalysis of microarrays 

showed that expression of heterochromatin-enriched genes on the second and 

third chromosomes also require roX RNA (Figure 2-3 A, (Deng et al., 2009)). 

Consistent with fourth-linked genes, expression of heterochromatic genes on the 

second and third chromosomes remained unchanged in roX1 roX2 females 

(Figure 2-3 B). This suggests that there is a male-limited regulatory system for 

heterochromatic gene expression which involves roX RNAs. 

 

A full length roX1 transgene does not fully rescue expression of autosomal 

genes in males 

roX RNAs are redundant for full expression of fourth-linked and 

heterochromatic genes in males. To confirm that reduced expression in roX1 

roX2 males is due to loss of the roX transcripts, the expression of fourth-linked 

genes was examined in roX1SMC17A roX2 males carrying an autosomal roX1 

transgene, [w+Hsp83-roX1+], which fully rescues both male survival and X 

localization of the MSL proteins of roX1 roX2 males (Meller, unpublished). 

Although this transgene rescues X-linked gene expression fully, only partial 

restoration of fourth-linked gene expression was observed (PhD thesis, X. Deng). 

As shown in figure 2-4, the expression level of X-linked genes from roX1SMC17A  
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Figure 2-4. A full length roX1 transgene does not fully rescue autosomal 
gene expression. (A) 5’ ends of roX1 transcript and transgenes. The top line 
indicates the roX1 genomic region, numbering from (Amrein and Axel, 1997). The 
bent arrow indicates a transcription start site. Two additional transcription start 
sites are 306 and 675 bp downstream. roX1+ and roX1FULL (short for [w+hsp83-
roX1+] and [w+hsp83-roX1Full]) are illustrated below. The box represents hsp83 
promoter. (B) Expression of fourth-linked genes is partially restored by roX1 
transgenes. Five autosomal, three X-linked and 10 fourth-linked genes were 
analyzed by Q-RT-PCR in roX1SMC17A roX2 (control), roX1SMC17A roX2; [w+hsp83-
roX1+] (black) and roX1SMC17A roX2; [w+hsp83-roX1Full] (gray) male larvae. 
Expression from microarray analysis of roX1+ roX2- male larvae (white) is shown 
for comparison. Error bars represent standard deviations from three independent 
measurements. Q-RT-PCR was normalized to the autosomal gene Dmn. 
Expression in roX1SMC17A roX2 males was set to 1. 
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roX2 males carrying this transgene is almost the same as roX2 single mutant. 

However, the expression of fourth-linked genes is lower than that in the roX2 

single mutant, but higher than that in the roX1SMC17A roX2 double mutant. The 

roX1+ transgene contains almost all of roX1, only lacking 100 bp at the extreme 5’ 

end (Figure 2-4 A). Analysis of roX1 ESTs (Expressed Sequence Tag, Flybase) 

showed that this 100 bp sequence is present in only a minor fraction of roX1 

transcripts. This suggested that the 5’ end of roX1 may have a separate function 

in the regulation of fourth chromosome or heterochromatic genes. To investigate 

this possibility, a full length roX1 transgene including the additional 100 bp 5’ 

sequence, [w+Hsp83-roX1FULL], was created (Figure 2-4 A). roX1SMC17A roX2 flies 

carrying this transgene were generated, and the expression of a panel of 

euchromatic autosomal, fourth-linked and X-linked genes were measured by 

quantitative RT-PCR. When compared to the expression of these genes in roX1 

roX2 males carrying [w+Hsp83-roX1+], no significant difference in fourth-linked 

gene expression could be detected (Figure 2-4 B). This suggests that the extra 5’ 

sequence is dispensable for regulation of autosomal genes. The incomplete 

rescue by roX1 transgenes could be due to other aspects of the intrinsic roX1 

gene. One possibility is that the regulation is achieved by cooperation between 

different roX1 transcripts. Interestingly, [w+Hsp83-roX1FULL] rescue of X-linked 

gene expression is also lower than that of [w+Hsp83-roX1+] (Figure 2-4 B). This is 

consistent with the fact that the majority of roX1 transcripts do not contain this 

extra 5’ sequences but still fully rescue X-linked genes expression.  
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Investigation of candidate roX1 sequence that may limit roX1 regulation of 

autosomal genes in females 

The roX RNAs only affect expression of heterochromatic genes in males. 

However, roX1 is present in both sexes in the early stages of development 

(Meller, 2003). All MSL proteins, with the exception of MSL2, are maternally 

provided to early embryos of both sexes (Rastelli et al., 1995). MSL2 is only 

produced in the male zygote, limiting MSL complex formation to males (Rastelli 

et al., 1995). While all other MSL proteins are required for heterochromatic 

regulation, MSL2 is not necessary for full expression of heterochromatic genes 

(Deng et al., 2009). What limits roX-dependent modulation of heterochromatin to 

males is still mysterious. Sexlethal (SXL) is a candidate factor that might block 

roX function in females. SXL is a multifunctional RNA-binding protein that 

controls sexual differentiation in flies and is expected to regulate all sex-limited 

processes directly or indirectly. The SXL protein is only expressed in females and 

determines sexual development by modulating the expression of a set of 

downstream genes including MSL2 (reviewed in (Salz and Erickson, 2010)). roX1 

has two potential SXL binding sites in a small intron (Figure 2-5 A, (Meller et al., 

1997)). The function, if any, of these sites is unknown. It is possible that they bind 

SXL in females, limiting the ability of rox1 to regulate heterochromatin. It is 

anticipated that if SXL blocks up-regulation of heterochromatic genes in females 

by binding to roX1, removal of SXL-binding sites from roX1 will result in an 

elevated expression of heterochromatic genes in females. To test this possibility, 

females with a roX1c20 transgene that lacks SXL binding sites were used. The  
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Figure 2-5. Expression of fourth–linked genes is unchanged in females 
expressing the roX1c20 transgene. (A) The roX1c20 transgene lacks SXL 
binding sites and initiates at one of the major transcription start sites. The middle 
line indicates the roX1 genomic region, numbering from (Amrein and Axel, 1997). 
The arrow above represents the primiry roX1 transcript. Boxes represent SXL 
binding sites. Below is the structure of the roX1c20 cDNA. roX1c20 lacks SXL 
binding sites, present in a small intron, which has been spliced out. (B) 
Quantitative reverse transcription PCR (Q-RT-PCR) of fourth-linked genes in 
females. Two autosomal, three X-linked and six fourth-linked genes were 
analyzed in female larvae carrying a hsp83-deiven roX1c20 transgene and in 
control females. Values are the ratio of gene expression of transgenic females to 
control (set to 1). Error bars represent standard deviations of at least three 
independent measurements. Q-RT-PCR was normalized to the autosomal gene 
Dmn. The full transgenic fly genotype is yw; [w+hsp83-roX1c20]. 
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roX1c20 transgene was made from a spliced cDNA that lacks the intron containing 

SXL binding sites. It also initiates from a downstream transcription start site 

(Figure 2-6A, (Stuckenholz et al., 2003)). We choose several fourth-linked genes 

to test because of their heterchromatic features, and because these genes 

appear very sensitive to loss of roX RNA in males. The expression of fourth-

linked genes in female larvae was assessed by Q-RT-PCR. As shown in Figure 

2-5 B, the expression of genes on fourth chromosome was unchanged. I 

conclude that the SXL binding sites in roX1 do not limit roX1 function in females. 
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DISCUSSION 

 

roX RNAs participate in two distinct biological processes in flies: X 

chromosome dosage compensation and normal heterochromatin function. Both 

of these coordinately regulate large regions of the genome. Although all 

molecules necessary for heterochromatin regulation are present in females, roX 

RNA has no affect on heterochromatin in females. Therefore, roX-dependent 

modulation of heterochromatin is limited to males, as dosage compensation. 

Heterochromatin is present in both sexes, and autosomal heterochromatic 

regions are present in two copies in both sexes. The male-specific involvement of 

roX in heterochromatin function is an unexpected feature of heterochromatic 

regulation. However, mutations in heterochromatin proteins do show sex-biased 

phenotypes. Depletion of a major component of heterochromatin (HP1) causes 

higher lethality and more gene misregulation in males (Liu et al., 2005). The 

same study also identified differences in HP1 distribution in males and females. 

These differences suggested that heterochromatin itself is different in males and 

females. The male specific involvement of roX in heterochromatin function may 

reflect the differences of heterochromatin content in the male and female 

karyotypes. 

Although roX-dependent regulation of heterochromatin is limited to males, 

we could not exclude the possibility that there is a female-specific noncoding 

RNA, rather than roX RNA, involved in the regulation of heterochromatin in 

females. However, if a female-specific RNA is involved in regulation of hetero-
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chromatin, this represents a system different from the roX-dependent one that we 

have described. Q-RT-PCR of several fourth-linked genes in mle mutants showed

 that their expression was reduced in males, but unaffected in females (X. Deng, 

dissertation). Therefore, at least one protein component of the roX-dependent 

heterochromatin regulation system is necessary for normal expression of 

heterochromatic genes in males, but not in females. This suggested that the 

components of the roX-dependent heterochromatin regulation system do not 

assemble with a female-specific RNA instead of roX RNA in females to modulate 

heterochromatin. 

Studies in our lab showed that heterochromatic genes display similar 

expression in males and females (Deng et al., 2009). The fact that they are 

differentially regulated in males and females, in spite of similar expression level, 

raises the question of why this difference exists. One possibility is the Y 

chromosome. The Drosophila Y chromosome represents 12% of the male 

genome and is almost entirely heterochromatic. It absorbs a large portion of the 

proteins that assemble into heterochromatin. Therefore, it affects other 

heterochromatic regions in male genome. Loss of the Y chromosome frees these 

proteins to enable them to bind elsewhere, promoting heterochromatin formation 

and enhancing Position Effect Variegation (PEV) throughout the genome (Weiler 

and Wakimoto, 1995). Therefore, loss of the Y chromosome silences transgenes 

in proximal heterochromatin and on the fourth chromosome. Our studies show 

that loss of roX RNAs increases expression from these transgenes (Deng et al., 

2009). roX and the Y chromosome thus exert opposing effects on 
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heterochromatic expression.  

Therefore, the role of the newly discovered roX-dependent system in sex-

specific regulation of heterochromatin may accommodate the different 

heterochromatin environment in males, which carry a large, heterochromatic Y 

chromosome. Dosage compensation evolved in animals with differentiated X and 

Y chromosomes to balance expression of X-linked genes. During the evolution of 

sex chromosome pairs, the Y chromosome irreversibly loses coding sequences 

and accumulates repetitive sequences (Rice, 1996). This process promotes the 

formation of heterochromatin on the Y chromosome. The roX-dependent system 

that we have identified may have evolved to resolve a problem raised by the 

presence of a highly heterochromatic Y chromosome in the male nucleus. The Y 

chromosome changes the chromatin environment in the nucleus, as 

demonstrated by its influence on PEV. It is possible that the roX-dependent 

process arose to accommodate this difference in chromatin environment. Both 

processes of roX-dependent dosage compensation and modulation of 

heterochromatin occur only in males. They may have evolved to accommodate 

two different problems resulting from sex chromosome differentiation. 

The molecular basis of roX regulation of heterochromatic genes is 

currently unclear. MSL1, MSL3 and MLE, but not MSL2, the only factor limited to 

males, are necessary for full expression of heterochromatic genes in males 

(Deng et al., 2009). roX1 is present in females in the early stages of development 

(Meller, 2003). In contrast, roX2 expression is limited to males. MSL1, MSL3 and 

MLE are also stably present in early embryos and in females (Rastelli et al., 
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1995). It is possible that roX RNA, MSL1, MSL3 and MLE associate to form a 

complex that plays a transient role in the initial formation of heterochromatin in 

early embryos. However, what prevents this from occurring in females is still 

unclear. My study suggests that SXL binding to roX1 is not the mechanism that 

prevents roX1 activity in females. However, there may be other sex-limited 

factors that block regulation of heterochromatin in females, or enable it in males. 

roX1 has several regions important for dosage compensation. The 5’ 

region of roX1 is important for MSL localization and a 3’ stem-loop is essential for 

the chromatin modification by MSL (Deng et al., 2005; Park et al., 2008; 

Stuckenholz et al., 2003) It is possible that there are roX1 regions that participate 

in regulation of heterochromatic genes, but not in dosage compensation. One 

candidate roX1 region suggested by our preliminary data was the extreme 5' end, 

a region that is absent from most of the roX1 transcripts produced by the fly (S. K. 

Koya, unpublished). As my full length roX1 transgene including this region was 

not more active in rescue of heterochromatic genes compared to a transgene 

without this region but otherwise identical, I conclude that this region is 

dispensable for regulation of heterochromatic genes. The incomplete rescue by 

the full length roX1 transgene could be due to some aspects of the intrinsic roX1 

gene. There is mixture of different roX1 transcripts that are regulated by choice of 

transcription start sites, alternative splicing and transcript stability in the wild type 

flies. One possibility is that the regulation of heterochromatin is achieved by 

cooperation between different roX1 transcripts. 
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CHAPTER 3 

 

NONCODING roX1 RNA 5’ SEQUENCES CONTRIBUTE TO X CHROMOSOME 
LOCALIZATION AND LOCAL SPREADING OF THE MSL COMPLEX 

 

This chapter is organized as manuscript in preparation (Kong Y. et al., in 

preparation) 

 

INTRODUCTION 

 

Transcriptional regulation in eukaryotes involves a large number of non-

coding RNAs of various sizes. Previous studies show that they play critical roles 

in gene regulation through multiple mechanisms, including DNA methylation, 

chromatin modification, gene silencing, and dosage compensation (reviewed in 

(Mattick, 2003; Mattick and Makunin, 2005)). It is suggested that non-coding 

RNAs played a crucial evolutionary role by increasing the complexity and 

regulation of gene expression (reviewed in (Mattick, 2003; Prasanth and Spector, 

2007)). Several long non-coding RNAs are misregulated in various diseases 

(Gupta et al., 2010; Prasanth and Spector, 2007; Taft et al., 2010). While an 

increasing number of long non-coding RNAs that have important functions has 

been discovered, the mechanisms by which they act are poorly understood 

(reviewed in (Mercer et al., 2009)). roX1 is a long non-coding RNA involved in the 

epigenetic regulation of the X chromosome during dosage compensation in 

Drosophila. Functional dissection of roX1 will contribute to our understanding of 
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other long non-coding RNA involved epigenetic processes, including those 

involved in human diseases. 

Dosage compensation is a chromatin-mediated process that maintains a 

constant ratio of X-linked and autosomal gene expression in males and females 

(reviewed in (Lucchesi et al., 2005)). In Drosophila, dosage compensation occurs 

by a two-fold up-regulation of transcription from the single male X chromosome 

to match the transcription from the two female X chromosomes (reviewed in 

(Kong and Meller, 2007)). Dosage compensation in Drosophila is mediated by 

the Male-Specific Lethal (MSL) complex. The MSL complex specifically binds the 

male X chromosome and directs acetylation of histone H4 at lysine 16 (H4K16ac) 

(Bone et al., 1994; Smith et al., 2000). MSL localization along the male X is 

discontinuous. The MSL complex binds preferentially to actively transcribed 

genes, and is especially enriched within 3’ transcribed regions (Alekseyenko et 

al., 2006; Gilfillan et al., 2006). Little MSL complex binds silent genes or 

intergenic regions of the X.  

