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Chapter 1

General introduction

Metastatic prostate cancer

Prostate cancer is the most prevalent malignancy in men worldwide and in the Netherlands 

over 12,000 men were diagnosed with this disease in 20181,2. In general, prostate cancer has an 

indolent course, but men with de novo or those that progress to metastatic disease represent a 

subgroup with poor prognosis. Metastatic prostate cancer can be divided into two disease phases: 

hormone-sensitive prostate cancer (HSPC) that will be followed by castration-resistant prostate 

cancer (CRPC). The mainstay of therapy for metastatic prostate cancer is targeting the androgen 

receptor (AR) pathway by reducing circulating testosterone levels (androgen deprivation therapy, 

ADT). Most patients will initially respond to ADT often for several years (HSPC phase), however, 

prostate tumor cells will inevitably become resistant to ADT and progress (CRPC phase), leading 

to considerable morbidity and ultimately to death (Figure 1). For CRPC patients the available 

treatment options have rapidly evolved and include chemotherapy, second-line AR-targeted 

therapy, radionucleotides, immunotherapy and molecular-targeted therapy (Table 1). Recently, 

some of these treatment options have shifted to being applied in the HSPC phase as well. Although 

the treatment landscape for metastatic prostate cancer has dramatically changed the last decade, 

selecting the right treatment at the right time in the right order, sequential or in combination for 

an individual patient remains challenging as we lack predictive and monitoring biomarkers. 

Figure 1. Disease progression of prostate cancer
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Table 1. Available treatment options for castration-resistant prostate cancer patients

Chemotherapy Second-line AR-
targeted therapy

Radionucleotides Immunotherapy Molecular-
targeted therapy

Bone-
modifying 

agents

Docetaxel Abiraterone acetate Radium-223 Sipuleucel-T* Olaparib Zoledronic 
acid

Cabazitaxel Enzalutamide Strontium-89 Pembrolizumab Denosumab

Mitoxantrone Apalutamide Samarium-153

Rhenium-188

*Not available in The Netherlands
Treatments in italics indicate drugs currently investigated in clinical trials

Current biomarkers and clinical trial endpoints

Biomarkers are characteristics that are measured as an indicator of (patho)physiological 

processes or of responses to an intervention3. They comprise clinical, laboratory and imaging 

measurements, but also genetic and molecular parameters. Furthermore, based on their 

application several subtypes exist including diagnostic, prognostic, predictive and monitoring 

biomarkers. Biomarkers can be used as endpoint in clinical trials if they are precisely defined and 

reflect an outcome of interest that can be analyzed to address a particular research question3. 

Currently, the recommended biomarkers to use in clinical trials for metastatic prostate cancer 

are clinical measures (symptoms/performance status), blood-based markers (prostate-specific 

antigen (PSA), alkaline phosphatase, lactate dehydrogenase, complete blood count and circulating 

tumor cells), imaging modalities (computer tomography (CT) scan/magnetic resonance imaging 

(MRI) scan and bone scintigraphy scan), and patient-reported outcome measures4. 

Measuring symptoms, performance status and patient-reported outcomes is of importance to 

assess if a patient is fit for therapy, to assess therapy toxicity and to evaluate therapy response. 

Importantly, pain is associated with worse survival and adverse quality of life5,6. 

PSA is the most commonly used biomarker in prostate cancer and is used as a diagnostic, 

prognostic and monitoring marker. However, PSA is a prostate-specific marker, rather than a 

prostate cancer-specific marker and is in itself an endocrine-dependent enzyme, regulated by an 

androgen-dependent promoter7,8. Thus, PSA levels will be directly affected by ADT and second-

line AR-targeted therapies and does not simply reflect suppression of tumor burden. Importantly 

and seemingly contradictory, in CRPC PSA levels do not always correlate with disease burden 

and clinical benefit9. Therefore, PSA dynamics should be interpreted with caution and it is not 

recommended to base treatment decisions on PSA dynamics alone3. Other blood-based markers 

are measured at baseline to determine prognosis and are often not used to assess therapy 

response. Circulating tumor cells will be discussed in more detail below. 

Image modalities like CT, MRI and bone scans are useful to evaluate disease burden and 

to assess (late) therapy response using well-defined criteria. Unfortunately, this can lead to 

prolonged treatment in unresponsive patients with a potentially toxic and/or expensive agent. 

Furthermore, bone scans measure bone metabolism using 99mTc-MDP that is incorporated into 

hydroxyapatite and thus do not directly assess prostate tumor cells themselves but rather their 

derived effects on bone10. 

Using these currently recommended biomarkers in clinical trials it is evident that they are 

insufficient to monitor early therapy response and fail to capture the highly dynamic tumor 

biology. In addition, clinical trial outcome discriminates clear responders from non-responders to 

tested drugs, suggesting presence of inherent tumor features that determine why some patients 

fail treatment. Thus, stratification based on specific tumor features that predict treatment 

response could improve the clinical outcome of patients. 

Genomic landscape of metastatic prostate cancer

Over the recent years comprehensive genomic analyses have shown that metastatic prostate 

cancer harbors a very complex genomic landscape consisting of multiple single nucleotide 

variants and structural rearrangements11,12. Well-known prostate cancer driver genes are AR, 

PTEN, TP53 and RB1, and the TMPRSS2-ERG gene fusion11,13,14. Still, AR is the most widely used 

actionable genomic target in prostate cancer, although tumors eventually become resistant. 

Resistance mechanisms roughly encompass two mechanisms: (1) increasing androgen sensitivity 

by activating mutation, overexpression and alternative splicing of AR; or (2) increasing androgen 

availability by changes in androgen biosynthesis and metabolism15-19. However, sequencing efforts 

showed that actionable targets are also present in non-AR related pathways, including PI3K, 

Wnt and DNA repair12. In addition, non-coding alterations appear to be of prognostic value and 

might even have functional implications11. Whether these alterations represent driving events or 

actionable targets is still not clear. 

Liquid biopsies

The vastly growing amount of genomic data advances our understanding of the biology of 

metastatic prostate cancer. It has become clear that metastatic prostate cancer is a highly 

heterogeneous disease. The genomic makeup of a tumor evolves over time and differs between 

patients and even between tumor sites within one patient. This urges us to reconsider our current 

‘gold standard’, a tumor biopsy, to acquire genomic information from the tumor. Obtaining 

tumor biopsies is a burdensome procedure with risk of complications for the patient. Moreover, 
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metastatic prostate cancer is frequently confined to the bone, making biopsies not always 

successful (success rate: 25-75%) and not readily performed sequentially during a treatment 

course20,21. In clinical practice, this often leads to a long time interval between the obtained tumor 

biopsy and the given treatment.

With the emergence of liquid biopsies a new approach to obtain tumor-derived DNA has become 

available with diagnostic, predictive, prognostic and disease monitoring applications. Liquid 

biopsies include circulating cell-free DNA (cfDNA) and RNA (cfRNA), circulating tumor cells 

(CTCs), and exosomes (Figure 2). The main advantage is that liquid biopsies can be obtained in a 

minimally-invasive and safe way by sampling body fluids like blood, urine and ascites, and thus 

can be easily repeated at different stages during the disease. Since all tumor sites can potentially 

release such molecules, it might better reflect the intrapatient heterogeneity. Since this thesis 

focusses on cfDNA and CTCs, these two biomarkers will be discussed in more detail. 

Figure 2. Obtaining a liquid biopsy

Cell-free DNA

Cell-free DNA are small fragments of nucleic acid (180-200 bp lengths) that are released in the 

peripheral blood circulation by apoptotic or necrotic cells that mostly originate from tissue 

cells and hematological cells22-25. When tumor cells shed tumor DNA into the blood stream it 

is called circulating tumor DNA (ctDNA). The amount of cell-free DNA measured depends 

on multiple factors, like (patho)physiological conditions (exercise, disease) and preanalytical 

conditions (storage temperature, type of blood collection tube) but is usually low, around 10 ng 

per mL plasma26. The fraction of ctDNA depends on tumor type and disease stage and can vary 

from extremely low (< 0.01%) to very high (60%) but is often less than 1% of the total cfDNA 

pool27,28. Thus, the biggest challenge in clinical practice might be the detection limit. Yet, by the 

quantification and characterization of ctDNA, detection and follow up of tumor burden, and even 

stratification for specific therapies is possible28-35.

Circulating tumor cells

Circulating tumor cells are tumor cells derived from the primary tumor or from its metastases that 

have been released in the peripheral blood circulation. Since CTCs can be derived from all tumor 

sites in the body, it is conceived that they capture the genetic and phenotypic heterogeneity of 

the cancer36. As for ctDNA, the detection limit of CTCs is a big challenge since they have a low 

abundance in blood of generally 1 CTC/mL of blood37,38. For CTC detection and quantification, 

the FDA has approved the CellSearch system, which magnetically separates CTCs from other 

blood cells using EpCAM-coated ferrofluids. CTCs are the most studied type of liquid biopsy in 

metastatic prostate cancer and are of prognostic and predictive value. Metastatic patients with 

≥ 5 CTCs/7.5 mL of blood have a worse outcome and increasing numbers of CTCs over time also 

have prognostic significance39-41. Expression of AR splice variant 7 (AR-V7), yielding a constitutively 

active form of AR, in CTCs has been strongly associated with poor response to second-line 

AR-targeted therapy, like enzalutamide and abiraterone. On the other hand, good response to 

chemotherapy is observed in patients with AR-V7 expression in CTCs42-44. 

Steroidomics

As all metastatic prostate cancer patients are treated with ADT, circulating androgen levels 

are below castrate level (50 ng/mL). However, in CRPC patients disease progression occurs at 

suppressed testosterone levels. Growing evidence support the concept of continued importance 

of the AR pathway in CRPC that is not only dependent of genomic aberrations, but also involves 

changes in steroid biosynthesis and metabolism15-19. Steroid hormones are small signaling 

molecules that regulate gene expression through binding and relocation of nuclear receptors45-47. 

Steroid hormones are derived from cholesterol and include five groups, including glucocorticoids 

CTC 
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and androgens48,49. Steroid measurements are predominantly performed in serum samples and 

mass spectrometry (MS)-based techniques are the gold standard in clinical diagnostics50,51. 

In metastatic prostate cancer patients, steroid analysis mostly focusses on measuring 

testosterone levels to evaluate efficacy of ADT. Nevertheless, several reports show that the level 

of testosterone may be a prognostic and predictive marker as well. Patients with high testosterone 

levels (> 0.05 ng/mL) before start of therapy seem to have a better outcome on second-line 

AR-targeted therapy, whereas patients with a low testosterone level do better on taxane-based 

chemotherapy52-55. Thus, a renewed interest has grown for studying steroid metabolites, i.e. 

steroidomics, in metastatic prostate cancer.

Focus of this thesis

In this thesis, I aim to unravel the genomic landscape of metastatic prostate cancer to understand 

disease progression (Chapter 2) to expedite the implementation of liquid biopsies in routine 

cancer care. For the latter as well as for steroid hormone measurements, it is vital to standardize 

preanalytical conditions of sample collection. My research on optimization of preanalytical 

conditions can contribute to drafting standard-operating-procedures and guidelines (Chapter 3, 4, 

7). To show the potential applications of liquid biopsies in metastatic prostate cancer, ctDNA was 

analyzed during treatment (Chapter 5), and the ability to derive tumor organoids from CTCs was 

explored (Chapter 6). Finally, to advance our understanding of the androgen status in metastatic 

prostate cancer the importance of 11-ketotestosterone is highlighted (Chapter 8).
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Abstract

Metastatic castration-resistant prostate cancer (mCRPC) has a highly complex genomic landscape. 

With the recent development of novel treatments, accurate stratification strategies are needed. 

Here we present the whole-genome sequencing (WGS) analysis of freshfrozen metastatic 

biopsies from 197 mCRPC patients. Using unsupervised clustering based on genomic features, 

we define eight distinct genomic clusters. We observe potentially clinically relevant genotypes, 

including microsatellite instability (MSI), homologous recombination deficiency (HRD) enriched 

with genomic deletions and BRCA2 aberrations, a tandem duplication genotype associated with 

CDK12−/− and a chromothripsis-enriched subgroup. Our data suggests that stratification on WGS 

characteristics may improve identification of MSI, CDK12−/− and HRD patients. From WGS and 

ChIP-seq data, we show the potential relevance of recurrent alterations in non-coding regions 

identified with WGS and highlight the central role of AR signaling in tumor progression. These 

data underline the potential value of using WGS to accurately stratify mCRPC patients into 

clinically actionable subgroups.

Introduction

Prostate cancer is known to be a notoriously heterogeneous disease and the genetic basis for this 

interpatient heterogeneity is poorly understood1,2. The ongoing development of new therapies 

for metastatic prostate cancer that target molecularly defined subgroups further increases the 

need for accurate patient classification and stratification3-5. Analysis of whole-exome sequencing 

data of metastatic prostate cancer tumors revealed that 65% of patients had actionable targets in 

non-androgen receptor related pathways, including PI3K, Wnt, and DNA repair6. Several targeted 

agents involved in these pathways, including mTOR/AKT pathway inhibitors7 and PARP inhibitors8, 

are currently in various phases of development and the first clinical trials show promising results. 

Therefore, patients with metastatic prostate cancer could benefit from better stratification to 

select the most appropriate therapeutic option. More extensive analysis using whole-genome 

sequencing (WGS)-based classification of tumors may be useful to improve selection of patients 

for different targeted therapies. The comprehensive nature of WGS has many advantages, 

including the detection of mutational patterns, as proven by the successful treatment of patients 

with high-tumor mutational burden with immune checkpoint blockade therapy9-12. Moreover, 

WGS unlike exome sequencing, can detect structural variants and aberrations in non-coding 

regions, both important features of prostate cancer. 

The stratification of prostate cancer patients, based on differences in the mutational landscape 

of their tumors, has mainly focused on mutually-exclusive mutations, copy-number alterations, 

or distinct patterns in RNA-sequencing caused by the abundant TMPRSS2-ERG fusion, which is 

recurrent in 50% of primary prostate tumors6,13-18. More recently, WGS of metastatic prostate 

cancer tumors demonstrated that structural variants arise from specific alterations such as 

CDK12-/- and BRCA2-/- genotypes, and are strongly associated with genome-wide events such as 

large tandem duplications or small genomic deletions, respectively19-23. Advances in WGS analysis 

and interpretation have revealed rearrangement signatures in breast cancer relating to disease 

stage, homologous recombination deficiency (HRD) and BRCA1/BRCA2 defects based on size and 

type of structural variant22,24. Thus, WGS enables the identification of patterns of DNA aberrations 

(i.e. genomic scars) that may profoundly improve classification of tumors that share a common 

etiology, if performed in a sufficiently powered dataset. 

In this study, we analyzed the WGS data obtained from 197 metastatic castration-resistant prostate 

cancer (mCRPC) patients. We describe the complete genomic landscape of mCRPC, including tumor 

specific single- and multi-nucleotide variants (SNVs and MNVs), small insertions and deletions 

(InDels), copy-number alterations (CNAs), mutational signatures, kataegis, chromothripsis, and 

structural variants (SVs). Next, we compared the mutational frequency of the detected driver 

genes and genomic subgroups with an unmatched WGS cohort of primary prostate cancer (n = 

210), consisting of exclusively of Gleason score 6−7 tumors15,25. We investigated the presence of 
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possible driver genes by analyzing genes with enriched (non-synonymous) mutational burdens 

and recurrent or high-level copy-number alterations26,27. By utilizing various basic genomic 

features reflecting genomic instability and employing unsupervised clustering, we were able to 

define eight distinct genomic subgroups of mCRPC patients. We combined our genomic findings 

with AR, FOXA1, and H3K27me ChIP-seq data, and confirmed that important regulators of AR-

mediated signaling are located in non-coding regions with open chromatin and highlight the 

central role of AR signaling in tumor progression. 

Materials and Methods

Patient cohort and study procedures

Patients with metastatic prostate cancer were recruited under the study protocol (NCT01855477) 

of the Center for Personalized Cancer Treatment (CPCT). This consortium consists of 41 hospitals 

in The Netherlands (Tabel S1). This CPCT-02 protocol was approved by the medical ethical 

committee (METC) of the University Medical Center Utrecht and was conducted in accordance 

with the Declaration of Helsinki. Patients were eligible for inclusion if the following criteria were 

met: 1) age ≥ 18 years; 2) locally advanced or metastatic solid tumor; 3) indication for new line of 

systemic treatment with registered anti-cancer agents; 4) safe biopsy according to the intervening 

physician. For the current study, patients were included for biopsy between 03 May 2016 and 28 

May 2018. Data were excluded of patients with the following characteristics: 1) hormone-sensitive 

prostate cancer; 2) neuro-endocrine prostate cancer (as assessed by routine diagnostics); 3) 

unknown disease status; 4) prostate biopsy (Figure 1A). All patients provided written informed 

consent before any study procedure. The study procedures consisted of the collection of matched 

peripheral blood samples for reference DNA and image-guided percutaneous biopsy of a single 

metastatic lesion. Soft tissue lesions were biopsied preferentially over bone lesions. The clinical 

data provided by CPCT have been locked at 1st of July 2018.

Collection and sequencing of samples28

Blood samples were collected in CellSave preservative tubes (Menarini-Silicon Biosystems, 

Huntington Valley, PA, USA) and shipped by room temperature to the central sequencing 

facility at the Hartwig Medical Foundation. Tumor samples were fresh-frozen in liquid nitrogen 

directly after the procedure and send to a central pathology tissue facility. Tumor cellularity was 

estimated by assessing a hematoxylin-eosin (HE) stained 6 micron section. Subsequently, 25 

sections of 20 micron were collected for DNA isolation. DNA was isolated with an automated 

workflow (QIAsymphony) using the DSP DNA Midi kit for blood and QIAsymphony DSP DNA Mini 

kit for tumor samples according to the manufacturer’s protocol (Qiagen). DNA concentration was 

measured by Qubit™ fluorometric quantitation (Invitrogen, Life Technologies, Carlsbad, CA, USA). 

DNA libraries for Illumina sequencing were generated from 50-100 ng of genomic DNA using 

standard protocols (Illumina, San Diego, CA, USA) and subsequently whole-genome sequenced 

in a HiSeq X Ten system using the paired-end sequencing protocol (2x 150 bp). Whole-genome 

alignment (GRCh37), somatic variants (SNV, InDel (max. 50 bp), MNV), structural variant and 

copy-number calling and in silico tumor cell percentage estimation were performed in a uniform 

manner as detailed by Priestley et al. (2019)28. Mean read coverages of reference and tumor 

BAM were calculated using Picard Tools (v1.141; CollectWgsMetrics) based on GRCh3729. 

Additional annotation of somatic variants and heuristic filtering

In addition, heuristic filtering removed somatic SNV, InDel and MNV variants based on the 

following criteria: 1) minimal alternative reads observations ≤ 3; 2) gnomAD exome (ALL) allele 

frequency ≥ 0.001 (corresponding to ~ 62 gnomAD individuals); and 3) gnomAD genome (ALL) 

≥ 0.005 (~ 75 gnomAD individuals)30. gnomAD database v2.0.2 was used. Per gene overlapping 

a genomic variant, the most deleterious mutation was used to annotate the overlapping gene. 

Structural variants, with BAF ≥ 0.1, were further annotated by retrieving overlapping and nearest 

up- and downstream annotations using custom R scripts based on GRCh37 canonical UCSC 

promoter and gene annotations with respect to their respective up- or downstream orientation 

(if known)31. Only potential fusions with only two different gene-partners were considered (e.g. 

TMPRSS2-ERG); structural variants with both breakpoints falling within the same gene were 

simply annotated as structural variant mutations. Fusion annotation from the COSMIC (v85), CGI 

and CIVIC databases were used to assess known fusions32-34. The COSMIC (v85), OncoKB (July 12, 

2018), CIVIC (July 26, 2018), CGI (July 26, 2018) and the list from Martincorena et al. (dN/dS) were 

used to classify known oncogenic or cancer-associated genes26,32-34.

Ploidy and copy-number analysis

Ploidy and copy-number (CN) analysis was performed by a custom pipeline as detailed by Priestley 

et al. (2019)28. Briefly, this pipeline combines B-allele frequency (BAF), read depth and structural 

variants to estimate the purity and CN profile of a tumor sample. Recurrent focal and broad 

CN alterations were identified by GISTIC2.0 (v2.0.23)27. GISTIC2.0 was run with the following 

parameters: a) genegistic 1; b) gcm extreme; c) maxseg 4000; d) broad 1; e) brlen 0.98; f) conf 

0.95; g) rx 0; h) cap 3; i) saveseg 0; j) armpeel 1; k) smallmem 0; l) res 0.01; m) ta 0.1; n) td 0.1; o) 

savedata 0; p) savegene 1; q) gvt 0.1. Categorization of shallow and deep CN aberration per gene 

was based on thresholded GISTIC2 calls. Focal peaks detected by GISTIC2 were re-annotated, 

based on overlapping genomic coordinates, using custom R scripts and UCSC gene annotations. 

GISTIC2 peaks were annotated with all overlapping canonical UCSC genes within the wide peak 

limits. If a GISTIC2 peak overlapped with ≤ 3 genes, the most-likely targeted gene was selected 

based on oncogenic or tumor suppressor annotation in the COSMIC (v85), OncoKB (July 12, 2018), 

CIVIC (July 26, 2018) and CGI (July 26, 2018) lists26,32-34. Peaks in gene deserts were annotated with 

their nearest gene.
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Estimation of tumor mutational burden (TMB)

The mutation rate per megabase (Mbp) of genomic DNA was calculated as the total genome-wide 

amount of SNV, MNV and InDels divided over the total amount of callable nucleotides (ACTG) in 

the human reference genome (hg19) FASTA sequence file: 

 
(1)

The mutation rate per Mbp of coding mutations was calculated as the amount of coding SNV, 

MNV and InDels divided over the summed lengths of distinct non-overlapping coding regions, as 

determined on the subset of protein-coding and fully supported (TSL = 1) transcripts in GenCode 

v28 (hg19)35:

 
(2)

MSI and HR-deficiency prediction

HR-deficiency/BRCAness was estimated using the CHORD classifier (Nguyen, van Hoeck and 

Cuppen, manuscript in preparation). This classifier was based on the HRDetect36 algorithm, 

however, redesigned to improve its performance beyond primary breast cancer. The binary 

prediction score (ranging from zero to one) was used to indicate BRCAness level within a sample. 

To elucidate the potential target gene(s) in the HR-deficient samples (Figure 4), we used the list of 

BRCAness genes from Lord et al. (2016)37.

MSI status was determined based on the following criteria; if a sample contained more than 

11,436 genomic InDels (max. 50 bp, with repeat-stretches of ≥ 4 bases, repeat length sequence 

between 2 and 4, or if these consists of a single repeat sequence which repeats ≥ 5 times), the 

sample was designated as MSI28.

Detection of (onco-)genes under selective pressure

To detect (onco-)genes under tumor-evolutionary mutational selection, we employed a Poisson-

based dN/dS model (192 rate parameters; under the full trinucleotide model) by the R package 

dndscv (v0.0.0.9)26. Briefly, this model tests the normalized ratio of non-synonymous (missense, 

nonsense and splicing) over background (synonymous) mutations whilst correcting for sequence 

composition and mutational signatures. A global q-value ≤ 0.1 (with and without taking InDels 

into consideration) was used to identify statistically-significant (novel) driver genes.

Identification of hypermutated foci (kataegis)

Putative kataegis events were detected using a dynamic programming algorithm which determines 

a globally optimal fit of a piecewise constant expression profile along genomic coordinates as 

described by Huber et al. and implemented in the tilingarray R package (v1.56.0)38. Only SNVs 

were used in detecting kataegis. Each chromosome was assessed separately and the maximum 

number of segmental breakpoints was based on a maximum of five consecutive SNVs (max. 

5000 segments per chromosome). Fitting was performed on log10-transformed intermutational 

distances. Per segment, it was assessed if the mean intermutational distance was ≤ 2000 bp and 

at least five SNVs were used in the generation of the segment. A single sample with > 200 distinct 

observed events was set to zero observed events as this sample was found to be hypermutated 

throughout the entire genome rather than locally. Kataegis was visualized using the R package 

karyoploteR (v1.4.1)39.

Mutational signatures analysis

Mutational signatures analysis was performed using the MutationalPatterns R package (v1.4.2)40. 

The thirty consensus mutational signatures, as established by Alexandrov et. al, (matrix Sij; i = 

96; number of trinucleotide motifs; j = number of signatures) were downloaded from COSMIC 

(as visited on 23-05-2018)41. Mutations (SNVs) were categorized according to their respective tri-

nucleotide context (hg19) into a mutational spectrum matrix Mij (i = 96; number of trinucleotide 

contexts; j = number of samples) and subsequently, per sample a constrained linear combination 

of the thirty consensus mutational signatures was constructed using non-negative least squares 

regression implemented in the R package pracma (v1.9.3).

Between two and fifteen custom signatures were assessed using the NMF package (v0.21.0) 

with 1000 iterations42. By comparing the cophenetic correlation coefficient, residual sum of 

squares and silhouette, we opted to generate five custom signatures. Custom signatures were 

correlated to existing (COSMIC) signatures using cosine similarity.

Detection of chromothripsis-like events

Rounded absolute copy-number (excluded Y chromosome) and structural variants (BAF ≥ 0.1) 

were used in the detection of chromothripsis-like events by the Shatterseek software (v0.4) 

using default parameters43. As a precise standardized definition of chromothripsis has not yet 

been fully established, and as per the author’s instruction, we performed visual inspection of 

reported chromothripsis-like events after dynamically adapting criteria thresholds (taking the 

recommended thresholds into consideration). We opted to use the following criteria: a) Total 

number of intrachromosomal structural variants involved in the event ≥ 25; b) max. number of 

oscillating CN segments (2 states) ≥ 7 or max. number of oscillating CN segments (3 states) ≥ 14; 

c) Total size of chromothripsis event ≥ 20 Mbp; d) Satisfying the test of equal distribution of SV 

types (P > 0.05); and e) Satisfying the test of non-random SV distribution within the cluster region 

or chromosome (P ≤ 0.05).
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Unsupervised clustering of mCRPC WGS characteristics

Samples were clustered using the Euclidian distance of the Pearson correlation coefficient (1-r) 

and Ward.D hierarchical clustering based on five basic whole genome characteristics; number 

of mutations per genomic Mbp (SNV, InDel and MNV), mean genome-wide ploidy, number of 

structural variants and the relative frequencies of structural variant categories (inversions, 

tandem duplications (larger and smaller than 100 kbp), deletions (larger and smaller than 100 

kbp), insertions and interchromosomal translocations). Data was scaled but not centered (root 

mean square) prior to calculating Pearson correlation coefficients. After clustering, optimal 

leaf ordering (OLO) was performed using the seriation package (v1.2.3)44. The elbow method 

was employed to determine optimal number of discriminating clusters (Figure S10) using the 

factoextra package (v1.0.5). Bootstrapping was performed using the pvclust package (v2.0) with 

5000 iterations.

Cluster-specific enrichment of aberrant genes (either through SV, deep copy-number alteration 

or coding SNV/InDel/MNV), kataegis, chromothripsis, GISTIC2 peaks and predicted fusions) 

between clusters was tested using a two-sided Fisher’s Exact Test and Benjamini-Hochberg 

correction.

A principal component analysis (with scaling and centering) using the prcomp R package45 was 

performed on the chosen genomic features and cos2 values for each feature per principal 

component were retrieved to determine the importance of each feature per respective principal 

component.

To test the robustness of our clustering, we performed unsupervised clustering, and also other 

techniques, using various combinations of structural variants and clustering mechanisms as a 

surrogate for different genome-instability metrics but this analysis did not reveal any striking new 

clusters. 

Supervised clustering based on mutually-exclusive aberrations

Samples were sorted on mutual-exclusivity of SPOP, FOXA1, and IDH1 coding mutations and copy-

number aberrations and ETS family gene fusions (and overexpression) per promiscuous partner 

(ERG, ETV1, ETV4, and FLI1) as defined in primary prostate cancer13. Tabel S1A of the article ‘The 

Molecular Taxonomy of Primary Prostate Cancer’ 13 was used to determine the relative frequency 

and mutational types of each of the respective primary prostate cancer within the TCGA cohort. 

In addition, as the TCGA cohort did not denote high-level/deep amplifications, we did not 

incorporate these either in this analysis.

Correlation of the detection rate of genomic aberrations versus tumor cell 
percentages

Absolute counts of SNV, InDels, MNV and SV were correlated to the in silico estimated tumor cell 

percentage using Spearman’s correlation coefficient.

Correlation of pretreatment history with detected aberrations and WGS 
characteristics

Pretreatment history of patients were summarized into 10 groups:

1. Only chemo-treatment (with radio-nucleotides)

2. Only chemo-treatment (without radio-nucleotides)

3. Only radio-nucleotides

4. Only secondary anti-hormonal therapy (with radio-nucleotides)

5. Only secondary anti-hormonal therapy (without radio-nucleotides)

6. Secondary anti-hormonal therapy + one chemo-treatment (with radio-nucleotides)

7. Secondary anti-hormonal therapy + two chemo-treatments (with radio-nucleotides)

8. Secondary anti-hormonal therapy + one chemo-treatment (without radio-nucleotides)

9. Secondary anti-hormonal therapy + two chemo-treatments (without radio-nucleotides)

10. No additional treatment after androgen deprivation therapy

Association with mutated genes, presence of chromothripsis, presence of kataegis, MSI-status 

and genomic subtypes was tested with a two-sided Fisher’s exact test with Benjamini-Hochberg 

correction.

ChIP-seq experimental set-up and analysis

ChIP-seq cell culturing
VCaP cells were incubated in RPMI medium supplemented with 10% fetal bovine serum (FBS). 

Bicalutamide resistant VCaP cells (VCaP-Bic) were cultured in RPMI medium supplemented with 

10% dextran charcoal-stripped bovine serum (DCC) and 106M bicalutamide. VCaP cells were 

hormone deprived in RPMI medium supplemented with 10% DCC for 3 days before the ChIP-seq 

experiment. 

ChIP-seq and peak calling analysis
For both cell and tissue ChIPs, 5 µg of antibody and 50 µL of magnetic protein A or G beads (10008D 

or 10009D, ThermoFisher Scientific) were used per IP. The following antibodies were used: 

Foxa1/2 (M-20, sc-6554 Santa Cruz Biotechnology), AR (N-20, sc-816 Santa Cruz Biotechnology), 

and H3K27ac (39133, Active Motif). ChIP-seq was performed as described previously46. In brief, 

fresh frozen tissue was cryosectioned into 30-μm-thick slices and stored at −80°C till processing. 

Samples were fixed using 2 mM DSG  (20593; Thermo Fisher Scientific) in solution A (50 mM 
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Hepes-KOH, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA) while rotating for 25 min at room 

temperature, followed by the addition of 1% formaldehyde and another 20 min incubation at 

room temperature. The reaction was quenched by adding a surplus of glycine. Subsequently, 

tissue sections were pelleted and washed with cold PBS. Tissue was disrupted using a motorized 

pellet pestle (Sigma-Aldrich) to disrupt the tissue in cold PBS and to obtain a cell suspension, after 

which the nuclei were isolated and the chromatin was sheared. During immunoprecipitation, 

human control RNA (4307281; Thermo Fisher Scientific) and recombinant Histone 2B (M2505S; 

New England Biolabs) were added as carriers, as described previously47.

Immunoprecipitated DNA was processed for sequencing using standard protocols and sequenced 

on an Illumina HiSeq 2500 with 65 bp single end reads. Sequenced samples were aligned to 

the reference human genome (Ensembl release 55: Homo sapiens GRCh 37.55) using Burrows-

Wheeler Aligner (BWA, v0.5.10)48, reads with a mapping quality > 20 were used for further 

downstream analysis. 

For the tissues, peak calling was performed using MACS249 with option --nomodel. In addition, 

peaks were called against matched input using DFilter50 in the refine setting with a bandwidth 

of 50 and a kernel size of 30. Only peaks that were shared between the two algorithms were 

considered.

For the cell lines, peaks were obtained with MACS  (v1.4; p ≤ 10-7).

The AR and FOXA1 ChIP-seq data for LNCAP with/-out R1881 was obtained from GSE9468251. The 

H3K27ac ChIP-seq data for LNCAP was obtained from GSE11473746

Determining enrichment of enhancer to gene ratios

Absolute copy-numbers segments overlapping the gene loci and putative enhancer region (as 

detected by GISTIC2; focal amplification peaks with a width < 5000 bp) were retrieved per sample. 

If regions overlapped multiple distinct copy-number segments, the maximum copy-number value 

of the overlapping segments was used to represent the region. Samples with gene-to-enhancer 

ratios deviating > 1 studentized residual from equal 1:1 gene-to-enhancer ratios (linear model: 

log2(copy-number of enhancer) - log2(copy-number of gene locus) ~ 0) were categorized as gene 

or enhancer enriched. Based on the direction of the ratio, samples were either denoted as 

enhancer (if positive ratio) or gene (if negative ratio) enriched.

Comparison of unmatched primary prostate cancer and mCRPC

Mutational frequencies of the drivers (dN/dS and or GISTIC2) and subtype-specific genes were 

compared to a separate (unmatched) cohort of primary prostate cancer (n = 210) focusing on 

Gleason score of 3+3, 3+4 or 4+3, as described by Fraser et al. (2017) and Espiritu et al. (2018)15,25. 

Briefly, whole-genome sequencing reads were mapped to the human reference genome (hg19) 

using BWA48 (v0.5.7) and downstream analysis was performed using Strelka52 (v.1.0.12) for 

mutational calling using a matched-normal design (SNVs and InDels), copy-number alterations 

were estimated with TITAN53 (v1.11.0) and SNP array data as described in Espiritu et al. (2018)25 

with Delly54 (v0.5.5 and v0.7.8) was used for detecting structural variants (translocations, 

inversions, tandem-duplications and deletions). Large insertion calls and overall ploidy was not 

available for the primary prostate cancer cohort.

TMB was calculated by dividing the number of SNVs and InDels by the total amount of callable 

bases in the human reference genome (hg19), identical to equation 1. MNV calls were not 

available for the primary prostate cancer cohort.

Multiple aberrations per gene within a sample were summarized as a single mutational event, 

e.g. a deletion and mutation in PTEN would only count for a single mutation sample in the sample. 

Only non-synonymous mutations and gains / deletions overlapping with coding regions were 

used. Statistically significant differences in mutational frequencies were calculated using a two-

sided Fisher’s Exact test with Benjamini-Hochberg correction.

The primary prostate cancer dataset was clustered together with the mCRPC cohort using the 

Euclidian distance of the Pearson correlation coefficient (1-r) and Ward.D hierarchical clustering 

based on three basic whole genome characteristics which were available for all samples; number 

of mutations per genomic Mbp (SNVs and InDels), number of structural variants, and the relative 

frequencies of structural variant categories (inversions, tandem duplications (larger and smaller 

than 100 kbp), deletions (larger and smaller than 100 kbp), and interchromosomal translocations).

Results

Characteristics of the mCRPC cohort and sequencing approach

We analyzed fresh-frozen metastatic tumor samples and matched blood samples from 197 

castration-resistant prostate cancer (CRPC) patients using WGS generating to date the largest 

WGS dataset for mCRPC (Figure 1A). Clinical details on biopsy site, age, and previous treatments 

of the included patients are described in Figure 1B and 1C and Tabel S2. WGS data was sequenced 

to a mean coverage of 104X in tumor tissues and 38X in peripheral blood (Figure S1A). The median 

estimated tumor cell purity using in silico analysis of our WGS data was 62% (range: 16-96%; 

Figure S1B). Tumor cell purity correlated weakly with the frequency of called SNVs (Spearman 

correlation; rho = 0.2; P = 0.005), InDels (Spearman correlation; rho = 0.35; P < 0.001), MNVs 

(Spearman correlation; rho = 0.25; P < 0.001) and structural variants (Spearman correlation; rho 

= 0.22; P = 0.002; Figure S1C).
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Landscape of mutational and structural variants in mCRPC

The median tumor mutational burden (TMB) at the genomic level (SNVs and InDels per Mbp) 

was 2.7 in our mCRPC cohort, including 14 patients with high TMB (> 10). We found a median of 

6,621 SNVs (IQR: 5,048−9,109), 1,008 small InDels insertions and deletions (IQR: 739−1,364), 55 

MNVs (IQR: 34−86) and 224 SVs (IQR: 149−370) per patient (Figure S2A−C). We observed a highly 

complex genomic landscape consisting of multiple driver mutations and structural variants in our 

cohort. 

We confirmed that known driver genes of prostate cancer were enriched for non-synonymous 

mutations (Figure 2 and Figure S2E)13,15,55. In total, we detected 11 genes enriched with non-

synonymous mutations: TP53, AR, FOXA1, SPOP, PTEN, ZMYM3, CDK12, ZFP36L2, PIK3CA, and 

APC. ATM was mutated in 11 samples, but after multiple-testing correction appeared not to be 

enriched. 

Our copy-number analysis revealed distinct amplified genomic regions including 8q and Xq and 

deleted regions including 8p, 10q, 13q, and 17p (Figure S2D). Well-known prostate cancer driver 

genes8,16, such as AR, PTEN, TP53, and RB1, are located in these regions. In addition to large-scale 

chromosomal copy-number alterations, we could identify narrow genomic regions with recurrent 

copy-number alterations across samples, which could reveal important prostate cancer driver 

genes (Data file S1).

TMPRSS2-ERG gene fusions were the most common fusions in our cohort (n = 84 out of 197; 

42.6%) and were the majority of ETS family fusions (n = 84 out of 95; 88.4%; Figure 2 and Figure 

S3). This is comparable to primary prostate cancer, where ETS fusions are found in approximately 

50% of tumors13,15. The predominant break point was located upstream of the second exon of 

ERG, which preserves its ETS-domain in the resulting fusion gene. 

In 42 patients (21.3%), we observed regional hypermutation (kataegis; Figure 2 and Figure S4). 

In addition, we did not observe novel mutational signatures specific for metastatic disease or 

possible pretreatment histories (Figure S5)41.
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To further investigate whether our description of the genome-wide mutational burden and 

observed alterations in drivers and/or subtype-specific genes in mCRPC were metastatic specific, 

we compared our data against an unmatched WGS cohort of primary prostate cancer (n = 

210)15,25, consisting of Gleason score 6−7 disease. Comparison of the median genome-wide TMB 

(SNVs and InDels per Mbp) revealed that the TMB was roughly 3.8 times higher in mCRPC (Figure 

3A) and the frequency of structural variants was also higher (Figure 3B) between disease stages, 

increasing as disease progresses. Analysis on selected driver and subtype-specific genes showed 

that the mutational frequency of several genes (AR, TP53, MYC, ZMYM3, PTEN, PTPRD, ZFP36L2, 
ADAM15, MARCOD2, BRIP1, APC, KMT2C, CCAR2, NKX3-1, C8orf58, and RYBP) was significantly 

altered (q ≤ 0.05) between the primary and metastatic cohorts (Figure 3C−E). All genes for which 

we observed significant differences in mutational frequency, based on coding mutations, were 

enriched in mCRPC (Figure 3D). We did not identify genomic features that were specific for the 

metastatic setting, beyond androgen deprivation therapy-specific aberrations revolving AR (no 

aberrations in hormone-sensitive setting versus 137 aberrations in castration-resistant setting). 

We cannot exclude from these data that matched sample analysis or larger scale analysis could 

reveal such aberrations. 

We next determined whether previous treatments affect the mutational landscape. Using 

treatment history information, we grouped prior secondary anti-hormonal therapy, taxane-

based chemotherapy and systemic radionucleotide therapy into different groups (Figure S6). 

This analysis did not reveal systematic biases due to pretreatment in aberrations, such as TMB, 

kataegis, chromothripsis, ETS fusions, or somatically altered genes (Data file S1).

Figure 3. Comparison of the mutational landscape between primary prostate cancer and mCRPC
a) Tumor mutational burden (SNVs and InDels per Mbp) from a primary prostate cancer (n = 210) and the 
CPTC-02 mCRPC cohort (n = 197). Bee-swarm boxplot with notch of the tumor mutational burden. Boxplot 
depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times 
the interquartile range (IQR). Data points outside the IQR are shown. Statistical significance was tested with 
Wilcoxon rank-sum test and P ≤ 0.001 is indicated as ***. 
b) Frequency of structural variant events from an unmatched cohort of primary prostate cancer (n = 210) 
and the CPTC-02 mCRPC cohort (n = 197). Boxplot depicts the upper and lower quartiles, with the median 

shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR 
are shown. Statistical significance was tested with Wilcoxon rank-sum test and P ≤ 0.001 is indicated as ***. 
c) Comparison of the mutational frequencies for driver genes detected by dN/dS and/or GISTIC2, or subtype-
specific genes, enriched in mCRPC relative to primary prostate cancer or vice-versa. The difference in relative 
mutational frequency is shown on the x-axis and the adjusted P-value (two-sided Fisher’s Exact Test with BH 
correction) is shown on the y-axis. Size of the dot is proportional to the absolute difference in mutational 
frequency between both the cohorts. Symbols of genes with P-values below 0.05 are depicted in black and 
additional genes-of-interests are highlighted in gray. The general genomic foci of the gene and absolute 
number of samples with an aberration per cohort in primary prostate cancer and mCRPC, respectively, is 
shown below the gene symbol. This analysis was performed on coding mutations, gains and deletions per 
gene. 
d) Same as in c but using only coding mutations. 
e) Overview of the mutational categories (coding mutations [yellow], deletions [red] and amplifications 
[green]) of the driver genes detected by dN/dS and/or GISTIC2, or subtype-specific genes, enriched in mCRPC 
relative to primary prostate cancer (q ≤ 0.05). For each gene the frequency in primary prostate cancer is 
displayed followed by the frequency in mCRPC.
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The role of the AR-pathway in mCRPC

Focusing on the AR-pathway revealed that aberrant AR signaling occurred in 80% of our patients. 

In 57.3% of patients both AR and the AR-enhancer (~ 66.13 Mb on chromosome X; located about 

629 kbp upstream of the AR gene20) were affected (Figure 4A). In an additional 6.6% and 14.7% 

of tumors only AR gene alterations or AR-enhancer amplification occurred, respectively. The 

percentage of mCRPC patients with the exclusive AR-enhancer amplification (29 out of 197; 14.7%) 

versus exclusively AR-locus amplification (13 out of 197; 6.6%) is similar to previous observations 

which showed 21 out of 94 CRPC patients (10.3%) with exclusively AR-enhancer amplification 

versus 4 out of 94 CRPC patients (4.3%) with exclusively AR-locus amplification20. Concurrent 

amplification of the AR gene and the AR-enhancer was not necessarily of equal magnitude, which 

resulted in differences in copy-number enrichment of these loci (Figure 4B). 

To date, no AR ChIP-seq data has been reported in human mCRPC samples and evidence of 

increased functional activity of the amplified enhancer thus far is based on cell line models56. To 

resolve this, we performed AR ChIP-seq on two selected mCRPC patient samples with AR-enhancer 

amplification based on WGS data. As controls we used two prostate cancer cell-lines (LNCaP 

and VCaP) and three independent primary prostate cancer samples that did not harbor copy-

number alterations at this locus (Figure S7)57. We observed active enhancer regions (H3K27ac) 

in the castration-resistant setting, co-occupied by AR and FOXA1, at the amplified AR-enhancer. 

This is substantially stronger when compared to the hormone-sensitive primary prostate cancer 

samples without somatic amplifications (Figure 4C and Figure S7). Furthermore, a recurrent focal 

amplification in a non-coding region was observed at 8q24.21 near PCAT1. This locus bears similar 

epigenetic characteristics to the AR-enhancer with regard to H3K27ac and, to a lesser extent, 

binding of AR and/or FOXA1 in the mCRPC setting (Figure 4D and Figure S7). 

