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INTRODUCTION 
 

Over the past decade and into the foreseeable future, the demand for diesel engines to increase in 

fuel efficiency and decrease in exhaust emissions will continue. In order to progress in this endeavor, 

every minute function of the engine must be optimized. Although great time, effort, and money is spent 

on achieving optimal calibrations, the limit of what is obtainable is defined by the quantity and type of 

sensing equipment available to the engine control unit (ECU). Because of this, the automotive industry is 

constantly exploring the latest in sensing technology. Particularly of interest, sensors that can determine 

the operating conditions inside the cylinder are desired. While different sensors have emerged in this 

category, it has been primarily been dominated by the in-cylinder pressure transducer. Pressure 

transducers provide a great deal of information during the combustion process. Unfortunately, these 

sensors are expensive and can be difficult to integrate. An alternant solution to the in-cylinder pressure 

transducer is an ion sensor which is less expensive and can be integrated into standard diesel engine 

equipment such as the glow plug [1-4] or the fuel injector [5]. However, data gathered from ion sensors is 

not as consistent as pressure transducers and represents a localized measurement instead of the global 

conditions of the cylinder.  

Over the past twenty years, much has been discovered about ionization. These studies suggest 

that ionization is a capable in-cylinder sensor worth considering. Most of these studies have been 

investigations into ionization using SI engines. While some characteristics of ionization are shared 

between SI and diesel engines, there are distinct differences. In this paper, the emphasis is ionization in 

diesel engines. However, when relevant, ionization data gathered from SI experiments is included. 

 



2 
 

 
 

 : LITERATURE REVIEW OF IONIZATION  CHAPTER 1.0

1.1 CHEMICAL REACTIONS 

 

Ionization in diesel engines is made of two primary stages, chemi-ionization and thermal 

ionization. Between the two, chemi-ionization is the dominant contributor to ion concentration. Unlike SI 

engines, the effects of thermal ionization usually cannot be distinguished from the ion current trace. The 

primary chemi-ionization reactions are considered to be (1) and (2) [1-2, 7-10]. 

𝐶𝐻 + 𝑂 → 𝐶𝐻𝑂+ + 𝑒− (1) 

Although (1) is listed as the primary reaction, the reduction reaction, (2), produces more ions due 

to the faster reaction rate [1] and lower coefficient of recombination [7]. 

𝐶𝐻𝑂+ +  𝐻2𝑂 →  𝐻3𝑂+ + 𝐶𝑂 (2) 

While there is basic agreement on the fundamental reactions producing ionization, there is a wide 

variety of opinions as to other contributing reactions. 

In Glavmo et al. [1], their description of thermal ionization (3) is summarized by the following 

reaction where M represents a generic molecule, 𝑀 + a positive generic ion, 𝑒−an electron, and Eion as the 

ionization energy. 

𝑀 + 𝐸𝑖𝑜𝑛  ↔  𝑀+ +  𝑒− (3) 

Also, the authors state that ions vanish due to recombination reactions. Essentially, free electrons 

combine with ions to form a stable molecule. The following reaction was given as an example of a 

recombination reaction: 

𝐻3𝑂+ + 𝑒−  →  𝐻2𝑂 + 𝐻 (4) 

Along with (1), Kubach et al. [2] list (5), which is the reaction of a hydrocarbon with an electron, 

as another primary reaction. This reaction is what they call “electron deposit”. 

𝐶𝑛𝐻𝑥 +  𝑒−  →  𝐶𝑛𝐻 𝑥
− (5) 

In addition, they list (6), (7), and (8) as secondary ionization mechanisms and are classified 

respectively as proton-transfer, electron-transfer, and condensation reactions. 
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𝐶𝐻𝑂+ + 𝐶𝐻2  → 𝐶𝐻3
+ + 𝐶𝑂 (6) 

𝑂2
− +  𝐶𝑛𝐻𝑥  →  𝐶𝑛𝐻 𝑥

− (7) 

𝐶𝐻3
+ + 𝐶2𝐻2  →  𝐶3𝐻3

+ +  𝐻2 (8) 

 

 Lastly, two recombination reactions are given, electron impingement (9) and dissociating (10). 

𝐴+ +  𝑒𝑖𝑜𝑛𝑖𝑧𝑒𝑑
− +  𝑒𝑖𝑚𝑝𝑖𝑛𝑔

− → 𝐴 + 𝑒𝑖𝑚𝑝𝑖𝑛𝑔
−  (9) 

𝐴𝐵+ + 𝑒− → 𝐴 + 𝐵 (10) 

While Henein et al. [9] list (1) and (2) as primary chemi-ionization reactions, they also list (11). 

Interestingly, they offer that (12) should be substituted in for (2) in the presence of rich and sooty 

hydrocarbon air flames. 

𝐶𝐻𝑂+ + 𝑁𝑂 → 𝑁𝑂+ + 𝐻𝐶𝑂 (11) 

𝐶𝐻+ + 𝐶2𝐻2 → 𝐶3𝐻3
+ + 𝑒 (12) 

Lastly, they list a recombination reaction similar to what we find in Glavmo et al. [1]. 

𝐻3𝑂+ + 𝑒−  →  2𝐻 + 𝑂𝐻 (13) 

Estefanous et al. [10] divide the chemi-ionization effects into three categories which are neutral 

reactants, charge transfer, and recombination. In neutral reactants (1) and (14) are listed. Charge transfer 

reactions include (2), (15) and (16). Lastly, (4) is provided as a recombination reaction which was already 

noted by Glavmo et al. [1].  

𝐶𝐻 + 𝐶2𝐻2 ↔ 𝐶3𝐻3
+ + 𝑒− (14) 

𝐶𝐻𝑂+ + 𝐶𝐻2 ↔ 𝐶𝐻3
+ + 𝐶𝑂 (15) 

𝐶𝐻𝑂+ + 𝑁𝑂 ↔ 𝑁𝑂+ + 𝐶𝐻𝑂 (16) 

The authors also gave a reaction for thermal ionization which is also similar to Glavmo et al. [1]. 

𝑀 ↔ 𝑀+ + 𝑒− (17) 
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Along with chemi-ionization and thermal ionization, Estefanous et al. [10] introduces a third 

mechanism for ionization, electron attachment. In this process, a neutral particle will bind with a free 

electron in the post flame period. This forms negative ions and is described by (18). 

𝐴 + 𝑒− + 𝑀 ↔ 𝐴− + 𝑀 (18) 

In a more recent work, Henein et al. [6], restate the processes for ionization already mentioned in 

[9]. However, there is an addition to thermal ionization which accounts for the NO reaction at high 

combustion temperatures as seen in (19). 

𝑁𝑂 + 𝑀 → 𝑁𝑂+ + 𝑒 + 𝑀 (19) 

1.2 ION SENSOR 

1.2.1 Operating Principles 

 

In this section, a detailed description for two different methods of ion sensing in diesel engines is 

given. While there are more than these two methods, the two discussed are the most promising. In 

addition, an understanding of other methods can be gathered from this description since they usually are 

only a slight variation from what is discussed here. 

As was already mentioned, most researchers exploring ionization have done so using a modified 

glow plug. The essential modification is insulating the heating element from the glow plug body. Figure 

1.1 shows the internal parts of a design used by researchers at Wayne State University [11]. 

 

Figure 1.1: Modified glow plug for ionization [11] 



5 
 

 
 

Once the heating element is insulated, the metal glow plug tip serves as one electrode and the 

engine block serves as the other electrode to complete the circuit. In a slight variation of this method, an 

electrode actually protrudes outside of the glow tip [12]. In this case the electrode instead of the tip is 

used as the sensing element. An example of an electrical schematic for ion sensing glow plugs is 

presented in Figure 1.2. 

 

Figure 1.2: Electrical Diagram of Ion Sensing Glow Plug [3] 

 From the above diagram, it should be noticed that the heating function of the glow plug has been 

maintained. This is a major advantage that the glow plug ion sensor has over other ion sensors. Over time, 

the ion sensing tip builds a coating of soot. This coating causes an offset in the measured ion current as 

seen in Figure 1.3. However, the glow plug can be activated and the soot can be burned off resetting the 

offset back to zero.  

 

Figure 1.3: Offset Due to Soot Build Up on Sensing Tip [6] 
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 In some diesel engines, there are no glow plugs and an air intake heater is used for cold-start 

conditions. These applications require another method for measuring ion current. Estefanous developed a 

method using the fuel injector itself [13]. In a common rail diesel engine, he was able to take ion current 

measurements by insulating the fuel rail and fuel injector from the engine block. A diagram of his circuit 

is shown in Figure 1.4. 

 

Figure 1.4: Electrical Diagram of Ion Sensing Fuel Injector [5] 

1.2.2 Location 

 

 Arguably, the location of the ion sensor in diesel engines is less critical than it is in SI engines, 

although still important. According to Peron et al. [7], unless the ion sensor is close to the spark plug or 

the spark plug itself, it is not possible to distinguish between flame front and post flame front events. 

Since the spark begins combustion in an SI engine, it is possible and necessary to have the ion sensor 

directly in the location of the start of combustion. However, due to the heterogeneous charge of diesel 

engines, combustion does not start in a single location every time. In fact, combustion begins in several 

places in the cylinder simultaneously.  

 In diesel engines, several positions for the ion sensor have been tried. The most common position 

is through the glow plug bore [1-3]. Other methods include using the fuel injector itself [5] and installing 

custom ion current probes [2]. In Kubach et al., the effect of ion probe position was studied by placing 

four ion probes into a single cylinder. Probe 1 was located outside the piston bowl in the quench area. 

Probe 2 was located equidistant from the fuel injector as the glow plug bore, but near the intake valves. 
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Probe 3 was located at the edge of the piston bowl. Lastly, Probe 4 was located in the glow plug bore. 

Figure 1.5 shows the configuration of the ion sensors. 

 

Figure 1.5: Four Ion Sensors in the Same Cylinder [2] 

Before discussing the results, it is important to mention that of the four ion sensors, there were 

three different styles. Only Probe 2 and Probe 3 were identical in construction. However, the differences 

in their structure did not seem to be significant to the authors. The design for Probe 2 and Probe 3 left a 

very small air gap between the sensor’s electrode and the cylinder head. This produced short circuits due 

to soot build up. The ion current from Probe 1 was barely detectable. The authors believed that the probe 

was too far away from the combustion flame. Probe 4 was the only location in which consistent 

measurements were possible. From this investigation, the authors suggest locating the probe in areas 

where soot is low, but yet close to the fuel injector.  

1.2.3 Sensor Tip Length and Shape 

 

 Another study, Henein et al. [6], investigated the effects of penetration into the combustion bowl. 

Three different tip lengths were tested which ranged from 20.4 to 29.4 mm. It was demonstrated the 

longest tip produced the highest current amplitude. However, the shortest tip produced an ion current 

signal with more detail. This is because the longer probe averages the combustion conditions over the 

length of its penetration. The authors chose a medium tip length for conducting the rest of the experiments 

as a compromise between detail and amplitude.   
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 Findings of Larsson et al. [8] agreed with Henein et al. [6]. Larsson investigated the impact of 

different tip shapes such as conical, spherical, and thin cylindrical discs. Tip penetration and tip surface 

area were also considered. Figure 1.6 gives examples of the tips used.  