The MSL complex is composed of five Male-Specific Lethal (MSL) 

proteins and two non-coding roX (RNA on the X) RNAs.  The five MSL proteins 

are MSL1 (Male-Specific Lethal 1), MSL2 (Male-Specific Lethal 2), MSL3 (Male-

Specific Lethal 3), MLE (Maleless) and MOF (Males Absent on First) (reviewed in 

(Kong and Meller, 2007)). MSL1 is proposed to serve as the scaffold for 

assembly of the MSL complex (Li et al., 2005). MSL2 is a RING finger protein 

that regulates assembly of the complex, has DNA binding activity, and is only 

expressed in males (Fauth et al., 2010; Kelley et al., 1995). Recently it was found 
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to be an E3 ubiquitin ligase that modifies histone H2B on lysine 34 (Wu et al., 

2011). The role of this activity in dosage compensation remains unknown. MSL3 

contains a chromodomain that recognizes the cotranscriptional histone H3 

trimethylation mark H3K36me3 (Larschan et al., 2007). The MSL3 

chromodomain is required for the enrichment of the MSL complex within 

transcribed genes, and explains why the complex is specifically localized within 

the bodies of active genes (Sural et al., 2008). MOF is a histone 

acetyltransferase which acetylates histone H4 at lysine 16 (Hilfiker et al., 1997). 

MLE is an ATP-dependent DexH RNA/DNA helicase (Lee et al., 1997). The 

ATPase activity is necessary for transcriptional enhancement by the MSL 

complex (Morra et al., 2008). The helicase activity of MLE is essential for normal 

localization of the MSL complex on the X chromosome, and for movement of the 

roX RNAs from their sites of synthesis (Gu et al., 2000; Meller et al., 2000; Morra 

et al., 2008). MLE is suggested to associate with the MSL complex through an 

RNA (Richter et al., 1996; Smith et al., 2000). However, a recent study suggests 

that MLE is also capable of direct interaction with MSL2 (Morra et al., 2011). The 

stability of roX1 is particularly dependent on MLE, supporting the idea of a direct 

interaction between these molecules (Meller, 2003). X-localization of remaining 

complex members is reduced or absent in males missing any one of the MSL 

proteins, or in males mutated for both roX genes. The mechanisms that underlie 

targeting of the MSL complex to the male X chromosome are poorly understood. 

A two-step model is proposed for MSL complex targeting to X 

chromosome (reviewed in (Gelbart and Kuroda, 2009). In this model, the MSL 
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complex specifically recognizes and binds to a number of X-linked sites called 

chromatin entry sites (CES), also known as High Affinity Sites (HAS). These are 

regions that retain residual MSL binding in an msl3 mutant background 

(Alekseyenko et al., 2008; Straub et al., 2008). ChIP-chip and ChIP-seq studies 

have identified over one hundred CESs on the X chromosome (Alekseyenko et 

al., 2008; Straub et al., 2008). Binding to CES sites is postulated to depend on 

interaction of the MSL complex with DNA sequences. After binding to the CES, 

the MSL complex is thought to spread to nearby, transcribed genes in a 

sequence-independent manner. This local spreading is partly mediated by the 

recognition of the H3K36me3 mark by the MSL3 chromodomain (Larschan et al., 

2007; Sural et al., 2008). Other features, such as lower affinity binding sites that 

act cooperatively with the CES to recruit MSL complex and interphase 

chromosome architecture, which may bring X-linked sequences close together, 

could also contribute to MSL localization on X (Gilfillan et al., 2007; Grimaud and 

Becker, 2009; Kotlikova et al., 2006). 

roX RNAs are also required for the localization of the MSL complex to the 

male X chromosome (Deng et al., 2005; Meller and Rattner, 2002). Upon 

elimination of both roX transcripts, mislocalization of the MSL proteins to 

heterochromatic regions and autosomal sites is observed (Deng et al., 2005). 

This is accompanied by a global decrease of X-linked gene expression (Deng 

and Meller, 2006). roX RNAs are male-preferential (roX1) or male-specific (roX2) 

non-coding RNAs that are transcribed from the X chromosome and assemble 

with the MSL proteins to coat the X chromosome (Amrein and Axel, 1997; Meller 
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et al., 1997). roX1 and roX2 are functionally redundant, in spite of a lack of 

extensive sequence similarity (Meller and Rattner, 2002). Assembly of roX RNAs 

into the MSL complex stabilizes the RNA, since they are rapidly degraded in the 

absence of MSL proteins (Meller et al., 2000).  

The roX RNAs appear to direct MSL complex localization by two 

genetically distinct mechanisms. roX RNA is normally transcribed from the X 

chromosome, but autosomal roX transgenes enable the MSL complex to bind the 

X chromosome and rescue roX1 roX2 males (Meller and Rattner, 2002). The roX 

RNAs can thus act when they originate in trans to the chromosome that they 

modify. The roX RNAs can also direct the spreading of the MSL complex into 

chromatin flanking autosomal sites of roX RNA synthesis in flies carrying a roX 

transgene (Kelley et al., 1999). Autosomal spreading is discontinuous, which is 

similar to the spreading pattern on the X, suggesting that this spreading occurs 

by a mechanism similar to spreading on the X chromosome (Kelley et al., 1999). 

This was confirmed by ChIP studies that detected enrichment of MSL3 and 

H4K16ac in genes flanking an autosomal roX1 insertion (Park et al., 2010). The 

mechanism of spreading of MSL complex from a site of roX transcription into 

flanking chromatin is unknown, but one model to explain local spreading 

proposes that it is controlled by MSL complex assembly on nascent roX 

transcripts. If assembly of the complex is complete before the roX transcript is 

released from the DNA template, the MSL complex will then bind chromatin 

immediately, localizing in the vicinity of the roX genes (Oh et al., 2003; Park et al., 

2002). However, if MSL protein is limiting, or roX transcription is fast, formation of 
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the intact complex will occur in the nucleoplasm after release of roX RNA from 

the chromatin template. The complex will then be able to travel to sites far from 

roX transcription. While unproven, this idea is supported by studies in which the 

level of MSL proteins or roX RNA has been manipulated. A high ratio of MSL 

proteins to roX transcripts promotes local spreading from sites of roX 

transcription, but when roX transcripts are more abundant, local spreading is less 

likely to occur (Kelley et al., 2008; Oh et al., 2003; Park et al., 2002).  

A similar, RNA-dependent process occurs in mammalian females during X 

inactivation. The X inactive specific transcript (Xist) RNA is a large, non-coding 

transcript that is central to dosage compensation in mammals. Xist is transcribed 

from the Xic (X inactivation center) and coats the entire inactive X chromosome 

(Jaenisch et al., 1998). Xist sequences required for silencing and localization 

have been identified. A 5’ repeat element (repeat A) that can form a two stem-

loop structure is essential for X chromosome silencing, while redundant, spatially 

separated sequences throughout Xist act co-operatively to promote Xist 

localization to the X (Wutz, 2003).  

We postulated that roX1 might be similarly organized into regions with 

distinct function. The major roX1 transcript is 3.7 kb (Amrein and Axel, 1997; 

Meller et al., 1997). It contains redundant 3’ ‘roX boxes’, which may form 

alternative secondary structures and are necessary for the histone 

acetyltransferase activity of the MSL complex (Kelley et al., 2008; Park et al., 

2008). The ‘roX box’ is the only highly conserved element between roX1 and 

roX2, and between roX genes in different species (Park et al., 2008). A small 3’ 
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stem loop incorporating one of these roX boxes was the first functional element 

identified in roX1 (Stuckenholz et al., 2003). The 5’ end of roX1 also contains 

sequences that are necessary for function. Deletion of the entire 5’ end destroys 

roX1 activity, but small (<300 bp) deletions scanning across the 5’ end do not 

detectably influence the activity of roX transgenes (Stuckenholz et al., 2003). 

However, loss of large amounts of 5’ sequences has a particularly strong effect 

on MSL localization (Deng et al., 2005). roX1 transcripts thus appear to contain 

distinct domains for X localization and chromatin modification, as does Xist. And, 

like Xist, the internal roX1 sequence between the 5’ and 3’ ends is not essential 

for function. We hypothesize that, like Xist, multiple redundant elements that 

contribute to X chromosome targeting might be distributed throughout the 1.5kb 

sequence at the 5’ end of the roX1 transcript.  

In this study, roX1 transgenes containing different sections of the 5’ end 

were created and analyzed to investigate the function of this region. This study 

demonstrated that multiple redundant elements contributing to X chromosome 

targeting are present throughout the 5’ end of roX1. I also demonstrated that the 

extreme 5’ end of roX1 has a unique function that promotes MSL complex 

spreading in cis from sites of roX production. Intriguingly, roX1 has multiple 

transcription start sites that are developmentally regulated. Spreading in cis is 

promoted by a portion of roX1 that is present in few naturally occurring roX1 

transcripts, suggesting that production of roX RNA capable of directing spreading 

in cis is tightly controlled by the cell. It also suggests that roX1 activities are 

regulated by choice of transcription start site. My studies reveal that while all 5’ 
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regions tested can recruit MSL1 to the X chromosome, one region is deficient in 

recruitment of MLE. This suggests that different 5’ segments make different 

molecular contacts within the MSL complex. Finally, I demonstrate that while all 

of my transgenes are able to partially restore the viability of roX1 roX2 males 

when transcribed from an autosome, one of them is specifically deficient in male 

rescue when transcribed from X-linked sites. I anticipate that future studies of this 

unexpected finding may explain how the roX genes direct chromatin modification 

in cis to sites of transcription. 
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Materials and Methods 

 

Drosophila strains 

Flies were maintained in vials containing standard cornmeal agar media at 

25°C. The roX1mb710, roX1ex40A and roX1SMC17A mutations have been previously 

described (Deng et al., 2005; Meller et al., 1997). Df(1)52 is a lethal deletion of 

roX2 and essential flanking genes. Elimination of roX2 is accomplished by 

complementing Df(1)52 with [w+4∆4.3], a cosmid insertion carrying essential 

deleted genes but lacking roX2 (Meller and Rattner, 2002). For convenience this 

combination is referred to as roX2. y w; P[y+CaryattP]2, which contains 

P[y+CaryattP] at 68A4, was obtained from the Bloomington Drosophila stock 

center (BDSC stock# 8622). The roX1 transgene, [w+hsp83-roX1+], is a hsp83-

driven roX1 genomic fragment (roX1 bp 42-4165, numbering from Amrein and 

Axel, 1997). The roX1 transgene, [w+hsp83-roX1FULL], is described in chapter 2. 

The mutations in msl1L60, msl32 and mle1 have been previously described 

(Chang and Kuroda, 1998; Lindsley and Zimm, 1992). The msl2 transgene, 

[w+hsp83-M2]6I, has also been described previously (Kelley et al., 1995).  

 

Generation of roX1 deleted transgenes for site-specific integration  

Three roX1 transgenes containing different 5’ fragments and the essential 

3’ region, [w+hsp83-roX1R1], [w+hsp83-roX1R2], [w+hsp83-roX1R3], were 

generated. These are named as [w+hsp83-roX1R1-3]. For convenience these are 

also referred to as roX1R1-3. The roX1R2 transgene was created by PCR 



64 
 

 
 

amplification of genomic sequence from the roX1ex40A mutant using 

oligonucleotides roX1 190F and roX1 R4150 (Deng et al., 2005). roX1ex40A 

mutation has an internal deletion of roX1 bp 809-3150. The roX1R1 and roX1R3 

transgenes were generated by joining roX1 5’ fragments (bp -85-310 and 790-

1490) to the 3’ sequence present in roX1ex40A (bp 3150-4150). In brief, the roX1 5’ 

fragments and 3’ sequence were amplified separately by PCR from wild type 

genomic template using oligonucleotides roX1 -85F and roX1 310R (roX1R1 5’ 

fragments), roX1 790F and roX1 1490 R (roX1R3 5’ fragments), roX1 3150F and 

roX1 R4150 (3’ fragments). A XhoI site is introduced by the reverse primer of 5’ 

fragment and the forward primer of 3’ fragment. The 5’ and 3’ roX1 fragments 

were then cut with XhoI and ligated together, and then subcloned into pCR4-

TOPO vector (Invitrogen). After amplification of the plasmid, the roX1R1, roX1R2 

and roX1R3 fragments were released from pCR4-TOPO by EcoRI and ligated into 

a modified pUASTB. pUASTB is a transformation vector carrying an attB site and 

a mini-white gene (Groth et al., 2004). pUASTB was modified by introducing the 

strong and constitutive hsp83 promoter. The hsp83 promoter was amplified from 

the pCasper HS83T3 vector (Meller et al., 2000) by PCR using oligonucleotides 

hsp83 Link F and hsp83 Link R. A KpnI site was introduced at the forward primer 

hsp83 Link F and BamHI, EcoRI and SacII sites were introduced at the reverse 

primer hsp83 Link R. A KpnI-SacII fragment containing the hsp83 promoter was 

subcloned in the pUASTB. The unique BamHI and EcoRI sites were used to 

clone roX1 adjacent to the promoter. Primers used to create roX1 transgenes are 

listed in Table 3-1. To confirm correct cloning, the primers listed in Table 3-2 were  
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Table 3-1.  Primers used for creation of roX1 transgenes. 
 

Primers Sequences (5’ – 3’) 

roX1 -85F ATGTGCAATGCATGTATAACAGAAA 

roX1 310R ATCACTCGAGGGCAGGCCCTGGTAACTA 

roX1 190F AAGACATGGGCGTAGTTTCATATAC 

roX1 790F CTGATAGGGTGACCTAACGCAACAG 

roX1 1490R TACACTCGAGTCGATGCGTCGTTTATTG 

roX1 3150F TAGTCTCGAGCCAACCCCACATCAGGCC 

roX1 R4150 ATCGAACTGTATATAATAATGGCATCAG 

hsp83 Link F ATGGTACCGATGATCCTTAACGGGGAACTTG 

hsp83 Link R AGCCGCGGGAATTCGGATCCTCGACGGTATCGATAAGCTAG 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



66 
 

 
 

 
Table 3-2.  Primers used for comfirmation of roX1 transgenes and 
verification of integration of roX1 transgenes and recombinant 
chromosomes. 

 
Genotype or 

integration site Primer pairs Seqences Product 
length (bp) 

[roX1R1] a hsp83 662F TTCGGACCACTTAGACGAATTT 600 

 roX1 BPR02 GAGGGTACCGGGACAGCTCGTATATGA  

[roX1R2] a hsp83 662F TTCGGACCACTTAGACGAATTT 600 

 roX1 557R GTTTTTCTATTGTCCGGACTCG  

[roX1R3] a hsp83 662F TTCGGACCACTTAGACGAATTT 600 

 roX1 R5 ATATGGGGCTCATCCACTCC  

roX1SMC17A b 7BXbal GCTCTAGAATTCCAGTGATCGATCGGTAATAGTAAA 350 

 lacZ 5’ R CCAGTCACGACGTTGTAA  

68A4 / 16C1 c y1456F GGTCCACCGTTATATACGAAACA 1750 

 BPR08wh  TAGCTCCTGATCCTCTTG  

2A3 d roX1 BPR25 GAGGTCTAGAGCTGGCAAACGACCTGAGCAATACT 700 

 ZH2A-3’ GTTACAAACAAGAGCCCAGCC  

19C4 e attL.For GGGCGTGCCCTTGAGTTCTCTC 700 

 19C4.Rev GACCATCCAACTTCCAACATCG  

 
a To confirm correct structure of roX1R1-3 transgene, indicated primers that only 
produce a fragment of the correct size when correct transgene is subcloned after 
the hsp83 promoter, were used to amplify sequences from the hsp83 promoter 
and linked roX1 transgene.  
b To confirm the presence of roX1SMC17A mutation, indicated primers were used to 
amplify sequences from roX1 genomic region and inserted P element. 
c To confirm the integration of roX1R1-3 transgenes at 68A4 and 16C1, indicated 
primers were used to amplify sequences from yellow gene and linked white gene. 
yellow and white genes are close together after correct integration. 
d To confirm the integration of roX1R1-3 transgenes at 2A3, indicated primers 
were used to amplify sequences from roX1R1-3 transgene and the genomic region 
proximal to the integration site. 
e To confirm the integration of roX1R1-3 transgenes at 19C4, indicated primers 
were used to amplify sequences from attL formed by integration and the genomic 
region proximal to the integration site. 
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used. 

