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CHAPTER 1 

 

Understanding liver, disease pathogenesis and basic immunology involved in acute liver 

failure 

Liver 

The liver carries out a wide range of metabolic and biochemical functions. It is responsible 

for detoxification, protein synthesis and production of digestive juices. Its other functions include 

glycogen storage, gluconeogensis, cholesterol synthesis, drug metabolism, and ammonia 

detoxification, synthesis of blood clotting factors, complement factors and decomposition of red 

blood cells. Thus, it is an essential organ for survival. 

Liver is the largest organ in vertebrates. It is made up of four unequal lobes and is supplied 

blood by the hepatic portal vein and the hepatic arteries. It is the only organ capable of 

regeneration in adults; after 2/3 hepatectomy normal function of liver is restored within 2-3 

weeks. 

Liver is functionally heterogeneous. It has a simple and uniform morphology. Liver can be 

structurally divided into 1) the parenchyma, and 2) the lymphoid system. The liver parenchyma 

is structured such that different and opposing functions can be carried out by the liver cells 

(hepatocytes). There is a distinct metabolic zonation within the parenchyma (Gebhardt, 

Baldysiak-Figiel et al. 2007). The hepatocytes are referred to as periportal (PP) or pericentral 

(PC) in the compartment model of the liver. PP hepatocytes are also termed as upstream - away 

from the blood capillary system - and the PC cells are called downstream hepatocytes – these are 

the cells closest to the lymphoid system. These two regions are functionally distinct. Another 

way to compartmentalize liver is by dividing it into three zones. The first zone is the periportal 
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zone. The second zone consists of midzonal hepatocytes and the third zone is called the 

pericentral region. Again, each zone consists of hepatocytes with distinct gene expression 

patterns which lead to expression of proteins and enzymes for specific metabolic functions 

(Gebhardt, Baldysiak-Figiel et al. 2007). Thus, liver functions are compartmentalized and carried 

out by distinct subpopulation of the parenchyma (Sasse, Spornitz et al. 1992).  

The lymphoid system of liver is made up of ‘sinusoids’ – the thin walled blood vessels. The 

capillary network in liver consists of blood vessels delivering blood via the arterial circulatory 

system and merging with portal venous blood arriving from the gut and the intestine. The 

sinusoids contain a diverse population of resident immune cells such as macrophages and 

dendritic cells. Other resident immune cells in liver are T cells, natural killer (NK) cells and 

natural killer T (NKT) cells. The liver macrophages are called Kupffer cells (KC). KC’s are the 

most abundant immune cell type in liver and are primarily responsible for removal of all 

antigenic and microbial products present in intestinal blood. These immune cells are 

continuously exposed to the bacterial toxins from gut. They are in a state of ‘active tolerance’, 

which can be quickly changed to ‘active immunity’ during metabolic imbalance or in presence of 

unknown pathogens (Crispe 2009).  

Varieties of signals are secreted by the resident immune cells to attract humoral (B and T 

cells) immune cells. These signals – cytokines and chemokines – attract other immune cells to 

site of infection and initiate the inflammatory immune processes. Thus, the liver is a lymphoid 

organ with a diverse immune cell population to maintain innate immunity.  
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Figure 1.1 Cellular classification of liver.  

 

Acute liver failure (ALF) 

Introduction  

Acute liver failure (ALF) is a condition characterized by development of coagulopathy 

and hepatic encephalopathy in a previously healthy individual. Children are also affected by this 

disease. 2000 cases are reported in US every year and 25% of the patients recover spontaneously. 

However, for remaining patients the prognosis is extremely poor with death and coma being the 

most frequent outcome. Treatment is aimed at removing the underlying cause of the disease 

while reducing disease symptoms such as intracranial pressure. Intensive care is provided to 
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patients and metabolic parameters are monitored. Liver transplantation is the only treatment for 

numerous people whose liver continues to deteriorate. Mortality of ALF patients is very high. 

However, with proper treatment and liver transplant short term survival of patients has increased 

to 65% from 20%. 

Common causes of ALF are acetaminophen overdose, viral hepatitis (A, B and E), 

autoimmune hepatitis, severe alcohol intake and idiosyncratic reaction to drugs such as 

tetracycline.  Rapid deterioration of liver functions occurs within weeks of disease onset. Clinical 

symptoms manifest over a very short period of time and correspond to the extent of liver injury. 

Ultimately complete cessation of liver function occurs. 

 Classification: 

This disease was first documented by Lucke and Mallory in 1946, when they reported 

rare occurrence of fatal hepatitis (Lucke and Mallory 1946). The patients had very poor 

prognosis and they often died. Lucke and Mallory classified the disease as fulminant liver failure 

and acute liver failure. If liver disease development and progression occurred quickly it was 

termed as fulminant liver failure and if disease development was slow then it was classified as 

acute liver failure. In 1970, Trey and Davidson defined FHF as “a potentially reversible 

condition, the consequence of severe liver injury, with the onset of hepatic encephalopathy 

within eight weeks of the first symptoms and in the absence of pre-existing liver disease” (Trey 

and Davidson 1970). In 1986 Gimson et al, defined acute liver failure and described its onset to 

be within 8-24 weeks after appearance of first symptom associated with liver injury (Gimson, 

O'Grady et al. 1986).  
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Table 1.1. Classification terms used to characterize various forms of liver failure.  

Today, FHF term is used for patients who exhibit hepatic encephalopathy within 2 weeks 

of disease onset.  Sub-fulminant hepatic failure is characterized by encephalopathy appearance 

within 2-12 weeks of liver injury. These days ALF is used as an umbrella term to cover the 

groups hyper-acute, acute and sub-acute liver failure (O'Grady and Williams 1993). Time and 

etiology are important factors in disease prognosis and hence these factors are used to classify 

acute failure. If the encephalopathy develops within 7 days of jaundice onset it’s termed as 

hyper-acute liver failure. The majority of these patients suffer liver injury due to acetaminophen 

overdose. Some patients also suffer from non-A, non-B hepatitis. If the symptoms appear within 

7-28 days after jaundice onset it’s categorized as acute liver failure. If the disease development is 
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very slow and occurs over time of 5 -26 weeks it’s categorized as sub-acute liver failure.  Viral 

hepatitis is th leading cause of acute liver failure, whereas, non-A, non-B hepatitis (with no 

known viral cause) is causative of sub-acute liver failure (Gimson, O'Grady et al. 1986; O'Grady, 

Schalm et al. 1993). Table 1.1 shows the current ALF classification based on the onset of 

hepatic encephalopathy.  

Pathology: 

During ALF, hepatocyte necrosis and apoptosis are  observed within the liver 

parenchyma (Lee 1993). The hepatic parenchyma collapses and numbers of viable hepatocytes 

gradually decline. Regeneration is inhibited and areas of regeneration are destroyed. Portal 

ductules collapse and further sites of inflammation develop. Liver cirrhosis is also observed in 

alcoholic patients. In all types of ALF, inflammation is followed by massive immune cell 

infiltration and subsequent release of cytokines at the site of necrotic/ apoptotic death (Lemasters 

1999; Luedde, Liedtke et al. 2002).  

Symptoms: 

It is important to remember that all the symptoms are interconnected. The primary cause 

of all the symptoms is the failing liver and diminishing liver function.  

Hepatic encephalopathy and brain edema:  

The yardstick of this disease classification and prognosis is the unique symptom hepatic 

encephalopathy. It develops in all patients; 75 – 80% of these patients also develop cerebral 

edema. The exact mechanism for hepatic encephalopathy is not agreed upon, but it is believed 

that it occurs due to one or more of the following: 1) increased ammonia leading to a) increased 

astrocyte glutamine and osmotic swelling and b) dysregulation of glutamate leading to 
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excitotoxicity, 2) a toxic interaction between ammonia, mercaptans and fatty acids, and 3) 

production of false neurotransmitters.  

To elaborate on these possible mechanisms, we need to understand ammonia 

homeostasis. Gut derived ammonia is detoxified by liver. It is converted into urea via glutamine 

by glutamine synthetase. Ammonia incorporation into glutamine opens an amino acid formation 

pathway in the body. During liver failure ammonia accumulates in the arterial blood. The 

ammonia is not eliminated by liver and hence it reaches brain, where it can cross the blood brain 

barrier. Ammonia concentrations in neurons and astrocytes increase and this is believed to be 

responsible for neurotoxicity and convulsions (Zieve 1981). Ammonia can stimulate glutamine 

synthetase in astrocytes to produce more glutamine, a powerful osmolyte that attracts water to 

produce astrocyte swelling. Astrocytes in the brain try to soak up the ammonia by converting it 

to glutamine via glutamine synthetase, which is present only in astrocytes. More and more 

glutamine accumulates in astrocytes, leading to changes in osmolarity which is not compensated 

with loss of other organic compounds. At the same time dysfunction of Na+ K+ ATPase pump 

leads to water accumulation and ultimately astrocyte swelling(Poso and Pegg 1982; Blei and 

Cordoba 2001; Jayakumar, Rao et al. 2006). Astrocytes are the most the abundant cell type in 

brain and one-third volume of the cerebral cortex is occupied by them. Hence, the massive 

swelling of astrocytes leads to brain edema and brain stem compression due to increased 

intracranial pressure. Thus, pre – and post – synaptic neurons and astrocytes are responsible for 

encephalopathy. However, astrocytes alone are responsible for causing brain edema (Takahashi, 

Koehler et al. 1991; Blei 2001; Brusilow 2002). 

Excessive ammonia also causes dysregulation in the glutamate neurotransmitter system 

of brain. Glutamate is a major excitatory neurotransmitter in the mammalian brain. It is released 
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by pre – synaptic neurons and it binds to its cognate receptors on the post – synaptic neurons 

(NMDA receptors) and astrocytes (AMPA/ AMKA receptors). Astrocytes sit in the synaptic cleft 

and are responsible for quenching excess glutamate. Astrocytes take up glutamate via GLT-1 

transporter and convert it to glutamine in presence of ammonia. High levels of ammonia down 

regulate the GLT-1 receptor on the astrocyte cell surface leading to prolonged exposure of post – 

synaptic neurons to glutamate. Thus, the glutamate uptake is reduced and glutamate receptors on 

astrocyte surface are altered by elevated peripheral ammonia, and the resulting alteration in 

glutamate binding and function is considered to be one of the causes of encephalopathy 

(Norenberg and Bender 1994; Brusilow 2002). 

The altered mental status of ALF patients can also be attributed to toxic synergistic 

interaction between mercaptans (products of enteric bacteria, which accumulate in peripheral 

blood when liver fails) and ammonia along with short and medium chain fatty acids (Zieve 

1981). All three alone and/ or together are considered to be responsible for convulsions and the 

same has been shown by experiments done in various animal models. It is believed that during 

liver failure there is a decrease in branched chain amino acids (such as leucine, isoleucine, 

valine) in plasma (Fischer and Baldessarini 1976). At the same time, the other amino acids 

increase in plasma, producing an imbalance in the ratio of branched chain amino acids and 

aromatic amino acids (such as tryptophan, tyrosine and phenylalanine). The amino acid 

imbalance coupled with increased brain glutamine leads to an increased blood flow and aromatic 

amino acid deposition in brain. Aromatic amino acids stimulate the synthesis of serotonin and 

the false neurotransmitter octopamine, which in turn leads to a decrease in the synthesis of 

adrenaline and noradrenaline (James, Freund et al. 1979; James, Ziparo et al. 1979; Fischer 1982; 

Hoyumpa and Schenker 1982). Octopamine acts as false weak neurotransmitter and along with 
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inhibitory serotonin prevents actions of excitatory neurotransmitters adrenaline and 

noradrenaline, thus causing neural inhibition and encephalopathy (James, Ziparo et al. 1979). 

The presence of benzodiazepine agonists and altered levels of GABA also contribute towards 

encephalopathy.  

Metabolic complications: 

One of the important hepatic functions is mobilization of glycogen stores and 

gluconeogensis. Thus, the liver is a major site for insulin metabolism. During liver failure these 

functions are impaired and the resulting high serum insulin levels with decreased glycogen 

mobilization leads to hypoglycemia. Hypoglycemia contributes towards mental complications 

observed in the ALF patients.  Liver dysfunction might also cause hypophosphatemia, and acid – 

base imbalance (Astrup, Prytz et al. 1980). 

Acidosis is not frequently seen in ALF. However, due to hypoxia, lactate production 

increases (Bihari, Gimson et al. 1985). Oxygen uptake by cells is impaired due to their inability 

to extract oxygen from circulating blood. This ‘micro-circulatory dysfunction’ is responsible for 

acidosis (Bihari, Gimson et al. 1985). In contrast, alkalosis is frequently observed in ALF 

patients (Bihari, Gimson et al. 1985). The inability of hepatocytes to make urea from ammonia 

leads to excessive ammonia and bicarbonate accumulation in systemic circulation. Also, Na+ K+ 

ATPase dysfunction can cause an increase in sodium reabsorption and result in hypokalemia 

(Astrup, Prytz et al. 1980).  

Coagulopathy: 

Coagulopathy is a characteristic symptom of ALF and is used diagnostically to determine 

severity of this disease. The term coagulopathy broadly encompasses two complications 
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associated with ALF 1) reduction in coagulation factors and therefore delayed coagulation and 

increased bleeding, and 2) reduction of fibrinolysis inhibitors.  

Since the liver is responsible for production and metabolism of coagulation factors – I, II, 

V, VII, IX, and X – coagulation time and bleeding is one of the easily identifiable effects of 

failing liver. There is a marked prolongation of prothrombin time. Factor V has shortest half life 

amongst the clotting factors and hence its synthesis is often measured to identify the extent of 

impairment of coagulation factor synthesis. Platelet structure and function is altered. Platelet 

numbers are also frequently reduced which results into decreased platelet aggregation and 

increased adhesiveness and thrombocytopenia (Lewis, Bontempo et al. 1985). Disseminated 

intravascular coagulation further exacerbates the situation (O'Grady and Williams 1986) . Anti – 

thrombin III synthesis is reduced (Hallen and Nilsson 1964). All these factors lead to bleeding, 

and hence, gastrointestinal and intrapulmonary hemorrhages and sepsis are common 

complications observed in ALF patients.  

Cardiac and pulmonary abnormalities: 

  Cardiac complications are rare and are dependent on other factors such as acidosis and 

alkalosis, capillary leak, low osmotic pressure, arterial hypoxemia, ventilation/ perfusion 

mismatch and sepsis. In ALF patients there is an elevated cardiac output and lowered systemic 

vascular resistance index which causes tachycardia. Patients might also suffer from hypotension 

or hypertension (especially seen in patients with encephalopathy) (Trewby and Williams 1977). 

Liver and the corresponding cardiac failure lead to intrapulmonal vasodilatation and pulmonary 

edema. Intrapulmonary bleeding causes further complications, such as hypoxia (Haupt, Gilbert et 

al. 1985). These symptoms are similar to the abnormalities observed in sepsis and trauma 

patients.  
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Hepatorenal syndrome:  

Kidney failure is more common in patients with drug poisoning. Acetaminophen and 

amanita overdose has a direct toxic effect on renal system (Gimson, O'Grady et al. 1986). Since 

renal function is associated with liver function, this liver associated syndrome is termed as 

‘hepatorenal failure’. It is characterized by reduced renal perfusion. There is a reduction in urine 

output and an increased excretion of serum creatinine.  Decrease in renal blood flow and 

circulating immune complexes harm the nephrons and cause kidney failure (Ring-Larsen 1977). 

The hepatorenal failure is completely reversible and improves spontaneously once the patient’s 

liver function improves or after liver transplantation. However, sepsis or long periods of 

hypotension can lead to permanent kidney damage due to necrosis of renal tubules.  

Infection risk:    

Risk of infection is the single biggest threat to an ALF patient under treatment. Enteric 

bacteria can easily translocate from gut to systemic circulation during chronic inflammation. 

Moreover, due to dysfunctional neutrophils, kupffer cells and opsonins, bacterial 

(staphylococcus aureus) and fungal (candida albicans) infections are common (Rolando, Harvey 

et al. 1990; Rolando, Harvey et al. 1991).  

The liver houses a large number of resident innate immune cells and produces proteins of 

the complement immune system (complement factor C3 and C5 are synthesized in the liver). 

During ALF, KC’s are activated and they recruit additional immune cells. Multiple and 

excessive cytokine secretion by the immune cells leads to immune network failure which 

ultimately contributes towards increased risk of infection for ALF patients. Moreover, KC 

toxicity due to its tendency to secrete tumor necrosis factor – alpha (TNF-α) has been implicated 
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in various models of hepatotoxicity (Weiss 1989; Thurman, Bunzendahl et al. 1993; Leist, 

Gantner et al. 1995; Rosser and Gores 1995).  

Disease mechanism: 

ALF is characterized by severe systemic inflammation irrespective of the presence or 

absence of infection. Disease development and related complications occur due to two 

consequences of failing liver. 1) Liver failure has adverse metabolic effects – all liver functions 

are affected. Urea metabolism, glycogen metabolism and protein synthesis are disrupted. The 

resulting effects are responsible for disease pathogenesis. 2) Liver failure is cytotoxic. Toxic 

substances are not cleared from the systemic circulation and dying hepatocytes release more 

toxic substances. The resultant multi – organ failure exacerbates the situation. Figure 1.2 

describes the mechanism of disease progression and complications. 

Endotoxemia activates numerous immune cells. Immune cell infiltration, activation of 

KC and other macrophages, neutrophils, NK cells, NKT cells, dendritic cells, B and T cells leads 

to secretion of different cytokines. Macrophages and lymphocytes are activated and a ‘cytokine 

storm’ is generated causing inflammation. These cytokines activate multiple cytokine networks 

and signal transduction pathways which are deleterious to the cells. Many of these cytokines are 

capable of death pathway activation via STAT proteins or caspases. Activation of death effector 

molecules with concurrent tissue and organ damage worsens liver condition. The rate of 

hepatocyte death is much higher than the rate of liver regeneration and this imbalance is 

responsible for failing liver (Leist, Gantner et al. 1998; Luedde, Liedtke et al. 2002).  Thus, the 

disease development and progression is due to inflammation.  
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Figure 1.2. Flow chart showing disease mechanisms, symptoms and complications 

associated with acute liver failure. Foreign agents cause activation of immune cells which 

leads to inflammation. Inflammatory pathways in turn activate apoptotic and necrotic pathways 
in hepatocytes. The resulting hepatic damage causes other complications associated with acute 

liver failure. Other complications consist of circulatory failure, hepatorenal failure, tissue and 

organ hypoxia and encephalopathy. 

 

 

Immune reaction and inflammation 

Introduction 

As mentioned above, the massive inflammatory response mounted against the liver is 

responsible for disease progression. Inflammation is the body’s physiologic response to any kind 

of stress. Stress can be an infection, a chemical or biological antigen, trauma, tumor, burn, cold 

or an imbalance in organ function. First, inflammation occurs at the site of injury and thereafter 

spreads via the systemic circulation. Inflammation attracts various immune cells to the site of 
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injury for antigen removal, and thereafter healing is initiated. The inflammatory response is 

supposed to subside once systemic immune cells are involved. Thus, inflammation is supposed 

to be a rapid and a temporary response – it is a method for stressed cells or tissues to attract 

systemic attention and heal. However, during chronic inflammation various immune cells are 

recruited which in turn secrete various cytokines. The resulting uncontrolled, persistent and 

prolonged cytokine release – called a cytokine storm – causes irreversible damage to organs.  

In the liver, any metabolic imbalance coupled with disturbances in liver function 

homeostasis lead to the induction of ‘acute phase response’ genes within liver. Acute phase 

response is a very characteristic response of the liver to infections and tissue injury. Acute phase 

response is supposed to be a beneficial process. During this response, the body aims to reduce 

liver metabolism. Drug metabolism is decreased and gluconeogenesis is increased. Glycogen 

stores are mobilized. Lipid storage is inhibited. Essential proteins are synthesized – complement 

factors, cytokines, fibrinogen are synthesized and albumin production is inhibited. Thus, 

metabolism is prioritized and stringently regulated.  

The acute phase response involves modulation of proteins released by the liver such that 

synthesis of some proteins is decreased and some proteins are elevated. These proteins are 

synthesized and secreted by the liver and they in turn function to modulate the liver metabolism. 

These proteins are called acute phase proteins and are solely responsible for mounting the acute 

phase response. The acute phase proteins are induced during endotoxemia, acute inflammation, 

trauma and stress.  

In ALF patients the acute phase response leads to uncontrolled inflammation, and some 

of the acute phase proteins (esp. cytokines) harm the host system. Acute phase protein synthesis 

and secretion is under the influence of cytokines TNF-α, IL-6 and IL-1 – which are amongst the 
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first cytokines to be secreted by Kupffer cells and hepatocytes. These cytokines are acute phase 

proteins and their production increases during tissue injury. The cytokines trigger synthesis of 

molecules such as C – reactive protein and mannose binding lecithin. These are functionally 

similar to antibodies but are non specific and thus, act against a broad spectrum of irritants. 

These proteins function to activate the complement pathway and opsonize pathogens for 

phagocytosis by macrophages. This process gives the host system some time to mount an 

elaborate and specific immune response. To describe inflammation in the context of liver failure 

we need to understand 1) the immune cells, and 2) the cytokines.  

 

Liver resident immune cells  

Kupffer cells (KC) 

Kupffer cells are also known as Browicz – Kupffer cells. KC’s are star shaped or 

pyramidal cells consisting of a large oval nucleus and a prominent nucleolus. They originate in 

bone marrow and then migrate to the liver where they develop with liver – specific – specialized 

functions. These cells are functionally distinct from the alveolar, splenic and peritoneal 

macrophages. These specialized macrophages are present in the lining of the liver sinusoid walls.  

KC forms a bed of cells in sinusoid such that all blood passing through the liver comes in 

contact with these phagocytes. They are present in between or on top of the endothelial lining of 

the sinusoid capillaries with their star shaped extensions reaching out to liver parenchyma. Thus, 

they are in contact with the parenchyma as well as the sinusoid system of liver (Wisse, Braet et 

al. 1996). The liver is the most abundant source of macrophages and KCs form 20% of non-

parenchymal cells (Naito, Hasegawa et al. 1997).  
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The main function of liver macrophages is phagocytosis of gut derived antigens. They 

help in red blood cell recycling. They are also responsible for maintenance of liver functions 

under normal physiological and pathological conditions. Kupffer cells aid in repair of tissue 

during liver injury. Their immune response includes migration to the site of inflammation, 

modulation of immune response, T cell activation and proliferation, and immune surveillance 

(Sun, Wada et al. 2003). They interact with neutrophils. They secrete cytokines and chemokines 

which attract other immune cells to a site of infection and mount an acute phase reaction. They 

can activate T cells via antigen presentation and at the same time also suppress T cell functions 

by secretion of various interleukins to down regulate immune response. The cytokines secreted 

by KC’s are capable of modulating hepatocyte metabolism (i.e. down regulating drug 

metabolizing enzymes) during stress conditions (Monshouwer, Witkamp et al. 1996).   