>>
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based on mutual-exclusivity of the depicted genes and foci. The heatmap displays the type of mutation(s) 
per sample, (light-)green or (light-)red backgrounds depict copy-number aberrations while the inner square 
depicts the type of (coding) mutation(s). Relative proportions of mutational categories (coding mutations 
[SNV, InDels and MNV] (yellow), SV (blue), deep amplifications (green), and deep deletions (red)) per gene 
and foci are shown in the bar plot next to the heatmap. The presence of chromothripsis (light pink), kataegis 
(red), CHORD prediction score (HR-deficiency) (pink gradient), MSI status (dark blue), and biopsy location are 
shown as bottom tracks. 
b) Overview of the copy-number deviations between putative enhancer and gene regions for AR and MYC. 
Samples were categorized as enhancer- (blue) or gene- (red) enriched if enhancer-to-gene ratio deviated > 1 
studentized residual (residual in standard deviation units) from a 1:1 ratio. 
c) Copy-number and ChIP-seq profiles surrounding the AR and PCAT1/MYC gene loci (with 1.25 additional 
Mbp up-/downstream). The upper panel displays the selected genomic window and the overlapping genes. 
The first and second track display the aggregated mean copy-number (per 0.1 Mbp window) of the enhancer- 
and gene-enriched samples, respectively. These profiles identify distinct amplified regions (indicated by 
red asterisk) in proximity to the respective gene bodies. The 3rd to 8th tracks represent AR ChIP-seq profiles 
(median read-coverage per 0.1 Mbp windows) in two mCRPC patients (# 3 and 4), LNCaP (# 5) and LNCaP 
with R1881 treatment (# 6), VCaP (# 7) and bicalutamide-resistant VCaP (# 8). The 9th to 11th tracks represent 
FOXA1 ChIP-seq profiles (median read-coverage per 0.1 Mbp windows) in two mCRPC patients (#9 and 10) 
and LNCaP with R1881 treatment (# 11). The 12th to 14th tracks represent H3K27ac ChIP-seq profiles (median 
read-coverage per 0.1 Mbp windows) in two mCRPC patients (# 12 and 13) and LNCaP with R1881 treatment 
(# 14) reflecting active enhancer regions. ChIP-seq peaks (MACS/MACS2; q < 0.01) are shown as black lines 
per respective sample.

WGS-based stratification defines genomic subgroups in mCRPC

Our comprehensive WGS data and large sample size enabled us to perform unsupervised 

clustering on several WGS characteristics to identify genomic scars that can define subgroups of 

mCRPC patients. We clustered our genomic data using the total number of SVs, relative frequency 

of SV category (translocations, inversions, insertions, tandem duplications, and deletions), 

genome-wide TMB encompassing SNV, InDels and MNV, and tumor ploidy. Prior to clustering, we 

subdivided tandem duplications and deletions into two major categories based on the respective 

genomic size of the aberration (smaller and larger than 100 kbp) since previous studies revealed 

distinctions based on similar thresholds for these structural variants in relation to specific mutated 

genes19-21,58. Similarly, we observed a difference in genomic size and number in our subgroups of 

mCRPC patients (Figure S8).

This analysis defined eight distinct subgroups (Figure 5−6 and Figure S8−11): (A) microsatellite 

instability (MSI) signature with high TMB and association with mismatch repair deficiency; (B) 

tandem duplication (> 100 kbp) phenotype associated with biallelic CDK12 inactivation; (D) 

homologous recombination deficiency (HRD) features with many deletions (> 100 kbp) and 

association with (somatic) mutations in BRCAness-associated genes; this was supported by 

high HR-deficiency scores (CHORD; Figure S8−9); (F) chromothripsis; (C, E, G, H); non-significant 

genomic signature without any currently known biological association. Table 1 summarizes the 

key features of each subgroup.

>>

Figure 4. WGS reveals novel insight into the various (non-coding) aberrations affecting AR regulation
a) Mutational overview of top recurrently mutated genes affecting AR regulation and their putative enhancer 
foci (as detected by GISTIC2). The first track represents the number of genomic mutations per Mbp (TMB) per 
SNV (blue), InDels (yellow), and MNV (orange) category genome-wide (square-root scale). Samples are sorted 

b
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Clusters A and B represent previously identified genomic subgroups (MSI and CDK12-/-)6,19,21,59. In 

cluster B, only two patients were allocated to this subgroup without a specific somatic mutation in 

the identifying gene. The well-known mismatch repair genes: MLH1, MSH2, and MSH6 are among 

the cluster-specific mutated genes in cluster A (Figure 6A). Twelve out of these thirteen patients 

had at least one inactivating alteration in one of these genes (Figure 6B). Interestingly, cluster 

B (CDK12-/-) harbors two patients without non-synonymous CDK12 mutation or copy-number 

alteration; the cause of their tandem duplication phenotype is currently unknown (Figure 6B). 

Cluster D shows significant features of HRD, specifically biallelic BRCA2 inactivation (Figure S12), 

mainly mutational signature 3, enrichment of deletions (< 100 kbp) and is supported by high HR-

deficiency scores (CHORD) (Figure S8 and 9)22,60. Remarkably, seven out of twenty-two patients 

did not have a biallelic BRCA2 inactivation. However, four of these patients showed at least one 

(deleterious) aberration in other BRCAness-related genes (Figure 6B)37. Cluster F was enriched 

for chromothripsis events, however we could not reproduce a previous finding, suggesting 

chromothripsis was associated with inversions and p53 inactivation in prostate cancer21. Apart 

from the chromothripsis events, no clear gene aberration was associated with this cluster (Figure 

6B). In the remaining patients, there were no distinct genomic signatures or biologic rationale for 

patient clustering (cluster C, E, G, H). In cluster C, conjoint aberrations of BRCA1 and TP53 were 

observed in one patient with a high HR-deficiency prediction score (CHORD), which is known to 

lead to a small tandem duplication phenotype (< 100 kbp)58. Two other patients within cluster C 

displayed a weak CHORD scoring associated with HR-deficiency, however no additional definitive 

evidence was found for a BRCA1 loss-of-function mutation within these patients. 

Table 1. Overview of the distinctive characteristics for each cluster (A-H)
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signatures may be clinically relevant and our clustering analysis refines patient classification. In 

cluster A, we observed a high TMB, which has been associated in other tumor types with a high 

sensitivity to immune check-point inhibitors9,11,12. Clinical trials using pembrolizumab in selected 

mCRPC patients are underway (KEYNOTE-028, KEYNOTE-199)61,62. Interestingly, in both cluster B 

and cluster D, we identified patients that did not have the defining biallelic CDK12 or BRCA2 

(somatic) mutation. Such patients might be deemed false-negatives or false-positives when using 

FDA-approved assays (BRCAnalysis™ and FoundationFocus™), currently used in breast cancer 

diagnosis and based on the presence of BRCA1/2 mutations, to predict response to poly(ADP-

ribose) polymerase (PARP) inhibitors and/or platinum compounds based on the presence of 

BRCA1/2 mutations. The first clinical trials combining PARP inhibitors with AR-targeted therapies 

in mCRPC show promising results8. Thus, WGS-based stratification may improve the patient 

classification of DNA repair-deficient tumors as it uses the genome-wide scars caused by defective 

DNA repair to identify tumors that have these deficiencies.

The use of WGS also allowed us to gain more insight into the role of non-coding regions of 

the genome in prostate cancer. We confirmed the amplification of a recently reported AR-

enhancer20,21,56. In line with the cell line-based observations, we show AR binding at these mCRPC-

specific enhancer regions, providing the first clinical indication that AR-enhancer amplification 

also increases AR signaling in mCRPC tumors. These findings are supported by previous studies 

demonstrating that this amplification ultimately resulted in significantly elevated expression 

of AR itself20,21,56. Furthermore, we confirm a recurrent focal amplification near PCAT1, which 

shows robust chromatin binding for AR in mCRPC samples, providing clinical proof-of-concept 

of a functional enhancer that is also active and AR-bound in cell line models. Recent research 

elucidated to the functional importance of this region in regulating MYC expression in prostate 

cancer, which could highlight a putative role of this somatically acquired amplification57. However, 

the WGS and ChIP-seq data presented here are not conclusive in elucidating the definitive role of 

this amplified region in regulating MYC expression and further mechanistic studies are needed to 

establish a potential link to MYC regulation.

In addition, PCAT1 is a long non-coding RNA, which is known to be upregulated in prostate 

cancer and negatively regulates BRCA2 expression while positively affecting MYC expression63,64. 

Combining our WGS approach with AR, FOXA1, and H3K27ac ChIP-seq data, we identify non-

coding regions affecting both AR itself, and possibly MYC, through AR-enhancer amplification as a 

potential mechanism contributing to castration resistance.   

A potential pitfall of our clustering analysis is the selection of features used; for this we made a 

number of assumptions based on the literature and distribution of the structural variants within 

our cohort19-21,58. As the input of features and weights for clustering analysis are inherent to the 

clustering outcome, we performed additional clustering analyses using various combinations 

of these features and applied alternative approaches but did not detect striking differences 

In addition to our unsupervised clustering approach, we clustered our samples using the 

clustering scheme proposed by TCGA (Figure S13A), which defines seven clusters based on coding 

mutations and copy-number aberrations in SPOP, FOXA1, IDH1, and ETS family gene fusions 

(and overexpression) per promiscuous partner (ERG, ETV1, ETV4, and FLI1)13. Unfortunately, 

we currently lack matched mRNA-sequencing data in our cohort and therefore cannot observe 

overexpression of fused ETS family members, which restricted us to only characterize the genomic 

breaks of these promiscuous partners. Without incorporation of ETS family overexpression, this 

proposed clustering scheme categorizes 61% of mCRPC into these seven groups versus 68% of 

the original cohort containing primary prostate cancer described by TCGA (Figure S13B)13. There 

was no significant correlation between the TCGA clustering scheme and our defined genomic 

subtypes such as MSI, BRCAness or CDK12-/-. In addition, we did not detect statistical enrichment 

or depletion (q ≤ 0.05) between these supervised clusters and additional mutated genes, kataegis 

and chromothripsis, only the known enrichment of homozygous CHD1 deletions in the SPOP-

cluster was observed13.

Performing unsupervised clustering and principal component analysis on the primary prostate 

cancer and metastatic cohorts revealed no striking primary-only genomic subgroup nor did we 

detect the presence of the mCRPC-derived genomic subgroups in the primary prostate cancer 

cohort (Figure S14). This could reflect the absence of CDK12 mutations and the presence of only 

three sporadic BRCA2-mutated samples (1%) in the primary prostate cancer cohort. Furthermore, 

only one sample (1%) with MSI-like and high TMB (> 10), respectively, was observed in the primary 

cancer cohort. Indeed, there is a striking difference in the mutational load between both disease 

settings.

Discussion

We performed WGS of metastatic tumor biopsies and matched-normal blood obtained from 197 

patients with mCRPC to provide an overview of the genomic landscape of mCRPC. The size of 

our cohort enables classification of patients into distinct disease subgroups using unsupervised 

clustering. Our data suggest that classification of patients using genomic events, as detected by 

WGS, improves patient stratification, specifically for clinically actionable subgroups such as BRCA-

deficient and MSI patients. Furthermore, we confirm the central role of AR signaling in mCRPC 

that mediates its effect through regulators located in non-coding regions and the apparent 

difference in primary versus metastatic prostate cancers.   

The classification of patients using WGS has the advantage of being, in theory, more precise 

in determining genomically defined subgroups in prostate cancer compared to analyses using 

targeted panels consisting of a limited number of genes, or exome sequencing. The identification 

of subgroups based on predominant phenotypic characteristics encompassing genomic 
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compared to the current approach. Another potential pitfall of the employed hierarchical 

clustering scheme is that patients are only attributed to a single cluster. An example of this can 

be seen in cluster A where a patient is grouped based on its predominant genotype (MSI) and 

associated mutations in mismatch repair-related genes (MLH1, POLE, POLD3, and BLM), but 

this sample also displays an increased number of structural variants and increased ploidy status 

and harbors a pathogenic BRCA2 mutation. However, it is missing the characteristic number of 

genomic deletions (< 100 kbp) and BRCA mutational signature associated with BRCA2-/- samples 

that define cluster D. Despite these pitfalls we conclude that unbiased clustering contributes 

towards improved classification of patients.

The CPCT-02 study was designed to examine the correlation of genomic data with treatment 

outcome after biopsy at varying stages of disease. Our cohort contains patients with highly variable 

pretreatment history and since the treatments for mCRPC patients nowadays significantly impacts 

overall survival, the prognosis of patients differs greatly. Therefore, correlation between genomic 

data and clinical endpoints, such as survival is inherently flawed due to the very heterogeneous 

nature of the patient population. Moreover, our analysis comparing primary and metastatic 

samples shows a significant increase in the number of genomic aberrations with advancing 

disease, meaning that the difference in timing of the biopsies may bias the prognostic value of the 

data. In future studies, we plan to gather all known clinically defined prognostic information and 

determine whether the genomic subtypes increase the ability to predict outcome. Unfortunately, 

some clinical parameters with prognostic importance such as ethnicity will not be available due 

to ethical regulations. Moreover, we will increase the sample size, in order to correlate genomic 

features to clinical parameters to better determine whether the subtypes we identified are stable 

over time. Therefore, we are currently unable to present meaningful correlations between clinical 

endpoints and the clusters we identified.

Overall, we show the added value of WGS-based unsupervised clustering in identifying patients 

with genomic scars who are eligible for specific therapies. Since our clustering method does not 

rely on one specific genetic mutation we are able to classify patients even when WGS (or our 

methodology) does not find conclusive evidence for (bi-allelic) mutations in the proposed gene-

of-interest. Further research should validate clinical response and outcome on specific therapies 

in matched subgroups. This study also shows that a large population of mCRPC patients do not 

fall into an as-of-yet clinically relevant or biologically clear genotype and further research can help 

elucidate the oncogenic driver events and provide new therapeutic options. 
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Supplementary information

Figure S1. Overview of sequencing quality metrics
(a) Bee-swarm boxplot with notch of the mean read coverage per sample of reference and tumor tissues. 
Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 
times the interquartile range (IQR). Data points outside the IQR are shown.
(b) Bee-swarm boxplot with notch of the estimated (in silico) cohort-wide tumor cell percentages. Boxplot 
depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the 
interquartile range (IQR). Data points outside the IQR are shown.
(c) Correlation (Spearman) of estimated tumor cell percentages with observed aberrations per mutational 
category. Based on the low rank correlation coefficients (Spearman rho) we did not find high correlation with 
tumor cell percentages and detected events, however a minor correlation could indeed be seen.
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Overview of sequencing quality metrics.
(a) Bee-swarm boxplot with notch of the mean read coverage per sample of reference and tumor tissues. Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are shown.
(b) Bee-swarm boxplot with notch of the estimated (in silico) cohort-wide tumor cell percentages. Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are shown.

(d) Overview of the locations of variants (SNV / InDels / MNV) in respect to UCSC gene-models. Boxplot with notch depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are shown.
(e) Frequency of non-synonymous (red) and synonymous (blue) SNV per mCRPC sample.
(f ) Ratio of non-synonymous over synonymous SNV for the entire mCRPC cohort. Bee-swarm boxplot with notch of the ratio. Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are   
      shown.
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(a) Bee-swarm boxplot with notch of the mean read coverage per sample of reference and tumor tissues. Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are shown.
(b) Bee-swarm boxplot with notch of the estimated (in silico) cohort-wide tumor cell percentages. Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are shown.

(d) Overview of the locations of variants (SNV / InDels / MNV) in respect to UCSC gene-models. Boxplot with notch depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are shown.
(e) Frequency of non-synonymous (red) and synonymous (blue) SNV per mCRPC sample.
(f ) Ratio of non-synonymous over synonymous SNV for the entire mCRPC cohort. Bee-swarm boxplot with notch of the ratio. Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are   
      shown.
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(d) Overview of the locations of variants (SNV / InDels / MNV) in respect to UCSC gene-models. Boxplot with 
notch depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 
times the interquartile range (IQR). Data points outside the IQR are shown.
(e) Frequency of non-synonymous (red) and synonymous (blue) SNV per mCRPC sample.
(f) Ratio of non-synonymous over synonymous SNV for the entire mCRPC cohort. Bee-swarm boxplot with 
notch of the ratio. Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; 
whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are shown.

Figure S2. Overview of cohort-wide mCRPC somatic characteristics
(a) Number of SNV (blue), InDels (yellow) and MNV (orange) per whole-genome sequenced sample over 
three resolutions; genome-wide, within intragenic regions and within coding regions. Boxplot with notch 
depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the 
interquartile range (IQR). Data points outside the IQR are shown. Statistical significance (Wilcoxon rank-sum 
test) is denoted per comparison.
(b) Type of genome-wide SNVs. Transition (Ti) and transversion (Tv), with a special attention for C to T Ti in 
CpG context, are indicated per sample. Boxplot with notch depicts the upper and lower quartiles, with the 
median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside 
the IQR are shown.
(c) Frequency of Tandem Duplications (DUP), Insertions (INS), Inversions (INV), Deletions (DEL) and 
interchromosomal translocations (BND) are indicated per sample. Boxplot with notch depicts the upper and 
lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range 
(IQR). Data points outside the IQR are shown.
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Overview of sequencing quality metrics.
(a) Bee-swarm boxplot with notch of the mean read coverage per sample of reference and tumor tissues. Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are shown.
(b) Bee-swarm boxplot with notch of the estimated (in silico) cohort-wide tumor cell percentages. Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are shown.

(d) Overview of the locations of variants (SNV / InDels / MNV) in respect to UCSC gene-models. Boxplot with notch depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are shown.
(e) Frequency of non-synonymous (red) and synonymous (blue) SNV per mCRPC sample.
(f ) Ratio of non-synonymous over synonymous SNV for the entire mCRPC cohort. Bee-swarm boxplot with notch of the ratio. Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are   
      shown.
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(d) Overview of the locations of variants (SNV / InDels / MNV) in respect to UCSC gene-models. Boxplot with notch depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are shown.
(e) Frequency of non-synonymous (red) and synonymous (blue) SNV per mCRPC sample.
(f ) Ratio of non-synonymous over synonymous SNV for the entire mCRPC cohort. Bee-swarm boxplot with notch of the ratio. Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are   
      shown.
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(d) Overview of recurrent copy-number aberrations as detected by GISTIC2. G-scores are depicted on the 
y-axis ranging from 0 to ≥ 2. Regions with amplifications (G-score > 0) are depicted in green and deletions 
(G-score < 0) in blue. Regions with significant (and recurring) copy-number aberrations (q ≤ 0.1) are denoted 
with a darker shade of green or blue, respective of amplification or deletion. Per region, the foci of maximal 
amplification or deletion (focal peaks; q ≤ 0.1) are denoted in the inner track; the peak identifier is also 
denoted as presented in Table S3.
(e) Overview of genes detected by the dN/dS algorithm and corresponding mutational categories. Genes not 
present in one of our lists of known (onco)genes are colored red; (COSMIC v85, CGI, CIVIC and the list from 
Martincorena et al.26). The upper figure displays absolute frequencies per mutational category in the detected 
genes and the lower figure displays the respective q-value (-1*log10(q)). The red line in the bottom figure 
indicates the threshold for statistical significance (q = 0.01).

Figure S3. Overview of genomic (ETS) fusions
(a) Relative frequency of observed genomic aberrations 
resulting in potential fusion products. Fusions involving ETS 
genes are depicted in red, other potential fusion partners 
in blue. Numbers above the bars indicate the absolute 
number of patients with the genomic aberration in the 
mCRPC cohort.
(b–g) Overview of structural variants involving the TMPRSS2 
and ERG loci (b), NDRG1 and ERG loci (c), SLC45A3 and ERG 
loci (d), TMPRSS2 and ETV4 loci (e), CANT1 and ETV4 loci 
(f) and the SLC45A3 and ELK4 loci (g) in the mCRPC cohort. 
Interchromosomal translocations are colored in dark blue, 
deletions in black, insertions in yellow, inversion in light 
blue and tandem duplications in red. Orange boxes indicate 
exons; black line connecting the boxes are introns.
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Figure S4. Kataegis prevalence in mCRPC
(a) Number of observed kataegis events in mCRPC cohort samples (n = 42, blue bars) and the respective 
genomic width of all observed kataegis foci per sample (right y-axis; black points).
(b) Relative frequency of mutational contexts (of SNV) found in all observed kataegis foci per sample.
(c) Relative frequency of SNV in observed kataegis foci in APOBEC-related TpCpW mutational context. W 
stands for T or A.
(d) Relative contribution to mutational signatures (COSMIC) within the kataegis foci.
(e) Relative contribution to mutational signatures (COSMIC) of all genome-wide events of the sample.

(f) Representation of two distinct kataegis foci on chromosome 8 within a single respective sample (highlighted 
with * in (a). SNV (colored on Ti/Tv type) are shown with relative genomic distances (in log10) to neighboring 
SNV. Observed kataegis foci are highlighted with a transparent red background.
(g) Frequency and locations of cohort-wide observed kataegis foci, binned per 1 Mbp. Bins with 2 kataegis 
events in distinct samples are colored red, else blue.
(h) Absolute contribution of APOBEC signatures (2 & 13) in samples without (n = 155) and with (n = 42)  
observed kataegis. Bee-swarm boxplot with notch of the mean absolute contribution of APOBEC signatures (2 
& 13). Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers
indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are shown. Statistical significance 
was tested with Wilcoxon rank-sum test.
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Supplementary figure 4 - Kataegis prevalence in mCRPC
(a) Number of observed kataegis events in mCRPC cohort samples (n = 42, blue bars) and the respective genomic width of all observed kataegis foci per sample (right y-axis; black points).
(b) Relative frequency of mutational contexts (of SNV) found in all observed kataegis foci per sample.
(c) Relative frequency of SNV in observed kataegis foci in APOBEC-related TpCpW mutational context. W stands for T or A.
(d) Relative contribution to mutational signatures (COSMIC) within the kataegis foci.
(e) Relative contribution to mutational signatures (COSMIC) of all genome-wide events of the sample.
(f) Representation of two distinct kataegis foci on chromosome 8 within a single respective sample (highlighted with * in a). SNV (colored on Ti/Tv type) are shown with relative genomic distances (in log10) to neighboring SNV.  Observed kataegis foci are highlighted with a transparent red background.
(g) Frequency and locations of cohort-wide observed kataegis foci, binned per 1 Mbp. Bins with 2 kataegis events in distinct samples are colored red, else blue.
(h) Absolute contribution of APOBEC signatures (2 & 13) in samples without (n = 155) and with observed kataegis (n = 42). Bee-swarm boxplot with notch of the mean absolute contribution of APOBEC signatures (2 & 13). Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers

indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are shown. Statistical significance was tested with Wilcoxon rank-sum test.
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(a) Number of observed kataegis events in mCRPC cohort samples (n = 42, blue bars) and the respective genomic width of all observed kataegis foci per sample (right y-axis; black points).
(b) Relative frequency of mutational contexts (of SNV) found in all observed kataegis foci per sample.
(c) Relative frequency of SNV in observed kataegis foci in APOBEC-related TpCpW mutational context. W stands for T or A.
(d) Relative contribution to mutational signatures (COSMIC) within the kataegis foci.
(e) Relative contribution to mutational signatures (COSMIC) of all genome-wide events of the sample.
(f) Representation of two distinct kataegis foci on chromosome 8 within a single respective sample (highlighted with * in a). SNV (colored on Ti/Tv type) are shown with relative genomic distances (in log10) to neighboring SNV.  Observed kataegis foci are highlighted with a transparent red background.
(g) Frequency and locations of cohort-wide observed kataegis foci, binned per 1 Mbp. Bins with 2 kataegis events in distinct samples are colored red, else blue.
(h) Absolute contribution of APOBEC signatures (2 & 13) in samples without (n = 155) and with observed kataegis (n = 42). Bee-swarm boxplot with notch of the mean absolute contribution of APOBEC signatures (2 & 13). Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers

indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are shown. Statistical significance was tested with Wilcoxon rank-sum test.
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Figure S5. Mutational signature analysis
(a) Dendrogram of unsupervised clustering (Euclidean distance; Ward.D method) on absolute contributions 
of SNVs in custom signatures A-E.
(b) Relative contribution to the five custom mutational signatures A-E.
(c) Relative contribution to COSMIC mutational signatures.
(d) Relative distribution of the 96 mutational contexts present in the custom signatures.

(e) Correlation (cosine similarity) of novel signatures with COSMIC signatures. The size of the dot reflects the 
cosine similarity, with higher cosine similarity values shown as larger dots. The color gradient indicates the 
level of cosine similarity.
(f) Quality metrics of NMF between two to fifteen ranks.
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Supplementary figure 5 - Mutational signature analysis
(a) Dendrogram of unsupervised clustering (Euclidean distance; Ward.D method) on absolute contributions of SNVs in custom signatures A-E. 
(b) Relative contribution to the five custom mutational signatures A-E. 
(c) Relative contribution to COSMIC mutational signatures. 
(d) Relative distribution of the 96 mutational contexts present in the custom signatures. 
(e) Correlation (cosine similarity) of novel signatures with COSMIC signatures. The size of the dot reflects the cosine similarity, with higher cosine similarity values shown as larger dots. The color gradient indicates the level of cosine similarity. 
(f) Quality metrics of NMF between two to fifteen ranks.
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Supplementary figure 5 - Mutational signature analysis
(a) Dendrogram of unsupervised clustering (Euclidean distance; Ward.D method) on absolute contributions of SNVs in custom signatures A-E. 
(b) Relative contribution to the five custom mutational signatures A-E. 
(c) Relative contribution to COSMIC mutational signatures. 
(d) Relative distribution of the 96 mutational contexts present in the custom signatures. 
(e) Correlation (cosine similarity) of novel signatures with COSMIC signatures. The size of the dot reflects the cosine similarity, with higher cosine similarity values shown as larger dots. The color gradient indicates the level of cosine similarity. 
(f) Quality metrics of NMF between two to fifteen ranks.
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Supplementary figure 7 - ChIP-seq profiles in primary prostate cancer for known driver genes
ChIP-seq profiles from three independent primary prostate cancer patients surrounding the AR and PCAT1/MYC gene loci (with 1.25 additional Mbp up-/down-
stream) and two known AR-regulated positive controls (KLK3 and TMPRSS2 with additional 0.5 Mbp up-/downstream). Per subplot, the upper panel displays the 
selected genomic window and the overlapping genes. The 1th to 3th tracks represent AR ChIP-seq profiles (median read-coverage per 1000bp windows) in the 
three primary prostate cancer patients. The 4th to 6th tracks represent FOXA1 ChIP-seq profiles (median read-coverage per 1000bp windows) in the three 
primary prostate cancer patients. Finally, the 7th to 9th track represent H3K27ac ChIP-seq profiles (median read-coverage per 1000bp windows) in the three 
primary prostate cancer patients. ChIP-seq peaks (MACS/MACS2; q < 0.01) are shown as grey transparent lines per respective sample.
(a) ChIP-seq profiles surrounding the positive control KLK3 region.
(b) ChIP-seq profiles surrounding the positive control TMPRSS2 region.
(c) ChIP-seq profiles surrounding the AR region. The red asterisk denotes the location of the amplified region within the mCRPC setting.
(d) ChIP-seq profiles surrounding the PCAT1/MYC region. The red asterisk denotes the location of the amplified region within the mCRPC setting.
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Supplementary figure 7 - ChIP-seq profiles in primary prostate cancer for known driver genes
ChIP-seq profiles from three independent primary prostate cancer patients surrounding the AR and PCAT1/MYC gene loci (with 1.25 additional Mbp up-/down-
stream) and two known AR-regulated positive controls (KLK3 and TMPRSS2 with additional 0.5 Mbp up-/downstream). Per subplot, the upper panel displays the 
selected genomic window and the overlapping genes. The 1th to 3th tracks represent AR ChIP-seq profiles (median read-coverage per 1000bp windows) in the 
three primary prostate cancer patients. The 4th to 6th tracks represent FOXA1 ChIP-seq profiles (median read-coverage per 1000bp windows) in the three 
primary prostate cancer patients. Finally, the 7th to 9th track represent H3K27ac ChIP-seq profiles (median read-coverage per 1000bp windows) in the three 
primary prostate cancer patients. ChIP-seq peaks (MACS/MACS2; q < 0.01) are shown as grey transparent lines per respective sample.
(a) ChIP-seq profiles surrounding the positive control KLK3 region.
(b) ChIP-seq profiles surrounding the positive control TMPRSS2 region.
(c) ChIP-seq profiles surrounding the AR region. The red asterisk denotes the location of the amplified region within the mCRPC setting.
(d) ChIP-seq profiles surrounding the PCAT1/MYC region. The red asterisk denotes the location of the amplified region within the mCRPC setting.

Figure S7. ChIP-seq profiles in primary prostate cancer for known driver genes 
ChIP-seq profiles from three independent primary prostate cancer patients surrounding the AR and PCAT1/
MYC gene loci (with 1.25 additional Mbp up-/downstream) and two known AR-regulated positive controls 
(KLK3 and TMPRSS2 with additional 0.5 Mbp up-/downstream). Per subplot, the upper panel displays the 
selected genomic window and the overlapping genes. The 1th to 3th tracks represent AR ChIP-seq profiles 
(median read-coverage per 1000 bp windows) in the three primary prostate cancer patients. The 4th to 6th 
tracks represent FOXA1 ChIP-seq profiles (median read-coverage per 1000 bp windows) in the three primary 
prostate cancer patients. Finally, the 7th to 9th track represent H3K27ac ChIP-seq profiles (median read-
coverage per 1000 bp windows) in the three primary prostate cancer patients. ChIP-seq peaks (MACS/MACS2; 
q < 0.01) are shown as grey transparent lines per respective sample.
(a) ChIP-seq profiles surrounding the positive control KLK3 region.
(b) ChIP-seq profiles surrounding the positive control TMPRSS2 region.
(c) ChIP-seq profiles surrounding the AR region. The red asterisk denotes the location of the amplified region 
within the mCRPC setting.
(d) ChIP-seq profiles surrounding the PCAT1/MYC region. The red asterisk denotes the location of the amplified 
region within the mCRPC setting.
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Figure S8. Rationale of the chosen genomic features for unsupervised clustering
Principal component analysis (PCA) and overview of the genomic features included in the unsupervised 
clustering analysis highlighting the chosen size cut-offs and striking differences between samples.
(a) Overview of the explained variance per principal component (PC) in PCA.
(b) The quality of representation for each feature per principal component (cos2), this ranges from 0 (no 
importance / representation in PC) to 1 (absolute importance / representation in PC). Color gradient (0 to 
0.7) denotes cos2, red values denote important / representation of feature within PC. Numbers shown are 
the cos2 values.
(c) Visualization of the first three principal components of PCA, each sample is colored based on their assigned 
cluster (depicted in n) after unsupervised clustering on their genomic features.
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Supplementary figure 8 - Rationale of the chosen genomic features for unsupervised clustering
Principal component analysis (PCA) and overview of the genomic features included in the unsupervised clustering analysis highlighting the chosen size cut-offs and striking differences between samples.
(a) Overview of the explained variance per principal component (PC) in PCA.
(b) The quality of representation for each feature per principal component (cos2), this ranges from 0 (no importance / representation in PC) to 1 (absolute importance / representation in PC). Color gradient (0 to 0.7) denotes cos2, red values denote important / representation of 
 feature within PC. Numbers shown are the cos2 values.
(c) Visualization of the first three principal components of PCA, each sample is colored based on their assigned cluster (depicted in n) after unsupervised clustering on their genomic features.
(d) All genome-wide somatic SNVs per Mbp (square root scale).
(e) All genome-wide somatic InDels per Mbp (square root scale).
(f) All genome-wide somatic MNV per Mbp (square root scale).
(g) Absolute number of deletions (SV) per sample.
(h) Distribution of the genomic width of deletions (SV) per sample. Cyan line indicates the chosen size cut-offs (< 100 kbp and ≥ 100 kb).
(i) Absolute number of tandem duplications (SV) per sample.
(j) Distribution of the genomic width of tandem duplications (SV) per sample. Cyan line indicates the chosen size cut-offs (< 100 kbp and ≥ 100 kb).
(k) Absolute number of inversions (SV) per sample.
(l) Distribution of the genomic width of inversions (SV) per sample.
(m) Absolute number of insertions (SV) per sample. Genomic width of insertions could not be estimated accurately due to repeat-like sequences.
(n) Assigned clusters based on unsupervised clustering of genomic features.
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Supplementary figure 8 - Rationale of the chosen genomic features for unsupervised clustering
Principal component analysis (PCA) and overview of the genomic features included in the unsupervised clustering analysis highlighting the chosen size cut-offs and striking differences between samples.
(a) Overview of the explained variance per principal component (PC) in PCA.
(b) The quality of representation for each feature per principal component (cos2), this ranges from 0 (no importance / representation in PC) to 1 (absolute importance / representation in PC). Color gradient (0 to 0.7) denotes cos2, red values denote important / representation of 
 feature within PC. Numbers shown are the cos2 values.
(c) Visualization of the first three principal components of PCA, each sample is colored based on their assigned cluster (depicted in n) after unsupervised clustering on their genomic features.
(d) All genome-wide somatic SNVs per Mbp (square root scale).
(e) All genome-wide somatic InDels per Mbp (square root scale).
(f) All genome-wide somatic MNV per Mbp (square root scale).
(g) Absolute number of deletions (SV) per sample.
(h) Distribution of the genomic width of deletions (SV) per sample. Cyan line indicates the chosen size cut-offs (< 100 kbp and ≥ 100 kb).
(i) Absolute number of tandem duplications (SV) per sample.
(j) Distribution of the genomic width of tandem duplications (SV) per sample. Cyan line indicates the chosen size cut-offs (< 100 kbp and ≥ 100 kb).
(k) Absolute number of inversions (SV) per sample.
(l) Distribution of the genomic width of inversions (SV) per sample.
(m) Absolute number of insertions (SV) per sample. Genomic width of insertions could not be estimated accurately due to repeat-like sequences.
(n) Assigned clusters based on unsupervised clustering of genomic features.
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Supplementary figure 8 - Rationale of the chosen genomic features for unsupervised clustering
Principal component analysis (PCA) and overview of the genomic features included in the unsupervised clustering analysis highlighting the chosen size cut-offs and striking differences between samples.
(a) Overview of the explained variance per principal component (PC) in PCA.
(b) The quality of representation for each feature per principal component (cos2), this ranges from 0 (no importance / representation in PC) to 1 (absolute importance / representation in PC). Color gradient (0 to 0.7) denotes cos2, red values denote important / representation of 
 feature within PC. Numbers shown are the cos2 values.
(c) Visualization of the first three principal components of PCA, each sample is colored based on their assigned cluster (depicted in n) after unsupervised clustering on their genomic features.
(d) All genome-wide somatic SNVs per Mbp (square root scale).
(e) All genome-wide somatic InDels per Mbp (square root scale).
(f) All genome-wide somatic MNV per Mbp (square root scale).
(g) Absolute number of deletions (SV) per sample.
(h) Distribution of the genomic width of deletions (SV) per sample. Cyan line indicates the chosen size cut-offs (< 100 kbp and ≥ 100 kb).
(i) Absolute number of tandem duplications (SV) per sample.
(j) Distribution of the genomic width of tandem duplications (SV) per sample. Cyan line indicates the chosen size cut-offs (< 100 kbp and ≥ 100 kb).
(k) Absolute number of inversions (SV) per sample.
(l) Distribution of the genomic width of inversions (SV) per sample.
(m) Absolute number of insertions (SV) per sample. Genomic width of insertions could not be estimated accurately due to repeat-like sequences.
(n) Assigned clusters based on unsupervised clustering of genomic features.

c

(d) All genome-wide somatic SNVs per Mbp (square root scale).
(e) All genome-wide somatic InDels per Mbp (square root scale).
(f) All genome-wide somatic MNV per Mbp (square root scale).
(g) Absolute number of deletions (SV) per sample.
(h) Distribution of the genomic width of deletions (SV) per sample. Cyan line indicates the chosen size cut-offs 
(< 100 kbp and ≥ 100 kb).
(i) Absolute number of tandem duplications (SV) per sample.
(j) Distribution of the genomic width of tandem duplications (SV) per sample. Cyan line indicates the chosen 
size cut-offs (< 100 kbp and ≥ 100 kb).
(k) Absolute number of inversions (SV) per sample.
(l) Distribution of the genomic width of inversions (SV) per sample.
(m) Absolute number of insertions (SV) per sample. Genomic width of insertions could not be estimated 
accurately due to repeat-like sequences.
(n) Assigned clusters based on unsupervised clustering of genomic features.
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Figure S9. Cluster characteristics
Overview of genomic characteristics and COSMIC mutational signatures per cluster (A-H) derived from 
unsupervised clustering of the mCRPC cohort using basic WGS characteristics. Bee-swarm boxplot depicts the 
upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the interquartile 

range (IQR). Data points outside the IQR are shown. A pairwise Wilcoxon rank-sum test (BH correction) was 
performed to detect statistically significant differences between clusters; * denotes P ≤ 0.05, ** denotes P 
≤ 0.01, *** denotes P ≤ 0.001. Significant differences of events were also found in clusters without a clear 
biological association (C, E and G-H), such as increased numbers of translocations in cluster G and insertions 
in cluster H.
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Figure S10. Clustering QC
(a) Clustering estimation using optimum total within-cluster sum of square (wss). The final selection of the 
most optimal number of clusters was based on the knee in the blue line, e.g. the moment when increasing the 
number of clusters does not dramatically decrease wss.

a b

Supplementary figure 10 - Clustering QC
(a) Clustering estimation using optimum total within-cluster sum of square (wss). The final selection of the most optimal number of clusters was based on the knee in the blue line, e.g. the moment when increasing 
 the number of clusters does not dramatically decrease wss.
(b) Bootstrapping results (5000 iterations) of the unsupervised hierarchical clustering with additional coloring of the eight defined clusters as used in this manuscript. Branches with Approximately Unbiased p-values 
 (AU) ≤ 0.05 are highlighted with bolder lines and reflect significantly robust groups of samples based on similar characteristics derived from WGS. Y-axis displays clustering distance (Pearson correlation; 
 ward.D).

a b

Supplementary figure 10 - Clustering QC
(a) Clustering estimation using optimum total within-cluster sum of square (wss). The final selection of the most optimal number of clusters was based on the knee in the blue line, e.g. the moment when increasing 
 the number of clusters does not dramatically decrease wss.
(b) Bootstrapping results (5000 iterations) of the unsupervised hierarchical clustering with additional coloring of the eight defined clusters as used in this manuscript. Branches with Approximately Unbiased p-values 
 (AU) ≤ 0.05 are highlighted with bolder lines and reflect significantly robust groups of samples based on similar characteristics derived from WGS. Y-axis displays clustering distance (Pearson correlation; 
 ward.D).

(b) Bootstrapping results (5000 iterations) of the unsupervised hierarchical clustering with additional coloring 
of the eight defined clusters as used in this manuscript. Branches with Approximately Unbiased P-values (AU) 
≤ 0.05 are highlighted with bolder lines and reflect significantly robust groups of samples based on similar 
characteristics derived from WGS. Y-axis displays clustering distance (Pearson correlation; ward.D).
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Figure S11. Representative mCRPC sample per cluster
Genomic overviews of a single representative sample per (unsupervised) cluster. The outer track displays the 
genomic ideogram, the second-outer track displays copy-number profiles (amplification in light green; deep 
amplification beyond sample-specific threshold (GISTIC2) in dark green, deletions in blue; deep deletions 
beyond sample-specific threshold (GISTIC2) in dark blue). The third track displays tumor cell percentage-
corrected minor allele-frequency (MAF) values of individual copy-number segments (MAF ≤ 0.33 in pink; MAF 
≥ 0.33 in black). The fourth track displays the number of mutations per 5 Mbp, ranging from 0 to 60+; bins with 
≥ 20 mutations are highlighted in blue. The innermost track displays structural variants; interchromosomal 
translocations in dark blue, deletions in grey, insertions in yellow, inversion in light blue and tandem 
duplications in red.
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Figure S12. Overview of BRCA2 mutations 
Genomic distribution of non-synonymous BRCA2 mutations found within our mCRPC cohort. Mutations are 
displayed as pie-charts depicting the variant allele frequency (red portion of the pie-chart) and reference 
allele frequency (white portion of the pie-chart). Samples are colored based on their respective cluster after 
unsupervised clustering (figure 5). Known COSMIC mutations are annotated with * and/or known dbSNP 
variants with a . Alleles with known pathogenicity within ClinVar are highlighted, mutations without ClinVar 
annotation could be considered as variants with as-of-yet uncertain significance.

Frequency of variant allele
Frequency of reference allele

Pathogenic

Pathogenic

Pathogenic

Supplementary figure 12 - Overview of BRCA2 mutations
Genomic distribution of non-synonymous BRCA2 mutations found within our mCRPC cohort. 
Mutations are displayed as pie-charts depicting the variant allele frequency (red portion of the 
pie-chart) and reference allele frequency (white portion of the pie-chart). Samples are colored 
based on their respective cluster after unsupervised clustering (figure 4). 

Known COSMIC mutations are annotated with * and/or known dbSNP variants with a  . Alleles 
with known pathogenicity within ClinVar are highlighted, mutations without ClinVar annotation 
could be considered as variants with as-of-yet uncertain significance.
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Figure S13. Supervised clustering of mCRPC based on TCGA criteria
(a) Samples are sorted based on mutual-exclusivity of the same genes and aberrations as the TCGA clustering, 
depicted in red colors in the heatmap. In addition, all genes which the TCGA defined as recurrent alterations 
in primary prostate cancer are shown, genes also discovered in the mCRPC cohort as enriched in non-
synonymous mutations or copy-number alterations (dN/dS and/or GISTIC2) are depicted with a red asterisk. 
The upper track displays the number of genomic mutations per Mbp (TMB) of SNV (blue), InDels (yellow) 
and MNV (orange) categories. Second track displays the absolute number of unique structural variants per 
sample. Third track displays the relative frequency per structural variant category, Tandem Duplications and 
Deletions are subdivided into > 100 kbp and < 100 kbp categories. The fourth track displays the relative 
genome-wide ploidy status, ranging from 0 to ≥ 7 copies and the fifth track displays the relative contribution 
to mutational signatures (COSMIC) summarized per proposed etiology. The heatmap displays the type of 
mutation(s) per sample; (light-)green or (light-)red backgrounds depict copy-number aberrations whilst the 
inner square depicts the type of (coding) mutation(s). In addition, the lower tracks display CHORD prediction 
score (HR-deficiency) (pink gradient), MSI status (blue), chromothripsis (pink), presence of kataegis (red) and 
in which of the eight genomic cluster, as defined by this manuscript, each sample falls.
(b) Overview of the relative frequency of samples captured per mutually-exclusive group for both the TCGA 
and mCRPC cohort. Promiscuous ETS family fusions (ETV1, ETV4 and FLI1) which were captured in the TCGA 
cohort using mRNA overexpression were split as the mCRPC cohort did not have accompanying mRNA 
sequencing data to perform a similar capturing.

>>

>>
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Table S1. Participating centers

Organization Local principal investigator Included patients for this study (n)

Radboud UMC, Nijmegen Carla van Herpen 91

Erasmus MC, Rotterdam Martijn Lolkema 38

Franciscus Gasthuis & Vlietland, Rotterdam Paul Hamberg 20

NKI-AVL, Amsterdam Neeltje Steeghs 15

Isala, Zwolle Jan Willen de Groot 3

Martini Ziekenhuis, Groningen Johan van Rooijen 3

Medisch Centrum Leeuwarden Hiltje de Graaf 3

Maastricht UMC, Maastricht Vivianne Tjan-Heijnen 3

Noordwest Ziekenhuisgroep, Alkmaar Mathijs Hendriks 3

UMC Utrecht, Utrecht Els Witteveen 3

Amphia Ziekenhuis, Breda Bert Jan ten Tije 2

Reinier de Graaf Gasthuis, Delft Annelie Vulink 2

Treant Zorggroep, Hoogeveen Sophia van den Boogerd 2

Zuyderland Medisch Centrum, Geleen Frans Erdkamp 2

ETZ Elisabeth, Tilburg Laurens Beerepoot 1

Leids Universitair Medisch Centrum, Leiden Hans Gelderblom 1

Maasstad Ziekenhuis, Rotterdam Rineke Leys 1

Meander Medisch Centrum, Amersfoort Haiko Bloemendal 1

St. Antonius Ziekenhuis, Utrecht Maartje Los 1

VUmc, Amsterdam Henk Verheul 1

ZGT, Almelo Esther Siemerink 1

Fi
gu

re
 S

14
. O

ve
rv

ie
w

 o
f c

lu
st

er
in

g 
sc

he
m

e 
on

 p
rim

ar
y 

pr
os

ta
te

 c
an

ce
r a

nd
 m

CR
PC

(a
) O

ve
rv

ie
w

 o
f t

he
 e

xp
la

in
ed

 v
ar

ia
nc

e 
pe

r 
pr

in
ci

pa
l c

om
po

ne
nt

 (P
C)

 in
 P

CA
 o

f t
he

 c
om

bi
ne

d 
da

ta
se

t 
of

 p
ri

m
ar

y 
pr

os
ta

te
 c

an
ce

r 
(n

 =
 2

10
) a

nd
 m

CR
PC

 (n
 =

 1
97

). 
PC

A
 w

as
 

pe
rf

or
m

ed
 in

 th
e 

fo
llo

w
in

g 
fe

at
ur

es
: T

ot
al

 n
um

be
r 

of
 S

V,
 g

en
om

e-
w

id
e 

TM
B 

(S
N

V 
an

d 
In

D
el

s)
 a

nd
 re

la
tiv

e 
fr

eq
ue

nc
y 

of
 s

tr
uc

tu
ra

l v
ar

ia
nt

s 
(e

xc
ep

t i
ns

er
tio

ns
).