 

Generation of transgenic flies 

The roX1R1-3 transgenes were integrated at 2A3, 16C1, 18D3 and 19C4 

on the X chromosome and at 68A4 on the third chromosome using the site-

specific C31 integrase system (Groth et al., 2004). Stocks with an insertion of 

an attP landing site in the P[y+CaryattP] P element at 68A4 were obtained from 

the Bloomington Drosophila stock center. Mobilization of this P element was 

accomplished by introducing a transposase source (TMS, Sb P[ry+t7.2∆2-3]99B) 

and selecting for insertions on the X chromosome (P. Frolov, unpublished). The 

exact location of the 16C1 and 18D3 insertions was determined by inverse PCR 

and sequencing (Inverse PCR Protocol available from Berkeley Drosophila 

Genome Project; http://www.fruitfly.org/about/methods/inverse.pcr.html). All of my 

constructs were purified using Qiagen Plasmid Midi Kit (Qiagen). To generate 

transgenic flies, I injected my constructs into Drosophila embryos derived from 

mating female virgins carrying P[y+CaryattP] at 68A4, 16C1 and 18D3 with males 

carrying a C31 integrase transgene on the 3rd chromosome. Adult flies derived 

from injected embryos were mated to yw, and transgenics expressing the mini-

white marker were identified in their offspring. Transgenics were made 

homozygous, and integration of the transgenes was verified by single fly PCR 

using primers in the pUASTB transgene (BPR08wh) and P[y+CaryattP] target site 

(y1456F) (Table 3-2). The roX1 transgenes inserted at 2A3 on the X 

chromosome were generated by injecting my constructs into M[vas-int.Dm]ZH-



68 
 

 
 

102D, M[3xP3-RFP.attP]ZH-2A fly embryos by Rainbow Transgenic Flies, Inc 

(3251 Corte Malpaso, Suite 506, Camarillo, CA 93012 USA). The roX1 

transgenes inserted at 19C4 on the X chromosome were generated by injecting 

my constructs into embryos derived from mating female virgins carrying 

P[y+CaryattP] at 19C4 with males having a C31 integrase transgene at 2A3, 

performed by BestGene, Inc (2918 Rustic Bridge, Chino Hills, CA 91709 USA). 

The identification of integrants and verification was performed as described 

above using primers in the pUASTB transgene (roX1 BPR25) and flanking 

genomic region (ZH2A-3’ for site 2A3, 19C4.Rev for site 19C4).  

 

Phenotypic testing of roX1 transgenes and rescue efficiency  

All transgenes were analyzed in a roX1 roX2 double mutant background. 

To analyze autosomal roX1R1-3 transgenes, roX1SMC17A Df(1)52; [w+4Δ4.3] female 

virgins were mated with yw/Y; [w+hsp83-roX1R1-3] males to produce sons. 

Survival of these sons was calculated based on the recovery of females from the 

same cross. Survival of females (roX1SMC17A Df(1)52/yw; [w+4Δ4.3]/+; [w+hsp83-

roX1R1-3]/+) is set at 100%. To analyze X-linked roX1R1-3 transgenes, each was 

recombined onto a roX1SMC17A Df(1)52 chromosome to produce roX1SMC17A 

Df(1)52 [w+hsp83-roX1R1-3] chromosomes. These were maintained over a 

Binsincy balancer (Figure 3-1). The survival of males carrying roX1SMC17A Df(1)52 

[w+hsp83-roX1R1-3] X chromosomes was determined by mating females to males 

carrying an autosomal insertion of [w+4∆4.3]. Male survival was calculated using 

all male and female non-Binsincy offspring from the cross. These offspring carry  
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Figure 3-1. The crossing scheme for recombining X-linked roX1R1, roX1R2 
and roX1R3 transgenes onto a roX1 roX2 chromosome. The full genotype of 
the roX1 roX2 chromosome is roX1SMC17A Df(1)52. Df(1)52 is complemented with 
a cosmid which contains essential genes deleted by Df(1)52 but lacks roX2, 
[w+4∆4.3]. For simplicity, this combination is referred to as roX2. X represents 
mating. 
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the roX1SMC17A Df(1)52 [w+hsp83-roX1R1-3] X chromosome.  

 

Rescue of roX1SMC17A Df(1)52 [w+hsp83-roX1R1-3] males with msl mutations 

and roX1 transgenes  

To determine if roX1SMC17A Df(1)52 [w+hsp83-roX1R1-3]  males could be 

rescued by reduction of MSL protein levels or overexpression of MSL proteins 

and roX1, the mutations msl1L60, msl32 and mle1 (Chang and Kuroda, 1998; 

Lindsley and Zimm, 1992), a third chromosome carrying both the [w+hsp83-M1] 

and [w+hsp83-M2] transgenes (for convenience this chromosome is denoted as 

[M1][M2], (Chang and Kuroda, 1998)) and autosomal roX1 transgenes roX1Full, 

roX1R1-3 were used. roX1Full is  described in chapter 2. roX1SMC17A Df(1)52 

[w+hsp83-roX1R1-3]/Binsincy; [w+4Δ4.3] female virgins were mated with w/Y; 

msl1/[w+], w/Y; msl3/[w+], w/Y; mle/[w+], w/Y; [M1][M2]/+, yw/Y; [w+hsp83-roX1R1-

3] and yw/Y; [w+hsp83-roX1Full] males to produce roX1SMC17A Df(1)52 [w+hsp83-

roX1R1-3]; [w+4Δ4.3] /+ sons with reduced level of MSL protein or elevated MSL 

protein or roX1. Male survival was determined as described above. 

   

Extraction of genomic DNA from a single fly 

A single fly is homogenized in an Eppendorf tube with a pestle in 50 µl of 

squash buffer (10mM Tris-HCl pH8.2, 1mM EDTA, 25mM NaCl, 0.2mg/ml 

proteinase K). The homogenate is incubated at 42°C for 1.5 hours, followed by 

95°C for 10 minutes. 1.5 µl of this preparation is used as template for PCR 

amplification. 
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Polytene chromosome immunostaining 

MSL1, MSL2 and MLE immunohistochemical detection on polytene 

chromosomes was performed as previously described (Kelley et al., 1999). In 

brief, polytene chromosome spreads were prepared from salivary glands of third 

instar male larvae. Immunostaining was performed with MSL1, MSL2 or MLE 

antibody (raised in rabbit) and detected with Texas Red conjugated α-rabbit 

antibody. Slides were briefly dipped in Hoechst (0.1µg/mL) to visualize DNA 

before mounting in 80% glycerol. 

 

Photography  

Observation and photography of immuno-histological images was 

performed with a Zeiss Axioscope 2 fluorescent compound microscope fitted with 

a Q-Imaging Retiga 2000R digital camera.   

 

Generation and analysis of Beadex flies  

To analyze the level of dosage compensation, flies carrying a dose 

sensitive Beadex allele (Bxr49k) on X the chromosome were used. roX2∆ is a 

viable roX2 deletion mutation generated by FLP/FRT recombination (V. Meller, 

unpublished). The roX1mb710 roX2∆ Dp(1;Y) Bxr49k X chromosome was made by 

recombination and maintained over a Binsincy balancer. roX1mb710 roX2∆ Dp(1;Y) 

Bxr49k/ Binsincy females were mated to yw; [w+hsp83-roX1R1-3] males to generate 

roX1mb710 roX2∆ Dp(1;Y)Bxr49k/Y; [w+hsp83-roX1R1-3]/+ sons. Wings were 

removed from flies, mounted in 4:5 lactic acid : ethanol and photographed. Wings 
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were measured and analyzed as previously described (Menon and Meller, 2009).  

Briefly, the length of wing margin lost from anterior and posterior edges and vein 

L3 length between the L2 junction and the edge of the wing were measured 

using ImageJ software (http://rsb.info.nih.gov/ij/). The wing notching is expressed 

as a ratio of the length of marginal lost to the length of the L3 vein to normalize 

for variation in wing size. The significance of differences in notching was 

determined by performing an ANOVA test. 

 

Total RNA isolation  

Total RNA was extracted from three groups of fifty third instar larvae of 

each genotype using TRIzol (Invitrogen). Briefly, fifty third instar male larvae 

isolated based on gonadal morphology were homogenized in 1ml of TRIzol by 

Tissue Tearor (Model 985-370, Biospec Products, Inc.). After centrifugation at 

12000 rpm for 12 minutes, the supernatant was transferred into a new tube, 

mixed with 0.2ml chloroform and centrifuged again at 12000 rpm for 15 minutes. 

The aqueous phase was transferred into a new tube. Total RNA was precipitated 

by adding 0.5ml of isopropanol to the aqueous phase. The RNA pellet was 

washed with 75% ethanol, air dried, and dissolved in 50 µl RNase-free water. 

Total RNA was then purified using the RNeasy Mini Kit following instructions 

(Qiagen).  

 

Quantitative-RT-PCR 

Expression  of  roX1  and  the  X-linked  genes Dlmo, SkpA, and Ck-II was  
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Table 3-3.  Primers used to analyze gene expression by Q-RT-PCR. 
 
Genes Primers Sequences (5’ - 3’) Primer work Con. (nM) Efficiency (%) 

Dmn Dmn F GACAAGTTGAGCCGCCTTAC 300 98.5 

 Dmn R CTTGGTGCTTAGATGACGCA 300  

CKII CKII F CCTGGTTCTGTGGACTTCGT 300 98.4 

 CKII R GTAGTCCTCATCCACCTCGC 300  

skpA skpA F CTAAAAGTCGACCAGGGCAC 300 90.4 

 skpA R CCAGATAGTTCGCTGCCAAT 300  

Dlmo Dlmo F TGAGATTGTTTGGCAACACG 500 95.3 

 Dlmo R ACGCATCACCATCTCGAAG 500  

roX1 roX1 F3377 TTTTGTCCCACCCGAATAAC 300 107.3 

 roX1 R3448 CCTTTTAATGCGTTTTCCGA 300  
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measured by Quantitative-RT-PCR (Q-RT-PCR) as previously described (Deng 

et al., 2005). Briefly, one microgram of total RNA was reverse transcribed at 

42 °C for 1 hour using random hexamers and ImProm-II reverse transcriptase 

(Promega). The reverse transcription reaction consisted of 1 µg RNA template, 

0.5 µg random hexamers (primers), 3 mM MgCl2, 0.5 mM dNTP mix, 0.5 µl 

Recombinant RNasin (RNase inhibitor), 1 µl ImProm-II reverse transcriptase 

(Promega) and 4 µl 5XImProm-II reaction buffer in a total volume of 20 µl. The 

quantitative PCR was performed using an Mx3000P Realtime PCR system 

(Stratagene). Two PCR reactions for each template were performed in parallel. 

Each PCR reaction consisted of 5 µl cDNA template (1:20 dilution), 0.3 µM of 

each primer, and 12.5 µl 2XSYBR Green PCR Master Mix (Applied Biosystem) in 

a total volume of 25 µl. Q-RT–PCR data were analyzed by the efficiency 

corrected comparative quantification method (Pfaffl, 2001). Ct values for three 

biological replicates (each containing two technical replicates) per genotype were 

averaged into one Ct value per gene (performed by Mx3000P software, 

Stratagene). The selected X-linked genes are all down regulated in roX1 roX2 

mutant (Deng and Meller, 2006). The autosomal gene Dmn was selected as a 

reliable transcript for expression normalization (data not shown). The primers 

used in this study are presented in Table 3-3. The significance of differences 

attributable to different roX1 transgenes was determined by performing an 

unpaired two-tail t-test.  
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RESULTS 

 

Deleted roX1 transgenes partially rescue roX1 roX2 males. 

To investigate the function of 5’ roX1 sequence, three transgenes, 

[w+hsp83-roX1R1], [w+hsp83-roX1R2] and [w+hsp83-roX1R3] (also referred as 

roX1R1-3 for convenience), containing fragments of the roX1 5’ end were created. 

Design of these roX1 transgenes was based on previous studies of roX1 mutants 

and transgenes (Figure 3-2, (Deng et al., 2005) and data unpublished). These 

studies indicated that activity was present in at least three regions in the 5’ end of 

roX1. The first region, present in roX1R1, reflects the portion of the 5' end retained 

in the roX1ex7B mutant, which retains partial roX activity. The second region, 

present in roX1R2, when combined with the region present in roX1R1 and the 3’ 

functional sequence, supports full male viability. This is reflected by the survival 

of roX1ex40A roX2 males (Figure 3-2). The third region, present in roX1R3, can be 

deleted from roX1 without any phenotype (Deng et al., 2005). But the activity of 

this region could not be excluded. roX1 transcripts from a major transcription 

start site contain this region but lack region 1 and most of region 2. Possible 

redundancy of region 3 with the other two regions is therefore likely. These 5’ 

fragments (roX1R1, bp -85–310; roX1R2, bp 190–805; roX1R3, bp 790–1490 of 

roX1 (numbering from (Amrein and Axel, 1997)) were fused to the 3' fragment (bp 

3150–4150) that contains the essential stem loop, roX boxes and roX1 

termination signals (Figure 3-2). The sufficiency of this 3’ fragment is implied by 

the  survival  of  roX1ex40A  roX2  males  (Figure 3-2).  In  order  to  drive  uniform  
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Figure 3-2. Schematic structure of the roX1 gene and roX1R1, roX1R2 and 
roX1R3 transgenes. Alignment of roX1R1, roX1R2 and roX1R3 sequences shows 
the 5' fragments that were fused to the essential 3' end.  Break points of selected 
excision mutations that contributed to the design of these roX1 transgenes are 
shown below. The top line indicates the roX1 genomic region, numbering from 
(Amrein and Axel, 1997). The arrows above are: A. The start sites of a minor 
class of roX1 ESTs (expressed sequence tags) at -47 bp. B. A popular roX1 
transcription start site at 259 bp. C. The transcription start site of a major roX1 
transcript at 628 bp. D. the site of the roX1mb710 P-element insertion. E and F. the 
site of polyadenylation signals. Below are the roX1 transgenes generated for this 
study (top 4) and selected excision mutations (bottom 4) that are illustrated with 
respect to the transcribed region of roX1 (arrow). The hsp83 promoter is shown 
as white box in front of each roX1 transgene. The survival of selected roX1 
excision mutations is from (Deng et al, 2005) 
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expression, the strong, constitutive hsp83 promoter was used. Transgenic flies 

carrying each construct were generated. To avoid differences due to position 

effect, all transgenes were integrated at the same site at 68A4 on the third 

chromosome using the site-specific C31 integrase system (Groth et al., 2004). 