 

Figure 1.6: Ion Sensor Experimental Tips [8] 

 The authors concluded that both surface area and penetration depth of the tip were significant 

factors in obtaining an ion current signal. The effect of tip shape did not seem to have any inherent impact 

other than when the tip shape changed the surface area or penetration. 

1.2.4 Polarity and Voltage 

In order for ion current to be generated, the ion sensors must be energized with high amounts of 

direct current (DC) voltage. Typically, this voltage is referred to as bias voltage. The polarity of the bias 

voltage can be either positive or negative. For a positive bias voltage, the ion sensor tip is considered the 

anode and the piston, cylinder walls, etc. are considered the cathode. With a negative bias voltage, the ion 

sensor tip is considered the cathode and the piston, cylinder walls, etc. are considered the anode. In the 

experiments of most researchers, positive bias voltage holds an advantage [1,3-6,8-10]. This is because 

negatively charged electrons have a high mobility and can be more easily attracted to a small anode 

[1,6,8]. Ions on the other hand, are heavier and move slower. Therefore, they benefit from having a large 

surface area to collect on the cathode. 

 Another benefit mentioned by Badawy et al. [6] is the signal to noise ratio is reduced. This 

disagrees with Larsson et al. [8] though. 
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However, there are legitimate reasons for using negative bias voltage. Kubach et al. [2] preferred 

the negative bias voltage because by drawing out the ions, they were able to measure just the gases in the 

near vicinity to the sensor.  

Another proponent of negative bias voltage was Henein et al. [14-15]. Through their experiments 

were in a SI engine, they witnessed less variation in the ion current trace with negative bias voltage. 

However, the authors attributed this to flame front speed changes which is SI phenomena. Because of 

this, it is difficult to determine if negative bias voltage offers an advantage in diesel engines. 

There is disagreement between Glavmo et al. [1] and Kubach et al. [2] if electrons or ions are 

contributing factor to ionization. This probably explains why they both chose different polarities.  

Several researchers studied the effects of polarity and voltage level. In Larsson et al. [8], voltage 

was varied from -400 to 500 V. Data from their experiment is given in Figure 1.7. 

  

 

 

 

 

 

 

 

Figure 1.7: Effect of Polarity and Voltage Level on Ion Current [8] 

From this test, it was established for further testing that positive bias voltage would be used. In 

addition, it was identified that after 250 V, there was diminishing returns on increasing the bias voltage to 

increase the peak ion current. 

Confirming the study performed by Larsson [8], Henein et al. [6] conducted a similar experiment 

from -100 to 100 V. The positive polarity increased the amplitude of the ion current while the negative 

polarity did not. The results can be seen in Figure 1.8. 
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Figure 1.8: Effect of Polarity and Voltage Level on Ion Current [6] 

1.3 TEST RESULTS 

 

In the following section, a brief summary of the test results for several papers is provided. Real-

world data is depicted and discussed. 

Glavmo et al. [1] was one of first to extensively test ionization in diesel engines. The authors’ 

first compared the ion current to the start of the main injection pulse. Five test points of increasing speed 

and varying load were chosen. At each test point, the start of the main injection pulse was varied three 

times with a step size of two CADs. 100 cycles of data were averaged in order to reduce the amount of 

fluctuation in the ion current signal. Although it is clearly demonstrated in Figure 1.9 that ion current 

changes according to changes in the start of the main injection, the authors did not comment whether or 

not any feature of the ion current could be reliably correlated to a feature on the start of main injection 

curve.   
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Figure 1.9: (1 of 5 test points) 1500 RPM, 32 Nm load [1] 

Another set of tests were performed to investigate the detection of pilot injection. While keeping 

the main injection timing and total injected quantity (pilot + main) constant, the pilot injection timing and 

quantity were varied. This was compared to the case where no pilot injection was employed.  Using the 

ionization signal, pilot injection was distinguishable from main injection. In addition, the ion current 

changed according to the changes in pilot injection. Figure 1.10 summarizes the test points and compares 

ion current to the rate of heat release. 

 

Figure 1.10: Detection of Pilot Injection with Ion Current [1] 

Lastly, the effect of EGR was studied. The purpose of EGR is to reduce NOx formation by 

decreasing in-cylinder temperatures. In turn, the decreased temperatures reduced the ion current signal. 
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Since EGR is used on most diesel engines, it was important to demonstrate that ion current could still be 

useful under this condition. The authors ran of sweep of EGR percentages from 0-46% to show the effect 

on ion current. The results are displayed in Figure 1.11. Although the amplitude of the ion current signal 

was reduced, even under the highest EGR load of 46%, ion current was still detectable.  

 

Figure 1.11: Effect of EGR Sweep on Ion Current [1] 

 In the literature, it was difficult to find any investigations involving diesel engines that study the 

effect of fuel properties or additives on ion current. In the absence of this data, a study conducted on a 

spark ignited engine will be substituted. In Peron et al. [6], a comparison between RON 98 unleaded fuel, 

leaded fuel, and propane is provided. From Figure 1.12, it was proven that fuel properties have an effect 

on ion current. However, the need for a relevant test on a diesel engine comparing diesel fuels, additives, 

and cetane numbers is still necessary. 

 

Figure 1.12: Fuel Properties Affect on Ion Current. RON 98 (solid), Leaded Fuel (dash), Propane (dot) [6] 
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The engine under observation in Kubach et al. [2] had an intake port deactivation system which 

allowed them to study the effects of swirl on ion current. At 1500 RPM and 4 bar BMEP, the engine was 

run with the charging port opened and closed. In this configuration, the swirl ratio was the highest with 

the charging port closed. In Figure 1.13, the authors showed that whether or not the valve was open was 

detectable with ionization. Interestingly, the main ion current peak increased in amplitude under the high 

swirl condition, while the minor peaks decreased when compared to the low swirl state.  

 

Figure 1.13: Effect of Swirl Ratio on Ion Current Signal [2] 

In addition, they investigated the effects of EGR and pilot injection. Pilot injection decreased the 

amplitude of the ion current with or without EGR. Therefore, the occurrence of a pilot injection is 

detectable. In addition, the authors suggested that the pilot quantity could indirectly be measured by the 

correlating the ignition delay from the ion current signal to the injected quantity.  Figure 1.14 and 1.15 

shows the impact of pilot injection and EGR. 
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Figure 1.14: EGR Sweep Without Pilot Injection [2] 

 

Figure 1.15: EGR Sweep with Pilot Injection [2] 

For EGR, not only was the presence of EGR detectable, but the authors claimed the level of EGR 

could be determined as well. In order to do this, the ion current signal offset was set to zero at SOC. 

Correlation coefficients were very high between ion current and EGR percentage  as is seen in Figure 

1.16. 
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Figure 1.16: Correlation of EGR Percentage to Ion Current Amplitude [2] 

Lastly, the authors investigated the start of combustion (SOC) measured by cylinder pressure and 

ion current measurements. The local minimum before the start of main combustion was used to set a 

threshold value for SOC. Steady-state testing at 1500 RPM and 8 bar BMEP revealed two things. First, an 

offset between SOC determined by the burn rate, ion current, and the derivative of the ion current was 

discovered. The authors noted that this offset which ranged from 1-3 CAD could only be experimentally 

determined as it would change throughout the operating map. Figure 1.17 displays the offset between the 

different methods of determining SOC. 

 

Figure 1.17: Offset Between the Different Methods of Finding SOC [2] 

Figure 15: EGR sweep without pilot injection [2] 

Figure 15: EGR sweep without pilot injection [2] 
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The authors also compared the standard deviation between the burn rate, ion current, and the 

derivative of ion current. The data collected from approximately 140 engine cycles. In Figure 1.18, ion 

current is shown to have the largest degree of deviation at about 0.23 CAD.  

 

Figure 1.18: Comparison of Standard Deviation [2] 

 In addition to their steady-state testing, the authors also compared transient operating conditions 

which are more relevant for real engine cycles. IMEP was varied at a constant engine speed of 1500 

RPM. The transient change of SOC is plotted in Figure 1.19. 
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Figure 1.19: Transient Comparison Between Burn Rate and Ion Current in Determining SOC [2] 

 In Henein et al. [9], a comparison between experimental results of SI, HCCI, and CI ion current 

measurements is made. For CI engines, the authors divide the ion current trace intro four peaks and offer 

explanations for each. It is to be noted that all four peaks are not present at all times. There is a 

dependence on engine operating conditions between the number and size of the ion current peaks. 

Experiments were performed on a single-cylinder engine. An example of the ion current peaks is given in 

Figure 1.20. 
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Figure 1.20: Example of Four Ion Peaks in Diesel Engine [9] 

 Regarding the first ion current peak, several observations are made by the authors. First, there is a 

delay of approximately one CAD between the peak in RHR (rate of heat release) and Peak 1. The RHR is 

calculated from the in-cylinder pressure measurement. This measurement is a global characteristic of the 

cylinder. Unlike the pressure transducer, the ion current probe is sensitive to the location in the 

combustion chamber. The farther the probe is from the first-in-line spray, the longer the delay between 

the RHR and Peak 1. Also, the authors suggest that the response of the electronic circuits could be 

contributing factor in the delay. However, the electronic circuits used in the amplification and processing 

of the pressure transducer and ion current probe should be of the same order.  

 Another important characteristic regarding Peak 1 is the process responsible for its formation. In-

cylinder temperatures at the beginning of combustion are much lower than those at the end. Because of 

this, the authors determined it was not thermal ionization, but chemi-ionization responsible for the first 

ion current peak. 

 Lastly, the authors attribute Peak 1 to the premixed combustion of the main injection. In their 

experimental setup, no pilot injection was used. However, the authors admitted that if a pilot injection had 

been used as was done in Kessler [16] and Kubach et al. [2], there probably would have been an ion 

current peak due to the pilot injection before Peak 1. 
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 Peak 2 was determined to be caused by the turbulent premixed and diffusion flames of the 

second-in-line spray. Based on the phase shift between Peak 1 and Peak 2, the amount of time, 2.3ms, 

between the two peaks was calculated. In order for the second-in-line spray to be the cause of Peak 2, it 

would have to reach the ion probe in 2.3ms. For the given engine speed, the swirl ratio was estimated to 

4.35. Since this is a reasonable estimate for swirl ratio, it was concluded that Peak 2 was caused by the 

second-in-line spray. 

 Peak 3 was too close to Peak 2 to be caused by the third-in-line spray. The authors suggest that 

Peak 3 is caused by the reflection of the second-in-line spray off of the surface of the combustion 

chamber walls. 

Lastly, Peak 4 exhibits low amplitude due to the drop of combustion temperature. The same 

method for estimating the swirl ratio between Peak 1 and Peak 2 was applied between Peak 3 and Peak 4. 

However, the authors were not confident that Peak 4 was a result of the third-in-line spray because the 

estimate of the swirl ratio resulted in an 11% loss of motion. Also, Peak 4 was only measureable at high 

loads when there is enough time for the combustion products to burn and reach the ion probe.  