(b
) V

is
ua

liz
ati

on
 o

f t
he

 fi
rs

t t
hr

ee
 p

ri
nc

ip
al

 c
om

po
ne

nt
s 

of
 P

CA
, e

ac
h 

sa
m

pl
e 

is
 c

ol
or

ed
 b

as
ed

 o
n 

th
ei

r r
es

pe
cti

ve
 d

is
ea

se
-s

etti
ng

, p
ri

m
ar

y 
pr

os
ta

te
 c

an
ce

r i
s 

co
lo

re
d 

as
 v

io
le

t 
w

hi
ls

t m
CR

PC
 is

 c
ol

or
ed

 a
s 

lig
ht

-r
ed

.
(c

) 
Th

e 
qu

al
ity

 o
f 

re
pr

es
en

ta
tio

n 
fo

r 
ea

ch
 fe

at
ur

e 
pe

r 
pr

in
ci

pa
l c

om
po

ne
nt

 (
co

s2
), 

th
is

 r
an

ge
s 

fr
om

 0
 (

no
 im

po
rt

an
ce

 /
 r

ep
re

se
nt

ati
on

 in
 P

C)
 t

o 
1 

(a
bs

ol
ut

e 
im

po
rt

an
ce

 /
 

re
pr

es
en

ta
tio

n 
in

 P
C)

. C
ol

or
 g

ra
di

en
t (

0 
to

 0
.7

) d
en

ot
es

 c
os

2,
 re

d 
va

lu
es

 d
en

ot
e 

im
po

rt
an

t /
 re

pr
es

en
ta

tio
n 

of
 fe

at
ur

e 
w

ith
in

 P
C.

 N
um

be
rs

 s
ho

w
s 

ar
e 

th
e 

co
s2

 v
al

ue
s.

(d
) D

en
dr

og
ra

m
 o

f u
ns

up
er

vi
se

d 
cl

us
te

ri
ng

 w
ith

 o
pti

m
al

 le
af

 o
rd

er
in

g 
on

 g
en

om
ic

 fe
at

ur
es

. Y
-a

xi
s 

di
sp

la
ys

 c
lu

st
er

in
g 

di
st

an
ce

 (P
ea

rs
on

 c
or

re
la

tio
n;

 w
ar

d.
D

).
(e

) A
ll 

ge
no

m
e-

w
id

e 
so

m
ati

c 
SN

Vs
 (b

lu
e)

 a
nd

 In
D

el
s 

(y
el

lo
w

) p
er

 M
bp

 (s
qu

ar
e 

ro
ot

 s
ca

le
).

(f
) A

bs
ol

ut
e 

fr
eq

ue
nc

y 
of

 s
tr

uc
tu

ra
l v

ar
ia

nt
s 

pe
r 

sa
m

pl
e 

(s
qu

ar
e 

ro
ot

 s
ca

le
).

(g
) R

el
ati

ve
 fr

eq
ue

nc
y 

pe
r 

st
ru

ct
ur

al
 v

ar
ia

nt
 c

at
eg

or
y,

 T
an

de
m

 D
up

lic
ati

on
s 

an
d 

D
el

eti
on

s 
ar

e 
su

bd
iv

id
ed

 in
to

 >
 1

00
 k

bp
 a

nd
 <

 1
00

 k
bp

 c
at

eg
or

ie
s.

(h
) R

es
pe

cti
ve

 c
oh

or
t o

f t
he

 s
am

pl
es

, p
ri

m
ar

y 
pr

os
ta

te
 c

an
ce

r 
is

 c
ol

or
ed

 a
s 

vi
ol

et
 w

hi
ls

t m
CR

PC
 is

 c
ol

or
ed

 a
s 

lig
ht

-r
ed

.
(i)

 A
ss

ig
ne

d 
cl

us
te

rs
 o

f m
CR

PC
 s

am
pl

es
 b

as
ed

 o
n 

un
su

pe
rv

is
ed

 c
lu

st
er

in
g 

of
 g

en
om

ic
 fe

at
ur

es
 a

s 
de

sc
ri

be
d 

in
 fi

gu
re

 5
.

>>



85

Chapter 2

 The genomic landscape of metastatic castration-resistant prostate cancers 

reveals multiple distinct genotypes with potential clinical impact

84

Part 1 

Genomic Landscape of Metastatic Prostate Cancer

Prior radiotherapy

Yes (curative radiotherapy of the prostate and/or palliative radiotherapy of metastases) 117 59.4

No 77 39.1

Unknown at time of analysis 3 1.5

 

Started therapy after biopsy for whole-genome sequencing

Yes 138 70.1

Hormonal therapy 53 26.9

Chemotherapy 56 28.4

Radionucleotide therapy 12 6.1

Immunotherapy (Pembrolizumab) 6 3.0

Targeted therapy 3 1.5

Combinational therapy 6 3.0

Other* 2 1.0

No 19 9.6

Unknown at time of analysis 40 20.3

 

Biopsy site

Liver 29 14.7

Lymph node 81 41.1

Bone 70 35.5

Lung 3 1.5

Soft tissue/Other** 14 7.1

*Boneregulating agent
**Soft tissue/other: (sub)cutis, muscle, peritoneum, kidney, bladder, adrenal gland

Data file S1.

Can be accessed through https://www.nature.com/articles/s41467-019-13084-7

Table S2. Patient characteristics

Patients (n = 197)

 n %

Age at biopsy

Median 68  

Range (min-max) 48-83

 

Prior ADT

Yes 197 100.0

Drug-based 181 91.9

Surgery-based (orchiectomy) 3 1.5

With Docetaxel 6 3.0

No clear documentation of ADT type 7 3.6

 

Prior systemic therapy (other than ADT)

0 previous treatments 27 13.7

≥ 1 previous treatments 170 86.3

1 previous treatment 45 22.8

2 previous treatments 69 35.0

3 previous treatments 31 15.7

4 previous treatments 19 9.6

5 previous treatments 6 3.0

 

Type of prior systemic therapy (other than ADT)

Hormonal therapy only 20 10.2

Chemotherapy only 37 18.8

Radionucleotide therapy only 4 2.0

Immunotherapy only (Dendritic cell therapy) 4 2.0

Targeted therapy only 0 0.0

Hormonal and chemotherapy 68 34.5

Hormonal and radionucleotide therapy 3 1.5

Chemotherapy and radionucleotide therapy 3 1.5

Hormonal and immunotherapy 3 1.5

Chemotherapy and immunotherapy 3 1.5

Hormonal, chemotherapy and radionucleotide therapy 15 7.6

Hormonal, chemotherapy and immunotherapy 4 2.0

Hormonal, radionucleotide and immunotherapy 2 1.0

Hormonal, chemotherapy and targeted therapy (Olaparib) 2 1.0

Hormonal, chemotherapy, radionucleotide and immunotherapy 1 0.5

Unknown at time of analysis 1 0.5
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Abstract

Circulating tumor DNA (ctDNA) has emerged as a potential new biomarker with diagnostic, 

predictive, and prognostic applications for various solid tumor types. Before beginning large 

prospective clinical trials to prove the added value of utilizing ctDNA in clinical practice, it is 

essential to investigate the effects of various preanalytical conditions on the quality of cell-free 

DNA (cfDNA) in general and of ctDNA in particular in order to optimize and standardize these 

conditions. Whole blood samples were collected from patients with metastatic cancer bearing 

a known somatic variant. The following preanalytical conditions were investigated: (a) different 

time intervals to plasma isolation (1, 24, and 96 h) and (b) different preservatives in blood 

collection tubes (EDTA, CellSave, and BCT). The quality of cfDNA/ctDNA was assessed by DNA 

quantification, digital polymerase chain reaction (dPCR) for somatic variant detection and a β-actin 

fragmentation assay for DNA contamination from lysed leukocytes. In 11 (69%) of our 16 patients, 

we were able to detect the known somatic variant in ctDNA. We observed a time-dependent 

increase in cfDNA concentrations in EDTA tubes, which was positively correlated with an increase 

in wild-type copy-numbers and large DNA fragments (> 420 bp). Using different preservatives 

did not affect somatic variant detection ability, but did stabilize cfDNA concentrations over time. 

Variant allele frequency was affected by fluctuations in cfDNA concentration only in EDTA tubes 

at 96 h. Both CellSave and BCT tubes ensured optimal ctDNA quality in plasma processed within 

96 h after blood collection for downstream somatic variant detection by dPCR.

Introduction

Circulating tumor DNA (ctDNA) has emerged as a potential new biomarker in the field of 

oncology. The quantification and characterization of ctDNA in plasma creates numerous potential 

applications, including detection of minimal residual disease, early evaluation of treatment 

response and stratification for targeted therapy according to specific genetic changes1-7. 

The application of ctDNA-based diagnostic tests into the clinic still faces several technical 

difficulties. The biggest hurdle might be the detection limit: ctDNA may comprise < 1.0% of the 

total cell-free DNA (cfDNA), making detection of the tumor-specific fraction challenging1,8,9. The 

majority of cfDNA is derived from apoptotic tissue and hematological cells which release their 

DNA in the circulation10,11. Thus, the absolute quantity of cfDNA (‘the background’) determines 

our ability to detect ctDNA, and quantification of the tumor-specific variant frequency depends 

both on the abundance of ctDNA molecules and on the total amount of cfDNA. One of the most 

important factors impacting the total amount of cfDNA is the time to plasma processing after 

blood collection, which increases the release of wild-type DNA from lysed hematological cells 

present in the blood collection tube12,13. To avoid this, plasma needs to be separated from the 

blood sample within hours after the blood withdrawal, but the maximum time frame to do so, 

remains to be revealed. 

Due to logistical and practical reasons, it is often not possible to process and store blood samples 

immediately after blood withdrawal to ensure optimal ctDNA quality; especially in the context of 

large multi-center prospective clinical trials, which are essential to definitely establish ctDNA as a 

clinically relevant new biomarker, there is a need for standardization of preanalytical conditions 

that allow longer processing time of blood samples. To overcome this problem, specialized ‘cell-

stabilizing’ blood collection tubes have been developed. These tubes should not only minimize 

contamination by wild-type DNA from lysed hematological cells in the blood tube, but also 

preserve the quality of ctDNA for reliable downstream analyses. 

Until today, a number of studies have tested the different available blood collection tubes to 

optimally preserve cfDNA/ctDNA12,14-16. They all demonstrate a time-dependent increase in cfDNA 

concentrations in ethylenediaminetetraacetic acid (EDTA) tubes, while cfDNA concentrations 

remained stable in both BCT and CellSave tubes. Toro et al.14 included the PAXgene blood DNA 

tube in their study, but this tube did not improve the results obtained with EDTA tubes. Yet, even 

though preservation methods have been compared17, thorough direct comparisons between BCT 

and CellSave tubes at clinically relevant time frames are missing. We set out to compare the 

available preservatives for their ability to allow easier implementation of ctDNA-based tests into 

larger clinical trials where processing of samples within 1 h presents a major logistical challenge. 

The purpose of this study was to investigate the effect on the quality of cfDNA in general and 
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of ctDNA in particular in patients with metastatic cancer under the following preanalytical 

conditions: (a) different time intervals to plasma isolation (1, 24, and 96 h); and (b) different types 

of preservative in the blood collection tubes (EDTA, CellSave, and BCT tubes). To this purpose, the 

amount of cfDNA isolated from plasma was quantitated, its’ size determined, and the fraction of 

ctDNA determined.

Materials and Methods

Patient characteristics and somatic variant status of tumor

Between October 2015 and January 2016 cancer patients within the Erasmus MC Cancer Institute 

in Rotterdam, the Netherlands were invited to contribute blood samples for this study by their 

treating physician. Patients were included if they had metastatic disease, were not currently 

receiving systemic treatment and if a validated dPCR assay (TaqMan® SNP genotyping assays, 

ThermoFisher Scientific, Waltham, MA USA; see also section on ‘Digital PCR TaqMan® SNP 

genotyping and β-actin fragmentation assay’) was available for the known somatic variant in their 

primary and/or metastatic lesion. Somatic variant status and variant allele frequency (VAF) in 

tissue had been assessed as part of the standard of care by the molecular diagnostics laboratory 

of the department of pathology in the Rotterdam region by either Sanger sequencing (patient 

#10 and #16), SNaPshot analysis (patient #05) or NGS analysis (all other patients). The DNA input 

for these analyses ranged from 0.48 to 10 ng. The calculation of VAF was performed through 

NGS analysis by calculating the coverage of the variant nucleotide relative to the total coverage 

on that position. For tissue samples analyzed by Sanger sequencing the VAF was calculated by 

determining the ratio between the variant peak and the wild-type peak. All patients provided 

written informed consent, and the institutional review board approved the protocols (Erasmus 

MC ID MEC-15-616). 

Preanalytical conditions

After obtaining written informed consent, 9x 10 mL of blood samples were collected within a single 

blood withdrawal (Figure S1). Matched blood samples were collected in sterile 3x 10 mL K2EDTA 

vacutainer® (BD, Franklin Lakes, NJ, USA), 3x 10 mL Cell-Free DNA BCT® (Streck, Omaha, NE, USA) 

and 3x 10 mL CellSave Preservative (Janssen Diagnostics, Raritan, NJ, USA) blood collection tubes 

according to manufacturer instructions. The blood samples from one of each type of tube (EDTA, 

BCT and CellSave) were processed for plasma isolation at 3 different time points: within 1 h after 

blood withdrawal, at 24 h and at 96 h after blood withdrawal (Figure S1). Plasma was isolated 

using 2 sequential centrifugation steps: 1) 1711g for 10 minutes at room temperature; 2) 12,000g 

for 10 minutes at room temperature. Plasma was stored at -80°C in 1 mL aliquots immediately 

after centrifugation until further processing.

cfDNA isolation and quantification

For cfDNA isolation plasma samples were thawed at 4°C and 3 mL of plasma per sample was used. 

cfDNA was isolated using the QIAamp® Circulating Nucleic Acid kit (Qiagen, Venlo, Limburg, The 

Netherlands) according to manufacturer’s instructions. cfDNA was eluted from the Qiagen® Mini 

column using 50 µL buffer AVE which was applied 3 times to the column to obtain the highest 

cfDNA concentration possible. cfDNA was stored at -20°C. cfDNA concentrations were quantified 

using the Quant-iT dsDNA high-sensitivity assay (Invitrogen, Life Technologies, Carlsbad, CA, USA) 

according to manufacturer’s instructions and the Qubit fluorometer (Invitrogen) was used as 

readout. 

Digital PCR TaqMan® SNP genotyping and β-actin fragmentation assay

cfDNA samples were thawed at room temperature. Validated TaqMan® SNP genotyping assays 

(ThermoFisher Scientific, Waltham, MA, USA) were used for somatic variant and wild-type 

detection according to manufacturer’s instructions (Tabel S1). Accordingly, the limit of detection 

of this assay is 0.1% 18. The maximum volume input of 7.8 µL of the final cfDNA eluate was used, 

unless the amount of cfDNA in this volume exceeded the maximal input of 30 ng cfDNA, then 30 

ng cfDNA was used. Depending on the obtained cfDNA concentration after plasma isolation, at 

least 2.57 ng cfDNA was analyzed, leading to a detection rate of 0.78% at the most. 

The TaqMan® β-actin fragmentation assay was based on the assay developed by Norton et al.12 

to detect small (136 bp) and long (420 bp) β-actin fragments. We adapted the assay so that both 

fragments were measured within a single experiment using the reported primers, but different 

probes for each fragment (Tabel S2). For the β-actin fragmentation assay a standardized input of 

2 ng cfDNA was used to minimize the change of having multiple DNA fragments in one well. 

All dPCR reactions were performed with the QuantStudio 3D Digital PCR System (ThermoFisher 

Scientific) according to the manufacturer’s protocol. In short, dPCR reaction mix was prepared 

containing 8.7 µL QuantStudio 3D Digital PCR Master Mix v2, 0.44 µL Taqman primer/probe mix, 

up to 7.8 µL of cfDNA and the total volume was completed with PCR grade H2O to a final volume 

of 17.4 µL. Using the QuantStudio 3D Digital PCR Chip Loader samples were partitioned on a 

20,000 wells QuantStudio 3D Digital PCR Chip v2 followed by a PCR reaction on a ProFlex 2x Flat 

PCR System with the following program: 10 min at 96°C, 40x cycles of 2 min at 60°C, and followed 

by 30 sec at 98°C, 2 min at 60°C and pause at 10°C. The dPCR data were then acquired with 

the QuantStudio 3D Digital PCR Instrument and the data was analyzed with the QuantStudio 3D 

Analysis Suite by one technician (JH) to account for inter-observer variability.

Statistical analysis

The Wilcoxon signed rank test was used to compare the difference between matched 1 h and 24 h 

samples relative to the difference between matched 1 h and 96 h samples. The Friedman test was 

used to test the order of the three 1 h samples. To correct for multiple testing, we adjusted the P 
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value for significance using the Bonferroni correction. Significance was thus defined as P < 0.008 

(0.05/6). Correlations were tested by Spearman’s rank correlation coefficient. 

cfDNA concentrations determined by the Quant-iT dsDNA high-sensitivity assay were corrected 

for the plasma input and were converted from ng/mL plasma to copies/mL plasma by taking into 

consideration that 3.3 pg of human DNA contains 1 copy of a single gene. cfDNA concentrations 

were then log-transformed.

To correct for differences in plasma input used for cfDNA isolation and for differences in elution 

volume after cfDNA isolation, we expressed dPCR results as variant/wild-type copy-numbers per 

mL plasma. To calculate variant/wild-type copy-numbers per mL plasma the following equation 

as described by Lo et al.19 was used: 

C = Q * (VDNA)/VPCR) * (1/Vext)
where C is variant/wild-type copy-numbers per mL plasma; Q is the total number of variant/

wild-type copy-numbers determined by dPCR; VDNA is the total volume of cfDNA obtained after 

cfDNA isolation; VPCR is the volume of cfDNA solution used for the dPCR reaction; and Vext is the 

volume of plasma used for cfDNA isolation. 

To calculate VAF we divided the variant copy-numbers per mL plasma by the sum of variant and 

wild-type copy-numbers per mL plasma. 

All statistical analyses were performed using STATA version 14.1. All figures were plotted using 

R version 3.2.3.

Results

Somatic variant detection rate in ctDNA of recruited patients

A total of 16 patients were included who all met the set criteria to investigate the effect of different 

preanalytical conditions on the quality of ctDNA. Somatic variant status of the primary and/or 

metastatic lesion had been previously assessed, either by targeted next generation sequencing 

(13 of 16 patients), by SNaPshot analysis (one of 16 patients), or by traditional Sanger sequencing 

(2 of 16 patients). Table 1 lists the origin of the primary tumor, the site and number of metastases, 

and the VAF in the tumor tissue. Using the specific TaqMan SNP genotyping assay (Table S1), we 

were able to detect in 11 (69%) of our 16 patients the known somatic variant in ctDNA isolated 

within 1 h from EDTA tubes. This corresponds to the detection of 13 (68%) of 19 of the total 

number of somatic variants tested as some patients had multiple known somatic variants. 

Temporal effect of storage in EDTA tubes on cfDNA quality

To investigate the effect of different time intervals from the blood withdrawal to plasma isolation 

on cfDNA quality, we measured cfDNA concentration isolated from plasma collected in EDTA Ta
bl

e 
1.

 T
um

or
 c

ha
ra

ct
er

is
tic

s a
nd

 so
m

ati
c 

va
ria

nt
 d

et
ec

tio
n

Pa
tie

nt
 

ID
 (#

)
Pr

im
ar

y 
tu

m
or

Si
te

 a
nd

 n
um

be
r o

f 
m

et
as

ta
se

s (
x)

In
te

rv
al

 tu
m

or
 ti

ss
ue

 a
nd

 
pl

as
m

a 
an

al
ys

is
 (m

on
th

s)
Kn

ow
n 

so
m

ati
c 

va
ria

nt
(n

uc
le

oti
de

 c
ha

ng
e)

Va
ria

nt
 a

lle
le

 fr
eq

ue
nc

y 
in

 ti
ss

ue
 (%

)
Va

ria
nt

 a
lle

le
 fr

eq
ue

nc
y 

in
 p

la
sm

a 
ED

TA
 1

 h
 (%

)

Ce
ll-

fr
ee

 D
N

A 
co

nc
en

tr
ati

on
 in

 
pl

as
m

a 
ED

TA
 1

 h
 

(c
op

ie
s/

m
L 

pl
as

m
a)

01
Ch

ol
an

gi
o-

ca
rc

in
om

a
Li

 (3
), 

Lu
 (2

), 
LN

 (1
)

2
KR

A
S 

p.
G

12
D

 (c
.3

5G
>A

)
40

0.
00

36
55

02

Pa
nc

re
ati

c 
ca

nc
er

Li
 (3

), 
Lu

 (1
) L

N
 (6

)
9

KR
A

S 
p.

G
12

V 
(c

.3
5G

>T
)

62
0.

00

40
55

CR
C

BR
A

F 
p.

V6
00

E 
(c

.1
79

9T
>A

)
39

0.
97

PI
K3

CA
 p

.H
10

47
R 

(c
.3

14
0A

>G
)

38
1.

86

03
Br

ea
st

 
ca

nc
er

LN
 (>

2)
-1

*
PI

K3
CA

 p
.H

10
47

L 
(c

.3
14

0A
>T

)
26

0.
00

27
88

04
M

el
an

om
a

Li
 (2

), 
LN

 (5
)

2
BR

A
F 

p.
V6

00
E 

(c
.1

79
9T

>A
)

3
1.

44
16

15

05
CR

C
Li

 (6
), 

LN
 (2

)
6

KR
A

S 
p.

G
13

D
 (c

.3
8G

>A
)

U
nk

no
w

n
65

.4
6

22
3,

13
0

06
CR

C
Li

 (3
), 

Lu
 (4

)
18

KR
A

S 
p.

G
12

D
 (c

.3
5G

>A
)

44
8.

61
22

15

07
M

el
an

om
a

Br
ai

n 
(2

), 
A

bd
 (7

)
8

N
RA

S 
p.

Q
61

R 
(c

.1
82

A
>G

)
68

17
.2

2
42

45

08
M

el
an

om
a

LN
 (3

), 
Lu

 (6
), 

Li
 

(>
15

), 
Sp

le
en

 (1
), 

Bo
ne

 (4
), 

Pe
ri

to
ni

tis
 

ca
rc

in
om

at
os

a,
 p

le
ur

iti
s 

ca
rc

in
om

at
os

a

1
BR

A
F 

p.
V6

00
E 

(c
.1

79
9T

>A
)

64
37

.2
1

22
,4

42

09
M

el
an

om
a

LN
 (5

)
1

BR
A

F 
p.

V6
00

E 
(c

.1
79

9T
>A

)
70

6.
42

27
39

10
CR

C
Br

ai
n 

(2
), 

Li
 (1

), 
Lu

 (8
)

87
KR

A
S 

p.
G

13
D

 (c
.3

8G
>A

)
50

0.
00

60
30

11
CR

C
Lu

 (2
)

5
KR

A
S 

p.
G

13
D

 (c
.3

8G
>A

)
57

0.
84

46
70

12
CR

C
Li

 (>
20

), 
LN

 (1
)

3
KR

A
S 

p.
Q

61
R 

(c
.1

82
A

>G
)

46
0.

00
16

,1
36

13
N

SC
LC

Br
ai

n 
(8

), 
A

dr
en

al
 

gl
an

d 
(1

)
7

EG
FR

 p
.T

79
0M

 (c
.2

36
9C

>T
)

17
1.

18
53

58
EG

FR
 p

.L
85

8R
 (c

.2
57

3T
>G

)
17

2.
62

14
M

el
an

om
a

LN
 (7

), 
Lu

 (5
), 

ad
ne

xa
22

BR
A

F 
p.

V6
00

E 
(c

.1
79

9T
>A

)
56

5.
37

35
39

15
N

SC
LC

Li
 (u

nk
no

w
n)

1
EG

FR
 p

.T
79

0M
 (c

.2
36

9C
>T

)
65

27
.6

0
14

,0
85

16
M

el
an

om
a

Br
ai

n 
(1

)
38

BR
A

F 
p.

V6
00

E 
(c

.1
79

9T
>A

)
>5

0
0.

00
30

12

CR
C:

 c
ol

or
ec

ta
l c

an
ce

r; 
N

SC
LC

: n
on

-s
m

al
l c

el
l l

un
g 

ca
nc

er
; L

i: 
liv

er
; L

u:
 lu

ng
; L

N
: l

ym
ph

 n
od

e;
 A

bd
: a

bd
om

en
* 

A 
ne

w
 b

io
ps

y 
w

as
 ta

ke
n 

2.
5 

w
ee

ks
 a

fte
r t

he
 b

lo
od

 c
ol

le
cti

on
.



96 97

Part 2

Liquid Biopsies

Chapter 3 

 Application of circulating tumor DNA in prospective clinical oncology trials – standardization

of preanalytical conditions

tubes. We observed a significant increase in cfDNA concentrations in samples isolated after 96 h 

compared to samples isolated within 1 h (P < 0.001; Figure 1 and Figure S2). This increase in cfDNA 

concentration was significantly positively correlated with an increase in wild-type copy-numbers 

(rho = 0.85; P < 0.001; Figure 2A). If a somatic variant was detected in the 1 h sample, the somatic 

variant could also be detected in 24 h and 96 h samples. We also observed a significant positive 

correlation between variant copy-numbers and cfDNA concentration, although this was less 

strong (rho = 0.42; P < 0.001; Figure 2B).

Figure 1. cfDNA concentrations for different preanalytical conditions
Boxes (interquartile ranges [IQR]) and whiskers (1.5x IQR) are shown together with the median (black 
horizontal line) of the log cfDNA concentrations in copies per mL plasma of 16 patients for the different 
preanalytical conditions. Outliers are displayed as black dots. The Wilcoxon signed rank test was used to 
compare the difference between matched 1 h and 24 h samples relative to the difference between matched 
1 h and 96 h samples. *P < 0.001.

To investigate whether the increase in cfDNA concentration and wild-type copy-numbers was 

due to the release of intact DNA from lysed leukocytes, we used the β-actin fragmentation assay 

(Figure 3A). In all preanalytical conditions, we detected low amounts of large fragments. We 

observed significantly more large fragments in samples from 96 h than in samples from 1 h (420 

bp, P < 0.001; 2000 bp, P < 0.001; Figure 3B). There was also a small but significant increase in 

fragmented DNA in samples from 96 h compared to samples from 1 h (136 bp, P = 0.002; Figure 

3B).

Figure 2. Correlation between wild-type or variant copy-numbers and cfDNA concentration
The log number of wild-type copies (A) or variant copies (B) in copies per mL plasma on the x-axis is plotted 
against the log cfDNA concentrations in copies per mL plasma on the y-axis. Data points correspond to single 
sample measurements from each time interval and each type of preservative. Correlations were tested by 
Spearman’s rank correlation coefficient. *P < 0.001. Five patients with undetectable variant copy-numbers in 
ctDNA are removed from plot B. 

Figure 3. β-actin fragmentation assay for different preanalytical conditions
(A) Principle of β-actin fragmentation assay. dPCR wells containing only 136-bp signal are indicative of 
fragmented DNA (fragments < 200 bp), whereas the 420-bp primer set will only bind to intact DNA (> 420 
bp). When a large intact DNA fragment (> 2000 bp) is present in one of the wells, both primer sets can bind, 
resulting in a mixed signal. In theory, this can also occur when a small (< 200 bp) and large (> 420 bp) DNA 
fragment is present together in one well.
(B) Results of β-actin fragmentation assay. Boxes (interquartile ranges [IQR]) and whiskers (1.5x IQR) are 
shown together with the median (black horizontal line) of the number of β-actin copies for the different 
preanalytical conditions. Outliers are displayed as black points. The Wilcoxon signed rank test was used to 
compare the difference between matched 1 h and 24 h samples relative to the difference between matched 
1 h and 96 h samples for the different fragment sizes. *P = 0.002; **P < 0.001.
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The interaction between different preservatives and plasma isolation time intervals 
and cfDNA quality

Next, we studied the effect of different preservatives in blood collection tubes on cfDNA quality. 

We compared cfDNA concentrations isolated from plasma collected in EDTA, BCT, and CellSave 

tubes processed within 1 h. Cell-free DNA concentrations were similar in all blood collection 

tubes (Figure 1 and Figure S2). We also did not observe any differences in the DNA fragment size 

distribution with the β-actin fragmentation assay for the different tubes at 1 h (Figure 3B). 

In order to investigate whether the used preservatives in BCT and CellSave tubes could prevent the 

time-dependent increase in cfDNA concentration observed in EDTA tubes, we measured cfDNA 

concentrations in samples isolated after 24 h and 96 h after blood withdrawal. We observed 

stable cfDNA concentrations in all 24 h and 96 h samples compared to their matched 1 h samples 

(Figure 1 and Figure S2). Also, we did not observe any differences in the DNA size distribution with 

the β-actin fragmentation assay for the matched time intervals for both tube types (Figure 3B).

The interaction between different preservatives and plasma isolation time intervals 
on somatic variant detection in ctDNA

To study the effect of time-dependent increase in cfDNA concentrations and wild-type copy-

numbers on somatic variant detection, we analyzed VAF in the different preanalytical conditions 

compared to their matched 1 h sample. If a somatic variant was detected in the EDTA 1 h 

sample, the somatic variant could also be detected in all BCT and CellSave samples. There was 

no correlation between the VAF in tumor tissue and the VAF in plasma (Figure S3). There was 

a significant decrease in VAFs in samples from EDTA 96 h (P = 0.003; Figure 4), which was not 

observed for the other preanalytical conditions. Because all tubes were drawn within a single 

blood withdrawal, we expected, in contrast to VAF, that all tubes within each patient contains 

similar amounts of variant copy-numbers. Indeed, variant copy-numbers appeared largely similar 

between tubes and in all tubes compared to their matched 1 h sample (Figure 5 and Figure S4).

Figure 4. VAF of 11 patients for different preanalytical conditions
Data points correspond to VAF for each individual patient and assay. The Wilcoxon signed rank test was 
used to compare the difference between matched 1 h and 24 h samples relative to the difference between 
matched 1 h and 96 h samples. *P = 0.003.

Figure 5. Variant copy-numbers of 11 patients for different preanalytical conditions
Data points correspond to variant copy-numbers for each individual patient and assay. The Wilcoxon signed 
rank test was used to compare the difference between matched 1 h and 24 h samples relative to the difference 
between matched 1 h and 96 h samples.
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Discussion and Conclusions

The purpose of this study was to investigate the effects of various preanalytical conditions on the 

quality of cfDNA in general and of ctDNA in particular. The main aim was to investigate whether 

BCT and CellSave tubes processed within 96 h after blood withdrawal into plasma were suitable 

for downstream analyses of ctDNA.

Patients were recruited with a high prior probability to harbor ctDNA in their plasma, that is, 

patients with metastatic disease without current anti-cancer treatment. In 69% of our patients, 

we were able to detect the known somatic variant from tissue in ctDNA and this corresponds 

to the detection of 68% of all tested somatic variants. In two of six missed somatic variants, the 

somatic variant status in tissue was assessed > 3 years ago. It may be possible that other cancer 

subclones have emerged, resulting in undetectable somatic variants in ctDNA. Unfortunately, 

in these cases, more recent information on somatic variant status was not available. Detection 

of somatic variants in plasma may also be influenced by the site and extent of metastases, 

which is exemplified by patient #05. This patient had a widespread pattern of metastases with 

corresponding high levels of cfDNA and high levels of variant copy-numbers in plasma. However, 

due to our heterogeneous cohort, this relationship could not be tested statistically for the other 

patients.  

The clinical utility and potential importance of our methods is evidenced by our findings 

in patient #02, who was thought to have metastases from his pancreatic carcinoma (first 

primary cancer) harboring a KRAS mutation. However, we could only detect BRAF and PIK3CA 

mutations in his ctDNA, highly suggestive that the metastases were originating from the patients’ 

colorectal cancer (second primary cancer), which can have important implications for his disease 

management. 

The formation of small DNA fragments (180−200 bp lengths) is a biochemical hallmark of 

apoptosis, whereas during cell lysis or necrosis intact genomic DNA and thus much larger DNA 

fragments (50−300 kbp) remain20. Through an increase in wild-type copy-numbers and mainly 

intact DNA fragments, we were able to demonstrate that the time-dependent increase in cfDNA 

concentration in EDTA tubes indeed originates from leukocyte lysis. In addition, we observed 

low levels of intact DNA fragments in all preanalytical conditions, indicating a background level 

of leukocyte lysis here. Both Norton et al.12 and Rothwell et al.15 observed a similar increase 

in cfDNA concentrations in samples collected in EDTA tubes. In both BCT and CellSave tubes, 

cfDNA concentrations, wild-type copy-numbers and β-actin fragment sizes remained stable up 

to 96 h, indicating that the preservative in these tubes does not adversely affect cfDNA quality. 

Interestingly, there was also a significant increase in fragmented DNA in samples from EDTA 96 h, 

which might be attributed to nucleases remaining active. 

As we only used dPCR for downstream analysis of ctDNA, we cannot rule out the possibility 

that the used preservatives in BCT and CellSave tubes could potentially damage the cfDNA and 

thus affect other downstream analyses. Rothwell et al. assessed the number of single nucleotide 

variants through whole-genome sequencing of cfDNA isolated from plasma collected in CellSave 

tubes15. They did not observe introduction of DNA errors. Thus, the preservative used in CellSave 

tubes does not seem to influence cfDNA downstream analysis using NGS. 

Despite the contamination with intact cfDNA, we were still able to detect all somatic variants 

in ctDNA from EDTA 96 h samples, in those samples where we were able to detect a somatic 

variant in the EDTA 1 h samples. These data suggest that stored samples which have not been 

processed optimally for ctDNA analysis can still be used to determine the presence of somatic 

variants in ctDNA. As a consequence of increased cfDNA concentrations and correlated wild-type 

copy-numbers, we did observe a significant decrease in VAF in the EDTA 96 h samples. With 

respect to ctDNA applications for treatment response evaluation, this could result in serious 

misinterpretations of VAFs. However, variant copy-numbers remained stable in all tubes and 

might thus be a more accurate outcome measure to evaluate treatment response in patients 

with cancer. Further investigation is needed to determine the inter-assay variability regarding the 

range of variant copy-numbers and VAFs we observed among the different tubes. 

The results in this study indicate that EDTA tubes processed at 96 h after blood withdrawal are 

not suitable for blood collection for subsequent cfDNA/ctDNA analysis as the time-dependent 

increase in cfDNA concentration, resulting from leukocyte lysis, significantly affects VAF. In patient 

samples with low variant copy-numbers, this increase in cfDNA concentration may cause variant 

copies to fall below the limit of detection of the dPCR assay and thus may lead to false-negative 

results. Both BCT and CellSave tubes preserve cfDNA/ctDNA quality equally well up to 96 h and 

the used preservatives did not affect downstream cfDNA/ctDNA analyses by dPCR. Variant copy-

numbers and VAFs also remained stable in these tubes. 

Therefore, we recommend for all future clinical studies, in which flexibility regarding the 

processing of blood samples is needed, to isolate plasma from blood collected in either BCT or 

CellSave tubes within 96 h. This will make large multi-center trials using a central processing 

facility feasible, and will lead to optimal quality of ctDNA for research and diagnostics. 
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Supplementary information

Figure S1. Overview of study design
At time point 0 h 9x 10 mL blood tubes (3x EDTA; 3x BCT; 3x CellSave) were collected within a single blood 
withdrawal from each recruited patient (n = 16). From each type of tube plasma was isolated within 1 h, after 
24 h and after 96 h. Plasma was directly stored at -80°C after processing.

Figure S2. Cell-free DNA concentrations for each individual patient for different preanalytical conditions 
Data points correspond to the log cfDNA concentrations in copies/mL plasma for each individual patient (n 
= 16) and for the different preanalytical conditions. Different tube types are indicated by different colors. 
Different time points are indicated by different symbols.

Figure S3. Correlation between variant allele frequency in tumor tissue and in ctDNA in plasma
The log percentage of tumor tissue variant allele frequency (tVAF) on the x-axis is plotted against the log 
precentage of ctDNA in plasma variant allele frequency (pVAF) on the y-axis. Data points correspond to single 
somatic variants. Correlation was tested by Spearman’s rank correlation coefficient.

Figure S4. Variant copy-numbers for 1 h samples
The log variant copy-numbers from 11 patients for the 1 h samples. Data points correspond to variant copy-
numbers for each individual patient and assay. 
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rank correlation coefficient. 
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Table S1. Used SNP genotyping assays

Assay ID Assay name Gene Cosmic ID Amino acid change Nucleotide change

AH6R5PH BRAF_476 BRAF 476 p.V600E c.1799T>A

AHRSROS EGFR_6240 EGFR 6240 p.T790M c.2369C>T

AHRSRSV EGFR_6224 EGFR 6224 p.L858R c.2573T>G

AH6R5PI KRAS_521 KRAS 521 p.G12D c.35G>A

AHX1IHY KRAS_520 KRAS 520 p.G12V c.35G>T

AHD2BW0 KRAS_532 KRAS 532 p.G13D c.38G>A

AHQJTKH KRAS_552 KRAS 552 p.Q61R c.182A>G

AHS1P6Q NRAS_584 NRAS 584 p.Q61R c.182A>G

AHLJ0TP PIK3CA_776 PIK3CA 776 p.H1047L c.3140 A>T

AHPAVCD PIK3CA_775 PIK3CA 775 p.H1047R c.3140 A>G

Table S2. Primer and probe designs for digital PCR

Gene Forward primer Reverse primer Probe

β-actin 136 bp 5’-GCG CCG TTC CGA AAG TT-3’ 5’- CGG CGG ATC GGC AAA -3’ 6FAM-ACC GCC GAG ACC GCG 
TC-MGBNFQ

β-actin 420 bp 5’-CCG CTA CCT CTT CTG GTG-3’ 5’-GAT GCA CCA TGT CAC ACT 
G-3’

VIC-CCT CCC TCC TTC CTG GCC 
TC-BHQ
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Abstract

The emerging interest in circulating tumor DNA (ctDNA) analyses for clinical trials has necessitated 

the development of a high-throughput method for fast, reproducible, and efficient isolation 

of ctDNA. Currently, the majority of ctDNA studies use the manual QIAamp (QA) platform to 

isolate DNA from blood. The purpose of this study was to compare two competing automated 

DNA isolation platforms (Maxwell [MX] and QIAsymphony [QS]) to the current ‘gold standard’ 

QA to facilitate high-throughput processing of samples in prospective trials. We obtained blood 

samples from healthy blood donors and metastatic cancer patients for plasma isolation. Total 

cell-free DNA (cfDNA) quantity was assessed by TERT quantitative PCR. Recovery efficiency was 

investigated by quantitative PCR analysis of spiked-in synthetic plant DNA. In addition, a β-actin 

fragmentation assay was performed to determine the amount of contamination by genomic DNA 

from lysed leukocytes. ctDNA quality was assessed by digital PCR for somatic variant detection. 

cfDNA quantity and recovery efficiency were lowest using the MX platform, whereas QA and 

QS showed a comparable performance. All platforms preferentially isolated small (136 bp) DNA 

fragments over large (420 and 2000 bp) DNA fragments. Detection of the number of variant and 

wild-type molecules was most comparable between QA and QS. However, there was no significant 

difference in variant allele frequency comparing QS and MX to QA. In summary, we show that 

the QS platform has comparable performance to QA, the ‘gold standard’, and outperformed the 

MX platform depending on the readout used. We conclude that the QS can replace the more 

laborious QA platform, especially when high-throughput cfDNA isolation is needed.

Introduction

With the discovery of cell-free DNA (cfDNA), first described in 1948 by Mandel and Metais1, and 

subsequently circulating tumor DNA (ctDNA)2, a novel biomarker in cancer research became 

available. Since then, many studies have shown its great potential for detecting minimal residual 

disease and evaluating treatment response3-11. However, to enable high-throughput ctDNA 

analyses a fast, accurate, and efficient cfDNA isolation method is highly needed. 

Currently, the majority of ctDNA studies uses Qiagen’s QIAamp (QA) platform for cfDNA 

isolation12-14. However, this manual platform is laborious and can only process up to 24 samples 

at a time rendering this method less suitable for large-scale studies. Automation of cfDNA 

isolation represents a potential solution provided that it is able to: (a) reduce hands-on time; (b) 

simultaneously process large numbers of samples; (c) accurately and reproducibly isolate cfDNA 

with a reasonable recovery; and (d) preserve the quality of ctDNA for downstream analyses. 

Cell-free DNA is naturally fragmented (140−175 bp) and only present at low concentrations in the 

blood circulation (usually around 10 ng per mL plasma15). In addition, the fraction of ctDNA relative 

to cfDNA can vary from extremely low (< 0.01%) to very high (60%), as it is dependent on tumor 

type and stage6,16. Together these features make it imperative to carefully determine the efficacy 

of DNA isolation instead of merely investigating isolation yields. Furthermore, isolation of cfDNA 

and ctDNA therein is highly susceptible to genomic DNA contamination from lysed leukocytes17,18, 

resulting in a potential underestimation of the ctDNA fraction and decreasing the detection 

sensitivity. As potential differences in cfDNA recovery efficiency between isolation methods might 

affect downstream analysis results of ctDNA by decreasing its detection sensitivity, standardized 

comparison of the different methods for cfDNA isolation is important and highly needed.

The purpose of this study was to compare two automated cfDNA isolation platforms, Maxwell 

(MX) and QIAsymphony (QS), to the current ‘gold standard’ QA isolation kit to determine whether 

these automated platforms can facilitate high-throughput processing of samples in prospective 

trials. Our analyses focused on both qualitative and quantitative parameters, including cfDNA 

yield, recovery efficiency, cfDNA fragmentation patterns, and ctDNA fraction retrieved, using 

optimally processed plasma samples of healthy blood donors (HBDs) and patients with metastatic 

cancer.
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Materials and Methods

Subjects

Blood samples were obtained from a total of 10 HBDs and 10 metastatic cancer patients. HBDs 

were either laboratory volunteers or blood donors of the Sanquin Blood Bank South-West Region, 

The Netherlands. Patients were enrolled in this study between September 2016 and September 

2017 within the Erasmus MC Cancer Institute in Rotterdam, the Netherlands. Eligibility criteria for 

patients have been described previously19. All patients provided written informed consent, and 

the institutional review board approved the protocols (Erasmus MC ID MEC-15-616). The study 

methodologies conformed to the standards set by the Declaration of Helsinki. Patient and tumor 

characteristics are summarized in Table 2. 

Blood collection

HBDs donated 20 mL of blood, collected either in 2x 10 mL CellSave preservative tubes (Janssen 

Diagnostics, Raritan, New Jersey, USA) or in 1x 10 mL EDTA tube (Becton, Dickinson and Company, 

Franklin Lakes, New Jersey, USA) and 1x 10 mL CellSave preservative tube. Patients donated 3x 

10 mL of blood collected in CellSave preservative tubes. Blood samples were stored at room 

temperature until further processing. After blood withdrawal, samples in EDTA tubes were 

processed within 24 h, whereas samples  in CellSave tubes were processed within 96 h for plasma 

isolation as previously described19.

Cell-free DNA isolation

Cell-free DNA was isolated from 2 mL of plasma and eluted in 60 µL of the provided elution buffer. 

Three isolation platforms were evaluated (Table 1): 

• QIAamp® (QA) Circulating Nucleic Acid kit (Qiagen, Hilden, North Rhine-Westphalia, Germany); 

• QIAsymphony® (QS) SP Circulating DNA Kit (Qiagen); 

• Maxwell® (MX) RSC LV ccfDNA Plasma Custom Kit (Promega, Madison, Wisconsin, USA).

All cfDNA isolations were performed according to the manufacturer’s protocol, with some 

minor modifications. In more detail, cfDNA was isolated with QA as previously described19. The 

QS isolation was adapted by adding 1 µg of carrier RNA (cRNA, Qiagen) to the plasma sample 

preceding isolation. Using the MX platform, a third plasma centrifugation step at 2,000g for 10 

minutes at room temperature was performed after thawing to eliminate residual leukocytes, 

as recommended by the manufacturer. The custom Maxwell® RSC ccfDNA Plasma Kit for large 

plasma volume protocol was used. In brief, 2 mL of plasma was added to an equal amount of 

binding buffer and 140 µL of magnetic beads. This mixture was incubated under rotation for 

45 minutes at room temperature and subsequently centrifuged at 2,000g for 1 minute at room 

temperature. The pelleted mix of beads and cfDNA was then transferred to the cartridge and run 

on the MX instrument (Promega) according to the manufacturer’s protocol.