To enable comparison between X-linked and autosomal insertions, the roX1R1-3 

transgenes were also inserted at 2A3, 16C1, 18D3 and 19C4 on the X 

chromosome by the same site-specific system (see Materials and Method). For a 

control, a full length roX1 transgene, roX1FULL (bp -78–4150 of roX1), were also 

generated and integrated at 68A4 and 16C1 by the C31 integrase system 

(Figure 3-2). 

Rescue of roX1 roX2 male lethality was used to measure the biological 

activity of roX transgenes. Males carrying roX1R1-3 transgenes at the autosomal 

site 68A4 were mated to roX1SMC17A roX2 virgin females. The only source of roX 

RNA in the sons is from the roX1R1-3 transgene. The full length roX1 transgene, 

roX1FULL, driven by hsp83 and integrated at the 68A4 site, supports over 90% 

male survival (Table 3-4). As shown in Table 3-4, male viability is partially rescued 

by each of the three deleted roX1 transgenes. roX1R2 supports highest male 

survival, 54%, and roX1R1 supports lowest male survival, 33%. Rescue of 

roX1mb710 roX2 chromosome is similar. Low rescue rate was expected, as each 

roX1 transgene is deleted for most of the 5’ end of roX1. However, all roX1 

transgenes are still capable of partially rescuing roX1 roX2 males. This confirms 

previous studies suggesting that the 5’ end of roX1 contains multiple functional 

elements with at least partial redundancy. All subsequent studies of transgene 
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Table 3-4. Survival of roX1 roX2 males rescued by roX1R1, roX1R2 and roX1R3 
transgenes integrated at 68A4 on third chromosome. 
 

X chromosome 
% male survival with autosomal transgene 

  No TG     [roX1R1]    [roX1R2]    [roX1R3]  [roX1FULL] 

roX1SMC17A roX2 7(978) 33(1722)  54(1744) 43(1725) 96(643) 

roX1mb710 roX2  5(1680)a 44(352) 51(416) 49(313) NA 

  
roX1 roX2 females were mated to yw males homozygous for a roX1 transgene at 
68A4. The male and female adults were counted. Female viability is set as 100%. 
Male survival was expressed as the male to female ratio of offspring. The total 
number of female adults counted in each case is in parentheses. 
No TG, no transgene. 
NA, not available. 
a Meller and Rattner, 2002. 
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effect utilize the roX1SMC17A roX2 chromosome. 

 

Restoration of MSL complex localization to the X chromosome by roX1R1-3 

transgenes.  

roX1 roX2 males display reduced MSL localization to the X chromosome 

and ectopic MSL binding to the chromocenter and autosomal sites (Deng et al., 

2005; Meller and Rattner, 2002). To assess the role of 5’ roX1 sequences in MSL 

localization, we prepared polytene chromosome spreads from male roX1SMC17A 

roX2/Y; roX1R1-3/+ larvae and detected MSL1 localization by immunostaining. 

roX1FULL, also integrated at the 68A4 site, is used as a control. roX1R1-3 partially 

restore MSL recruitment to the roX1SMC17A roX2 X chromosome, but to different 

extents (Figure 3-3). All three autosomal roX1 transgenes support high levels of 

MSL complex binding to the X chromosome, but less than wild type or roX1SMC17A 

roX2/Y; roX1FULL/+ males (Figure 3-3 A, C). Some ectopic MSL binding is still 

observed, especially at the chromocenter of males carrying roX1R1-3. By contrast, 

roX1FULL supports wild type level of MSL complex binding to the X chromosome 

and no ectopic MSL binding except the roX1 integration site (compare panels A, 

C, D, E and F of Figure 3-3). Among all roX1R1-3–rescued roX1SMC17A roX2 males, 

the least ectopic MSL binding was observed in males carrying roX1R1. Males 

carrying roX1R2 retained the most prominent ectopic binding of MSL at the 

chromocenter. These results suggested that roX1 5’ end contains redundant 

elements that act co-operatively to direct MSL localization to the X chromosme. 

Comparing this with the ability of roX1R1-3 to rescue male survival reveals that the  
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Figure 3-3. Autosomal roX1 transgenes partially restore MSL complex 
localization to the X chromosome. MSL1 immunostaining of polytene 
chromosomes from male larvae of (A) wild type, (B) roX1SMC17A roX2, (C) 
roX1SMC17A roX2; [roX1Full], (D) roX1SMC17A roX2; [roX1R1], (E) roX1SMC17A roX2; 
[roX1R2], (F) roX1SMC17A roX2; [roX1R3]. roX1 transgenes are integrated at 68A4 
on third chromosome. The chromocenter is indicated by the triangle. The 
integration site is indicated by the arrow. X marks the X chromosome. MSL1 is 
detected with Texas Red (red). DNA is detected with DAPI (blue).  
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ability of each transgene to promote X-localization does not agree precisely with 

its ability to rescue males. roX1R2 support the highest male survival in spite of 

strong ectopic binding of MSL at the chromocenter. However, although it directs 

good MSL binding on X, roX1R1 support the lowest male survival. 

MLE is an RNA/DNA helicase which may not associate with other MSL 

proteins directly (Lee et al., 1997; Smith et al., 2000). It is possible that MLE 

associates with the MSL complex by interaction with roX RNAs (Meller, 2003; 

Richter et al., 1996). To determine whether roX1 transcripts from autosomal 

roX1R1-3 transgenes are able to recruit MLE to the X chromosome, I performed 

MLE immunostaining on polytene chromosome spreads from male roX1 SMC17A 

roX2; roX1R1-3 larvae. For roX1R2 and roX1R3 rescued males, the binding pattern 

of MLE is indistinguishable from that of MSL1 (Figure 3-4 C and D). This 

suggests that RNA transcribed from the roX1R2 and roX1R3 transgenes enables 

MLE to associate with the MSL proteins and localize to the X chromosome. 

However, I could not see any restoration of MLE localization to the X 

chromosome by roX1R1. Therefore, the roX1R1 RNA appears unable to interact 

with MLE, or to mediate its integration into MSL complex. This could partially 

explain the observations that although roX1R1 restores MSL1 localization to the X 

as well as roX1R2 and roX1R3, the survival of males rescued by roX1R1 is lower. 

This also suggests that although there is some redundancy among roX1R1-3, 

these segments of roX1 may also contain distinct functions. 

 

Accumulation of roX1R1-3 is determined by the 5’ sequence. 
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Figure 3-4. MLE immunostaining of polytene chromosomes from male 
larvae. (A) wild type, (B) roX1SMC17A roX2; [roX1R1], (C) roX1SMC17A roX2; [roX1R2], 
(D) roX1SMC17A roX2; [roX1R3]. roX1 transgenes are integrated at 68A4 on the 
third chromosome. X marks the X chromosome. MLE is detected with Texas Red 
(red). DNA is detected with DAPI (blue).  
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Quantitative reverse transcriptional real-time PCR (Q-RT-PCR) was used 

to determine the accumulation of transcripts from all transgenes. As expected, 

roX1SMC17A roX2 males showed no detectable roX1 RNA accumulation, which 

confirmed that the transgene was the sole source of roX1 transcript in the males 

we tested (Figure 3-5). As roX1R1-3 transgenes are driven by the same promoter 

and inserted at the same site, similar levels of transcription are anticipated. 

However, the levels of roX1 transcript detected by Q-RT-PCR are different for 

each transgene. All roX1R1-3 transgenes produce much lower level of roX1 RNA 

than wild type (yw) males when integrated at the autosomal site 68A4. By 

contrast, the full length transgene, roX1FULL, which is integrated at the same site, 

accumulated about 3.5-fold more roX1 RNA than wild type males (Figure 3-5). 

roX1R2 showed 7-fold higher roX1 RNA level than roX1R1, and transcript from 

roX1R3 was virtually undetectable (Figure 3-5, black bars). We then compared 

accumulation of roX1 transcripts produced from roX1R1-3 transgenes inserted at 

68A4 (autosomal), 16C1 (X-linked) and 2A3 (X-linked). The trend of transcript 

accumulation was essentially the same for roX1R1-3 (roX1R2 highest, roX1R3 

lowest), regardless of the site of integration (Figure 3-5, black, gray and brown 

bars). The high accumulation of stable transcript from roX1FULL confirms that 

transcription driven by the hsp83 promoter is high. This suggests that the 

dramatic difference in accumulation of transcripts from roX1R1-3 reflects the 

stability of the RNA produced. roX1 RNA stability therefore depends on specific 

sequences of roX1 transcript. Deletion of large amounts of roX1 sequence in 

roX1R1-3 transgenes decreases the transcript stability dramatically. 
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Figure 3-5. roX1 transcript levels in roX1 roX2 male larvae carrying roX1 
transgenes. roX1 expression in the wild type control (+) was set to 1. The Y axis 
is the level of roX1 accumulation in transgenic males divided by that in the wild 
type control. Q-RT-PCR was normalized to the autosomal gene Dmn. Error bars 
represent standard deviations of three independent biological replicates. 
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Although the roX1 transcripts produced from roX1R3 were undetectable by 

Q-RT-PCR, reverse-transcription followed by a regular PCR for 40 cycles 

confirmed the presence of the anticipated gene product. This is consistent with a 

previous study, which found that even undetectable levels of mutated roX1 

transcript can support dosage compensation and surprisingly high levels of male 

survival (Deng et al., 2005). PCR, followed by sequencing, revealed alternative 

splicing within the 5' region of all roX1R1-3 transgenes (Figure 3-6). Since the 

region amplified by Q-RT-PCR is located in the 3’ region of roX1 transgenes and 

is present in all alternative splice forms, the accumulation of roX1 transcripts 

detected by Q-RT-PCR reflects all of the roX1 transcripts present (primers for Q-

RT-PCR are presented in Table 3-3). 

 

roX1R1 directs MSL spreading in cis, while roX1R2 and roX1R3 do not.  

The different levels of transcript accumulation enabled us to test the role of 

roX abundance in spreading. The prevailing model of cotranscriptional assembly 

of MSL proteins onto nascent roX transcripts predicts that lower roX transcript 

accumulation promotes local spreading from sites of roX production, but when 

roX transcripts are more abundant, local spreading is less likely to occur (Kelley 

et al., 2008; Oh et al., 2003; Park et al., 2002). We therefore examined polytene 

preparations for evidence of MSL localization at 68A4, the autosomal insertion 

site of our roX1R1-3 transgenes. We observed that MSL binds to, but does not 

spread from, the roX1R2 and roX1R3 insertions. In contrast, strong MSL 

recruitment, and discontinuous spreading into flanking chromatin, was seen at 
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Figure 3-6. Reverse transcription followed by PCR reveals multiple roX1 
transcripts from the roX1R1-3 transgenes. The template was the same cDNA 
used for Q-RT-PCR to detect the roX1 transcript level. The cDNAs were reverse 
transcribed from three independent RNA samples extracted from 50 third instar 
larvae of each genotype. Lane 1-3, roX1SMC17A roX2/Y; [roX1R1]/+. Lane 4-6, 
roX1SMC17A roX2/Y; [roX1R2]/+. Lane 7-9, roX1SMC17A roX2/Y; [roX1R3]/+. The 
marker is 100bp DNA ladder. The size of selected band is labeled on left of the 
band. The highest band of each lane corresponds to the unspliced full length 
transcript from roX1R1-3. 
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the roX1R1 insertion site (Figure 3-3 arrow head, Figure 3-7). This is contrary to 

our expectation that roX1R3, with lowest RNA accumulation, would spread most 

readily from a transgene integration site. We conclude that transcript 

accumulation is not the sole determinant of spreading in cis, and that the roX1R1 

transgene either contains specific sequences that promote in cis spreading of the 

MSL complex, or lacks sequences that block spreading in cis.  

 

Transcript accumulation does not determine roX1R1-3 activity. 

roX1 roX2 mutant males show a global decrease in X-linked gene 

expression (Deng and Meller, 2006). To test whether roX1R1-3 transgenes are 

able to rescue X-linked gene expression in roX1 roX2 males, individual genes 

were measured by Q-RT-PCR in roX1SMC17A roX2 males carrying each transgene. 

As expected, X-linked gene expression was partially restored by roX1R1-3 

transgenes (Figure 3-8). Introduction of a copy of a roX1R1-3 transgene increases 

expression of all X-linked, dosage compensated genes that were tested, as 

compared to roX1SMC17A roX2 males. While the increase was variable and often 

small (between 6 and 54%), in most cases the change was significant (p<0.01, 

Figure 3-8).  

Beadex mutations are dose-sensitive, gain of function alleles of Dlmo 

(Shoresh et al., 1998). The X-linked Dlmo gene is dosage compensated by the 

MSL complex, making Beadex mutations sensitive reporters for MSL complex 

activity (Menon and Meller, 2009). Flies carrying Beadex mutations display 

notching of wing margins, and the notching becomes more severe with increased  
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Figure 3-7. The autosomal integration site of 68A4 enlarged to show MSL 
binding and spreading from roX1R1, and binding but no spreading from 
roX1FULL, roX1R2 and roX1R3. MSL1 immunostaining of polytene chromosomes 
from male larvae of (A) roX1SMC17A roX2; [roX1Full], (B) roX1SMC17A roX2; [roX1R1], 
(C) roX1SMC17A roX2; [roX1R2], (D) roX1SMC17A roX2; [roX1R3]. MSL1 is detected 
with Texas Red (red). DNA is detected with DAPI (blue).  
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Figure 3-8. Rescue of X-linked gene expression by roX1R1-3 transgenes. 
Three X-linked dosage compensated genes were analyzed by Q-RT-PCR in 
roX1SMC17A roX2 male larvae carrying roX1R1-3 transgene at 68A4. Expression in 
roX1SMC17A roX2 males was set to 1. Values are the ratio of gene expression in 
roX1SMC17A roX2 males carrying a roX1 transgene to that in roX1SMC17A roX2 
males without a transgene. Q-RT-PCR was normalized to the autosomal gene 
Dmn. Error bars represent standard deviations of three independent biological 
replicate. P-values are determined by performing a two-sample unpaired t-test 
between each genotype and control.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



90 
 

 
 

expression of Dlmo. Beadex reporter analysis confirmed Q-RT-PCR findings 

(Figure 3-9). There is no notching of wing margins in females carrying one 

Beadex allele (Bxr49k) and one wild type allele. roX1mb710 roX2 Bxr49k males show 

a low level of notching of wing margins (Menon and Meller, 2009), because of the 

lower expression of Dlmo due to the failure of dosage compensation. roX1mb710 

roX2∆ Bxr49k is a more severe allele that is lethal because of failure of dosage 

compensation. No adult male is recovered from this allele. Survival is partially 

rescued by introducing one copy of a roX1R1-3 transgene. These males show high 

levels of notching of wing margins, suggesting that X chromosome dosage 

compensation is improved. The level of notching is consistent with the 

expression level of X-linked genes detected by Q-RT-PCR. roX1R2 showed least 

notching, as well as least expression of Dlmo as detected by Q-RT-PCR, while 

roX1R1 and roX1R3 were quite similar. However, there  is  no  correlation  between  

the  level  of  transcript  from  the  roX1R1-3 transgenes and X-linked gene 

expression levels. Transcript accumulation does not predict the ability of roX1R1-3 

to rescue roX1 roX2 male viability, or to direct MSL spreading (Figure 3-5). Taken 

together, these studies revealed that roX1 transcript levels alone do not 

determine activity. 

 

roX1R1 has a unique activity. 