As mentioned earlier KC is the first line of defense against endotoxins present in the 

portal blood. These cells phagocytose toxins and eliminate them. In presence of foreign antigens 

or drug – induced toxins these cells go from a state of active tolerance to active immunity and 

produce cytokines such as TNF-α, IL-6, oxygen – derived free radicals and nitric oxides (Decker 

1990; Laskin and Pendino 1995; Wang, Wang et al. 1999). These molecules are capable of 

initiating cell survival or cell death pathways.  

Neutrophils (PMN) 

Neutrophils are granulocytes (also referred to as polymorphonucelar neutrophils 

(PMNs)). PMNs are the most important part of the innate immune response. This cell type is 

most the abundant type of white blood cell (60% -70% of leukocyte (WBC) count). It has a 

characteristic three – five lobular nucleus. 
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PMNs are generated from various precursor cells in the blood. These precursor cells are 

generated in bone marrow. Mature PMNs have a very short life of 8 -12 hours, whereas non – 

active PMNs are viable in the peripheral systemic circulation for an average of 5.4 days (Pillay, 

den Braber et al. 2010). Active PMNs reach various tissues and can take up specialized functions 

in response to the type of infection.  

PMNs are the first white blood cell response toward an infection. They are recruited 

within minutes to the site of inflammation and are considered to be hallmarks of an acute 

immune reaction. These cells are capable of rapid migration through the blood vessels and the 

interstitial tissue in response to chemotactic signals created by chemokines such as complement 

factor 5a (C5a) and leukotrine B4. PMNs  arrive at the site of inflammation, engulf microbes, kill 

them by production of acids (such as HClO) and superoxides – this process is called respiratory 

burst – and finally the cell itself undergoes apoptosis, destroying pathogens within (Savill 1997; 

Kobayashi, Yamamoto et al. 2001). Hence, neutrophils are phagocytes with extremely toxic 

effects towards foreign as well host system. The programmed cell death at end of their function 

is an effective way of reducing their toxic effects. Another method for PMNs to destroy 

microbes/ infected cell is by secretion of granulocytes. The granulocytes consist of proteins such 

as collagenase, gelatinase, lysozyme, lactoferrin, myeloperoxidase, serine protease, elastase and 

cathepsins (Borregaard and Cowland 1997; Galligan and Yoshimura 2003). These granules aid 

in microbe death during phogocyotsis and when released can initiate apoptosis or attract more 

immune cells towards infection (Gregory and Wing 2002).  Neutrophils are also capable of 

secreting various cytokines that activate the macrophages and attract other immune cells. 

Natural Killer (NK) cells 
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NK cells are part of the innate immune system. Bone marrow derived lymphoid 

progenitor cells are capable of dividing into T cells or NK cells. These lymphocytes are also 

called large granular lymphocytes. NK cells are extremely cytotoxic, they can destroy tumor 

cells and virus infected cells by apoptosis. Since, they are toxic to host cells; their activation is 

very tightly regulated. 

NK cells are activated by cytokines, Fc receptors and self expressing receptors. These 

cells are mainly activated by interferons and macrophage derived cytokines. The Fc part of 

antibody can bind to the Fc receptor expressed on surface of NK cell activating it (Trinchieri 

1989). Other activating and inhibitory receptors are also expressed by NK cells which bind to 

various endogenous and exogenous ligands of target cells. Amongst the inhibitory receptors, 

major histocompatibility complex (MHC) class I plays a very important role. MHC I molecules 

are expressed on the surface of host cells and they are capable of inhibiting the cytolytic activity 

of NK cells. 

NK cells function by inducing either apoptosis or osmotic cell lysis in target cells. These 

cells secrete granzymes – which consist of proteins perforins and proteases. Perforins make pores 

in cell membranes of target cells. The remaining enzymes and proteins of granzymes enter the 

cell through the aqueous channels formed and then induce apoptosis or cell lysis. NK cells also 

secrete cytokines and chemokines. Their response is modulated by the presence of interleukins 

such as IL-2, IL-4, IL-12, IL-15 and IL-18 (Peritt, Robertson et al. 1998; Deniz, Akdis et al. 

2002). The interleukin-activated cells are called ‘mature NK cells’ and are classified as NK1, 

NK2 or cells resembling Th1 or Th2 (T helper subsets) cell type. This differentiation is based on 

the cytokines secreted by mature NK cell in response to inflammation.  
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Natural Killer T (NKT) cells 

NKT cells are distinct from NK cells and T cells. They share the properties of both cell 

types and hence the name. They were first indentified in mice as a subset of T cells. These cells 

express the natural killer cell associated marker 1.1 and the α chain of T cell receptor (in mice) 

and the β chain of T cell receptor (in humans) (Lantz and Bendelac 1994). Hence, they are also 

referred to as NK 1.1 T cells in mice. 

The receptors on NKT cells are capable of recognizing only the CD1d molecule 

(Bendelac, Lantz et al. 1995). The CD1d molecule belongs to the CD1 antigen-presenting family 

molecule and is presented by foreign lipids and glycolipids. NKT cells are not diverse but mainly 

function to secrete various cytokines – predominantly IFN-γ, TNF-α, granulocyte macrophage 

colony stimulating factor (GM-CSF) and interleukins IL-2 and IL-4 (Bendelac 1995; Arase, 

Arase et al. 1996; Gombert, Tancrede-Bohin et al. 1996; Mendiratta, Martin et al. 1997) – to 

promote and propagate or inhibit the ongoing immune response.   

 

Major cytokines involved in ALF  

Introduction 

Cytokines are small proteins, peptides or glycoproteins secreted by immune cells. These 

cell signaling molecules play an important role in intercellular communication. Multiple 

cytokines are secreted by immune cells. Cytokines can be secreted simultaneously or 

sequentially. Also, with presence of multiple immune cells, there is a diverse range of cytokines 

present at the site of inflammation. These molecules are critical modulators of inflammation. 

Their action is ‘local’ – i.e. they act at the site of production and, unlike immune cells, they do 

not travel very far. But, although these proteins are local and are produced in extremely minute 
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amounts, their effects are systemic. They are capable of forming a gradient such that other 

immune cells in the vicinity can be attracted and activated.  

Cytokines act as ligands. They bind to their respective cell – surface receptors on other 

immune cells or target cells to produce an effect. These chemicals need to occupy only a fraction 

of their receptors to produce a massive biological effect. The cytokines perform multiple actions 

which are very specific. The cytokines can also activate gene transcription. Some of the gene 

products are pro – inflammatory and some lead to ‘feedback inhibition’ of the cytokine. Thus, 

the cytokines act synergistically or in an inhibitory manner. Some of the cytokines are 

functionally redundant – and hence their actions are additive. At the same time, functionally 

synergistic cytokines are limited by their receptors – the receptors of these cytokines are present 

in minute amounts, and hence receptor unavailability can have a negative effect on cytokine 

action. Cytokines are pleiotropic and this property plays an important role in their functional 

regulation.  

  These small molecules function by 1) attracting other immune cells to the site of infection 

(they are termed as chemokines), and 2) initiating signal transduction pathways in the target cells 

to produce a “cell fate” signal which can activate either cell survival pathways or cell death 

pathways.  

Tumor Necrosis Factor -α (TNF-α) 

Only TNF-α is discussed (other members of TNF super family are not included) here. 

TNF-α is the most pleiotropic cytokine. It affects all cells. It can cause growth, differentiation, 

survival, death and/or functional change. It is one of the first cytokines to be produced by cells. It 

is secreted by all hematopoietic cells (i.e. cells of immune system). It is also produced by other 

cell types – endothelial cells and some tissue cells. However, macrophages are believed to be the 
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main producers of TNF-α. Similarly, TNF receptors (TNFR) are present on all immune cell types 

and on cells of almost every tissue. TNF-α production is stimulated by pathogens, antigens and 

other cytokines. TNF-α can stimulate its own production from macrophages and other tissue 

cells. Its secretion and action are transient.   

TNF-α is a non – glycosylated monomer of 17KDa. It is synthesized as a precursor 

protein of 233 amino acid residues. A 76 amino acid sequence is cleaved from amino terminus of 

the protein to activate it. The protein sequence also consists of a trans – membrane sequence of 

18 residues which is 30 residues away from the amino terminus. After cleavage, the 157 amino 

acid peptide is secreted and it oligomerizes to form a trimer of 51KDa. A trimer of TNF-α then 

interacts with three receptors on a target cell surface, and this in turn leads to trimerization of the 

receptor complex. Ligand binding leads to aggregation and cross – linking of the receptor. Cross 

– linking of the receptor complex leads to its activation and initiates a downstream signaling 

cascade. There are two types of TNF receptors (TNFR) called TNFR1 and TNFR2. Signaling 

pathways initiated by TNFR1 and TNFR2 are shown in figure 1.3 and figure 1.4.  

TNF-α is a cytotoxic and a cytostatic molecule for tumor cells (Sugarman, Aggarwal et 

al. 1985). TNF-α modulates a wide range of immune functions directly – by signal transduction 

and transcription of various genes – or indirectly – by promoting production and synthesis of 

other cytokines which in turn lead to activation of various signal transduction pathways. It 

induces synthesis of various chemoattractant molecules such as IP-10, KC and JE in specific cell 

types and tissues. It can stimulate the production of IL-6, IL-1, GM-CSF, M-CSF, G-CSF (other 

cytokines) and small pro – inflammatory molecules such as nitric oxide and prostaglandin E2 

(PGE2) (Kilbourn and Belloni 1990). For the purpose of ALF we can categorize its functions as 
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1) effect of TNF-α on endothelium, 2) effect of TNF-α on PMN’s and 3) effect of TNF-α on 

hepatocytes. 

TNF-α effect on endothelium 

Endothelium is a continuous monolayer of cells lining the inner wall of blood vessels. It 

is impermeable to solids and cells under normal physiologic conditions. Thus, it forms a barrier 

and is also the first cell type to respond to an inflammatory signal. The endothelial cells express 

high affinity TNFR’s. TNF-α binding to its cognate receptors leads to changes in the actin 

cytoskeleton of cells. Cells contract and change morphologically. TNF-α stimulates endothelial 

cell growth and motility. Intracellular gaps are formed due to above mentioned changes. These 

gaps allow immune cells to leak into the intravascular space (Beutler and Cerami 1986; Tracey, 

Lowry et al. 1986). Secondly, TNF-α promotes local thrombosis. It causes a reduction in 

coagulation (Tracey, Beutler et al. 1986). Endothelium surface undergoes a change after TNF-α 

binding to its receptor, and as a result of which coagulation proteins are unable to assemble of its 

surface (Stern, Nawroth et al. 1986).  Lastly, leukocyte adherence on the endothelial surface 

increases in the presence of TNF-α. Adhesion of white blood cells to the endothelium at the site 

of inflammation aids in increasing the diversity of immune response. Many of TNF-α effects on 

endothelium are enhanced by another cytokine IL-1. 

TNF-α affects endothelial cell phenotype but does not affect its viability. These changes 

lead to modulation of permeability and coagulation. Thus, in ALF, TNF-α would exacerbate the 

coagulation defects and attract more white blood cells at the site of inflammation.  

Effect of TNF-α on PMN’s 

As mentioned earlier, neutrophil recruitment is the first response to inflammation and it 

the predominant type of white blood cell. PMN’s have many TNFRs on their surface. 
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Neutrophils migrate to site of inflammation and then they adhere to the endothelial surface. 

Diapedesis – i.e. movement of cells from blood to tissue – occurs through the endothelial 

membrane into the extracellular space. PMN’s are activated upon contact with antigens. 

Thereafter, they remove the antigen and destroy themselves.  

Neutrophil adhesion is increased by TNF-α. Adherence of neutrophils to the endothelium 

is directly proportional to the amount of TNF-α bound to its receptor (Gamble, Harlan et al. 

1985). TNF-α alone cannot cause PMN migration. Other chemokines and cytokines (such as IL-

8) required for chemotaxis are secreted by cells under the influence of TNF-α (Smith, Gamble et 

al. 1991). TNF-α activates neutrophils and can induce the respiratory burst leading to production 

of reactive oxygen species (Klebanoff, Vadas et al. 1986; Nathan, Srimal et al. 1989). It 

increases phagocytosis and primes them for ‘antibody dependent cell mediated cytotoxicity’ 

(Shalaby, Aggarwal et al. 1985). However, the above two effects are also modulated by the 

active oxygen species produced by respiratory burst. And so, these effects can be directly and 

indirectly attributed to TNF-α.  

Thus, TNF-α is involved in all stages – from neutrophil recruitment to function. TNF-α in 

conjunction with G-CSF and GM-CSF has an effect on hematopoietic progenitor cells. It can 

directly modulate B-cell and T-cell production in the bone marrow and thymus. In ALF, the 

effects of TNF-α on neutrophils can be held responsible for necro-apoptotic death of 

hepatocytes.  

Effect of TNF-α on liver 

Since liver has the largest resident population of macrophages – kupffer cells – it 

produces abundant amounts of TNF-α. Small amounts of TNF-α transcript are detectable in 

normal hepatocytes due to pathogens present in the systemic circulation (Tovey, Content et al. 
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1988). Transcript levels increase sharply in response to tissue trauma. Since liver cells also 

produce acute phase proteins, hepatocytes can also produce TNF-α (which is an acute phase 

protein). In turn, TNF-α increases production of acute phase proteins. Thus, liver is a source as 

well as a target of TNF-α. 

TNF-α’s main effect on liver is to increase the synthesis of acute phase proteins 

(Mortensen, Shapiro et al. 1988). These effects are mediated directly and indirectly by it. TNF-α 

binding to its receptor induces transcription of genes which lead to synthesis of pro – 

inflammatory molecules. It leads to IL-6, IL-1, and complement C3, fibrinogen and fibronectin 

synthesis (Andus, Geiger et al. 1988; Bertini, Bianchi et al. 1988). The acute phase proteins and 

TNF-α in particular, reduce drug metabolism (Renton 1986). During stress, the capacity of liver 

to metabolize drug and certain substances is changed. Synthesis of proteins such as albumin is 

decreased and lipid metabolism changes. TNF-α reduces cytochrome P450 and dependent 

enzymes, thus directly decreasing drug metabolism (Ghezzi, Saccardo et al. 1986). TNF-α 

increases acetyl CoA carboxylase and fatty acid synthetase thereby directly increasing de novo 

fatty acid synthesis (Grunfeld, Verdier et al. 1988; Feingold, Serio et al. 1989). At the same time 

it inhibits lipoprotein lipase and decreases lipid storage (Enerback, Semb et al. 1988).  

TNF-α binding to its receptors causes cytolysis of infected/ damaged liver cells. Cytolysis 

aims to prevent release of toxic liver products into circulation. TNF-α is a key regulator of 

leukocyte migration and adhesion to liver endothelial cells. It induces IL-8 secretion which 

increases neutrophil and leukocyte adhesion. TNF-α stimulates secretion of IL-1 and IL-6 and 

many of its effects are mediated via these two cytokines. Lastly, TNF-α is the most important 

factor in septic shock and is one of the cytokines capable of hepatotoxicity – i.e. hepatocyte 

death via necrosis and/ or apoptosis.  
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Interleukin – 6 (IL-6) 

IL-6 belongs to a big group of cytokines (IL-6 super family) and only IL-6 has been 

described in this introduction. IL-6 is another pleiotropic cytokine produced by almost all 

immune cells and by some tissue cells. IL-1, TNF-α and bacterial endotoxin – LPS – can 

stimulate IL-6 production (Gauldie, Richards et al. 1987). It is not constitutively expressed and 

hence, stimulation leads to an increase in its transcript levels and protein synthesis. Macrophages 

and monocytes are the first and primary producers of this cytokine. Other cells, such as epithelial 

cells, endothelial cells, B – and T – cells, astrocytes and microglia secrete IL-6 under the 

influence of appropriate stimuli (i.e. in presence of IL-1/ TNF-α) (Frei, Malipiero et al. 1989; 

Luger, Schwarz et al. 1989; Hirano, Taga et al. 1990). 

IL-6 is a 212 amino acid protein. It is glycosylated in two places and has four cysteine 

residues. It is synthesized as a precursor protein with a 22 amino acid leader sequence. The 

active form of IL-6 is a 185 residue peptide and has a mass of 21KDa. Monocytes are capable of 

secreting five isoforms of this cytokine with differing glycosylation sites and different molecular 

mass. IL-6 receptor is expressed in numerous tissues and immune cells, but very few or none are 

present on macrophages. Its receptor is a trans – membrane protein with an extracellular and an 

intracytosolic domain. The receptor itself has no kinase activity – i.e. it has no tyrosine kinase or 

serine/ threonine kinase activity. It associated with glycoprotein 130 (gp130) protein. gp130 is 

also a trans – membrane protein and it is present in all tissue and organs. Ligand binding causes 

receptor homo dimerization. gp130 dimerization activates tyrosine kinase, and subsequent 

phosphorylation of tyrosine residues occurs. The tyrosine residues are present on the intracellular 

domain of the protein and their phosphorylation is responsible for activation of downstream 

signaling cascade. The soluble IL-6 receptor is formed by cleavage of extracellular portion of IL-
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6 receptor. The soluble receptor is capable of ligand binding and gp130 association. The effects 

of soluble receptor are also mediated by gp130. The soluble receptor has a regulatory function 

and is important for migration of IL-6 signaling. The biological functions of IL-6 are listed 

below. 

Effect of IL-6 on immune response 

IL-6 has an immunomodulatory effect on B cells, T cells, cytotoxic T lymphocytes (CTL) 

and NK cells. It promotes B cell maturation and differentiation (Kishimoto 1989). It does not 

affect B cell proliferation but increases IgM, IgG and IgA antibody production (Taga, Kawanishi 

et al. 1987). IL-6 induces differentiation of mature and naïve T – cells into CTL with the aid of 

IL-2. It also induces maturation of T – cells and CTL (Okano, Suzuki et al. 1989). IL-6, like 

TNF-α, primes PMN’s for respiratory burst and increases NK activity (Luger, Schwarz et al. 

1989). IL-6 is an inhibitor of TNF-α and IL-1 secretion (Schindler, Mancilla et al. 1990). Lastly, 

GM-CSF belongs to IL-6 super family. IL-6 is homologous to GM-CSF and can perform similar 

functions, as a result of which it can modulate hematopoiesis (Leary, Ikebuchi et al. 1988).  

Effect of IL-6 on liver 

IL-6 is an acute phase protein and it increases production of other acute phase proteins 

(Andus, Geiger et al. 1988). Like TNF-α, it reduces production of albumin and transferrin during 

inflammation (Andus, Geiger et al. 1988). It reduces drug metabolism and is a modulator of 

glycosylation of liver secreted acute phase proteins.  One of the key impacts of IL-6 is its ability 

to modulate extracellular matrix integrity. It is known to affect matrix metalloproteinase (MMP) 

which degrades collagen. IL-6 increases TIMP 1 – a MMP inhibitor – production and causes an 

imbalance in MMP and TIMP 1 levels (Sato, Ito et al. 1990). IL-6 also increases α1 – antitrypsin 

– a protease inhibitor of neutrophil elastase. The signal transduction pathway of gp130 (figure 
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1.5) leads to activation of various cell survival and anti – inflammatory genes (Tilg, Dinarello et 

al. 1997). IL-6 is considered to be hepato – protective because of its above mentioned effects. 

However, increasing evidence of its toxicity is emerging. 

Interferon – γ (IFN-γ) 

IFN-γ is a potent cytokine. Its expression is very tightly regulated. It is produced by only 

T – cells and NK cells. It is produced by both CD8+ and CD4+ T cell types (Th0 and Th1 – T 

helper cells can produce the cytokine) (Celis, Miller et al. 1986; Mosmann, Cherwinski et al. 

1986; Yamada, Meager et al. 1986). Antigen presenting cells bearing major histocompatibility 

complex - MHC class II bind to CD4+ T lymphocytes to stimulate IFN-γ. Secondly, MHC class 

I bearing target cells can initiate IFN – γ expression by binding to CD8+ CTL cells. Lastly, 

activated macrophages secrete TNF-α which activates NK cells and cause IFN-γ production. It 

has a minor antiviral activity. Its main function is immunomodulation. 

IFN-γ is synthesized as 166 amino acid precursor protein with a 23 amino acid secretory 

signal. The cleaved 146 amino acid protein is glycosylated at 2 places. It forms a dimer and each 

subunit is of 20KDa or 25KDa. IFN-γ is distinct from IFN-α and IFN-β. This cytokine is 

secreted immediately after its synthesis. 

IFN-γ receptor is present on all cell types except mature erythrocytes. The receptor 

consists of α and β chain and are identified as IFN – γR1 (α chain receptor) and IFN – γR2 (β 

chain receptor). R1 is glycosylated and is essential for ligand binding. It is a trans – membrane 

protein and it dimerizes in presence of IFN-γ dimer. Thereafter, R2 binds to R1. R2 is essential 

for receptor function. Ligand binding activates tyrosine kinases and recruits latent cytosolic 

transcription factors. IFN-γ mediates its effects by signal transduction via the above mentioned 

complex as shown in figure 1.6. IFN-γ signaling pathway leads to activation of genes that 
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ultimately determine the cell’s fate. Additionally, transcription of early response and late 

response pro – inflammatory genes is initiated to propagate and sustain the immune response. 

Following sections describe the immunomodulatory effects of IFN-γ in detail. 

Effect of IFN – γ on B and T – cell  

IFN-γ inhibits B – cell growth. It specifically increases IgG2a production and decreases 

IgG2b, IgG1, IgG3 and IgG E production (Snapper and Paul 1987; Bossie and Vitetta 1991). It 

modulates T – cell growth and differentiation. Its growth-promoting effects on T cells are 

responsible for its cytotoxicity. IFN-γ is the only cytokine with an ability to regulate MHC class 

II genes (Blanar, Boettger et al. 1988; Amaldi, Reith et al. 1989). MHC class II genes need 

several hours for activation and are therefore involved in the late response of IFN-γ. MHC class 

II molecules are essential for functions of T cells, T helper cells, B cells and macrophages. Thus, 

this cytokine has long lasting effects. IFN-γ also stimulates MHC class I gene transcription. 