 In this same paper, the authors also studied the impact of engine load on ion current as 

represented in Figure 1.21. As load increased, the amplitude and information from ion current peak 

increased as well. This is because at higher loads more fuel is injected into the cylinder. In addition, the 

fuel is injected over a longer period of time. These two factors increase the premixed and diffusion 

combustion.  
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Figure 1.21: Increase in Ion Current Due to Engine Load [9] 

Estefanous et al. [5], introduce a new type of ion probe, the fuel injector. An injector was 

energized with a positive 100V DC. The author was able to demonstrate an advantage to this type of 

probe. Based on the ion current signal, injector malfunctions such as leakage or fluctuations in needle lift 

were able to be detected. In addition, an overlay of injector current and ion current were made. The author 

was able to show that the energizing and de-energizing of the fuel injector was detectable by the ion 

current. Figure 1.22 displays a successful injection versus a malfunction. 

 

Figure 1.22: Multi-Sensing Fuel Injector Signal Compared Over a Successful Injection (blue) and Faulty Injection (red) [5] 
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The author also presented a simulation that compared the sensitivity to location of the fuel 

injector to a glow plug. This was done by placing a charged particle on each side of the combustion bowl. 

The central location of the fuel injector allowed it to sense the charged particle on either side of the bowl. 

However, the glow plug could not sense the charged particle when it was on the opposite side due to the 

long distance. Figure 1.23 shows a representation of the simulation results. 

 

Figure 1.23: Simulation of Ion Probe Sensitivity to Location [5] 

In Badawy et al. [3], the authors investigated four features of the ion current to determine which 

could best be related to a combustion phasing parameter. These features included start of ion current 

(SIC), first peak of the derivative of ion current (i’1), first ion current peak (i1), and second ion current 

peak (i2). Examples of ion current features are given in Figure 1.24.  

 

Figure 1.24: Examples of Ion Current Features Studied for Correlation to Combustion Phasing [3] 
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Under steady-state conditions, SIC had the lowest amount of variation over the other ion current 

features. The next step was to determine whether or not a correlation between SIC and LPPC (location of 

the peak of the RHR due to premixed combustion) could be made. This was accomplished by doing two 

different parameter sweeps. First, with SOI held constant, a sweep of fuel injection pressures and engine 

load was performed. As shown in Figure 1.25, the agreement between LPPC and SIC was very tight. 

However, an offset of 0.45 CAD of SIC from LPPC was noticed. 

 

Figure 1.25: Relation of SIC to LPPC Under Constant SOI with Variable Load and Injection Pressure [3] 

A second test was performed under which injection pressure was held constant, but engine load 

and SOI timing was varied. Again, good agreement between SIC and LPPC was found. However, the 

offset went down from 0.45 CAD on the previous test to 0.35 CAD. Figure 1.26 represents the 

relationship between SIC and LPPC under these engine operating conditions. 

 

Figure 1.26: Relation of SIC to LPPC Under Constant Injection Pressure with Variable Load and SOI Timing [3] 
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To demonstrate ion sensing under closed-loop engine control, the authors developed an algorithm 

and implemented it in an open ECU. Before switching to closed-loop control, a set of steady-state 

measurements of SIC and LPPC were taken to determine the variation of each parameter. This was done 

to make a comparison between open-loop and closed-loop control. Figure 1.27 shows the results of open-

loop control and Figure 1.28 shows the results of closed-loop control. 

 

Figure 1.27: Variation of SIC and LPPC Under Open-Loop Control [3] 

 

Figure 1.28: Variation of SIC and LPPC Under Closed-Loop Control [3] 

 As can be seen from the Figure 1.27 and 1.28, open-loop control still had less variation than 

closed-loop control using ion sensing. The authors were also able to demonstrate closed-loop control over 

a transient period in addition to the steady-state period shown in Figure 1.28. However, no comparison 

was made over open-loop control for the same transient period. 
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   In this paper, Badawy et al. [17] used ionization as a means of estimating soot formation. Results 

from a non-linear multiple regression (NLMR) model were compared to the instantaneous measurements 

from a opacity meter. Initially, the sensitivity of the number of inputs in the NLMR was studied. It was 

proven that as the number of inputs increase, the model’s effectiveness improved by the decrease in mean 

square error and increase in determination. Several transient tests were run and the opacity meter’s 

measured soot was compared to the NLMR model’s estimated soot. The first transient condition held 

engine speed steady at 1800 RPM while varying engine load and fuel injection pressure. The measured 

soot and estimated soot correlated tightly as seen in Figure 1.29. 

 

Figure 1.29: Comparison of Measured and Estimated Soot with Varied Load and Injection Pressure. [17] 

 In the next transient test, the engine speed was changed from 1000 to 2000 RPM while holding 

engine load constant. Fairly good agreement was witnessed between the measured soot and estimated 

soot. Figure 1.30 shows the results of their testing. The authors attributed the discrepancy between 

measured soot and estimated soot on intervals of cycle 100-130 and cycle 360-390 to a limitation of the 

response of the opacity meter.  
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Figure 1.30: Comparison of Measured and Estimated Soot Under Constant Engine Load with Varied Engine Speed [17] 

Lastly, a final transient test was performed where engine speed and load were held constant while 

manifold absolute pressure varied from 1.15 to 1.27 bar. Figure 1.31 displays the test results. The 

measured soot and estimated soot did not agree as well as in the previously transient tests. The authors 

attributed this to the low amount of soot to be measured and the response time of their opacity meter.  

 

Figure 1.31: Comparison of Measured and Estimated Soot Under Constant Engine Speed and Load with Varied MAP [17] 

Estefanous et al. [10] modified a NO sampling probe for the purpose of measuring ion current. 

This allowed the researchers to monitor in-cylinder NO and ionization at the same time. In addition, a 

model was proposed for estimating the contribution of NO to thermal ionization. From using this model, 

it was found that the contribution of NO concentration on thermal ionization was insignificant when 

compared to raising in-cylinder temperature. However, ion current increased dramatically when the mass 
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average temperature was doubled, but barely increased when NO concentration was raised ten times. 

Based on these calculations, the authors believe that thermal ionization does not contribute in a significant 

way until the mass average temperature is above 2000 K. The authors also took many measurements at 

injection pressures of both 400 and 1000 bar while varying IMEP. While some similarities existed 

between the profiles of NO concentration and ion current, no correlation can be easily drawn and none 

was suggested by the authors. Figure 1.32 shows an example of the comparison of ion current to NO 

measurements at three different cycles for the same engine conditions of 1000 bar injection pressure and 

11 bar IMEP. 

In Henein et al. [6], several different parameter studies were carried out to understand the effect 

of engine load and injection pressure on ion current. Holding engine speed and load constant, injection 

pressure was varied from 400 to 850 bar. Figure 1.33 shows the results. 

 

Figure 1.32: Comparison of Ion Current with Varied Injection Pressure [6] 
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Figure 1.33: Ion Current Compared to NO at Cycle 8, 12, and 61 [10] 
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 The authors explained that increasing injection pressure increased the first peak of ion current, I1, 

due to the larger premixed fraction of the first spray to reach the ion current probe. The increase in 

premixed fraction along with the rise in local gas temperatures enhanced and accelerated the chemical 

reaction responsible for producing ion current in both the chemi-ionization and thermal ionization. 

 Next, the effect of engine load on ion current was studied by holding engine speed constant at 

1800 RPM and injection pressure at 850 bar while varying IMEP from 5 to 11 bar. In general, ion current 

increased with load. This is not surprising since the increase in load causes an increase in both the mass of 

fuel injected into the cylinder and the increase in the duration of the injection. The relationship of engine 

load to ion current is shown in Figure 1.34. 

 

Figure 1.34: Relationship of Ion Current to Engine Load [6] 

 Lastly, all of their test points were summarized in a single plot where max ion current was 

correlated to NO and soot emissions in Figure 1.35. IMEP was varied from 5 to 11 bar and is labeled on 

the plot in parentheses. Injection pressure was varied from 250 to 850 bar and is labeled in brackets. 

Opacity is represented with a dashed line while soot is represented with a solid line. 
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Figure 1.35: Correlation of Max Ion Current to NO and Soot Emissions [6] 

1.4 CONCLUSION 

 

 From this review of ion current literature, it has been shown that ion current is a capable in-

cylinder sensor for measuring multiple engine operating parameters. However, implementation and real-

world gains in passenger car and heavy-duty diesel engines is still challenging due to variability of the ion 

current signal. This requires the ECU to store large amounts of high frequency data, average and filter the 

results, and make engine calibration changes in real time. The processing power required to do these tasks 

is at the limit of most ECUs. In the future, ionization may prove to be a valuable resource in reducing fuel 

economy and engine emissions as technology increases. 
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 : MODERN FUEL INJECTION EQUIPMENT CHAPTER 2.0

2.1 HYDRAULIC-ELECTRONIC UNIT INJECTION 

 

The origin of hydraulic-electronic unit injection (HEUI) began in the 1990s. In an agreement 

between Caterpillar and Navistar, Caterpillar developed the HEUI system [18]. HEUI stands superior to 

every preceding version of unit injection because of its freedom from mechanical actuation. Injection 

events are independent of camshaft position giving flexibility to engine timing. In the following section, a 

brief description of the Caterpillar HEUI system is given. This is followed by a detailed explanation of the 

fuel injector and fuel pump. Lastly, a summary of the advantages and disadvantages of the HEUI system 

is provided. 

The major components to the HEUI system include the hydraulic unit injector pump, unit 

injector, engine control module (ECM), fuel transfer pump, and injection actuation pressure sensor. A 

system diagram is provided in Figure 2.1.  

F 

Figure 2.1: Caterpillar HEUI System Diagram [19] 

The journey of the fuel from the fuel tank to the combustion chamber begins with the fuel transfer 

pump. This pump lifts fuel from the tank and sends it to the unit injectors via a single passage in the 

cylinder head. This passage feeds all of the unit injectors. Fuel enters the unit injector at a very low 

pressure. In order to pressurize the fuel, high pressure oil is delivered to the unit injector through passages 

in the cylinder head by the hydraulic unit injector pump. The oil that supplies the hydraulic unit injector 
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pump is taken from the engine lubrication oil system. A solenoid within the unit injector controls the oil 

flow based on signals from the ECM. Also inside the unit injector, an intensifier piston is activated by the 

high pressure oil. The intensifier piston multiplies the pressure of the oil compressing the fuel in the unit 

injector to a very high pressure, approximately six times the pressure of the oil [20]. During the fuel 

injection process, the ECM receives feedback from the injection actuation pressure sensor. This measures 

high pressure oil at the oil rail providing closed-loop control over the oil circuit. The ECM reads the 

pressure signal from the injection actuation pressure sensor and adjusts the pressure regulator in the 

hydraulic unit injector pump accordingly. 

Figure 2.2 displays the physical appearance of the HEUI injector. Within the fuel injector itself, 

there are many processes and components that control each injection event. Figure 2.3 provides an 

illustration of each part and their name. 

 

Figure 2.2: HEUI Fuel Injector 
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Figure 2.3: Caterpillar HEUI fuel injector [19] 

In understanding the HEUI injector, it is important to distinguish between the high pressure 

actuation oil circuit and fuel supply circuit. In a sense, the behavior of the actuation oil circuit and fuel 

supply circuit can be described as a master/slave relationship with actuation oil being the master. It is the 

actuation oil that determines the injection timing, duration, rate shape, and pressure.  