The ability of the extreme 5’ end of roX1 to direct MSL spreading in cis 

from its autosomal transcription site (Figure 3-7) suggests that it might have a 

role  in  marking  the  X  chromosome.  Both  roX  genes  are  located  on  the  X  
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Figure 3-9. Beadex responds to activity of roX1R1-3 transgenes. Wing from  
(A) roX1mb710 roX2∆ Dp(1;1)Bxr49k/Y; [roX1R1]/+ male, (B) roX1mb710 roX2∆ 
Dp(1;1)Bxr49k/Y; [roX1R2]/+ male, (C) roX1mb710 roX2∆ Dp(1;1)Bxr49k /Y; [roX1R3]/+ 
male. (D) The amount of wing margin lost is represented as the percentage of L3 
vein length. Twenty wings from each group were measured. 
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chromosome, and it has been suggested that this helps target dosage 

compensation to the X chromosome. However, full length autosomal roX 

transgenes can fully rescue survival of roX1 roX2 males, calling into question the 

role of spreading in cis. To examine this, roX1R1-3 transgenes were integrated at 

four more sites, 2A3, 16C1, 18D3 and 19C4, on the X chromosome. The 18D3 

landing site, in an intron of the Tao-1 gene, is viable but integration of any of the 

roX1 transgenes into this site is lethal. Integrations at the other three sites are 

viable. roX1R1-3 transgenes integrated at 2A3, 16C1, and 19C4 were recombined 

onto the roX1SMC17A roX2 chromosome. roX1SMC17A roX2 roX1R1-3/Binsincy 

females were mated to yw males to produce roX1SMC17A roX2 roX1R1-3 sons. The 

only source of roX RNA in the sons is the X-linked roX1R1-3 transgene. roX1R2 

and roX1R3 transgenes integrated at 19C4 rescued roX1SMC17A roX2 males 

somewhat less than the autosomal integration, while roX1R1 from this site 

showed no rescue of roX1SMC17A roX2 males (Table 3-5). 19C4 is a 

heterochromatic region. The expression of any transgenes inserted in this region 

could be suppressed by the heterochromatic environment. We expect that the 

lower rescue is due to low expression of roX1R1-3 transgenes. This is supported 

by the fact that the expression of the white marker gene at this site was 

variegating and hard to detect. When integrated at 16C1, roX1R2 and roX1R3 

displayed similar rescue to that observed for integrations at the autosomal 68A4 

site. Unexpectedly, roX1R1 showed no rescue of roX1SMC17A roX2 males from 

16C1 (Table 3-4 and 3-5). This was puzzling, as the accumulation of roX1R1 is 

identical when it is integrated at 16C1 and 68A4 (Figure 3-5). When integrated at  
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Table 3-5. Survival of roX1 roX2 males that are rescued by roX1R1, roX1R2 
and roX1R3 transgenes inserted on the X chromosme. 
 

Transgene 
Integration Site 

% male survival with X-liked transgenes 
   [roX1R1]        [roX1R2]       [roX1R3]        [roX1FULL]         

2A3 16(1010) 70(1517) 60(1205) NA 

16C1 9(5150) 52(1865) 33(2546) 99(570) 

19C4 8(679) 29(316) 31(304) NA 

 
To rescue roX1 roX2 males by X-linked roX1 transgene, roX1R1-3 transgenes 
inserted at the indicated sites were recombined to roX1SMC17A Df(1)52 X 
chromosome. roX1 Df(1)52 [roX1R1-3]/Binsincy females were mated to yw males 
homozygous for [w+4∆4.3]. The non-Binsincy male and female adults were 
counted. The female viability is set at 100%. Male viability was expressed as the 
ratio of males to females recovered. The total number of female adults counted in 
each case is in parentheses. 
NA: not available. 
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another X-linked site, 2A3, roX1R2 and roX1R3 displayed higher male rescue than 

all other sites. roX1R1 also showed higher male rescue from this site than from 

16C1 and 19C4 (Table 3-5). This is consistent with a higher transcript 

accumulation of roX1R1 and roX1R2 transcribed from this site than from 16C1 and 

68A4 (transcript from roX1R3 is still undetectable, Figure 3-5 brown bars). 

However, the rescue of roX1SMC17A roX2 males by roX1R1 integrated at 2A3 was 

only about half of that by roX1R1 integrated on an autosome. Because the roX1R1 

transgene has a unique ability to direct spreading of the MSL complex in cis, we 

hypothesized that the failure of rescue was due to abnormal local accumulation 

of MSL complex adjacent to the site of roX1R1 integration. We reasoned that this 

prevents spreading to dosage compensate the rest of the X chromosome. 

To resolve this question, I asked whether genetic manipulations that 

reduce MSL spreading increase male survival when rox1R1 is X-linked. Reduced 

levels of the MSL proteins MSL1 or MSL2 inhibit MSL spreading in cis from a roX 

transcription site (Oh et al., 2003). To reduce the dose of MSL1, I introduced a 

loss of function copy of msl1 (msl1L60) by mating roX1SMC17A roX2 roX1R1 16C1 

females to males carrying this mutation. Reduction of MSL1 did not rescue males 

with X-linked roX1R1 at 16C1 (Figure 3-10). Indeed it dramatically decreased 

roX1SMC17A roX2 roX1R1 male survival. In contrast, reduction in the level of MSL3 

and MLE had no discernable effect on male survival (Figure 3-10). Similar results 

were obtained with roX1R2 and roX1R3 transgenes integrated at the same site 

(Figure 3-10). This is consistent with previous studies demonstrating that the 

level  of  MSL1,  but  not  MSL3  or  MLE,  is  limiting  for  dosage  compensation.  
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Figure 3-10. Survival of roX1SMC17A roX2 roX1R1-3 males after manipulation of 
MSL protein levels. roX1R1-3 transgenes were located at 16C1 on the X 
chromosome. The survival of males is based on emergence of females of the 
same genotype, with the exception that females carry one wild type X 
chromosome and one roX1 roX2 roX1R1-3 chromosome (female viability is set to 
100%, see Materials and Methods for a description of crosses). The X 
chromosome genotype of each male is depicted on the X axis. The labels on the 
top right is the genotype of autosome in each case. “+” means wild type. The msl 
mutants used are msl1L60, msl32 and mle1. [M1][M2] chromosome carries hsp83-
driven transgenes that overexpress msl1 and msl2. Full genotype is roX1SMC17A 

Df(1)52 roX1R1-3; [w+4∆4.3]. 
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Simultaneous overexpression of MSL1 and MSL2 from transgenes increased the 

survival of roX1SMC17A roX2 roX1R1 males by almost two fold, but roX1SMC17A roX2 

roX1R2 and roX1SMC17A roX2 roX1R3 males did not benefit from MSL 

overexpression (Figure 3-10). Overexpression of MSL1 and MSL2 promotes 

speading in cis from roX genes and transgenes (Oh et al., 2003; Park et al., 

2002). My results indicate that uneven localization of the MSL complex along the 

X chromosome is not the reason why roX1R1 can not rescue from 16C1 on the X 

chromosome. My findings instead suggest that the failure of roX1R1 to support 

dosage compensation when transcribed from the X chromosome is the reason 

for low male survival.  

To investigate whether the failure of roX1R1 to support dosage 

compensation is a result of failure of proper localization of the MSL complex on 

the X chromosome, we prepared polytene chromosome spreads from male 

roX1SMC17A roX2 roX1R1-3 larvae and detected MSL1 localization by immuno-

staining. As shown in figure 3-11, when integrated at 16C1, roX1R1 failed to 

restore MSL complex localization to the X chromosome, while roX1R2 and roX1R3 

partially restored MSL complex localization to the X chromosome. Therefore, 

roX1R1 behaves differently in directing the localization of the MSL complex. It is 

able to direct MSL localization in trans from an autosomal site, but not from this 

X-linked site.   

I then asked whether roX1R1 is toxic in cis to the X chromosome. I 

reasoned that there might be a very dose-sensitive gene close to the 16C1 

integration  site.  The  local  accumulation  of  MSL  complex  in  roX1SMC17A  roX2  
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Figure 3-11. X-linked roX1 transgenes partially restore MSL complex 
localization to the X chromosome. MSL1 immunostaining of polytene 
chromosomes from male larvae of (A) roX1SMC17A roX2, (B) roX1SMC17A roX2 
[roX1R1], (C) roX1SMC17A roX2 [roX1R2], (D) roX1SMC17A roX2 [roX1R3]. roX1 
transgenes are integrated at 16C1 on X chromosome. X marks the X 
chromosome. MSL1 is detected with Texas Red (red). DNA is detected with DAPI 
(blue).  
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roX1R1 males might disrupt expression of this gene, leading to lethality. If this is 

the case, the roX1R1 transgene is likely to be toxic in a fly with wild type roX1 

supplied as well. A full length roX1 transgene driven by hsp83 and integrated at 

68A4, roX1FULL, was introduced to test this idea. The autosomal roX1FULL almost 

fully rescues roX1SMC17A roX2 roX1R1 males (Table 3-6). Transcript produced from 

roX1Full is stable and accumulates to high levels compared to roX1R1 (Figure 3-5). 

This transcript could overcome the effect of roX1R1 transcript by competing for 

binding to MSL proteins. We next tested whether the much less stable roX1 

transcripts produced from roX1R2 and roX1R3 could rescue roX1SMC17A roX2 

roX1R1 males. Introducing a single copy of roX1R2 or roX1R3 integrated at 68A4 

rescued roX1SMC17A roX2 roX1R1 males to a similar extent as achieved by roX1R2 

and roX1R3 when there is no roX1R1 transgene on the X chromosome (Table 3-6). 

Remarkably, roX1R1 at 68A4 also rescues roX1SMC17A roX2 roX1R1 males. The 

extent of rescue is identical to that when there is no roX1R1 transgene at 16C1. 

Taken together, these results indicate that roX1R1 integrated at 16C1 is not toxic. 

Rather, it appears that the RNA produced from this site is uniquely unable to 

participate in some vital aspect of dosage compensation. When performing the 

same rescue of roX1SMC17A roX2 roX1R2 and roX1SMC17A roX2 roX1R3 by 

autosomal roX1 transgenes, the effect of two transgenes together is not additive 

(Table 3-6). This suggests that different roX1 transcripts do not work together to 

complement deficiencies in the function of each transcript.  
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Table 3-6. Rescue of roX1 roX2 roX1R1-3 males by autosomal roX1 
transgenes. 
 

X chromosome 
% male survival with autosomal transgenes 

  No TG     [roX1R1]    [roX1R2]    [roX1R3]  [roX1FULL] 

roX1SMC17A roX2 7(978) 33(1722)  54(1744) 43(1725) 96(643) 

roX1SMC17A roX2 roX1R1 9(5150) 32(274) 40(252) 52(249) 83(563) 

roX1SMC17A roX2 roX1R2 52(1865) 47(175) 59(170) 67(166) 97(274) 

roX1SMC17A roX2 roX1R3 33(2546) 49(185) 61(186) 60(174) 115(234) 

 
roX1SMC17A roX2 roX1R1-3 X chromosomes carry the roX1 transgene at 16C1. To 
rescue roX1 roX2 roX1R1-3 males by autosomal roX1 transgenes, roX1 roX2 
roX1R1-3/Binsicy females were mated to yw males homozygous for the indicated 
roX1 transgene at 68A4. Adults, all of which carry one copy of the autosomal 
roX1 transgene, were counted. The female viability is set to 100%. Male viability 
was expressed as the percentage of males to females emerging from each cross. 
The total number of female adults counted in each case is in parentheses. 
No TG: no autosomal transgene. 
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DISCUSSION 

 

Both roX and Xist genes direct binding of chromatin complexes that coat 

the X chromosome to achieve dosage compensation. Both genes are able to 

recruit chromatin complexes in cis to the site of RNA production, but for neither 

molecule do we understand how this occurs at the molecular level. Our studies 

now reveal that a portion of roX1 that is only present in a minor fraction of 

naturally occurring transcripts contributes to the MSL complex spreading in cis. 

When roX1 transgenes are transcribed from an autosomal site, the MSL complex 

spreads discontinuously from the roX1R1 transcription site to flanking regions. In 

contrast, it binds to but does not spread from the roX1R2 and roX1R3 transcription 

site (Figure 3-7). MSL spreading from the roX1R1 transcription site shows a 

discontinuous pattern, as does spreading from a full length roX1 autosomal 

transgene (Kelley et al., 1999; Meller et al., 2000). This observation argues that 

all the spreading occurs by a similar mechanism. However, the region of 

spreading from a wild type roX1 transgene can cover an extensive region, while 

spreading from roX1R1 is only into two adjoining, strongly-labeled bands. 

It has been proposed that the MSL complex assembles co-transcriptionally 

on nascent roX transcripts, and spreads from these sites to adjacent, transcribed 

genes. The concept of spreading comes from the observed properties of 

heterochromatin. Heterochromatin can spread in cis from an initiation site along a 

chromosome for a long distance (Schuettengruber et al., 2007; Talbert and 

Henikoff, 2006; Wutz, 2003). This is believed to occur by linear propagation along 
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chromatin. Propagation involves silencing histone modifications (i.e., H3K9me) 

that serve to recruit proteins that make silencing histone modifications (i.e., Clr4), 

leading to spreading from sites of initiation. The mechanism of MSL complex 

spreading from a roX nucleation site to flanking regions is still unknown. It was 

found that a high ratio of MSL proteins to roX transcripts promoted local MSL 

spreading from sites of roX transcription (Kelley et al., 2008; Oh et al., 2003; Park 

et al., 2002). A model that local MSL spreading is controlled by the efficiency of 

MSL complex assembly onto nascent roX transcripts before their release was 

proposed. According to this model, there is an inverse relationship between the 

speed of MSL complex assembly and the ability of the MSL complex to spread 

from the site of roX transcription. Slower transcription or more MSL proteins 

produces more active MSL complex in the vicinity of the roX genes. This 

promotes binding to nearby chromatin. Decreased abundance of roX transcript 

also promotes assembly of intact MSL complexes prior to release of the roX 

transcript from the chromatin template. However, the roX1R1 transgene has 

intermediate transcript accumulation compared to roX1R2 and roX1R3 (Figure 3-5). 

Therefore, the transcript abundance of roX1R1, roX1R2 and roX1R3 does not 

predict their ability to direct MSL spreading in cis. We propose that the ability to 

direct spreading in cis is intrinsic to RNA or DNA sequences that are contained 

within the roX1R1 transgene, but missing from roX1R2 and roX1R3. 

All roX1R1-3 transgenes are driven by the same promoter, inserted at the 

same site, and thus expected to be transcribed at the same level. However, each 

of the roX1R1-3 transgenes displays a different level of transcript accumulation. 
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The hsp83 promoter drives strong transcription of roX1 transgenes. However, the 

accumulation of the transcripts from roX1R1-3 is much lower than wild type. 

Transcript from roX1FULL transgene, driven by the same promoter and inserted at 

the same site, showed much higher RNA accumulation than wild type. The high 

accumulation of the transcript from roX1FULL confirms that transcription driven by 

the hsp83 promoter is strong. This suggests that the dramatic difference in 

transcript accumulation reflects the stability of the RNA produced. roX1R3 is quite 

unstable compared to roX1R2 and roX1R1, and roX1R2 is more stable than roX1R1, 

but accumulation remains ten times less than roX1FULL when expressed from the 

same site. roX1R1-3 transgenes have deletion of large roX1 sequences, which 

decreases the transcript stability dramatically. This indicates that roX1 RNA 

stability needs cooperation of several roX1 sequences, consistent with the idea 

that roX1 contacts several proteins following integration into the MSL complex. 