MHC class I and II molecules are essential for antigen presentation and subsequent activation of 

T cells. 

Effect of IFN-γ on macrophages and NK cells 

IFN-γ activates resting macrophages and NK cells. IFN-γ induced stimulation of 

macrophages elicits higher amount of TNF-α production – there is a fivefold increase in TNF-α 

production. Thus, the production of IFN-γ by NK cells leads to a positive feedback loop for 

TNF-α production (Unanue 1997). Macrophages secrete small amounts of TNF-α on antigen 

exposure. TNF-α activates NK cells in the vicinity. NK cells being part of innate immune system 

are capable of generating large amounts of IFN-γ which activate other macrophages to secrete 

large amounts of TNF-α and this initiates a cascade of TNF-α and IFN-γ. The resulting huge 
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amounts of TNF-α are responsible for cell toxicity and can cause TNF-α induced shock (e.g. 

sepsis and toxic shock). 

TNF-α and IFN-γ synergistically act to increase the expression of adhesion molecules on 

endothelial cell surface to aid cell migration and amplify immune response. IFN-γ causes 

secretion of reactive oxygen species and hydrogen peroxide from macrophages, thereby 

destroying antigens. It also induces the production of nitric oxide synthetase (iNOS) in 

macrophages. iNOS is responsible for production of nitric oxide (NO). The anti – tumor, anti – 

viral and anti – parasitic actions of IFN-γ can be attributed to NO (Karupiah, Xie et al. 1993).    

 

Signal transduction pathways  

Signal transduction pathway initiated by TNF-α  

TNF-α mediated signaling is not initiated by the ligand binding to its cognate receptors 

but it is initiated by receptor trimerization which follows ligand binding. Also as mentioned 

earlier there are two types of TNF-α receptors – TNFR1 and TNFR2. These receptors function 

together or individually for activation of different pathways. Receptor activation leads to 

activation of cell death or cell survival pathway.  

Death signaling and caspase cascade 

TNFR1 and Fas receptor (which belongs to TNF receptor super family) are the only TNF 

family receptors capable of initiating apoptosis. The cytoplasmic domain of these trans – 

membrane receptors consists of a 80 amino acid sequence called ‘death domain (DD)’. This 

sequence of amino acid has an interface for protein – protein interaction. Fas associated death 

domain (FADD) and TNFR1 associated death domain (TRADD) also contain ‘death domains’ 

which interact with receptor DD. TRADD binds to DD of TNFR1. Thereafter, FADD binds to 
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the DD of TRADD or it binds to DD of Fas receptor and the resulting molecular complex 

recruits various caspases. FADD has a death effector domain (DED). Caspases with DED motifs 

are cleaved by FADD triggering their activation. Caspase-8 has two intrinsic DED which leads 

to cleavage of pro-caspase-8 and its subsequent activation. 

Active caspase-8 can directly activate the caspase cascade. Also, caspase-8 can activate 

mitochondrial death pathway by cleavage of protein called p22 Bid to form p15 Bid. p15 Bid 

which translocates to the mitochondrial membrane and induces release of cytochrome C (Cyt C). 

Cyt C, apoptotic protease activating factor – 1 (Apaf -1) and pro-caspase 9 form a complex 

called “apoptosome” which cleaves pro-caspase 9 to form caspase 9. Active caspase 9 cleaves 

other pro-caspases and initiates the caspase cascade. By either method, activation of death 

effector caspases such as caspase-3 occurs which induces cellular apoptosis. TNFR1 and Fas 

receptor stimulated death pathways are shown in figure 1.3. 

 

 



31 

 

 

 

Figure 1.3. Cell death pathway activated by TNF. The signal transduction pathway leading to 

cell death are activated via TNFR1 and FasL. Death domains of recruited Fas associated death 

domain (FADD) and TNFR1 associated death domain (TRADD) directly activates caspases or 

via mitochondrial death pathway to initiate apoptosis. 

 

Cell survival signaling  

TNF-α induces cell survival via activation of the NF-κB pathway as shown in figure 1.4. 

TNFR1 and TNFR2 are involved in activation of cell survival pathway. Receptors trimerize in 

presence of TNF-α. TRADD binds to active TNFR1 complex and thereafter, TNF receptor 

associated factor (TRAF2) binds to TRADD. TRAF2 can bind directly to TNFR2. The receptor 

and TRAF2 complex (with or without TRADD) phosphorylates NF-κB inducing kinase (NIK) 

and activates NF-κB (nuclear factor kappa light – chain – enhancer of activated B cells). Inactive 

NF-κB is associated with the inhibitory protein IκB kinase (IKK) as a heterodimer complex. IKK 
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is made up of IKKα and IKKβ subunits. Active NIK phosphorylates IκB – α. This leads to its 

proteosomal degradation. Remaining IKK complex dissociated from NF-κB and it becomes free 

to translocate to the nucleus and initiate transcription of cell survival genes.   

 

Figure 1.4. The signal transduction pathways leading to cell survival are activated via 

TNFR1 and TNFR2. TNF receptor associated factor (TRAF2) poshporylates proteins of NF-κB 

pathway. Activated NF-κB translocates to the nucleus and activates gene transcription of cell 

survival and anti-inflammatory genes.  

 

Signal transduction pathway initiated by IL-6 

  The signaling pathways of IL-6 are activated via the gp130 molecule’s association with 

IL-6 receptor. gp130 is capable of recruiting Janus kinase family members (JAK). The tyrosine 
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kinases of JAK family (JAK1, JAK2 and TYK) phosphorylate various tyrosine residues on 

gp130. Thus, activated domain of gp130 is responsible for activation of transcription factors – 

the STAT proteins. STAT’s in turn are responsible for transcription of IL-6 response element 

genes. STAT – signal transducers and activators of transcription – are transcription factors which 

regulate various aspects of cell cycle. STATs bind to promoters of cytokine inducible genes and 

initiate transcription of cytokines/ proteins that lead to cell survival, death, differentiation or 

proliferation. 

gp130 homodimerizes, and its interaction with JAK leads to its association with STAT 

family members. The tyrosine residues on latent cytosolic STATs are phosphorylated. Activated 

STAT isoforms form homodimers or heterodimers. STAT dimers translocate to the nucleus, bind 

to target DNA and activate transcription. STAT’s are well characterized initiators of apoptosis. 

However, IL-6 response element binding protein causes the recruitment of acute phase response 

factor STAT3. STAT3 homodimerization or heterodimerization with STAT1 activates genes that 

are predominantly anti-apoptotic. The mechanism of IL-6 associated signal transduction pathway 

is shown below in figure 1.5. 
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Figure 1.5. Signal transduction pathways activated by IL-6. IL-6 binds to gp-130 receptors. 

gp-130 phosphorylates Jak proteins and thus activates STAT1 and STAT3. Homodimers and 

heterodimers of STAT1 and 3 translocate to nucleus and initiate gene transcription. 

 

Signal transduction pathway initiated by IFN-γ 

IFN-γ binding to its receptor activates two tyrosine kinases – JAK1 and JAK2. This 

receptor is unique because it requires both the α and β chain of receptor for function. The α chain 

receptors bind to IFN-γ and dimerizes. JAK1 is recruited near the receptor – one for each subunit 

of the α chain of receptor dimer. JAK2 binds the β chain receptor and gets associated with JAK1.  
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Figure 1.6. IFN-γ activated signal transduction pathways leads to activation of STAT1.  
IFN-γ binding to receptor IFNγR1 leads to recruitment of JAK1. Then IFNγR2 then associated 

with IFNγR1 and JAK2 associated with IFNγR2. JAK activate STAT1 and STAT1 homodimers 

translocate to cell nucleus and bind to Interferon-γ activated sites (GAS) promoters on DNA. 

GAS promoter initiate transcription of IFN-γ induced genes, several of which induce apoptosis. 

 

Once the αβ receptor chains are in close proximity JAK1 and JAK2 form an active 

complex which is capable of activating STAT’s. IFN-γ is known to specifically activate STAT1. 

Two cytosolic STAT1 molecules dock at receptor associated JAK phosphorylation site. 

The JAKs subsequently phosphorylate STAT1 proteins. STAT1 then dissociates from JAK 

complex and forms homodimers which translocate to the nucleus. A schematic representation of 
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IFN-γ and STAT1 pathway is shown in figure 1.6. STAT1 binds to interferon-γ activated sites 

(GAS) on DNA. The Interferon-γ activated sites (GAS) are promoter elements on DNA that 

initiate transcription of IFN-γ induced genes. Amongst different gene products, STAT1 functions 

to increase transcription of apoptosis inducing proteins. 

 

Conclusion 

 ALF – acute liver failure – is a condition wherein multi organ failure follows liver injury. 

Medical conditions such as encephalopathy, hepatorenal failure, cardiovascular overload and 

pulmonary complications result from failing liver and are responsible for ALF associated 

mortality. The main reason for deterioration of patient condition is sepsis and generation of an 

uncontrolled immune response. Inflammation coupled with acute phase reaction leads to 

generation of cytokines which reduce liver function, cause a metabolic overload and harm liver 

and other tissues by activating apoptosis in cells. 

Immune response is central to disease progression in ALF. Resident immune cells – KC, 

NK and NKT cells – recruit other immune cells (such as PMN’s, B – cells and T – cells) during 

inflammation. KC, NK, NKT and PMN’s phagocytose pathogens and thereby remove antigens 

from liver. They secrete cytokines and chemokines to attract other immune cells. These cells 

secrete various cytokines, key amongst which are TNF-α (secreted by KC, NK and hepatocytes); 

IL-6 (secreted by KC) and IFN-γ (secreted by NK, NKT and T – cells). Thereafter, cytokines 

activate gene transcription of cell survival or cell death proteins via various signaling 

transduction pathways.  

It is important to understand the immune mechanisms involved in acute liver failure. 

Disease pathology is the direct result of complicated immune network reactions in ALF. Solving 
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this network to identify targets which could be used therapeutically is essential to developing 

treatments for ALF. The results of these studies might also be applied to other diseases where the 

immune system harms host organs by excessive and uncontrolled cytokine production.  
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CHAPTER 2 

Glutamine synthetase as a potential therapeutic target and use of methionine sulfoximine to 

understand mechanisms involved in progression of acute liver failure 

 

The work presented in this chapter was first published as and in: 

Methionine sulfoximine, an inhibitor of glutamine synthetase, lowers brain glutamine and 

glutamate in a mouse model of ALS. 
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Introduction 

Acute liver failure (ALF) mouse model 

Liver injury resembling acute liver failure (ALF) can be induced in animals by 

administration of low doses of E. coli lipopolysaccharides (LPS) with the sugar D-galactosamine 

(D-GalN; 2-amino-2-deoxy-D-galactose). This model mimics immunological and biochemical 

http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_udi=B6T06-4Y41V56-1&_acct=C000228598&_version=1&_userid=10&_ts=1313014127&md5=87ac7fb6aa920d46ab4967610cd2f395
http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_udi=B6T06-4Y41V56-1&_acct=C000228598&_version=1&_userid=10&_ts=1313014127&md5=87ac7fb6aa920d46ab4967610cd2f395
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff2
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff3
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff2
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff3
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff1
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff1
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff1
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff1


39 

 

 

symptoms of ALF. D-GalN was initially administered as six sequential intraperitoneal, 

intravenous and/or subcutaneous injections (Decker and Keppler 1972). Later, a single injection 

of high dose of D-GalN was found to be equally effective in causing liver damage (Scharnbeck, 

Schaffner et al. 1972). Injection of low dose of LPS along with D-GalN is essential for the injury 

to be liver specific.  

Keppler and Decker initiated a detailed study on the toxicity of galactosamine on liver. 

Morphologic and biochemical changes occurring due to non-lethal doses of D-GalN showed that 

liver functions are impaired and protein synthesis was inhibited. Hepatic glycogen stores 

decreased and various hepatic function marker enzymes such as alanine transaminase (ALT) and 

aspartate transaminase (AST) were elevated. Total billirubin values were also higher than normal 

(Decker and Keppler 1972). These markers are indicators of liver health and liver functions. 

Enzyme changes observed in the animal model closely resembled the liver injury symptoms of 

ALF patients.  

D-GalN is a hepatotoxic agent. LPS administration along with D-GalN causes generation 

of an immune response characteristic of this disease. Thirty minutes post disease induction, 

nucleolar fragmentation was observed. Amino acid uptake was unaffected but protein synthesis 

was inhibited. Changes occurred in the polyribosomal profile (Shinozuka, Farber et al. 1973). 

Liver readily takes up D-GalN and metabolizes it. During metabolism of D-GalN, UDP – GalN 

is formed by the non-specific enzyme galactose - 1 – phosphate: UDP – glucose 

uridyltransferase. UDP – GalN cannot serve as an uridylate donor during translation. Continuous 

formation of UDP – GalN traps uridine phosphates and depletes the supply of uridilylate donors 

such as UTP, UDP and UMP. Thus, RNA synthesis was inhibited. Lactate – pyruvate and ATP – 

ADP ratios were found to be normal. However, adenine nucleotide levels were reduced (Decker 
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and Keppler 1974; Konishi, Shinozuka et al. 1974). Further elucidation of this model has 

indicated that morphologic liver changes occur after RNA synthesis inhibition.  

High doses of LPS alone (in rodents) cause massive inflammation and release of 

cytotoxic molecules leading to severe sepsis and multi – organ failure. However, the use of a low 

dosage of LPS with D-GalN leads to the generation of an immune response which is 

predominantly directed towards liver.  Initially, other organs are not affected. Later, multi organ 

failure occurs. The damage is limited to liver and can be completely reversed by administrating 

uridine within 3 hours of disease induction (Galanos, Freudenberg et al. 1979). Thus, LPS/ D-

GalN model of liver failure mimics the hepatotoxicity observed during liver injury. This model is 

not specific to any type of drug overdose, but its pathogenesis and symptoms closely resemble 

those of broad – spectrum liver diseases. 

Glutamine Synthetase 

Glutamine synthetase (GS, also known as γ-glutamyl: ammonia ligase; EC 6.3.1.2) is an 

important enzyme in nitrogen metabolism. This enzyme binds glutamate and ammonia in 

presence of divalent cations (such as magnesium and manganese) and adenosine triphosphate 

(ATP), and converts it to glutamine (Eisenberg, Gill et al. 2000). The reaction is shown in figure 

2.1. GS is the only enzyme in body for synthesizing glutamine.  
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Figure 2.1. Glutamine synthetase catalyses reaction between glutamate and ammonia to 

form glutamine. γ-glutamyl phosphate intermediate is formed during the reaction. ATP and 

magnesium ions are required for this reaction to proceed. 

 

There are three types of GS and each type is structurally different. GS type I and III are 

found in prokaryotes, but eukaryotes mainly express type II GS (Eisenberg, Gill et al. 2000). 

Each type of GS consists of two active sites – one for an amino acid and the second for 

nucleotide (Hibi, Nii et al. 2004). The amino acid binding site is highly preserved, whereas the 

nucleotide binding site varies across organisms.  Additionally, there are three metal ion binding 

sites for enzyme stability and catalytic activity (Pesole, Gissi et al. 1995). Mammalian GS is 

homologous across species in terms of amino acid composition, structure and molecular weight. 

One key feature of this enzyme in mammals is that it is not modified post-transationally, as is the 

case for the E. coli glutamine synthetase (Stadtman, Shapiro et al. 1968; Stadtman 2001).  

In mammals, GS is made up of 12 identical subunits of 50KDa each (Meister 1985). 

These subunits are arranged in two identical hexagonal structures that face each other. The rings 

are composed such that a channel is formed in each subunit. The wall of this bi – funnel (one 

ring in each subunit) is made up of six four – stranded β sheets. The β sheets are arranged to 
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form anti – parallel loops within the subunit structure. Hydrogen bonding and hydrophobic 

interactions hold the subunits together such that the C-terminus of GS is inserted into the 

hydrophobic core of the ring shaped structure. The hydrophilic N-terminus remains exposed to 

solvent.  A cartoon of enzyme structure and its substrate binding sites is shown in figure 2.2. 

 

Figure 2.2. A cartoon of glutamine synthetase structure is shown above. GS is made up of 12 

identical sub units arranged as two hexamers. The hexagonal structure is made up of anti parallel 

β – sheets. A bi-funnel is formed within the hexagon. The active site of enzyme is in the bi-

funnel and substrate binding site is within it. ATP binds to the active site on the top and 

glutamate and ammonia bind to the active site on the bottom of the bi-funnel.  

 

Each active site is in the bi – funnel. The active site consists of distinct substrate binding 

pockets. ATP binds to the top of the funnel structure and is on the external surface of GS. 

Glutamate and ammonium bind at the bottom of the active site. Two sites for binding of divalent 

cations are present inside the funnel. These cations stabilize the structure and carry out transfer 

of phosphate from ATP to glutamate. One cation binding site is in proximity to each of substrate 
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binding site. The reaction takes place via formation of ADP – γ glutamyl phosphate complex. 

First ATP is hydrolyzed and phosphate transferred to glutamate to form an acyl intermediate of 

ADP and glutamate. ADP and Pi do not dissociate from the enzyme until ammonia binds to the 

carboxy group of glutamate. ADP stabilizes the γ glutamyl phosphate bound form of enzyme via 

conformational changes. This promotes ammonium ion binding to the polar solvent exposed 

binding site of the enzyme. Thereafter, ammonium attacks the ADP – γ glutamyl phosphate 

complex to form glutamine. The resulting ADP and glutamine then leave the complex.  

GS can also carry out other reactions. If hydroxyl amine binds to GS instead of 

ammonium, γ – glutamylhydroxamate is formed. This reaction is exploited to assay GS activity 

in tissue extracts. The concentration of ammonium determines the fate of the acyl intermediate. 

There is a substrate binding competition between ammonium and water molecule. If water enters 

the active site, the hydroxyl group attacks the intermediate to reform glutamate. This ω-

amidation reaction is reversible and the enzyme is tightly regulated by its substrates, products 

and other amino acids which are synthesized from glutamine. GS exhibits cumulative inhibition. 

i.e. each inhibitor reduces the activity of the enzyme, even when other inhibitors are bound to the 

enzyme at saturating levels . Glutamine formed by GS is a source of nitrogen in the biosynthesis 

of tryptophan, histidine, carbamoyl phosphate, glucosamine-6-phosphate, cytidine triphosphate 

and AMP. GS is negatively regulated by all the above mentioned products and also by alanine 

and glycine.  

GS is present in various tissues – mainly liver, brain and kidneys. Brain and liver 

isoforms of GS can be octamers. Muscle, lung and immune cells also express GS to fulfill their 

glutamine requirements and to convert ammonia into a non – toxic form for transport to liver. 
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GS and liver 

The distribution of GS in liver is unique. GS is a cytoplasmic enzyme in liver. It has 

homogenous distribution within a cell which expresses it. Glutamine Synthetase is expressed 

exclusively in a small sub population of pericentral hepatocytes (PC). GS is present only in the 

PCs which surround the central veins in the liver – hence, it is termed as a perivenous enzyme 

(see figure 2.3). Urogenesis (urea formation or ureagenesis) and glutamine synthesis - i.e. 

ammonia detoxification pathways are compartmentalized in liver. These two functions are done 

by upstream  periportal (PP) and downstream pericentral (PC) hepatocytes respectively 

(Gebhardt, Baldysiak-Figiel et al. 2007). GS zonation leads to an unequal distribution of function 

within the hepatocytes. 94% of zone 1, 2 and 3 hepatocytes express enzymes involved in urea 

formation.  8% of cells function to synthesize glutamine and express GS. 2% overlapping cells 

can perform both functions (Gebhardt, Lindros et al. 1991).  This segregation of enzymes and 

function enables the liver to efficiently remove ammonia from portal circulation. At the same 

time, liver plays a major role in glutamine homeostasis by removing or adding glutamine to the 

blood circulation (Watford, Chellaraj et al. 2002). 
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Figure 2.3. Glutamine synthetase distribution in liver tissue. Immunohistochemically stained 

tissue for liver glutamine synthetase is seen here. The tissue section shows distinct cells. The 

lightly stained cells are periportal hepatocytes (upstream cells) which do not express GS. In the 

center of this section a small venule is observed. Cells surrounding the vein are pericentral 

hepatocytes (downstream cells). The downstream cells express GS and these are called 

perivenous hepatocytes. 

 

The liver is not a major producer of glutamine, but liver GS has the highest specific 

activity amongst all organs due to a high glutamine turnover (Cooper, Nieves et al. 1987; 

Gebhardt and Reichen 1994). This high GS specificity coupled to excessive glutamine (i.e. 

substrate) turnover occurs due to the “feed – forward – activation” of the glutaminase enzyme. In 

PP cells, glutaminase breaks down glutamine (Haussinger 1990., Low et al., 1993) and glutamate 

is released into the blood. Simultaneously, ammonia is continuously fixed into carbamyl 

compounds by upstream hepatocytes.  As blood passes downstream, the portal ammonia 

concentration declines such that urea formation (urogenesis) can no longer occur effectively. At 
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this point, the downstream PCs scavenge the remaining ammonium ions to synthesize glutamine. 

The schematic of glutamine – glutamate cycle occurring in hepatocytes is shown in figure 2.4. 

This newly synthesized glutamine overcomes the loss occurred during glutamine breakdown by 

PPs, thus, maintaining plasma glutamine levels of 0.8mM in the portal circulation. This 

hypothesis was supported by the work of Geerts et al. They showed that glutamate concentration 

decreases in blood collected from upstream to downstream sections of liver but is restored to its 

normal levels at the end point of portal circulation (Geerts, Jonker et al. 1997). Thus, the nitrogen 

metabolism and glutamine homeostasis is closely interrelated by GS in liver. 

 

Figure 2.4. A schematic diagram of glutamine – glutamate cycle in liver is shown above. 

Upstream hepatocytes contain enzymes for urea formation and glutamine breakdown. They take 

up glutamine, break it down to form glutamate and release it into the blood stream. After urea 

formation, residual ammonia is scavenged by downstream hepatocytes containing glutamine 

synthetase. Glutamate from blood stream is also taken up by these downstream pericentral 
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hepatocytes and is combined with ammonia to form glutamine. Glutamine formed is released 

back into blood stream.  

 

Glutamine Synthetase as a potential drug target: 

GS is being increasingly studied in immunology due to the immune cell’s requirement of 

glutamine for cell proliferation, differentiation and cytokine production (Karinch, Pan et al. 