The flow of high pressure oil from the hydraulic unit injector pump into the injector begins when 

the ECU energizes the solenoid inside the fuel injector. This solenoid controls the position of the seated 

pin. The seated pin has two needle seats, upper and lower, which allow it to perform two main functions. 

First, when the solenoid is energized, the seated pin is against its upper seat. This allows oil to drain out 

of the check control line and from under the spool valve. Relieving oil pressure in the check control line 

permits the nozzle to open when high pressure fuel is present. Simultaneously, actuation oil begins to 

flow past the spool valve while the seated pin is in the upper position. Once past the spool valve, the 

actuation oil reaches the intensifier piston. The actuation oil forces the intensifier piston downward 
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compressing the fuel to 180 Mpa. Once the fuel reaches a pressure greater than the force of the nozzle 

spring, the nozzle opens and fuel injection begins.  

The second main function of the seated pin occurs when the solenoid is de-energized and the pin 

is on its lower seat. In this position, actuation oil flows down the check control line to the check piston. 

The check piston is responsible for closing the nozzle at the end of injection. As the check piston closes 

the nozzle, actuation oil flows under the spool valve closing the flow to the intensifier piston.  

The fundamental principle that allows the HEUI injector to rate shape is the speed at which the 

spool valve and solenoid operate [19]. The solenoid can actuate at a much higher rate than the spool 

valve. Therefore, the solenoid is able to open, partially pressure the fuel, and close without the spool 

valve moving. With high pressure fuel primed in the injector tip, the solenoid is energized and high 

pressure fuel is instantly available when the nozzle opens. By manipulating the solenoid current, a variety 

of schemes can be generated. For further explanation, more details are provided in [19]. Figure 2.4 shows 

the injector fill scheme to produce a square rate shape [NOTE: Orange=High Pressure oil, Green=Empty 

Oil Passage, Red=High Pressure Fuel]. 

 

Figure 2.4: Fill Scheme for Square Rate Shape [19] 

In the HEUI system, there is a high pressure oil pump (unit injector hydraulic pump) and a low 

pressure fuel pump that supply their respective fluids to the unit injector. Although mounted on the back 

side of the high pressure oil pump, the fuel pump is a separate pump entirely. The fuel pump is driven by 
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a shaft from the high pressure oil pump. The fuel pump is responsible for transferring fuel to the injectors 

at a low pressure of 450 kPa [20].   

The high pressure oil pump is a variable delivery piston pump. It is gear driven off of the front 

gear train of the engine. Based on commands from the ECU, the high pressure oil pump provides oil to 

the unit injectors at a pressure of 6 Mpa to 28 Mpa [20]. Although the engine has a dedicated lubrication 

oil pump, oil is shared between the lubrication oil pump and the high pressure oil pump.  

The HEUI system offers several advantages that make it suited for modern diesel engines. First, 

the unit injector is not mechanically driven by the engine. This allows for flexibility in injection timing, 

duration, and number of injections. Second, HEUI delivers injection pressures of 180 Mpa. High injection 

pressure has many emissions and engine performance benefits. Lastly, HEUI provides control of the 

injection rate shape. Ramp, boot, and square injection rate profiles are fully obtainable.  

Unfortunately, all of these benefits introduce a high system complexity. To create the fuel and oil 

rails, the cylinder head machining is increased. In addition, the unit injector itself has many intricate 

moving parts. Another detriment occurs when leakage between the oil and fuel passages in the injector 

takes place. Lastly, the injection events do exhibit variability from fluctuations in oil temperature and 

other factors.  

2.2 HIGH-PRESSURE COMMON RAIL 

 

High-pressure common rail (HPCR) fuel injection is newer then the HEUI system and has been 

widely accepted in the heavy duty diesel market. Like HEUI, HPCR injection events are independent of 

camshaft position giving flexibility to engine timing. Although most HPCR systems share many 

similarities, one common difference is the fuel injector type: solenoid or piezoelectric. Piezoelectric is 

often preferred in HPCR systems because of its faster response time over solenoid actuated injectors. This 

allows for higher precision in injected fuel quantity and fuel injection timing. It also enhances the 

capability for multiple injections. For these reasons, the HPCR system described in this paper 

incorporates the piezoelectric fuel injector type. In the following section, a brief description of the Bosch 
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CRI3 HPCR system is given. This is followed by a detailed explanation of the fuel injector and fuel 

pump. Lastly, a summary of the advantages and disadvantages of the HPCR system is provided. 

The major components for HPCR are high pressure fuel pump, pressure control valve, fuel rail, 

rail pressure sensor, fuel injector, and ECM. A system diagram is provided in Figure 2.5.  

 

Figure 2.5: Bosch CRI3 System Overview [21] 

Diesel fuel is lifted from the storage tank by a low pressure fuel pump. After passing through a 

filter, the fuel is delivered to the high pressure fuel pump. The high pressure pump compresses the fuel to 

180-200 Mpa [22]. The fuel leaves the high pressure pump through high pressure fuel lines and enters the 

fuel rail. At the rail, fuel is distributed to the fuel injectors. The ECM controls the opening and closing of 

the fuel injector. In addition, the ECM receives feedback from the rail pressure sensor and transmits 

signals to the pressure control valve and high pressure pump to maintain the desired fuel pressure.  

Figure 2.6 displays the physical appearance of the Bosch CRI3 piezoelectric fuel injector while 

Figure 2.7 depicts the inner workings. 

 

Figure 2.6: Bosch CRI3 fuel injector [21] 
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Figure 2.7: Bosch CRI3 internal components [22] 

At the heart of the CRI3 fuel injector is the piezoelectric stack. The piezo stack is a dense 

grouping of ceramic layers. These layers are connected electrically in parallel. When they are energized, 

the resultant electric field produces a mechanical strain which causes the stack to expand 40-50 μm [22]. 

The piezo stack does not operate the control valve directly, but requires a hydraulic amplifier. The 

hydraulic amplifier is needed to multiply the precise motion of the piezo stack to that which is necessary 

to move the control valve.  

The control valve manages the flow of fuel through the injector. Figure 2.8 shows the control 

valve in its three positions: starting; needle opening; and needle closing. 

 

Figure 2.8: Control Valve Positions [22] 

In the starting position, the control valve and fuel injector needle are both closed. In the control 

volume and bypass passage, fuel is pressurized to the rail pressure. High pressure fuel in the control 

volume forces the needle downward keeping the injector closed. Once the piezo stack is energized, the 
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control valve moves to the open position. Here, the bypass passage is blocked and fuel drains from the 

control volume through the outlet passage. As the control volume drains, the pressure above the needle is 

reduced allowing it to open. To end an injection event, the piezo stack is de-energized. Subsequently, the 

control valve shuts which opens the bypass passage. The high pressure fuel fills the control volume which 

in turn closes the needle.  

In a piezoelectric fuel injector, the mechanics of injection rate shaping are much simpler than the 

HEUI system because its ability to create rate shapes is much more limited. Rate shapes are produced by 

partially lifting the needle. With the needle valve partly opens, fuel flow is throttled to the nozzle holes 

[23]. Although this does produce some limited rate shaping, deterioration of the spray pattern occurs 

hindering engine performance.  

The Bosch CP3 fuel injection pump is a gear-driven radial piston pump [23]. Inside the pump, 

there is both a low pressure and high pressure fuel circuit. The low pressure circuit delivers fuel to the 

high pressure circuit. The amount of fuel transferred to the high pressure circuit is controlled through a 

pressure regulator. Excess fuel is used to cool the pump and bled back into the pump inlet [23]. 

In the high pressure circuit, fuel enters the pump’s three cylinders. Here, it is pressurized by plungers 

to the rail pressure [23]. 

The advantages of the HPCR system are similar to the HEUI. HPCR offers flexible injection 

timing because the injector is not mechanically constrained to engine speed or timing. In addition, HPCR 

offers high injection pressure of 180-200 Mpa. Lastly, injection rate shaping is possible through needle 

throttling.  

One of the disadvantages of the HPCR with piezoelectric injectors is the added cost due to the 

piezo stack. Another disadvantage is the needle throttling necessary to perform injection rate shapes.  

Lastly, HPCR systems typically are not able to conform their injection rate to the boot rate shape and their 

control over the slope of ramp rate shape is limited.  
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2.3 MAJOR VARIABLES OF THE MODERN FUEL INJECTION SYSTEM 

 

In order to control emissions, reduce fuel consumption, and increase specific power output, fuel 

injection systems of the modern diesel engines have many variables to control. The major parameters to 

control are the injection pressure, injection timing, duration of injection, number of injections, and 

injection rate shape. In the next section, a description of the impact of each of these elements is provided. 

Also, a brief literature review is given to support the influence of these elements. For the purpose of this 

paper, such things as injector hole diameter, number of spray holes spray angle, injector nozzle type, etc. 

are viewed as properties of the fuel injector itself. These properties are omitted from the following 

discussion as they do not pertain to the fuel injection system as a whole. In addition, injection timing and 

duration will not be covered since varying these parameters is not unique to modern fuel injection 

systems.  

2.3.1 Injection Pressure 

 

Injection pressure of the typical modern fuel injection system ranges from 180 Mpa (1800 bar) to 

300 Mpa (3000 bar). Recent improvement in fuel injector nozzle design and manufacturing processes 

promise even higher injection pressures. High fuel injection pressure is a proven method for decreasing 

harmful exhaust emissions [24, 25, 26]. In addition, it is the preferred method for increasing fuel flow rate 

when raising power density [27]. 

 Fischer et al. [24] determined there is a critical limit to the benefit of increasing injection 

pressure. In their study, the pressure of a single main injection from a 200 Mpa (2000 bar) HPCR system 

was varied. Simultaneous soot-Nox emission reduction was achievable until reaching a critical limit 

where further pressure increases yielded no additional benefit. Boot pressure, engine load, and start of 

injection were the main factors in defining the critical injection pressure limit.  

 Abdullah et al. [25] found high fuel injection pressure is a means of reducing HCs, smoke, and 

CO. However, this caused a rise in Nox. Using EGR with high fuel pressure and split injections can 
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together lower both Nox and other harmful emissions. In this paper, a series of experiments were run with 

fuel injection pressures ranging from 300-700 bar. EGR, engine speed, and engine load were varied to 

understand the full effect. High injection pressure at low speed and low load caused an increase in the 

peak cylinder pressure and rate of heat release. This influence diminished as engine speed and load 

increased. The authors attributed this to the increased air mass flowing into the cylinder at higher speeds. 

The higher rate of air movement increased mixing and air density. In general, higher fuel pressures were 

shown to reduce BSFC. This was performed over a range of engine loads. BSFC with EGR was a little 

higher than without EGR. This is to be expected due to reduced oxygen concentration. CO and HCs were 

reduced with increased fuel pressure due to better atomization, leading to a shorter ignition delay and 

more complete combustion. 