Table 1. Specifications of cell-free DNA isolation platforms

Platform Manufacturer Protocol
cfDNA isolation 

kit

Plasma 
input 
(mL)

Number 
of 

samples 
per run

Handling-
time per 
run (min)

Technique
Cost (€)

per 
sample

QIAamp
(QA)

Qiagen Manual
QIAamp® 

Circulating 
Nucleic Acid Kit

1.0 – 
5.0

24 180-240
Vacuum-
column 
based

20

QIAsymphony 
(QS)

Qiagen Automatic
QIAsymphony® 

Circulating 
DNA Kit

2.0 – 
8.0*

96 30
Magnetic-

bead based
24

Maxwell
(MX)

Promega Automatic

Maxwell® RSC 
LV ccfDNA 

Plasma Custom 
Kit

2.0 – 
4.0*

16** 30
Magnetic-

bead based
20

*Upon request the manufacturer is able to adjust system settings and protocols for lower/higher plasma input 
volumes.
** The Maxwell RSC 48 Instrument can process up to 48 samples per run.

Testing of cRNA addition to the automated platforms

Plasma samples from several HBDs were pooled and divided into aliquots of 2 mL each. To each 

aliquot we added different amounts of cRNA, ranging from 0.25 µg up to 4 µg. As a control, 

plasma samples without cRNA were included. To allow determination of the recovery efficiency, 

synthetic plant DNA was added to plasma samples (see below). 

Cell-free DNA quantification

All cfDNA samples were quantified by both QubitTM fluorometric quantitation (Invitrogen, Life 

Technologies, Carlsbad, California, USA) and human TaqMan® copy-number reference assay TERT 

(Applied Biosystems, Life Technologies, Foster City, California, USA) by quantitative PCR (qPCR). 

The QubitTM measurement was performed on 2 µL of each cfDNA sample using the Quant-iT 

dsDNA high-sensitivity assay (Invitrogen), according to the manufacturer’s protocol. TERT qPCR 

reactions contained 5 µL cfDNA, 3.13 µL SensiFASTTM SYBR® Lo-Rox mix (Bioline, London, United 

Kingdom), 0.62 µL TERT assay in a total reaction volume of 12.5 µL. The qPCR reaction was 

performed on an Mx3000P Real-Time PCR System (Agilent, Santa Clara, California, USA) with a 

pre-incubation at 95°C for 10 minutes, followed by 45 cycles of 95°C for 10 seconds and 60°C for 

22 seconds. cfDNA was quantified using a standard curve of human genomic DNA.

Synthetic plant DNA and plant DNA qPCR assay

The synthetic plant DNA assay developed by Kang et al.20 was used as an exogenous control to 

calculate the recovery efficiency of each cfDNA isolation method. In short, 250 ng of a 150 bp 

gBlocks® gene fragment (Integrated DNA Technologies Incorporation [IDT], Coralville, Iowa, USA) 

was resuspended in LoTE buffer to a final concentration of 1.64x100 ng/µL. The stock sample was 

serially diluted to a final concentration of 1.64x10-6 ng/µL of which 5 µL was spiked into plasma 
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preceding cfDNA isolation. Plant DNA qPCR reactions were essentially performed as described 

above, using 900 nM of both forward and reverse primer and 250 nM of a FAM-labeled probe 

(Table S1). Recovery efficiency was determined using a standard curve including the amount of 

spiked-in plant DNA. Samples with a recovery efficiency < 5% or > 100% were excluded from 

further analysis as this strongly suggested an operator failure. This was further supported by 

the fact that recovery efficiency was not strongly correlated (ρ = 0.45) with cfDNA concentration 

(Figure S1).

Digital PCR TaqMan® SNP genotyping and β-actin fragmentation assay

The presence of somatic tumor-specific variants and wild-type DNA molecules was determined 

using standard and custom-made TaqMan® SNP genotyping assays (ThermoFisher Scientific, 

Waltham, Massachusetts, USA) according to the manufacturer’s instructions (Table S2 and S3). 

The TaqMan® β-actin assay was used to investigate the fragment size distribution as an indication 

of leukocyte DNA contamination of the cfDNA, as previously reported19. In short, a standard 

amount of 2 ng of cfDNA was used to detect one small (136 bp) and two long (420 bp and 2000 bp) 

β-actin fragments within a single reaction. The used primers and probes are indicated in Table S1. 

The dPCR reaction was performed as previously described19. In short, a maximum volume input 

of 7.8 µL of the final cfDNA eluate was added to the dPCR reaction; the dPCR run was performed 

on the chip-based QuantStudio 3D Digital PCR System (ThermoFisher Scientific) according to the 

manufacturer’s protocol. SNP genotyping assays were run at 56°C; the β-actin assay was run at 

60°C. A negative (H2O) and positive (cell genomic DNA with known variant) control was added to 

every experiment.

Sample size

To test whether QS and MX were comparable to QA we assumed a Cohen’s effect size of 0.8, 

to be able to detect relevant differences. With a two-sided type I error probability (α) of 0.025 

and a type II error probability (β) of 0.2, a power calculation determined that 18 subjects were 

needed for paired comparisons. Based on the foregoing 20 subjects were included (10 HBDs and 

10 patients). 

Calculations and statistical analysis

All assay results were corrected for variations in plasma input and eluate volume, as previously 

described19, and expressed as either ng/mL plasma or as mutant/wild-type /β-actin copy-number 

per mL of plasma. The variant allele frequency (VAF) was calculated as follows: VAF = total variant 

copy-number / (total variant copy-number + total wild-type  copy-number)

The statistical analyses and figure plotting were performed in R version 3.2.3. The Friedman test 

was used to test the difference between matched QA, MX and QS samples. Significant differences 

were post hoc analyzed using the Wilcoxon signed rank test. To correct for multiple testing, we 

adjusted the P value for significance by subsequently applying the Bonferroni correction. The 

Wilcoxon signed rank test was used to test the difference between matched EDTA and CellSave 

samples. Correlations were determined by Spearman’s rank correlation coefficient.

Results

Optimization of cfDNA isolation using automated isolation platforms

In a small pilot study, we had previously observed a beneficial effect of cRNA addition to HBD 

plasma during isolation with the QS protocol on the cfDNA yield as determined by Qubit (Figure 

S2). Therefore, cRNA addition was implemented in our standard QS protocol. However, it has 

been reported that cRNA might interfere with Qubit-based DNA quantification and might not be 

a reliable read-out21. Therefore, we tested whether cfDNA isolation on the automated platforms 

(QS/MX) was beneficially or adversely affected by the addition of cRNA using multiple read-outs. 

We added varying amounts of cRNA to the plasma samples and measured the resulting cfDNA 

concentration by Qubit and TERT qPCR for both automated platforms. Using Qubit as read-out, 

the addition of cRNA increased the total amount of cfDNA extracted on both platforms (MX P < 

0.001; QS P < 0.001; Figure 1A). However, using TERT qPCR as read-out, this increase could not 

be reproduced (Figure 1B). Next, we assessed the impact of cRNA on the recovery of spiked-in 

synthetic plant DNA. Addition of cRNA affected the recovery efficiency of plant DNA (MX P = 0.02; 

QS P = 0.04; Figure 1C). Independent of cRNA input, recovery of plant DNA was ~ 30% higher with 

QS (58.37 ± 9.52) than with MX (28.22 ± 6.67; P < 0.001). To assess whether the addition of cRNA 

biased the isolation of particular cfDNA fragment sizes, we performed the β-actin fragmentation 

assay (Figure 1D). For both methods, increasing amounts of cRNA reduced the number of small 

fragments (136 bp; MX P = 0.001; QS P < 0.001), while no effect on larger fragments was observed. 

For all post hoc analyses, paired testing of samples with and without addition of cRNA (0 µg) did 

not reveal any significant differences.
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Figure 1. Effect of increasing cRNA input (0–4 µg) on cfDNA quantity and quality using the Maxwell and 
QIAsymphony platforms
The effect on cfDNA concentration (ng/mL plasma) was measured by Qubit (A) and TERT qPCR (B). The 
recovery efficiency of each platform was analyzed by qPCR using spiked-in synthetic plant DNA (C). Differences 
in cfDNA fragment size, expressed as number of β-actin fragments for each fragment size (136, 420 and 
2000 bp), were analyzed by dPCR (D). Boxes (interquartile ranges [IQR]) and whiskers (1.5x IQR) are shown 
together with the median (black horizontal line). Outliers are indicated as single black points. Symbols l and 
s are mean values shown with whiskers (standard deviation). The Friedman test was used to test the group 
difference between Maxwell and QIAsymphony samples. Significant differences were post hoc analyzed using 
the Wilcoxon signed-rank test. n = 5.

Compatibility of CellSave preservative tubes with different isolation platforms

Previously, we have demonstrated the good performance of CellSave preservative tubes for 

ctDNA analysis19. However, the manufacturers of both automated platforms recommend to 

use plasma isolated from blood collected in EDTA tubes. To allow for a fair comparison with our 

CellSave QA results, we therefore first determined whether the automated platforms (QS/MX) 

were compatible with CellSave tubes by assessing the cfDNA quantity and quality.

Figure 2A shows cfDNA concentrations as measured by TERT qPCR analysis. For the MX platform, 

the median cfDNA concentration was 5.59 ng/mL plasma from EDTA tubes and was 2.19 ng/

mL plasma from CellSave tubes (IQR: 5.06–6.21 and 2.07–3.37 ng/mL plasma, respectively; P 

= 0.008). For the QS platform, the median cfDNA concentration was 17.17 ng/mL plasma from 

EDTA tubes and 11.13 ng/mL plasma from CellSave tubes (IQR: 7.81–22.12 and 9.02–14.14 ng/

mL plasma, respectively). Although this was comparable, EDTA samples displayed a larger range in 

yielded cfDNA concentration. The potential effect of CellSave tubes on the recovery of synthetic 

plant DNA was determined as well. Comparable recovery efficiencies were observed in plasma 

collected in EDTA and CellSave tubes for both platforms (39.92% vs. 44.27% in MX and 67.92% 

vs. 66.19% in QS; Figure 2B). Finally, we used the β-actin fragmentation assay to evaluate cfDNA 

fragmentation patterns as a read out for general sample quality (Figure 2C). EDTA tubes yielded 

a higher number of large cfDNA fragments (2000 bp) irrespective of the platform used (median 

number of β-actin fragments and IQR MX: 33.08 (14.28−44.59); QS: 32.46 (25.53−55.44)) than 

in CellSave tubes (median number of β-actin fragments and IQR MX: 5.15 (2.42−9.17); QS: 13.80 

(7.01−18.18); P = 0.008). The number of small DNA fragments (136 bp) did not differ between 

EDTA and CellSave tubes for MX, but was slightly higher for EDTA tubes on the QS platform 

(median number of β-actin fragments and IQR EDTA: 142.71 (110.28−198.18); CellSave: 89.71 

(80.22−102.64); P = 0.04). Based on these results, we deemed CellSave tubes are compatible with 

both automated platforms and used them for all further experiments.

Figure 2. Compatibility of EDTA and CellSave blood collection tubes with the Maxwell and QIAsymphony 
platforms
The effects on cfDNA concentration (ng/mL plasma) measured by TERT qPCR (A), recovery efficiency 
measured by plant DNA qPCR (B), and β-actin fragmentation assay analyzed with dPCR are shown (C). Boxes 
(interquartile ranges [IQR]) and whiskers (1.5x IQR) are shown together with the median (black horizontal >>
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line). Outliers are indicated as single black points. Symbols l and s are mean values shown with whiskers 
(standard deviation). The Wilcoxon signed-rank test was used to test the difference between blood collection 
tubes for each platform. n = 9.

Comparison of the performance of automated platforms on downstream cfDNA and 
ctDNA analyses

Next, we compared the quantity and quality of the obtained cfDNA using the current ‘gold standard’ 

manual QA platform to the automated QS and MX platforms using samples from 10 HBDs and 10 

metastatic cancer patients. In HBDs, cfDNA concentrations measured by TERT qPCR analysis were 

comparable for all three isolation platforms (Figure 3A). In patients, the MX retrieved significantly 

less cfDNA compared to both QA (P = 0.002) and QS (P = 0.002; median cfDNA concentration and 

IQR QA: 15.84 (12.64−65.11); MX: 6.00 (3.80−20.43); QS: 14.50 (11.99−57.65) ng/mL plasma; 

Figure 3A). To determine the recovery efficiency of the three different platforms, 5 µL of synthetic 

plant DNA was added to each plasma sample preceding cfDNA isolation. The average recovery 

efficiency using QA (51.95 ± 12.02%) was similar to QS (43.45 ± 8.21%). However, MX performed 

worse (18.61 ± 5.81%; P < 0.001; Figure 3B). In HBDs, we did not observe cfDNA fragment size 

differences between either of the evaluated platforms (Figure 3C). In patients, MX isolated fewer 

small β-actin fragments (136 bp) than QA (median number of β-actin fragments and IQR for MX: 

57.45 (53.17−66.72); and for QA: 83.18 (70.36−101.63); P < 0.01) and fewer large fragments 

(2000 bp) than QS (median number of β-actin fragments and IQR for MX: 2.08 (0.00−5.21); and 

for QS: 10.06 (6.70−13.72); P = 0.002). 

Figure 3. Effect of the different isolation platforms (QIAamp, Maxwell, and QIAsymphony) on downstream 
cfDNA analysis
Cell-free DNA was isolated from 2 mL matched plasma samples of HBDs (n = 10) and patients with metastatic 
cancer (n = 10) and analyzed by TERT qPCR assay for cfDNA concentration (ng/mL plasma) (A), plant DNA 
qPCR assay to determine recovery efficiency (B), and dPCR β-actin fragmentation assay to evaluate cfDNA 
fragment sizes (C). 

Boxes (interquartile ranges [IQR]) and whiskers (1.5x IQR) are shown together with the median (black 
horizontal line). Outliers are indicated as single black points. Symbols n, l, and s are mean values shown with 
whiskers (standard deviation). The Friedman test was used to test the group difference between matched 
samples processed by the three platforms. Significant differences were post hoc analyzed using the Wilcoxon 
signed-rank test.

Finally, we compared somatic variant detection in ctDNA isolated by the different platforms. 

For this purpose, we used previously generated diagnostic sequencing results on the somatic 

variant status in the primary and/or metastatic lesions of the corresponding patients (Table 2). 

We detected the expected somatic variants in all patients for all isolation methods. QS results 

were most comparable to QA (Figure 4). In MX, fewer mutant molecules, though not significant, 

and significantly fewer wild-type molecules were isolated (Figure 4A, B). However, this did not 

result in a significantly different VAF (Figure 4C). 

Figure 4. Somatic variant detection in patients with 
metastatic cancer on samples isolated with the three 
different isolation platforms (QIAamp, Maxwell, and 
QIAsymphony)
Somatic variant status had been assessed in patients’ 
primary and/or metastatic lesion as part of the 
standard of care. In all patients (n = 10), the known 
somatic variant was detected in plasma isolated from 
the three platforms. The ratios of the mutant copy-
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Figure 3 Effect of the different isolation platforms (QIAamp, Maxwell and QIAsymphony) 

on downstream cfDNA analysis. cfDNA was isolated from 2 mL matched plasma samples of 

healthy blood donors (N=10) and patients with metastatic cancer (N=10) and analyzed by 

(A) TERT qPCR assay for cfDNA concentration (ng/mL plasma), (B) plant DNA qPCR assay to 

determine recovery efficiency and (C) dPCR β-actin fragmentation assay to evaluate cfDNA 

fragment sizes. Boxes (interquartile ranges; IQR) and whiskers (1.5x IQR) are shown together 

with the median (black horizontal line). Outliers are indicated as single black points. Symbols 

■, ● and ▲are mean values shown with whiskers (standard deviation). The Friedman test 

was used to test the group difference between matched samples processed by the three 

platforms. Significant different were post-hoc analyzed using the Wilcoxon signed rank test. 
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Figure 4 Somatic variant detection in patients with metastatic cancer on samples isolated 

with the three different isolation platforms (QIAamp, Maxwell and QIAsymphony). 

Somatic variant status had been assessed in patients’ primary and/or metastatic lesion as 

part of the standard of care. In all patients (N=10) the known somatic variant was detected 

in plasma isolated from the three platforms. The ratios of the mutant copy number (A), wild 

type copy number (B) and variant allele frequency (VAF; C) measured in the Maxwell and 

QIAsymphony vs. QIAamp are shown. The dashed line (ratio of 1) resembles the situation 

when platforms have similar results. The Wilcoxon signed rank test was used to test the 

difference between the platforms. 
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number (A), wild-type copy-number (B), and variant allele frequency (VAF; C) measured in the Maxwell and 
QIAsymphony vs. QIAamp are shown. The dashed line (ratio of 1) resembles the situation when platforms 
have similar results. The Wilcoxon signed-rank test was used to test the difference between the platforms.

Table 2. Patient and tumor characteristics

Patient ID (#) Primary tumor
Known somatic variant

(nucleotide change)
Variant allele frequency in 

tissue (%)

BP-001 NSCLC
KRAS p.G12C

(c.34G>T)
32

BP-003 Melanoma
NRAS p.Q61R

(c.182A>G)
88

BP-004 Melanoma
BRAF p.V600E

(c.1799_1800delinsAA)
50

BP-007 Melanoma
BRAF p.V600K

(c.1798_1799delGTinsAA)
38

BP-008 CRC
KRAS p.G12D

(c.35G>A)
45

BP-009 CRC
PIK3CA p.E545K

(c.1633G>A)
45

BP-015 CRC
KRAS p.G13D

(c.38G>A)
40

BP-016 CRC
KRAS p.G12V

(c.35G>T)
Unknown

BP-023 CRC
KRAS p.G13D

(c.38G>A)
Unknown

BP-028 Melanoma
BRAF p.V600K

(c.1798_1799delinsAA)
55

CRC: colorectal cancer; NSCLC: non-small cell lung cancer.

Discussion

Up to now, several studies have investigated the effect of manual and automated cfDNA isolation 

platforms on ctDNA quantity and quality22-24. However, differences in preanalytical conditions, 

including plasma processing time, type of blood collection tube used, and storage conditions, 

hamper direct comparisons and straightforward conclusions. Here, we presented a study in which 

we have systematically optimized and compared automated isolation of cfDNA using QS and MX 

with the ‘gold standard’ QA.

The addition of carrier molecules like cRNA to plasma preceding cfDNA isolation increases the 

amount of cfDNA recovered during isolation by precipitating and binding of small molecules25,26. 

The manual QA platform requires addition of cRNA for the standard protocol, whereas the 

manufacturer’s protocol of both the QS and MX does not require this. In a small pilot study, 

we observed that the addition of cRNA to the QS protocol improved cfDNA yield, so cRNA was 

implemented into our standard QS protocol. However, Invitrogen has reported that cRNA might 

interfere with Qubit-based DNA quantification. Indeed, our findings suggest that the increase 

in cfDNA concentration as measured by Qubit for QS and MX is, at least in part, affected by 

the presence of cRNA. Data obtained from the TERT and plant DNA qPCR did not reveal any 

added value of cRNA to either of the automated platforms. Moreover, our fragmentation assay 

suggests that increasing amounts of cRNA reduce the amount of small fragments. Together, our 

results demonstrate that addition of cRNA to plasma does not improve cfDNA yields using these 

automated bead-based platforms.

In our previous study using the manual QA platform, we demonstrated the superiority of CellSave 

tubes over EDTA tubes for collecting plasma for cfDNA/ctDNA analysis as it ensures optimal ctDNA 

quality when processed within 96 h after blood withdrawal compared to only 24 h for EDTA tubes, 

enabling its use in multicenter clinical studies19. Therefore, we investigated the compatibility of 

CellSave tubes with QS and MX. On both platforms, we observed an increase in the isolation of 

large cfDNA fragments (2000 bp) in EDTA samples. This relates to the release of intact DNA from 

lysed leukocytes and a subsequent increase in cfDNA concentration, which we also observed 

here. As the recovery efficiency was not affected in CellSave tubes and the plasma samples were 

not contaminated with additional DNA from leukocytes, we recommend the use of CellSave tubes 

in combination with the QS or MX platform. 

Currently, QA is widely used for cfDNA/ctDNA isolations, but its manual laborious and time-

consuming protocol renders this method unsuitable for high-throughput isolations. The 

competing automated platforms QS and MX both use magnetic-bead-based protocols and have 

comparable hands-on times. However, costs and number of samples that can be processed per 

run differ (Table 1). In HBDs, cfDNA quantity and quality were similar on all platforms. However, 

in patients we saw for all assays that QA and QS yielded more cfDNA than MX. As this might 

suggest that higher amounts of cfDNA are less efficiently isolated by the MX platform, we spiked 

high amounts of fragmented DNA in HBD plasma and isolated this with MX (Figure S3). However, 

these high DNA amounts were isolated efficiently by MX. Another potential explanation for 

the difference in performance might be the absence of proteinase K incubation step in the MX 

protocol. Proteinase K is used in both the QA and QS protocols and can improve cfDNA yield by 

inhibiting nucleases and the release of protein-bound cfDNA. Moreover, recovery efficiency of 

plant DNA was lowest in MX. Altogether, this explains the lower yield of mutant and wild-type 

molecules isolated by MX, which may be a concern in samples with low frequent somatic variants. 

However, importantly, this lower yield did not translate into a significant difference in detected 

VAF (Figure S4). These data underline the importance of taking the used isolation method and 

read-out (mutant molecules/mL plasma or VAF) into consideration when comparing results 

between studies as well as for the diagnostic use of ctDNA. QS and QA performed comparable in 

detection of absolute numbers of mutant and wild-type molecules. Of note, other publications 
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have observed similar performances of QA and MX in a head-to-head comparison23,24. This could 

be related to differences in preanalytical conditions (e.g. type of blood collection tube, plasma 

volume used as input), as multiple publications have demonstrated its relation to cfDNA quantity 

and quality19,27,28. In addition, we have optimized our QA protocol by re-eluting three times and 

thereby improving our cfDNA quantity. For automated magnetic-bead-based systems, this is not 

possible. 

Conclusion

The results of this study show that the QS automated platform has comparable performance 

to the ‘gold standard’ QA and outperformed the MX platform depending on the read-out used. 

The QS platform is congruent with all our predefined goals as it (a) reduces hands-on time from 

180−240 minutes to 30 minutes per run; (b) is able to process larger numbers of samples (96 

instead of 24 at a time); (c) isolates comparable cfDNA yield with similar efficiency; and (d) has 

comparable ctDNA quantity and quality to QA. Therefore, the QS can replace the more laborious 

QA platform, especially when high-throughput cfDNA isolation is needed.
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Supplementary information

Figure S1. Overview of the recovery efficiency of synthetic plant DNA in all samples isolated with the 
different platforms (QA, MX, and QS)
(A) Dot plot of the recovery efficiency for each isolation platform, as analyzed by qPCR using spiked-in 
synthetic plant DNA. Samples with a recovery efficiency < 5% or > 100% (black horizontal lines) were excluded 
from the analyses. 
(B) Correlation between recovery efficiency and cfDNA concentration (ng/mL plasma) measured by TERT 
qPCR assay. Correlations were tested by Spearman’s rank correlation coefficient. *P < 0.001.

Figure S2. Effect of cRNA addition on cfDNA quantity using the QS platform
cfDNA concentration (ng/mL plasma) was determined by Qubit after adding increasing amounts of cRNA (0–4 
μg) before start of the plasma isolation. Boxes (interquartile ranges [IQR]) and whiskers (1.5x IQR) are shown 
together with the median (black horizontal line).
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Figure S3. Performance of the MX platform using increasing DNA input (0, 15, and 60 ng/mL fragmented cell 
line DNA has been spiked in HBD plasma)
The effects on (A) cfDNA concentration (ng/mL plasma) measured by TERT qPCR, (B) recovery efficiency 
measured by plant DNA qPCR, (C) total number of mutant molecules, and (D) VAF are shown. Boxes 
(interquartile ranges [IQR]) and whiskers (1.5x IQR) are shown together with the median (black horizontal 
line). Outliers are indicated as single black points. Symbol l is mean value shown with whiskers (standard 
deviation). n = 5.

Figure S4. Representative data images of SNP genotyping dPCR assay isolated with the different platforms 
(QA, MX, and QS)
A subject with an intermediate (A), high (B) and low (C) VAF are shown. On the Y-axis, positive FAM signal 
represents mutant molecules (blue dots); on the X-axis, positive VIC signal represents wild-type molecules 
(red dots). Green dots reflect the presence of a mutant and a wild-type molecule in a single well.

Table S1. Custom primer and probe sequences used for qPCR

Assay 
Name

Forward primer Reverse primer Probe
Amplicon size 

(bp)
Manufacturer

β-actin 
136 bp

5’-GCG CCG TTC 
CGA AAG TT-3’

5’- CGG CGG ATC 
GGC AAA -3’

FAM-ACC GCC GAG 
ACC GCG TC-MGBNFQ

136 Invitrogen

β-actin 
420 bp

5’-CCG CTA CCT CTT 
CTG GTG-3’

5’-GAT GCA CCA 
TGT CAC ACT G-3’

VIC-CCT CCC TCC TTC 
CTG GCC TC-BHQ

420 Invitrogen

β-actin 
2000 bp

The β-actin 2000 bp fragment is detected when both primers and probes of the 
β-actin 136 bp assay and the β-actin 420 bp are able to amplify a long DNA fragment. 
This double positive signal is detected by the QuantStudio 3D Digital PCR System (van 
Dessel et al., 2017).

Invitrogen

Plant
5’-GAT CTT CAA CCA 
GGA GAT CA-3’

5’-AGT GAC AGT 
GAG GAC AAT CC-3’

FAM-ACC CAT CTT 
CAC CGG A-BHQ1

70

Primers: IDT
Probe: Sigma-Aldrich, 
Saint Louis, Missouri, 
USA

Table S2. Standard SNP genotyping assays

Assay ID Assay name Gene Cosmic ID Amino acid change Nucleotide change

AHS1P6Q NRAS_584 NRAS 584 p.Q61R c.182A>G

AHD2BW0 KRAS_532 KRAS 532 p.G13D c.38G>A

AHABHHX PIK3CA_763 PIK3CA 763 p.E545K c.1633G>A

65 
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Abstract

Somatic genomic structural variations (SVs) are promising personalized biomarkers to quantify 

circulating tumor DNA (ctDNA) in liquid biopsies as they represent unique tumor derived molecules. 

However, in most solid malignancies these SVs are variable and can be located anywhere in the 

genome, thus the complexity of the identification of personalized SVs hinders routine use in the 

clinic. Here, we developed a novel approach for rapid discovery of a set of patient-specific somatic 

SVs. We combine low coverage cancer genome sketching using Oxford Nanopore sequencing with 

a machine learning approach to detect a set of somatic SVs. We analyzed tumor samples of high-

grade ovarian and prostate cancer patients, successfully identified candidate SVs and validated 

on average ten somatic SVs per patient with breakpoint-spanning PCR mini-amplicons. These SVs 

could be quantified in ctDNA samples of patients with metastatic prostate cancer using a digital 

PCR assay. The SV quantification in these longitudinal samples suggest that indeed SV dynamics 

correlate with and may improve other response biomarkers such as PSA.  Our work enables rapid 

and cost-effective identification of a set of patient-specific SVs that can be used to study ctDNA 

dynamics.

Introduction

The detection of cancer recurrence as well as accurate and fast monitoring of response to 

treatment currently lacks sensitivity for detection of changes over time1,2. Liquid biopsies, 

which can be used to detect circulating tumor DNA (ctDNA) from body fluids, such as blood, in 

a minimally invasive manner, are a promising approach to improve monitoring of tumor burden 

over time3,4. Circulating tumor DNA, which originates from apoptotic and necrotic tumor cells, has 

been shown to have a positive linear correlation with tumor burden5. In multiple cases, ctDNA 

analyses identified cancer recurrence months before clinical symptoms presented6-8. 

As ctDNA is only a fraction of the total circulating cell free DNA (cfDNA), it should be distinguished 

from cfDNA from normal cells by identification of ctDNA-specific genetic alterations. Genomic 

structural variations (SVs) represent tumor- and ctDNA-specific biomarkers to detect and quantify 

ctDNA with high sensitivity in liquid biopsies7-10. Most solid cancers contain dozens to hundreds of 

somatic SVs11,12. Besides some recurrent driver SV events that functionally impact tumorigenesis, 

the vast majority of these somatic SVs are patient- and tumor specific passenger events13, which 

may nevertheless be good biomarkers for tumor load tracing. SVs form a unique breakpoint 

junction between two joined DNA strands and can be validated by straightforward junction-

spanning (quantitative) PCR assays, which facilitates its applicability8. 

Somatic SVs are commonly detected with short-read, paired-end next generation sequencing 

(NGS). However, as SVs can be very large, short reads are less suited for SV detection14-16. 

Recently, long-read sequencing techniques from Oxford Nanopore Technologies (ONT) and 

Pacific Biosciences (PacBio) have emerged and their increased power for germline and somatic 

SV detection has been extensively demonstrated15-19. Moreover, ONT enables a short turnaround 

time and real-time data analysis20.

To enable rapid and cost-efficient identification of a set of patient-specific somatic SVs for 

ctDNA monitoring, we developed a pipeline that leverages the long-read and fast sequencing 

capabilities of Nanopore sequencing in combination with a computational method that enables 

accurate selection of a subset of somatic SVs from low coverage Nanopore sequencing data. 

The method detects a subset of genomic SVs and can be applied to tumor tissue obtained from 

(needle) biopsy or resection. The computational approach combines SV calling with random 

forest classification and germline SV filtering against a blacklist to enrich for somatic SVs without 

the need of matching germline sequencing data, which reduces the cost and time of the assay. We 

were able to design SV-specific PCR-assays for ctDNA tracking within three days after obtaining 

a tumor biopsy. We validated the pipeline in multiple ovarian and prostate cancer samples. In 

addition, we demonstrate the clinical applicability of our pipeline by retrospectively tracking the 

identified somatic SVs in longitudinal cfDNA samples of patients with metastatic prostate cancer, 

by using digital PCR. 
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Materials and Methods

DNA isolation and Nanopore sequencing

COLO829 (ATCC® CRL-1974™) cell line was obtained from the American Type Culture Collection 

(ATCC) and grown according to standard procedures as recommended by ATCC. DNA was isolated 

using a phenol chloroform protocol21. For some Nanopore sequencing runs, DNA was sheared 

using g-tubes (Covaris). DNA was size selected on the PippinHT (Sage Science). Library preparation 

was performed using the Lib SQK-LSK109 kit (Oxford Nanopore Technologies) and DNA was then 

sequenced in 49 separate runs using R9.4 flow cells (Oxford Nanopore Technologies) on the 

MinION (44), GridION (3) and PromethION (2) instruments (Table S1). 

HGS-3 organoid line was cultured following the ovarian cancer organoid culture protocol22. 

DNA was isolated by using a phenol chloroform protocol21. DNA was size selected on the PippinHT 

(Sage Science). Library preparation was performed using the Lib SQK-LSK109 kit (Oxford Nanopore 

Technologies) and DNA was then sequenced in 40 separate runs using R9.4 (23) and R9.5 (17) flow 

cells (Oxford Nanopore Technologies) on the MinION (35) and GridION (5) instruments (Table S1).

Tumor DNA from patients with ovarian cancer was isolated with the Genomic-tip kit (Qiagen), 

following the manufacturer’s protocol for tissue samples. DNA was prepared for Nanopore 

sequencing with the Lib SQK-LSK109 (Oxford Nanopore Technologies). The library from one 

tumor sample was loaded on one revD (Ova1) or R9.4 (Ova2-4) flow cell (Oxford Nanopore 

Technologies). Sequencing was performed on a MinION (Ova2, Ova4) or GridION (Ova1, Ova3) 

instrument (Oxford Nanopore Technologies) (Table S1). Lymphocyte DNA for PCR validation 

assays was isolated from blood with the DNeasy Blood & Tissue Kit (Qiagen). 

Tumor and germline DNA from patients with prostate cancer were obtained from a fresh 

frozen core needle biopsy of a metastatic lesion and blood, respectively. DNA was isolated on 

an automated setup with the QIAsymphony according to the supplier’s protocols (DSP DNA 

Midi kit for blood and DSP DNA Mini kit for tissue). In the context of the CPCT-02 study, whole-

genome sequencing (WGS) was performed by the Hartwig Medical Foundation, Amsterdam, The 

Netherlands23. Residual tumor DNA (80-250 ng) was used for Nanopore sequencing. DNA was 

prepared for Nanopore sequencing with the Lib SQK-LSK109 (Oxford Nanopore Technologies). 

The library from one tumor sample was loaded on one R9.4 (Pros1), revD (Pros2,3) or high-

sensitivity research prototype (Pros4-6) flow cell (Oxford Nanopore Technologies). Sequencing 

was performed on a GridION instrument (Oxford Nanopore Technologies) (Table S1).

Illumina sequencing and analysis (COLO829 and HGS-3)

Short read WGS was obtained for matched tumor and normal DNA from the COLO829 cell line24 

and the HGS-3 organoid line22. 

SV calling was performed by using GRIDSS (v. 2.0.1)25 in joint calling mode (tumor + reference) 

for COLO829 and HGS-3 separately. Somatic SV calls were filtered as in24 (https://github.com/

hartwigmedical/pipeline/blob/master/scripts/gridss_somatic_filter.R)

Benchmarking somatic SV calling from low coverage Nanopore sequencing data

Nanopore data from COLO829 was randomly subsampled to 5x sequencing coverage three times 

independently with Sambamba26. SV calling was performed with NanoSV (v. 1.2.4)17 with a 2-read 

support threshold; Sniffles (v. 1.0.12)27 with parameters “--report_BND --genotype -s 2”; and 

NanoVar (v. 1.3.8)28 with default parameters. In all cases 8 threads were used and computational 

resources were measured with GNU Time. True and false positives were calculated using the 

short-read somatic SV callset described above. 

SV calling and filtering pipeline

The SHARC pipeline is available through https://github.com/UMCUGenetics/SHARC. 

Mapping is performed in parallel for each FASTQ file by using minimap2 (v. 2.12)29 with settings 

“-x map-ont -a --MD”. The reference genome used is version GRCh37. Sorting and merging of 

BAM files was done by using sambamba (v. 0.6.5)26. SV calling was performed by using NanoSV (v. 

1.1.2)17. Default NanoSV settings were used except a minimum read count of 2 (cluster_count=2) 

and minimum mapping quality of 20 (min_mapq=20). 

VCFs are filtered by using the command `awk ‘$7 == “PASS” && $1 !~ /(Y|MT)/ && $5 

!~ /(Y|MT):/ && $5 != “<INS>”’` to select PASS calls and remove insertions and SVs involving 

chromosomes Y or MT. 

VCFs are then annotated with the distance to the closest single repeat element in the reference 

genome30,31, the closest gap element in the reference genome31,32, and the closest segmental 

duplication element in the reference genome31. These elements were taken from the UCSC 

genome browser (http://genome.ucsc.edu/)31, using the GRCh37/hg19 genome version. 

We trained a random forest (RF) model to filter out false-positive SV calls from Nanopore 

data, similarly as previously described17. We expanded the selection of input features for the RF, 

by including read length, SV calling features, and overlap with repeat features in the reference 

genome (Table S3). We trained the classifier on the well-characterized NA12878 Genome in a 

Bottle (GIAB) sample33-35, for which high-quality germline SV call sets have been obtained by 

using Illumina35, PacBio34 and Nanopore33 sequencing. The GIAB SV truth set was generated by 

intersecting these three GIAB SV sets resulting in a set of 1,515 germline SVs. We used ⅔ of the 

GIAB truth set as a training set and ⅓ as a test set. We established a precision-recall curve from 

100 bootstrapping runs (Figure S4), where the training data were split into 90%-10% train-test 

subsets. Based on the precision-recall curve, we defined an operating point of 96% precision 

and 99.5% recall (Figure S4). The final model was then re-trained on the whole training set and 

tested on the ⅓ test set. The performance on the test set was 95.1% precision and 99.6% recall, 

representing an accuracy of 97.2% (Figure S4). SV candidates are classified as “true” or “false” 

based on this RF model. 

We set up two databases of SV calls: 

(i) SharcDB: containing raw NanoSV calls from Nanopore sequencing data of 14 samples, 11 

of which belong to this study (COLO829, HGS-3, Ova1, Ova2, Ova3, Ova4, Pros1, Pros2, Pros4, 
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Pros5 and Pros6; and three more for which we had SV calls from high coverage Nanopore data: 

COLO829BL (lymphoblastoid cell line, 50x sequencing depth), VCAP (prostate cancer cell line36) 

and the Genome in a Bottle (GIAB) SV calls33. For tests performed with the samples included in 

this study, the specific sample was excluded from blacklisting with SharcDB; 

(ii) RefDB: containing germline calls obtained from WGS short-read data of 59 controls: 19 

blood controls from patients with ovarian cancer22 where germline SVs were called with Manta (v. 

1.0.3)37 with default parameters, and 40 healthy individuals (biological parents of individuals with 

congenital abnormalities)38 where germline SVs were called with Manta (v. 0.29.5)37 with default 

parameters.

SV calls from tumor samples are overlapped with those two databases by using VCF-explorer 

(https://github.com/UMCUGenetics/vcf-explorer). 

Only samples classified as “true” by the RF model and that do not overlap with any sample in 

the databases qualify for primer design. 

Primer design for filtered SV calls is automatized by using Primer3 (v. 1.1.4)39 with a product 

size range of 30-230 bp.

SVs with a successful primer design are ranked based on SV length and the 20 largest are 

selected for PCR validation. Insertions are filtered out early in the pipeline since the inserted 

sequence cannot be accurately inferred from the low coverage Nanopore sequencing data. Inter-

chromosomal translocations are not present in the top 20 ranked SVs because the final ranking 

is based on SV size and this cannot be determined for inter-chromosomal SVs. However, they 

are available in the final VCF file and primers are designed by default, so they can be manually 

selected for PCR validation and assay development.

Breakpoint PCR

To validate SVs, breakpoint PCR with AmpliTaqGold (Applied Biosystems) was performed according 

to the manufacturer’s protocol. 10 ng primary tumor DNA (somatic) and 10 ng lymphocyte DNA 

(germline) per primer-pair were used as input. PCR products were loaded and visualized on a 2% 

agarose gel. 

cfDNA isolation

cfDNA was isolated from ascites fluid of Ova2 by using the QIAamp Circulating Nucleic Acid Kit 

(Qiagen) according to the manufacturer’s protocol. Plasma samples from patients with prostate 

cancer were obtained longitudinally during treatment in 3x 10 ml CellSave preservative tubes 

(Menarini Silicon Biosystems, Huntingdon Valley, PA, USA) and processed within 96 hours as 

previously described40. Circulating DNA was isolated with the QIAsymphony® DSP Circulating DNA 

Kit (Qiagen) according to manufacturer’s protocol with some minor modifications41. All cfDNA 

samples were quantified by QubitTM fluorometric quantitation (Invitrogen).

Quantitative PCR

As primer specificity is essential for reliable interpretation of an end-point assay like digital PCR 

(dPCR), primers for the detection of structural variants were validated by quantitative PCR (qPCR) 

on whole genome amplified (WGA) tumor and germline DNA. In brief, qPCR was performed by 

using the CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad Laboratories) and the final 

reaction mix consisted of 10 µL SensiFASTTM SYBR ® Lo-Rox mix (Bioline), 0.5 µM forward and 

reverse primers, 10 ng of WGA DNA and Ultrapure DNas/RNAse free H2O to bring up the reaction 

volume to 20 µL. The cycle conditions were as follows: 14 cycles of 10s at 95°C and 30s at 65-

58°C (touchdown), followed by 20-40 cycles of 10s at 95°C and 30s at 60°C. In addition, a melt 

curve was generated from 56°C to 95°C to assess the generated PCR products. Based on qPCR 

results, two primer sets for the detection of SVs in each patient were selected for quantification 

by dPCR. Primer sets were excluded from use with dPCR when one of the following ocurred: > 1 

PCR product, Cqgermline- Cqtumor < 5 and/or Cqtumor > 20. 

DNA sonication and fragment size analysis

To mimic the length of cfDNA and improve DNA molecule partition, WGA DNA of both tumor and 

germline were sonicated to a peak size of ~ 150 bp with the S220 Focused-ultrasonicator (Covaris) 

according to the manufacturer’s protocol. The sonication conditions were as follows; 200-250 ng 

WGA DNA (concentration determined by QubitTM fluorometric quantitation) in 50 µL Ultrapure 

DNas/RNAse free H2O, Peak Incident Power: 175 W, Duty Factor: 10%, Cycles per Burst: 200, 

Treatment Time: 280 s, Temperature: 7°C, and Water Level: 12. After sonication DNA fragment 

sizes were analyzed with the High Sensitivity DNA kit (Agilent Technologies) on the Bioanalyzer 

(Agilent Technologies) and the sample concentration was re-quantified by QubitTM fluorometric 

quantitation (Invitrogen).

Design of digital PCR assays for absolute quantification of SVs in cfDNA

To quantify SVs in cfDNA, dPCR was performed. First, the exact position of the breakpoint as 

determined by Nanopore sequencing was validated. We used already available sequenced 

Illumina data from the CPCT-02 study (Pros1, Pros4, Pros5 and Pros6), but Sanger sequencing of 

the particular qPCR product could be used as well. To enable quantification of both mutant and 

wild-type alleles, additional primers for the detection of wild-type upstream (WT-U) allele and 

wild-type downstream (WT-D) allele of the breakpoint and fluorescent probes for both mutant 

and wild-type alleles were developed by using the Primer Express Software v3.0 (ThermoFisher) 

and the online tool Primer3Plus39. All primers and fluorescent probes (Table S4) were ordered 

from Eurogentec.

Preamplification of cfDNA

To enable sensitive detection of multiple SVs in limited amounts of cfDNA, two SVs per patient 

were preamplified with 0.2-1 ng of cfDNA. Pre-amplified tumor and germline DNA samples were 
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used as respectively positive and negative control. Preamplification was performed by using 4 µL 

of TaqMan™ PreAmp Master Mix (cat.no: 4488593, Life Technologies), 2 µL primer pool (0.25 µM) 

consisting of SV forward (SV-F) and reverse (SV-R) primers and upstream (WT-U) and downstream 

(WT-D) wild-type primers, and 2 µL (cf)DNA for a total volume of 8 µL. Preamplification cycle 

conditions were: 10 min at 95°C followed by 14 cycles of 15s at 95°C and 4 min at 60°C, and finally 

pause at 4°C. After the preamplification reaction, 72 µL of Ultrapure DNase/RNAse free H2O was 

added to each sample. Next, preamplified cfDNA was diluted 40x per 1 ng input, used for the 

preamplification, to prevent overloading of the dPCR chips.

Absolute quantification of SVs in cfDNA with digital PCR

For the quantification of SVs in (cf)DNA, dPCR was performed with the Naica Crystal PCR system 

(Stilla Technologies) by using the following optimized reaction mix: 1 µL of diluted preamplified 

(cf)DNA sample, 5.6 µL PerfeCTa Multiplex qPCR ToughMix (Cat.No: 733-2322PQ, Quantabio). 

0.25 µM probes (SVFAM, WT-UHEX, WT-DCY5), 0.75 µM of the SV forward (SV-F) and reverse primer 

(SV-R), 0.25 µM of the WT-U and WT-D primers, 0.1 µM Fluorescein (Cat.No: 0681-100G, VWR) 

and Ultrapure DNAse/RNAse free H2O to bring up the total volume to 28 µL. Samples were loaded 

onto Stilla Sapphire chips (Cat.no. C13000, Stilla Technologies) and dPCR was performed with 

the same cycle conditions as for the primer validation with qPCR. Median number of analyzable 

droplets was 21,357, interquartile range 19,837-22,736. dPCR reactions were optimized with 

10 ng sonicated tumor and germline WGA DNA. When a SV could be detected in preamplified 

cfDNA samples, a dPCR of all longitudinal cfDNA samples was performed on 5 ng of stock (no 

preamplification) cfDNA to enable absolute quantification of mutant molecules in plasma. 

Statistical analysis

qPCR experiments were analyzed with Bio-Rad CFX Manager version 3.1. dPCR experiments were 

analyzed with Crystal Miner™ software, version 2.1.6 (Stilla Technologies). Thresholds for positive 

fluorescence were determined per primer pair based on positive and negative controls. Variant 

allele frequency (VAF) was calculated according to the following formula: 

number of mutant molecules per µL in chip (as defined by Crystal Miner™ software) / (number 

of mutant molecules per µL in chip + number of wild-type molecules per µL in chip) * 100%. 

Absolute number of mutant molecules per mL plasma was calculated as follows: 

number of mutant molecules per µL in chip * 28 µL (input in chip) / (used eluate/total volume 

of eluate * volume of plasma used for isolation). 