2001; Newsholme 2001). It is well established that glutamine levels influence macrophage 

function and cytokine release in tissue culture, and long-term dietary changes can modify  

immune function in living animals (Newsholme 2001; Li, Yin et al. 2007; Roth 2007).  A 

detailed study of the effects of glutamine concentrations on T cell differentiation has divided the 

response into an early glutamine-independent phase and a later glutamine-dependent phase 

(Hörig, Spagnoli et al. 1993). Also, dietary glutamine has been known to enhance cytokine 

production in macrophages and increases T cell responsiveness (Kew, Wells et al. 1999; Rogero, 

Tirapegui et al. 2008).  

Interestingly, only 5% of the hepatocyte population contains glutamine synthetase 

(Gebhardt and Mecke 1983; Häussinger, Stoll et al. 1989).  9% of the liver GS activity is 

localized in kupffer cells. Also, kupffer cells constitutively express GS and possess higher GS 

mRNA levels as compared to parenchymal liver cells (Bode, Peters-Regehr et al. 2000). 

Lastly, as mentioned in the introduction, hyperamonemia is observed in ALF patients. 

Due to failing liver and dying hepatocytes, imbalance in ammonia metabolism occurs. Excess 

ammonia produced in liver is taken up by astrocytes and converted to glutamine by GS enzyme. 

Astrocytes then swell up due to glutamine accumulation. This causes an increase in intracranial 

pressure in brain stem leading to brain edema (Takahashi, Koehler et al. 1991). The 

hyperammonaemia resulting brain edema in rats is similar to brain swelling during hepatic 
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encephalopathy of ALF patients (Groflin and Tholen 1978).  In a rat model of 

hyperammonaemic encephalopathy, brain swelling is completely prevented by GS inhibition 

(Takahashi, Koehler et al. 1991; Brusilow 2002; Tanigami, Rebel et al. 2005).   

MSO  

L-Methionine Sulfoximine (MSO) is an irreversible inhibitor of Glutamine Synthetase 

(GS). MSO is one of the most potent GS inhibitors with as Ki of 1.1µM. The ability of MSO to 

inhibit GS was first reported in 1952 (Pace and Mc 1952). It also inhibits γ-

glutamylcysteinesynthetase, the first step in glutathione synthesis. MSO inhibits γ-

glutamylcysteinesynthetase at concentration of 0.2-2.0 mM.  

MSO is a modified form of the amino acid methionine (figure 2.5). Mechanistically, 

MSO competes with glutamate for binding in the amino acid pocket of GS. In the presence of 

ADP and Mg
2+

, enzyme phosphorylates MSO. The phosphorylated form of MSO – methionine 

sulfoximine phosphate binds irreversibly to the enzyme and inhibits it (Ronzio, Rowe et al. 

1969). Phosphorylated MSO (figure 2.5) stabilizes the flexible loop structure in the active site of 

the enzyme and blocks glutamate entry. Thus, the non-covalently bound form of MSO phosphate 

forms a transition state mimic for the tetrahedral adduct of glutamate which is formed during 

glutamine biosynthesis. Phosphate ion, ammonia and glutamate in high quantities compete with 

MSO for the enzyme binding site (Rowe, Ronzio et al. 1969). Close to eight moles each of MSO 

and ADP are required for GS inhibition (Ronzio, Rowe et al. 1969). Also, only the L-S-isomer of 

MSO is able to inhibit the enzyme and is phosphorylated by GS (Manning, Moore et al. 1969; 

Ronzio, Rowe et al. 1969; Rowe, Ronzio et al. 1969; Meister 1985). 
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Figure 2.5. Structure of methionine sulfoximine and methionine sulfoximine phosphate. 
Methionine sulfoximine (MSO) is an irreversible inhibitor of glutamine synthetase (GS). GS in 

presence of ATP and magnesium binds to MSO and phosphorylates it. Methionine sulfoximine 

phosphate binds GS non-covalently to inhibit it. 

 

Methionine Sulfoximine as a therapeutic treatment:  

There were two reasons for using MSO as an inhibitor of GS to study ALF. 1) MSO is 

the most potent inhibitor of GS. Being a modified amino acid, it can cross the blood brain barrier 

– as has been shown by its ability to prevent brain swelling resulting from hyperammonaemia. 2) 

Liver GS inhibition by MSO has been studied previously – i.e. MSO inhibition of liver GS is 

maximal at 4 hours. GS activity remains low till 72 hours and thereafter increases again (Lamar 

1968). This information enabled us to plan our experiments to explore the therapeutic use of 

MSO and the effects of GS inhibition on the mouse model of ALF.  
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As mentioned earlier, GS is predominantly present in astrocytes, and brain oedema is 

prevented in hyperammonaemic rats by MSO treatment (Takahashi, Koehler et al. 1991). MSO’s 

therapeutic action has been explored in a mouse model for amyotropic lateral sclerosis 

(Ghoddoussi, Galloway et al. 2010). We found that MSO extends the life span of ALS mouse 

model (G39A mutant) by 8%. MSO was able to reduce glutamine by 60% and glutamate by 30% 

in different parts of mouse brain. 

My contribution to this study focused on assaying glutamine synthetase activity from 

brain tissue of ALS mice. The same work has been presented below.  

 

Materials and methods: 

Animal groups and tissue collection: 

Breeding pairs of the SOD1 mouse – B6JL (G93A) – were purchased from Jackson 

Laboratories and offspring containing the human SOD1
G93A

 mutation were identified by PCR of 

tail DNA, using primers described for this strain by the Jackson Laboratories (jax.org). If the 

mice carried the SOD
G93A

 mutation they were termed as ALS mice. The mice which did not 

express SOD
G93A

 mutation were termed as wild type. Separate groups of animals were used to 

assess MSO effects on longevity, and GS activity in vitro. All animal experiments were approved 

by the Animal Investigation Committee of Wayne State University. Methionine sulfoximine 

(MSO), obtained from Sigma Chemical Company (Cat #5379) was dissolved in 0.9% saline and 

administered intraperitoneally at a dose of 20mg/kg. 

Three experiments were set up to measure the effect of MSO treatment on GS in the 

mosue model for ALS.  
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Group 1 mice: SOD
G93A

  mutant mice were injected with MSO (15 mice) or saline (15 

mice), three times every week (Monday, Wednesday, Friday), starting at 50 days of age (±2) 

until they were euthanized. Mice were observed daily and were euthanized when either 1) they 

lost 20% of their maximum body weight, 2) they were unable to right themselves when put on 

their back or side, or 3) if, in the opinion of the supervising veterinarians, the mice were in 

distress or unable to obtain adequate food and water. These were used to obtain MSO’s effect on 

survival and monitor ALS disease progression. (I assisted in maintenance of the mouse colony, 

genotyping and motor function measurement assay.)  

Group 2 mice: The effects of MSO treatment in vivo on GS activity in vitro were 

analyzed in brain tissue obtained from SOD
G93A

 mice and their wild type counterparts. Animals 

were treated with either saline or MSO (20 mg/kg, three time a week – Monday, Wednesday, and 

Friday – for 3 weeks) starting at 50 days of age (±2 days) and sacrificed at 70 days of age 

(±2 days). 

Group 3 mice: Lastly, in another set of experiments, animals were treated with MSO at a 

dose of 20 mg/kg. MSO was injected starting at 85 ± 2 days of age. At 85 days, ALS symptoms 

(such as impaired motor function) appear. Thus, the animals were injected with MSO or saline 

once a week post symptomatically, till they met the criteria for euthanization (120 – 130 days).  

Glutamine synthetase enzyme activity: 

Brains were removed, homogenized, and GS activity determined according to the method 

of Meister (Meister 1985). Tissue was immediately homogenized in ice-cold buffer (0.15 M 

potassium chloride, 5 mM 2 – mercaptoethanol, and 1 mM EDTA (pH – 7.2)) and centrifuged at 

2375 x g for 5 minutes. Tissue supernatant fraction was frozen on dry ice and stored at -80
o
C.   
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Glutamine synthetase was assayed as described by Meister (Meister 1985).  Brain 

supernatant (100 µg) was incubated in buffer (0.1 M imidazole – HCl (pH – 7.2), 100 mM L-

glutamine, 0.2 mM MnCl2, 62.5 mM hydroxylamine, 10 mM sodium arsenate and 0.4 mM ADP) 

at 37
o
C for 10 minutes. The enzyme reaction with the substrates glutamine and hydroxylamine 

was stopped using ferric chloride stop solution (0.37 M FeCl3, 0.67 M HCl, 0.20 M TCA) and 

the colorimetric product formed – γ-glutamyl hydroxamate – was measured at 535 nm. The 

absorbance values were converted to activities by comparison to a standard curve of pure 

glutamyl hydroxamate (a generous gift from Arthur J. Cooper, Department of Biochemistry and 

Molecular Biology, New York Medical College).  

 

Results: 

MSO’s effect on GS from brain tissue of group 2 mice: 

Each group consisted of 3 animals. GS activity from the brain tissue was 1.1 ± 0.04 in 

wild type animals and 0.95 ± 0.05 in ALS animals treated with saline. The activity was 

drastically reduced to 0.17 ± 0.03 and 0.18 ± 0.02 in wild type and SOD1 animals respectively, 

with MSO treatment. Activity is expressed as µM γ – glutamyl hydroxamate formed/min of 

reaction/ mg of protein ± standard error of mean. The results are described in table 2.1. 

These results affirmed the potent inhibition of glutamine synthetase by MSO. GS activity 

is reduced by more than 85% in both wild type and SOD1 animals with MSO treatment.  
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GENOTYPE TREATMENT 

AVERAGE ACTIVITY 

(µM GGH/min/mg of protein) 

SEM 

WT 

(N = 3) 

SALINE 1.10 0.04 

WT 

(N = 2) 

MSO: 20 mg/ kg body 

weight of mice 

0.17 0.03 

ALS 

(N = 3) 

SALINE 0.95 0.05 

ALS 

(N = 3) 

MSO: 20 mg/ kg body 

weight of mice 

0.18 0.02 

 

Table 2.1. Glutamine synthetase activity in brains tissue of 70 day wild type (WT) and ALS 

mice with and without MSO treatment is shown above. WT and SOD1 mice have average GS 

activity of 1.10 and 0.95 µM γ-glutamyl hydroxamate/ min of reaction/ mg of protein. MSO 

inhibits GS and a decrease in average GS activity is observed. GS activity in MSO treated WT 

and SOD1 mouse are 0.17 and 0.18 respectively. 

 

 

MSO’s effect of GS from brain tissue of group 3 mice: 

GS activity was 1.2 ± 0.19 in wild type animals (n = 7) and 1.12 ± 0.09 in ALS animals 

(n = 16) treated with saline. The activity was reduced by more than 80% to 0.25 ± 0.04 and 0.25 

± 0.03 in wild type (n = 6) and ALS (n = 16) animals respectively, with MSO treatment. Activity 

is expressed as µM γ – glutamyl hydroxamate formed/min of reaction/ mg of protein ± standard 

error of mean. The results are described in table 2.2 below. 
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GENOTYPE TREATMENT 

AVERAGE ACTIVITY 

(µM GGH/min/mg of protein) 

SEM 

WT 

(N = 7) 

SALINE 1.19 0.19 

WT 

(N = 6) 

MSO: 20mg/ kg body 

weight of mice 

0.25 0.04 

ALS 

(N = 16) 

SALINE 1.12 0.09 

ALS 

(N = 16) 

MSO: 20mg/ kg body 

weight of mice 

0.25 0.03 

 

Table 2.2. GS activity in brain tissue of 120 day old mice, treated with MSO starting at 85 

days in wild type (WT) and ALS mice is shown above. With MSO treatment average GS 

activity in WT and SOD1 mice decrease from 1.19 to 0.25 and 1.12 to 0.25 µM GGH/min of 

reaction/ mg of protein respectively.  

 

GS activity seems to remain constant in saline treated animals during the course of 

disease (comparing group 2 and group 3 mice). Also, long term MSO treatment (one injection / 

week, starting at 85 days of age till euthanization) is able to maintain low GS activity.  

 

Discussion: 

ALS is an adult onset fatal neurodegenerative disease that results in a progressive loss of 

motor neurons (Bruijn 2002). The cause of neurodegeneration in ALS is unknown, but the onset 

or progression of ALS is believed to have an excitotoxic component involving glutamate. There 
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is no known effective treatment for ALS and patients have very poor prognosis (ALS patients die 

within a few years after disease onset.)  

We wanted to determine the effect of limiting glutamine formation in brain. For the same, 

we treated animals with glutamine synthetase inhibitor MSO, which would affect the glutamine – 

glutamate cycle in brain. We found that chronic treatment of SOD1
G93A

 transgenic mice with 

MSO over an extended period of time (at least 10–11 weeks) significantly (p = 0.008) increased 

their life span by 8%, as compared to saline-treated animals Survival increased from 

138 ± 3 days to 149 ± 4 (SEM) days for SOD1
G93A

 transgenic mice (data not shown in this 

chapter). The survival analysis for MSO-treated and saline-treated groups (n = 15 each) show the 

survival range for saline-treated animals was 119 to 157 days, and the survival range for MSO-

treated animals was 128 to 167 days. Corresponding to an increase in survival we saw an 80 - 

85% decrease in brain GS activity in brain tissue of the animals. Work done by our collaborators 

Dr. Farhad Ghoddoussi and Dr. Matthew P. Galloway found that the decrease in GS activity 

could be responsible for amino acid fluctuations that were seen in brain sections of the animals. 

Proton magnetic resonance spectroscopy, with magic angle spinning of intact samples of brain 

tissue, showed that MSO treatment reduced brain levels of glutamine by 60% and of glutamate 

by 30% in both the motor cortex and the anterior striatum (full text of the paper explains the 

various changes). 

For the purpose of my thesis, these results were indicative of potent GS inhibition by 

MSO. Glutamine is required by immune cells for cellular proliferation, differentiation and 

cytokine production (Li, Yin et al. 2007), and so its modulation would have an impact on 

immune and inflammatory process.  
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Hence, to investigate the role of glutamine and glutamine synthetase in 

inflammation and encephalopathy we proposed to study the effects of MSO in acute liver 

failure (ALF) using the LPS/D-GalN liver injury model. 
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CHAPTER 3 

A Glutamine Synthetase inhibitor increases survival and decreases cytokine response in a 

mouse model of Acute Liver Failure 
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Introduction 

As mentioned earlier, Acute Liver Failure (ALF) is defined as rapid deterioration of liver 

function in the absence of pre-existing liver disease and is characterized by blood coagulation, 

multi-organ failure, and altered mental status. ALF can be triggered by diverse agents such as 

drugs (acetaminophen, thioacetamide, and α-amanitin) and viruses (primarily hepatitis viruses A, 

B, and E). A critical feature of ALF is the mounting of a massive immune response, with 

http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_udi=B6T06-4Y41V56-1&_acct=C000228598&_version=1&_userid=10&_ts=1313014127&md5=87ac7fb6aa920d46ab4967610cd2f395
http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_udi=B6T06-4Y41V56-1&_acct=C000228598&_version=1&_userid=10&_ts=1313014127&md5=87ac7fb6aa920d46ab4967610cd2f395
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff1
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff1
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff1
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff1
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff1
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff1
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff1
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff1
http://www.sciencedirect.com/science/article/pii/S0022510X09009769#aff1
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recruitment of cellular effectors and uncontrolled cytokine release, a so-called cytokine storm, 

which destroys healthy cells and organs, leading to death. There is currently no effective therapy 

against ALF, a condition that kills between one and six people per million every year (Bernal, 

Auzinger et al. 2010).  

ALF is relatively rare, but it is one of many conditions resulting from a unrestrained 

cytokine release, and a pathological cytokine release is also believed to be involved in many 

other diseases that occur much more frequently, including rheumatoid arthritis (Chen and 

Goeddel 2002), Parkinson’s disease (Park, Yule et al. 2008), acute pancreatitis (Makhija and 

Kingsnorth 2002), and complications from flu infection (e.g. sudden acute respiratory syndrome 

(SARS)(Wang, Le et al. 2010). 

A well-established mouse model of ALF consists of injecting animals with a combination 

of low doses of E. Coli lipopolysaccharides (LPS, which activates the innate immune response) 

and D-Galactosamine (D-GalN, which specifically sensitizes the liver towards the cytotoxic 

effects of LPS through a transcriptional block (Decker and Keppler 1974; Galanos, Freudenberg 

et al. 1979; Leist, Gantner et al. 1998). This induces a systemic response which is predominantly 

directed towards liver. As the liver fails, the resultant hyperammonemia produces brain edema 

similar to the brain swelling seen in hepatic encephalopathy of humans that results from liver 

disease(Groflin and Tholen 1978; Watanabe, Higashi et al. 1979) . 

Brain swelling is prevented in hyperammonemic rats by treatment with methionine 

sulfoximine (MSO) (Takahashi, Koehler et al. 1991; Tanigami, Rebel et al. 2005).  MSO is a 

modified amino acid that acts as a very strong mechanism-based inhibitor of glutamine 

synthetase, the ATP-dependent enzyme that converts glutamate and NH3 into glutamine – a 

central reaction in cellular nitrogen metabolism (Manning, Moore et al. 1969; Ronzio, Rowe et 
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al. 1969; Griffith, Anderson et al. 1979). MSO displays multiple additional biological activities; 

increases survival in a mouse model of amyotrophic lateral sclerosis (Ghoddoussi, Galloway et 

al. 2010), it inhibits the first step in glutathione synthesis, γ-glutamyl cysteine synthetase 

(Griffith, Anderson et al. 1979), and  it lowers S-adenosyl methionine levels by an unknown 

mechanism (Schatz and Sellinger 1975). 

We have been exploring the therapeutic use of MSO in the LPS/D-GalN mouse model of 

ALF, by studying if MSO affects the early events that lead to liver failure. We have found that 

pretreatment with MSO greatly increases the survival of mice challenged with LPS/D-GalN. The 

mechanism of action of MSO in this system appears to involve a reduction in the early cytokine 

response of macrophages, indicating that glutamine synthetase activity is required for cytokine 

synthesis elicited by LPS/D-GalN in inflammatory cells. 

 

Materials and Methods 

Animals:  

6-8 week old CD1 mice were obtained from Charles River. Animals were housed in 

Wayne State University. Food was withdrawn the night before the day of the experiment. All 

experiments were approved by the Animal Investigation Committee of Wayne State University. 

The universities complies with the criteria outlined in the "Guide for the Care and Use of 

Laboratory Animals" prepared by the National Academy of Sciences and published by the 

National Institutes of Health (NIH publication 86-23 revised 1985).  

Survival and Analysis:  

Animals were divided into two groups. Group one animals consisted of both male and 

female mice injected with LPS and D-GalN to induce hepatic failure. Survival was monitored 
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post LPS/D-GalN administration and the time of injection was considered to be zero hour (t=0).  

Group two animals consisted of mice injected with MSO three hours prior to LPS and D-GalN 

administration. A mixture of LPS (20 µg/kg body weight, sigma – LPS from E. Coli 0111:B4 

Sigma #L2630) and D-GalN (800 mg/kg body weight, Sigma cat #G1639) was prepared in saline 

and administered intraperitoneally (IP). MSO (50 mg/kg body weight, Sigma cat #M5379) was 

also prepared in saline and administered IP. For analysis of the effect of MSO treatment on the 

cell death pathway activated by the Fas ligand, mice were pre-treated with MSO as described 

above, and at time zero were injected with Jo2 antibody (200 µg/kg).   

Animals were monitored continuously post LPS/D-GalN or Jo2 administration. Six to ten 

hours after treatment with LPS/D-GalN animals became very sick, and they were euthanized if 

their distress increased to the extent that they had difficulty moving, or if they were unresponsive 

to prodding. The time of death was recorded as hours after LPS/D-GalN injection. Fisher’s exact 

test was used to determine two-tailed p values for the statistical between the treated and 

untreated groups. 

Immunoblots of cleaved caspase-3 and phospho-STAT proteins: 

 Liver homogenates were prepared from male mice five hours after IP administration of 

LPS/D-GalN. The proteins in liver homogenates were separated on a 10% SDS-PAGE slab mini 

gels, electro-blotted onto nitrocellulose membranes (Amersham Biosciences Little Chalfont, UK 

– HybondTM-ECLTM) and the membranes were sequentially immunoblotted with antibodies 

against cleaved caspase-3. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH – Chemicon, 

Milano, Italy) was used as a loading control). Other antibodies used in these studies included 

Phospho-STAT antibodies (cell Signaling cat # 9914), including phospho-STAT1 (Tyr701), 

phospho-STAT2 (Tyr690), phospho-STAT3 (Tyr705), phospho-STAT3 (Ser727), phospho-
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STAT5 (Tyr694), and phospho-STAT6 (Tyr641). Anti-rabbit IgG, HRP-linked secondary 

antibody was used and the blots were developed either using the Immun-Star WesternC Kit 

(BIO-RAD cat # 170-5070) on a BIO-RAD imager.  

Caspase-3 blots of our Italian collaborators were used in the paper. However, the 

experiment was repeated and the result presented in this chapter was obtained by me. 

Isolation of peritoneal macrophages: 

Peritoneal macrophages were isolated from the abdomens of CD-1 mice, and 2x10
4
 cells 

were added to each well of a 6-well cell culture plate. The cells were incubated in RPMI – 1640 

(with 2.05 mM glutamine) with 5% fetal calf serum and 1% penicillin/streptomycin (all solutions 

were from Hyclone) for 4 hours. The medium was then changed to remove any non-adherent 

cells, and the cells were again incubated in a 37
 o

C  - 5% CO2 incubator for 16 hours. In each 

plate, one well was a negative control (no treatment), one well was a MSO control (9 mM) and 

one well was a LPS control (1 µg/ml LPS).  The other three wells were treated with 9 mM MSO 

and 1 µg/ml LPS. One well was treated with MSO for 3 hours, and LPS was then added. In 

another well, LPS and MSO were added at the same time.  Time of LPS addition was considered 

time zero.  Four hours after LPS addition the cell culture medium was collected and 50 µl of the 

medium was mixed with 50 µl of blocking buffer and used for the TNF-α ELISA assay.  

Animal groups for tissue and plasma collection: 

Tissue and plasma were collected from male mice, which were divided into two groups. 

One group was injected with saline three hours prior to LPS/D-GalN injections. The second 

group was given MSO three hours prior to being injected with LPS/D-GalN. Control mice (t=0) 

were treated with MSO or saline for 3 hours and then euthanized (not exposed to LPS/D-GalN). 
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After LPS/D-GalN injection at time zero, tissue and plasma samples were collected at one-hour 

time intervals from 1 to 5 hours.  