 Ohishi et al. [26] reported the benefits of a Bosch HPCR system on the Duramax 6600 light truck 

engine. High injection pressures of 1600 bar were needed to keep injection duration short at high engine 

speeds, but still provide adequate amount of fueling. High injection pressure also helped keep particulate 

levels down by allowing injection timing to remain the same as the light load region. High injection 

pressure did increase combustion noise. However, this was mitigated by the use of pilot injection. 

Although specific to the Duramax 6600, the authors supplied an engine map with suggested injection 

pressures. Figure 2.9 serves as an example for other modern diesel engines. 

 

Figure 2.9: Preferred injection pressures based on engine speed and load [10] 
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 Thirouard et al. [27] conducted an experiment to see high injection pressure or larger injector 

nozzle holes was a more effective method of increasing fuel flow rate. In both situations, increasing the 

fuel flow rate increased the speed of combustion. This allowed more time during the expansion process 

for soot post oxidation which reduced the overall soot levels. The added time in the expansion process 

also lowered the final exhaust temperature. High injection pressure was found to be preferred over larger 

injection nozzle holes especially at part load. At part load, larger nozzle holes increased the fuel-to-air 

ratio in the jet which increased soot emissions. The improved mixing of high injection pressure combined 

with higher fuel flow rate resulted in faster combustion. This allowed timing to be delayed closer to TDC 

which improved cycle efficiency. 

2.3.2 Injection Rate Shaping 

 

Injection rate shaping refers to the ability to define the profile of the quantity of fuel injected 

during the injection period. Typically, three major rate shapes are discussed which are square, ramp, and 

boot. Figure 2.10, (a) illustrates a boot, ramp, and square rate shape. 

 

Figure 2.10: Rate Shape Examples [29] 

By using different rate shapes throughout the engine operating map, many benefits are realized. 

Such benefits include reduction in noise levels [28], fuel consumption [29, 30], and exhaust emissions 

[29, 30, 34].  
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Carlucci et al. [28] studied changes in the fuel injection system as means of combustion noise 

control. This was done by comparing two HPCR injectors, a standard injector and one with a modified 

control valve to produce a ramp rate instead of square profile. Although changing parameters such as 

injection pressure and timing of the pilot had larger effects on the combustion noise, using a ramp rate 

shape had a measureable impact too. This reduced the amount of fuel injected during the ignition delay 

period which in turn lowered the peak cylinder pressures due to pre-mixed burn.  

Tanabe et al. [29] used a HPCR system with two fuel rails to examine the effects of rate shaping 

in a multi-cylinder engine. The two fuel rails were plumbed together with one supplying high pressure 

fuel and the other low pressure fuel. By switching rapidly between the two rails, ramp, boot, and square 

rate shapes were produced without having to throttle at the injector nozzle. The authors found at high load 

and low or medium engine speed, the boot shape is favored while the square shape is preferred at high 

load and high speed. The ramp shape was preferred in the BSFC-Nox trade off at light load and low 

speed. Ramp and boot shapes were able to decrease Nox emissions because the amount of fuel injected 

into the cylinder during the ignition delay period was less than that of the square rate shape. This reduces 

the pre-mixed combustion and heat release rate which is responsible for lower Nox. The authors presented 

Figure 2.11 as a summary of the optimal rate shapes throughout the engine operating map. 

 

Figure 2.11: Optimal Rate Shape Engine Map [29] 
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Fischer et al. [30] compared a HEUI and HPCR system to see if rate shaping affected liquid 

length penetration. Liquid length is important to prevent wall-wetting which adversely affects emissions 

and fuel economy. It was found that rate shape had a negligible effect on liquid length. In addition, both 

injection systems were tested at two different injection pressures, 75 and 142 Mpa, but still no appreciable 

difference was found in liquid length. 

2.3.3 Multiple Injections 

 

 In the past, diesel injection systems only offered a single main injection. However, modern 

injection systems can inject several times before and after the main injection. Some of the primary 

reasons for doing this are reduction of noise [31, 32], BSFC [32, 33, 34] and exhaust emissions [31, 32, 

33, 34]. 

Zhang [31] showed pilot injection had the strongest affect at light load in reducing smoke and 

combustion noise level. According to Zhang, the benefit of pilot injection is due to shortening the ignition 

delay. The longer fuel is able to collect and mix, the stronger the premixed combustion. This results in a 

sharp rapid start of combustion as seen in Figure 2.12. At full load, boost pressure and fuel injection 

pressure are higher than light load. This shortens the ignition delay. Therefore, it was difficult for pilot to 

reduce the ignition delay further since it was already short at full load. 

 

Figure 2.12: Rate of Heat Release at 2200 RPM with 2 Nm Torque [31] 
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Badami et al. [32] attempted several different injection strategies. Strategies included two pre-

injections and a post-injection. Timings for the split injections were adjusted relative to main injection to 

find optimal injection timing. The post-injection was shown to reduce soot emissions, but did raise NOx 

slightly. The pre-injections were shown to reduce engine noise and BSFC. 

Osada et al. [33] made comparisons with a single injection versus a main injection with a pre-

injection and post-injection. The multiple injection strategy was shown to reduce BSFC by lowering heat 

losses to the wall with improved distribution of in-cylinder temperature. Also, a reduction in smoke was 

possible allowing for higher EGR rate. In turn, this produced lower Nox emissions as displayed in Figure 

2.13. 

 

Figure 2.13: BSFC reduction with pre-injection and post-injection [33] 

Aztler et al. [34] presented two different studies in one paper. First, multiple injections were used 

to reduce emissions and improve BSFC. Injection strategies investigated included single main, pilot and 
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main, main and post, and two pilots main and post. Pilot injection increased PM, but was able to reduce 

HC and CO. Pilot also gave a reduction in engine noise. A post injection was used to mitigate PM caused 

by the pilot. The second study focused on the effect of different ramp rates. It was found that the faster 

rate was always preferable. This is because the premixed combustion was reduced. Experiments were 

carried out with EGR. Results are summarized in Figure 2.14 below. 

 

Figure 2.14: Result using two different ramp rates combined with multiple injections [34] 

 

2.4 CONCLUSION 
 

 In this paper, the benefits of the modern fuel injection system have been identified and explained. 

HEUI and HPCR injection systems were compared and a detailed description of their functionality and 

components was given. Through the literature review, the importance of the fuel injection system to have 

high fuel pressure, rate shaping control, and multiple injections was emphasized. The performance of the 

fuel injection system was shown to define the future of the modern heavy-duty diesel engine. 
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 : EXPERIMENTAL SETUP CHAPTER 3.0

3.1 TEST BED 

3.1.1 Engine  

 

 The engine used in this research was a Caterpillar ACERT (Advanced Combustion Emissions 

Reduction Technology) C7. This engine was chosen because it is widely used in military vehicles 

including Stryker and MRAP (Mine Resistant Ambush Protected) family of vehicles. This engine utilizes 

a HEUI injection system and is capable of a maximum injection pressure of 180 MPa. Intake air is 

compressed by a fixed-geometry turbocharger with waste gate control. Since the charge air cooler is 

vehicle mounted equipment, an air-to-water charge air cooler of appropriate size was used to cool the 

intake charge. Engine cooling was handled by a tube-in-shell heat exchanger. For the purpose of data 

analysis and simulation work, the valve timing was needed. Since this is not published values, the valve 

timing was measured using a dial indicator. The procedure and values are listed in Appendix A. Table 3.1 

lists other significant engine characteristics. 

No. Cylinders 6 

Horsepower (hp) 330 

Torque (ft-lbs) 860 

Displacement (Liter) 7.24 

Bore and Stroke (mm) 110 x 127 

Compression Ratio 16.5:1 
Table 3-1: CAT C7 Engine Characteristics 

3.1.2 Dynamometer 

 

 Engine loading was performed by a Froude-Hofmann 350 kW AC dynamometer. 480 V, 3-phase 

electricity powered a VACON drive which controlled the dynamometer through a TEXCEL V
12 

interface. 

Torque measurements were taken with a HBM-T40B inline torque meter. Figure 3.1 shows the test bed 

setup. 
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Figure 3.1: Engine and Dynamometer Setup 

3.2 DATA ACQUISITION SYSTEM 

3.2.1 Overview 

 

 The data acquisition was composed of both a high-speed system and low-speed system. These 

two systems were synchronized by a common engine cycle number. Figure 3.2 gives an overview of 

these systems. Their operation and equipment is described in detail in the following sections. 
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Figure 3.2: Overview of Data Acquisition System 

3.2.2 Low-Speed 

 

 ETAS hardware and software were used for the low-speed data acquisition. This system was 

chosen because of its seamless interface between the high-speed data acquisition and Bosch FlexECU. 

The low-speed system was synced to the high-speed system by sharing a common engine cycle number. 

INCA (version 7.1) was the software interface for the low-speed system. As well as handling data 

acquisition tasks, INCA communicated directly with a Bosch FlexECU. Plans to use this engine 

controller in future work would allow changing engine operating parameters and strategy.  

 Engine temperatures were measured with J-type thermocouples. Because of their temperature 

range, K-type thermocouples were used on the exhaust. Kulite pressure transducers were used to measure 

engine pressures. Yokogawa flow meters measured the water flow rate to the charge air cooler and engine 

coolant. A Pierburg PII 404 fuel flow meter measured engine fuel consumption. ETAS 400 series A/D 

converters connected these instruments to the control computer. 
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3.2.3 High-Speed 

 

 High-speed data acquisition was performed by a Kistler KiBox system. This device served as the 

charge amplifier for the piezoelectric cylinder pressure transducer as well as the signal processor for the 

crank angle encoder. The cylinder pressure transducer was a Kistler 6125C with a maximum pressure of 

300 bar. Kistler also manufactured the 360 pulse-per-revolution (1 CAD) crank angle encoder (PN 

2619A11). Through the KiBox, resolution of 0.1 CAD was possible through software interpolation. Data 

was recorded 100 engine cycles at a time.  

Both the ion current sensing glow plug and fuel injector signals were recorded by the KiBox after 

being passed through a signal amplifier. This signal amplifier was built by Electro-Mechanical 

Associates. It offered a signal gain 50 for up to two channels with a response frequency of 10 kHz. In 

addition, ion current potential voltage could be set from 0-100 VDC and polarity reversed. In this work, 

all experiments were conducted with +100 VDC connected to the ion current sensor. 

3.3 HARDWARE MODIFICATIONS 

 

 In order to take in-cylinder measurements, instrumentation bores were necessary to accommodate 

the cylinder pressure transducer and ion glow plug sensor. Since the CAT C7 uses an intake heater for 

cold starting rather than a glow plug, there was no previous bore to modify for the ion glow plug sensor. 

Caterpillar graciously assisted in providing the location they use for installing cylinder pressure 

transducers for research purposes. Typically, they install cylinder pressure transducers behind the fuel 

injector. In addition to this bore, another site was still needed for the location of the ion glow plug sensor. 

Finding a safe location was a challenging task for many reasons. First, the HEUI injector is very large in 

diameter. Second, the injector is installed in the cylinder on a compound angle. This eliminated options of 

making a simple straight bore because of the area affected by the injector’s path. Third, the location for 

the instrumentation bore had to avoid the direct spray of the fuel injector. Not only would disrupting the 

spray affect engine performance, but ion current measurements would be negatively impacted if the 

sensing tip was wetted by liquid fuel. Lastly, the cylinder head is very complicated due to the many 
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regions that must be avoided. Because of the HEUI system, there is a fuel rail and oil rail that run through 

the center of the cylinder head. In addition, the two intake runners and single exhaust runner must also not 

be penetrated by the instrumentation bore. 