To correct for zero values on a log scale, +1 was counted to every value and axes were corrected 

with -1. Spearman’s correlation coefficient was calculated for comparisons of VAF based on 

upstream wild-type allele vs. downstream wild-type allele, two replicates and preamplified vs. 

non-preamplified cfDNA samples. Corresponding slope was calculated by using linear regression 

analysis.

Ethics approval and consent to participate

Tumor samples of four patients with high-grade serous ovarian cancer (OC) and six patients with 

metastatic castration-resistant prostate cancer (PC) were used in this study. Patients with OC 

participated in the HUB-OVI study, in which tumor tissue and blood were obtained for organoid 

culture (tumor) and WGS (tumor and blood). Clinical data was extracted from the patient file 

in collaboration with the Dutch Cancer Registration. Patients with PC participated in both the 

CPCT-02 study (NCT01855477) and the CIRCUS study (NTR5732), in which tumor tissue from a 

metastatic lesion for WGS and longitudinal cfDNA samples were obtained. Longitudinal ctDNA 

quantification was performed for four patients with PC. Informed consent was obtained within all 

studies. Clinical data for patients with PC were collected in an electronic case report form (ALEA 

Clinical). All studies were performed according to the guidelines of the European Network of 

Research Ethics Committees (EUREC) following European, national and local law.

Results

Detection of somatic structural variations from low coverage Nanopore sequencing 
of tumor biopsies

The first step of our analysis involves low coverage Nanopore sequencing of genomic tumor-

derived DNA (Figure 1A). A single Nanopore run on the MinION or GridION platforms typically 

generates between 5-15 Gbs of data33, corresponding to 1.5-5x coverage of the human genome. 

Next, the low coverage sequencing data are mapped to the reference genome followed by the 

detection of SV breakpoint junctions from split read mappings (Figure 1B)17. Subsequently, a 

classification and filtering pipeline is applied to enrich for somatic SV breakpoints irrespective of 

corresponding germline data (Figure 1B). Finally, PCR assays with mini-amplicons are designed 

to validate the 20 most likely somatic SVs. SVs are confirmed as either somatic or germline by 

breakpoint PCR on tumor and corresponding lymphocyte DNA (Figure 1C). Successful breakpoint 

PCR assays for somatic SVs can then be utilized as biomarkers for ctDNA-based monitoring of 

treatment response and disease recurrence (Figure 1D).
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Figure 1. Schematic overview of SHARC
(A) (Needle) biopsy or resection from a tumor as well as blood are obtained from a patient at initial diagnosis. 
Germline DNA (red) and cfDNA (blue) isolated from blood and tumor DNA (brown) from tumor material. 
Tumor DNA is sequenced on one ONT flow cell. 
(B) Tumor-specific SV detection and filtering is performed with the bioinformatic SHARC pipeline. 
(C) SV-specific breakpoint spanning primers are designed. Breakpoint PCR with SV-specific primers is 
performed on germline and tumor DNA to confirm somatic SVs. 
(D) Somatic SVs are used as biomarkers and traced within cfDNA from a patient to monitor disease dynamics 
in a longitudinal manner.

Establishment of a somatic SV reference set

To verify the ability of our pipeline to detect somatic SVs, we used genomic data from the 

melanoma cell line COLO82942 and the ovarian cancer organoid line HGS-322. We utilized short-

read WGS data from both lines (90x and 30x coverage for COLO829 and HGS-3, respectively) and 

matching reference samples (30x coverage in both cases) to establish two reference sets of somatic 

SVs (Materials and Methods). By using a state-of-the-art somatic SV detection pipeline24,43-45, we 

detected 92 and 295 somatic SVs in COLO829 and HGS-3, respectively. Additionally, we generated 

long-read Nanopore sequencing data for COLO829 and HGS-3, reaching high coverages of 

59x (COLO829) and 56x (HGS-3) (Figure S1 and Table S1). To simulate low coverage long-read 

sequencing of tumor genomes, we randomly subsampled the Nanopore sequencing reads to 

coverages of 4x, 3x and 2x. The subsampling was performed 20 times independently for each 

case, to mitigate the effect of chance on the subsampling and subsequent analysis. 

Next, we tested our ability to detect SVs from high and low coverage Nanopore sequencing data. 

We used NanoSV, a previously validated Nanopore SV caller17,19, to call SVs from the Nanopore 

sequencing data. To maximize sensitivity, we performed SV calling using lenient settings on high 

and low coverage COLO829 and HGS-3 Nanopore datasets. (Table S2). Based on the overlap with 

the somatic short-read reference set, raw SV calls were classified as somatic (true-positives) or 

non-somatic (false-positives). As expected, the vast majority of the raw SV calls in all the different 

coverage datasets were non-somatic, on average 99.84% (range 99.81-99.9%, COLO829) and 

99.55% (range 99.4-99.74%, HGS-3) (Figure 2A). In the high coverage Nanopore datasets, we 

validated 84 (91% of the short-read reference set) and 219 (74% of the short-read reference set) 

true-positive somatic SVs for COLO829 and HGS-3, respectively, representing a small fraction of 

the total number of raw SV calls (Figure 2A and Figure S2A). Similarly, we identified an average 

of 23 (25% of the short-read reference set) and 53 (18% of the short-read reference set) somatic 

SV breakpoints in each of the low coverage Nanopore sequencing datasets for COLO829 and 

HGS-3, respectively. (Figure 2A). Furthermore, we compared the performance of the SV callers 

NanoSV, Sniffles27 and NanoVar28. Thus, we show that based on lenient SV calling of high- and 

low-coverage Nanopore sequencing data with NanoSV, somatic SVs can be identified. 
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Figure 2. Detection of somatic SVs with the SHARC pipeline based on high and low coverage Nanopore data
High coverage Nanopore sequencing data from COLO829 (melanoma cell line) and HGS-3 (ovarian cancer 
organoid) were subsampled to low coverages. Outer circles represent the high coverage sets (59x for COLO829 
and 56x for HGS-3) and inner circles represent low coverage subsets (4x 3x, 2x). The following filtering steps 
were applied in a cumulative manner in the order displayed. 
(A) Median percentage of non-somatic (red) and somatic (blue) breakpoints in the raw NanoSV calls for 
COLO829 (top) and HGS-3 (bottom). 
(B) Median percentage of non-somatic (left) and somatic (right) SV calls kept (green) or removed (brown) in 
the pre-filtering step for COLO829 and HGS-3. 
(C) Median percentage of non-somatic (left) and somatic (right) SV calls kept (green) or removed (brown) by 
the Random Forest SV classifier for COLO829 and HGS-3. 
(D) Median percentage of non-somatic (left) and somatic (right) SV calls kept (green) or removed (brown) by 
the database filtering for COLO829 and HGS-3. 
(E) Median percentage of non-somatic (red) and somatic SV (blue) calls in the complete SHARC output (left) 
and top 20 largest SVs (right) for COLO829 and HGS-3. 
(F) Total number of non-somatic (red) and somatic (blue) SV calls at each step of the pipeline for both 
COLO829 and HGS-3. In low coverage subsets, all data points are shown and the square box represents the 
median value. 
RF: Random forest; DBFilter: Database filter.

Enrichment for somatic SV calls from Nanopore sequencing data

Since the somatic SVs identified among the SV call sets of the Nanopore data represent only a 

small fraction of the total raw SV calls, we implemented a panel of cumulative filtering steps to 

enrich for somatic SVs. First, we selected only “PASS” SV calls (based on default NanoSV filter 

flags17 (Materials and Methods). Secondly, we excluded calls involving chromosome Y or the 

mitochondrial genome. Finally, we removed all insertions, since the exact inserted sequence 

cannot be accurately defined from low coverage Nanopore sequencing data, thus hampering the 

final PCR assay development at a later step. As a result of these filtering steps, 72.6% (COLO829) 

and 76.2% (HGS-3) false-positive calls were removed in the high coverage sets (Figure 2B and 

Table S2). For the low coverage sets, the filtering removed on average 50.9% (COLO829) and 

49.9% (HGS-3) of false-positive calls (Figure 2B and Table S2). In contrast, the vast majority of true-

positive somatic SV calls were maintained following SV filtering (on average 76.9% in COLO829 

and 93.9% in HGS-3, Figure 2B). 

To further reduce the number of false-positive SV calls, we employed a random forest (RF) 

machine learning approach ((Materials and Methods)), similarly as previously described for SV 

calling of Nanopore data17. We applied the RF classifier to the filtered high and low coverage 

subsets of COLO829 and HGS-3. For the high coverage sets, the RF labelled 84% (COLO829) and 

81.3% (HGS-3) of false-positive SV calls as false (Figure 2C). For the low coverage sets, on average 

70.6% (COLO829) and 68% (HGS-3) of false-positive SV calls were labelled as false (Figure 2C). 

In addition, in the high coverage sets 81.25% (COLO829) and 97.88% (HGS-3) of true-positive 

somatic SV calls were labelled as true. Similar percentages of true-positive SV calls were labelled 

as true in the low coverage sets, on average 73.7% (COLO829) and 98.6% (HGS-3) (Figure 2C). 

These results show that the RF classifier filters out the majority of non-somatic breakpoints, 

while maintaining true-positive somatic SV calls. However, germline SV calls are also maintained 

at this step, requiring further filtering to enrich for somatic SVs (Figure S2B).

To reduce the number of germline SVs, we implemented a blacklist filtering step. Therefore, the 

remaining SV calls were overlapped with two databases (DBFilter) as panel-of-normal (PON) 

filtering: (i) SharcDB, containing SV calls from Nanopore sequencing of 14 different samples, 

and (ii) RefDB, containing germline SV calls from 59 control samples previously sequenced using 

Illumina WGS in our group (Materials and Methods). Following this filtering step, 100% of true-

positive somatic SV calls from both the COLO829 and HGS-3 high and low coverage sets were 

retained (Figure 2D). In contrast, 88.6% (COLO829, high coverage), 76.2% (HGS-3, high coverage) 

and on average 89.9% (COLO829, low coverage) and 84.5% (HGS-3, low coverage) of remaining 

false-positive SV calls were filtered out (Figure 2D). Due to this filtering, the fraction of true-

positive somatic breakpoints among the remaining SV calls increased to 6.6%-18.7% for the low 

and high-coverage Nanopore datasets of COLO829 and HGS-3 (Figure 2E and Figure S2A). 

To further enrich for somatic SVs, we implemented a ranking method, based on the observation 

that large SVs are more likely to be somatic than germline SVs (Figure S4). This increased the 

percentage of true-positive somatic SVs to 85% (COLO829) and 65% (HGS-3) in the high coverage 

sets, and to on average 43% (COLO829) and 64.1% (HGS-3) in the low coverage sets (Figure 2E). 

Altogether, our SV filtering pipeline strongly enriches for true-positive somatic breakpoints and 

filters out the majority of false-positives and germline SVs. We demonstrate a total enrichment 

of true-positive somatic SV calls from 0.1% in the raw calls to 85% in the final top 20 ranked calls 

(17/20, COLO829, high coverage), 0.26% to 65% (13/20, HGS-3, high coverage), on average 0.18% 

to 41.7% (8.3/20, COLO829, low coverage) and on average 0.49% to 64.2% (12.8/20, HGS-3, low 

coverage) (Figure 2F). Of note, despite low coverage sequencing, each of the somatic SV calls 
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identifies breakpoints at nucleotide resolution, providing immediate access to breakpoint PCR 

testing.

Validation in tumor tissue from patients with ovarian and prostate cancer

Next, we tested the pipeline on four high-grade serous ovarian cancer (Ova1-4) and six prostate 

cancer (Pros1-6) samples. We sequenced tumor DNA on one Nanopore flow cell per sample. 

The ovarian cancer samples and three prostate cancer samples (Pros1-3) were sequenced on 

commercial ONT flow cells. For the ovarian cancer samples, we started library preparation with 

minimally 1 µg of DNA. For the prostate cancer samples limited material was available, and we 

started library preparation with 250 ng of DNA. For one sample (Pros3), not enough sequencing 

data was produced to confidently detect somatic SVs and this sample was therefore excluded 

from all subsequent analyses (Table S1). Three additional prostate cancer samples (Pros4-6) 

were sequenced on ONT research prototype flow cells with higher sequencing sensitivity, thus 

requiring less DNA input material. In these cases, library preparation was started with an average 

of 108 ng (80-128 ng) of DNA and an average of 10 ng of library was loaded for sequencing 

(Table S1). We obtained an average sequence coverage of 2.3x (range: 1.8-4.0) (Figure 3A and 

Table S1) and average read lengths of 7.8 Kbp (range: 4.2-16.3 Kbp) (Figure 3B and Table S1). The 

sequencing throughput was not affected by the lower DNA input when using the high-sensitivity 

prototype flow cells. (Table S1).

Following the lenient SV calling, pre-filtering, RF classification, the database filtering and ranking 

steps, an average 2.8% (range of 1.0-4.4%) of SVs per sample were retained (Figure 3C). We 

performed breakpoint PCR assays on lymphocyte and tumor DNA for the top 20 ranked SVs and 

validated an average of 10 (50%, range 25-80%) somatic SVs per sample (Figure 3D). Therefore, 

despite not having enough sequencing depth to provide a complete genome construction, we 

were able to identify several somatic SV biomarkers in each of the tumor samples. 

We investigated the recall of validated somatic SVs at different timepoints during the sequencing 

run. We found that, on average, 81.6% (range 50-100%) of validated somatic SVs were already 

detected within the first 24 hours of sequencing (Figure S6). This offers the opportunity to reduce 

the sequencing time, accelerating tumor biomarker discovery with one day. 

Figure 3. SHARC identifies and validates tumor-specific SV biomarkers from low-pass Nanopore tumor 
sequencing data
(A-B) Plots showing the distribution of coverage (A) and read length (B) read length for the nine tumor samples 
sequenced on one flow cell each. Dashed lines represent averages for each sample. 
(C) Total number of somatic SVs present at each of the steps throughout the SV calling and filtering pipeline. 
(D) The top 2020 ranked breakpoints for each sample were tested by breakpoint PCR using tumor and 
germline DNA. Graph depicts the number of breakpoints validated as somatic (blue), germline (green) or 
breakpoints that could not be validated (red).
RF: Random forest; DBFilter: Database filter.

Detection of somatic SVs in cfDNA from patients with ovarian and prostate cancer

To show the applicability of the pipeline to detect clinically relevant biomarkers, we next tested 

if we could detect the validated somatic SVs in cfDNA of patients. Ascites fluid, which is known to 

contain cfDNA and ctDNA46 was available for Ova2 at time of disease recurrence. We extracted 

cfDNA from the ascites and tested the 16 validated somatic SVs out of the Top20 by PCR. 100% of 

somatic SVs could be detected within the cfDNA from ascites (Figure S7), and not in the germline 

or water controls. Next, we tested whether validated SVs could be detected in cfDNA from blood. 

Therefore, we selected two patient-specific SVs for four prostate cancer patients (Pros1, 4, 5 and 

6) based on a high signal to noise ratio observed in qPCR assays for SV breakpoints (Figure 4A and 

Materials and Methods). 

To enable sensitive and quantitative detection, we designed digital PCR (dPCR) assays for the 

eight selected SVs (Figure 4B). For each SV, we aimed to design a probe for both wild-type alleles 

Figure 3: SHARC identifies and validates tumor-specific SV biomarkers from low-pass nanopore 

tumor sequencing data 

Plots showing the distribution of (A) coverage and (B) read length for the nine tumor samples 

sequenced on one flow cell each. Dashed lines represent averages for each sample. (C) Total number 

of somatic SVs present at each of the steps throughout the SV calling and filtering pipeline. RF: 

Random forest; DBFilter: Database filter (D) The Top20 ranked breakpoints for each sample were 

tested by breakpoint PCR using tumor and germline DNA. Graph depicts the number of breakpoints 

validated as somatic (blue), germline (green) or breakpoints that could not be validated (red).  
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(up- and downstream) and for the mutant allele (across the breakpoint junction). For five SVs 

we could design an assay that quantified both the upstream and downstream wild-type allele. 

For the three other SVs, primers/probes for only one of the wild-type alleles were designed, as 

appropriate primer design for the other allele was hindered by repetitive sequences at the target 

site. As the amount of cfDNA within one liquid biopsy is limited, we used a conditional breakpoint 

detection approach: (i) if dPCR on preamplified cfDNA (input preamplification: 0.2-1 ng cfDNA) 

confirmed the presence of the SV within cfDNA, (ii) then subsequent dPCR on non-preamplified 

cfDNA (stock cfDNA) (input dPCR: 5 ng cfDNA) was performed. The latter enabled calculation 

of both the variant allele frequency (VAF) and the number of mutant molecules per milliliter 

plasma (MM/mL plasma). First, we selected two timepoints per patient, one at baseline and one 

at progression of disease and confirmed the presence of all eight SVs with dPCR on preamplified 

cfDNA (Figure S8). Thereafter, dPCR on the stock cfDNA successfully detected all SVs in the four 

patients, both in baseline and progression samples (Figure 4C and 4D). Despite the fact that 

the VAF in preamplified cfDNA correlates to the VAF in stock cfDNA (rs = 0.928), they should be 

considered two separate outcome measurements (regression coefficient = 0.72 ≠ 1) (Figure S9A). 

Moreover, VAF based on the wild-type upstream allele was highly similar to VAF based on the 

wild-type downstream allele in stock cfDNA (rs = 0.996, regression coefficient = 1.05) (Figure S9B), 

suggesting no significant imbalances between the two sides of the breakpoint. 

Figure 4. Digital PCR-based quantification of SVs in blood
(A) Schematic overview of quantification of tumor-specific SVs, identified by SHARC, in cfDNA from blood by 
using qPCR and dPCR. 
(B) Primer and probe design for dPCR. The wild-type upstream and wild-type downstream allele share each 
one primer with the mutant allele. Three probes with different fluorescents were designed to specifically 
detect the mutant allele or one of the wild-type alleles. 
(C-D) Detection of two tumor-specific SVs in cfDNA from blood from four patients with prostate cancer at 
baseline and at progression of disease with dPCR. Shown are VAF (C) and mutant molecules per mL plasma 
(D). 
(E) Quantification of SVs in longitudinal cfDNA samples from blood of patient Pros1. Graph depicts VAFs 
of SVs, treatment, laboratory parameters (prostate specific antigen (PSA), alkaline phosphatase (ALP)) and 
clinical progression of disease (PD).

Monitoring treatment response in patients with prostate cancer

In addition to the detection of SVs in cfDNA at baseline and progression of disease, we explored 

the capacity to use SVs to monitor treatment response over time. To enable reliable response 

monitoring, measurements should be accurate and repeatable. As VAFs are ratios and in principle 

not influenced by technical variations between timepoints, we chose to report VAFs only. To verify 

the accuracy of dPCR, we performed two technical replicates for all preamplified samples of Pros5 

and Pros6 and confirmed a high correlation of VAFs between the replicates (rs = 0.987, regression 

coefficient = 0.918) (Figure S9C). Finally, we quantified the eight SVs of the four prostate cancer 

patients in the longitudinally collected samples from before, during and after treatment. For 

Pros1, SV-A shows the potential to improve response evaluation as its dynamics correspond to 

the expected response to treatment with cabazitaxel and increases towards the end of treatment, 

resulting in the highest levels at clinical progression of disease (Figure 4E). These changes also 

seem to correlate with other blood biomarkers, including PSA and ALP. In addition, SV-B in Pros1 

similarly correlates with response to treatment (Figure 4E). Also, for Pros5 both SV-A and SV-B 

show clear changes over time correlating with clinical parameters, and Pros4 and Pros6 have less 

compelling dynamics of the detected SVs (Figure S10A-C). 
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Discussion

Recent studies have utilized somatic SVs for tracking tumor burden from liquid biopsies7-10. 

Although these studies showed the potential of this methodology, they lacked sufficient turn-

around time to provide personalized biomarkers before the initiation of patient treatment. This is 

due to lengthy short-read WGS approaches for SV detection and an associated substantial number 

of false-positive somatic SVs, requiring laborious testing Nanopore sequencing combined with a 

machine learning approach is capable to efficiently identify a set of somatic SVs from tumor tissue 

within three days. The rapid and simple workflow offers great potential for routine monitoring 

of cancer dynamics. We illustrate the applicability of our method to measure tumor burden by 

using a series of longitudinally gathered blood samples from metastatic prostate cancer patients. 

Obtaining enough tumor material for DNA isolation is often a limiting factor for next-generation 

sequencing assays. We show that Nanopore sequencing and somatic SV detection is possible 

from limited amounts of DNA that can be extracted from a metastatic tumor needle biopsy, which 

is an important requisite for clinical viability. DNA input can be decreased even further to as little 

as 80 ng when using flow cells with increased sensitivity for DNA (research prototype flow cells 

provided by ONT). 

Long-read sequencing is an excellent method for the detection of SVs at nucleotide resolution, 

even at low sequencing depth, because each long-read that bridges a breakpoint-junction provides 

direct information on the breakpoint position and sequence17. Sequencing of a tumor sample on 

a single GridION/MinION Nanopore flow cell generates insufficient sequencing data to accurately 

establish a complete genomic profile. However, using the pipeline developed here, we efficiently 

enriched for patient-specific somatic SV events - irrespective of their functional impact on tumor 

biology. Despite the very low coverage, the computational method functions independently of 

corresponding germline sequencing data. These assets make our pipeline a cost-efficient assay for 

detection of personalized somatic SV biomarkers. Furthermore, on average 50% of the detected 

SVs are somatic, which minimizes the hands-on effort needed for validation purposes. For all 

analyzed tumors, we identified at least five somatic SV biomarkers per patient, an amount within 

the range of biomarkers used to trace ctDNA in previous work7,9,47. With expected increases in 

sequencing throughput from ONT sequencing, the performance of the pipeline will improve 

significantly. Furthermore, the use of cheap disposable flow cells (Flongle) could reduce assay 

costs to ⅕ of the current sequencing price of 800€48. The minimal costs of this assay would enable 

the broader application of such individualized SV monitoring in cancer patients.

We retrospectively traced levels of ctDNA with two SVs per patient for four prostate cancer 

patients and compared tumor dynamics to clinical biomarkers such as PSA and ALP. The 

quantitative measurement of SVs in ctDNA suggests that VAFs of SVs correlate with tumor load 

(Pros1 and Pros5). Moreover, the SVs would have indicated progression of disease earlier than 

PSA did in some patients (Pros1 and Pros 4). Even though we only tested two SVs per patient, this 

clearly illustrates the potential clinical utility of quantifying ctDNA with SVs to monitor response 

to treatment. The assay could be optimized by not only identifying the tumor-specific SVs, but also 

SVs that represent the dominant disease clone and upcoming, targetable subclones. In addition, 

larger prospective studies should confirm that indeed measuring SVs improves clinical decision 

making in patients with metastatic prostate, and other cancer types. 

Conclusions

Clinicians are well aware of the dynamic response of cancer to treatment but lack the tools to 

monitor these changes in real-time and thus generally respond to alterations too late for true 

treatment success. We present a method to overcome these  limitations and provide a solution to 

immediate individualized disease monitoring. This approach could increase sensitivity of disease 

monitoring to such levels that more intelligent treatment approaches could be envisioned. 
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Supplementary information

Figure S1. Coverage and read length of COLO829 and HGS-3
Coverage (A) and read length (B) distribution for COLO829 and HGS-3 Nanopore sequencing data. Dashed 
lines represent average.

Figure S2. Enrichment of somatic SV calls of COLO829 and HGS-3 after subsequent steps of the SHARC 
pipeline
The filtering steps were applied in a cumulative manner in the order displayed for subsampled Nanopore 
sequencing datasets from COLO829 and HGS-3. For each level of coverage, 20 independent subsampled 
datasets were generated and subjected to each filtering step in a cumulative manner. 
(A) Enrichment for somatic SVs after subsequent steps of the SHARC filtering pipeline. The blue and red lines/
dots indicate the percentage of somatic and non-somatic SV calls after each filtering step of the pipeline for 
both COLO829 and HGS-3. The percentage of somatic and non-somatic SV calls is calculated relative to the 
sum of remaining somatic and non-somatic SV calls after each filtering step. Thus, 100% represents the total 
number of SV calls (somatic plus non-somatic) present at each step.
(B) This figure panel is based on the same underlying data as for panel A, but here the percentage of somatic 
(blue) and non-somatic (red) SV calls is plotted relative to the total number of somatic and non-somatic 
SV calls detected at the first step, respectively. Thus, 100% represents the total number of non-somatic or 
somatic SV calls found initially in the raw data prior to filtering. While the percentage of non-somatic SV calls 
(red line/dots) decreases rapidly to very low percentages, the percentage of true positive somatic SV calls 
(blue line/dots) remains substantial (around 20%, depending on the sequence coverage). In low coverage 
subsets, all data points are shown and the square box represents the median value. 
RF: Random forest; DBFilter: Database filter.
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Figure S3. Benchmarking of Nanopore SV callers on low coverage Nanopore sequencing data
The SV callers NanoSV, Sniffles and NanoVar are compared in terms of true positives (A), false positives (B) and 
required computation memory (C) and time (D). Triplicates of 5x randomly subsampled COLO829 data were 
used, and comparisons were performed against a short-read somatic SV reference set.

Figure S4. Somatic vs. germline SV length
Histogram and density plot of SV lengths of somatic and germline SVs from short-read data of COLO829 and 
HGS-3.

Figure S5. Random forest performance on the Genome in a Bottle sample (GIAB)
(A) Precision vs. recall curve on the training set. Depicted is the operating point selected of 96% precision and 
99.5% recall. 
(B) Random forest performance on the hold-out set.

Figure S6. Nanopore sequencing time vs. somatic SV detection
Plots showing the sequencing time and the recall of validated somatic SVs in 6 hour cumulative bins.

Supplementary Figure 3: Benchmarking of nanopore SV callers on low coverage nanopore 
sequencing data. The SV callers NanoSV, Sniffles and NanoVar are compared in terms of true positives 
(A), false positives (B) and required computation memory (C) and time (D). Triplicates of 5x randomly 
subsampled COLO829 data were used, and comparisons were performed against a short-read somatic 
SV reference set.  
 

 
 

 

  

Supplementary Figure 4: Somatic vs germline SV length Histogram and density plot of SV lengths of 
somatic and germline SVs from short-read data of COLO829 and HGS-3. 
 

 
  

Supplementary Figure 5: Random forest performance on the Genome in a Bottle sample (GIAB) (A) 
Precision vs recall curve on the training set. Depicted is the operating point selected of 96% precision 
and 99.5% recall. (B) Random forest performance on the hold-out set. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Supplementary Figure 6: Nanopore sequencing time vs. somatic SV detection Plots showing the 
sequencing time and the recall of validated somatic SVs in 6-hour cumulative bins.  
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Figure S7. Validation of somatic SV of Ova2 biomarkers in cfDNA
Somatic SVs (sSV) of patient Ova2 were tested on cfDNA from ascites (cf), tumor DNA (T), germline DNA (G) 
and water control (N). M = DNA ladder

Figure S8. Confirmation of presence of SVs in preamplified cfDNA
Detection of two patient-specific SVs in cfDNA from blood from four prostate cancer patients at baseline and 
at progression of disease with dPCR.  Shown are VAFs.

Supplementary Figure 7: Validation of somatic SV (sSV) of Ova2 biomarkers in cfDNA sSVs of patient 
Ova2 were tested on cfDNA from ascites (cfDNA), tumor DNA (T), germline DNA (G) and water control 
(N). M = DNA ladder 
 

 
 
 
 
 
 
 
 
 
 
 
 
  

Supplementary Figure 8:  Confirmation of presence of SVs in pre-amplified cfDNA Detection of two 
patient-specific SVs in cfDNA from blood from four prostate cancer patients at baseline and at 
progression of disease with dPCR.  Shown are VAFs.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Supplementary Figure 9: Technical aspects of dPCR (A) Comparison of VAF in pre-amplified cfDNA 
and VAF in stock (non-pre-amplified) cfDNA. (B) Comparison of VAF based on up- and downstream 
wild type alleles. (C) Comparison of VAF in technical replicates of dPCR of pre-amplified cfDNA samples 
of Pros5 and Pros6.  
 
 

 
 
 

  

Supplementary Figure 10: dPCR-based quantification of SVs in blood Quantification of SVs in 
longitudinal cfDNA samples from blood in patient (A) Pros4, (B) Pros5 and (C) Pros6. In addition to 
VAFs of SVs, treatment, laboratory parameters (prostate specific membrane antigen (PSA), alkaline 
phosphatase (ALP)) and clinical progression of disease (PD) are visualized. Progression of disease 
based on a confirmed increase of prostate specific membrane antigen (PSA) of ≥25% above the nadir 
or baseline (PCWG3 criteria) was present in Pros5 and Pros6 (PSA PD). Doce, docetaxel; Caba, 
cabazitaxel; Mito, mitoxantrone. 
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Figure S9. Technical aspects of dPCR
(A) Comparison of VAF in preamplified cfDNA and VAF 
in stock (non-preamplified) cfDNA.
(B) Comparison of VAF based on up- and downstream 
wild-type alleles. 
(C) Comparison of VAF in technical replicates of dPCR 
of preamplified cfDNA samples of Pros5 and Pros6.

Figure S10. Digital PCR-based quantification of 
SVs in blood
Quantification of SVs in longitudinal cfDNA 
samples from blood in patient Pros4 (A), Pros5 
(B), and Pros6 (C). In addition to VAFs of SVs, 
treatment, laboratory parameters (prostate 
specific antigen (PSA), alkaline phosphatase 
(ALP)) and clinical progression of disease (PD) 
are visualized. Progression of disease based on 
a confirmed increase of prostate specific antigen 
(PSA) of ≥25% above the nadir or baseline (PCWG3 
criteria) was present in Pros5 and Pros6 (PSA PD). 
Doce, docetaxel; Caba, cabazitaxel; Mito, 
mitoxantrone.
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Table S1. Sequencing statistics

Sample
Number
of runs

Flow 
cell 

version
Sequencing 

device

DNA 
input 

library 
prep 
(ng)

DNA 
input 
flow 
cell 
(ng)

Number of 
reads

Total 
throughput 

(Gbp)

Mean 
read 

length 
(bp)

N50 
read 

length 
(bp)

Average 
mapped 
coverage

Ova1 1 revD GridION 1,620 704 590,395 4.83 8,181 14,840 1.83

Ova2 1 R9.4 MinION 1,800 977 444,225 7.25 16,317 24,178 2.46

Ova3 1 R9.4 GridION 4,800 750 756,013 7.82 10,337 25,564 2.61

Ova4 1 R9.4 MiniON 3,800 1,661 1,540,517 13.72 8,904 12,853 3.96

Pros1 1 R9.4 GridION 250 49 723,128 4.47 6,183 12,999 1.80

Pros2 1 revD GridION 250 36 923,602 4.41 4,773 7,886 1.83

Pros3* 1 revD GridION 250 45 209,846 1.15 5,462 10,691 0.36

Pros4 1
RP-

HS**
GridION 128 6 1,232,000 6.15 4,992 7,367 2.11

Pros5 1
RP-

HS**
GridION 80 10 1,472,000 6.29 4,270 6,690 2.11

Pros6 1
RP-

HS**
GridION 117 15 927,313 5.56 5,993 14,347 1.76

COLO829 49 R9.4

Promethion 
(2), GridION 
(3), MinION 

(44)

variable variable 18,688,674 196.09 10,492 18,687 57.19

HGS-3 40

R9.4 
(23), 
R9.5 
(17)

GridION 
(5), MinION 

(35)
variable variable 23,464,214 193.08 8,228 10,725 54.04

*Discarded (too low sequencing yield)
**Research protoype-high sensitivity

Table S2. Cumulative filtering steps to enrich for somatic SVs

This table is available from the author on request as it is to extensive to publish here.

Table S3. Random forest model

Name Description
Gini 

importance

svlength Length of the SV event 304,976939

sr_distance1
Distance to closest single repeat element in the reference genome from the left side of 

the breakpoint 206,414102

sr_distance2
Distance to closest single repeat element in the reference genome from the right side of 

the breakpoint 178,889844

vaf Variant allele frequency 107,06722

pid2 % identity on right side of the breakpoint 26,652871

ciend2 Right confidence interval of breakpoint on the right side of the breakpoint 23,179306

pid1 % identity on left side of the breakpoint 19,069325

gap Segment of the read that is unmapped 17,791556

plength2 Segment of the read mapped on the right side of the breakpoint 16,248287

gap_distance1 Distance to closest gap in the reference genome from the left side of the breakpoint 15,558552

plength1 Segment of the read mapped on the left side of the breakpoint 13,394601

gap_distance2 Distance to closest gap in the reference genome from the right side of the breakpoint 12,030576

sd_distance1
Distance to closest segmental duplication in the reference genome from the left side of 

the breakpoint 10,694879

sd_distance2
Distance to closest segmental duplication in the reference genome from the right side of 

the breakpoint 10,223092

total_cov_
norm Coverage around the breakpoint normalized for total coverage in the sample 10,206684

rlength Read length 9,133996

cipos2 Right confidence interval of breakpoint on the left side of the breakpoint 8,485721

cipos1 Left confidence interval of breakpoint on the left side of the breakpoint 6,394172

ciend1 Left confidence interval of breakpoint on the right side of the breakpoint 5,883401

mapq2 Mapping quality on the rigth side of the breakpoint 3,772137

mapq1 Mapping quality on the left side of the breakpoint 3,448196



161

Chapter 5

Optimizing Nanopore sequencing-based detection of structural variants enables

individualized circulating tumor DNA-based disease monitoring in cancer patients

160

Part 2

Liquid Biopsies

Table S4. Design of digital PCR assays for absolute quantification of SVs

Pros1 SV-A (G8)

Translocation
Breakpoint positions:

chr17: 20919555,
chr8: 6557627

Structural variant

Probe 6-FAM_AAA-GAA-CAT-GGA-CAC-CA_MGB-EDQ

SV-F CTG-GGC-AAC-ATA-GCT-AGA-CC

SV-R AGT-GAT-GTG-CTT-CCC-TTT-G

Wild-type 
Upstream

Probe .

SV-F .

WT-U .

Wild-type 
Downstream

Probe Cy5_CCA-GGA-CAC-CAG-CAC_MGB-EDQ

SV-R AGT-GAT-GTG-CTT-CCC-TTT-G

WT-D GCA-CTA-GCC-AAA-CCA-CTC-A

Pros1 SV-B (C7)

Duplication
Breakpoint positions:

chr8: 92013487,
chr8: 114058951

Structural variant

Probe 6-FAM_ACA-AGG-ACA-GAG-TAT-GGA-T_MGB-EDQ

SV-F CTC-TCC-ACA-GCC-TCT-GC

SV-R CAA-TAG-ATA-CAT-GAA-CCT-AAA-CGT-G

Wild-type 
Upstream

Probe HEX_GTA-TAT-GAG-TAT-GGA-TTT_MGB-EDQ

SV-F CTC-TCC-ACA-GCC-TCT-GC

WT-U TCC-ACC-AAT-ATT-CAG-ATT-TCT-CAG

Wild-type 
Downstream

Probe Cy5_TGA-ATC-TTG-TCC-TTG-TAT-C_MGB-EDQ

SV-R CAA-TAG-ATA-CAT-GAA-CCT-AAA-CGT-G

WT-D CAA-GTC-CCT-GAC-TCC-CTT

Pros4 SV-A (C2)

Duplication
Breakpoint positions:

chr8: 92013487,
chr8: 114058951

Structural variant

Probe 6-FAM_CTT-GTA-AAC-CAT-AAA-CAA-G _MGB-EDQ

SV-F TCT-CAG-GTA-TGA-GCA-CCA-TC

SV-R CTT-CAT-TCA-CAC-AAG-CTT-CC

Wild-type 
Upstream

Probe HEX_ AGC-CTC-TTA-CCT-GGA-CAC_MGB-EDQ

SV-F TCT-CAG-GTA-TGA-GCA-CCA-TC

WT-U CAT-GGC-CCT-TAC-CAC-ATC

Wild-type 
Downstream

Probe Cy5_ AGG-CCT-GTT-TCA-CAG-AGA _MGB-EDQ

SV-R CTT-CAT-TCA-CAC-AAG-CTT-CC

WT-D GTT-ATG-TTC-TCC-ACC-CTA-CTC

Pros1 SV-B (E2)

Deletion
Breakpoint positions:

chr4: 88945002,
chr4: 89615623

Structural variant

Probe 6-FAM_AGC-CTA-GAC-GTG-TTA-TT_MGB-EDQ

SV-F TCT-TGC-CAA-AGA-TTG-TTG-AG

SV-R CAG-GGA-ATG-GCT-AGG-ATT-AG

Wild-type 
Upstream

Probe HEX_AGA-TTC-ATT-TGG-AGC-AGC-T_MGB-EDQ

SV-F TCT-TGC-CAA-AGA-TTG-TTG-AG

WT-U TAA-GCT-CTT-GGT-GAG-CAG

Wild-type 
Downstream

Probe Cy5_TAG-AGT-GTG-TCT-TTA-ACT-CT_MGB-EDQ

SV-R CAG-GGA-ATG-GCT-AGG-ATT-AG

WT-D TCC-TCT-GTT-TTT-GGT-TTT-GAA

Pros5 SV-A (A4)

Duplication
Breakpoint positions:

chr4: 68016545,
chr4: 105752220

Structural variant

Probe 6-FAM_TTC-ACA-ACT-GCT-GAG-CCA_MGB-EDQ

SV-F CAT-CTT-GCC-AAT-GAA-CAG-AG

SV-R TTT-CAC-CAT-TAC-AGT-ACA-GTG-C

Wild-type 
Upstream

Probe HEX_TGG-CAT-GTT-ATG-GCT-TG_MGB-EDQ

SV-F CAT-CTT-GCC-AAT-GAA-CAG-AG

WT-U CTT-GAC-CCT-GCC-TTC-AG

Wild-type 
Downstream

Probe .

SV-R .

WT-D .

Pros5 SV-B (C4)

Inversion
Breakpoint positions:

chr6: 115647533,
chr6: 134275493

Structural variant

Probe 6-FAM_CAG-TCA-AAC-TGG-GAA-AA_MGB-EDQ

SV-F CAT-CTT-GCC-AAT-GAA-CAG-AG

SV-R TTT-CAC-CAT-TAC-AGT-ACA-GTG-C

Wild-type 
Upstream

Probe HEX_AGC-CAC-CTT-TGA-CTG-AT_MGB-EDQ

SV-F CAT-CTT-GCC-AAT-GAA-CAG-AG

WT-U GAT-CAT-GCT-CTG-AAA-TTC-AAG-GTT-T

Wild-type 
Downstream

Probe Cy5_AGA-ATC-CAC-ATT-GCT-TAC-AC_MGB-EDQ

SV-R TTT-CAC-CAT-TAC-AGT-ACA-GTG-C

WT-D GGG-TTT-AGA-ACA-GTG-CCT-TA

Pros6 SV-A (A6)

Inversion
Breakpoint positions:

chr14: 19788077,
chr14: 55164423

Remark: Wild-type 
Upstream

has an identical
sequence on

chromosome 22.

Structural variant

Probe 6-FAM_AGC-GTC-GGT-GCT-GGA_MGB-EDQ

SV-F CTC-CCT-CAA-ACT-GGG-AAT-G

SV-R TTT-ACC-TAG-AGG-GAC-AGT-TGG

Wild-type 
Upstream

Probe HEX_ACA-ACC-AGC-CTC-ATA-C_MGB-EDQ

SV-F CTC-CCT-CAA-ACT-GGG-AAT-G

WT-U CCT-TTG-CTT-CCC-AAG-ACA

Wild-type 
Downstream

Probe Cy5_ACA-TGT-TAC-ACA-GTT-TCT-GT_MGB-EDQ

SV-R TTT-ACC-TAG-AGG-GAC-AGT-TGG

WT-D CCT-AAG-CCA-GAA-TCT-CTC-ATA-TTT

Pros6 SV-B (E6)

Translocation
Breakpoint positions:

chr14: 121469145,
chr8: 127512920

Structural variant

Probe
6-FAM_TGA-ACT-GAA-TTT-TTA-TAT-TTA-TTC-AC_MGB-

EDQ

SV-F AGC-CTA-CAA-ACC-ACT-TAT-TGC

SV-R TGC-AGT-GGA-CAT-TGG-ATG

Wild-type 
Upstream

Probe .

SV-F .

WT-U .

Wild-type 
Downstream

Probe Cy5_AGC-ACA-CAA-CAA-ATC_MGB-EDQ

SV-R TGC-AGT-GGA-CAT-TGG-ATG

WT-D GAA-CAC-AGA-GGC-AGG-AAA-T

SV-F Structural Variant Forward primer
SV-R Structural Variant Reverse primer
PB probe
WT-U Wild-type Upsteam primer
WT-D Wild-type Downstream primer
All sequences depicted in the 5’-3’ read direction
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Abstract

Background

Circulating tumor cell (CTC) derived organoids provide a powerful tool for personalized cancer 

therapy, but are restrained by low CTC numbers provided by blood samples. Here, we used 

diagnostic leukapheresis (DLA) to enrich CTCs from metastatic prostate cancer (mPCa) patients 

and explored whether organoids provide a platform for ex vivo treatment modelling.

Materials and Methods

We prospectively screened 102 mPCa patients and performed DLA in 40 patients with ≥5 CTCs/7.5 

mL blood. We enriched CTCs from DLA using white blood cell (WBC) depletion alone or combined 

with EpCAM selection. The enriched CTC samples were cultured in 3D to obtain organoids and 

used for downstream analyses.

Results

The DLA procedure resulted in a median yield of 5312 CTCs as compared to only 22 CTCs in 7.5 

mL of blood. Using WBC depletion, we recovered 46% of the CTCs, which reduced to 12% with 

subsequent EpCAM selection. From the isolated and enriched CTC samples, organoid expansion 

succeeded in 35% of the patient samples. Successful organoid cultures contained significantly 

higher CTC numbers at initiation. Moreover, we performed treatment modelling in one organoid 

cell line and investigated tumor heterogeneity in CTCs using single cell DNA sequencing. 

Conclusions

DLA is an efficient method to enrich CTCs. Although the modest success rate of culturing these 

cells precludes large scale clinical application, these data do suggest that DLA and subsequent 

processing provides a rich source of viable tumor cells. Therefore, DLA provides a promising 

alternative to biopsy procedures to obtain sufficient number of tumor cells to study disease 

kinetics in mPCa patients.

Introduction

Translational studies on advanced prostate cancer (PCa) have often been limited to static sources, 

such as resection of the primary tumor or biopsies1-4. However, cancer is an ever moving target, as 

dynamic evolution drives spatial and temporal heterogeneity allowing tumors to adapt and escape 

therapeutic interventions. We therefore require new methods that provide real-time insights into 

evolving cancer biology for treatment tailoring. Circulating tumor cells (CTCs) could serve as a 

dynamic tumor source which captures the genetic and phenotypic heterogeneity of cancer and 

can be obtained at multiple time-points during the disease course to assess clinical progression5. 

Additionally, CTCs can be obtained from peripheral blood in a relatively non-invasive manner, thus 

providing an easily accessible source of metastatic cells as an alternative to tumor biopsies. This is 

particularly beneficial for patients with primarily bone metastasis such as in metastatic PCa (mPCa). 

In mPCa, CTC numbers have already been shown to harbor significant prognostic and predictive 

value6-10. The possibility to obtain viable CTCs also provides the opportunity to propagate CTCs ex 
vivo. The development of cancer organoids has allowed us to better capture the tumor-specific 

characteristics than standard 2D culture methods11. Together, this provides the opportunity to use 

CTC derived organoids as a representative model of the current disease status and use for drug 

discovery and sensitivity-screening12. PCa CTCs can be cultured as organoids, although the reports 

thus far suggest  a very low efficiency rate for success13,14. Previous reports suggest that one 

important obstacle is the high number of CTCs needed to initiate organoid propagation13,15. Since 

the median CTC count in mPCa patients is 2-20 CTCs per 7.5 mL of blood10, ex vivo expansion of 

CTCs is unlikely to be successful in most patients. Diagnostic leukapheresis (DLA) is a standardized 

procedure to enrich for mononuclear cells by continuous centrifugation of blood. Since CTCs 

have a similar density to mononuclear cells, they are enriched as well16. Importantly, DLA is a 

minimally-invasive and safe procedure, that is well tolerated by patients17. Within this prospective 

study we set out to isolate CTCs from mPCa patients by DLA. We hypothesized that the increased 

number of CTCs obtained by DLA, will allow us to culture CTC derived organoids and potentially 

provide a platform for individualized disease modelling. Using optimized methods we validated 

DLA as a feasible and safe method to enrich for CTCs in mPCa patients. CTCs could be propagated 

as short-term organoid cultures in 35% of the samples, from which we could obtain one stable 

organoid cell line. These short-term organoid cultures expressed the classical markers of PCa 

and maintained genomic variants previously identified in metastatic samples. Overall, our study 

provides an important step forward in implementing CTCs in individualized disease modelling, 

nevertheless identifies several challenges that require further optimization.
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Materials and Methods

Study design

This prospective study was conducted in accordance with the Declaration of Helsinki and was 

approved by the medical ethical committee of the Erasmus Medical Center Rotterdam (EMC-16-

449). The study was performed using a Simon’s two-stage design18 with an interim analysis after 

18 DLAs were performed. Continuation to the second stage could only continue if seven out of 

18 samples yielded successful organoid cultures meaning that organoids could be propagated for 

six weeks or longer and PCa origin could be validated. The study protocol, including sample size 

calculations, has been added as supplementary information.