However, we can not exclude the possibility that the transcription elongation rate 

of each roX1 transgene is different, and this contributes to different transcript 

accumulation from each transgene. An in vivo transcription run-on assay could 

be used to investigate the transcription elongation rate from each roX1 transgene. 

Binding of the MSL complex to the roX1 transgene could interfere with the 

transcription elongation. However, the accumulation of the MSL complex at the 

integration site of roX1 transgenes does not correlate with the accumulation of 

the transcript from corresponding roX1 transgenes. Moreover, the roXFULL 

transgene contains all 5' sequences, transcription of roXFULL would presumably 

be limited by any 5' sequences that slow elongation. Since accumulation of 
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roXFULL is highest, elongation alone does not explain the transcript accumulation 

levels from these transgenes. My data is most consistent with the stability of 

each transcript being primarily responsible for RNA accumulation. 

Males carrying a roX1 allele missing a large part of the 5’ sequence 

display ectopic MSL binding to heterochromatic region and some autosomal sites 

and reduced binding on the X chromosome (Deng et al., 2005). All roX1R1-3 

transgenes with different fragments of the 5’ end partially rescue male survival 

and MSL localization to the X chromosome (Table 3-4, Figure 3-3), supporting 

the idea that this region contains multiple elements necessary for targeting of the 

MSL complex to the X chromosome. The incomplete rescue of male survival and 

MSL localization by each roX1R1-3 transgene indicates that several of these 

elements act co-operatively for MSL localization. As the roX1 5’ end lacks 

obvious conserved sequences, this redundancy may operate at the level of RNA 

structure.  

An internal deletion mutant of roX1, roX1ex40A, that retains only the roX1R1 

and roX1R2 5’ fragments and the 3’ end, supports full male survival, leading to the 

conclusion that these are the only regions of roX1 necessary for function (Deng 

et al., 2005). However, although the 5’ sequence of roX1R3 is not present in the 

roX1ex40A mutation, we clearly detect the function of this region by MSL 

localization driven by the roX1R3 transgene. This was expected since the most 

active roX1 transcription start site is situated at bp 628, slightly upstream from 

the beginning of the 5' fragment cloned into roX1R3.  

Although roX1ex40A restores full male viability, co-expression of roX1R1 and 
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roX1R2 transgenes, which together contain all 5' sequences present in roX1ex40A, 

does not fully rescue male survival. This supports previous studies showing that 

neither 3’ 1 kb nor 5’ 2.5kb roX1 fragments rescues male survival or MSL 

localization, which suggested that roX RNA fulfills its function through 

simultaneous interaction with different molecules (Meller and Rattner, 2002; 

Stuckenholz et al., 2003). We do not know if the MSL complex contains more 

than one roX RNA. However, my finding that roX1R1 and roX1R2 can not 

complement each other suggests that the MSL complex may contain a single roX 

RNA.  

The roX1R2 and roX1R3 transgenes enable MSL1 and MLE to bind to the X 

chromosome, suggesting that roX1R2 and roX1R3 transcripts simultaneous 

interact with multiple MSL proteins. However, roX1R1 partially restores MSL1 but 

not MLE localization to X chromosome. The helicase activity of MLE, as well as 

an RB1 RNA-binding domain in this protein, is reported to be important for 

normal spreading of the MSL complex on the X chromosome and for movement 

of the roX RNAs from their sites of synthesis (Gu et al., 2000; Meller et al., 2000; 

Morra et al., 2008; Morra et al., 2011). It is puzzling that roX1R1 can promote MSL 

spreading from its production site, but does not recruit MLE. It is possible that the 

relatively short roX1R1 transcript does not require the helicase activity of MLE for 

assembly and spreading (Figure 3-12 A). Other possible models for roX1R1 

directed spreading without binding to MLE can also be postulated. It is possible 

that the MSL complex requires dissociation of MLE to spread from the primary 

binding site to different sites, and that the MLE helicase activity is required for the  
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Figure 3-12. Models of roX1R1-directed spreading of MSL complex from its 
transcription site. (A) Full length roX1 requires the MLE helicase for movement 
from a site of transcription. Relatively short roX1R1 transcript does not need MLE. 
(B) MLE must dissociate from the MSL complex to allow spreading to a different 
site. Dissociation of MLE requires MLE helicase activity. Because roX1R1 never 
recruits MLE, it spreads in cis more readily. (C) MLE is required for repositioning 
of chromatin bound MSL complex. When MLE is incorporated into the MSL 
complex, the complex can move to other sites. However, without MLE, it is 
sequestered in the place of first association. This creates a high concentration of 
MSL complex locally, enhancing the appearance of spreading to regions 
surrounding the site of transcription.  
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dissociation. Since roX1R1 transcript never recruits MLE to the MSL complex, it 

can spread more readily (Figure 3-12 B). Another possible explanation is that 

MLE is necessary for mobility of MSL complex that has bound to chromatin. The 

MSL complex is thought to first bind to chromatin entry sites, or sites close to the 

roX genes, and then spread to other sites on the X chromosome. In this model, 

chromatin bound MSL complex can move to other sites only when MLE is 

present and active. Without MLE, the MSL complex is sequestered at the place 

of first association (Figure 3-12 C). This would create a high concentration of 

MSL complex surrounding the site of roX transcription (Figure 3-12 C). Although 

counterintuitive, this model suggests that what appears to be avid local spreading 

from a roX1R1 transgene is in fact the consequence of the inability of a partial 

complex lacking MLE to travel from its initial binding site.  The resolution of 

polytene chromosome immunostaining is relatively low. Although MSL1 

localization on an X chromosome rescued by autosomally produced roX1R1 is 

similar to that observed with roX1R2 and roX1R3, we can not determine if the 

spreading of MSL complex on the X chromosome is normal. The effect of MLE on 

spreading of the MSL complex over short distances may only be detectable by 

high-resolution techniques such as ChIP-chip or ChIP-seq. For example, ChIP-

seq was used to establish that the MSL3 chromo-domain is necessary for the 

MSL complex to spread to actively transcribed genes, in spite of the fact that 

immunostaining of polytene chromosome did not detect reduced MSL localization 

in an MSL3 chromo-domain mutant (Sural et al., 2008). 

roX genes are normally located on and transcribed from the X 
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chromosome, and assemble with the MSL proteins to coat the X chromosome 

(Amrein and Axel, 1997; Meller et al., 1997). It has been suggested that X-

linkage of the roX genes contributes to targeting MSL complex to the correct 

chromosome. Autosomal roX1 transgenes enable the MSL complex to bind to the 

X chromosome in trans and rescue roX1 roX2 males, even though roX RNAs are 

usually transcribed from X. If roX1 is wild type, the insertion site is immaterial. 

However, studies on the partial loss of function roX1ex7B mutant suggest that 

partially functional roX1 transgenes may be more active if they are inserted on 

the X chromosome. The roX1ex7B mutation has an internal deletion of 2.3 kb, 

leaving the same 5’ sequence present in roX1R1 (Figure 3-2). The roX1ex7B 

mutation on the X supports ~43% male survival, but an autosomal hsp83-driven 

roX1ex7B transgene that begins at bp 47, and is thus slightly 5’ truncated, 

supports only ~14% male survival. However, male rescue by autosomal roX1R1 is 

much higher (33%-44%). Although position effects become a confounding factor 

when insertions at different sites are compared, X-linked integrations of roX1R1-3 

transgenes do not consistently show higher activity. The lower male survival 

resulting from the autosomal roX1ex7B transgene thus appears to not be due to its 

autosomal location. The roX1ex7B transgene starts 120 bp downstream of the 

roX1R1 start site. The sequence lacking in the roX1ex7B transgene is thus the likely 

cause of its decreased male rescue.  

When roX1R1-3 are expressed from a single integration site, the rescue of 

roX1 roX2 males by roX1R2 is highest and by roX1R1 is lowest. The trend is the 

same for all integration sites. Unexpectedly, roX1R1 showed much lower or no 
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rescue of roX1 roX2 males transcribed from the X chromosome (Table 3-5). This 

is not due to differences in expression, and is not because roX1R1 is toxic to 

nearby genes. Lack of effective recruitment of the MSL complex, and low support 

of dosage compensation is more likely responsible for low male rescue by X-

linked roX1R1. A model based on a requirement for MLE to reposition chromatin-

bound MSL complex is proposed (Figure 3-13). In this model, we hypothesize 

that the MSL complex containing roX1R1 but no MLE can bind chromatin. 

However, the MSL complex needs the MLE helicase for release from chromatin 

and repositioning at other sites (i.e., within body of genes). Without MLE, the 

roX1R1-containing MSL complex is unable to move from initial binding site, 

resulting in excessive accumulation at the site of transcription. When roX1R1 is 

transcribed from an autosomal site, because the surrounding autosome is less 

permissive for MSL attachment, only very closely linked sites accumulate for the 

MSL complex. The nucleoplasm is filled with MSL complexes that ultimately find 

sites on the X chromosome. However, when roX1R1 is transcribed from the X 

chromosome, the MSL complex immediately binds nearby X chromatin. However, 

subsequent redistribution to more transcribed genes on the X chromosome can 

not occur. This raises the question of why the similar roX1ex7B RNA, transcribed 

from the X chromosome under the control of the weaker roX1 promoter, 

produces reasonably good (40-50%) male survival. One possibility is that the 

abundant supply of roX1R1 enables most of the MSL proteins to bind chromatin, 

depleting the pool of free MSL proteins in the nucleoplasm. A newly transcribed 

gene will consequently find it extraordinarily difficult to recruit MSL complex. The  
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Figure 3-13. Mobility of the MSL complex depends on roX1 and MLE. (A) 
After assembly of the MSL complex, chromatin entry sites are bound.  The 
complex then spreads to transcribed genes. (B) MSL complex containing roX1R1 
can bind X chromatin, but can not be repositioned as it lacks MLE activity. 
Spreading to nearby transcribed genes is inhibited. (C) When roX1R1 is 
transcribed from an autosomal site, closely linked sites accumulate the MSL 
complex. However, autosomal binding is inefficient and the nucleoplasm is filled 
with MSL complexes that ultimately finds a wide range of binding sites on the X 
chromosome. (D) When roX1R1 is transcribed from the X chromosome, the MSL 
complex is titrated out of the nucleoplasm by binding to nearby chromatin entry 
sites and transcribed genes. Bound complex is unable to redistribute to 
transcribed genes on the X chromosome. 
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fact that forced expression of MSL1 partially rescues roX1 roX2 males carrying 

the roX1R1 transgene is consistent with this interpretation. Future studies testing 

these models may lead to a deeper understanding of how roX RNAs contribute to 

X identification, and the molecular mechanisms that underlie spreading in cis 

from a site of roX transcription. 

In a summary, regions of roX1 RNA with distinct functions have been 

identified throughout the 5’ end of roX1 by these studies (Figure 3-14). Multiple 

redundant elements that act co-operatively to contribute to X chromosome 

targeting of the MSL complex are distributed throughout the 5’ end of the roX1 

transcript. The extreme 5' portion of roX1 that is present in roX1R1 displays a 

unique activity, promoting MSL complex spreading from the site of transcription. 

However, only the sequences present in roX1R2 and roX1R3 are able to recruit 

MLE.  

Naturally occurring roX1 transcripts reveal minor and major transcription 

start sites that are developmentally regulated. The 5’ ends of roX1R1-3 transgenes 

roughly correlate with the transcription start sites of the three dominant roX1 

isoforms (Figure 3-2). The roX1R1 transgene contains a region only expressed in 

a minor population of roX1 transcripts. This suggests that utilization of different 

transcription start sites is carefully regulated, and may contribute to normal 

distribution of the MSL complex. The activities I have detected are expected to be 

regulated by choice of transcription start site, alternative splicing and/or transcript 

stability. 
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Figure 3-14. Schematic illustration of functional roX1 domains. The top line 
indicates the roX1 genomic region, numbering from (Amrein and Axel, 1997).  
The transcribed roX1 region is shown as an arrow. The arrows above are: A. The 
start site of a minor class of roX1 ESTs (expressed sequence tags) B. A more 
frequently used roX1 transcription start site. C. The transcription start site of the 
majority roX1 transcripts. Below are the roX1 functional domains with respect to 
the transcribed region of roX1. Data is compiled from the following references. 1) 
Stuckenholz et al., 2003. 2) Park et al., 2008. 3) Kelley et al., 2008. 4) Deng et al., 
2005. 
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CHAPTER 4 

 

FUTURE DIRECTIONS 

 

The results described in this study provide insight into chromosome-wide 

regulation by a large non-coding RNA. However, roX1 function has not yet been 

completely elucidated. Addressing the following questions will enable a better 

understanding of how roX1 carries out its function, and how this process is 

regulated. 

 

What mechanism restricts roX regulation of heterochromatin to males? 

roX RNAs participate in two distinct biological processes in Drosophila 

melanogaster males: dosage compensation and normal heterochromatin function. 

Dosage compensation increases expression from the male X chromosome to 

compensate for X chromosome monosomy. Dosage compensation is limited in 

males by repression of MSL2 in females (Kelley et al., 1997). However, 

heterochromatin is present in both sexes. All known components of the roX-

dependent heterochromatic modulation system (roX RNA, MLE, MSL1, MSL3 

and MOF) are present in early female embryos (Deng et al., 2009; Meller, 2003; 

Rastelli et al., 1995). We speculate that these molecules associate to form a 

complex that serves a transient role in formation of heterochromatin in male 

embryos. What prevents this from occuring in females is unclear. SXL binding 

sites in roX1 provide a plausible point for regulation of this system by the female-



113 
 

 
 

limited SXL protein (Meller et al., 1997). However, expression of roX1 lacking 

these sites does not influence the expression of heterochromatic genes in 

females. Other possibilities exist. There could be additional factors that 

participate in roX-dependent heterochromatin modulation that are only present in 

males, or active in males. It is also possible that additional factors block this 

system in females. To investigate this possibility, roX1 pull-down could be 

performed in male and female embryos, followed by a LC-MS/MS (Liquid 

Chromatography coupled with Tandem Mass Spectrometry) to identify roX-

interacting factors. Different proteins associated with roX1 in males and females 

could be the factors that limit this system to males. However, this interaction 

could be transient and weak, making it difficult to identify through a general roX1 

pull-down. Specific developmental stages and pull-down conditions are critical for 

this experiment. 

 

What roX1 regions are required for the regulation of heterochromatin? 

It is possible that roX RNA interacts with different proteins when 

modulating heterochromatin and the X chromosome. These interactions could 

occur through distinct functional domains of roX1. It is of considerable interest to 

identify roX1 sequences that participate in each of the known functions of this 

molecule. Multiple regions of roX1, with unique functions, are important for 

dosage compensation. One candidate roX1 region suggested by our preliminary 

data to be required for heterochromatin regulation was found to be dispensable 

for this process. However, a systematic study of roX1 mutations or transgenes 
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deleted for different regions could be used to identify regions necessary for 

heterochromatin. The roX1 transgenes I created to test in dosage compensation 

can now be used for this purpose (Chapter 3). These roX1 transgenes could be 

analyzed to determine their ability to restore the expression of heterochromatic 

genes in roX1 roX2 males.  

 

Is there a direct interaction between 5’ roX1 sequences and MSL proteins?   

I have suggested that the function of intact roX1 requires simultaneous 

interaction with different molecules. It is easy to imagine that roX1 contacts 

multiply MSL proteins. Identification of sequences binding to each protein will 

help to elucidate how roX1 exerts its function. My results revealed multiple 

redundant elements throughout the 5’ region of the roX1 transcript that cooperate 

in X chromosome targeting. Because roX1R1-3 each contains a subset of these 

elements, they have partial function in directing MSL binding and supporting male 

survival. We can perform an in vitro transcription of the 5’ portion of these 

transgenes and test if there is any physical interaction with any MSL proteins 

using gel mobility shift assay. If successful, we can further narrow down the 

functional elements by producing smaller RNA within the interacting region and 

test for interaction.  