Blood collection and plasma preparation: 

For experiments analyzing plasma cytokines, the male mice from the groups described 

above were anesthetized using Avertin (solution of 15.5 ml of tert-amyl alcohol –Sigma #240486 

and 25 gm of 2-2-2 tribromoethanol – Sigma #T48402) and blood was collected by cardiac 

puncture. Plasma was obtained by transferring blood to plasma separator tubes containing 

lithium heparin (BD Microtainer tubes). Plasma samples were immediately frozen on dry ice and 

stored at -80
o
C.  

Enzyme activity assay: 

To analyze enzyme activities liver homogenates were prepared from liver tissue excised 

and immediately homogenized in ice-cold buffer consisting of 250 mM sucrose, 10 mM Tris and 

0.1 mM EGTA with protease inhibitor cocktail (sigma #P8340). The homogenized tissue was 

centrifuged at 2375 x g for 5 minutes. The tissue supernatant fraction was frozen on dry ice and 

stored at -80
o
C.   

Glutamine synthetase was assayed as described by Meister (Meister 1985).  Liver 

supernatant (100 µg) was incubated in buffer (0.1 M imidazole, 100 mM L-glutamine, 0.2 mM 

MnCl2, 62.5 mM hydroxylamine, 10 mM sodium arsenate and 0.4 mM ADP) at 37
o
C for 15 min. 

The reaction with the substrates glutamine and hydroxylamine was stopped using ferric chloride 

stop solution (0.37 M FeCl3, 0.67 M HCl, 0.20 M TCA) and the colorimetric product formed – γ-

glutamyl hydroxamate – was measured at 535 nm. The absorbance values were converted to 

activities by comparison to a standard curve of pure glutamyl hydroxamate (a generous gift from 

Arthur J. Cooper, Department of Biochemistry and Molecular Biology, New York Medical 
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College). Graphpad analysis software was used to obtain two-tailed p values using an unpaired t 

test. 

Cytokine Blots: 

Mouse cytokine array kits (Proteome Profiler Arrays – cat # ARY006) were obtained 

from R&D Systems and used according to the manufacturer’s guidelines. Each array, which 

consisted of a nitrocellulose membrane spotted with 40 different mouse cytokines, was tested 

with two hundred microliters of plasma from one animal. Each condition was duplicated – two 

mice for each group. Control blots were from plasma collected from two untreated mice (not 

injected with LPS/D-GalN and/or MSO). For untreated and MSO-treated groups, plasma was 

collected at either 1 hour or 3 hours after LPS/D-GalN administration. The blots were developed 

using the Immun-Star WesternC Kit (BIO-RAD cat # 170-5070) on a BIO-RAD imager. The 

corresponding Quantity One software of the BIO-RAD imager was used to quantify the signal 

obtained on the blots. 

ELISA assays: 

TNF-α, IFN-γ, and IL-6 ELISA kits were obtained from eBioscience, and experiments 

were performed using the manufacturer’s guidelines for 96-well plate experiments. One hundred 

microliters of plasma was used per well. The TNF-α ELISA assay had a sensitivity of 8-1000 

pg/ml: the IFN-γ ELISA had a sensitivity of 0.75 – 100 pg/ml. The IL-6 ELISA assay had a 

sensitivity of 0-500 pg/ml, and the combination of ELISA sensitivity and the amounts of IL6 in 

plasma required us to reduce the amount of plasma tested to 5 µl. 
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Results 

MSO prevents LPS/DGalN induced ALF lethality in mice: 

Figure 3.1 shows survival curves for CD1 mice treated with LPS/D-GalN to induce liver 

failure. Mice were injected with MSO three hours prior to LPS/D-GalN treatment.  Without 

MSO pre-treatment, LPS/D-GalN administration resulted in death 6 - 10 hours after 

administration. MSO pretreatment increased male survival from 19% to 71% (Figure 3.1A) 

n=21; p<0.002 .  MSO pre-treatment increased female survival from 27% to 81% (Figure 3.1B) 

n=14; p<0.005.  MSO therefore substantially increases survival in both male and female mice 

with LPS/D-GalN induced ALF. 

 

Figure 3.1.  Survival of male and female CD1 mice pretreated with either MSO (open circles) 

(50 mg/kg IP) or saline (open diamonds) three hours prior to injection with LPS and D-

Galactosamine (D-GalN) at time zero to induce liver failure.  Time of death was recorded as 

hours after LPS/D-GalN injection  (X axis), and percent remaining animals was plotted on the Y 

axis.  For males (left), 4 out of 21 mice injected with LPS/D-GalN survived. Survival increased 

to 15 mice (out of 21) when animals were injected with MSO. Two tailed p values for these two 

groups < 0.002.  For females (right), 3 out of 14 mice injected with LPS/D-GalN survived. 

Survival increased to 11 mice (out of14) when animals were pretreated with MSO. Two tailed p 

values for these two groups < 0.005.  
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MSO treatment reduces activity of glutamine synthetase: 

MSO is a well-characterized inhibitor of glutamine synthetase. We assayed glutamine 

synthetase activity in liver extracts from LPS/D-GalN treated animals.  Figure 3.2 shows that at 

all time points, MSO pre-treatment reduced glutamine synthetase activity to less than 10% of 

that found in animals pre-treated with saline, supporting the conclusion that inhibition of 

glutamine synthetase activity might be involved in the therapeutic effects of this drug. 

 

Figure 3.2.  Glutamine synthetase activities measured in liver extracts from mice treated 

with LPS and D-GalN three hours after IP injection of either saline (black bars) or MSO (grey 

bars). Each time point represents the average glutamine synthetase activity in liver extracts from 

15 animals. 

 

MSO inhibits the massive cytokine response seen in LPS/D-GalN treatment: 

One of the earliest effects of LPS/D-GalN administration is to trigger the release of pro-

inflammatory cytokines(Leist, Gantner et al. 1998). We exploited a mouse cytokine array to 
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determine how MSO treatment affected plasma levels of 40 different cytokines following 

treatment of mice with LPS/D-GalN in order to draw a comprehensive picture of how MSO 

might be affecting the early immune response. We used these arrays to visualize the cytokine 

response in  plasma collected one hour or  three hours after LPS/D-GalN administration.  Figure 

3.3 shows the cytokines seen in plasma drawn one and three hours after LPS/D-GalN 

administration with or without MSO treatment.  Each blot represents the plasma from a single 

animal. For Figure 3.3A (i), the two control blots, were on plasma isolated from negative 

controls (overnight-starved animals not treated with MSO or LPS/D-GalN). We analyzed blots 

of plasma taken from two animals killed three hours after LPS/D-GalN administration, shown in 

Figure 3.3A (ii). Figure 3.3A (iii) shows the two blots of plasma from animals pretreated with 

MSO three hours prior to LPS/D-GalN injection. For the locations of each of the 40 cytokines 

detectable in these blots, see  http://www.rndsystems.com/pdf/ary006.pdf 

The results showed that, as expected, secretion of many of these cytokines is dramatically 

increased during ALF progression. Three hours after disease induction, 22 of the 40 cytokines 

were found to be elevated and 20 of these were reduced by MSO pretreatment.  The results for 

all 40 cytokines are summarized in Figure 3.4A and figure 3.4B, and the major differences are 

described in the following paragraphs. 

Cytokines C5a, sICAM-1, KC, M-CSF, and TIMP-1 were all detected on the control 

blots. In the one-hour samples from LPS/D-GalN-treated mice (figure 3.3B (i)), only IL-6, KC, 

M-CSF, JE, MIP-2, TNF-α and TIMP-1 were elevated, and only IL-6 and TNF-a were reduced – 

both by >50% - in plasma from MSO-pretreated animals (figure 3.3B (ii)).  The signal intensity 

calculations from one hour blot samples are shown in figure 3.4C.  Three hours after LPS/D-

GalN treatment, both LPS/D-GalN treated animals and MSO-pretreated LPS/D-GalN treated 

http://www.rndsystems.com/pdf/ary006.pdf
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animals showed a 10-20% reduction in C5a and sICAM.  M-CSF values were the same for all 

three groups. KC and TIMP-1 signals were increased by more than 50% in LPS/D-GalN treated 

mice. KC values for MSO pre-treated values were same as in LPS/D-GalN animals; however, 

TIMP-1 values were reduced to approximately control values. 

Induction of IFN-γ, IL-1ra, IL-6, IL-16, and IL-23 by LPS/D-GalN was abolished by 

MSO, whereas IL-1a level was reduced by more than 50%.  Neutrophil-produced cytokines such 

as IP-10, I-TAC and MIG were all detected in plasma from LPS/D-GalN treated mice. IP-10 was 

reduced by more than 50% with MSO pretreatment and MIG and I-TAC were not detected. 

Macrophage-produced cytokines such as MIP-1a and MIP-1b, and chemokines such as JE and 

RANTES, which were elevated with LPS/D-GalN treatment, were either reduced or not detected 

with MSO pretreatment. The two exceptions were MCP-5 (monocyte chemotactic protein) and 

MIP-2 (macrophage inflammatory protein -2 gamma), both of which were increased in plasma 

from MSO-treated animals. Most importantly, TNF-α induction by LPS/D-GalN was abrogated 

by MSO pretreatment. 

Lastly, figure 3.3C (i) shows blot from one female LPS/ D-GalN animal and figure 3.3C 

(ii) was obtained from plasma of one female mouse pre – treated with MSO. Since, the cytokine 

profile from female mice was similar to those from male mice; densitometry analysis from the 

blot was not performed and the experiment was not repeated with more animals. 
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Figure 3.3. Nitrocellulose membrane-based cytokine arrays.  Cytokine arrays were obtained 

from R&D Systems.  Each membrane has 40 different mouse cytokines spotted in duplicate.  

The cytokines were identified using the column and lane number of each spot corresponding to 

the manufacturers table. Each membrane contained three positive and one negative control, each 

spotted in duplicate.  Each blot represents the plasma cytokine profile from a single mouse.    

Panel A (i) shows cytokines in plasma from a control mouse (not treated with either MSO or 
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LPS-DGalN). 3.3. A (ii) show cytokines from plasma of animal treated with LPS/D-GalN 3 

hours post disease induction and 3.3. A (iii) shows plasma from MSO pretreated animal.  Panel 

B shows cytokines in plasma from a mice treated with LPS/D-GalN (3.3. B (i) and MSO + 

LPS/D-GalN (3.3. B (ii) )for one hour.  Panel C shows cytokines in plasma from female mice 

treated with LPS/D-GalN (3.3.C (i)) and pretreated with MSO three hours before being treated 

with LPS/D-GalN (3.3. C (ii)) for three hours.  For the locations of each of the 40 cytokines 

detectable in these blots, see http://www.rndsystems.com/pdf/ary006.pdf 
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Figure 3.4.  Changes in cytokines calculated from cytokine array blots.   Each treatment group 

had two animals in it and the values for the 40 different cytokines were averaged for each group 

and represented as pixel densities, normalized to the average pixel densities of the positive 

http://www.rndsystems.com/pdf/ary006.pdf
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controls (PC1), and plotted on this bar graph. Figure A and B show all the cytokines present in 

control, LPS/D-GalN and MSO – LPS/D-GalN treated animals. The cytokines not detected on 

the blots are not shown. Open bars represent the cytokine values for untreated negative control 

mice. Black bars represent the cytokine values for mice treated with LPS/D-GalN. Grey bars 

represent the cytokine values for mice pretreated with MSO three hours before being injected 

with LPS/D-GalN. The error bars represent the maximum pixel density for the cytokine. A and 

B) Shows the signal intensity calculation from cytokine blots of three hour diseased animals – 

figure 3.3 A i, ii, and iii. C) Shows signal intensity calculation from cytokine blots of one hour 

diseased animals – figure 3.3. B i, and ii. 

 

ELISA studies on plasma cytokines: 

 TNF-α and IFN-γ are secreted by different cells as part of the response to LPS 

administration, and we see both in the cytokine arrays described above.  TNF-α and IFN-γ 

activate separate apoptotic pathways. TNF-α activates cell death via the JNK pathway (Schwabe 

and Brenner 2006) and IFN-γ activates apoptosis via the Jak-STAT1 pathway (Horvath 2004).  

To identify the effect of MSO on secretion of these two cytotoxic cytokines, we followed up the 

cytokine array studies with ELISA analysis of plasma levels of TNF-α and IFN-γ. Figures 6A 

and 6B show ELISA assays carried out on  plasma taken from individual mice killed either at t=0 

(control animals – injected with MSO or saline for 3 hours, but not exposed to LPS/D-GalN) and 

at 1, 2, 3, 4, or 5 hours after LPS/D-GalN treatment.  These are the same mice for which 

glutamine synthetase activities in liver extracts are shown in Figure 3.2.    

Figure 3.5A shows that TNF-α was not detectable in plasma taken from t=0, control 

mice injected three hours previously with either MSO (n=7) or saline (n=7). For saline pretreated 

and LPS/D-GalN-treated animals, TNF-α levels peaked at one hour (mean: 590 ± 91 SEM 

pg/ml) then dropped at later times. In contrast, MSO-pre-treated animals exhibit low TNF- 

levels throughout the time course of experiment, never reaching 200  pg/ml (peak 1 hour time 
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point mean: 112 ± 35 SEM pg/ml). The p value for the difference between the saline-treated and 

the MSO-treated groups of mice at 1 hour is < 0.001. 

Another important cytokine whose expression is elicited by LPS is IFN-γ, which could 

contribute to apoptosis regulation via activation of the JAK/STAT pathway (Horvath 2004). 

Figure 3.5B shows that LPS/D-GalN-treatment increases IFN-γ cytokine levels from 0.84±0.25 

pg/ml at one hour to 41±11 pg/ml at 4 hours, and that MSO markedly inhibits this increase 

(0.19±0.05 pg/ml at 1 hour; 5.0±3.0 pg/ml at 4 hours). The p value for differences between the 

LPS/D-GalN and MSO treated groups of mice at 4 hour is 0.01. 

We also conducted ELISA assays to test the effect of MSO pretreatment on IL-6, another 

acute phase protein involved in orchestrating the early phases of the inflammatory response 

(Streetz, Wustefeld et al. 2001).IL-6 is secreted by macrophages in liver and along with TNF-α is 

a critical early mediator of immune signaling during disease progression. Low levels of IL-6 are 

hepatoprotective, and the resultant low levels of STAT3 activation are also hepatoprotective. As 

described above, IL-6, like TNF-α, is seen in the cytokine blots of both the one-hour and three-

hour plasma samples from LPS/D-GalN treated mice. Figure 3.5C shows that LPS/D-GalN 

treatment increases IL-6 from 166±41 pg/ml (mean ± SEM) at one hour to 401±14 pg/ml (mean 

± SEM) at two hours. Thereafter it decreases gradually till 5 hours. The plasma from MSO pre-

treated mice show low levels of IL-6, with a peak of (mean) 325 ± 27 SEM pg/ml at 3 hours. The 

p value for the difference between the saline-treated and the MSO-treated groups of mice at 1 

hour is < 0.001.  
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Figure 3.5.  ELISA quantitation of cytokine levels in plasma from LPS/D-GalN treated 

mice. The time zero values show the levels of each cytokine in negative control mice,  not 

treated with LPS/D-GalN but injected with either saline (n=7) or MSO (n=7) three hours prior to 

be killed.  Each of the hour time points shows cytokine levels in 7 or 8 mice killed at that time 

point after LPS/D-GalN treatment.  For each cytokine, open red circles represent cytokine levels 

in plasma isolated from mice pretreated with saline, and open blue diamond’s represent cytokine 

levels in plasma isolated from mice pretreated with MSO prior to LPS/D-GalN treatment.  A) 

TNF-α levels. B) IFN-γ levels.  C) IL-6 levels. 

 

MSO inhibits STAT1 activation and caspase – 3 cleavage:  

The effects of IFN-γ as well as other IFNs, are mediated by its activation of the tyrosine 

kinases Jak1 and Jak2, which phosphorylate and activate the transcription factors of the  STAT 

family (Levy and Darnell 2002). As this is the primary pathway for the activation of IFN-γ. 

responsive genes we wished to determine if the reduction in IFN-γ seen with MSO was sufficient 

to affect this pathway.  As can be seen in figure 3.6, LPS/D-GalN treatment leads to a large 

increase in STAT1 activation and this increase is eliminated in the presence of MSO.  We also 

tested the effects of MSO treatment on activation of STAT2, 3, 5, and 6.  None showed effects as 

dramatic as those seen with STAT1, but phosphorylated STAT3 is decreased by MSO-treatment 

in both LPS/D-GalN treated and untreated mice.    
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Figure 3.6. Immunoblots of liver tissue homogenates from LPS/D-GalN treated mice 

probed with anti phospho-STAT’s.  The top two lines show treatments, either LPS/D-GalN, 

MSO, neither, or both.  The blot shows that LPS/D-GalN treatment phosphorylates and activates 

STAT1, but not if mice are pretreated with MSO. Glyceraldehyde phosphate dehydrogenase 

(GAPDH) is shown as a loading control. Phosphorylated STAT2, 5 and 6 was not detected in 

any treatment group. STAT3 phosphorylated at S727 was present in LPS/D-GalN treated animal 

and absent with MSO treatment. 

 

Caspase 3 is a key apoptotic effector, both in intrinsic and in extrinsic apoptotic pathways, and it 

is activated downstream to engagement of TNF or Fas receptors(Taylor, Cullen et al. 2008). We 

therefore measured caspase-3 activation as a hallmark of apoptosis induction in mouse liver 

extracts.  Figure 3.7 show that, animal exposure to LPS/D-GalN for 5 hours elicits a marked 

caspase-3 activation, which is completely prevented by MSO pretreatment. This suggests that 

MSO acts either downstream to TNF-α binding to its cognate receptor, blunting some 

intracellular steps of apoptosis signaling; or upstream to TNF-R engagement, e.g. by inhibiting 

ligand production or delivery. 
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Figure 3.7. Effect of MSO treatment on caspase-3 activation. Western immunoblots of liver 

extracts were hybridized with anti-cleaved, i.e. activated caspase-3. First lane is control – 

untreated with LPS/D-GalN and MSO. Second lane is LPS/D-GalN sample and third lane is 

MSO pretreated LPS/D-GalN tissue. MSO treatment reduces formation of active caspase – 3. 

Three different lanes are shown. Blots were probed with anti-GAPDH as a loading control.  

 

Effects of MSO on in vitro production of TNF-α by peritoneal macrophages 

Taken together, our data demonstrate that MSO exerts its protective function prior to 

apoptosis induction in hepatocytes, as it down-modulates cytokine induction following LPS 

exposure. Macrophages coordinate the early phases of LPS-induced inflammatory response, 

through the synthesis of TNF-α and other cytokines. We conducted in vitro experiments to 

directly test if MSO inhibits TNF-α production on LPS-stimulated macrophages obtained from 

mouse peritoneum. Macrophages were triggered with LPS with or without MSO added either 

three hours before, or at the same time of LPS. Four hours after LPS addition, TNF-α in the 

culture supernatant was quantitated by ELISA.  In six experiments, we found that MSO 
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treatment three hours before LPS addition resulted in an average decrease in TNF-α production 

of 26% with a range of 14% to 55%.  MSO treatment at the same time as LPS addition resulted 

in an average decrease in TNF-α production of 18% with a range of 8% to 37%.  Trypan blue 

testing confirmed that there was no effect of MSO on cell viability over the time course of these 

experiments. This experiment verified that MSO can act directly on macrophages to inhibit 

cytokine production, despite the presence of 2 mM glutamine in the culture medium. These 

results with peritoneal macrophages show that MSO does decrease TNF in the presence of 

external glutamine, but since Kupffer cells are likely to have the major role in TNF-α production 

in these experiments, and since the local concentration of glutamine will be different than the 

plasma levels for these cells, additional experiments will be needed to see if the inhibition of GS 

is sufficient to account for the diminution of the immune response.  The significance of MSO 

acting even in the presence of external glutamine is discussed below.  

 

Discussion 

Methionine sulfoximine is a well characterized inhibitor of glutamine synthetase and 

gamma-glutamyl cysteine synthetase (Griffith and Meister 1978).  It is a mechanism-based (i.e. 

“suicide”) inhibitor for both enzymes, whose mode of action involves binding to the active site 

and being phosphorylated by ATP. This reaction produces methionine sulfoximine phosphate, 

which binds very tightly to the active site and inactivates the enzyme.  In rats, MSO-treatment 

and inhibition of glutamine synthetase has been shown to prevent brain swelling caused by 

hyperammonemia and MSO has been suggested as a possible treatment for hepatic 

encephalopathy (Takahashi, Koehler et al. 1991; Brusilow 2002; Tanigami, Rebel et al. 2005).  

Because of its effectiveness  in those studies, we had initially included MSO treatment as an 
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adjunct therapy to other drugs targeting the mitochondrial permeability transition, a 

mitochondrial channel whose prolonged opening irreversibly commits cells to death, as PTP 

dysregulation is implicated in ALF and other liver diseases (Rasola and Bernardi 2007). The 

unexpected effectiveness of MSO by itself led to these studies on MSO alone. 

 Treatment of mice with MSO alone three hours prior to inducing liver failure with LPS 

and D-GalN significantly increased survival.  Subsequent analyses showed that MSO treatment 

prevented caspase-3 activation, indicating that this drug was affecting a stage upstream to cell 

death in the uncontrolled response which is primarily directed against the liver during ALF 

(Strasser, O'Connor et al. 2000; Leist and Jäättelä 2001; Luan, Zhou et al. 2007).  Immunoblot 

analysis showed that MSO pretreatment reduced the production of several pro-inflammatory 

cytokines, and  more sensitive ELISA studies showed that MSO suppressed the production of 

TNF-α and IFN-γ.  TNF-α is an important acute phase protein whose production by macrophages 

and binding to the TNF-α receptor on hepatocytes activates a network of signal transduction 

pathways that regulate gene expression and cell death. When transcription is blocked, e.g. with 

D-GalN, pro-apoptotic pathways, including aggregation of a death-inducing signaling complex 

and activation of the stress kinase JNK, prevail and lead to a rapid cell dismantling (Schwabe 

and Brenner 2006; Wullaert, Heyninck et al. 2006).  IFN-γ is produced in the liver by natural 

killer (NK) and NK T cells and is involved in the immune response against viral and bacterial 

infections by stimulating macrophages to produce more cytokines(Saha, Jyothi Prasanna et al. 