Patients

From November 2016 till July 2020, patients with mPCa were prospectively included (NL6019; 

https://www.trialregister.nl/trial/6019). All patients provided written informed consent before 

any study procedure took place. Patients ≥ 18 years in age were eligible if they had histologically 

or cytologically confirmed PCa, with measurable metastatic lesion(s) (according to PCWG2 and/

or RECIST 1.1 criteria)19,20 and intended to start a new line of systemic treatment. Patients should 

have at least two adequate peripheral veins as access point for DLA. Additionally, patients should 

be in good physical condition (WHO performance status ≤ 2), have an adequate hematology, 

coagulation status and liver/renal function as assessed by routine laboratory tests (see study 

protocol for details). Exclusion criteria were CTC count of < 5 per 7.5 mL of blood at screening, 

current androgen deprivation therapy treatment for hormone-sensitive mPCa patients, known 

hypersensitivity to anticoagulant used during DLA, hemorrhage disease or coagulation disorders, 

and chronic viral infections. Patients were allowed to enter the study multiple times during their 

treatment course. All patients provided written informed consent before any study procedure. 

The study procedures included a blood draw at baseline to screen for eligibility criteria, a blood 

draw before start of the DLA procedure and the DLA procedure itself. Clinical data on disease 

characteristics, previous therapies and response on the subsequent systemic therapy was 

collected in an electronic case report form (ALEA Clinical). 

Primary and secondary endpoints

The primary endpoint of this study was the rate of successfully cultured organoids from CTCs 

obtained by DLA with successfully being defined as i) propagation for at least 6 weeks in culture 

and ii) proven PCa characteristics. PCa characteristics include epithelial origin CK8/18, lack of 

p63 (not basal cells), and (combined) expression of TMPRSS2-ERG fusion, AR (splice variants) 

expression, PTEN loss, MYC amplification (together indicative of PCa) or the detection of patient-

specific somatic variants (known from previously characterized tumor material).

Study procedures

The study procedures included a blood draw at baseline to screen for eligibility criteria, including 

CTC count, a blood draw before start of the DLA procedure and the DLA procedure itself. All study 

procedures were performed before start of a new line of treatment. 

Circulating tumor cell enumeration using CellSearch

For CTC enumeration, 7.5 mL of blood, 1 mL of DLA product diluted in 6.5 mL of PBS (Thermo Fisher 

Scientific, Waltham, MA), or a proportion of the enriched fraction was collected in a CellSave 

Preservative tube (Menarini Sillicon Biosystems, Castel Maggiore, BO, Italy). All samples were 

processed within 96 hours and CTC enumeration was performed using the Circulating Epithelial 

Cell Kit on the CellSearch® system (Menarini Sillicon Biosystems) by certified personnel. Briefly, 

samples were subjected to immunomagnetic capture using ferrofluids coupled to anti-EpCAM 

antibodies and enriched cells were stained with antibodies specific for cytokeratin (CK) 8, 18, 

and 19, CD45 and nucleic acid dye (DAPI). Images were captured using the CellTracks Analyzer II 

(Menarini Silicon Biosystems) and manually examined to determine the presence of CTCs. Cells 

were defined as CTCs when positive for CK and DAPI and negative for CD45 according to the 

manufacturer’s instructions. CellSearch cartridges were stored in the dark at 4°C before further 

analyses.

Diagnostic leukapheresis

DLA was performed at the department of Hematology at the Erasmus Medical Center using the 

Spectra Optia Cell Separator machine (Terumo BCT, Lakewood, CO). Only peripheral venous access 

was used to process a maximum volume of 10 L of circulating blood. Citrate dextrose solution A 

was used as anticoagulant. For CTC isolation the standard settings for white blood cell (WBC) 

isolation were applied, only the plasma pump rate was increased to collect a slightly higher cell 

density with an approximate hematocrit of 5% instead of 2%. In addition, extra blood was drawn 

for the collection of red blood cells (40 ml in EDTA tubes), CTC count of peripheral blood (20 ml in 

CellSave tubes) and routine hematological tests. Fresh DLA product was immediately processed 

for CTC enrichment. Excess DLA product was stored in liquid nitrogen at 2 mL aliquots containing 

50% autologous plasma and 10% DMSO (Sigma-Aldrich, Saint Louis, MO). All grade ≥ 3 (serious) 

adverse events during and within 48 hours after DLA were registered.

Circulating tumor cell enrichment

CTCs from DLA were enriched by negative depletion of WBC using RosetteSep™ CTC Human 

CD45 Depletion Cocktail (STEMCELL Technologies, Vancouver, BC, Canada) with the following 

modifications. WBC concentration of the DLA product was measured using a hematology 

analyzer (Beckman Coulter, Brea, CA) and diluted with phosphate buffered saline (PBS) to a final 

concentration of 50x106 WBC/mL. Red blood cells (RBCs) were collected in K2EDTA vacutainer® 

tubes (BD, Franklin Lakes, NJ) before start of the DLA procedure and concentrated by centrifugation 
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at 800g for 8 minutes. These autologous RBCs were added to the DLA product to achieve a 1:50 

WBC:RBC ratio before incubation with the RosetteSep™ Cocktail to induce crosslinking of RBCs 

with WBCs. RBC/WBC rosettes were depleted using Sepmate™-50 tubes and Lymphoprep™ 

as density gradient medium (both STEMCELL Technologies), by centrifugation at 1200g for 12 

minutes at room temperature with the brake off. Enriched CTCs were washed using PBS. For 15 

DLA samples additional manual positive immunomagnetic enrichment was performed. Ten mL 

of CD45 depleted fraction was incubated with 150 µL CellSearch EpCAM ferrofluids and 150 µL 

capture enhancement reagent for 10 minutes, at room temperature on a roller mixer. To separate 

the magnetic labeled CTCs, the tube was placed next to a MagCellect magnet (R&D systems, 

Minneapolis, MN) and the supernatant aspirated. A second magnetic separation was performed 

for optimized enrichment. Finally, the enriched CTCs were collected in culture medium and used 

for organoid culture. 

Organoid culture from circulating tumor cells

The enriched CTC suspension was collected by centrifugation at 1200g for 8 minutes. The cell pellet 

was cooled on ice and mixed with Matrigel (MG; Corning, cat. no. 356231, Corning, New York). The 

cell suspension-MG mix was dispensed in a pre-warmed 24-wells plate (Corning, cat. no. 3527), 

in 30-40 µL droplets. Subsequently, the plate was placed upside-down at 37˚C and incubated 

for 15 minutes to let the MG solidify. Next, 500 µL of medium was added; CTCs were cultured 

in prostate growth medium (PGM) and adjusted prostate cancer organoid medium (APCOM) in 

parallel (overview in Table S1)21. APCOM was based on the previously published organoid culture 

media described by Gao et al. and Beshiri et al.13,22. Weekly images were obtained to monitor 

organoid growth using the Zeiss Axiovert 25 equipped with 10x and 20x Plan-Neofluar objectives, 

a AxioCam ICc1 camera and AxioVision imaging software (version 4.8.2.0, Oberkochen, Germany) 

and Nikon Eclipse TS2 equipped with 4x, 10x CFI Achro brightfield objectives and a 20x Fluor 

ELWD objective, a DS-Fi3 camera and NIS-Elements imaging software (Minato, Tokyo, Japan). Cell 

culture media was either replaced or supplemented every 3-4 days. 

DNA/RNA isolation and PCR analyses of CTC derived organoids

For DNA and RNA isolation, organoids were collected, lysed with RLT buffer (Qiagen, cat. no. 

79216, Hilden, NRW, Germany) and stored at -80°C until further processing. DNA and RNA 

isolation using the QIAcube system (Qiagen, cat. no. 9001293) in combination with the AllPrep 

DNA/RNA Micro Kit (Qiagen, cat. no. 80284,) was performed as described previously23. cDNA was 

generated from RNA using the RevertAid H Minus First Strand cDNA Synthesis Kit according to the 

manufacturer’s protocol (Thermo Fisher Scientific, cat. no. K1632). Subsequently, cDNA (0.1 to 1 

ng/µL) was pre-amplified for patient-specific targets and/or a multiplex prostate gene expression 

panel23 with a Taqman assay covering wild-type and mutant molecules during 15 cycles using 

TaqMan PreAmp Master Mix (Thermo Fisher Scientific) as recommended by the manufacturer. 

Prior to downstream processing, the pre-amplified product was diluted 15-fold in LoTE buffer 

(3 mM Tris-HCl/0.2 mM EDTA, pH 8.0). Gene expression levels were measured in real-time in 

the preamplified samples by qRT-PCR and subsequently analyzed as described previously23. For 

validation of single nucleotide variants (SNVs) in organoids (Table S2), digital PCR (dPCR) reactions 

were performed with either the QuantStudio 3D Digital PCR System (Thermo Fisher Scientific) 

or the Naica™ Crystal Digital PCR System (Stilla Technologies, Villejuif, France) according to the 

manufacturer’s protocol. For the former, each pre-amplified cDNA sample or DNA sample was 

partitioned into 20,000 wells of a QuantStudio 3D Digital PCR v2 Chip and run on a ProFlex 2x 

Flat PCR System (Thermo Fisher Scientific). The target-specific optimized PCR program was: 10 

min at 96°C, followed by 40 cycles of 30 sec incubation at 98°C and 2 min at 55°C and a final 

pause for up to 16 hours at 10°C. Chips were read in a QuantStudio 3D Digital PCR Instrument 

and analyzed with the web-based Quantstudio 3D dPCR Analysis Software version 3.01 (Thermo 

Fisher Scientific). For the latter, each pre-amplified cDNA sample or DNA sample was partitioned 

into 30,000 crystal droplets and amplified by the following program: 45 cycles of 30 sec at 95°C 

and 15 sec at 58°C. Chips were read in a Naica Prism3 instrument and analyzed with the Crystal 

Miner software (Stilla Technologies). For both, at least one positive and one negative control 

sample was included in every run.

Results

Patient characteristics and CTC screening

We screened 102 mPCa patients for eligibility and selected 45 patients who had ≥ 5 CTC in 7.5 mL 

of peripheral blood (PB) for CTC collection by DLA (Figure 1A). Metastatic castration-resistant PCa 

(mCRPC) patients screened for study participation tended to have a higher CTC burden compared 

to the metastatic hormone-sensitive PCa (mHSPC) patients (median of 5 CTC/7.5 mL vs. 1 resp. P 

= 0.07, Figure S1A). Moreover, 50% of the mCRPC patients had 5 or more CTCs while 39% of the 

mHSPC patients were included. The overall median CTC count of the included patient population 

was 22 CTCs per 7.5 mL PB prior to DLA, with 10 CTCs/7.5 mL and 26 CTCs/7.5 mL for mHSPC and 

mCRPC patients resp. (Figure 1B). The CTC burden was monitored in 24 patients and was found to 

remain stable in between screening, prior to the DLA and after completion of the DLA procedure 

(P = 0.37, Figure S1B). 

Diagnostic leukapheresis

After initial screening, a total of 40 patients successfully underwent DLA, as four patients 

withdrew and the DLA procedure was terminated in one patient because of an adverse event 

(grade 3 vasovagal reaction directly after start of the procedure). No other grade ≥ 3 adverse 

events were observed. The baseline characteristics of the patient population and DLA procedure 

are described in Table 1. Four patients were included twice at separate time points during their 

treatment course, resulting in serial samples for subjects 9/19, 11/15, 24/34 and 22/74. We 
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examined the impact of DLA density settings on CTC enrichment in four patients, by performing 

the DLA procedure in two fractions of both 5 L blood at 2% and 5% hematocrit respectively. As 

there was a trend towards higher CTC yield when DLA was performed at 5% hematocrit (Figure 

S1C, P = 0.125), we continued the DLA procedure using high DLA density settings and processed 5 

L of total blood volume, which limited the procedure time to approximately 2 hours. The median 

CTC concentration of the DLA product was 64/mL compared to 2.5/mL in PB samples pre-DLA (P 

< 0.001), with an estimated median yield of 5312 CTCs in 96 mL of DLA product (Figure 1C). Using 

these DLA settings, we were able to retrieve a median of 36% of the estimated CTCs available 

given the processed blood volume and the CTC count in PB (Figure S1D).

Figure 1. Overview of patient inclusion, diagnostic leukapheresis procedure and subsequent circulating 
tumor cell enrichment methods

(A) Patients were eligible for diagnostic leukapheresis (DLA) if they had adequate venous access and ≥ 5 
circulating tumor cells (CTCs). Two patients refrained from participation because of urge-incontinence 
and because of pain. Five patients were not screened for the presence of CTCs in peripheral blood due 
to inadequate venous access. After screening and inclusion four patients refrained from DLA because of 
progressive disease. 
(B) CTC count in 7.5 mL peripheral blood (PB) obtained pre-DLA in patients where DLA was successfully 
performed. CTC count in the metastatic castration-resistant (mCRPC, n = 31) and hormone-sensitive prostate 
cancer (mHSPC, n = 9) patients is shown. 
(C) Absolute CTC count in PB and DLA product. The X-axis shows CTC count per mL PB, per mL DLA product and 
extrapolated to total DLA volume. Each dot represents an individual subject (n = 40) and for all subjects we 
show the results of the 5% RBC density setting in 5 L processed blood volume. Samples from the same subject 
are connected by a (dashed) line. Y-axis is a logarithmic scale. Statistical comparison of CTC yield per mL DLA 
versus PB was performed by a paired two-sided Wilcoxon rank test P < 0.0001.

Table 1. Baseline characteristics of subjects who underwent DLA
Baseline characteristics are shown for patients who underwent the diagnostic leukapheresis (DLA) procedure. 
In addition, we show the duration, processed blood volume, and collected volume of the DLA procedure.

N = 37*

Patient and tumor characteristics

Age, years (median, range) 70 (49-83)

WHO status at registration

0 12

1 23

2 2

Hormone status at time of inclusion

HSPC 12

CRPC 25

Gleason score at diagnosis

≤ 6 2

7 8

8 9

9-10 13

Missing 5

M-stage at diagnosis

M0 5

M1 21

Mx 9

Missing 2

Type of prior therapy

Local therapy
(i.e. radical prostatectomy or RT on prostate)

16

ADT (i.e. chemical or surgical) 25

Chemotherapy 17

Hormonal therapy (other than ADT) 16

Radionucleotide therapy 8

Other 5

Diagnostic leukapheresis characteristics

Total duration of DLA (minutes; median, range) 104 (25-925)

Total processed blood volume (mL; median, range) 5112 (1153-10001)

Volume of collected DLA product (mL; median, range) 96 (18-178)

Missing 3

*4 subjects underwent DLA twice
HSPC, hormone-sensitive prostate cancer; CRPC, castration-resistant prostate cancer; ADT, androgen 
deprivation therapy
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CTC enrichment from DLA material

We compared two methods to enrich and isolate CTCs from the DLA product: depletion of WBCs 

using the RosetteSep™ method, with or without subsequent positive selection using EpCAM 

directed antibodies. For the RosetteSep™ method to function, WBCs are cross-linked with RBCs 

leading to erythrocyte rosetting of WBC allowing for gradient separation. Since the DLA product 

contains a high WBC and relative low RBC concentration, we needed to add RBCs to achieve an 

optimal WBC:RBC ratio for depletion of WBCs. Using the autologous RBCs from 40 mL of PB, 

we were able to effectively process a median of 25.5 mL out of the 96 mL DLA obtained. We 

investigated the impact of WBC depletion alone and subsequent EpCAM enrichment in twelve 

paired samples (Figure S2). WBC depletion alone was found to reduce the WBC concentration 

from 93.6*106/mL to 0.12*106/mL, resulting in a WBC depletion factor of 3.1 log10-fold. With 

subsequent EpCAM enrichment of CTCs, we further reduced the WBC concentration to 4.1 log10-

fold. However, this was at expense of a substantial CTCs loss, as the median CTC recovery reduced 

from 54% with WBC depletion alone to 11.5% with additional EpCAM selection (P < 0.001). We 

therefore chose to use WBC depletion alone for the majority of the remaining samples and only 

applied additional EpCAM selection if WBC depletion insufficiently enriched the sample. In the 

overall population, we reduced the WBC concentration by 3.21 log10-fold and recovered 46% from 

the CTCs with WBC depletion alone (Figure 2). 

Figure 2. Efficiency of CTC enrichment and isolation techniques for diagnostic leukapheresis
(A-B) Two CTC enrichment methods were compared (depicted on the X-axis): (1) white blood cell (WBC) 
depletion (n = 40) and (2) WBC depletion followed by EpCAM enrichment (n = 15). The boxplot depicts the 
median, upper and lower quartiles, whiskers indicate 1.5 times the interquartile range (IQR). Individual data 
points are shown. 
(A) WBC depletion factor after CTC enrichment. To calculate the WBC depletion factor, the number of WBCs 
before enrichment was divided by the number of WBCs after enrichment. WBC concentration was measured 
by a hematology analyzer. Y-axis is a logarithmic scale. 
(B) Relative CTC recovery (%) after CTC enrichment. To calculate CTC recovery, the absolute CTC count after 
the enrichment was divided by the absolute CTC count before the enrichment. Absolute CTC counts were 
extrapolated from 1 mL samples.

CTC derived organoids

After 18 DLA samples we performed an interim analysis to assess the success rate of organoid 

cultures from isolated and enriched CTC samples. In nine out of eighteen samples we obtained 

organoid samples of which seven could be maintained for at least six weeks and thus we 

continued with the second stage of our prospective study. In total, we established CTC derived 

organoids in 14 out of 40 DLA samples (35% success rate, Figure S3). Both the absolute CTC yield 

after enrichment and the tumor cell percentage in culture was found to be higher in samples that 

resulted in organoid propagation ex vivo (P < 0.001 and P < 0.01 resp, Figure 3A and B). Moreover, 

only one out of nine mHSPC samples, with the highest CTC yield within the population (subject 

38; 64,155), could be propagated as organoid. The majority of the organoid cultures could be 

maintained for six to eight weeks until proliferation stalled, thus providing limited number of 

organoids for downstream applications (Figure 3C). Two organoid cultures (EMC-PCa-25 and 

EMC-PCa-41) could be expanded and maintained for over six months, the latter yielding a stable 

cell line. Validation of the PCa origin of the organoids was shown by quantitative real-time PCR 

(qRT-PCR) analysis of prostate (cancer) specific transcripts (Table 2, Figure S4). The vast majority 

of the isolated samples were positive for AR and/or KLK3 (PSA) while expression of AR-V7 

was identified in only one sample. Three out of 14 organoid cultures (Subject 16, 41 and 93) 

expressed the TMPRSS2-ERG fusion transcript. We performed additional validation of PCa origin 

using patient-specific somatic single nucleotide variants (SNVs) previously identified in metastatic 

biopsies (Table 2, Table S2 and 3)4. We validated PCa origin in the matched organoid cultures from 

subject 9/19, 79 and 24/34 by detection of the TP53 and PTEN SNVs resp. Subject 79 was a patient 

with neuro-endocrine PCa (NEPC), of whom the CTC derived organoids maintained their NEPC 

features as they lacked AR and KLK3 expression.

Figure 3. Overview of successful CTC derived organoid cultures
(A-B) Results of CTC enrichment and isolation of samples that generated organoids (n = 14) and those that did 
not (n = 44). From 11 DLA products we cultured two samples, as white blood cell (WBC) depletion alone and 
subsequent EpCAM enrichment was performed.  
(A) Estimated CTC yield after CTC enrichment and isolation as determined by CTC count from 1 mL sample and 
extrapolated to the entire product after processing. Y-axis is a logarithmic scale. 
(B) Tumor cell percentage in sample after CTC enrichment and isolation. Percentage of tumor cells was 
calculated by dividing CTC count by WBC count in sample after enrichment and isolation. Y-axis is a logarithmic 
scale.  

>>
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(C) Swimmersplot of all patient samples used to generated CTC derived organoids (marked by ticks), for 
confirmed organoid samples the time in culture is shown. Most organoid cultures could be maintained as 
short-term cultures and were subsequently isolated for genetic and/or transcriptional analysis. Organoid 
sampling is marked by a star and passaging of organoids is marked by arrow heads. Light grey bars represent 
CTC samples from metastatic hormone-sensitive prostate cancer (mHSPC) patients while dark grey is used for 
metastatic castration-resistant prostate cancer (mCRPC). Subject 41 was deemed a stable organoid cell line 
(EMC-PCa-41) after 10 passages. X-axis depicts the time in weeks since initiating organoid culture.

Table 2. Validation of prostate (cancer) transcripts and patient-specific somatic variants in CTC derived 
organoids
Overview of genomic and transcriptomic characteristics of the isolated organoids. Expression of prostate 
(cancer) transcripts in the organoid samples was acquired by qRT-PCR. Positive expression was determined by 
a ΔΔCq above -8.5 (normalized to EpCAM/KRT19 and VCaP RNA used as calibrator). Patient-specific somatic 
single nucleotide variants (SNVs) were selected using whole-genome sequencin data from metastatic biopsies 
(CPCT-02 study) and validated using dPCR. Shown are the SNVs and variant allele frequency as defined by 
dPCR in the organoid samples.

Subject ID Expression prostate
(cancer) transcripts

Somatic variant
(variant allele frequency)

9 AR TP53 c.407A>T (99.7%)

16 AR, KLK3, and TMPRSS2-ERG NT

19 NT TP53 c.407A>T (83.9-99.9%)

21 AR and KLK3 NT

24 KLK3 PIK3CA c.3140A>G (1.9%)

25 AR and KLK3 PLCG2 c.655G>A (27.5%)

34 AR and KLK3 PIK3CA c.3140A>G (45%)

38 AR and KLK3 NT

41 AR, KLK3, and TMPRSS2-ERG NT

79 − TP53 c.733G>A (97%)

91 AR and KLK3 NT

93 AR, KLK3, and TMPRSS2-ERG NT

94 AR and KLK3 NT

97 AR, KLK3, and AR-V7 NT

NT, not tested

Characterization of CTC derived organoid cell line

From the organoid culture samples we were able to generate one stable organoid cell line, which 

enabled us to perform in-depth genomic and phenotypical characterization. Whole-genome 

sequencing (WGS) of EMC-PCa-41 revealed a triploid genome with an estimated tumor cell 

purity of 99%, an overall tumor mutational burden of 2.13 somatic mutations per mega base 

pairs and no predominant mutational signature (Figure 4A). We identified multiple copy-number 

alterations (CNAs) including a focal amplification on chromosome Xq, encompassing the AR 

locus and a focal deep deletion on 10q causing loss of PTEN. Furthermore, EMC-PCa-41 was 

characterized by multiple inter- and intra-chromosomal rearrangements, including the interstitial 

deletion leading to the TMPRSS2-ERG fusion as was identified by qRT-PCR (Table 2, Figure S3B). 

Moreover, ERG expression in the organoids was validated by immunohistochemistry (Figure 4B). 

Overall, EMC-PCa-41 harbors genomic features which are frequently identified in mCRPC tumors4. 

Next, we determined the sensitivity of EMC-PCa-41 to commonly used treatments for mCRPC; 

enzalutamide and taxane chemotherapeutics (Figure 4C and 4D). Both androgen depleted culture 

conditions (minus R1881) and enzalutamide treatment could only partially inhibit cell proliferation 

of EMC-PCa-41, suggesting resistance. Interestingly, subject 41 started with enzalutamide after 

the DLA procedure and switched treatment after only two months due to rising PSA levels (Figure 

S5).

>>

>>
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Figure 4. Genetic and phenotypic characterization of the CTC derived stable organoid cell line, EMC-PCa-41
(A) CIRCOS plot representing the whole genome characterization of EMC-PCa-41 as obtained by whole 
genome sequencing. The first outer track depicts the genomic ideogram. The second track displays the copy-
number profile with amplifications marked in light-green, deep amplification in dark-green, deletions in blue 
and deep deletions in dark-blue. The third track depicts the minor-allele frequency (MAF) values of individual 
copy-number segments (MAF values ≤ 0.33 in pink and MAF values > 0.33 in black). The fourth track displays 
the number of mutations per 5 megabase pairs (Mb), with regions of mutational frequency above 20 Mb 
marked in blue. The fifth track highlight regions marked by regional hypermutation (kataegis). Inner circle 
displays structural variants, with deletions in black, translocations in dark blue, insertions in yellow, inversions 
in light-blue and tandem duplication in red. 
(B) Representative overview and detailed images of immunohistochemical staining on EMC-PCa-41 organoids 
of AR, PSA, cytokeratin 8/18 (CK8/18) and ERG, and counterstained with hematoxylin. Top row depicts 
negative control in which the primary antibody was omitted. Scale bar represents 10 µm in size in the detailed 
images and 100 µm in the overviews. 
(C) Drug sensitivity of the organoid cell line EMC-PCa-41 towards the anti-androgen treatment enzalutamide 
and taxane chemotherapeutics, as compared to the established PCa organoid cell lines. Data shown is the 
average of 3 individual cell viability experiments with three technical replicates, scale bars represent SEM. 
Hormone sensitivity of EMC-PCa-41 was determined by cell viability in androgen depleted conditions (minus 
R1881) and compared to the AR positive cell organoid cell line MSK-PCa-2. Chemosensitivity was compared 
to the AR negative cell line MSK-PCa-1.

CTC and organoid heterogeneity by single cell copy-number alterations

To investigate the heterogeneity within CTCs and early-stage organoid cultures, we performed 

low-pass WGS on multiple single cells obtained from the two long-term mCRPC organoid samples 

with matched CTCs and WBCs that served as normal controls (subject 25 and 41). The genomic 

profiles revealed several single cells without any distinct CNA that clustered together with WBC 

controls. Additional validation excluded these single cells, as they lacked tumor-specific SNVs and 

were likely non-malignant (Figure S6). We then performed a t-SNE analysis to identify clusters of 

tumor cells bearing similar copy-number profiles to assess heterogeneity and extract consensus 

copy-number profiles. The CTCs and organoid cells isolated from subject 25 separated into five 

distinct clusters (Figure 5A). The organoid cells isolated from early cultures clustered separately 

(cluster 1) from the CTCs and displayed unique focal amplifications on chromosome 11p, 14 

and 15 (Figure S7). Tumor cells obtained from subject 41 clustered into three distinct groups 

(Figure 5B) and showed distinct heterogeneity and ploidy between clusters. Moreover, the 

consensus plot from cluster 1 revealed a baseline copy-number of 6 with focal amplifications on 

chromosome 4, 13 and 20. Cluster 3, encompassing 8 of 18 CTCs, harbored a triploid genome and 

closely resembled the focal amplifications previously identified in the matched organoid cell line 

EMC-PCa-41. 

Figure 5. Clustering of individual circulating tumor cells and organoid cells based on low-pass whole genome 
sequencing data
t-SNE plot (k-nearest neighbor algorithm; Louvain method) of tumor cells, clustering by absolute copy-number 
values (0.01 Mb). Copy-number values were obtained by low-pass whole genome sequencing of single tumor 
cells after whole genome amplification, white blood cells were taken along as negative control (not displayed 
in t-SNE).

Discussion

This study confirms that DLA is a safe and efficient method to harvest large amounts of CTCs 

from mPCa patients. Furthermore, we have optimized WBC depletion methods to efficiently 

recover CTCs and remove WBCs from DLA samples. From the isolated and enriched CTC fractions 

we were able to establish organoid cultures in 35% of the samples which were mostly of short-

term nature, although one sample lead to a stable organoid line. Our study shows that DLA is a 

promising method to obtain viable tumor cells from mPCa patients for subsequent downstream 

analyses such as single cell sequencing. Unfortunately, the modest success rate to expand 

organoid cultures precluded us from using CTC derived organoid cultures as a platform to select 

personalized treatment options for now.

The use of living cells, directly obtained from patients as ‘real-life’ drug screening models, is an 

appealing prospect in our quest to improve personalized cancer treatment. Indeed, phenotyping 

living tumor cells has the advantage to directly measure the response to treatment compared 

to ‘phenotyping after fixation’ based stratification24. Previous reports on CTC cultures indicated 

that one of the main factor for success is the number of cells to initiate expansion13,15. Indeed, 

we found that samples that were successfully propagated as organoids contained significantly 

higher number and percentage of CTCs after enrichment and isolation. While DLA allows us to 

obtain vast numbers of CTCs, processing of the DLA material provides new challenges due to 

the excess of WBCs present in the sample. The currently available methods for WBC depletion 

or CTC enrichment require an excess of magnetic beads or RBCs to achieve the appropriate 
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ratio to capture all cells by antibodies. This limited the DLA volume that can be (cost)effectively 

processed. In our study, we were limited to one-fourth of the DLA sample from 5 L blood and 

thus the number of CTCs obtained for culture. Further optimization of DLA sample processing 

could therefore tremendously impact the amount of viable tumor cells obtained and benefit 

downstream applications.

We were able to generate organoids in 35% of the samples, which is a substantial improvement 

compared to previous reports that used CTCs for ex vivo organoid cultures (5-7% success-rate)13,14. 

Unfortunately, most organoids could be maintained as short-term cultures with limited proliferative 

capacity, implicating that the current culture techniques do not provide an optimal environment 

for sustained viability. We were able to maintain two samples for several passages (subject 25 and 

41), eventually leading to one stable organoid line (EMC-PCa-41). Obtaining preclinical models of 

PCa has been notoriously difficult, presumably due to the low proliferative capacity of PCa as well 

as overgrowth of benign epithelial and stromal cells. Therefore, establishing PCa cell lines from 

liquid biopsy samples provides several advantages, including lack of normal epithelial cells and 

the possibility to obtain metastatic samples from patients with bone only disease in a minimally-

invasive manner. The CTC derived organoid cell line EMC-PCa-41 provides a unique novel model 

for mCRPC with enzalutamide resistance similarly to the patient. Moreover, EMC-PCa-41 harbors 

genomic alterations similar to a large subset of mCRPC patients as well as the TMPRSS2-ERG 

fusion, which is underrepresented in the currently available models of PCa4,25. 

Treatment modalities for mPCa have profoundly changed and expanded during the last decade. 

Understanding how PCa cells adapt to the selective pressure of treatment is becoming increasingly 

important to further improve treatment outcome. Therefore, we need patient derived materials 

that reflect the current status of the patient’s cancer, including the spatial and temporal tumor 

heterogeneity. Here we show that DLA enables in-depth studies into intra-tumor heterogeneity in 

mPCa by performing single cell whole genome DNA sequencing on CTCs. The single cell analysis 

distinguished clusters of cells with unique copy-number alteration which is in line with a previous 

study14. Within our study we were also able to obtain matched samples in four patients, which 

shows that longitudinal CTC sampling by DLA is feasible, providing a platform to study clonal 

evolution and adaptation to treatment. Overall, our study provides an important step forward in 

implementing CTCs in individualized disease modelling, nevertheless identifies several challenges 

that require further optimization to enable the development of a personalized drug screening 

platform.
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Supplementary information

Supplementary materials and methods

Passaging and isolating organoids for phenotyping

For passaging and isolation of early stage organoids, MG droplets were mechanically disrupted 

and dispensed in a pre-cooled 96-wells plate (Corning, cat. no. 3595). TryplE (Thermo Fisher 

Scientific, cat. no. 12605010) was added to the wells and incubated at 37˚C and organoids were 

resuspended regularly until the organoids were fractioned. Organoids were collected in cold 

medium (AdMEM/F12+++), centrifuged at 1200g for 5 minutes at 4°C and plated as described 

previously. For cell viability assays, enzymatic disruption was prolonged to acquire mostly single 

cells and plated at a density of 2500 cells per well in 8 µL of MG in a 96-wells plate. To allow for 

organoid formation, cells were incubated for seven days with 100 µL media. We used APCOM 

without Y-27632 and R1881, as this would interfere with treatment induced cell-death and 

anti-androgen response. Subsequently medium was replaced to contain the appropriate drug/

androgen concentration and incubated for another seven days (Enzalutamide Axon Medchem, 

Groningen, the Netherlands, cat. no 1613; R1881 details in Table S1 and Taxanes were provided 

by Sanofi, Paris, France). Cell viability was measured using the CellTiter-Glo® 3D (Promega, cat. 

no. G9681, Madison, WI), and normalized to untreated controls. MSK-PCa1 and MSK-PCa2 

were maintained in the organoid culture media described by Gao et al.1 and cell viability assays 

were performed as described above. For cryopreservation, isolated organoids were mixed 

with 1 mL cooled Recovery TM Cell Culture Freezing Medium (Thermo Fisher Scientific, cat. no. 

12648010), stored in a Styrofoam container (Westburg CoolCell LX, cat. no. BCS-405, Leusden,  

The Netherlands) overnight at -80°C and subsequently transferred to liquid nitrogen storage. For 

immunohistochemistry, organoids in MG were formalin fixed for four hours, and subsequently 

embedded in 4% agarose and paraffin. Four µm section were stained for the expression of the 

androgen receptor (AR; 1:200, SP107, Cell Marque, Rocklin, CA), prostate specific antigen (PSA 

;1:500, N1517, Dako, Santa Clara, CA ), CK8/18 (1:150, Ma5-14088, Thermo Fisher Scientific) and 

ERG (1:100, EPR3864, Abcam, Cambridge, UK) and visualized with DAB/H2O2 (EnVision kit, Dako). 

Images were obtained using the Olympus BX41 microscope equipped with 2x, 10x, 20x and 40x 

UPlanFL N objectives, a ColorView III camera and CellB imaging software (version 3.4, Olympus 

Shinjuku, Tokyo, Japan). 

Whole genome sequencing and variant calling of EMC-PCa-41

From six patients, whole genome sequencing (WGS) data from metastatic tissue was present as 

part of the CPCT-02 study (NCT01855477) and used to identify somatic SNVs for validation studies 

(Table S3)2. EMC-PCa-41 organoids were collected for WGS (passage no 5) in a similar fashion as 

passaging, washed with cold PBS and dry cell pellets were stored at -80°C. WBCs isolated from 

DLA were used as matched normal cells for sequencing. DNA isolation and WGS was performed 

by the Hartwig Medical foundation as previously described2. In short, Illumina technology was 

used for WGS of DNA libraries on the HiSeq X Ten system using paired-end (2x 150 bp) sequencing 

(Illumina, San Diego, CA) to a minimum sequencing depth of 30x and 60x for the matched normal 

and tumor sample respectively. The human reference genome (GRCh37) was used for alignment 

and post-processing and subsequent somatic analysis for variants (single nucleotide variants 

(SNVs), small insertion/deletions and multi-nucleotide variants), copy-number alterations (CNA), 

structural variants was performed as previously described2,3.

Single cell isolation, whole genome amplification and sequencing of CTCs and single 
cells from organoids

For single cell isolation we used fresh DLA product diluted in CellSearch dilution buffer, collected 

in a CellSave tube and processed within 96 hours, or stored DLA product which was thawed 

before processing. Samples were processed on the CellSearch system as described above. 

CellSearch cartridges were stored in the dark at 4°C before further analyses. Isolation of single 

CTCs, defined as DAPIpos/CKpos/CD45neg cells, and single white blood cells WBCs, defined as DAPIpos/

CKneg/CD45pos, was performed by flow cytometry using MoFlo XDP sorter (Beckman Coulter, 

Germany) as previously described4. Single cells were sorted into individual empty PCR tubes and 

stored at -20 °C until analysis. Single cell isolation of organoids was performed using the VyCAP 

Puncher System (VyCAP, Enschede, The Netherlands), combining a silicon chip with microwells, 

fluorescence imaging, and a punching method to isolate and transfer the single cells to standard 

reaction tubes as previously described5. Subsequent whole genome amplification (WGA) for all 

picked/sorted single cells was performed using adapter-linker PCR as previously described6,7 , 

and commercialized as Ampli1™ WGA Kit by Menarini Sillicon Biosystems. Ampli1™ LowPass kit 

for Illumina (Menarini Silicon Biosystems, Bologna, Italy) was used for preparing low-pass WGS 

libraries at Menarini Silicon Biosystem facilities. For high-throughput processing, the manufacturer 

procedure was implemented in a fully automated workflow on a STARlet Liquid Handling Robot 

(Hamilton, Reno, NV, USA). Resulting libraries were sequenced on HiSeq instrument (Illumina, 

Hayward, CA, USA) and the obtained FASTQ files were aligned to the human reference genome 

(GRCH37) sequence using Burrows-Wheeler Aligner version 0.7.12 (BWA)8. Quality control (QC) 

included read count distribution and derivative log ratio spread as described previously9, two 

CTCs from subject 41 failed to pass QC. CNA in the data were identified using Control-FREEC 

software (version 11.0) and ploidy level was analyzed using the MSBiosuite pipeline based on best 

fitting of profiles to underlying copy-number levels10. 

Validation of single cell sequencing

Validation of single cell sequencing was performed by Sanger sequencing of known SNVs from 

subject 25 and 41, identified in WGS of the patient’s tumor or patient derived organoid cell line 

resp. In short, a nested PCR strategy was used to amplify genomic regions with known SNVs from 
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the single cell WGA product (Table S4). PCRs were performed using Phusion High-Fidelity DNA 

polymerase (Thermo Fisher Scientific, cat. no. F530) and the final product was purified (QIAquick 

PCR purification kit, Qiagen, cat. no. 28104). The amplicons were Sanger sequenced (Macrogen 

Europe, Amsterdam, The Netherlands) and results were analyzed using pairwise alignment with 

the reference gene (BLAST, NCBI). CTCs and organoids samples that did not harbor any tumor 

specific SNVs were excluded, WBC served as negative controls.

Bioinformatics analysis of single cell copy-number alterations

For the clustering of the complete dataset (Figure S6) we used the median ratio obtained by 

the Control-FREEC software, normalized each profile on fixed bins length (weighted mean on 

0.25 Megabase (Mb) bins) and calculate the log2 values. Subsequently, after setting the minimum 

value to -2 and maximum value to 2, hierarchical clustering of profiles was performed, using 

“Euclidean” distance metric and “ward” clustering method. For clustering the validated tumor 

cell profiles, absolute copy-numbers were binned into 0.01 Mb bins which were subsequently 

annotated by the mean copy-number of overlapping copy-number segments and rounded to the 

nearest integer. These bins (0.01 Mb) were used as input for t-SNE (θ = 0.5 with a perplexity of 

2) using the Rtsne package (v0.15)11. Subsequent clustering of the t-SNE results, outputted as 

two dimensions, was performed using the k-nearest neighbor algorithm (k ≤ 15) and the Louvain 

method for community detection, as implemented by the igraph package (v1.2.5) from the 

statistical platform R (v3.6.1)12,13. Per cluster, a consensus copy-number profile was generated 

by adopting the median copy-number value per bin (0.01 Mb) over all samples captured within 

the respective cluster. Within the consensus copy-number profiles, the maximum absolute copy-

number was capped to 8. 

Statistical analysis

Sample size calculation for the patient inclusion is described in the attached clinical protocol. For 

comparison of CTC count in PB samples obtained at screening versus before the DLA procedure, 

CTC yield in low versus high density fraction enrichment by DLA, CTC yield and WBC depletion 

after WBC depletion with or without EpCAM enrichment we used a paired, two-sided Wilcoxon-

rank test due to the non-normality of the data. Data visualization and statistical testing were 

performed using the statistical platform R (version 3.6.1)13 or Graphpad Prism (version 5.01, 

GraphPad Software, San Diego, CA), we considered statistical significance with P < 0.05. 

Figure S1. Circulating tumor cell burden in metastatic prostate cancer patients and optimization of 
diagnostic leukapheresis
(A) Circulating tumor cell (CTC) count at screening of all metastatic prostate cancer patients (mPCa) included 
and screened within this study (n = 98). The boxplots depict the upper and lower quartiles, with the median 
shown as a solid line; whiskers indicate 1.5 times the interquartie range (IQR). Y-axis is a pseudo log scale. CTC 
count per 7.5 mL peripheral blood is shown for mPCa patients with hormone-sensitive (n = 28) and castration-
resistant (n = 67) disease and compared using an unpaired two-sided Wilcoxon sign rank test (P = 0.07). 
(B) CTC count per 7.5 mL peripheral blood (PB) as obtained during different stages of study participation. For 
24 patients samples were collected at screening, just prior to diagnostic leukapheresis (pre-DLA) and post-
DLA. Y-axis is a log-scale, matched samples are connected with a line. CTC burden in the different samples was 
compared by a Friedman test, no statistical significant impact was observed (P = 0.37). 
(C) Absolute CTC count in DLA product obtained at different densities. X-axis displays the two tested density 
conditions: 2% red blood cells (RBC) and > 5% RBC. Each dot represents an individual subject (n = 4), and 
samples from the same subject are connected. Y-axis is a logarithmic scale. Statistical comparison was 
performed by a paired two-sided Wilcoxon rank test (P = 0.125). 
(D) Relative CTC recovery (%) in DLA product processed at different densities. The X-axis displays the two 
tested density conditions: 2% and > 5% RBC (n = 7 and n = 46 fractions resp.). In six patients two DLA fractions 
were collected. The boxplots depict the upper and lower quartiles, with the median shown as a solid line; 
whiskers indicate 1.5 times the IQR.
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Figure S2. Comparison of white blood cell depletion with or without EpCAM enrichment for the efficacy to 
enrich for circulating tumor cells
(A-B) Two CTC enrichment methods were compared in twelve paired samples (depicted on the X-axis): (1) 
white blood cell (WBC) depletion and (2) WBC depletion followed by EpCAM enrichment. The boxplots 
depict the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 1.5 times the 
IQR. Paired samples are connected with a line. Statistical comparison was performed by a paired two-sided 
Wilcoxon rank test, P < 0.001 for both datasets. 
(A) Displays the WBC depletion factor after CTC enrichment. To calculate the WBC depletion factor, the number 
of WBCs before enrichment was divided by the number of WBCs after enrichment. Y-axis is a logarithmic scale. 
(B) Displays the relative CTC recovery (%) after CTC enrichment. To calculate relative CTC recovery, the absolute 
CTC count after the enrichment was divided by the absolute CTC count before the enrichment. Absolute CTC 
counts were extrapolated from 1 mL samples.  

Figure S3. Overview of successful CTC derived organoid cultures
Overview of all successful circulating tumor cells (CTC) derived organoid cultures obtained (n = 14), and 
organoid expansion observed over time. Timespan (in days) of organoid cultures are indicated in the top left 
corners, scale bars depicted are 50 µm in size with the exception of the day 5 image of subject 9 (100 µm).
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Figure S4. Results of qPCR validation of prostate (cancer) associated genes of circulating tumor cell derived 
organoids 
Heatmap of androgen receptor full length (AR wt), AR splice variant 7 (AR-V7), KLK3 (PSA) and TMPRSS2-ERG 
expression as determined by qPCR in circulating tumor cell (CTC) derived organoid cultures. Expression is 
depicted by ΔΔCq which is defined by target Ct values subtracted with the average EpCAM/KRT19 Ct value. 
If several organoid samples were obtained, median expression per culture media (PGM or APCOM) was 
calculated and depicted in the heatmap. Organoids were deemed positive for expression of prostate (cancer) 
associated genes if ΔΔCq were above -8.5.

Figure S5. Clinical overview of subject 41 
Clinical overview of subject 41, including PSA levels during the disease course (top part). Initially, a Gleason 
(GL) 6 adenocarcinoma of the prostate was diagnosed by systematic biopsies at an initial PSA of 8.6 µg/L (while 
the patient was using dutasteride). MRI showed a PIRADS 5 lesion which was target biopsied and revealed 
a Gleason 7 adenocarcinoma of the prostate. After robot-assisted laparoscopic prostatectomy (RALP) with 
pelvic lymph node dissection (PLND), PSA remained detectable at 0.2 µg/L. Upon PSA progression metastases 
in lymph node (Ln) and bone (Bn) were detected and androgen deprivation therapy (ADT) was started. Before 
start of enzalutamide, the patient underwent diagnostic leukapheresis (DLA). The patient received four cycles 
of docetaxel which was discontinued because of an ischemic cerebrovascular accident (iCVA).