 

What prevents roX1R1 from rescuing roX1 roX2 males from X-linked 

insertion sites? 

roX RNAs are normally located on and transcribed from the X 



115 
 

 
 

chromosome, and assemble with the MSL proteins to coat the X chromosome 

(Amrein and Axel, 1997; Meller et al., 1997). It has been suggested that X-

linkage of the roX genes contributes to targeting of the MSL complex to the X 

chromosome (Kelley et al., 1999). We expected that a roX1 transgene able to 

direct MSL complex localization to flanking chromatin would have higher rescue 

activity when inserted on the X chromosome than when inserted on an autosome. 

In contrast to our expectation, my roX1 transgenes did not display higher activity 

when expressed from the X chromosome. Unexpectedly, one transgene, roX1R1, 

showed no rescue of roX1 roX2 males when transcribed from 16C1 or 19C4 on 

the X chromosome. While 19C4 is in proximal heterochromatin, perhaps lowering 

the effect of this site, roX1R1 is expressed at the same level when inserted at 

16C1 and at 68A4 on the 3rd chromosome. My studies suggest that this insertion 

of roX1R1 fails to rescue males due to a deficiency of dosage compensation, 

rather than toxicity due to an elevated recruitment of MSL proteins to a particular 

site on the X chromosome. When integrated at another X-linked site, 2A3, roX1R2 

and roX1R3 showed higher male rescue than the autosomal site, but roX1R1 still 

displayed very low rescue of roX1 roX2 males. Future studies to understand why 

the transcription of roX1R1 from an autosomal site will partially rescue roX1 roX2 

males, but transcription from the X-linked sites fails to rescue these males may 

provide insight into the interplay between the roX1 promoter, 5’ regions of the 

roX1 transcript and spreading in cis. 

 

Do different roX1 isoforms perform different functions?  
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roX1 displays minor and major transcription start sites that are 

developmentally regulated. I generated a full length roX1 transgene that fully 

rescues X-lined gene expression, but only partially restores expression from 

fourth-linked heterochromatic genes. This incomplete rescue could be due to 

other aspects of the intrinsic roX1 gene, such as correct balance of transcripts 

from alternative start sites or developmental regulation of transcription start sites. 

Different roX1 activities may be regulated by choice of transcription start site, 

alternative splicing and/or transcript stability. A previous study suggested that 

variable alternative roX2 splice forms are important for modulating the activity of 

the MSL complex (Park et al., 2005). My study and others all suggest that 

alternative splicing occurs in the 5’ roX1 region. A more complete analysis of 

alternative splicing and transcription start site utilization might provide clues to 

the different roles of roX1 transcripts. My studies indicate that the roX1R1 

transgene has the ability to direct spreading in cis from the site of roX1R1 

transcription. The fact that the 5’ portion of roX1 included in roX1R1 is present in 

very few endogenous roX1 transcripts suggests that regulation of transcription 

start site may regulate this aspect of roX1 function. 
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APPENDIX A 

 

MINIMUM INFORMATION ABOUT MICROARRAY ANALYSIS OF ROX IN 
FEMALES 

 

MIAME 

 

This document contains minimum information for the microarray experiment of 

roX1 roX2 mutant females in chapter 2. 

 

1. Experimental design:  

a) The goal of the experiment 

 Determine if roX RNAs regulate expression in Drosophila females. 

 

b) Author (submitter), laboratory, contact information, links (URL), citation 

Y. Kong 

V. Meller 

Department of Biological Sciences 

5047 Gullen Mall 

Wayne State University, Detroit, MI 48202 

 

c) Type of the experiment  

effect of roX1 roX2 mutant chromosome on gene expression in females 
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d) Experimental factors. 

mutation of both roX1 and roX2 genes 

 

e) Single or multiple hybridizations 

Single hybridizations: 

* Serial (yes/no) 

no 

* Grouping (yes/no) 

yes 

 

Samples:  

Group 1:  roX1SMC17ADf(1)52; [w+4∆4.3] (roX1 roX2 mutant female larvae) 

Group 2:  roX1SMC17ADf(1)52; [w+4∆4.3]; [hsp83-roX1+] (control female 

larvae) 

 

Arrays: 1, 2, 3, 4, 5, 6 

Hybridizations:  

Group 1, 

H1: Array 1, VM_roX-1 (mutant) 

H2: Array 2, VM_roX-2 (mutant) 

H3: Array 3, VM_roX-3 (mutant) 

H1, H2 and H3 are biological triplicates. 

Group 2, 
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H4: Array 4, VM_roX+4 (control) 

H5: Array 5, VM_roX+5 (control) 

H6: Array 6, VM_roX+6 (control) 

H4, H5 and H6 are biological triplicates.  

 

f) Quality related indicators quality control steps taken: 

* Biological triplicates for each genotype 

  

* Other 

RNA quality is analyzed on the Agilent 2100 Bioanalyzer. 

 

Affymetrix positive and negative controls, including: 

Hybridization controls: bioB, bioC, bioD from E. coli and cre from P1 

bacteriophage 

Poly-A controls: dap, lys, phe, thr, trp from B. subtilis 

Drosophila maintenance genes: Actin (Actin 42A), GAPDH 

(Glyceraldehyde 3 phosphate dehydrogenase 2), Eif-4a (Eukaryotic 

initiation factor 4a) 

 

Affymetrix PM-MM (Perfect match- Mismatch) comparison for unspecific 

binding. 

 

g) A free text description of the experiment set or a link to a publication 
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The global effect of roX mutations on gene expression in females was 

measured by microarray analysis. Three independent RNA preparations 

for each genotype served as templates for probe synthesis. These probes 

were hybridized to Affymetrix Drosophila Genome 2.0 chips. Affymetrix 

Gene expression data was background corrected, normalized and 

summarized into a one expression value per sample and probeset using 

the RMA (robust multi-array average) algorithm. Changes in gene 

expression were determined by comparing the mean signal intensities of 

genes on arrays hybridized with roX1 roX2 (mutant) probes to those 

hybridized with roX1 roX2;  [hsp83-roX1+] (control) probes.  

 

2. Array design: each array used and each element (spot) on the array 

2.1 Array copy: each array used and each element (spot) on the array. 

* Unique id as used in part 1 

1, 2, 3, 4, 5, 6 

 

* Array design name  

Affymetrix Drosophila Genome 2.0 chips 

 

2.2 Array related information 

 Affymetrix eukaryotic gene expression analysis arrays   

See http://www.affymetrix.com/products/arrays/specific/fly_2.affx 

All transcript alignments, Gene Names and Probe set IDs were extracted 
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from the Affymetrix Drosophila 2 annotation file.   

 

3. Samples: samples used, extract preparation and labeling 

a) Bio-source properties 

* Samples 

Three independent RNA preparations from roX1 roX2 mutant female 

larvae and three from control female larvae (roX1 roX2; [hsp83-roX1+]) 

were used. This design was adopted to minimize the genetic variation 

between mutant and control. 

 

* Organism (NCBI taxonomy) 

Drosophila melanogaster 

 

* Gender 

Female 

 

* Development stage 

Third instar larvae 

 

* Genetic variation (e.g., gene knockout, transgenic variation) 

 Transgenic variation 

 

b) Hybridization extract preparation laboratory protocol for extract preparation, 
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including: protocol description. 

* Description: 

Total RNA was prepared from groups of 50 third instar larvae by TRIzol 

(Invitrogen) extraction and purified using the RNeasy kit (Qiagen).   

 

* Extraction method 

TRIzol standard protocol (Invitrogen), purification by RNeasy kit (Qiagen) 

 

* Whether total RNA, mRNA, or genomic DNA is extracted 

total RNA 

 

* Amplification (RNA polymerases, PCR) 

none 

 

c) Labeling: laboratory protocol for labeling, including: 

* Protocol 

Standard protocols as described in the Affymetrix GeneChip® Expression 

Analysis Technical Manual, P/N 702232, rev. 2, 2005-2006, Chapters 2-4.   

cDNA synthesis was using the GeneChip® 3'-Amplification One-Cycle 

cDNA Synthesis Kit (Affymetrix, #900431). 

100% of cDNA product is used to synthesize biotin labeled cRNA by the 

GeneChip® IVT Labeling Kit ( Affymetrix, #900449). 
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* Amount of nucleic acids labeled 

5 g total RNA was used for each samples  

 

* Label used (e.g., Cy3, Cy5, 33P) 

Biotin  

 

4. Hybridizations: procedures and parameters 

* Laboratory protocol for hybridization 

Standard protocols as described in the Affymetrix GeneChip® Expression 

Analysis Technical Manual, P/N 702232, rev. 2, 2005-2006, Chapter 3. 

 

* Wash procedure 

Wash protocol FS450_0002. 

 

* Quantity of labeled target used 

6.5 µg labeled cRNA 

 

* Time, concentration, volume, temperature 

Overnight (16h), 200 µl, at 45°C, rotating at 60 rpm 

 

* Description of the hybridization instruments 

GeneChip® Hybridization Oven 640 (Affymetrix, #800138)  
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5. Measurements: images, quantitation, specifications: 

a) Hybridization scan raw data: 

a1) the scanner image file (e.g., TIFF) from the hybridized microarray scanning 

 

a2) Scanning information: 

Arrays were scanned by the Affymetrix GeneChip® Scanner 3000 with 

Auto Loader (Affymetrix, #00-0090) expression analysis settings at "All 

Probe Sets" Scale Factor 500, Normalization = 1.0, No Masking.  

 

b) Image analysis and quantitation 

The Chip Image was analyzed using GCOS 1.4 to produce a .CEL file of 

probe intensities for each sample.  The .CEL files were in turn modeled in 

PM-MM mode to produce a spreadsheet of probeset intensities for all six 

arrays. 

   

The .CEL files and .CHP files were available in Gene Expression Omnibus 

database (Access number: GSE12076).  

Mutant_1:  GSM304915 

Mutant_2:  GSM304916 

Mutant_3:  GSM304917 

Control_1: GSM304918 

Control_2: GSM304919 

Control_3: GSM304920 
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c) Annotation and alignment 

All transcript alignments, Gene Names and Probeset IDs were extracted 

from the Bioconductor annotation package “Affymetrix Drosophila Genome 

2.0 Array Annotation Data (drosophila2)”.  Transcripts were aligned to each 

chromosome. 

 

6. Normalization 

Affymetrix Gene expression data was background corrected, normalized 

and summarized into a one expression value per sample and probeset 

using the RMA (robust multi-array average) algorithm. The Affymetrix 

MAS5.0 Present/Absent calls were used to filter out the probesets that 

were not present in at least 2 out of 3 samples in each group (mutant and 

normal). All the probesets that could not be mapped to a known Entrez 

Gene ID, according to the Bioconductor (www.bioconductor.org) drosophila 

2 package, were removed from further analysis. The expression values 

from multiple probes corresponding to the same Entrez Gene ID were 

averaged together in each array (sample). The chromosome assignment of 

each probeset was based on the drosophila 2 package in bioconductor. 

The probes corresponding to genes situated in heterochromatin were 

identified from the Fly database, assuming that all the remaining ones are 

euchromatic genes. The log2 fold changes were computed as the mean 

RMA expression values in the mutant sample minus the mean expression 
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values in the control samples. The resulting log2 fold changes were then 

compared among chromosomes using a Wilcoxon test. All the analyses 

were performed using the R software environment (www.r-project.org) and 

specialized bioconductor (www.bioconductor.org) software packages. 
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APPENDIX B 

 

A ROX1 TRANSGENE INSERTION REVEALS UNUSUAL FEMALE-SPECIFIC 
LETHALITY 

 

ABSTRACT 

Integration of roX1R1-3 at a landing site within the X-linked Tao-1 gene 

(18D3) was lethal. To obtain additional X-linked insertions of roX1R1, the 

lethal roX1R1 integrant, as well as roX1R3 (as a control), was mobilized and 

surviving males carrying an X-linked w+ marker were identified.  

Unexpectedly, most of these products of mobilization had strikingly 

reduced viability of homozygous females.  Genetic and molecular analysis 

revealed that partial inserted sequences remaining in the original 

integration site cause the female-specific lethality. X chromosomes 

retaining different portions of the original inserted sequences complement 

each other and rescue female survival. The insertion of different sequences 

within this site may disturb Tao-1 transcript splicing. I postulated that 

females are more sensitive to disruption in Tao-1 levels or splicing. 

 

To investigate the function of 5’ roX1 sequence, three transgenes, roX1R1, 

roX1R2 and roX1R3, were created in the pUASTB vector and inserted at 68A4 on 

the third chromosome and at four sites on X chromosome (2A3, 16C1, 18D3 and 

19C4) using the site-specific C31 integrase system. In this system, 

recombination occurs between an attB site on the plasmid (pUASTB) containing 
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the transgene and an attP site in the fly genome (Groth et al., 2004; Thorpe and 

Smith, 1998). The transgenes were integrated into attP target sites, present in 

the P[y+CaryattP] P-element, at different sites in the fly genome. Integration of 

the pUASTB vector into P[y+CaryattP] created a complicated P element with two 

3' ends and two 5' ends (Fig A-2). These are arranged in a manner that will 

enable multiple modes of excision by transposase. While flies with transgenes 

integrated at other sites show normal viability, integration of rox1R1-3 transgenes 

at 18D3 is lethal in males and homozygous lethal in females. The 18D3 landing 

site was created by mobilization of P[y+CaryattP] from 64A4 (obtained from 

Bloomington Drosophila Stock Center) and selecting for insertions on X 

chromosome. The exact location of 18D3 X-linked insertion was determined by 

inverse PCR and sequencing (Inverse PCR Protocol available from Berkeley 

Drosophila Genome Project; http://www.fruitfly.org/about/methods/inverse.pcr. 

html). The landing site is located inside an intron of Tao-1, and, by itself, appears 

to be fully viable (Figure A-1). Information from Flybase (www.flybase.org) shows 

that this gene has 7 annotated transcripts, and 7 annotated polypeptides. The 

putative product of Tao-1 is a serine/threonine kinase proposed to be involved in 

apoptosis. Although 8 alleles are reported, there is no null allele available and no 

phenotypic data available. There is also a MSL high affinity site located inside the 

Tao-1 gene, which spans the insertion site (Figure A-1, (Straub et al., 2008)). It is 

quite possible that Tao-1 is an essential gene and the disruption of Tao-1 

function by insertion of transgenes causes lethality. However, insertion of 

P[y+CaryattP]  P-element  at  this  site  is  viable,  but  intergration  of  a  pUASTB  
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Figure A-1. Annotation of the 18D3 insertion site and the MSL High Affinity 
Site (HAS) located at this region. The blue arrow represents the Tao-1 gene. 
Below are seven annotated Tao-1 transcripts. The exact insertion site of the attP 
docking site is shown in relation to the Tao-1 gene and the MSL HAS (green line). 
The annotation of Tao-1 gene is from FlyBase (www.flybase.org).  
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Figure A-2. Structure of viable and lethal integrations at 18D3. The structure 
of the viable insertion of pCaryP with attP landing site at 18D3 is shown in green. 
Integrated pUASTB plasmids, carrying roX1 transgenes, are depicted in red. 
Arrow direction represents the direction of gene transcription and the orientation 
of att sequences.  P-element ends are depicted by triangles. The sequence of 
pCaryP and pUASTB are from (Groth et al., 2004). 
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plasmid carrying roX1 transgenes into the attP site is lethal (Figure A-2). The 

major difference of viable and lethal insertions at this site is the length of inserted 

sequences. Insertion of 6.5 Kb P[y+CaryattP] P-element is viable, but pUASTB 

integration increases the size to 17Kb. Longer insertion size, strong transcription 

from the hsp83 promoter, or the recruitment of MSL proteins by roX1 

transcription may disrupt Tao-1 expression. Alternatively, the strong expression of 

roX1 transgene may interact with the MSL high affinity site and disrupt dosage 

compensation of this region, which could be the reason for the lethality. However, 

the latter mechanism is not favored because I found no genetic interactions 

between the lethal insertion and MSL protein level.  