2010). Moreover, IFN-γ is independently capable of initiating cell death by inducing the Jak-

STAT pathway (Levy and Darnell 2002), and we see STAT1 activation in the livers of LPS/D-

GalN treated mice.  MSO treatment affects both the TNF-α and IFN-γ - dependent pathways, but 

the suppressive effect of MSO treatment on TNF-α  and IFN-γ production also involves a larger 
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suppression of cellular immunity, since MSO treatment affects the levels of other macrophage 

secreted cytokines such as MIG, MIP-1a, MIP-1b, and MCF in plasma drawn 3 hours after 

disease induction.  Most of these cytokines were either absent or reduced by more than 50% in 

the plasma from MSO pre-treated mice.   

The simplest explanation for the ability of MSO to alter the immune response initiated by 

LPS/D-GalN is that changes in glutamine concentration, either in the plasma or in immune cells, 

affect the activation of immune cells, most likely peritoneal macrophages or Kupffer cells, since 

these cells are the earliest producers of TNF-α after an IP administration of LPS.  It is well 

established that glutamine levels influence macrophage function and cytokine release in tissue 

culture, and long-term dietary changes can modify  immune function in living animals 

(Newsholme 2001; Li, Yin et al. 2007; Roth 2007).  The action of MSO on glutamine synthetase 

may be lowering plasma glutamine and thereby changing the global anabolic response to 

infection.  In vitro, lowered glutamine leads to decreased proliferation in mitogen-stimulated 

lymphocytes and impairs the differentiation of plasma cells (Crawford and Cohen 1985; Szondy 

and Newsholme 1989).  The reduction in glutamine seen after severe burns may also be 

responsible for the impaired immune response seen in this and other stress conditions (Kew, 

Wells et al. 1999).  Again in vitro, a detailed study of the effect of glutamine concentrations on T 

cell differentiation divided the response into an early and glutamine-independent phase and a 

latter glutamine dependent phase (Hörig, Spagnoli et al. 1993). Finally, dietary glutamine 

enhances cytokine production in macrophages and increases T cell responsiveness (Kew, Wells 

et al. 1999; Rogero, Tirapegui et al. 2008).  

It has been shown that macrophage depletion improves survival in mice challenged with 

LPS/D-GalN  (Emoto, Emoto et al. 2003), and that transfer of macrophages from wild type mice 
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in TL4R-mutant mice is sufficient to confer susceptibility to LPS/D-GalN – induced lethality 

(Freudenberg, Keppler et al. 1986).   The relative importance of peritoneal and Kupffer cells in 

the lethality caused by LPS/D-GalN is not known, but the conventional view is that, given the 

large mass of Kupffer cells and their close proximity to hepatocytes,  their secretion of TNF-α 

and other cytokines is the proximate cause of death (Luster, Germolec et al. 1994; Ide, 

Kuwamura et al. 2005; Tacke, Luedde et al. 2009).  Since inhibiting glutamine synthetase can 

affect cell death, MSO might be inhibiting Kupffer cell response by either decreasing the 

external concentration of plasma glutamine in the vicinity of Kupffer cells, or by directly 

inhibiting cellular glutamine synthetase, as we have shown here for peritoneal macrophages 

treated with MSO in vitro. The fact that treatment of isolated peritoneal macrophages with 9mM 

MSO in the presence of 2mM glutamine significantly reduces TNF-α indicates that even in the 

presence of external glutamine, peritoneal macrophage glutamine synthetase is still required for 

maximal TNF-α synthesis and/or secretion. Since Kupffer cells are likely to have the major role 

in the production of TNF-α in our experiments, additional and more complex experiments will be 

needed to determine if the inhibition of glutamine synthetase in these cells is sufficient to 

account for the striking diminution of the immune response which we observe. 

However, studies of the in vitro effects of glutamine on isolated systems of immune cells 

are obviously inadequate for understanding the complex events occurring with LPS/D-GalN 

stimulation.  We have demonstrated that an IP injection of 50 mg/kg MSO lowers plasma 

glutamine concentrations by about 50 %. Under long term MSO treatment, plasma glutamine 

levels return to normal even though glutamine synthetase in the liver remains inhibited by 90%, 

presumably due to the large amounts of glutamine present in the standard mouse diet.  In any 

case, plasma glutamine levels might be of minimal importance in the context of macrophage 
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activation in the liver, where the local production of glutamine by glutamine synthetase may 

influence the external concentration seen by Kupffer cells. As blood in the liver flows from the 

portal to the venous side, glutamine concentrations change. The periportal cells actively transport 

glutamine, concentrating it by 10 fold (Häussinger, Lang et al. 1990; Labow and Souba 2000). 

This removal of glutamine is central to liver function since it is converted by liver glutaminase 

into urea and glutamate, controlling blood ammonia levels through its incorporation into urea. 

Both glutamate and urea are transported back into the periportal blood.  As the glutamate-

enriched and glutamine-depleted blood reaches the perivenous side of the liver, glutamate is 

transported into the perivenous cells and used by glutamine synthetase to make glutamine, which 

is then available to Kupffer cells associated with the perivenous hepatocytes. Perivenous 

hepatocytes, while constituting only 5% of the hepatoocyte population are the only liver cells 

containing glutamine synthetase (Gebhardt and Mecke 1983; Häussinger, Stoll et al. 1989). 

There are two populations of Kupffer cells as distinguished by morphology, function, and 

location.  The Kupffer cells at the periportal side are more active in phagocytosis while those at 

the perivenous side respond much more strongly to LPS (Sleyster and Knook 1982; 

Hoedemakers, Morselt et al. 1995; Armbrust and Ramadori 1996; Bykov, Ylipaasto et al. 2004). 

As noted above, it is clear that glutamine is required for the activation of immune cells.  Our 

results suggest that the immunologically reactive Kupffer macrophages may be dependent upon 

the glutamine synthesized specifically by perivenous hepatocytes. The inhibition of glutamine 

synthetase in this population by MSO could reduce the response to LPS/D-GalN, independent of 

any changes in plasma levels of glutamine.  

An additional mechanism independent of plasma glutamine levels may also be involved.  

As shown in this report, MSO is also able to reduce TNF-α secretion in isolated peritoneal 
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macrophages even in the presence of 2mM glutamine, implying that the macrophage glutamine 

synthetase is directly involved in the synthesis and/or secretion of TNF-α.  

Finally, inhibition of glutamine synthetase by MSO may reduce internal glutamine in 

immune cells and thereby interfere with energy generation or another critical biochemical 

processes required for activation.  For example, mTOR activation requires an internal pool of 

glutamine and the critical size of this pool may be altered by the inhibition of glutamine 

synthetase by MSO (Nicklin, Bergman et al. 2009).  Liver tumor cells often have high levels of 

glutamine synthetase and presumably internal glutamine, priming them for proliferation (Apte, 

Singh et al. 2009; Nicklin, Bergman et al. 2009). In addition, the synthesis of glutamine 

synthetase is under the control of the Wnt/β-catenin signaling pathway with β-catenin required 

for three enzymes involved in glutamine metabolism, including glutamine synthetase (Sekine, 

Lan et al. 2006; Apte, Singh et al. 2009), again suggesting that glutamine plays a central role in 

hepatocyte metabolism. 

In conclusion, MSO, a well-characterized mechanism-based inhibitor of glutamine 

synthetase and other enzymes, has a striking and unexpected effect of increasing survival in the 

LPS/D-GalN mouse model for ALF.  It prevents the activation of caspase-3 and furthermore 

significantly reduces the overall inflammatory immune response as measured by reductions in 

the levels of plasma cytokines, and it prevents the ensuing activation of caspase-3 and apoptosis 

induction in hepatocytes.  Of particular interest is that levels of TNF-α and IL6 are reduced one 

hour after LPS/D-GalN treatment, indicating that the primary target of MSO is some step very 

early in the immune response, most likely in the alteration of macrophage/Kupffer cell 

activation.   
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Determining the relative importance of these mechanisms in the suppression by MSO of 

TNF-α and cytokine production will require further studies focusing on macrophage/Kupffer 

cells and their environment, but it is clear that MSO, with its highly specific target, and at non-

toxic doses, can efficiently rescue mice exposed to lethal doses of LPS/D-GalN.  Glutamine 

synthetase may therefore warrant additional attention as a new drug target in liver failure.   
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CHAPTER-4 

Methionine sulfoximine’s prevention of acute liver failure: understanding the involvement 

of glutamine synthetase and glutamine 

  

Introduction 

Previous work from this lab has characterized the beneficial role of MSO in the extension 

of life span in the SOD1 mouse model of amytropic lateral sclerosis (ALS). The studies 

described in this thesis show that the use of MSO therapeutically in the mouse model for ALF 

leads to a decrease in plasma cytokines – mainly TNF-α, IFN-γ, and IL-6 - and an increase in 

survival by 75%. MSO inhibits the enzyme glutamine synthetase (GS).  Glutamine, which is 

produced by GS, is considered essential for the generation of cytokines. It also plays an 

important role in immune cell proliferation, differentiation and maturation (Newsholme 2001). 

Hence, the simplest explanation for MSO’s effects on ALF mouse model is its ability to inhibit 

glutamine production and subsequently reduce the immune response. Our studies aim to 

understand the effects of MSO and by extension the role of GS on inflammation in vitro and in 

vivo. In this chapter we initiated experiments aimed at defining the mechanism of action of 

MSO-induced GS inhibition on our ALF mouse model.  

The experiments described in the previous chapter established that MSO prevents LPS/D-

GalN induced liver failure via its inhibitory action on inflammation. Two of the key modulators 

of cell fate - TNF-α and IFN-γ – are reduced by more than 50% with MSO pre-treatment. The 

plasma TNF-α and IFN-γ values explain the downstream effects of the inflammatory apoptotic 

pathways seen in this disease (i.e. caspase-3 and STAT1 activation is prevented by MSO pre-

treatment). However, these anti-apoptotic effects do not fully explain the cellular mechanism 
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involved in MSO’s prevention of ALF.  This chapter describes our subsequent efforts to explore 

the effects of MSO on GS and TNF-α at early disease stage – i.e. 1 or 2 hours post disease 

induction. We tested the effects of MSO treatment on TNF-α and GS transcription, on plasma 

levels of glutamate and glutamine, and on macrophages and GS protein in liver tissue from mice. 

For disease induction, we continued to use E coli lipopolysaccharides (LPS) and sugar D-

Galactosamine (D-GalN). We also investigated the cellular implications of glutamine level 

variation and GS inhibition by MSO on isolated primary peritoneal macrophages. We measured 

total protein synthesis in LPS-stimulated macrophages in the presence and absence of MSO 

treatment. 

  

Materials and Methods 

Animals: 

 6 – 8 week old male CD1 animals were obtained from Charles River. Animals were 

housed in Wayne State University and cared using the criteria outlined in the "Guide for the Care 

and Use of Laboratory Animals" prepared by the National Academy of Sciences and published 

by the National Institutes of Health (NIH publication 86-23 revised 1985). All experiments were 

approved by the Animal Investigation Committee of Wayne State University. 

Animals were starved overnight before the experiment. Control animals were injected 

with saline and after 3 hours another saline injection was administered intra peritoneally (IP). 

Diseased group animals were injected with saline, and after 3 hours, a mixture of LPS (20 µg/kg 

body weight, sigma – LPS from E. Coli 0111:B4 Sigma #L2630) and D-GalN (800 mg/kg body 

weight, Sigma #G1639) was administered. The treatment group consisted of mice injected with 

MSO (50 mg/kg body weight, Sigma #M5379) three hours prior to LPS and D-GalN 
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administration. All solutions were prepared in saline and administered IP.  Since our previous 

work showed TNF-α peaking at 1 hour post LPS/D-GalN administration, we studied samples 

taken 1 hour or 2 hours after disease induction.  

Western Blotting: 

Liver homogenates were prepared from male mice either 3 hours after saline or MSO 

injections (time zero controls) or at one hour time after IP administration of LPS/D-GalN. Liver 

was homogenized in the presence of protease inhibitors. The homogenization buffer was made 

up of 150 mM KCl, 5 mM β-mercaptoethanol and 1 mM EDTA. Livers were homogenized by a 

mechanical rotor and centrifuged for 5 minutes at 10,000 x g - 4°C. Coomassie plus protein 

assay (Thermo Scientific #1856210) was used to determine the protein concentration.  10µg of 

protein extract was loaded for each sample. The supernatant extracts were boiled for 5 minutes 

and identical protein amounts were separated on a 12.5% by SDS-PAGE and immunoblotted for 

glutamine synthetase using anti-GS antibody (Sigma #G2781). Anti- GAPDH antibody (Sigma 

#G9545) was used as a loading control. 

IHC: 

Liver was collected and cut into small 5mm sections which were frozen immediately in 

OCT compound. The frozen tissue was stored at – 80
o
C when not in use. 10 micron sections 

were cut in a microtome cryostat and loaded onto poly-lysine coated slides. The cut sections 

were also stored at – 80
o
C.  

For staining, the tissue sections were brought to room temperature for 30 minutes and 

then fixed in ice cold acetone for 10 minutes. Thereafter the tissue was blocked in 10% BSA 

(made up in phosphate buffered saline (PBS – pH 7.4) with 0.5% Tween 20 for an hour. The 

tissue was incubated overnight in primary antibody at concentration of 1:100 and secondary 
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antibody at concentration of 1:100 for 1hr. All antibodies were prepared in 1% BSA solution 

made up in PBS – pH 7.4.  Anti-glutamine synthetase antibody (Sigma #G2781) was used to 

identify hepatocytes expressing GS and anti F4 80 antibody (e-biosceince #14-4801-81) was 

used to stain for Kupffer cells. Secondary antibody of anti rabbit – HRP (Bio-Rad #170-6515) 

was used against anti GS and anti rat – HRP (ebiosceince #18-4818-82) was used against F4 80 

antibody. Slides were washed in for 5 minutes in PBS 3 – 5 times between each step. Lastly, the 

tissue was exposed to 3’, 3’ – D, aminobenzidine tetrahydrocholride hydrate (DAB, Sigma 

#D5637) solution prepared in 0.1M tris – pH 7.2, and 0.3% hydrogen peroxide. After color 

development the sections were dehydrated in sequentially increasing concentrations of ethanol 

and mounted with coverslips using permount (Fisher chemicals #FL-10-0505) mounting 

medium.  

Determination of plasma glutamate and glutamine: 

Up to 1ml of blood was collected from anesthetized mice following cardiac puncture and 

transferred to heparinized tubes (BD Microtainer tubes). Plasma obtained was transferred to ice 

immediately and treated to remove all proteins. 10% (v/v) perchloric acid was added to plasma at 

1:1 concentration and then the solution was centrifuged at 3000Xg for 3 minutes. The protein 

precipitate was discarded and supernatants were neutralized with 20% (w/v) KOH in the 

presence of a universal pH indicator. The solution was left on ice for 10 minutes and then 

centrifuged again at 3000Xg for 3 minutes. The precipitates were again discarded and 250µl of 

supernatant was used for the glutamine – glutamate determination (method based on protocol 

from Lund P., 1986). L-glutamine and L-glutamate from protein-free plasma were quantified 

using the manufacturer’s protocol for enzymatic determination of glutamine and glutamate (the 

GLN-1 kit from Sigma-Aldrich was used) 
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RNA isolation and RT-PCR: 

Liver tissue was obtained from mice and stored in RNAlater solution (Qiagen #76154). 

RNA was isolated using the manufacturer’s protocol for the RNeasy mini kit (Qiagen #74104). 

The amount of RNA was quantified spectrophotometrically by measuring the absorbance at 260 

nm and 280 nm. 1 µg of RNA was used to set up a reverse transcriptase reaction and form cDNA 

using Quantitect reverse transcriptase kit (Qiagen #205311). 2 ul of cDNA was then used to set 

up the qRT-PCR reaction using the quantifast SYBR green PCR kit (Qiagen #204054). Each 

reaction was set up in triplicates. The RT-PCR reaction consisted of melting at 95°C for 15 

seconds, annealing at 60°C for 30 sec and extension at 72°C for 15 sec. 40 cycles were run and 

Ct values were obtained. Mouse gene specific TNF-α, GS, GAPDH and actin primers were 

obtained from Qiagen (quantitect primer assay, Mn_Tnf1_1_SG # QT00104006; 

Mm_Actb_2_SG # QT01136772; Mm_Glut_1_SG # QT01062306; Mm_Gapdh_3_SG # 

QT01658692) . Actin expression was used as a control for GS and GAPDH was used as a control 

gene for TNF-α. 

Cell culture: 

All cell culture experiments were done using peritoneal macrophages obtained from male 

CD1 mice. Mice were euthanized in a CO2 chamber and transferred to a cell culture hood. The 

peritoneum was injected with 10ml of cell culture medium RPMI with glutamine (RPMI with 

glutamine - 2 mM) containing 10% FCS and 1% penicillin and streptomycin solution. The 

peritoneum was massaged gently for 5 minutes, and the medium was extracted from the 

peritoneum and centrifuged. The cell pellet obtained was re-suspended in 3 ml of RPMI with 

glutamine. Cells were counted and 2 ml of cells were plated in 6-well plates at the density of 2 X 
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10
4 

cells/ml. The cells were transferred to 37
o
C – 5% CO2 incubator for 4 hours. Thereafter they 

were washed three times with RPMI, and 2ml of fresh RPMI w or w/o glutamine was added. The 

cells were again transferred to the 37
o
C – 5% CO2 incubator for 16 hours. Cells were washed the 

next day with RPMI, and thereafter the experiments were started. 

After 16 hours of overnight incubation, peritoneal macrophages were incubated in 1ml of 

RPMI with or without glutamine. The medium was made up of 10% FCS and 1% 

penicillin/streptomycin. The negative control well was not treated with LPS and/ or MSO. In the 

positive control well 1µg/ml of LPS was added and in another MSO control well 9mM MSO was 

added. The treatment wells had both 1mg/ml LPS and 9mM MSO added at the same time. Cells 

were then transferred to 37
o
C – 5% CO2 incubator for the duration of the experiment – i.e. 4 

hours. At the end of the experiment the cell culture medium was collected and frozen 

immediately on dry ice and transferred to -20
o
C. The same treatment conditions were used for 

radioactive protein measurements. 

TNF-α Elisa: 

TNF-α ELISA kits were obtained from ebioscience, and experiments were performed 

using manufacturer’s guidelines for 96-well plate experiments. Each well contained 50µl of cell 

culture medium mixed with 50 µl of blocking buffer.  The TNF-α ELISA assay had a sensitivity 

of 8-1000 pg/ml.  

Protein synthesis measurement in cells and medium: 

The peritoneal macrophages were incubated in 1ml of RPMI with glutamine. At the start 

of the experiment 50µCi of S
35

 labeled cocktail of methionine and cysteine was added to the 

medium. Samples were collected at 0, 1, 2, 4, 6, and 8 hours after S
35

, LPS, and/ or MSO 

addition.  
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For secreted protein measurements, 50 µl of medium was used. For cellular protein 

synthesis measurements, PBS was added to cells, and then they were scraped and collected. To 

cells as well as medium 10 ml of 10% TCA was added and tubes were incubated on ice for 10 

minutes. TCA precipitated protein was filtered through glass fiber filter paper. The filter papers 

were rinsed twice with 10 ml of 10% TCA. Filter papers were dried and TCA-precipitated counts 

of S
35

 labeled proteins were measured in a scintillation counter.   

 

Results: 

Effect of MSO on Glutamine synthetase: 

Figure 4.1A shows immunohistochemical staining of liver tissue sections obtained from 

a control mouse (saline treated), LPS/D-GalN mouse (2 hours post disease induction) and MSO 

pretreated LPS/D-GalN mouse (2 hours post disease induction). The 10 micron slices observed 

here under 10X magnification show a section of the stained tissue. The control tissue shows 

defined staining of perivenous hepatocytes, which is the known location of glutamine synthetase 

in the liver. As expected, the hepatic parenchyma surrounding veins in the liver are stained dark 

brown. Similar staining is seen in LPS/D-GalN tissue and MSO – LPS/D-GalN tissue section. 

The amount of staining is visibly reduced in both MSO treated and untreated disease groups as 

compared to the saline alone control tissue. However, there is no obvious change in the extent or 

distribution of GS with and without MSO treatment. The negative control section was exposed to 

only secondary antibody (no primary antibody exposure) during the staining procedure, and 

shows no GS staining. 

Figure 4.1B shows western blots obtained from liver tissue homogenates of treated and 

untreated tissue. We have found that glutamine synthetase forms higher molecular weight 
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aggregates when treated with MSO, which is observed in all non-boiled samples from MSO 

treated tissue. These aggregates are broken down, and the normal molecular weight GS band is 

seen when the tissue samples are boiled at 100 
o
C for 5 minutes. A western blot with boiled 

tissue samples from MSO treated and untreated LPS/D-GalN exposed mice is shown in figure 

4.1C.  The blots show that there are no differences in the GS protein levels in treated and 

untreated disease tissue collected from animals at 3 hours, 4 hours and 5 hours after disease 

induction.  We have not pursued the question of GS aggregation in the presence of MSO, 

although the same phenomenon has been observed by another laboratory (Rao and Meister 

1972). 

Figure 4.1D shows the results of using real time – PCR to quantify the transcript levels 

of GS. The saline control group transcripts were considered baseline, we can see a very small 

fold change – 1.5 fold increase – in transcript levels of GS for LPS/D-GalN (1 hour post disease 

induction) and MSO control tissue.  There is also a very small change – 0.7 fold reduction – in 

transcript levels in MSO treated tissue (1 hour post disease induction). Considering the apparent 

importance of GS in this model, these changes in transcript levels within various groups may 

have an implication in how MSO prevents liver failure. However, the changes are very small and 

are not explained by the effects of this drug on enzyme activity. 
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Figure 4.1. Effects of MSO treatment on protein and transcript levels of GS. Figure 1A 

shows immunohistochemical staining of liver tissue sections observed under 10 X and 63 X 

magnifications. The first panel is a control section stained with secondary antibody. It was not 

exposed to primary antibody. Tissue sections from saline treated control liver, 2 hours LPS/D-

GalN treated liver, and MSO pre-treated 2 hour LPS/D-GalN treated liver show the characteristic 

perivenous GS stained hepatic cells. The same results were observed in tissue collected from 3 

different animals for each group. 6 sections were stained from each tissue sample.  Figure 1B 

shows western blots of non-boiled liver homogenate samples blotted for GS. Tissue 

homogenates were prepared at one hour time intervals after LPS/D-GalN administration. GS 

protein amounts are similar in all samples. MSO treatment leads to formation of higher 

molecular weight aggregates of GS. These aggregates are lost upon boiling the samples before 

running SDS-PAGE. Figure 1C shows western blots of liver homogenates blotted for GS. The 

samples collected at 3hr, 4hr and 5hr after LPS/D-GalN administration were boiled for 5 minutes 

and thereafter run of SDS-PAGE. The higher molecular weight bands of MSO pre-treated 

samples are not present in boiled samples. The controls in all the blots consisted of tissue 

collected from animals treated with saline for 3 hours for LPS/D-GalN exposed mice and 

animals treated with MSO for 3 hours for MSO-LPS/D-GalN exposed mice. Figure 1D shows 

the transcript levels observed in liver tissue from mice treated with saline alone or MSO alone 

(controls – first and third bars in the graph) or mice exposed to LPS/D-GalN for 1 hour after 

saline or MSO administration (second and fourth bars in the graph). Each 1 hour treatment group 

has 5 animals and each control group had 3 animals. Using the house keeping gene GAPDH, fold 

change in GS transcripts was calculated. Here, the Ct values obtained for GS were normalized to 

those of GAPDH (to obtain ΔCt). Thereafter, the sample ΔCt values were normalized to LPS/D-

GalN control group (to obtain ΔΔCt). The values thus obtained were converted from log scale to 

the linear scale (2^-ΔΔCt). The error bars are obtained from Standard error of mean of GS ΔCt 

values. There is a 1.5 fold increase in GS transcripts in MSO treated control tissue and saline 

treated LPS/D-GalN 1 hour treated liver. However, a slight decrease of 0.7 fold is observed in 

MSO pre-treated 1 hour LPS/D-GalN treated liver. 