Figure S6. Initial clustering of copy-number alterations in circulating tumor cells and early organoids from 
two metastatic castration-resistant prostate cancer samples and subsequent validation 
Unsupervised hierarchical clustering with dendogram (Euclidean distance; ward method) using log2 ratio 
of normalized counts per 0.25 megabase, depicting copy-number alterations (CNA) of individual circulating 
tumor cells (CTCs, aqua), organoid cells (beige) and white blood cells (WBCs, yellow) for subject 25 (top panel) 
and 41 (bottom panel). CNA segments for each individual cell (column) are shown from left to right and 
ordered on chromosome (indicated below). The color gradient represents copy-number deletions in dark 
blue (-2 to 0) and amplification in dark red (0 to 2). The tables alongside the hierarchical clustering represent 
the results from the validation experiments. Sanger sequencing was performed to identify somatic variants 
in whole genome amplified DNA from the CTCs, organoids and WBCs from subject 25 and 41. Empty wells 
represent missing data, shown are the organoid and CTC samples excluded based on validation.
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Figure S7. Copy-number heterogeneity in circulating tumor cells and organoids
(A-B) Consensus profiles per t-SNE cluster, depicting median absolute copy-numbers in (A) subject 25 (n = 
24) and (B) subject 41 (n = 19). The Y-axis displays the absolute copy-number ranging from 0 to ≥ 8 copies. 
X-axis displays the genomic position of the copy-number segments, ticks indicate 50 megabase (Mb). 
The color gradient represents absolute copy-number, with deletions in blue (0 to < 2) and amplification in red 
(> 2 to ≥ 8).
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Table S2. Primer and probe design for digital PCR
Custom and commercial digital polymerase chain reaction assays used for validation of CTC derived organoids 
from subject 9/19 (TP53), subject 24/34 (PIK3CA) and subject 25 (PLCG2).

Gene Cosmic ID Amino acid 
variant

Somatic 
variant

Forward primer Reverse primer Probe*

TP53 COSV53122800 p.Q136L c.407A>T 5’-ACT CCC CTG CCC TCA 
ACA A-3’

5’- AAG ACC TGC 
CCT GTG CAG C-3’

5’ –TGT TTT GCC 
[A/T]AC TGG C-3’

TP53 COSV52661877 p.G245S c.733G>A 5’-TGT TAT CTC CTA GGT 
TGG CTC TGA-3’

5’-AGG ATG GGC 
CTC CGG TT-3’

5’-CTG CAT GGG 
C[G/A]A GCA-3’

PIK3CA COSV55873195 p.H1047R c.3140A>G Assay ID**: AHPAVCD

PLCG2 COSV63869132 p.D219N c.655G>A 5’-TGC ATT AAG TGA CTT 
GTC TAA GGT TCT TT-3’

5’-CCA GGA TGA 
ACA CGG ACG AAT 
C-3’

5’-TTT CAG ATT 
CTC [G/A]AT GAA 
TT-3’

*Reporter dye/quencher: wild-type, VIC; mutant, FAM / NFQ
**Validated TaqMan® SNP genotyping assay (ThermoFisher Scientific)

Table S3. Genomic characteristics of metastatic prostate cancer patients who underwent diagnostic 
leukapheresis
Actionable and cancer associated genomic alteration detected in metastatic biopsies from included patients 
whose whole genome sequencing (WGS) data was used to validate organoid cultures. WGS data was 
generated as part of the CPCT-02 study. Shown are the somatic variants, gain/losses, gene-fusions and gene-
disruptions in cancer associated genes (as described in Priestley et al.).

Subject 
ID

Somatic variants
Somatic gains 

and losses

Somatic 
gene 

fusions

Somatic gene 
disruption

Microsatalite 
status

Tumor 
mutational 

load

9/19
TP53 c.407A>T; CDK12 

c.2350C>T; CDK12 c.3002T>A

Copy-gain: MYC, 
CCND1, MDM2, 

PTPN11 and 
CDK4

- ? ? Low

16
TP53 c.243_249delACCGGCG; 

AR c.2623C>T; CTNNB1 
c.133T>C

Copy-loss: PTEN

CDC27-
ETV4; 

TMPRSS2-
ERG

PMS2:INV intron 12 Stable Low

22 -
Copy-gain: AR 

Copy-los: PTEN
-

PTEN: INV intron 
2/3 SMAD4: DUP 
promotor region

stable Low

24/34

MYCN c.1226C>T; MSH2 
c.1699delA; MSH6 

c.2554_2556delAAG; 
PIK3CB c.2056G>A ; PIK3CA 
c.3140A>G; APC c.1660C>T; 

APC c.4385_4386delAG;
EZH2 c.1730C>T; PTEN 

c.734A>C;
ATM c.7927+5_7927+6insT; 
MDM2 c.1181C>A; HNF1A 

c.521C>T; FLT3 c.1419- 
4dupT; TSC2 c.348delG; AR 
c.2105T>A; AR c.2623C>T

- - MSH2: INV intron 7 Unstable High

25 - - -

BRAF: INV intron 1 
(2x) FANCG:

INV promotor 
region

Stable Low

79

TP53 c.733G>A; ERBB2 
c.1796G>A; ESR1 c.1514C>T; 

RASA1 c.1211C>T; ASXL 
c.1264A>T

Copy-loss: 
PTEN, RB1

FASN-
ETV4

CUX1: DEL intron 
1-> intron 22; 

BRCA: INV intron 
20; CBFB: BND

intron 3

Stable Low

Threshold for high tumor mutational load was 140 and MSI samples were defined by a MSiSeq score above 
4; - indicated that this aberration was not detected and ? if not reported.
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Abbreviations

ADT  Androgen deprivation therapy 

ANOVA  Analysis of variance

AR  Androgen receptor

CRPC  Castration-resistant prostate cancer

CS  CellSave Preservative 

CTC  Circulating tumor cell

ctDNA  circulating tumor DNA

DHEA  Dehydroepiandrosterone

DHEA-S  Dehydroepiandrosterone-sulphate

DHT  5α-dihydrotestosterone

HC  Healthy control

LC-MS/MS Liquid-chromatography tandem mass spectrometry

LLOQ  Lower limits of quantification

mCRPC  Metastatic castration-resistant prostate cancer

MS   Mass spectrometry

MSP  Mechanically-separated plasma 

MTBE  Methyl-tert butyl ether

PC  Prostate cancer

PBS-BSA  Phosphate-buffered saline with bovine serum albumin

Abstract

Background

Steroid hormones are essential signalling molecules in prostate cancer (PC). However, many 

studies focusing on liquid biomarkers fail to take the hormonal status of these patients into 

account. Steroid measurements are sensitive to bias caused by matrix effects, thus assessing 

potential matrix effects is an important step in combining circulating tumor DNA (ctDNA) analysis 

with hormone status. 

Materials and Methods

We investigated the accuracy of multi-steroid hormone profiling in mechanically-separated 

plasma (MSP) samples and in plasma from CellSave Preservative (CS) tubes, that are typically 

used to obtain ctDNA, compared to measurements in serum. We performed multiplex steroid 

profiling by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in samples obtained 

from ten healthy controls and ten castration-resistant prostate cancer (CRPC) patients.

Results

Steroid measurements were comparable between MSP and serum. A small but consistent decrease 

of 8-21% compared to serum was observed when using CS plasma, which was considered to be 

within the acceptable margin. The minimal residual testosterone levels of CRPC patients could be 

sensitively quantified in both MSP and CS samples. 

Conclusions

We validated the use of MSP and CS samples for multi-steroid profiling by LC-MS/MS. The 

optimised use of these samples in clinical trials will allow us to gain further insight into the steroid 

metabolism in PC patients.
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and steroid profiling in cancer patients to the use of a single tube. To this end, we performed 

LC-MS/MS analysis on plasma samples obtained with MSP and CS tubes in comparison to serum 

obtained with standard SST™ II Advance Vacutainer® tubes, collecting blood from healthy control 

(HC) subjects and patients with metastatic CRPC (mCRPC). 

Materials and Methods

Subjects

At the Erasmus MC Cancer Institute in Rotterdam, The Netherlands, HCs and patients were 

included within study EMC-2016-761, which was approved by the medical ethical committee of 

our institute. HCs were all adult male subjects. Patients were adult subjects with mCRPC treated 

with ADT. Patients were eligible to start treatment with or were currently treated with second-line 

hormonal therapy (abiraterone with prednisone, enzalutamide or apalutamide). For all subjects 

the following exclusion criteria were applied: 1) an endocrine disease with altered activity of 

the hypothalamic-pituitary-adrenal or hypothalamic-pituitary-gonadal axis; and 2) the use of 

medications, excluding those used to treat PC, that interfered with circulating steroid levels or 

dysregulated the hypothalamic-pituitary-adrenal or hypothalamic-pituitary-gonadal axis. All 

subjects provided written informed consent before any study procedure. 

Samples

Blood was collected from HCs and mCRPC patients in SST™ II Advance Vacutainer® (serum; 

BD, Franklin Lakes, NJ, USA), Vacutainer® Barricor™ (BD) and CellSave Preservative (Menarini 

Sillicon Biosystems Inc, Huntington Valley, PA, USA) blood collection tubes. All HC samples were 

processed within 6 hours after blood collection, and all mCRPC patient samples within two days. 

All tubes were centrifuged at 1,711g for 10 minutes at room temperature. Plasma from CS tubes 

was subsequently centrifuged at 12,000g for 10 minutes at 4°C. Samples were stored at -80°C 

until extraction. 

Steroid extraction

Calibration series (0.25 ng/mL – 500 ng/mL for HC, and 0.01 ng/mL – 500 ng/mL for mCRPC) 

were prepared in phosphate buffered saline (PBS) with 0.1% bovine serum albumin (BSA) or in 

charcoal-stripped pooled human serum (Goldenwest Diagnostics, Temecula, CA, USA). Steroids 

investigated were 17-hydroxyprogesterone, androstenedione, cortisol, cortisone, corticosterone, 

dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT) and testosterone. The stripped-

serum calibration series was used to quantify all steroids with the exception of androstenedione, 

due to a high background signal in stripped serum but not in PBS-BSA. An internal standard 

solution was prepared in methanol/water 50/50 with equal concentrations (1 μg/mL) of the 

Introduction

Prostate cancer (PC) is a steroid hormone dependent disease where androgens play a pivotal role 

in the evolution of the disease. Targeting the androgen receptor (AR) signalling pathway through 

androgen deprivation therapy (ADT) in locally advanced and metastatic PC is a highly effective 

way to inhibit tumor growth1. However, tumor cells will eventually become resistant to these 

low androgen concentrations and show disease progression. Resistance mechanisms include AR 

modifications, like mutations and overexpression2,3, and changes in androgen biosynthesis and 

metabolism, thereby increasing intratumoral androgen availability4-6. The continued importance 

of the AR signalling pathway in castration-resistant prostate cancer (CRPC) is underlined by the 

survival benefits observed with second-line therapies such as the anti-androgen enzalutamide 

and adrenal steroidogenesis inhibitor abiraterone7-10. Circulating steroid levels are measured to 

verify efficacy of hormonal treatment and have a prognostic value in patients with PC11-13.

The assessment of circulating steroid hormones relies heavily on sensitive, specific and accurate 

measurement techniques, especially at castrate levels. Liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) combines multi-steroid profiling capabilities with superior sensitivity 

and specificity14,15 over older techniques16,17, while maintaining high sample throughput18,19. 

Multi-steroid assays for LC-MS/MS have been successfully developed in recent years to 

improve the detection and diagnosis of disorders associated with abnormal steroid hormones 

concentrations20-23. 

Steroid measurements are predominantly performed in serum samples. Previous LC-MS/MS 

studies have shown that steroids can be quantified reliably across different blood matrices24-26, 

but there are differences observed between plasma and serum, use of glass or plastic tubes in the 

analytic process, or when using tubes with different stabilizing agents or with gel-separators for 

blood collection24-29. Consequently, alternative collection tubes and extraction methods must be 

validated before they can reliably be used for steroid profiling. 

The use of CellSave Preservative (CS) tubes in population- and patient-based cohorts has 

grown as this specialized ‘cell-stabilizing’ blood collection tube preserves both circulating tumor 

cells (CTCs) and cell-free circulating tumor DNA (ctDNA)30,31. These biomarkers allow for the 

assessment of tumor cell genomic characteristics such as genomic instability in these patients32. 

These samples are now extensively collected in (cancer) biobanks and could potentially also be 

used to measure patient steroid profiles. 

Mechanical blood separation methods are similarly gaining popularity in clinical chemistry due 

to their easy applicability compared to the use of a separation gel. The BD Vacutainer® Barricor™ 

is a mechanically-separated plasma (MSP) tube, and it has shown no obvious bias in steroid 

hormone measurements versus a gel-based plasma tube in a single study33, but this was confined 

to a select number of five steroids, warranting further investigation.

In this study, we aimed to determine if plasma obtained with MSP and CS tubes is suitable for 

multiplex steroid profiling, which, if confirmed, would streamline biomaterial collection for ctDNA 
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& Pearson’s test. Comparisons of steroid hormone concentrations between the blood collection 

tubes were performed with Bland-Altman difference analysis and repeat measurements 1-way 

ANOVA with post hoc Dunnett’s test. Correlations in hormone levels were determined by Deming 

regression. Group concentrations and differences are shown as mean ± SD, unless specified 

otherwise. P values were considered significant if < 0.05. 

Results

Comparison of blood collection tubes

Analysis of the Cerilliant analytical reference samples showed quantification bias of less than 5% 

of the nominal concentration for the four steroids included, and accuracy in the spiked samples 

was > 90% (Figure S4). Baseline characteristics of the study participants are shown in Table 1. 

Circulating steroid levels of 8 steroids were determined by LC-MS/MS in plasma collected with 

CS and MSP tubes, respectively, and serum, all collected from 10 HCs and 10 mCRPC patients.  

Concentration ranges and deviation in CS and MSP tubes are reported in Table 2. Representative 

chromatograms of the different sample tubes are shown in Figure S5. Serum values below the 

LLOQ were detected for DHEA (HC: n = 1, mCRPC: n = 4) 17-hydroxyprogesterone (mCRPC: n 

= 2) and testosterone (mCRPC: n = 2) and excluded from further analysis. Low signal-to-noise 

ratios limited the reliability of DHT quantification, which could not be accurately quantified in two 

healthy control subjects as well as the mCRPC subjects.

Table 1. Characteristics of HCs and mCRPC patients

 HCs mCRPC patients

N 10 10

Age (median (range)) 32 (25 - 56) 64 (59 - 76)

Androgen deprivation therapy (n)  10

Leuproreline  4

Gosereline  4

Bilateral orchiectomy  2

Current second-line treatment (n)  6

Enzalutamide  3

Apalutamide  1

Abiraterone + Prednisone  1

Prednisone  1

HCs, healthy controls
mCRPC, metastatic castration-resistant prostate cancer

following deuterated steroids: 17-hydroxyprogesterone-d8, cortisol-d4, corticosterone-d8, 

DHEA-d6, DHT-d3, testosterone-d3. All steroids were obtained from Sigma Aldrich, UK.

400 µL of sample was transferred to hexamethyldisilazane-treated (Thermo Fisher) glass tubes 

(VWR, Amsterdam, The Netherlands). 20 µL of the internal standard solution was added and 

all samples were thoroughly vortexed. Liquid-liquid extraction was performed as previously 

described34 by adding 2 mL methyl-tert butyl ether (MTBE, Sigma Aldrich, Zwijndrecht, The 

Netherlands) to each tube and vortexing. The samples were left at room temperature for 30 

minutes to allow phase separation. The upper organic layer was transferred and the MTBE was 

evaporated under nitrogen at 50°C. The samples underwent a second liquid-liquid extraction with 

2 mL MTBE. Samples were reconstituted in 125 µL LC-MS grade 50% methanol (CHROMASOLV, 

Sigma Aldrich, Zwijndrecht, The Netherlands) before measurement.

Steroid analysis by tandem mass spectrometry

Steroid concentrations were measured by mass spectrometry (Xevo TQ-XS, Waters, Milford, MA, 

USA) after injection of 20 µL sample volume and separation on an ACQUITY uPLC (Waters) with a 

Waters HSS T3 column (2.1 mm x 50 mm, 1.8 μm, Waters). The mobile phases consisted of water 

(A) and methanol (B) both with 0.1% formic acid and a 5-minute linear gradient was used (45-75% 

B) with a flow rate of 0.6 mL/min. The quantification of androgens35 and glucocorticoids36 in serum 

was previously reported, and multiple reaction monitoring settings were reported by Quanson et 

al.37 and Jühlen et al.38. The current method represents an optimisation of these methods as 

steroid transitions were re-tuned for optimum response. The updated reaction settings, retention 

times and lower limits of quantification (LLOQ) can be found in Table S1. A chromatographic 

separation of the eight steroids in methanol/water can be found in Figure S1, chromatograms of 

the LLOQ can be found in Figure S2 and chromatograms of the internal standards and associated 

analyte channels, showing no interference, can be found in Figure S3.

Steroids were quantified against the linear calibration series relative to an internal standard and 

were only included in the final analysis if the calibration series R2 was > 0.99 and appropriate lower 

limits of quantification were reached. The LLOQ was set to the lowest calibration concentration 

that had a clearly defined peak and a signal-to-noise ratio > 10. Samples with concentrations 

below the LLOQ were detectable, but quantification was less accurate. Accuracy of the method 

was verified in a separate measurement by quantification of Cerilliant analytical reference 

standards (Sigma) containing 17-hydroxyprogesterone, cortisol corticosterone and testosterone. 

Additionally, samples consisting of PBS-BSA or stripped serum spiked with corticosterone, cortisol, 

cortisone, testosterone and DHT (0.03, 0.3, 3 and 30 ng/mL) and ran on three separate days were 

used to calculate accuracy and precision. 

Statistical analysis

LC-MS/MS raw data was processed using MassLynx (v4.1, Waters). Statistical analysis was 

performed using GraphPad Prism (Version 6). Normality of the data was analysed with a D’Agostino 
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Figure 1. CS and MSP samples compared to serum samples in healthy controls and mCRPC patients
Steroid concentrations from serum, CS and MSP samples obtained from ten HCs and ten mCRPC patients 
measured by LC-MS/MS. Bland-Altman plots show the relative difference of CS (black) and MSP (gray) 
measurements compared to serum. Continuous lines show the mean difference and dotted lines show the 
upper- and lower limits of the 95% confidence interval. 
Abbreviations: CS – CellSave Preservative, DHEA – dehydroepiandrosterone, HC – healthy control, mCRPC – 
metastatic castration-resistant prostate cancer, MSP – mechanically seperated plasma

Similar steroid concentrations between HC and mCRPC subjects were observed for corticosterone, 

cortisol and cortisone (Figure 2). Lower concentrations were observed for 17-hydroxyprogesterone, 

androstenedione, DHEA and testosterone in mCRPC subjects. This was likely due to a combination 

of castration (testosterone) and age-related effects, as the mCRPC subjects were older than the 

HC subjects.

Circulating androgen concentration in mCRPC patients are > 10-fold lower than in healthy 

men due to ADT, requiring highly sensitive techniques to accurately measure residual androgens. 

Therefore, the calibration series was expanded to include lower concentrations (0.01 – 0.25 

ng/mL) to allow quantification of castrate testosterone levels. Accurate quantification at low 

concentration was achieved, with an analytic LLOQ for testosterone of 0.1 nmol/L. Similar to 

the other steroids, lower testosterone concentrations compared to serum were detected in CS 

samples, but not in MSP samples, at normal HC concentrations (-11.5% ± 2.8%, P < 0.001) and at 

castrate concentrations (-16.9% ± 24.3%, P < 0.05) (Figure 1). Low signal-to-noise ratios limited 

the reliability of DHT quantification which could not be accurately quantified in the mCRPC 

subjects with our assay. 

Table 2. Relative differences in CS and MSP samples compared to serum samples
Relative differences are shown as mean ± SD. Statistical comparison was performed by repeated measurement 
1-way ANOVA with post hoc Dunnett’s Test. *P < 0.05, ** P < 0.01, ***P < 0.001.
Serum values below the LLOQ were detected for 17-hydroxyprogesterone (mCRPC: n = 2), cortisone (mCRPC: 
n = 1), DHEA (HC: n = 1, mCRPC: n = 4), DHT (HC: n = 2, mCRPC: n = 10) and testosterone (mCRPC: n = 2). 
Additional measurements below the LLOQ were detected in CS samples for DHEA (CRPC: n = 1) and DHT (HC: 
n = 1) and in MSP samples for DHT (n = 1).

Healthy controls
(n = 10)

mCRPC
(n = 10)

Serum
Range
nmol/L

CS
Rel. Difference
mean (SD) %

MSP
Rel. Difference
mean (SD) %

Serum
Range
nmol/L

CS
Rel. Difference
mean (SD) %

MSP
Rel. Difference
mean (SD) %

Corticosterone 2.32 - 32.71 -20.08 (16.6) ** 2.6 (11) 0.55 - 25.34 -12.3 (13.3) * -2.8 (9.8)

17-hydroxyprogesterone 0.37 - 3.75 -14.4 (15.3) * 3.16 (16.26) 0.1 - 1.75 -3.2(24.1) -2.2 (9.4)

Cortisol 149.1 - 475.7 -13.7 (6.1) *** -0.14 (3.5) 7.43 - 504.6 -12.7 (17.9) ** -1.3 (16.1)

Cortisone 36.35 - 79.4 -10.8 (6.3) *** -2 (9.2) 0.1 - 80.81 -17.9 (17.2) ** -1.5 (10.5)

DHEA <LOQ – 36.14 -0.17 (18.8) 28.7 (46.6)* <LOQ – 1.7 -17.7 (16.5) 6.0 (12.2)

Androstenedione 2.33 - 6.05 -15.85 (13.5) ** 6.9 (9.5) 0.48 - 3.19 - 21.2 (14.01) ** 6.34 (10.4)

Testosterone 7.47 - 17.74 -11.48 (2.8) *** 0.82 (4.7) 0.13 - 0.78 -16.9 (24.3) * -2.8 (30.6)

DHT <LOQ - 1.64 -11.26 (29.2) -3.5 (30.4) <LOQ <LOQ <LOQ

CS, CellSave Preservative
DHEA, dehydroepiandrosterone
DHT, 5α-dihydrotestosterone
HC, healthy control
mCRPC, metastatic castration-resistant prostate cancer
MSP, mechanically separated plasma

The values observed in MSP samples were comparable to those found in serum samples for most 

steroids. The only exception was DHEA, which was higher (21.3% ± 32.9%, P < 0.05) in MSP samples 

than in serum (Figure 1). In CS samples, significantly lower concentrations compared to serum 

samples were observed for corticosterone (-16.2% ± 15.2%, P < 0.001), 17-hydroxyprogesterone 

(-9.4% ± 19.9%, P < 0.05), cortisol (-13.2% ± 13.0%, P < 0.001), cortisone (-14.4% ± 13.1%, P < 

0.001), and androstenedione (-18.4% ± 13.6%, P < 0.001). No significant differences were found 

for DHEA compared to serum. 
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Figure 3. Correlations between CS samples and MSP samples with serum samples
Deming regression analysis between measurements from serum and CS samples and between serum and 
MSP samples in HC and mCRPC patients combined. Corticosterone, DHEA and testosterone values did not pass 
normality testing (D’Agostino and Pearson), but did so after logarithmic transformation. Regression equations 
for testosterone are presented separately for HCs and mCRPC patients due to the bimodal distribution 
resulting from ADT. For DHT, only HC values were used as values in CRPC patients were below the LLOQ. 
Abbreviations: ADT – androgen deprivation therapy, CS – CellSave Preservative, DHEA – 
dehydroepiandrosterone, DHT – dihydrotestosterone, HC – healthy control, LLOQ – lower limit of 
quantification, mCRPC – metastatic castration-resistant prostate cancer, MSP – mechanically separated 
plasma

Figure 2. Circulating steroid concentrations in serum of HCs and mCRPC subjects
Steroid hormone concentrations in healthy controls (n = 10) and mCRPC patients (n = 10). Four patients 
received no additional treatment, four received antiandrogens (enzalutamide (n = 3) or apalutamide (n = 
1)), one received abiraterone and prednisone and one received prednisone. Line and error represent mean 
± SEMs. 
Abbreviations: DHEA – dehydroepiandrosterone, mCRPC – metastatic castration-resistant prostate cancer, 
HC – Healthy control

Correlation of steroid measurements between matrices

The correlations between results obtained in MSP and CS samples compared to those results 

obtained in serum were independently determined by Deming regression (Figure 3). For DHT 

analysis only HC samples were included. Corticosterone, DHEA and testosterone were normally 

distributed after log-transformation. Significant correlations (all P < 0.001) between both matrices 

and serum was observed for 17-hydroxyprogesterone, androstenedione, corticosterone, cortisol, 

cortisone, DHEA and testosterone. The analysis also revealed a poor correlation for DHT between 

CS and serum (R2 = 0.60) and between MSP and serum (R2 = 0.45), whereas steroid concentrations 

measured in MSP and CS samples, respectively, correlated more closely (R2 = 0.89, y = 0.89x + 

0.15) (data not shown). 
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these steroids would further add to the complexity of the analysis and decrease throughput, 

as additional time-consuming enzymatic digestion and purification steps would be necessary to 

obtain the deconjugated steroids.    

Matrix effects and cross-reactivity are established sources of interference in steroid hormone 

profile studies with immunoassay and LC-MS/MS24-29. Previous studies have identified the type of 

blood sample tube as a potential source of interference. MSP tubes like BD Vacutainer® Barricor™ 

utilise mechanical separation of plasma, which makes them easily applicable, but the accuracy 

of steroid hormone measurements in these tubes has not been fully validated yet. Our study 

shows that multiplex steroid quantification in MSP samples is comparable to the serum collected 

with the reference tube, in line with a previous study that detected no bias versus gel-based 

plasma tubes using an immunoassay platform33. The only significant difference between steroid 

measurements in MSP and serum related to DHEA. While Fournier et al.33 reported comparable 

DHEA concentrations between MSP and plasma tubes, it is possible than minor differences in 

deconjugation compared to serum could affect DHEA concentrations. Quantification of DHEA at 

low concentrations with LC-MS/MS remains a challenge as its structure contributes to poor MS 

ionisation22,41. This challenge could be overcome by using a more sensitive mass spectrometer or 

with the use of derivatization. Prior to using MSP tubes for clinical studies, however, full validation 

considering accuracy, precision and recovery with larger sample size is recommended.

CS tubes are optimized for the measurement of circulating nucleic acids or tumor cells30,31. The 

use of this matrix for liquid biopsies has increased exponentially over the last years due to the 

successful genomic characterization of CTCs or free circulating nucleic acids, but no studies have 

investigated if plasma from CS tubes are suitable for quantification of circulating steroid hormone 

levels. Our experiments indicate that steroid measurements in CS samples are affected by a mild 

bias, which resulted in an approximate 8-21% decrease compared to serum. We observed similar 

effects in both HCs and mCRPC subjects. CS tubes contain 300 µL of Na2EDTA anticoagulant as well 

as an undisclosed preservative to stabilise cells in the sample. Due to the presence of the Na2EDTA 

there may be an inherent dilution of the sample, which amounts to approximately 3-4% on a 

7.5-10 mL volume. This dilution factor is insufficient to account for the difference in circulating 

steroid hormone levels however, and it is possible that other factors also contribute towards the 

observed difference. Sample processing time is another potential factor that may affect steroid 

quantification. While the CS user manual indicates that samples may be stored for up to 96 hours 

for genomic analysis, the concentration of certain steroids, such as androstenedione, may not 

remain stable over longer storage periods25.

This decrease was observed across a variety of different polarity steroids with different 

molecular weights. It is therefore unlikely that the preservative co-elutes with one of the steroids 

and suppresses the MS signal. Either there is an unidentified contaminant in the tubes which 

affects all steroids or the steroids themselves are being retained/bound to the tube itself. Steroids 

have been long recognised to bind to plastics42, which may contribute to the lower values in the 

CS samples.

Discussion

In this study, we investigated whether MSP- or CS-derived plasma, samples that are abundantly 

present in biobanks obtained from PC patients, are suitable for multiplex steroid profiling by LC-

MS/MS. We compared them to the current standard collection method using serum samples 

collected with SST™ II Advance Vacutainers®. We showed that measurements in MSP are equal 

to serum. When collecting plasma in CS tubes, steroid concentrations were 8-21% lower than 

measurements using serum or MSP. The Guideline on Bioanalytical Method Validation (2011) 

of the European Medicines Agency advises that accuracy must be within 15% of the nominal 

concentration and within 20% at the LLOQ39. The decreases observed for most steroids in CS 

plasma, using serum as a reference, were within this acceptable range (Table 2). Therefore, we 

conclude that CS plasma samples are suitable for steroid profiling, which can be combined with 

analysis of CTCs or ctDNA. However, caution is advised when interpreting results obtained in CS 

plasma samples against reference values that were obtained in serum, and direct comparison 

to samples collected in other tubes should be avoided. Nevertheless, these findings may reduce 

patient burden and open up the possibility to undertake detailed steroid profiling of large 

collections of biomaterial already collected for ctDNA analysis. 

In this study, most steroids could be quantified accurately within the range of the calibration 

series. Most of the Δ4-steroids, such as cortisol or testosterone, ionise more easily and so can 

be accurately quantified at low levels (0.03 – 0.15 nM). This allows for the quantification of 

testosterone in mCRPC patients (typically < 0.5 nM)11. Δ5-steroids such as DHEA and saturated 

steroids such as DHT are poor ionisers and quantification at lower concentrations is beyond the 

sensitivity of the mass spectrometer22. Like testosterone, DHT levels are suppressed in castrated 

patients and the concentrations in these patients could not be accurately assessed. DHEA levels 

in men decline with age40, and the mCRPC subjects in this study were older than the HC subjects. 

Consequently, values below the LLOQ were detected in four mCRPC patients and were excluded 

from the analysis. DHEA has been quantified in smaller serum volume (≤ 100 µL) to reduce ion 

suppression, but that would decrease sensitivity for other steroids, such as testosterone or DHT, 

which carried greater significance in our analysis. Alternatively, derivatization, for example to 

form an oxime, increases ionisability, and therefore sensitivity allowing low level quantification 

of Δ5- and 5α-reduced steroids22. However, the derivatization method is not suited for routine 

clinical diagnostic measurements due to increased sample preparation time and cost. In addition 

to this, fragmentation produces multiple derivatives for some steroids adding to the complexity 

of the analysis.

Conjugated steroids, such as DHEA-sulphate (DHEA-S) or androsterone-glucuronide were not 

included in the method. While DHEA-S is the most abundant steroid in the circulation, it can 

only be converted into active androgens after deconjugation into DHEA. Conjugated steroids 

downstream of testosterone and DHT are rapidly excreted with the urine, and quantification in 

serum may be less reliable compared to quantification in urine. Additionally, measurement of 
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Currently, CS tubes are most commonly utilized in oncological studies to obtain CTCs and 
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typically lower testosterone levels by > 90%11. Interpretation of such changes is unlikely to be 

affected by the difference observed in CS samples. Especially within the context of a single study 

the relative difference should affect all samples identically as long as a single collection tube is 

used. As such, the observed difference is acceptable for most clinical purposes, including the use 

of CS samples for steroid profiling in PC patients. Combined investigation of steroid profiles and 

analysis of CTCs or ctDNA will decrease costs and reduce patient burden. 

In conclusion, MSP samples are suitable for steroid quantification, including castrate range 

of androgens. Similarly, CS samples are suitable for steroid measurements, although there is a 

consistent bias of 8-21% lower steroid hormone levels. Therefore, all samples in a research study 

should be collected in the same sample tubes to avoid potential variation due to effects from the 

tubes themselves.
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Figure S2. Chromatograms generated from a single mass transition for each steroid at the limit of 
quantification 
Steroid chromatograms obtained at the lower limits of quantification (LLOQ) in spiked stripped serum. Arrows 
indicate the corresponding peak, and signal intensity is noted.

Figure S3. Chromatograms for internal standards (right) and corresponding chromatograms for their 
associated steroid (left) showing no significant cross-reactivity

Supplementary information

Figure S1. Chromatograph of steroids
Chromatographic separation of 8 steroids in methanol/water. (1) cortisone, (2) cortisol, (3) corticosterone, 
(4) androstenedione, (5) testosterone, (6) DHEA, (7) 17-hydroxyprogesterone and (8) DHT. Top chromatogram 
shows separation with normalized intensity, bottom graph with actual response, note in lower chromatogram 
DHEA signal is indistinguishable from 17-hydroxyprogesterone due to poor ionization.



219

Chapter 7

Validation of circulating steroid hormone measurements across different matrices 

by liquid chromatography-tandem mass spectrometry

218

Part 3

Steroidomics

Figure S4. Accuracy and precision 
Quantification of eight analytical reference samples revealed accuracy of > 95% for the steroids present in 
the samples, shown below. The dashed lines indicate the mean deviation from the nominal concentration. 
Analysis of spiked control samples revealed that an accuracy of ≥ 90% was achieved for T and cortisone at all 
concentrations, and ≥ 90% for cortisol, corticosterone and DHT at 0.3, 3 and 30 ng/mL. Inter-assay precision 
was calculated based on 4-6 biological replicates ran on three separate days, and the residual standard 
deviation was < 10% for all five steroids.

Figure S5. Chromatograms in serum, CS and MSP sample
Chromatograms of steroid quantification in serum, CellSave Preservative (CS) and mechanically-separated 
plasma (MSP) samples obtained from a healthy control subject. Mass transitions are overlaid with an offset of 
10%. Largest peak in each chromatogram is normalised to 100%. Steroid elution order (left to right) cortisone, 
cortisol, corticosterone, androstenedione, testosterone, DHEA, 17OHP and DHT.

Table S1. Overview of mass transitions and retention times of measured steroids

Steroid Mass transition Retention time LOQ

17-hydroxyprogesterone 331.1 > 96.9 2.62 0.30

17-hydroxyprogesterone-d8 339.1 > 100.0 2.57 -

Androstenedione 287.1 > 96.9 2.13 0.35

Corticosterone 347.1 > 121.0 1.65 0.29

Corticosterone-d8 355.1 > 124.9 1.62 -

Cortisol 363.1 > 90.9 1.18 0.14

Cortisol-d4 367.2 > 121.1 1.18 -

Cortisone 361.0 > 121.0 1.03 0.14

DHEA 289.2 > 213.1 2.57 0.86

DHEA-d6 277.2 > 219.1 2.53 -

DHT 291.1 > 159.1 3.04 0.86

DHT-d3 294.1 > 259.1 3.00 -

Testosterone 289.1 > 96.9 2.38 0.10

Testosterone-d3 292.1 > 96.9 2.35 -
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Patient summary

11KT is the most abundant circulating androgen in CRPC patients, and androgen measurements 

should be extended to include 11KT.

Abbreviations

General

ADT  Androgen deprivation therapy

ANOVA  Analysis of variance 

AR  Androgen receptor 

CRPC  Castration-resistant prostate cancer 

eGC  Exogenous glucocorticoids 

HPA  Hypothalamus-pituitary-adrenal 

IQR  Interquartile range 

LC-MS/MS Liquid chromatography-tandem mass spectrometry 

LOQ  Limit of quantification 

OT  On treatment 

PC  Prostate cancer 

PD  Progressive disease 

PFS  Progression-free survival 

TA  Total androgens 

WGS  Whole-genome sequencing

Steroids

11KA4  11-ketoandrostenedione 

11KT  11-ketotestosterone 
11OHA4  11β-hydroxyandrostenedione 

11OHT  11β-hydroxytestosterone 

DHT  Dihydrotestosterone 

T  Testosterone

Abstract

Background

Androgen receptor (AR) signaling plays an important role in metastatic castration-resistant 

prostate cancer (CRPC). Studies have identified adrenal-derived 11-ketotestosterone (11KT) as a 

potent AR agonist, but it is unknown if 11KT is present at physiologically relevant concentrations 

in CRPC patients.

Objective

To investigate the steroid hormone profiles of CRPC patients at baseline, during treatment and 

after clinical progression.

Design, setting, and participants

Twenty-nine metastatic CRPC patients who intended to start a new line of systemic therapy were 

included. Plasma samples were obtained at baseline, during treatment and after progression. 

Metastatic tumor biopsy samples were obtained at baseline. 

Interventions

Treatment with enzalutamide, apalutamide, docetaxel with prednisone or cabazitaxel with 

prednisone.

Measurements

Circulating steroid concentrations were determined by multi-steroid profiling liquid chromatograph 

tandem mass spectrometry (LC-MS/MS). Next-generation sequencing and RNA-sequencing were 

performed on metastatic tumor biopsy samples.

Results and limitations

11KT was the most abundant circulating androgen in CRPC patients (median 0.39 nmol/L, range: 

0.03–2.39 nmol/L), constituting 66% (IQR 54-80%) of the total androgen (TA) pool. Treatment 

with glucocorticoids reduced 11KT by 84% (49-89%), testosterone by 68% (38-79%) and 11KT 

precursors steroids by 66-92%. Circulating TA concentrations at baseline were associated with 

progression-free survival and with differential expression of genes within the tumors, which 

included AR-regulated genes. The small sample size of this study is a limitation.

Conclusions

This study has identified 11KT, a potent AR agonist, as the major circulating androgen in CRPC 

patients, and therefore as one of the potential drivers of AR activation in CRPC. Assessment 

of androgen status should be extended to include 11KT, as current clinical approaches likely 

underestimate androgen abundance in CRPC patients.  
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study (NCT01855477) was required to obtain a tumor biopsy before start of therapy. All patients 

provided written informed consent before any study procedure; this involved blood collection at 

baseline, on treatment (OT), at progressive disease (PD), and collection of clinical data. Blood was 

collected in three CellSave preservative tubes (Menarini Sillicon Biosystems Inc, Huntington Valley, 

PA, USA) every three to four weeks. Plasma was isolated and stored as previously described23,24.

Measurement of circulating steroids

The extraction and quantification of steroids was previously described24-28. Briefly, steroids were 

extracted from 400 µL plasma by liquid-liquid extraction. Multi-steroid profiling was performed 

by liquid-chromatography tandem mass spectrometry (LC-MS/MS; Xevo TQ-XS, Waters, Milford, 

MA, USA) after separation on an ACQUITY UPLC (Waters) with UPLC HSS T3 column (21 mm x 50 

mm, 1.8 μm, Waters). A representative chromatogram is shown in Figure S1 and an overview of 

included steroids, their mass transitions, internal standards and limits of quantification (LOQ) 

can be found in Table S1. The Supplementary Materials and Methods section contains additional 

information regarding extraction, accuracy, precision and values below LOQ.

Whole-genome sequencing and RNA sequencing

As part of the CPCT-02 study (NCT01855477), whole-genome sequencing (WGS) was performed 

by the Hartwig Medical foundation on 180 metastatic CRPC biopsy samples obtained at baseline 

and matched blood samples (WGS only) as previously described29. Briefly, paired-end (2x 150 bp) 

sequencing of DNA-libraries on the HiSeq X Ten Illumina system (Illumina, San Diego, California, 

USA) was performed for WGS. Further processing of the data is detailed in the Supplementary 

Materials and Methods. 

RNA-sequencing was performed according to the manufacturer protocols using a minimum 

of 100 ng total RNA input. Total RNA was extracted using the Qiagen QIAsymphony kit (Qiagen, 

FRITSCH GmbH, Idar-Oberstein, Germany). Paired-end sequencing of (m)RNA was performed on 

the Illumina NextSeq 550 platform (2x 75 bp; Illumina) and NovaSeq 6000 platform (2x 150 bp; 

Illumina). Downstream data processing and analysis is detailed in the Supplementary Materials 

and Methods. Briefly, CRPC tumor biopsies from the entire CPCT-02 study (n = 180) were used 

to identify biopsy-site specific genes. Subsequently, an untargeted approach was used to analyze 

gene expression across TA concentrations in biopsy samples of patients included in this study 

only (n = 15), excluding biopsy-site related genes. Genomic alterations and expression of steroid 

hormone receptors and genes involved in steroid metabolism was assessed using a targeted 

approach30. 

Statistical analysis

Masslynx (v4.1, Waters) was used to process LC-MS/MS data. Statistical analyses were performed 

with Graphpad Prism (version 6.01, La Jolla, California, USA), SPSS (version 26, IBM Corp., Armonk, 

New York, USA) and R (version 3.6.1, Vienna, Austria). Logarithmic transformation was applied 

Introduction

Targeting the androgen receptor (AR) pathway through androgen deprivation therapy (ADT) is the 

mainstay of treatment in metastatic prostate cancer (PC)1. Eventually, most tumors will evolve from 

hormone-sensitive to castration-resistant prostate cancer (CRPC) and show progression despite 

suppressed testosterone (T) levels. The continued importance of the AR pathway in tumor growth 

and progression has been underlined by the efficacy of novel drugs targeting the AR pathway2-5. 

AR upregulation6, increased intratumoral conversion of adrenal androgen precursors7-9, non-

canonical dihydrotestosterone (DHT) synthesis10, and downregulation of androgen inactivating 

enzymes11,12 may all contribute to AR pathway reactivation.

In recent years, novel androgenic steroids have been identified with significant AR activation 

potential13. The adrenal-derived steroid 11-ketotestosterone (11KT) is of particular interest, 

as it activates the AR at concentrations comparable to T and DHT13,14,15. In healthy adult men, 

circulating T concentrations exceed those of 11KT16. Of note, while T decreases with ageing in 

men, 11KT increases17. During ADT, gonadal steroidogenesis is inhibited and T concentrations are 

typically below 0.5 nmol/L18, which is lower than 11KT concentrations in healthy men (0.77±0.16 

nmol/L)16. 

We hypothesized that due to their adrenal origin, 11KT may persist after castration and may 

therefore exceed the residual concentrations of T and DHT in CRPC patients. Androgen abundance 

after castration is associated with outcome and predicts response to AR pathway inhibition19,20. 

Thus, persistence of a previously overlooked, potent androgen class would be of major clinical 

significance in CRPC patients.

In this study, we assessed the plasma steroid profile of 29 patients before, during and after 

treatment with second-line therapies for CRPC. We report the abundance of circulating active 

androgens in these patients as well as the effects imposed on the steroid metabolome by 

treatment with exogenous glucocorticoids (eGC). Finally, we show that 11-oxygenated androgen 

levels may have a potential prognostic value in CRPC, linked to differential gene expression in 

tumor biopsies.

Materials and Methods

Patients and samples

From April 2016 onwards, metastatic CRPC patients who continued ADT and intended to start a 

new line of systemic therapy were included in the CIRCUS study (Netherlands Trial Registry ID: 

NL5625), which was approved by the medical ethics board of the Erasmus Medical Center (MEC-

2016-081). Metastatic disease and progression were defined according to the PCWG2 and/or 

RECIST 1.1 criteria21,22. The treatments included in this study were antiandrogens, docetaxel with 

prednisone or cabazitaxel with prednisone (Figure 1). Concurrent participation in the CPCT-02 
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Table 1. Patient characteristics, disease history and treatment history

N % Median
Range
(min-max) IQR

Age at registration CIRCUS 29 67 48-81 62.0-75.0

WHO at registration CIRCUS 29 1 0-1 0-1

Testosterone level (nmol/L) 29 0.12 0.02 – 0.64 0.05 – 0.2

Prior ADT

Drug-based 26 89.7

Surgery-based (orchiectomy) 3 10.3

With upfront docetaxel 5 17.2

Prior systemic therapy (other than ADT)

0 3 10.3

1 5 17.2

2 16 55.2

3 4 13.8

4 1 3.4

Type of prior systemic therapy (other than ADT)

Hormonal therapy only 3 10.3

Chemotherapy only 7 24.1

Immunotherapy only 1 3.4

Hormonal and chemotherapy 12 41.4

Chemotherapy and radionuclide therapy 1 3.4

Hormonal, radionuclide and chemotherapy 1 3.4

Hormonal, radionuclide and other therapy 1 3.4

PSA at baseline (µg/L)* 34 75 1.5-913 19.3-173.3

PSA at progression (µg/L)* 34 123.5 5-1286 30.8-280.8

* For some patients with multiple treatments progression and subsequent baseline sample was identical
ADT, androgen deprivation therapy
IQR,interquartile range
PSA, prostate specific antigen

Androgen abundance

The circulating androgen concentrations in CRPC patients were determined in samples obtained 

before the start of the first treatment after enrollment (n = 29). The median concentration of 

11KT (0.33 nmol/L, range 0.03-2.39 nmol/L) was significantly higher than T (0.12 nmol/L; range 

0.03-0.64 nmol/L, P < 0.001) in CRPC patients at baseline (Figure 2A). 11KT constituted 66% (43-

79%) of the TA pool whereas T was 24% (15-32%) (Figure 2B). Although T was below the castrate 

cutoff (1.74 nmol/L, 50 ng/mL) in all baseline samples (n = 34), the TA concentration (0.59 nmol/L, 

if obtained steroid concentrations did not pass D’Agostino and Pearson’s test for normality. 

We performed one-way ANOVA with post hoc Dunnett test to compare circulating androgen 

concentrations. Wilcoxon’s signed-rank test was performed to assess the effects of treatment. 