My previous studies (Chapter 3) show that roX1R1 could not rescue roX1 

roX2 males when transcribed from 16C1, but roX1R2 and roX1R3 could. To 

investigate whether roX1R1 is toxic or non-functional when it comes from the X, 

roX1R1 was mobilized from 18D3 to obtain viable insertions on the X and 

autosomes. This was accomplished by introducing a transposase source (TMS, 

sb P[ry+t7.2∆2-3]99B) and recovering males with the w+ marker. While no lethality 

is observed for any autosomal reinsertion of the w+ marker, reinsertions on a 

normal X chromosome show not only normal viability, but some reinsertions also 

show female-specific lethality. For a control, roX1R3 was also mobilized, X and 

autosomal insertions were collected. Surprisingly, roX1R3 showed the same result, 

which suggested that the lethality is not due to roX1R1 toxicity.  

The most confusing aspect of this result is the male viability and female-

specific lethality of X chromosomes produced by mobilization. In total nine X-
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linked lines were recovered (five for roX1R1, four for roX1R3) that are male viable 

but female homozygous lethal. Homozygous females can develop into third instar 

larva or pupae but die in the early pupae stage (data not shown). Female specific 

lethality is rare in Drosophila. One possible reason is that the insertion interrupts 

a gene required only in females. Another explanation is that the X-linked roX1 

transgenes interact with a subset of MSL proteins locally to disrupt the female X 

chromosome. To distinguish the two possibilities, female-specific lethal lines 

were mated to test complementation. If transheterozygous females live, each 

insertion disrupts a different female essential gene. If transheterozygous females 

die, recruitment of MSL proteins by the transgenes is plausible. My 

complementation result showed that the nine female-lethal chromosomes 

produced by mobilization form two complementation groups. Group one contains 

three lines (fl(1)18D3TW2B,R3, fl(1)18D3TW13B,R3 and fl(1)18D3TW14B,R3). Group two 

contains six lines (fl(1)18D3TW5C,R3, fl(1)18D3TW27B,R3, fl(1)18D33,R3, fl(1)18D39,R3, 

fl(1)18D311,R3 and fl(1)18D312,R3). A transheterozygous female with one X 

chromosome from one group and one from the other group can survive. However, 

a female with both X chromosomes from the same group is lethal. This made it 

difficult to distinguish between mutation of a female-specific essential gene and 

MSL recruitment as the source of lethality. To test recruitment of the MSL 

proteins as the source of female lethality, I attempted to rescue females by 

manipulation of MLE. Neither reducing MLE by half nor eliminating MLE rescued 

homozygous females. Therefore, disruption of the female X chromosome by 

recruitment of MSL proteins does not explain lethality. Next, I explored the 
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possibility of interruption of genes required only in females. Inverse PCR and 

sequencing was performed to determine the exact insertion sites in all female-

specific lethal lines. Unexpectedly, all lines retained P element sequences at the 

original site within the Tao-1 intron. The gene causing female-specific lethality is 

consequently suggested to be Tao-1 itself. 

By molecular characterization of the remaining sequences in Tao-1, I 

discovered that P element mobilization can occur multiple ways. There are 

alternative combinations of 5' and 3' ends of P element that can excise the 

inserted sequences (Figure A-3). Single fly PCR was performed to determine the 

remaining sequences at this site in each line. As shown in figure A-3, all 

members of a complementation group have excised the same way, leaving 

identical residual transgene material in Tao-1. However, by some unexpected 

mechanism, the excision to create group two removes material between two 5' P 

element ends. I conclude that each of the two modes of excision that I 

characterized produce male-viable and female-lethal alleles of Tao-1. In spite of 

the female lethality of these two alleles, they complement one another for female 

survival. It is likely that significant further effort will be required to determine the 

molecular basis of female lethality and complementation.  

Taken together, insertion of different sequences at the same site of Tao-1 

intron displays different behaviors including full survival, lethal for both sexes and 

female specific lethal. Insertion of the P[y+CaryattP] P element containing the 

landing site at an intron of Tao-1 is viable (Figure A-4 A). Integration of pUASTB 

containing roX1 transgenes into this landing site is lethal (Figure A-4 B). Reduction 
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Figure A-3. Schematic illustration of insertions before and after 
mobilization by transposase. (A) The [y+CaryattP] landing site at 18D3 after 
integration of roX1 transgenes. Green depicts the original sequences of 
[y+CaryattP], red is integrated pUASTB. (B) The remaining sequences at 18D3 
after transposase mobilization from this site. In complementation group 1, 
mobilization of 3' (green) and 5' (red) P element ends removes both yellow and 
white. In complementation group 2, mobilization of 5' (red) and 5' (green) P 
element ends removes the pUAST vector backbone and the roX1 transgene. 
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Figure A-4. Summary of insertions that show different viabilities. (A) Flies 
carrying only the landing site appear fully viable. (B) Flies with integration of any 
of the roX1 transgenes are male and homozygous female lethal. (C) Flies with 
either partial deletion of the transgene integration are male viable but 
homozygous lethal in females. However, females are viable when they are 
transheterozygous, carrying both partial deletions. 
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of the inserted sequence by transposase-mediated mobilization produces two 

different male viable but female lethal alleles of Tao-1 (Figure A-4 C). However, 

females that are trans-heterozygous for these two alleles are viable. The most 

plausible interpretation of my findings is that lethality is caused by disruption of 

Tao-1 transcription or splicing. Females may be particularly sensitive to reduction 

of Tao-1. My studies suggest that this sex-specific lethality is not related to 

disruption of the X chromosome by roX1 expression or inappropriate dosage 

compensation in females. To verify this conclusion, we ordered flies which carry 

duplications of the region containing the Tao-1 gene on the third chromosome, 

Dp(1;3)DC363 (duplicated region is 18C8-18D3, BDSC stock# 31453) and 

Dp(1;3)DC364 (duplicated region is 18D1-18D13, BDSC stock# 32279), and 

mated these flies to my lethal transgenes and excisions. As expected, the lethal 

insertions of roX1R1, roX1R2 and roX1R3 at 18D3 are rescued by introducing a 

copy of duplicated X region containing Tao-1 (Table A-1). All female-specific 

lethal lines can also be rescued by the same duplications (Table A-2 and A-3). 

In conclusion, our results suggest that Tao-1 is an essential gene. 

Transcription or processing of Tao-1 may occur differently in males and females. 

To future investigate Tao-1 and verify my findings, a Tao-1 deletion mutant could 

be created and tested for viability. The sex-specific lethality of my excision lines 

could be investigated by searching for alternative Tao-1 transcripts in males and 

females by RT-PCR. Levels of Tao-1 transcripts in homozygous lethal and trans- 

heterozygous viable females could also be determined by Quantitative RT-PCR 

to explore the mechanism of trans-heterozygous viability. 
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Table A-1. Rescue of 18D3 lethal insertions by duplications of 18D3.  
 

X chromosomes 

of lethal insertion  

 Number of males that carry the lethal X chromosome  

   *DC363/+             +/+              #DC364/+             +/+ 

[roX1R1] 13 (9) 0 22 (17) 0 

[roX1R2] 5 (12) 0 34 (34) 0 

[roX1R3] 14 (22) 0 22 (33) 0 

 
[roX1R1-3] inserted at 18D3 is fully lethal. [roX1R1-3] / yw females were mated to 
yw males that carry one copy of Dp(1;3)DC363 or Dp(1;3)DC364 on the third 
chromosome. Only male offspring are recorded. The number of males carrying 
the lethal integration is shown; the number of brothers carrying the yw 
chromosome and the duplication is in parentheses. 
* DC363 (Dp(1;3)DC363) carries a duplication of 18C8–18D3 on the third 
chromosome.  
# DC364 (Dp(1;3)DC364) carries a duplication of 18D1–18D13 on the third 
chromosome.  
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Table A-2. Rescue of female-specific lethal insertions by Dp(1;3) DC363.  
 

Female-specific 

lethal lines 

    *fl(1)18D3 / fl(1)18D3                      fl(1)18D3 / + 

   #DC363/+             +/+               DC363/+             +/+ 

fl(1)18D33,R3 18 0 11 20 

fl(1)18D39,R3 22 0 21 22 

fl(1)18D311,R3 13 0 16 13 

fl(1)18D312,R3 13 0 15 20 

fl(1)18D3TW14B,R1 21 0 20 17 

fl(1)18D3TW27B,R1 19 0 17 14 

fl(1)18D3TW2B,R1 29 0 30 27 

fl(1)18D3TW5C,R1 25 0 18 22 
 
Heterozygous females carrying a female-lethal X chromosome fl(1)18D3 were 
mated to males with the same X chromosome and one copy of Dp(1;3)DC363 on 
the third chromosome. The adults of the illustrated genotypes from each cross 
were counted. 
* the X chromosome genotype, fl(1)18D3 chromosome is the yw chromosome 
with insertions of the leftover sequences at 18D3 after mobilization of P element 
from this site.  
# the third chromosome genotype, DC363 is short for Dp(1;3)DC363, which 
carries a duplication region of 18C8 – 18D3 on third chromosome. + means 
wildtype. 
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Table A-3. Rescue of female-specific lethal insertions by Dp(1;3) DC364.  
 

Female-specific 

lethal lines 

      *18D3 X / 18D3 X                           18D3 X / yw 

   #DC364/+             +/+               DC364/+             +/+ 

fl(1)18D33,R3 17 0 15 14 

fl(1)18D39,R3 21 0 19 14 

fl(1)18D311,R3 25 0 15 25 

fl(1)18D312,R3 12 0 12 20 

fl(1)18D3TW14B,R1 20 0 20 22 

fl(1)18D3TW27B,R1 10 0 20 17 

fl(1)18D3TW2B,R1 16 0 19 15 

fl(1)18D3TW5C,R1 25 0 12 9 
 
Heterozygous females carrying a female-lethal X chromosome fl(1)18D3 were 
mated to males with the same X chromosome and one copy of Dp(1;3)DC363 on 
the third chromosome. The adults of the illustrated genotypes from each cross 
were counted. 
* the X chromosome genotype, fl(1)18D3 chromosome is the yw chromosome 
with insertions of the leftover sequences at 18D3 after mobilization of P element 
from this site.  
# the third chromosome genotype, DC364 is short for Dp(1;3)DC364, which 
carries a duplication region of 18C8 – 18D3 on third chromosome. + means 
wildtype. 
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APPENDIX C 

 

JIL-1 ENRICHMENT ON THE X CHROMOSOME IS BLOCKED IN ROX1 ROX2 
MALES 

 

Two types of histone modifications are enriched on the male X 

chromosome: H4K16 acetylation (Brownell and Allis, 1996) and histone H3S10 

phosphorylation (Jin et al., 2000). The JIL-1 histone kinase is responsible for 

phosphorylation of H3 on serine 10 during interphase. JIL-1 binds to chromatin 

throughout the genome but is enriched on the male X chromosome (Jin et al., 

2000). JIL-1 is also suggested to be involved in dosage compensation. Proper 

dosage compensation of the X-linked white gene requires normal JIL-1 function 

(Lerach et al., 2005). However, JIL-1 does not appear to be a component of the 

MSL complex (Mendjan et al., 2006; Smith et al., 2000). JIL-1 also plays a 

general role in limiting heterochromatin spreading, and is essential in both sexes 

(Ebert et al., 2004; Wang et al., 2001). 

Simultaneous antibody staining of JIL-1 and MSL3 revealed that JIL-1 

colocalized with MSL proteins on the male X chromosome (Figure A-5 A-C). The 

X-specific binding of MSL is disrupted in roX1 roX2 males, which showed 

deceased binding on X chromosome but a lot of ectopic binding on autosomal 

sites (Figure A-5 E). JIL-1 enrichment on the X chromosome is also blocked 

(Figure A-5 D). However, colocalization of JIL-1 and MSL3 occurred even in the 

roX1 roX2 double mutant (Figure A-5 D-F). The colocalization of JIL-1 and MSL3 

occurs  at  both  X-linked  and  ectopic  autosomal  sites that are only observed in  
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Figure A-5. JIL-1 is mislocalized in roX1 roX2 males. Antibodies against JIL-1 
and MSL3 were applied simultaneously to polytene chromosome preparations. 
JIL-1 is detected with FITC conjugated anti-rabbit, and MSL3 with TR conjugated 
anti-goat antibodies. JIL-1 colocalizes with the MSL proteins to many sites in 
roX1 roX2 double mutants. The full genotype of roX1 roX2 is roX1SMC17A Df(1)52; 
[4Δ4.3]. 
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roX1 roX2 males (Figure A-5 F). This indicates that roX RNA influences JIL-1 

localization. This might occur either directly, by interaction with the MSL complex, 

or indirectly, for example, by recruitment by the H4K16ac modification that is 

deposited by the MSL complex. 
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roX1 is a long non-coding RNA involved in the chromosome-wide gene 

regulation that occurs during dosage compensation in Drosophila. Dosage 

compensation in Drosophila melanogaster occurs by a global two-fold increase of 

transcription from the single male X chromosome. This essential process 

compensates for X chromosome monosomy. The male-specific lethal (MSL) 

complex, containing five proteins, localizes to the male X chromosome and alters 

chromatin to modify gene expression. roX1 and roX2 RNAs are redundant 

components of MSL complex that are required for its exclusive X-localization. 

Recent studies in our lab have revealed a second role of roX RNAs in 

heterochromatic gene expression in males. The roX-dependent heterochromatic 

regulation system involves some, but not all, MSL proteins. Although all 

components of this system discovered now are expressed in females, microarray 

analysis showed that the roX1 RNA has no detectable affect on expression of 

both X-linked and heterochromatic genes in females. Therefore, like dosage 

compensation, the roX-dependent heterochromatic regulation system is also 
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limited to males. The differential regulation of heterochromatic genes in males 

and females may reflect the differences of heterochromatin between them.   

Previous studies of roX1 mutants and transgenes have identified a large region 

at the 5’ end of roX1 that is necessary for X-localization of the MSL complex. To 

dissect the function of this region, roX1 transgenes containing portions of the 5’ 

end were generated and analyzed. Multiple redundant elements contributing to X 

chromosome targeting were found to be present throughout the 5’ end of roX1. 

These roX1 transgenes display different stability, but all can partially restore X-

linked gene expression in a roX1 roX2 mutant. One portion of this region is 

uniquely able to promote MSL complex spreading from sites of transcription. 

Previous model of MSL spreading suggested a verse relevance of roX1 transcript 

abundance and the ability to spread. However, the ability of this region to direct 

MSL spreading is not relevant to its abundance. The activities I have detected 

are hypothesized to be regulated by choice of transcription start site, alternative 

splicing and/or transcript stability. 
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