 

MSO’s effect on Kupffer cells: 

TNF-α is secreted primarily by macrophages, and in this liver failure model, Kupffer 

cells are known to play a very important role (Karlmark, Wasmuth et al. 2008; Dong, Zuo et al. 

2009; Leber, Mayrhauser et al. 2009). We looked at the Kupffer cells in the treated and untreated 

tissue at 2 hours post disease induction. By this time, TNF-α level had peaked in plasma and 

hence any abnormality with Kupffer cell numbers would be visible. In Figure 4.2, Kupffer cells 

stained with F4 80 antibody can be seen in saline control, LPS/D-GalN and MSO – LPS/D-GalN 

tissue sections. F4 80 is a marker for all types of macrophages. Control tissue exhibits well 
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defined Kupffer cells which are evenly distributed evenly across the entire section. Treated and 

untreated tissue shows fuzzy Kupffer cell staining which might be indicative of active Kupffer 

cells undergoing a morphology change. However, there seems to be no difference within MSO 

treated and the diseased tissue. Hence, MSO does not appear to affect Kupffer cell activation or 

numbers in this ALF mouse model.  
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Figure 4.2. Effects of MSO treatment on macrophage staining in liver tissue. This figure 

shows immunohistochemical staining of liver tissue sections observed under 10 X and 40 X 

magnifications. Here Kupffer cells were stained with antibody marker called F4/80. This 

antibody stains for all macrophages. The first panel is a control section stained with secondary 

antibody. It was not exposed to primary antibody. Tissue sections from saline treated control 

liver, 2 hours LPS/D-GalN treated liver, and MSO pre-treated 2 hour LPS/D-GalN treated liver 

show the macrophages present throughout the liver parenchyma. The saline control tissue show 

distinctly shaped macrophages, whereas with LPS/D-GalN treatment the macrophages seem to 

be activated and do not show a distinct morphology. The same is seen in MSO pre-treated 

LPS/D-GalN treated liver section. The same results were observed in tissue collected from 3 

different animals for each group. 6 sections were stained from each tissue sample. 

 

MSO treatment reduces plasma glutamine but does not affect plasma glutamate: 

Plasma was collected from mice 1 hour post disease induction, and plasma glutamate and 

glutamine were quantified (Figure 4.3).  Each group consisted of 4 animals. As shown in Figure 

4.3A, plasma glutamate values for saline and MSO control animals were 320 ± 46 µM and 240 ± 

54 µM respectively. 1 hour post disease induction, these values were elevated to 800µM and 760 

± 57 µM respectively.  These changes from control time point (i.e. 0hrs) to 1 hour for both 

diseased and MSO pre-treated animals is significant (p=0.001 for both groups). However, it is 

interesting to note that MSO does not in any way affect the plasma glutamate levels in these 

animals. The fluctuations seen in glutamate after disease induction is significant and MSO 

independent. 

Figure 4.3B, shows the changes occurring in plasma glutamine. In control LPS/ D-GalN 

animals at time zero, glutamine values were 680 ± 264 µM.  Glutamine was slightly elevated to 

800 ± 162 µM/L at 1 hour after LPS/D-GalN administration. With MSO pre-treatment, animals 

exhibited much lower plasma glutamine. MSO control animals had plasma glutamine values of 

68 ± 48 µM, which increased to 200 ± 57 µM at 1 hour post disease induction. Glutamine 

changes between saline control and LPS/D-GalN treatment and MSO control and MSO – 
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LPS/D-GalN treatment group are insignificant. However, the differences seen between control 

saline and control MSO; and 1 hour saline and 1 hour MSO are significant  (p = 0.019 and p = 0. 

0.0025) 

 

Figure 4.3. Plasma glutamate and glutamine levels in ALF mice. Figure A shows glutamate 

levels determined in plasma from saline control, MSO control, LPS/D-GalN and MSO pre-

treated LPS/D-GalN treated animals. Each groups consisted of 4 animals. Plasma was collected 

one hour after LPS/D-GalN administration. Plasma glutamate levels increased from 300μM of 

plasma (saline control) and 240 μM of plasma (MSO control) to 800 μM of plasma (LPS/D-

GalN) and 760 μM of plasma (MSO – LPS/D-GalN). This increase in plasma glutamate one hour 

after liver failure induction is significant for both MSO treated and untreated groups (p = 0.001). 

Figure B shows plasma glutamine levels of the above mentioned four groups of animals. MSO 

control animals exhibited low levels of glutamine in plasma 68 μM of plasma as compared to 

saline control animals which had 680 μM of plasma. This reduction due to MSO treatment was 

statistically significant (P=0.02). Similarly plasma collected from animals one hour post LPS/D-

GalN administration had 800μM glutamine, compared to MSO pre-treated LPS/D-GalN treated 

animals (200μM glutamine). This difference was also statistically significant (p = 0.003). All the 

p values were calculated using an unpaired t test. 
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Effect of MSO on TNF-α transcript: 

Figure 4.4 shows the fold change in the transcript levels of TNF-α in liver tissue from 

LPS and MSO-treated mice. The MSO – LPS/D-GalN control group had the same transcript 

levels as LPS/D-GalN control group. Transcripts increased by 100 ± 0.9 fold for LPS/D-GalN 

treated animals and 115 ± 0.54 fold for MSO – LPS/D-GalN treated animals at one hour after 

disease induction. (Values are represented as fold change ± SEM of ΔCt). These results show 

that the TNF-α transcript increased by more than 100 fold post disease induction. Here we see no 

significant difference in transcript levels when mice were pre-treated with MSO.  Therefore, 

MSO treatment does not affect TNF- ion. 

 

Figure 4.4. Effect of MSO treatment on TNF-α transcript levels. This figure shows the 

transcript levels observed in liver tissue from mice treated with saline alone or MSO alone 

(controls) or mice exposed to saline or MSO and treated with LPS/D-GalN for an hour. Each 1 

hour treatment group had 5 animals and each control group had 3 animals. We calculated the 

fold change in TNF-α transcripts relative to the transcript of the housekeeping gene actin, so the 
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Ct values obtained for TNF-α were normalized to those of actin to obtain ΔCt. Thereafter, the 

sample ΔCt values were normalized to LPS/D-GalN control group (to obtain ΔΔCt). The values 

thus obtained were converted from log scale to the linear scale (2^-ΔΔCt). The error bars 

represent the standard error of mean of TNF-α ΔCt values. There is a 100 and 115 fold increase 

respectively in TNF-α transcript in tissue from MSO untreated and treated mice exposed to 

LPS/D-GalN to 1 hour.  

 

Effect of glutamine on TNF-α secretion: 

MSO reduces both liver glutamine synthetase activity and plasma glutamine in animals 1 

hour post LPS/D-GalN administration, suggesting that the synthesis of glutamine, or the 

presence of glutamine, plays a role in the production of TNF-α. Chapter 3 shows that MSO 

treatment at the same time as LPS addition resulted lead to a 18% average decrease in TNF-α 

production (the decrease ranged from 8% to 37% (p=0.0017) in six separate experiments). In 

these experiments, cells were incubated in glutamine during the overnight incubation phase (16 

hours) after cell isolation and during the LPS or LPS+MSO treatment (4 hours) phase. Hence, we 

conducted an experiment to test the effects of glutamine variation on TNF-α secretion by 

primary peritoneal macrophages.  

Each experiment consisted of two negative controls – treatment 1 consisted of untreated 

cells and treatment 2 consisted of cells treated with 9mM MSO alone. Treatment 3 consisted of 

cells exposed to 1 μg/ml of LPS and treatment 4 consisted of cells exposed to both 1 μg/ml of 

LPS and 9 mM MSO. Cells were exposed to the above mentioned four conditions for 4 hours, 

with the time of LPS and/or MSO addition being considered as time zero. 

Each experiment was repeated six times, and the results are presented in Table 4.1. When 

cells were incubated overnight in the presence of glutamine and then in the absence of glutamine 

for the 4 hours during LPS treatment (condition 2 in Table 4.1), they exhibited  an average 

decrease in TNF-α production of 10% with a range of 7% to 15% with MSO treatment (p = 



99 

 

 

0.04). When glutamine was absent from the culture medium throughout the experiment 

(condition 3 in Table 4.1), MSO treatment reduced production of TNF-α by an average of 14% 

(with a range of 6% to 27% - p=0.0055). Lastly, MSO treatment reduced TNF-α production by 

1.8% (average) during condition 4 – no glutamine in cell culture medium during the 16 hour 

overnight incubation and 2 mM glutamine present during the 4 hours of LPS treatment. The 

fourth condition exhibited the most variation. In three out of six experiments, MSO treatment 

increased TNF-α production by 4%, 2.5% and 7.5% and in three experiments it led to a decrease 

of 12.5%, 4.3% and 7.5%. Averaging all the values gave a low average of 1.8%. Appendix 1 

shows the TNF-α value in pg/ml for each of the six experiments done for the four glutamine 

conditions.  

Glutamine 

conditions 

4 hours after 

macrophage 

isolation 

16 hour 

overnight 

incubation 

4 hours of LPS 

and/ or MSO 

exposure 

% reduction in TNF-α 

production caused by 

MSO treatment 

1 + + + 8 – 37 

2 + + _ 7 – 15 

3 + _ _ 6 -27 

4 + _ + (-7.5) – 12.5 

 

Table 4.1. The table describes the glutamine conditions to which cells were exposed. After 

peritoneal macrophage isolation cells were plated in presence of 2 mM glutamine-rich RPMI 

medium for 4 hours. Thereafter for 16 hours of overnight plating, cells were exposed to 

glutamine rich RPMI medium for the first two conditions (condition 1 and 2), whereas cells 

described in condition 3 and 4 were exposed to RPMI medium with no glutamine in it. During 

the 4 hours of the experiment (i.e. after the addition of 1 µg/ml LPS and/or 9 mM MSO) cells of 

condition 1 and 4 were exposed to glutamine rich cell culture medium and cells of condition 2 

and 3 were incubated in RPMI with no glutamine.  Thereafter, TNF-α was measured in the cell 

culture medium using an ELISA. Six separate experiments were carried out. Values are 

presented as % TNF-α production, comparing cytokine produced in the absence of MSO to that 
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produced in the presence of MSO in LPS stimulated cells. TNF-α was below detection limits for 

untreated and MSO alone treated cells. Under conditions of glutamine present throughout the 

experiment (condition 1) or glutamine absent throughout the experiment (condition 3) we see a 

statistically significant decrease in TNF-α production in cells treated with MSO and LPS as 

compared to LPS alone. This decrease is of 8- 37% and 6 – 27% respectively. Whereas, when 

glutamine is fluctuated during the experiment (conditions 2 or 4) the effect of MSO on TNF-α 

secretion by peritoneal macrophages stimulated with LPS is either reduced (condition 2) or lost 

altogether (condition 4). (The p values for all the experiments were calculated using paired t 

test). 

 

As described in Chapter 3 (and published) TNF-α production by peritoneal macrophages 

is consistently reduced when cells are treated with MSO.  Here we show that modulating 

exposure of cells to glutamine during the 16 hours overnight incubation and/or the 4 hours of 

LPS treatment affect TNF-α production. Thus, the presence or absence of glutamine in the cell 

culture medium can have an effect on TNF-α secretion by peritoneal macrophages. MSO has 

maximal and consistent effect on cytokine production when the cells are exposed to high levels 

of glutamine (condition 1) or no glutamine (condition 3) throughout the course of experiment. 

We did not pursue this question further, and have therefore not tested any possible explanations 

for these results. It may be that elimination of glutamine from the medium stimulates the 

production of GS which might then reduce or negate the “effective MSO” concentration in these 

experiments. But even though these results are difficult to interpret, it is clear that altering 

glutamine levels can influence the extent of the effect of MSO on TNF-α production, supporting 

the conclusion that glutamine presence/availability is involved in this effect. 

 

Effect of MSO on protein production: 

For these in vitro experiments, we used 9 mM MSO, which had been used in previously 

published studies on the effects of MSO on cultured cells. To assure ourselves that this 
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concentration was not having a global effect on protein synthesis, we measured total protein 

synthesis in these cultures in the presence and absence of MSO.  Figure 4.5A shows total 

cellular protein synthesis in peritoneal macrophages, and figure 4.5B shows proteins synthesized 

and secreted by cells into the cell culture medium, as measured by the incorporation of S
35

 

labeled methionine and cysteine. TCA-precipitable radioactive proteins were measured for 1) 

control cells (untreated), 2) MSO (9 mM)-treated cells 3) LPS (1 µg/ml)-treated cells and 4) cells 

treated with both MSO (9 mM) and LPS (1 µg/ml).  

In control untreated cells, 20500 ± 3700 cpm of radioactive labeled protein was detected 

at time zero. Incorporation of radioactivity increased linearly to 241900 ± 47300 cpm at 8 hours. 

With MSO treatment, incorporation of radioactivity increased from 34000 ± 10200 cpm at zero 

hours to 269800 ± 23700 cpm at 8 hours. In LPS-treated cells, the incorporation of radioactivity 

from 19300 ± 4200 cpm at zero hours to 285600 ± 45700 cpm at 8 hours.. Treatment with both 

LPS and MSO led to an increase in incorporation of radioactivity from 33300 ± 5300 cpm at 

zero hours to 301700 ± 66600 cpm at 8 hours. Each experiment was conducted 3 times and the 

results are presented as average ± SEM. 

Similar results were observed for proteins secreted into cell culture medium. Here the 

incorporation of radioactivity radio labeled proteins was measured in 50 µl of cell culture 

medium and the results are shown in figure 4.5B. The control medium had 12100 ± 1900 cpm at 

time zero. This increased to 76900 ± 11200 cpm after 8 hours. Medium obtained from MSO 

alone and LPS alone conditioned cells had 14700 ± 2300 cpm and 15100 ± 5100 cpm at time 

zero. At 8 hours the incorporation of radioactivity increased to 58200 ± 6500 cpm and 57800 ± 

5300 cpm respectively. MSO treated cells exposed to LPS showed an initial incorporation of 

radioactivity of 12600 ± 3900 cpm which increased to 41400 ± 12500 cpm at 8 hours. Appendix 
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2 shows values obtained in CPM for all the experiments. Values for all time points are presented 

for cellular protein as well as protein secreted in 50 µl of cell culture medium. Supernatant 

samples from cells treated with MSO alone and LPS alone exhibited a slight reduction in radio 

labeled protein being secreted into medium as compared to control cells. The cpm differences 

observed at various time points in MSO and LPS treated cells and medium were not statistically 

significant. These results indicated that 9 mM MSO does not affect protein production in cells 

and has a negligible effect on total secreted protein levels. It is important to remember that 

different genes are transcribed in resting and stressed cells. It is possible that MSO and LPS 

together as well as separately might activate different genes without affecting overall protein 

synthesis.  Nonetheless, this experiment makes clear that 9 mM MSO does not have a global 

inhibitory effect on protein synthesis in the presence of glutamine. 
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Figure 4.5. Protein synthesis measurements in peritoneal macrophages exposed to LPS 

and/ or MSO using radioactive S
35

. The figures show amount of incorporated S
35

 in newly 

synthesized protein in untreated cells, cells treated with 9 mM MSO alone, cells treated with 1 

μg/ml of LPS alone, and cells treated with 9 mM MSO and 1 μg/ml of LPS. Protein synthesis 

was measured at 0hrs, 1hr, 2hr, 4hr, 6hr, and 8hr after LPS and/ or MSO addition.  The blue line 

shows S
35

 incorporation in untreated cells. The red shows S
35 

incorporation in MSO treated cells. 

The green line shows S
35 

incorporation in proteins of LPS–treated cells and the purple line shows 

protein synthesis in cells treated with both LPS and MSO. The results are the averages from 

three separate experiments conducted on three different days. Results are presented as counts per 

minute (CPM) of radioactive S
35 

incorporated in newly synthesized protein. All counts per 

minute (CPM) values are given as mean ± standard error of mean. Figure 4.5.A shows total 

protein synthesis in cells plus supernatant, Figure 4.5.B shows protein synthesis of cell secreted 

proteins (culture supernatant).  

 

Conclusion 

Acute liver failure is defined as the deterioration of liver function over a short period of 

time – typically a few weeks. Brain edema, a complication of ALF, first implicated ammonia and 

glutamine metabolism in disease pathology. ALF can be induced in mice by intra peritoneal 

administration of E. coli lipoplysaccharides (LPS) and the sugar D-Galactosamine (D-GalN). 
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The previous chapter focused on understanding the action of methionine sulfoximine (MSO) in 

preventing liver failure. MSO increases survival in this ALF mouse model. MSO treatment 

prevents caspase-3 and STAT-1 activation. MSO reduces the inflammatory immune response at 

some very early step, prior to TNF-α production. TNF-α is one of the first acute phase proteins to 

be secreted in ALF, and MSO reduces its production by more than 50% in the mouse model. 

TNF-α was secreted as early as 1 hour post LPS and D-GalN administration. Since MSO is a 

known irreversible inhibitor of glutamine synthetase (GS), GS and/or glutamine appear to be 

involved in ALF-associated immune response.  Kupffer cells – the resident liver macrophages – 

have intrinsic GS activity and the GS transcripts are known to increase during stress ((Bode, 

Peters-Regehr et al. 2000)). Moreover, glutamine is required for the generation, propagation, and 

maintenance of the immune response (Crawford and Cohen 1985; Hörig, Spagnoli et al. 1993; 

Li, Yin et al. 2007). 

In this chapter we explored the mechanistic action of MSO. We first used 

immunohistochemistry to determine the effects of MSO on glutamine synthetase and Kupffer 

cells. 2 hours after disease induction the MSO-treated and untreated tissue did not exhibit any 

differences in GS and Kupffer cell staining. GS staining was reduced in both LPS/D-GalN and 

MSO – LPS/D-GalN tissue as compared to tissue collected from a saline-treated control animal. 

This is indicative of a reduction in number of perivenous hepatocytes. Macrophages in both 

treated and untreated tissue were diffusely stained compared to control tissue. This is indicative 

of active macrophages. However, the staining patterns for MSO treatment and disease tissue 

were similar. Hence, MSO does not appear to exert its beneficial effects via GS protein levels or 

by directly acting upon macrophages.  
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Since TNF-α levels reach maximal amount after one hour in plasma, we also examined GS 

transcript levels and TNF-α transcript levels in tissue collected one hour after LPS/D-GalN 

administration. Negligible TNF-α transcripts were detected in both saline treated and MSO 

treated control animals (no LPS/D-GalN). In LPS/D-GalN-treated animals, MSO-treated and 

untreated tissue exhibited 100 fold and 115 fold increases respectively. On other hand, GS 

transcript levels increased by 1.5 fold in liver tissue from LPS/D-GalN tissue as compared to 

liver tissue from saline treated mice. Control tissue from MSO treated mice also showed a 1.5 

fold increase in transcript levels, and tissue from MSO treated LPS/D-GalN mice showed a 0.7 

fold decrease. Since the fold changes in transcript amounts are quite small, much smaller than 

the effect of MSO on the enzymatic activity of GS, MSO’s mechanistic effects – reduction in 

TNF-α secretion in plasma of LPS/D-GalN treated mouse – probably does not involve alterations 

in GS transcript levels at one hour after disease induction. MSO treatment clearly does not affect 

TNF-α transcript but might have a small effect on the GS transcription.  

At this point, we can summarize the in vivo experiments as follows: 

1) MSO treatment reduces TNF-α in plasma (chapter 3) 

2) MSO does not affect GS protein levels in liver sections 

3) MSO does not affect macrophages – Kupffer cells – in liver sections 

4) MSO does not affect TNF-α transcript levels and might have a very small effect on GS 

transcript levels in LPS-treated mice. 

MSO’s inhibition of GS had no effect on protein levels or transcription in vivo. MSO or 

glutamine must therefore affect either translation or secretion of TNF-α and perhaps other 

proteins. To investigate this question we conducted in vitro experiments using a cell culture 

model of primary peritoneal macrophages. Protein production in macrophages stimulated with 
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LPS in the presence or absence of MSO was measured by radioactive incorporation of S
35

. 

Protein synthesis within cells as well as secreted proteins in medium was monitored for up to 8 

hours after LPS stimulation. MSO and LPS did not affect total protein production in cells. 

However, different proteins might have been produced in resting untreated cells and LPS and/or 

MSO treated cells. 

TNF-α secretion by peritoneal macrophages was then measured in cell culture medium in an 

experiment where cells were incubated with or without glutamine either during the 16 hour 

overnight incubation phase before treatment or during the 4 hour LPS or LPS+MSO treatment 

phase. Maximal inhibitory effect of MSO was observed in either presence or absence of 

glutamine. When glutamine was either removed before the experiment or added during LPS 

stimulation of cells or vice – a – versa MSO’s inhibitory effect was either lost or diminished.  

There is no clear explanation for these results besides the observation that the effect of MSO 

could be altered by altering culture medium glutamine. 