To find a second location for an instrumentation bore, a damaged cylinder head was cut into 

several sections. Cylinder six was removed from the head and cut again down the centerline of the 

injector bore. This revealed the locations of the intake runners, exhaust runner, fuel rail, oil rail, and 

cooling passages. After the locations of these elements were identified, the spray pattern of the injector 

had to also be taken into account. An injector was installed in the head with the nozzle holes marked. Six 

lines were drawn 60 degrees apart from each to represent the injector spray pattern as can be seen in 

Figure 3.3. After extensive measurements, a second site for an instrumentation bore was located. A 

straight bore through a cylinder head casting plug led directly to the outer edge of the combustion 

chamber. From the bottom side of the cylinder head, Figure 3.3 displays the location for the 

instrumentation bore behind the injector and the second instrumentation bore through the casting plug. 

This picture was taken before the bores were actually machined. Figure 3.4 shows the two machined 

bores from the top side of the cylinder head. 

 

Figure 3.3: Bottom Side of Cylinder Head 

Pressure  
Transducer 

Glow  
Plug 



50 
 

 
 

 

Figure 3.4: Top Side of Cylinder Head 

Although Caterpillar originally provided details for placing a pressure transducer in the cylinder 

head behind the injector, it was decided to exchange this position for the glow plug ion sensor. This 

decision was made for two reasons. First, the glow plug ion sensor penetrated into the combustion 

chamber approximately 3-5 millimeters. Having the glow plug ion sensor near the injector insured the 

sensor was in the combustion bowl. With the tip of the sensor in the combustion bowl, the possibility of 

contact between the piston and sensor at TDC was minimized. Another reason for moving the glow plug 

sensor closer to the injector was the strength of ion current would be strongest in the combustion bowl. 

Unlike cylinder pressure, ionization is a local measurement. While moving the pressure transducer near 

the cylinder wall did not affect the cylinder pressure measurement, the amplitude of the ion current signal 

would have been negatively impacted.  

 Since both the instrumentation bores penetrated cooling passages inside the cylinder head, sleeves 

were used to seal the coolant from the combustion chamber and from mixing with engine oil. These 

sleeves were threaded into the firing deck of the cylinder head. A copper crush washer prevented 

combustion gases from leaking past the threaded sleeve. At the top end, an O-ring acted as a barrier 

keeping coolant from entering the valve train and mixing with engine oil. Both the threaded portion and 

Pressure  
Transducer 
Bore 

Glow Plug 
Bore 
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O-ring were coated with an anaerobic sealant (Loctite 680) as an additional measure of protection. Figure 

3.5 shows both the pressure transducer and glow plug ion sensor sleeves. 

 

Figure 3.5: Pressure Transducer Sleeve (Left) and Glow Plug Sleeve (Right) 

 

3.4 ION SENSOR DESIGN 

3.4.1 Glow Plug Ion Sensor 

 

 Since the CAT C7 does not use glow plugs for cold-starting, a market search was conducted for 

the thinnest metal-tipped glow plugs available. Thin glow plugs were desirable because this increased the 

space available between the glow plug and instrumentation sleeve for insulation. Metal-tipped glow plugs 

were necessary, as opposed to ceramic, because a good electrical conductor was needed to carry the ion 

current signal. Bosch glow plugs (PN 0250403008-4N3) were selected to be modified for ion current 

sensing.  

In order for the glow plug to retain its heating function while also being an ion current sensor, an 

additional wire needed to be attached to the glow plug.  Normally, the glow plug harness is a single wire 

harness carrying a positive voltage. The circuit is completed through the glow plug body through the 

cylinder head and then back to battery ground. However, since the glow plug was insulated from the 

cylinder head for the purposes of detecting ion current, a second wire was attached to act as the ground. 

This was accomplished by press fitting a copper sleeve onto the threaded portion of the glow plug. The 

copper sleeve served as a base to which the ground wire was soldered. This was then covered with heat 

shrink for protection. Since the instrumentation sleeve was longer than the glow plug, the positive 

terminal was extended. Two methods were tested for extending the positive terminal. First, a small hole 
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was drilled in the terminal. The wire was inserted into the hole and they filled with solder. Another 

method involved brazing a steel rod onto the terminal. An example of the wire/copper sleeve method is 

displayed in Figure 3.6 while Figure 3.7 shows the brazed rod method.  

The ion current glow plug was retained in the instrumentation sleeve using a threaded plug with a 

locking nut. The threaded plug had a bore through the center which allowed the leads to pass out. An 

insulated lower and upper bushing kept the ion current glow plug from touching the instrumentation 

sleeve walls. The upper bushing also provided a surface for the threaded plug to tighten against. Figure 

3.7 shows the components used to retain the glow plug.  

 

 

Figure 3.6: Ion Current Glow Plug with Attached Wires 

 

 

Figure 3.7:Ion Current Glow Plug with Brazed Rod 
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 : EXPERIMENTAL DATA AND ANALYSIS CHAPTER 4.0

4.1 DESCRIPTION OF MEASUREMENT CONDITIONS 

4.1.1 Data Sampling and Presentation 

 

The experimental data presented in this thesis were acquired at 3600 pulses per revolution (0.1 

CAD). The cylinder pressure traces and ion current signals presented in this paper are the raw signals. 

However, these signals have been averaged over 100 engine cycles. This was done to remove noise and 

the effect of cycle-to-cycle variability. In calculating the RHR (Rate of Heat-Release), a low-pass Fourier 

filter (roll-off start = 2000 Hz, end = 3360 Hz) was used to remove signal noise from the cylinder 

pressure transducer.  

4.1.2 Engine Operating Mode 

 

As described in Chapter 2, the HEUI system is capable of multiple injections and rate shaping. 

The HEUI system employed on the research engine in this study was also capable of multiple injections 

and rate shaping. However, in order to simplify the analysis of the experimental results, the engine was 

operated under a single injection event. The engine was set in this mode by replacing the coolant 

temperature sensor with a resistor. Since the resistor held a constant value regardless of actual engine 

temperature, the Caterpillar ECU operated the injection system in the “cold mode” parameters. This mode 

affected both the injection timing and also the number of injections. In this way, the production ECU 

allowed for a comparison of different engine loads while still using a single injection event. Otherwise, 

the number of injection events would have changed from light loads to high loads. 

As the experimental data is reviewed, it is important to keep in consideration the engine was in 

“cold mode”, not the Caterpillar production injection strategy. At medium and high loads, the duration of 

the single injection continues into the diffusion burn portion of combustion. Traditionally, this is very 

undesirable for the sake of emissions, specifically for soot production. The benefit of multiple injections 

and rate shaping over a single injection event in a HEUI system has been described in detail by Caterpillar 

[19]. Figure 4.1 gives an overview of the advantage of multiple injections and rate shaping. Since the 
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focus of this work was not a study of the emissions of this engine, the simplicity of a single injection for 

data analysis was preferred over the higher soot output.  

 

 

Figure 4.1: Soot Comparison for Optimized Injection Strategy [19] 

4.1.3 Description of Example Data 

 

In the same engine cylinder, simultaneous recording of cylinder pressure, ion current from the 

glow plug, ion current from the fuel injector, and injection command was possible. Although this 

capability was resident in the engine, often issues with the one of ion current probes prevented 

simultaneous recording. However, in all figures in this work where ion current from the glow plug and 

ion current from the injector are presented together, the data was recorded simultaneously. Figure 4.2 

demonstrates a recording session of the full set of in-cylinder instrumentation over a complete engine 

cycle. This data was recorded at an engine load of 85 ft-lbs at 1000 RPM. 
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Figure 4.2: 85 ft-lbs at 1000 RPM, Full Cycle 

 The data represented in Figure 4.2 is displayed again in an expanded view in Figure 4.3. From 

this perspective, the details of the combustion process can be described in detail.  
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Figure 4.3: 85 ft-lbs at 1000 RPM, Expanded View 

 For this engine speed and load, the location of peak cylinder pressure occurred at 3.5 CAD 

ATDC. The command for fuel injection began at -17.9 CAD BTDC and ended at -6.2 CAD BTDC. Since 

the injection command was early and short in duration, lasting only 11.7 CAD, the resulting combustion 

was mostly premixed combustion. This is evidenced by the large peak located in the RHR curve 

occurring at 0.5 CAD ATDC. A predominantly premixed combustion is expected since the engine load 

was light and fuel finished delivery before TDC. A small peak in the RHR at 3.3 CAD ATDC represents 

the diffusion burn portion of combustion. This peak becomes predominant as engine load increases. The 

ion current measured by the fuel injector detects the actuation of the solenoid in the fuel injector. Peaks in 

this signal occur at the same timings as the fuel injection command. This behavior is described with 

greater detail in the following section devoted to the fuel injector ion current. Combustion is detected by 

the fuel injector ion current beginning 2.4 CAD ATDC. This is later than the glow plug ion current signal 

which detected combustion at 0.6 CAD ATDC. This time shift can be explained by the position of the 

glow plug ion current sensor. Since this sensor was deeper in the combustion bowl and closer to the wall, 

it is likely combustion began there first. At the perimeter of the combustion bowl, the liquid fuel jet has 

begun to evaporate and is the first to ignite. The glow plug ion current signal also had a higher rise in its 

peak. This can be attributed to the glow plug’s larger surface area than the fuel injector.  
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4.2 EFFECT OF ZERO-SHIFT 

 

In both the fuel injector and glow plug ion current signals, the effect of zero-shift was present. 

Zero-shift is defined as the increase in the baseline of ion current over time. The ideal ion current signal 

would return to the zero crossing when combustion has completed. However, over time a shift is 

witnessed which causes the ion current signal to increase even though combustion is not taking place. 

Zero-shift occurs for two main reasons. First, the ion current probe can be covered with soot which can 

cause a short to ground. As discussed in the “Engine Operating Mode”, the experiments were conducted 

using a single main injection. This causes a high amount of soot production. As the buildup of soot 

increases, so does the effect of zero-shift on the ion current signal.  

The second reason zero-shift occurs is due to a breakdown in ion current sensor insulation. As the 

insulation breaks down, a high resistance path to ground is created. Over time, the resistance decreases 

and the flow of the ion current increases. Engine load proved to have a great effect on the breakdown of 

ion current sensor insulation. The increased cylinder pressure at medium and high loads caused the 

insulation to fail rapidly. In addition, the medium and high loads also caused increased temperature in the 

cylinder head. High temperatures caused the dielectrics in the ion current sensor to lose their insulating 

properties.  

The occurrence of zero-shift can be categorized two different ways: within the same test point or 

between test points. If zero-shift develops within the same test point, this usually is a sign that the ion 

current sensor’s insulation is deteriorating rapidly. Often, a complete electrical short follows quickly. 

Figure 4.4 is an example of this. In this figure, 100 engine cycles of the same test point are displayed. In 

the last 30 engine cycles, the ion current baseline diverges from the other engine cycles for this test point. 

When zero-shift happens within a cycle, it must be identified to be properly accounted for during data 

processing. In this study, when zero-shift occurred near the end of data collection at a given test point, 

engine cycles which diverged from the majority were disregarded.  
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Figure 4.4: Example of Zero-Shift within a Test Point 

 The second category of zero-shift takes place at the transition to a new test point. The increase of 

cylinder pressure due to increased load often causes additional stress on the ion current sensor’s 

insulation. Figure 4.5 illustrates zero-shift for fuel injector ion current while Figure 4.6 glow plug ion 

current zero-shift. Correcting zero-shift between test points can easily be handled in data processing. An 

offset can be applied to bring the signals to a common base. In the following sections describing ion 

current characteristics, offsets were applied to better visualize the effect of changing engine load has on 

amplitude and other features. 

 

 

 

 

 

Zero-Shift Runs Removed 
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Figure 4.5: Zero-Shift in Fuel Injector between Test Points 

 

Figure 4.6: Zero-Shift in Glow Plug between Test Points 

4.3 FUEL INJECTOR ION CURRENT CHARACTERISTICS 

 

Although fuel injectors previously have been converted into ion current sensors, these have been 

of the HPCR type. The HEUI fuel injector proved to be especially challenging to modify for this purpose. 

Since HEUI fuel injector has separate regions that need to seal against oil and fuel, the number of surfaces 

to insulate increase. In addition, the tight tolerances cause several different types of insulating coatings to 

scratch, tear, or crack during the fuel injector installation. Due to these issues, only a limited set of data 

from the fuel injector was collected.  
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4.3.1 Ion Current as a Fuel Injection System Diagnostic 

 

During the process of recording ion current measurements with the fuel injector, an unexpected 

discovery was made. Throughout the time period of the injection command from the ECU, there was a 

disturbance in the ion current signal measurement. Initially, this was attributed to signal noise distorting 

the measurement. However, under closer examination, it turned out to be useful information. By 

energizing the fuel injector with a voltage potential, not only the ion current was detected, but also the 

electrical signature of the injector solenoid and injector driver. This signature was very repeatable and 

reliable with features in the ion current signal. In fact, all major events in the injection command relates to 

either a rising or falling peak in the ion current signal. Figure 4.7 displays the influence of the injection 

command on the ion current signal.  

 

Figure 4.7: Comparison of Injection Command to Injector Ion Current Signal 

 From Figure 4.7, the start of injection command, start of peak current, end of peak current, start 

of hold current, end of hold current, and end of injection command can all be clearly discerned using the 

ion current signal. To further emphasize this point, Table 4.1 gives the CAD degree for each of these 

events. By reviewing this table, the accuracy of the ion current signal to model the injection command is 

proven. In most cases, there exists only 0.1 CAD offset between the injection command and the ion 

current signal.  
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Injection System Event Injection 

Command 

Ion 

Current  

Start of Injection Command -18 CAD  -17.9 CAD  

Start of Peak Current -16.3 CAD -16.4 CAD 

End of Peak Current -9.8 CAD -9.7 CAD 

Start of Hold Current -8.2 CAD -8.2 CAD 

End of Hold Current -6.7 CAD -6.6 CAD 

End of Injection Command -6.1 CAD -5.9 CAD 

Table 4-1: Comparison of Injection Command to Fuel Injector Ion Current 

In addition to being able to detect the signature of the injector solenoid and injector driver in 

cylinder 5, the instrumented cylinder, the signature was also detected for cylinder 6. This was discovered 

when viewing a full engine cycle, not just the region surrounding combustion. Figure 4.8 shows two 

electrical signatures. The first one occurs in cylinder 5 and has the accompanying injection command as 

recorded by a current clamp. The second signature occurs at approximately 240 CAD. This was identified 

as cylinder 6 since the engine’s firing order is 1-5-3-6-2-4. Due to the firing order, an offset of 240 CAD 

is expected.   

From the literature review, Estefanous [36] attributes the detection of the electrical signature to 

the Hall Effect. Interestingly, cylinder 5 detected the electrical signature of cylinder 6, but not cylinder 4. 

Since cylinder 5 is equidistant from cylinder 4 and cylinder 6, it was clear that the electrical signature of 

cylinder 6 was not transmitted by the fuel injector solenoid through the air. After investigating the engine 

electrical harness, it was found that both cylinder 5 and 6 share a common ground. Therefore, a reflection 

of the energizing of the fuel injector solenoid by the ECU injector driver in cylinder 6 was transmitted 

through the common ground back to cylinder 5.  
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Figure 4.8: Electrical Signature of Cylinder 5 and 6 

The application of this discovery could be leveraged as a diagnostic for the HEUI fuel injection 

system. Using an ion current sensing fuel injector, details about the injection system can be determined. 

Specifically, during an engine malfunction, the failure between a bad injector driver in the ECU or a bad 

fuel injector solenoid can be distinguished. Since the ion current fuel injector senses multiple cylinders, 

problems occurring in more than one cylinder can be attributed to the injector driver. Otherwise, the 

failure can be isolated to an individual cylinder and assumed to be an issue with the fuel injector solenoid. 

In addition, by examining the rise and fall of the ion current signal around the injection command, the 

health of the injector driver or solenoid can be evaluated.  

4.3.2 Effect of Engine Load on Ion Current 

 

Unfortunately, a limited amount of data was available from the fuel injector ion current sensor. 

Due to issues insulating the injector, the desired investigation to determine the effect of engine load on 

ion current was cut short. Only four engine loads (85, 100, 175, and 310 ft-lbs) at a 1000 RPM were 

recorded. The results are shown in Figure 4.9 below.  

 

Cylinder 5 Cylinder 6 
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Figure 4.9: Injector Ion Current at 1000 RPM 

In examining the above plots, there are several unusual observations. First, the amplitude of the 

ion current is supposed to increase with engine load. Although this relationship was followed by the glow 

plug ion current sensor, the inverse was true in the fuel injector ion current sensor. Second, the amplitudes 

of the ion current signals were much lower that the glow plug ion current sensor. While the fuel injector 

ion current signal ranged from 0 – 5 µA, the glow plug ion current signal ranged from 0 – 70 µA for 

similar engine loads. Third, the 310 ft-lbs test point did not detect an ion current signal. Lastly, except for 

the 85 ft-lbs test point, there was a high frequency oscillation on top of the ion current signal.  

The lack of success in the fuel injector ion current signal is attributed to several reasons. First, the 

detection of the ion current signal from the fuel injector was intermittent. Although many insulation 

methods were attempted on the fuel injector, the search for a satisfactory solution is still ongoing. These 

methods include ceramic paint, dielectric coatings, and fiberglass tape. In Appendix B, a complete listing 

of coatings used for insulation for the fuel injector is provided for reference. Since the data presented here 

is the average of 100 engine cycles, engine cycles where no ion current is detected lowers the average 

amplitude.  

Second, it is suspected there is an interaction between the glow plug and fuel injector ion current 

sensors. Although other researchers in the literature have used multiple ion sensors in the same cylinder, 
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typically the sensors have been of similar design. Since the surface area and penetration of the glow plug 

versus the fuel injector are very different, it is reasonable to believe that there was a greater attraction by 

the glow plug than the fuel injector. From the chemical and thermal processes which create ions, only a 

finite number are present in the combustion gas each engine cycle. If the attraction of the glow plug is 

higher than the fuel injector, the ions will flow through the path of least resistance. Therefore, the 

majority of the ions would be collected by the glow plug ion sensor which in turn decreases the available 

amount to be detected by the fuel injector ion sensor. Unfortunately, damage to the fuel injector insulation 

prevented running tests to validate this theory. 

Lastly, the electrical signature produced by the fuel injector solenoid and injector driver over runs 

the ion current signal at medium and high loads. This can be easily seen from Figure 4.10 which 

represents the 310 ft-lbs test point. From the RHR curve, the peak of premixed combustion occurred at 4 

CAD which was within the period of time that the fuel injector was still injecting fuel. Attempting to 

measure ion current while the fuel injector solenoid is energized results in distortion of the ion current 

signal by the electrical signature of the solenoid and driver. Although the electrical signature from the fuel 

injector solenoid and driver can be used as a diagnostic, it presents a limitation when trying to measure 

ion current.  
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Figure 4.10: Overrun of Electrical Signature into Combustion 

4.4 GLOW PLUG ION CURRENT CHARACTERISTICS 

 

Ion current measurements obtained from the ion sensing glow plug provided a much more 

reliable signal than that of the fuel injector. This is primarily because the geometry of the body of the 

glow plug which made insulation much simpler than the complex shape of the fuel injector. If a more 

durable method for insulating the fuel injector been discovered, the results from both the glow plug and 

fuel injector should have been very similar.  

4.4.1 Effect of Injection Timing on Ion Current 

 

Since this study was performed on the production Caterpillar ECU, the start of injection was not 

able to be held at a fixed timing. Although the actual start of the fuel spray was not known due to the 

spool valve delay in the HEUI fuel injector, the start of the fuel injection command was recorded through 

a current clamp. Figure 4.11 presents the fuel injection commands for the glow plug ion current test 

points. Figure 4.12 shows the change of injection duration with engine load.  
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Figure 4.11: Change in Injection Timing with Engine Load 

 
Figure 4.12 Change in Injection Duration with Engine Load 

From Figure 4.11, SOI (Start of Injection) moved steadily closer to TDC with increasing engine 

load except for the highest load point, 730 ft-lbs. However, this point still had the latest EOI (End of 

Injection). The SOI for 730 ft-lbs broke the trend from the other load points because it was the only way 

to continue increasing injection duration without introducing fuel too late in the expansion stroke. As 

expected, Figure 4.12 shows the injection command duration increasing with engine load. Longer 
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injection duration is required to place more fuel in the cylinder to perform at heavy loads. The end of 

injection steadily grew as the duration of injection increased.  

 In order to identify the influence of the start of injection command over ion current, a reference 

point in the ion current signal was needed. In the literature, Badawy [3] determined that the SOIC (start of 

ion current) was the most reliable parameter in the ion current signal. He defined the SOIC by first 

finding the value of the ion current signal at SOI. The value of the ion current at SOI set the threshold for 

deciding SOIC. The threshold was increased by 20% to separate the rise of ion current from other signal 

noise. In addition, a 0.2 µA offset prevented threshold from being a negative value if the signal noise was 

below the zero crossing at SOI. Equation 4.1 is the described expression for determining SOIC. 