At this point our results do not fully explain the role of glutamine and glutamine synthetase 

in cytokine production by immune cells. Glutamine is involved in formation of other amino acids 

and energy producing intermediates. Our model shows glutamine levels are depleted in the 

plasma of MSO treated LPS/D-GalN injected mice. Work done by Komano et al, shows that 

supplementing rat diet with 10% glutamine prevented serum transaminase elevation in D-GalN 

induced liver injury. Serum transaminases are indicators of “liver health”. However, this 10% 

glutamine supplementation was unable to prevent TNF-α and caspase-3 activation (Komano, 

Yokoyama Funakoshi et al. 2009). Thus, it seems that glutamine is acting via some other 

pathway to reduce cytokines and prevent caspase-3 activation.  
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Glutamine is also required by various liver cell types for regeneration. Regeneration is 

activated in stressed liver, and the ability of glutamine to form glutamate, glucosamine-6-

phosphate, GMP, NAD etc is critical (Gebhardt, Baldysiak-Figiel et al. 2007; Chang and Xu 

2010). 90% of the energy required by liver parenchymal cells is obtained from glycolysis. 

However, for Kupffer cells glutamine is the main source of energy (Spolarics, Lang et al. 1991). 

Since glutamine is primary source of energy for immune cells, during stress it can become a rate-

limiting factor for processes following proliferation – such as phagocytosis or antibody 

production (Karinch, Pan et al. 2001), these and other processes involved in regeneration might 

explain the mechanism of action of MSO. The reduction of glutamine might have no effect on 

transcription within or proliferation of Kupffer cells, but might be having an effect on antibody 

secretion and immune cell function triggered by liver damage. Such an explanation, however, 

still does not tell us the exact mechanism by which MSO prevents the production of TNF-  

Another contradictory fact is that cytokine release is generally controlled at the level of gene 

expression. Hence, intracellular signaling mechanisms which induce transcription of late and 

early response inflammatory genes might be more important in this model. As mentioned in the 

discussion of the previous chapter, β – catenin and mTOR pathways are involved with glutamine 

metabolism. β-catenin mutated hepatic carcinoma cell lines are “addicted” to glutamine. β-

catenin acts to inhibit apoptosis and glutamine synthetase is under its control (Bioulac-Sage, 

Cubel et al. 2011). Depletion of glutamine pools by MSO in these cells initiates autophagy and 

apoptosis. Whereas, in some cell lines MSO causes accumulation of glutamine within the cells 

leading to mTOR activation and cell survival (Tardito, Chiu et al. 2011). Direct activation of 

mTOR in cells by MSO has also been observed. Moreover this effect is more pronounced in 

glutamine depleted cells (Tardito, Chiu et al. 2011).  mTOR is a serine/ theronine protein kinase. 
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It regulates cell proliferation, cell survival, transcription and translation. It has capacity to 

integrate the nutrient status of cell with energy and redox status. It is especially sensitive to 

glutamine. These two pathways might be influenced by MSO in our model of liver failure, and 

by their action we see the protective effects of MSO being exercised.  

Clearly these studies are just the beginning of understanding the therapeutic effects of 

MSO in this mouse model of ALF. Further studies need to address the importance of signaling 

pathways such as how the β-catenin and mTOR pathways respond in the presence MSO. At the 

same time, glutamine’s actions need to be scrutinized at the levels of transcription, translation 

and secretion. Glutamine compartmentalization within various liver cell types – specifically 

periportal hepatocytes, pericentral hepatocytes and Kupffer cells – needs to be explored. The 

current studies need to be elaborated to include tissue collected at more time intervals after 

LPS/D-GalN administration. MSO’s effects on translation and protein secretion have to be 

scrutinized to determine which step in TNF- tion is most strongly affected. We need to 

look at TNF-α secretion rather than total secreted proteins to determine MSO’s effect. Lastly, 

while continuing the experiments with peritoneal macrophages it would be essential to remember 

that the peritoneal macrophages are not Kupffer cells, and the specialized liver macrophages 

might be involved in the disease progression by novel mechanisms. 
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CHAPTER-5 

Conclusion and future directions 

The liver is an important organ, responsible for detoxification, protein synthesis, 

glycogen storage, gluconeogensis, cholesterol synthesis, drug metabolism, production of 

digestive juices, and ammonia detoxification. Acute liver failure (ALF) is a condition 

characterized by development of coagulopathy and hepatic encephalopathy in a previously 

healthy individual. ALF is caused by acetaminophen overdose, viral hepatitis (A, B and E), 

autoimmune hepatitis, severe alcohol intake and idiosyncratic reaction to drugs such as 

tetracycline. Severe systemic inflammation is mainly responsible for disease pathogenesis. 

Resident immune cells generate multiple cytokines at the site of injury and inflammation. 

Primarily macrophages i.e. Kupffer cells secrete cytokines which activate other immune cells in 

the vicinity (i.e. PMNs, NK and NKT cells) and thereafter attract and activate systemic immune 

cells, resulting in the generation of multiple cytokine and chemokines, hence the term cytokine 

storm is often used to explain ALF associated inflammation. Multiple cytokines are capable of 

initiating apoptotic death pathways in hepatocytes. 

Methionine sulfoximine (MSO) is an irreversible inhibitor of glutamine synthetase (GS). 

GS plays an important role in ammonia detoxification. It generates glutamine from glutamate 

and ammonia. Glutamine is an energy source for immune cells. It is a conditionally essential 

amino acid. During stress conditions glutamine becomes rate limiting for immune cells. Our 

preliminary results show that inhibiting GS by treatment with MSO dramatically improved 

survival in a mouse model of acute liver failure. 

The aims of my project were to 1) characterize the mechanism of action of MSO on the 

mouse model for acute liver failure (ALF) by screening for changes in plasma metabolites and 
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signaling molecules associated with the steps involved in different death pathways, 2) identify 

which step in the inflammatory response was inhibited by MSO treatment, and 3) to characterize 

the mechanism of action of MSO on the inflammatory immune response.  The previous chapters 

have described the studies that answered aims 1 and 2, and have also described our first studies 

toward addressing aim 3. 

For this project we used a model of lipopolysaccharides (LPS) and D- galactosamine (D-

GalN) administration in mice. Our initial experiments were conducted on mice, but it was 

necessary to study macrophages in vitro to address mechanistic questions, so we included 

experiments on primary peritoneal macrophage cell culture to address how MSO might be 

affecting the inflammatory immune response. The major conclusion from both in vivo and in 

vitro studies is that the non essential amino acid glutamine and enzyme glutamine synthetase 

(GS) appear to influence the disease process, and that inhibition of GS by MSO prevents ALF 

associated inflammatory responses. 

The inflammatory immune response that occurs during ALF involves the production of 

many cytokines, the most prominent of which are TNF-α, IFN-γ and IL-6. These cytokines 

activate death pathways by activation of caspase 3 and STAT1, both of which are capable of 

causing cellular death by apoptosis. Inhibition of glutamine synthetase by pre-treating animals 

with MSO both increased survival and prevented activation of caspase 3 and STAT1, in addition 

to reducing the levels of most plasma cytokines tested, especially  TNF-α and IFN-γ, both of 

which were reduced by more than 50%. 

In LPS/D-GalN treated animals, plasma glutamate levels were doubled but plasma 

glutamine levels were unaffected one hour after disease induction. With MSO pre-treatment, 

glutamate levels were same as control and were double at one hour after LPS/D-GalN injection. 
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However, plasma glutamine levels were reduced by 80% in MSO treated animals for both 

control and LPS/D-GalN treated group of animals. GS activity, observed from 1 hour to 5 hours 

after disease induction, in MSO pre-treated livers was reduced by more than 90% compared to 

livers from untreated animals, where activity did not fluctuate over the same 5 hours (result 

shown in chapter 3). MSO pre-treatment did not affect TNF-α transcript levels which increased 

100 fold one hour after LPS/D-GalN administration in both saline and MSO treated animals. At 

the same time, a 1.5 fold increase was seen in GS transcripts of diseased and MSO control 

animals. MSO treated disease animals exhibited a 0.7 fold reduction in GS transcript levels. 

Therefore, MSO did not significantly affect the transcription of either TNF-α, which was 

substantially elevated in LPS-treated animals, or GS, which was substantially unchanged in LPS-

treated animals. 

I conducted immunohistochemistry experiments to see what effect MSO might be having 

on total amounts of observable glutamine synthetase in normal and diseased livers, and also to 

see if the total numbers of liver macrophages (Kupffer cells) were obviously altered by MSO 

treatment. Both experiments showed no effect of MSO, so it appears that this drug does not 

affect the amount of GS or the numbers of macrophages. 

We conducted preliminary tests of the glutamine requirement for the TNF-α production 

in cell cultures of peritoneal macrophages.  Although MSO-treatment consistently reduced TNF-

α production in these cultures treated with LPS, that effect could be modified by the presence or 

absence of glutamine in the culture.  Detailed experiments with varying conditions of glutamine 

during overnight cell incubation and treatment with LPS and/ or MSO produced conflicting 

effects of MSO on TNF-α production. Keeping glutamine constant during the experiments i.e. 

either conducting the experiments in presence of 2 mM glutamine and in complete absence of 
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glutamine showed maximal MSO inhibition of TNF-α production in presence of LPS. However, 

if glutamine in the medium was varied during the experiments, MSO’s effects were either 

diminished or lost. Especially if glutamine was removed from cells until LPS and/ or MSO 

addition, TNF-α production was unaffected or even increased in the presence of MSO for LPS 

treated cells. These results are difficult to interpret, but they do show that glutamine levels in the 

culture medium can affect the action of MSO on TNF-α production.   

One control experiment that was easy to interpret was my investigation on the effects of 

MSO on overall levels of protein synthesis, using S
35

-labelled methionine and cysteine to 

quantitate the synthesis of both cellular and secreted proteins.  In both untreated cells and cells 

treated with LPS to induce a cytokine response, the presence of 9 mM MSO had no effect on 

TCA-precipitable counts from either cells or the culture supernatant.  Therefore, the effect of 

MSO was not a global effect on cellular protein synthesis. 

In summary, MSO does not affect transcription of GS or TNF-α.  It does not affect 

observable levels of GS in liver, and it does not affect the numbers of macrophages in liver.  In 

cell culture, 9 mM MSO does not affect protein synthesis, but its inhibitory effect on cytokine 

production can be modulated somewhat by the presence or absence of culture glutamine – a not 

unexpected result. 

My studies have shown that some connection exists between glutamine synthetase and 

the very early steps of the inflammatory immune response.  That connection probably involves 

glutamine levels, although these studies do not address the specific involvement of plasma 

glutamine or some localized concentration of intracellular glutamine.  As alluded to above, we 

found that starving peritoneal macrophages for glutamine overnight made them resistant to the 

cytokine-inhibitory effect of MSO when glutamine was added during the immune response, but 
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cells fed glutamine overnight and then starved of glutamine during the immune response were as 

sensitive to MSO as cells that had never been starved.  Therefore, as we expected, glutamine 

levels matter, but we still don’t know how.   

The question of how GS is involved in the inflammatory immune response will have to 

be addressed in the future.  The initial experiments will confirm the involvement of GS in this 

process by either 1) knocking down the expression of GS in peritoneal macrophages and 

repeating the experiments in cells with no GS, or by using another macrophage cell line which is 

capable of secreting TNF-α but does not have GS, or 2) using the liver specific GS knockout 

mouse model (liver specific β – catenin knockout mouse model). We would predict that the 

absence of GS in any of these systems would make these cells unable, or less able, to produce 

cytokines when stimulated by LPS.  If cytokines were produced in the absence (or reduction) of 

GS, it would suggest that MSO might have one or more additional targets that are involved in the 

cytokine response.   

But if, as we expect, GS really is the functional target for MSO in this system, future 

studies will involve a detailed analysis of cytokine synthesis and secretion, with the major 

question being what effect does MSO treatment have on the translation and secretion/release of 

TNF-α, arguably the most important inflammatory cytokine in this system as well as in many 

others?  We have shown that MSO does not affect transcription.  We will address this question in 

two ways – immunohistochemical and immunoprecipitate.  We will try to use 

immunohistochemistry of liver slices to determine if the amounts of TNF-α produced in the 

presence of MSO are similar to the amounts produced in the absence of MSO.  If so, then the 

results would support the hypothesis that MSO prevents release of TNF-α from the cells or cell 

surfaces. If not, and we see a significant reduction in the anti- TNF-α fluorescence in slices from 
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MSO-treated animals, then MSO is preventing synthesis of the cytokine, specifically by 

inhibiting translation.  However, these will be difficult experiments because it may be difficult or 

impossible to visualize TNF-α in tissue slices.  Or the amounts of intracellular TNF-α and 

membrane-associated TNF-α might be too low to be analyzed by this approach.  It may therefore 

be necessary to use an immunoprecipitation approach using either mouse liver tissue or 

peritoneal macrophages, or both. 

In vivo, we could solublize liver homogenates from control animals, LPS-treated animals, 

or LPS-treated animals pretreated with MSO, then attempt to immunoprecipitate those extracts 

with anti-TNF-α, followed by immunostain analysis to determine if the presence of MSO 

significantly reduced the total amount of TNF-α  in the tissue.  In vitro, we could label  LPS-

treated cells with S
35

, then immunoprecipitate whole cells (solublized) and cell supernatant with 

anti- TNF-α to determine if MSO treatment reduces the total amount of TNF-α produced in cells 

treated with LPS. We hope these approaches will provide a more definitive answer to the 

question of which step in the early immune response is affected by MSO treatment. 

The subsequent studies to define the mechanism more exactly will depend on the results 

of those experiments.  We will either be studying the factors involved in TNF-α translation more 

carefully to determine how they are affected by MSO, or we will be studying the processing and 

release of TNF-α from the cell surface to see how that process is affected by MSO. As 

mentioned above, it is possible – although we feel unlikely – that these studies will show that 

MSO has another target involved in the inflammatory immune response besides (or in addition 

to) glutamine synthetase, in which case we would try to identify that target. 

The involvement in the response to LPS of neutrophils and natural killer T cells has also 

been identified in this thesis. Their infiltration pattern in the presence and absence of MSO pre-
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treatment will be investigated by immunohistochemistry. It is possible that MSO prevents tissue 

infiltration by other immune cells and thus prevents the cytokine storm. Another method of 

studying the mechanism is to modify the disease model. The use of acetaminophen, 

thioacetamide or chronic alcoholic liver failure model will provide diversity in terms of immune 

response. Each model is perpetuated by a type of immune cell and the effect of MSO on a 

specific type of immune cell within a whole animal can thus be easily studied.  

Finally, there is a vast amount of research being carried out to understand the role of 

glutamine in inflammation. In the previous chapters we described the involvement of the mTOR 

-catenin pathways in glutamine metabolism. MSO treatment might be acting, in part, by 

influencing one or both of those signaling pathways. Contradictory literature of glutamine’s 

effect on cytokine production and immune cell proliferation is indicative of the complexity of its 

role. Dietary glutamine is not necessarily beneficial in all conditions of stress. At the same time 

compartmentalization of GS within the liver shows that it plays a bigger role than just ammonia 

detoxification and glutamine homeostasis. Understanding these complex questions will involve 

experiments building on the results of my studies to provide new directions in this research. 
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APPENDIX A 

Condition Sample Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 

1 

Gln=+/+/+ 

Nil BDL BDL BDL BDL BDL BDL 

MSO BDL BDL BDL BDL BDL BDL 

LPS 495 548 491 361 654 610 

LPS + MSO 421 442 394 228 604 564 

 

2 

Gln=+/+/- 

Nil BDL BDL BDL BDL BDL BDL 

MSO BDL BDL BDL BDL BDL BDL 

LPS 742 117 1120 759 118 1142 

LPS + MSO 682 102 1046 701 110 971 

 

3 

Gln=+/-/- 

Nil BDL BDL BDL BDL BDL BDL 

MSO BDL BDL BDL BDL BDL BDL 

LPS 556 557 420 523 569 567 

LPS + MSO 522 479 307 454 510 BDL 

 

4 

Gln= +/-/+ 

Nil BDL BDL BDL BDL BDL BDL 

MSO BDL BDL BDL BDL BDL BDL 

LPS 592 673 645 559 407 508 

LPS + MSO 616 587 661 517 389 546 

 

Appendix A. TNF-α values obtained from cultured primary peritoneal macrophages are 

presented above. Cells were cultured in RPMI medium containing 5% FCS and in presence or 

absence of 2 mM glutamine. 50 µl of cell culture medium was used for ELISA measurement of 

the cytokine. Sensitivity of ELISA was 8 – 1000 pg/ml. Cells were stimulated with 1 µg/ml of 

LPS for 4 hours and then the culture medium was collected for TNF-α production. Experiment 

consisted of controls such as untreated cells and cells treated with 9 mM MSO alone. Both these 

conditions produced undetectable amounts of TNF-α (BDL = below detectable limits). For cells 

treated with LPS alone and LPS and MSO TNF-α values obtained are presented as pg/ml in the 

above table. %decrease presented in table 4.1 of the thesis has been calculated from the above 

shown values. Also, these values were used to run a paired t test and obtain the p values which 

have been described in the chapter 4. This experiment shows that varying glutamine in cell 

culture medium has an effect on TNF-α secretion. 
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APPENDIX B 

Experiment 1 

Sample 0hr 1hr 2hr 4hr 6hr 8hr 

Nil 13360 56509 88840 111052 206269 236167 

MSO 51449 69374 78617 132651 188186 290040 

LPS 11641 50506 89645 188478 228665 247254 

LPS + MSO 24824 46553 107817 190337 229813 310109 

 

Experiment 2 

Sample 0hr 1hr 2hr 4hr 6hr 8hr 

Nil 22068 91301 99267 211055 221853 326559 

MSO 16055 91393 127629 209576 327435 296849 

LPS 20004 80160 134466 202575 291853 376599 

LPS + MSO 43125 84553 163202 252229 350060 412424 

 

Experiment 3 

Sample 0hr 1hr 2hr 4hr 6hr 8hr 

Nil 26155 33288 99393 112384 157873 163059 

MSO 34532 44529 113086 128350 220429 222511 

LPS 26226 74708 100061 131006 159692 233035 

LPS + MSO 31991 42390 95352 123756 195092 182560 

 

Appendix B.1. CPM values obtained by TCA precipitation of radio labeled proteins from 

cultured primary peritoneal macrophage cells. Three separate experiments are listed above. 

20,000 cells were cultured in wells of a 6 well plate. Radioactive S
35

, LPS and MSO were added 

at the start of the experiment (0hr). At various time points (0hr, 1hr, 2hr, 4hr, 6hr and 8hr) after 

S
35

, LPS and MSO addition medium was removed and cells were washed once. The cells were 

then scraped in 500 µl of PBS and proteins were TCA precipitated with 10 ml of ice cold 10% 

TCA. The precipitates were collected on glass fiber filter paper and washed twice with 10% 

TCA. The filters were air dried and thereafter the radio labeled protein formed was measured in 

cpm (counts per minute) in a scintillation counter. 
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Experiment 1 

Sample 0hr 1hr 2hr 4hr 6hr 8hr 

Nil 15104 23803 29241 32621 34350 99174 

MSO 14786 24733 31218 33867 37230 50428 

LPS 6313 22905 28315 35830 28532 47131 

LPS + MSO 7005 43854 35292 40658 26428 16627 

 

Experiment 2 

Sample 0hr 1hr 2hr 4hr 6hr 8hr 

Nil 12695 28083 41462 52622 60008 67434 

MSO 10649 25658 35876 50986 68514 53096 

LPS 15236 27489 52434 46280 56241 63535 

LPS + MSO 10740 22885 42159 47873 53232 57143 

 

 

Experiment 3 

Sample 0hr 1hr 2hr 4hr 6hr 8hr 

Nil 8585 16686 26610 79236 50145 64140 

MSO 18678 15240 33754 29724 57038 71057 

LPS 23845 15948 39382 41509 54832 62896 

LPS + MSO 20110 14214 33474 35675 43666 50543 

 

Appendix B.2. CPM values obtained by TCA precipitation of radio labeled proteins from cell 

culture medium of cultured primary peritoneal macrophage cells. Three separate experiments are 

listed above. 20,000 cells were cultured in wells of a 6 well plate. Radioactive S
35

, LPS and 

MSO were added at the start of the experiment (0hr). At various time points (0hr, 1hr, 2hr, 4hr, 

6hr and 8hr) after S
35

, LPS and MSO addition 50 µl of medium was removed and 10 ml of ice 

cold TCA was added to it for protein precipitation. The precipitates were collected on glass fiber 

filter paper and washed twice with 10% TCA. The filters were air dried and thereafter the radio 

labeled protein formed was measured in cpm (counts per minute) in a scintillation counter. 
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ABSTRACT 

USE OF METHIONINE SULFOXIMINE TO DISSECT THE ROLE OF GLUTAMINE 

SYNTHETASE AND GLUTAMINE IN PROGRESSION OF ACUTE LIVER FAILURE  
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Methionine sulfoximine (MSO) is a modified amino acid and a well characterized 

irreversible inhibitor of glutamine synthetase (GS) enzyme. Glutamine is synthesized by GS 

enzyme and it is the most abundant amino acid in the body. Glutamine is required by immune 

cells for generation, propagation and maintenance of an immune response.  

To induce acute liver failure (ALF) in mice, animals were given intraperitoneal injections 

of E. coli lipopolysaccharides (LPS) and sugar D-galactosamine (D-GalN). When these animals 

were pretreated with MSO, 80% of the animals were completely rescued from liver failure. 

Moreover, when we characterized the immune response generated during ALF using cytokine 

antibody microarrays, we observed 1) that the macrophages and neutrophils appeared to be 

responsible for the cytokine storm generated during ALF, and 2) MSO pretreatment reduced the 

entire measured cytokine response.  
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Using ELISA assays we observed that MSO pretreatment reduced plasma cytokine 

values of TNF-α, IFN-γ and IL-6 by more than 50%. MSO inhibited GS by more than 90% in 

liver extracts and reduced plasma glutamine by around 75%. MSO pretreatment had no effect on 

GS protein levels and on kupffer cell (liver macrophages) infiltration in liver. GS and TNF-α 

transcript levels were unaffected by MSO pretreatment. Also, preliminary results show that MSO 

does not inhibit cellular and secreted protein synthesis globally in LPS stimulated peritoneal 

macrophage cell culture. However, MSO treatment reduces TNF-α production in the LPS 

stimulated peritoneal macrophages.   

Thus, it seems that inhibiting GS during stress conditions such that low levels of plasma 

glutamine are maintained can lead to a reduction in inflammatory cytokines. Also, MSO might 

have targets other than glutamine synthetase. These results show a novel use for MSO in 

attenuating the overall immune inflammatory response in liver. 
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