𝑆𝑂𝐼𝐶 = [𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(@𝑆𝑂𝐼) + 0.2𝜇𝐴] ∗ 120%  (4.1) 

 By using Badawy’s expression, a consistent method for determining SOIC was provided. This 

offered a basis for making a correlation between SOIC and SOI. Since the Caterpillar production ECU 

was used in these experiments, SOI was not able to be held constant. This prevented a direct comparison 

of the SOI to SOIC. To resolve this, the delay between these two points was compared. The SOIC delay 

was calculated as the sum of the absolute values of SOI and SOIC. This parameter gives the number of 

CAD between SOI and SOIC.  Figure 4.12 summarizes the SOI, SOIC, and the delay in SOIC. A linear 

trend line was fitted to the delay in SOIC curve. This shows the consistency of the delay in SOIC with 

change of engine load. Table 4.2 gives the actually CAD for these injection events.  
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Figure 4.13: Delay in SOIC from SOI 

 

 

 

 

 

 

 

 

Table 4-2: Offset in SOIC from SOI 

 For the middle test points (165 to 560 ft-lbs), the delay between SOIC and SOI was 27.1 CAD +/- 

0.35 CAD. However, if the lowest and highest test points are considered (100 to 730 ft-lbs), the spread 

increases sharply to +/- 1.8 CAD with a middle value of 26.8 CAD. It is believed that the increased 

spread in the SOIC delay with the lowest and highest test points can be attributed to the actuation of the 

HEUI system. In addition to the change in injection timing by the ECU, the actual start of injection is also 

influenced by the HEUI oil supply pressure. Based on engine speed and load, the HEUI injection pump 

internally changes displacement which in turn increases the oil supply pressure to the fuel injector. With 

Engine 

Load [ft-lbs] 

SOI 

[CAD] 

EOI 

[CAD] 

Delay 

[CAD] 

100 -17.6 -2.0 25.0 

165 -16.8 1.5 26.7 

235 -15.2 4.8 27.2 

280 -13.7 7.3 27.5 

400 -12.3 11.1 27.2 

560 -12.0 14.6 27.4 

730 -16.3 15.0 28.6 
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higher oil supply pressure, the opening of the fuel injector needle opens at a higher rate of speed. 

Although the change in oil supply pressure would offer an explanation in the change in SOIC delay, the 

expected trend is opposite of that which was observed. To truly build a correlation between SOIC and 

SOI, a modified fuel injector with needle lift sensor is required. 

4.4.2 Effect of Engine Load on Ion Current 

 

A sweep of engine loads was performed at a constant engine speed in order to determine the 

effect on ion current. At 1440 RPM, seven test points from 100 to 730 ft-lbs were chosen. From running 

this sweep, Figure 4.13 shows that the amplitude of ion current increases with the increase in engine load. 

Although this figure also shows changes in the SOIC, this is a function of the different injection timings, 

not engine load. 

Figure 4.14: Change in Cylinder Pressure with Engine Load 
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Figure 4.15: Change in Ion Current Amplitude with Engine Load 

To illustrate the relationship between engine load and ion current amplitude, the amplitude of 

peak ion current was investigated. Since cylinder pressure increases with engine load, a comparison was 

made of peak cylinder pressure to peak ion current. This is shown in Figure 4.16 and is fitted with a linear 

trend line. In order to describe the closeness of the fit of the linear trend line to the data, the coefficient of 

determination,  𝑅2, was calculated and found to be 96.6%.  

 

Figure 4.16: Relationship between Ion Current Amplitude and Cylinder Pressure 
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4.4.3 Comparison of SOIC to RHR 

 

Although, earlier in this paper, it has been shown SOIC is related to the start of injection, it is also 

important to demonstrate the relationship between SOIC and actual combustion events. In order to be 

consistent with our significant publications in ion current research, LPPC (location of the peak of pre-

mixed combustion) from the RHR of heat release was chosen. This is a term that Badawy [3] defined in 

his work. LPPC is the first peak in the RHR which signals pre-mixed combustion has occurred. Figure 

4.17 identifies the LPPC and shows the RHR curves for the ion current data collected by the glow plug. 

Figure 4.17 : RHR for Ion Current from Glow Plug 

From Figure 4.17, there are a few important trends that can be identified. First, with increasing 

engine load, amplitude of the LPPC decreases. Looking back at Figure 4.11, this expected because the 

SOI was advancing towards TDC. This means that the amount of fuel in the combustion chamber at the 

start of combustion was less than low-load points with earlier SOI. Second, amplitude of the diffusion 

burn period increased with engine load. With SOI closer to TDC and injection duration increasing with 

engine load, the majority of the fuel is injected and burned later in the expansion stroke. This accounts for 

the higher diffusion burn at medium to high load points. Although the highest load point, 730 ft-lbs, also 

follows these two trends, its SOI was retarded to increase the injection duration without placing EOI too 

LPPC Diffusion 
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late in the expansion stroke. Figure 4.18 summarizes the trends of decreasing LPPC and increasing 

diffusion burn with increased engine loading. 

Figure 4.18: Amplitudes of LPPC and Diffusion Burn 

 In other ion current research, the delay between LPPC and SOIC has been 0.5-1 CAD [3]. 

However, in this experimental study, the delay between these two events was much greater. In addition, 

the delay steadily increased with increasing engine load. Although great care was taken in choosing a site 

for the ion current glow plug to avoid the fuel injector spray, it is believed that liquid fuel was wetting the 

sensing tip. This is reasonable since the delay is small at light loads where the EOI comes early. At high 

loads, a large delay is experienced since the longer injection duration pushes EOI deeper into the 

diffusion burn. Figure 4.19 relates the delay of LPPC and SOIC to the EOI of the injection command.  
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Figure 4.19: Increase of Delay Between LPPC and SOIC 
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Since SOI could not be held constant, the relationship between SOIC and LPPC had to made by 

comparing the delay in SOIC. Figure 4.20 shows the SOIC, LPPC, and delay in SOIC at various engine 

loads. The delay in SOIC was fitted with a linear trend line. The coefficient of determination,  𝑅2, was 

calculated and found to be 94.4%. 

 

Figure 4.20: Delay in SOIC from LPPC 

From Figure 4.20, it can be seen that the delay in SOIC steadily increases with increased engine 

load. This means that the LPPC and SOIC grow farther apart at higher loads. Since the rate of increase is 

was fairly constant, ion current signal can be used as a method to predict the timing of pre-mixed 

combustion. However, more work is needed to understand the effect of different engine speeds on this 

relationship. 
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 : CONCLUSION AND RECOMMENDATION FOR CHAPTER 5.0

FUTURE WORK 
 

In this work, experimental measurements were performed on a military, heavy-duty, diesel 

engine. The findings of these experiments are summarized by the following conclusions: 

1. The detection of ion current on a HEUI injection system was demonstrated through both a 

modified fuel injector and modified glow plug. Although both ion current sensors produced an 

ion current signal, the glow plug produced the best results. Insulation issues with the ion current 

fuel injector sensor kept the results from being comparable.  

2. In addition to sensing ion current in the combustion chamber, the ion current fuel injector 

detected the characteristics of the fuel injection command from the ECU. These characteristics 

include start of injection command, start of peak current, end of peak current, start of hold 

current, and end of hold current. From these events in the injection command, the ion current fuel 

injector can be used as diagnostic tool for the fuel injection system.  

3. The time delay between the SOIC and SOI command was found to be constant regardless of 

injection timing or engine load. The time delay had very little variation in medium engine loads, 

but variation increased at light and heavy engine loads.   

4. The amplitude of the ion current signal was shown to rise with cylinder pressure. Since cylinder 

pressure increases with engine load, a direct link between ion current amplitude and engine load 

can be made.  

5. Ion current can be used as a method to predict the timing of pre-mixed combustion. The delay in 

SOIC from LPPC was measured and found to increase at a constant rate with increasing engine 

load. 

Due to time constraints and failure of the ion current glow plug instrumentation sleeve, not all of the 

planned experiments were conducted. In future work, the following areas are recommended for 

investigation: 
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1. A method for filtering or shielding the ion current fuel injector from the injection command is needed. 

Although sensing the injection command is helpful as a diagnostic, the over run of the injection 

command into the detection of ion current from combustion poses a serious limitation. The ability to 

switch between modes of sensing the injection command and detecting ion current is needed in order 

to properly evaluate the HEUI fuel injector as a viable option as an ion current sensor. 

2. The effect of multiple injections on the ion current signal has not been explored on a HEUI system. 

To test the sensitivity of the ion current response, sweeps of engine load at different engine speed 

need to be performed. This will demonstrate if multiple injections can be discerned from the ion 

current signal. 

3. Variation in the time delay from SOIC to SOI command could be explained by oil actuation pressure 

or other HEUI system characteristics. The use of an instrumented fuel injector with needle lift sensor 

could detect the actual start of injection. This would reveal if the variation is explainable by HEUI 

system characteristics or is inherent to diesel combustion processes. Originally, an injector with 

needle lift sensor was planned for this effort, but it was damaged before it could be used to capture 

this information. 
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APPENDIX A 
 

 For the purpose of data analysis and simulation, the valve timing events for the engine were 

needed. Although this information was requested from Caterpillar, they were not able to share it since it 

was deemed proprietary. Because of this, the valve timings were measured manually. This was done by 

placing a dial indicator on the rocker arm of the intake and exhaust valves. The engine was then rotated 

slowly by hand. Marks were placed on the crankshaft pulley for at the different valve timing events. The 

angle between these marks was then measured using a 360 degree protractor. Figure A.1 shows the dial 

indicator position on the rocker arm. Figure A.2 displays the valve timing events on the crankshaft pulley. 

Table A.1 lists the measured valve timing events.  

 

Figure A. 1: Position of Dial Indicator to Measure ValveTimings 
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Figure A. 2: Labeling of Injection Timings Events on Crankshaft Pulley 

 

Valve Event Timing 

EVO 59⁰ BBDC 

IVO 21⁰ BTDC 

EVC 13⁰ ATDC 

IVC 37⁰ ABDC 

Table A. 1 
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APPENDIX B 
 

Product Part Number Reason for Failure 
Glyptal Red Enamel 1201 Scratched off during installation 

ToolMates Insulating Epoxy 401 Scratched off during installation 

ToolMates Red Insulating Varnish 6084 Scratched off during installation 

Permatex Muffler Tailpipe Sealer 80335 Could not apply even consistency 

Permatex Muffler and Tailpipe Putty 80333 Could not apply even consistency 

Permatex Exhaust Repair 80332 Could not apply even consistency 

QuikSteel Hi-Temp Could not apply even consistency 

FiberFix 80335 Too thick 

PTFE Tape 76495A12 Wore through at medium engine loads 

Ceramic Coating NA Cracked off during installation 
Table A. 2: Unsuccessful Attempts to Insulate Fuel Injector 
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ABSTRACT 

 

THE STUDY OF IONIZATION IN A MILITARY, HEAVY-DUTY, DIESEL ENGINE 

by 

STEVEN ZIELINSKI 

December 2015 

Advisor: Dr. Naeim Henein 

Major: Mechanical Engineering 

Degree: Master of Science 

This thesis is an investigation of ionization in a military, heavy-duty, diesel engine. Ionization is a 

phenomenon which occurs in both spark-ignited and diesel engines. During the reactions of combustion, 

charged molecules and electrons are produced. The current produced, ion current, from these charges can 

be measured. The measurement of ion current can serve as an in-cylinder diagnostic for closed-loop 

engine control strategies. In this work, a literature review was performed to survey previous work as it 

pertains to ionization in diesel engines. In addition, a detailed description and comparison of the HEUI 

injection system was made to HPCR. This was done to give a fundamental understanding of the 

characteristics of the injection system which was employed in the research engine. Lastly, an analysis of 

experimental data provides insight as to the relationship between ion current and key combustion 

parameters. 
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