Mann-Whitney tests were used to compare the difference between eGC treated and untreated 

patients after 12 weeks of treatment. Linear models were used to assess how the individual 

androgens were associated with TA. The associations between progression-free survival (PFS) and 

TA were investigated at baseline and during treatment. Group steroid concentrations and changes 

were reported as median with interquartile ranges (IQR), unless stated otherwise.

Results

Patients

Samples used in this study were obtained between May 2016 and July 2018 from patients with 

metastatic CRPC who were scheduled to start a new line of treatment. In total, 29 patients who 

completed 34 treatments were included in our analysis (Figure 1); five patients completed two 

treatments during their enrollment. Patient characteristics, disease and treatment history are 

shown in Table 1. For five patients with early progression (PFS: 22–82 days) no separate OT 

sample was available. These subjects were included in the comparison between baseline and OT 

samples, but not between OT and PD samples. 

Figure 1. Patient and sample selection
Selection and exclusion of CIRCUS study samples for multi-steroid profiling, glucocorticoid quantification, 
survival analysis and tumor biopsy analysis.  
Abbreviations: LC-MS/MS – liquid-chromatography tandem mass spectrometry, OT – on treatment, PD – 
progressive disease



228 229

Part 3

Steroidomics

Chapter 8

11-Ketotestosterone is the predominant androgen in castration-resistant

prostate cancer patients

Effects of treatment

Subjects included in this study started treatment with antiandrogens (n = 10), docetaxel with 

prednisone (n = 10) or cabazitaxel with prednisone (n = 14). Steroid hormone concentrations at 

baseline stratified for the different treatments are shown in Figure S2A-D. Significant suppression 

of adrenal-derived steroids was observed after 12 weeks of cabazitaxel with prednisone 

treatment. In the docetaxel group, a similar suppression was observed in a subset of patients, but 

this did not reach significance. In the antiandrogen group, increased steroid concentrations were 

observed after 12 weeks of treatment. 

Low baseline cortisol concentrations were detected in a subset of patients, suggestive 

of hypothalamus-pituitary-adrenal (HPA) axis suppression by eGC. Post hoc exogenous 

glucocorticoids quantification by LC-MS/MS was performed to detect prednisone, prednisolone 

and dexamethasone in all samples (Figure S3A−C). Samples were classified as eGC+ if prednisolone 

(≥ 20.7 ng/mL) and/or dexamethasone (≥ 16.1 ng/mL) were detected. Cortisol was suppressed (< 

140 nmol/L) in all eGC+ baseline samples. (Figure S3D). 

A significant reduction in circulating glucocorticoid, T and 11KT concentrations was observed 

in patients starting treatment with eGC (Figure 3A). Circulating T (Figure 3B) and 11KT (Figure 

3C) concentrations were lowered by 68% (38-79%) and 84% (49-89%), respectively, in patients 

starting eGC. Decreases of similar magnitude were observed for 11β-hydroxyandrostenedione 

(11OHA4), 11β-hydroxytestosterone (11OHT) and 11-ketoandrostenedione (11KA4, medians 

66-92%; Figure 3A). In a subset of eGC+ patients, glucocorticoid treatment was withdrawn. The 

group size was insufficient to detect a statistical difference between baseline and treatment 

(n = 5, Figure 3D). Compared to patients who continued eGC (n = 10), withdrawn patients had 

eight-fold higher T (0.30 nmol/L (0.26–0.73 nmol/L) vs. 0.04 nmol/L (0.02–0.05 nmol/L)) and 

ten-fold higher 11KT (1.09 nmol/L (0.75-2.30 nmol/L) vs. 0.11 nmol/L (0.04–0.23 nmol/L)) 

(Figures 3E and 3F). An overview of steroid concentrations at baseline can be found in Table S2. 

Additionally, glucocorticoid treatment was withdrawn in six patients before progression. Again, 

higher median circulating concentrations of T (0.20 nmol/L (0.09–0.38 nmol/L) vs. 0.05 nmol/L 

(0.02–0.08 nmol/L), P < 0.01) and higher median 11KT (0.90 nmol/L (0.52–1.46 nmol/L) vs. 0.10 

nmol/L (0.06–0.29 nmol/L), P = 0.001) were observed after withdrawal, compared to patients that 

continued GC treatment (n = 14, Figure S4). 

0.23-1.27 nmol/L) exceeded 1.74 nmol/L in six patients (Figure 2C). DHT was below the LOQ in 

most patients (range: < LOQ-0.27 nmol/L). Using linear models, 11KT was a major predictor of the 

TA concentration (R2 = 0.945), whereas T predicted TA to a lesser extent (R2 = 0.511). 

Figure 2. 11-Ketotestosterone is the most abundant circulating androgen in castration-resistant prostate 
cancer patients at baseline
(A) Active androgen concentrations of all castration-resistant prostate cancer patients before the start of the 
first treatment after enrollment (n = 29). Boxplot depicts the upper and lower quartiles, with the median 
shown as a solid line; whiskers indicate the range. Dots indicate individual data points. Statistical analysis was 
performed by one-way ANOVA (P < 0.0001) with Tukey’s Multiple Comparison test. * P < 0.05, *** P < 0.001. 
(B) The relative abundance of the median androgen concentrations is shown as a percentage of the total 
androgen pool. 
(C) Androgen concentrations are shown for all baseline samples (n = 34). Values below the analytical limit 
of quantification are shown if relevant calibrator and spiked quality control samples were accurate and 
reproducible with signal to noise >10:1. Samples with undetectable concentrations were set to 0.5 times the 
lowest accurate calibration sample for statistical purposes. Conventional clinical cut-off values for castrate 
testosterone levels (0.69 and 1.74 nmol/L (or 20 and 50 ng/dL) testosterone) are indicated on the y-axis for 
reference.  
Abbreviations: 11KT – 11-ketotestosterone, DHT – dihydrotestosterone, T - testosterone
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Clinical outcomes

A post hoc survival analysis was performed on this limited patient group. PFS was significantly 

longer in patients with TA concentrations above the median (209 vs. 133.5 days, P < 0.05, Figure 

4A). Stratification based on 11KT alone similarly showed this association (Figure 4B), whereas T 

alone did not (Figure 4C). Overall survival was not significantly different between the patients 

with high or low TA pool (14.7 months vs. 12.3 months, P > 0.05).

Figure 4. Effects of total androgen concentration on progression-free survival and intratumoral gene 
expression
(A-C) Progression-free survival curves are shown for patients stratified into two groups with concentrations 
above or below median total androgen (TA, A), 11-ketotestosterone (11KT, B) or testosterone (T, C). Log-rank 
test for survival was used to determine difference between the low and high TA groups.
(D) Heatmap of differentially expressed genes (n = 24) across TA concentration in the tumor samples. 
Differential gene expression was determined using TA concentration as a continuous variable. Heatmap 
displays mean-centered and normalized (variance-stabilizing transformation) read counts. Unsupervised 
hierarchical clustering (Euclidean distance and Ward.D2 method) was performed on genes and samples. 
Upper tracks display biopsy site, TA concentration and androgen status of the samples. 
Abbreviations: 11KT – 11-ketotestoterone, T – testosterone, TA – total androgens

Figure 3. Effects of exogenous glucocorticoid treatment on circulating steroid concentrations
(A-C) Differences between steroid concentrations at baseline (white boxes) and on treatment (OT) (red boxes) 
were assessed in patients who were exogenous glucocorticoid (eGC) untreated at baseline and who started 
treatment with eGC (n = 13) by Wilcoxon signed-rank test (A). The individual data points are shown for 
testosterone (T, B) and 11-ketotestosterone (11KT, C) at baseline and OT in patients who started therapy with 
glucocorticoids (red lines, n = 13) or without glucocorticoids (black lines, n = 6). 
(D-F) Differences between concentrations at baseline (gray boxes) and OT (blue boxes) were assessed in 
patients who were eGC+ at baseline and discontinued glucocorticoid treatment (D, n = 5). The individual 
data points are shown for T (E) and 11KT (F) at baseline and OT in patients who continued treatment with 
glucocorticoids (gray lines, n = 10) or were withdrawn from glucocorticoids (blue lines, n = 5).
Boxplot depicts the upper and lower quartiles, with the median shown as a solid line; whiskers indicate 
the range. Effects of treatment were assessed by Wilcoxon ranked-sum test, while group differences were 
assessed by Mann-Whitney test. Lines connect individual patients and group medians (squares) are shown 
beside the individual data points. * P < 0.05, ** P < 0.01, *** P < 0.001. 
Abbreviations: 11KA4 – 11-ketoandrostenedione, 11KT – 11-ketotestosterone, 11OHA4 - 
11β-hydroxyandrostenedione, 11OHT - 11β-hydroxytestosterone, DHT – dihydrotestosterone, eGC – 
exogenous glucocorticoids, OT – on treatment, T – testosterone
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patient stratification. Androgen abundance after castration could be assessed more accurately 

by including 11KT. Additionally, this study shows the suppressive effects of eGC on circulating 

androgen concentrations, highlighting the potential therapeutic role of glucocorticoids in CRPC, 

which crucially includes suppression of adrenal-derived 11-oxygenated androgens. Finally, this 

study suggests that circulating TA abundance may correlate with intratumoral gene expression 

and PFS.

In addition to 11KT, precursor steroids such as 11OHA4 and 11KA4 may also contribute to AR 

activation through intratumoral conversion to 11KT. In line with previous findings, this study 

finds that 11OHA4 is abundant in the circulation with a median concentration of 2.7 nmol/L 

(0.48 – 5.1 nmol/L). Storbeck et al.34 previously showed that the PC cell line LNCaP converts 

11OHA4 and 11OHT into 11KT, requiring the enzymes HSD11B2 and AKR1C3. We confirm 

substantial expression of HSD11B2 and AKR1C3 in nearly all CRPC tumor samples (93% and 

100%, respectively). Expression of enzymes that inactivate (11-oxygenated) androgens to their 

upstream precursors, such as HSD17B2 and HSD11B1, was lower. A higher ARK1C3:HSD17B2 ratio 

favors production of 11KT especially, as AKR1C3 has a significantly higher substrate preference for 

11KA4 than androstenedione35. Despite frequent genomic amplification of CYP11B1, which can 

convert androstenedione into 11OHA4, we detected CYP11B1 expression in only two samples. 

Amplification of the CYP11B1 locus therefore does not appear to result in detectable CYP11B1 

expression, and may be a passenger mutation. Consequently, intratumoral synthesis of 11OHA4 

from androstenedione due to CYP11B1 amplification is unlikely to occur; thus, the majority of 

11-oxygenated androgen precursors are likely derived from adrenal steroidogenesis. 

Glucocorticoid treatment significantly decreased circulating T and 11-oxygenated androgens 

through suppression of the HPA-axis. Potent suppression of 11-oxygenated androgens has 

similarly been observed in patients treated with abiraterone acetate and prednisone36. The 

potent suppression of adrenal androgens, and 11KT in particular, may partially explain the 

clinical benefits of glucocorticoid treatment and should be considered when designing trials with 

glucocorticoid treatment in the control arm37,38. Withdrawal of glucocorticoid treatment may 

inadvertently lead to an increase in circulating androgens, although the effect on CRPC tumor 

growth is still unknown.

PFS was longer in our patients with high TA, in line with earlier findings that higher T 

concentrations are associated with a more favorable outcome19,20. Interestingly, in our study 

this association was attributed to 11KT, as T alone was not associated with PFS. This indicates 

that 11KT may be a stronger prognostic marker than T. In the presence of adrenal androgens, 

AR activation may remain (partially) ligand-dependent. AR pathway inhibition may exert greater 

effects in androgen-AR interaction dependent tumor cells, providing a possible explanation 

for the association between TA, 11KT and PFS. It is, however, important to consider that our 

study was not designed to detect differences in survival, and the limited sample size and patient 

heterogeneity do not permit a definitive conclusion in this regard. Most patients in the CIRCUS 

study had previously received treatment for CRPC. No association between the number of 

RNA sequencing analysis

Gene expression profile analysis of the complete CPCT-02 CRPC cohort (n = 180) revealed 

significant biopsy-site related bias, which we attempted to limit through exclusion of 5232 

biopsy-site specific genes (Figure S5). Next, patients included in this study were assessed by RNA 

sequencing (n = 15) for further analysis, excluding genes which were biopsy-site related (Figure 

S6). 

We observed androgen-mediated differential expression of 24 genes (Figure 4D), including 

several known androgen-regulated genes, using TA concentration as a continuous variable. 

Of these genes, 12 were upregulated in the high TA environment and 12 genes in the low TA 

environment. Known AR target genes BMI131 and SLC2A132 were upregulated in the high TA 

environment, whereas the androgen-repressed gene TRPS133 was upregulated in the low TA 

environment. Furthermore, a trend towards increased AR expression in the low TA environment 

(5.4-fold higher) was observed, although this did not reach statistical significance. 

Genomic alteration and expression of steroid pathway genes

Whole-genome sequencing of the tumor tissue (n = 18) showed that somatic alterations within 

the AR or AR enhancer locus were highly prevalent (16/18 tumors) (Figure S7A). Interestingly, 

in 10/18 patients we observed high-level amplification of the CYP11B1 gene, encoding 

11β-hydroxylase, which is essential in the synthesis of cortisol and 11-oxygenated androgens. 

Amplification of other genes involved in androgen metabolism (HSD3B1/2, SRD5A1/2, AKR1C3, 

HSD17B6 and HSD17B10) was rare, although copy-number loss of HSD17B2, which inactivates 

androgens, was observed in two subjects.

Several enzymes related to androgen biosynthesis and (re-)activation were highly expressed 

in all tumor biopsy samples, including HSD17B10, STS, SRD5A1, AKR1C3 and HSD11B2 (Figure 

S7B). This suggests that the enzymes required for activation of both androgen and 11-oxygenated 

androgen precursors are expressed in CRPC tumors. Expression of CYP11B1 was absent in all but 

two samples, one of which did not contain a genomic abnormality. 

Discussion

Using plasma multi-steroid profiling by LC-MS/MS, we show that 11KT, a potent AR agonist13, is 

the predominant circulating androgen in CRPC patients and therefore needs to be considered 

when assessing the hormonal status of these patients. AR pathway reactivation after ADT is 

an important process that leads to tumor progression and our data suggest that 11KT may be 

an important contributor to AR reactivation in CRPC. 11KT constituted a median 66% of the TA 

pool. Androgen abundance in CRPC patients has probably been underestimated until now, as the 

quantification of T alone detects only approximately 25% of all androgens. Moreover, circulating 

T concentrations do not accurately predict TA abundance and thus does not allow for optimal 
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treatment lines and PFS was found, nor was the number of treatment lines different between the 

low and high TA groups. Further investigation into the actions and consequences of circulating 

11KT is warranted, especially as a potential biomarker to select patients more likely to respond 

to AR-targeting therapies. 

Gene expression analysis of the tumor biopsy samples identified 24 genes differentially 

expressed between patients across the TA spectrum, including three androgen-regulated 

genes31-33. Compensatory AR upregulation may explain the absence of classic AR-regulated 

genes, such as KLK3 and TMPRSS2. TRPS1 and SLC2A1 were previously implicated in PC and 

AR action39,40, and  decreased EFS expression has been associated with more advanced PC and 

tumor recurrence41,42. Other genes differentially expressed in our cohort (EDA2R, SLC17A9, 

TDRD10, ALDOC, SRRM3, MEST and RTKN2) have been implicated in other malignancies, but not 

in PC specifically43-47. Androgen-mediated regulation of these may contribute to the observed 

association between TA and PFS. 

Conclusion

This study demonstrates that 11KT is the predominant circulating androgen in CRPC patients. 

Paired with evidence from previously published findings, our results position 11KT as one of the 

potential drivers of AR activation in CRPC. Both T and 11KT can be suppressed by glucocorticoid 

treatment, providing a possible explanation why glucocorticoids are beneficial in CRPC patients. 

Future studies should consider TA as a potential biomarker in patients that have undergone ADT.
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genome reference build 37 (GRCh37) was used for alignment. Subsequently, mutational analysis 

was performed to call single and multi-nucleotide variants (SNV and MNV) and small insertion/

deletions (InDels) as previously described9. Somatic SNV, InDels and MNV were further annotated 

with Variant Effect Predictor10 (VEP; v99) using GENCODE v33 annotations.

Discovery of somatic structural variants (SV) and copy-number alterations was performed 

using the GRIDDS, PURPLE and LINX suite11. During the downstream analyses, we only retained 

somatic structural variants passing all default QC filters (PASS-only) and with an upstream and/or 

downstream Tumor Allele Frequency (TAF) ≥ 0.1.

Putative protein-altering (coding) or high-impact (e.g. splicing) mutations were aggregated 

per sample and gene by selecting the most deleterious annotated effect (from VEP) on any 

known overlapping gene-wise transcript (except those transcripts flagged as retained intron 

and nonsense mediated decay). In addition, structural variants with a TAF ≥ 0.1 that overlapped 

partly or completely with the respective coding sequences, were annotated as ‘structural variant’ 

mutations. Multiple coding mutations and/or SV per gene were annotated as ‘multiple mutations’.

RNA sequencing

Sequencing libraries were prepared using the KAPA RNA HyperPrep Kit with RiboErase (HMR) 

KR1351 (Roche, Indianapolis, IN, USA) according to the manufacturer protocols. Paired-end 

sequencing of (m)RNA was performed on the Illumina NextSeq 550 platform (2x 75 bp; Illumina, 

San Diego, California, USA) and Illumina NovaSeq 6000 platform (2x 150 bp; Illumina. Raw 

sequencing reads were trimmed (paired-end) with fastp12 (v0.20.0) using default settings to 

perform adapter, low-quality and low-complexity trimming using the following command:

fastp --detect_adapter_for_pe -L --html --thread 5 --in1 <fq.R1> --in2 <fq.R2> --out1 <fq.

R1.out> --out2 <fq.R1.out>

Trimmed paired-end reads were subsequently aligned against the human genome reference 

build 37 (GRCh37) with STAR13 (v2.7.3a) on GENCODE annotations14 (v33). Samples sequenced on 

multiple sequencing lanes were aligned simultaneously with respective read-group information 

using the following command:

STAR --genomeDir <GRCh37> --readFilesIn <fq.R1> <fq.R2> --readFilesCommand zcat 

--outFileNamePrefix <prefix> --outSAMtype BAM SortedByCoordinate --outSAMunmapped 

Within --twopassMode Basic --twopass1readsN -1 --runThreadN 10 --limitBAMsortRAM 

10000000000 --quantMode TranscriptomeSAM --outSAMattrRGline <readgroup>

Marking of duplicate reads, sorting, indexing and retrieving flagstat information were 

performed using Sambamba15 (v0.7.1; Figure S5A). Overlapping primary-aligned reads per exon 

were summarized per gene by Subread featurecounts15 (v1.6.3) using reversely-stranded modus 

on GENCODE annotations (v33):

featureCounts -T 50 -t exon -g gene_id --primary -p -s 2 -a <gencodev33.gtf> -o <output> <BAM 

files>

Supplementary information

Supplementary materials and methods

Extraction and measurement of endogenous steroids

Calibration series (0.01–100 ng/mL) were prepared in (1) phosphate-buffered saline + bovine 

serum albumin (0.1%) and in (2) charcoal-stripped human serum (Goldenwest Diagnostics, 

Temecula, CA, USA). Steroids were extracted from 400 µL plasma by liquid-liquid extraction using 

methyl-tert-butyl ether (MTBE, Sigma Aldrich, Zwijndrecht, the Netherlands) and evaporated 

under a nitrogen manifold at 50°C. Samples were reconstituted in 125 µL LC-MS grade 50% 

methanol (CHROMASOLV, Sigma Aldrich). Multi-steroid profiling was performed by tandem mass 

spectrometry (Xevo TQ-XS, Waters, Milford, MA, USA) after separation on an ACQUITY UPLC 

(Waters) with UPLC high-strength silica T3 column (21 mm x 50 mm, 1.8 μm, Waters) as previously 

described1-5. Spiked analytical controls showed accuracy of ≥ 90% at very low (0.03 ng/mL), low 

(0.3 ng/mL), medium (3 ng/mL) and high (30 ng/mL) concentrations for testosterone, 11KT, 11KA4 

and cortisone. For 11OHA4, controls showed accuracy ≥ 80% at very low (0.03 ng/mL) and ≥ 90% 

at higher concentrations. Cortisol, corticosterone, DHT and 11OHT showed accuracy of ≥ 90% at 

low to high concentrations. Inter-assay precision was calculated based on 4-6 biological replicates 

ran on 3 days, with RSD < 10% for testosterone, DHT, 11KT, cortisol, cortisone and corticosterone, 

< 20% for 11OHT, and 22% for 11OHA4 and 32% for 11KA4. Calibration of androstenedione was 

not successful due to a matrix contaminant and was excluded from further analysis. 

Data has been included where steroid concentrations were below the analytical LOQ, but 

where calibration and spiked QC samples were still accurate with signal to noise > 10:1. Samples 

with undetectable concentrations were set to 0.5 times the lowest accurate calibration point for 

statistical purposes. The total androgen (TA) pool was defined as the sum of testosterone, DHT 

and 11KT as these steroids have been confirmed to directly activate the AR6.

Quantification of exogenous glucocorticoids

eGC were measured in the original sample plates by LC-MS/MS using a protocol optimized 

for separation of the exogenous and endogenous glucocorticoids7,8. To quantify the steroids a 

calibration series (1–100 ng/mL) containing prednisone, prednisolone and dexamethasone was 

prepared. Cutoff values for prednisolone (20.7 ng/mL) and dexamethasone (16.1 ng/mL) were 

determined based on suppression of cortisol (< 140 nmol/L) and were used to distinguish eGC+ 

from eGC- samples.

Whole-genome sequencing and RNA sequencing

WGS of metastatic tumor biopsies and matched normal blood was performed using the HiSeq 

X Ten system (Illumina) with a sequencing depth of 30x for blood and 60x for tumor tissue. The 
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Figure S1. Chromatographic separation of endogenous steroids
Representative chromatographic separation of 9 steroids: (1) cortisone, (2) 11-ketoandrostenedione, 
(3) cortisol, (4) 11-ketotestosterone, (5) 11β-hydroxyandrostenedione, (6) 11β-hydroxytestosterone, (7) 
corticosterone, (8) testosterone, (9) dihydrotestosterone. The top chromatogram shows separation with 
normalized intensity, whereas bottom graph shows actual response. 

Read counts from protein coding genes present in the GENCODE annotations (v33; n = 20084) 

were inputted into DESeq216 (v1.24.0) for all 180 RNA-sequenced samples and normalized for 

library-size using default settings. 

To identify possible batch-effects in expression due to biopsy localization (Figure S5B) or 

sequencing platform (Illumina NextSeq / Illumina NovaSeq), we first performed t-SNE17 analysis 

using Rtsne (v0.15; with Θ set to 0.5, a perplexity of 30, 1000 iterations and two dimensions) on 

normalized reads counts (variance stabilizing transformation (VST)) to reveal signs of possible 

batch-effects (Figure S5D). This analysis revealed several clusters attributed to biopsy location 

and only limited correlation to sequencing technique. To reduce the batch-effect seen by biopsy 

localization, we performed differential analysis using DESeq2 (v1.24.0; Wald method) with 

additional LFC shrinkage (ashr18; v2.2.47) per major biopsy site and comparing against all others 

(Figure S5B); bone (n = 89 vs. 91), lymph node (n = 42 vs. 138) and liver (n = 31 vs. 149). Genes 

with the following criteria were designated as differentially-expressed for each major biopsy site 

(Figure S5C): adjusted P ≤ 0.05 & average read count over all 180 samples ≥ 50 and a log2 fold 

change < 0.1 (up-regulated in biopsy site). In downstream analyses, we marked these genes as 

‘putative biopsy site-associated genes’ (n = 7527) and discarded these as candidates. Masking 

these genes and performing an identical t-SNE analysis on all 180 RNA-sequenced samples 

revealed reduced contribution of biopsy site (Figure S5E).

Subsequently, we performed differential expression analysis using DESeq2 (v.1.24.0; Wald 

method) for CPCT-02 RNA-sequenced samples which were also included into the CIRCUS study 

and of which the date of biopsy and androgen measurement was less than 30 days apart, using 

total androgen concentration as a continuous variable (n = 15; Figure S6A). Genes with the 

following criteria (and not present in the aforementioned ‘putative batch-effect genes’; Figure 

S6B and 6C) were considered to be differentially expressed (n = 24): |log2 fold change| ≥ 0.5 (with 

SE ≤ 1.25) & adjusted P ≤ 0.05 and an average read count ≥ 50 over all 15 samples. 
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Figure S3. Quantification of prednisone, prednisolone and dexamethasone identifies glucocorticoid 
suppressed patient samples 
Quantification of prednisone (A), prednisolone (B) and dexamethasone (C) was performed using LC-MS/MS 
to identify the use of exogenous glucocorticoids (eGC) in patient samples for classification. Values that were 
obtained during this measurement should be considered in the context of this study only, as appropriate 
internal standards had not been included in the initial extraction. No suppression of adrenal steroids was 
observed in patients with eGC values below the red lines. Classification of the exogenous glucocorticoids 
successfully identified samples with suppressed cortisol values at baseline (D). 
Abbreviations: eGC – exogenous glucocorticoids

Figure S2. Baseline circulating steroid concentrations and effects of 12-week treatment 
Steroid profiles were obtained for all castration-resistant prostate cancer patients before the start of first 
treatment (A, n = 29). Steroid profiles at baseline and on treatment are shown for CRPC patients treated 
with antiandrogens (B, n = 10), docetaxel with prednisone (C, n = 10) and cabazitaxel with prednisone (D, n = 
14). Samples with undetectable concentrations were set to 0.5 times the lowest accurate calibration sample 
for statistical purposes. Differences between baseline (clear boxes) and on treatment (striped boxes) were 
assessed by Wilcoxon signed-rank test. Boxplot depicts the upper and lower quartiles, with the median shown 
as a solid line; whiskers indicate the range. * P < 0.05, ** P < 0.01. 
Boxes are colored to reflect steroid synthesis pathways: mineralocorticoid (red), glucocorticoid (yellow), 
androgen (blue) and 11-oxygenated androgen (green). Lighter colors are used to indicate precursor steroids.
Abbreviations: 11KA4 – 11-ketoandrostenedione, 11KT – 11-ketotestosterone, 11OHA4 - 
11β-hydroxyandrostenedione, 11OHT – 11β-hydroxytestosterone, CRPC – castration-resistant prostate 
cancer, DHT – dihydrotestosterone, T – testosterone

 
 

Supplemental Figure S3 – Quantification of prednisone, prednisolone and dexamethasone 

identifies glucocorticoid suppressed patient samples.  

Quantification of prednisone (A), prednisolone (B) and dexamethasone (C) was performed using LC-

MS/MS to identify the use of exogenous glucocorticoids (eGC) in patient samples for classification. 

Values that were obtained during this measurement should be considered in the context of this 

study only, as appropriate internal standards had not been included in the initial extraction. No 

suppression of adrenal steroids was observed in patients with eGC values below the red lines. 

Classification of the exogenous glucocorticoids successfully identified samples with suppressed 

cortisol values at baseline (D).  

Abbreviations: eGC – exogenous glucocorticoids 
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Figure S5. Overview of the CPCT-02 (m)RNA-sequenced metastatic prostate cancers (n = 180) including 
selection of biopsy site-specific expression
(A) Sequencing and alignment metrics (flagstat) highlighting samples (n = 180) performed on the Illumina 
NextSeq (orange) and Illumina NovaSeq (blue) platform. Y-axis depicts number of reads per sample and X-axis 
depicts various alignment metrics. Boxplot depicts the upper and lower quartiles, with the median shown as 
a solid line; whiskers indicate 1.5 times the interquartile range. Individual data points are shown. Median per 
alignment metric (per million) is shown on the left-side of each boxplot.
(B) Number of RNA-sequenced samples per biopsy site. Biopsy sites with fewer than 3 samples were 
categorized into the ‘Other’ category. Y-axis depicts number of samples and X-axis depicts the major biopsy 
sites (bone, lymph node and liver). Number of samples is shown above each bar per biopsy site.
(C) Venn-diagram of differentially expressed protein-coding genes (adjusted P ≤ 0.05 & average read count 
over all 180 samples ≥ 50 and a log2 fold change < 0.1) per biopsy site.
(D) t-SNE analysis of all 180 samples over the read counts of all protein-coding genes (n = 20084). Samples 
are colored per biopsy site and shaped per sequencing platform (circle for Illumina NextSeq and triangle for 
Illumina NovaSeq). 
(E) t-SNE analysis of all 180 samples over the read counts of all protein-coding genes (n = 20084), except those 
marked as ‘putative biopsy site associated genes’ (n = 7527). Samples are colored per biopsy site and shaped 
per sequencing platform (circle for Illumina NextSeq and triangle for Illumina NovaSeq).

Figure S4. Circulating androgens are higher in patients withdrawn before progression 
(A) The effects of glucocorticoid withdrawal were studied in patients who were exogenous glucocorticoid 
(eGC)+ on treatment (n = 20). Differences between steroid concentrations upon progression were assessed in 
patients in whom glucocorticoid treatment was continued (gray boxes, n = 14) or discontinued (blue boxes, n 
= 6) by Wilcoxon signed-rank test. Boxplot depicts the upper and lower quartiles, with the median shown as 
a solid line; whiskers indicate the range. * P < 0.05, ** P < 0.01.
(B-C) The individual data points are shown for testosterone (T, B) and 11-ketotestosterone (11KT, C) for 
patients that were eGC+ on treatment and continued (gray lines, n = 14) or discontinued glucocorticoid 
treatment (blue lines, n = 6). Samples with undetectable concentrations were set to 0.5 times the lowest 
accurate calibration sample for statistical purposes. Effects of treatment were assessed by Wilcoxon ranked-
sum test, while group differences were assessed by Mann-Whitney test. Lines connect individual patients and 
group medians (squares) are shown beside the individual data points. ** P < 0.01. 
Abbreviations: 11KA4 – 11-ketoandrostenedione, 11KT – 11-ketotestosterone, 11OHA4 – 
11β-hydroxyandrostenedione, 11OHT - 11β-hydroxytestosterone, DHT – dihydrotestosterone, eGC – 
exogenous glucocorticoids, OT – on treatment, PD – progressive disease, T – testosterone
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Figure S6. Overview of the CPCT-02 (m)RNA-sequenced metastatic prostate cancers (n = 15) present in the 
CIRCUS study
(A) Overview of the inclusion criteria of CIRCUS samples present within the CPCT-02 RNA-sequenced 
metastatic prostate cancer cohort (n = 180) and categorization of these samples (n = 15) into androgen status 
high and low samples.
(B) t-SNE analysis of the 15 included samples over the read counts of all protein-coding genes (n = 20084). 
Samples are colored per biopsy site and shaped per androgen status (circle for high androgen status and 
triangle for low androgen status).
(C) t-SNE analysis of all 15 samples over the read counts of all protein-coding genes (n = 20084), except those 
marked as ‘putative biopsy site-associated genes’ for lymph node or bone (n = 5232). Genes associated with 
the liver biopsy site were not excluded (n = 1480) as none of the biopsies originated from liver metastasis. 
Samples are colored per biopsy site and shaped per androgen status (circle for high androgen status and 
triangle for low androgen status).
Abbreviations: eGC - exogenous glucocorticoids, Enza – enzalutamide, RNA-seq - RNA sequencing, TA – total 
androgens, WGS - whole-genome sequencing

Figure S7. Overview of genome-wide characteristics and intratumoral expression of genes involved in 
steroid metabolism and steroid hormone receptors in metastatic castration-resistant prostate 
cancer 
(A) Overview of genome-wide characteristics of the samples present within the CPCT-02 cohort with both 
whole-genome sequencing (WGS, n = 18). Samples are ordered by mutually-exclusive mutations in steroid 
metabolism-associated genes. In decreasing order, the following tracks show in following order: somatic 
mutations for genes of interest, biopsy site, androgen status and availability of RNA sequencing data
(B) Normalized (VST-transformed) RNA-seq read counts of steroid hormone receptors and enzymes involved 
in the conversion and metabolism of steroid hormones. Boxplot depicts the upper and lower quartiles, with 
the median shown as a solid line; whiskers indicate 1.5 times the interquartile range. Individual data points 
are shown. 
Abbreviations: AR – androgen receptor

 

 
 

 

 

  



249

Chapter 8

11-Ketotestosterone is the predominant androgen in castration-resistant

prostate cancer patients

248

Part 3

Steroidomics

Table S1. Overview of steroids and their mass transitions, retention times and analytical limits of 
quantification

Analyte Abbreviation Ion (m/z)
Retention 

time
Internal standard

LOQ 
(nmol/L)

11-ketoandrostenedione 11KA4 301.0 > 121.0 1.11 11-ketotestosterone-d3 0.5

11-ketotestosterone 11KT 303.1 > 121.0 1.25 11-ketotestosterone-d3 0.2

11β-hydroxyandrostenedione 11OHA4 303.1 > 267.1 1.40 11β-hydroxyandrostenedione-d7 0.5

11β-hydroxytestosterone 11OHT 305.1 > 121.0 1.56 11β-hydroxyandrostenedione-d7 0.5

Corticosterone - 347.1 > 121.0 1.65 Corticosterone-d8 0.2

Cortisol - 363.1 > 90.9 1.18 Cortisol-d4 0.1

Cortisone - 361.0 > 121.0 1.03 Cortisone-d7 0.1

Dihydrotestosterone DHT 291.3 > 159.1 3.03 DHT-d3 0.2

Testosterone T 289.1 > 96.9 2.38 Testosterone-d3 0.1

LOQ, limits of quantification
m/z, mass per charge

Table S2. Baseline steroid concentrations of patients with or without exogenous glucocorticoids
Undetectable concentrations were set to 0.5 times the lowest accurate calibration sample for statistical 
purposes and are italicized below. All concentrations are in nmol/L.

Without glucocorticoids (n = 19) With glucocorticoids (n = 15) Median 
difference

(%)Steroids Median (IQR) Range Median (IQR) Range

11-ketoandrostenedione 0.64 (0.43 - 1.07) 0.14 - 4.29 0.09 (0.04 - 0.22) 0.03 - 0.96 86

11-ketotestosterone 0.87 (0.40 - 1.34) 0.12 - 2.39 0.12 (0.05 - 0.19) 0.03 - 0.83 86

11β-hydroxyandrostenedione 4.96 (3.05 - 6.14) 0.86 - 18.77 0.41 (0.12 - 0.95) 0.08 - 3.26 92

11β-hydroxytestosterone 0.23 (0.11 - 0.40) 0.08 - 1.03 0.08 (0.08 - 0.09) 0.08 - 0.26 66

Corticosterone 3.60 (2.50 – 6.00) 1.15 - 27.57 0.42 (0.43 - 1.90) 0.18 - 3.69 83

Cortisol 257.50 (199.30 - 326.90) 166.50 - 949.1 23.80 (18.20 - 65.80) 11.46 - 135.50 91

Cortisone 43.68 (34.26 - 58.44) 24.88 - 124.10 3.19 (0.34 - 11.56) 0.07 - 20.71 93

Dihydrotestosterone 0.05 (0.05 - 0.07) 0.05 - 0.27 0.05 (0.05 - 0.05) 0.05 - 0.07 0

Testosterone 0.23 (0.12 - 0.34) 0.05 - 0.76 0.06 (0.02 - 0.12) 0.02 - 0.15 74

IQR, interquartile range
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Introduction

From recent genomic analyses we know that metastatic prostate cancer has a highly complex 

genomic makeup and that only few distinctive characteristics recur, like androgen receptor (AR) 

alterations and TMPRSS2-ERG gene fusion rearrangements1-3. This challenges our understanding 

of the biology of metastatic prostate cancer and of what alterations might be actionable targets or 

predictive markers to guide treatment decisions. In this thesis I unraveled the genomic landscape 

of metastatic prostate cancer using whole-genome sequencing on a large patient cohort. In the 

future, this might guide researchers and clinicians to set up clinical trials to personalize cancer 

treatment. Next to better understanding the biology of the disease, this thesis focused on new 

blood-based biomarkers with prognostic and predictive properties to further optimize treatment 

selection and evaluation. This research is the first step to transit from metastatic biopsies, that only 

reflect a spatial and temporal snapshot of tumor heterogeneity, to liquid biopsies, that enables 

the study of cancer biology over time. For this I first optimized the preanalytical conditions and 

next, I demonstrated the potential applications of liquid biopsies in metastatic prostate cancer. 

Furthermore, I investigated the role of 11-ketotestosterone in metastatic prostate cancer, a 

circulating steroid that is a potent AR agonist.

Part I: Genomic landscape of metastatic prostate cancer

Metastatic prostate cancer is characterized by marked heterogeneity at clinical and genomic 

level. As the available treatment options are rapidly evolving for metastatic prostate cancer, 

it is imperative to identify predictive markers to select subgroups of patients that are likely to 

have an (enduring) response. This will improve patient outcome and reduce cost and excessive 

side-effects. Comprehensive genomic analyses in primary prostate cancer was able to classify 

74% of analyzed patients into seven predefined subtypes based on ETS fusions and mutations 

in SPOP, FOXA1 and IDH14. Since radical treatment options like surgery and radiotherapy is the 

current standard for localized disease, this classification is mostly of prognostic value and does 

not guide treatment decision. In chapter 2 we describe the classification of metastatic castration-

resistant prostate cancer (mCRPC) patients using whole-genome sequencing. Using unsupervised 

clustering based on genomic events, we defined eight distinct genomic clusters:

A) Microsatellite Instability (MSI) signature positive phenotype with high tumor mutational 

burden (TMB) and association with mismatch repair deficiency; 6.6% of our cohort;

B) Tandem duplication (> 100 kbp) phenotype associated with biallelic CDK12 inactivation; 6.6% 

of our cohort;

D) Homologous Recombination Deficiency (HRD) features with many (> 100 kbp) deletions and 

association with (somatic) mutations in BRCAness-associated genes; 11.2% of our cohort;

F) Cases enriched for chromothripsis; 10.2% of our cohort;

C, E, G, H) Non-significant genomic signature without any currently known biological association; 

65.4% of our cohort. 

Our clustering is in line with recent reports demonstrating that structural variations arise from 

specific alterations such as CDK12-/- and BRCA2-/- genotypes5-7. Several clusters include patients that 

may be eligible for targeted therapy. The first cluster (A) contains patients with MSI and high TMB 

who might be eligible for therapy with immune check-point inhibitors, like pembrolizumab. For 

other tumor types with similar characteristics a high sensitivity to immune check-point inhibitors 

is reported8-10. Two clinical trials, the KEYNOTE-028 and the KEYNOTE-199, have demonstrated 

durable antitumor activity in a subset of metastatic prostate cancer patients11,12. Patient selection 

was predominantly based on PD-L1 expression, the target of pembrolizumab. Unfortunately, the 

genomic landscape of the tumors of these patients is not reported up to now. Cluster D includes 

patients with HRD features who may be eligible for treatment with poly(ADP-ribose) polymerase 

(PARP) inhibitors that block DNA damage response (DDR) pathways. The TOPARP-B and the 

PROfound trial showed that the PARP inhibitor olaparib had antitumor activity and improved 

overall survival in mCRPC patients with DDR gene aberrations, including BRCA2 deficiency13,14. 

These promising results should be further validated in large prospective trials. Nevertheless, a 

large population of mCRPC patients (cluster C, E, G, H; approx. 66% of patients) do not fall into 

an as-of-yet clinically-relevant or biologically-clear genotype and further research should focus 

on identifying oncogenic driver events and investigate new actionable targets. Importantly, we 

established a new CTC-derived cell line that is similar to Cluster E at a genomic level as is shown 

in chapter 6. This cell line can help further research to elucidate the biology behind this cluster 

of mCRPC patients. 

Part II: Liquid biopsies

Advances in standardization of preanalytical conditions

To implement liquid biopsies in routine cancer care, it is vital to standardize the preanalytical 

conditions and workflows to guarantee accurate and consistent results. Moreover, there is an 

urgent need for prospective clinical studies for analytical and clinical validation of liquid biopsy-

based assays.

Sample collection
In chapter 3 we investigated several preanalytical conditions to optimally preserve cell-free DNA/

circulating tumor DNA (cfDNA/ctDNA) for downstream analyses. We found that using different 

blood collection tubes did not affect ctDNA detection, but did stabilize cfDNA concentrations over 

time. Since a lot of studies report variant allele frequencies (VAF) this could potentially result in 

an underestimation of the VAF when a sample is not processed in due time. Several studies have 

tested different available blood collection tubes to optimally preserve liquid biopsies as well, and 
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in line with our results, it appears that when processing samples within a few days, the selected 

tube is trivial15-23. Table 1 provides an overview of the most commonly used blood collection 

tubes. For RNA-based circulating tumor cell (CTC) analysis an EDTA tube processed within 48 

hours is the optimal matrix24,25. For cfDNA analysis, EDTA tubes processed within six hours, or 

a cell-stabilization tube processed within 2-7 days perform equally well. Further essential 

improvements are to use a two-step high-speed protocol and limit to one freeze-thaw cycle 

before proceeding with cfDNA extraction26-30. The timing of the second high-speed centrifugation 

step (immediately or after storage at -80°C) does not affect cfDNA levels16. 

Table 1. Most commonly used blood collection tubes for liquid biopsy

Tube type Specimen Analyte Cell stabilization

K2EDTA Plasma
cfDNA
CTC

Non-stabilized

Cell-Free DNA BCT® Plasma
cfDNA
CTC

Stabilized

PAXgene Blood ccfDNA Plasma cfDNA Stabilized

Cell-Free DNA BCT® Plasma cfDNA Stabilized

CellSave Preservation Tubes Plasma
cfDNA
CTC

Stabilized

TransFix/EDTA Vacuum BCT Plasma CTC Stabilized

CTC, circulating tumor cell
cfDNA, cell-free DNA

Optimization of cell-free DNA extraction and quantification
The next step in cfDNA analysis is the extraction of DNA from plasma, for this the QIAamp Circulating 

Nucleic Acid kit (Qiagen, Venlo, The Netherlands) is considered to be the gold standard method 

with the highest cfDNA recovery31,32. However, automated approaches are preferred, as clinical 

routine use of liquid biopsies requires high throughput and limited operator-based variability. In 

chapter 4 we describe a head-to-head comparison of the QIAamp and two automated isolation 

methods, the QIAsymphony (Qiagen) and Maxwell platform (Promega, Madison, WI, USA). In 

our hands, the QIAsymphony performed comparable to QIAamp. Although the cfDNA yield was 

lowest using the Maxwell platform, the VAF was comparable across all platforms. Data from a 

multicenter evaluation study showed that the QIAsymphony and Maxwell platform are both 

acceptable automated isolation methods, which is in line with our results21. 

By increasing plasma input volume for cfDNA extraction and minimizing the extraction volume, 

an improvement in cfDNA concentration can be achieved. In chapter 4, we further optimized 

the QIAamp protocol by re-eluting three times and thereby improving cfDNA quantity. Accurate 

cfDNA quantification is key for downstream analysis and the use of a quantitative polymerase 

chain reaction (qPCR)-based assay over spectrophotometry or fluorometric assay allows for 

optimal accuracy and consistent measurements and is therefore recommended21,28. 

Despite ongoing efforts to optimize cfDNA/ctDNA quantity and quality, recovery efficiency and 

associated sensitivity to detect and analyze cfDNA/ctDNA remains the biggest hurdle to overcome. 

Considerable progress has been made in standardization of preanalytical conditions and future 

research should concentrate on technical advancements like molecular barcoding to improve 

cfDNA/ctDNA detection sensitivity. Furthermore, our research should focus on unravelling the 

biology behind cfDNA/ctDNA to gain more insight into the seemingly volatile levels of cfDNA/

ctDNA. We need to better understand what drives the release and clearance of cfDNA/ctDNA, 

which cells and cellular processes are involved, and learn more about the behavior of cfDNA/

ctDNA in blood and other body fluids. This knowledge can be used to direct future research 

and improve our interpretation of results leading to more accurate decisions affecting patient 

outcome. 

Methods for CTC enrichment
More than a dozen CTC enrichment and detection platforms for CTC detection and quantification 

are available today, but the CellSearch system is the only FDA-approved platform (Table 2)33. 

The CellSearch system magnetically separates CTCs from other blood cells using EpCAM-coated 

ferrofluids, which is an epithelial marker. The limited sensitivity of the available CTC enrichment 

and detection platforms promotes the development of alternative methods for CTC enrichment 

as in 80% of metastatic prostate cancer patients at least one CTC can be detected, with a median 

count of 9 CTCs in 7.5 mL of blood34. 

To isolate CTCs for purposes such as ex vivo expansion and to assess heterogeneity, filtration-

based microwells and diagnostic leukapheresis are interesting unbiased methods based on 

biophysical characteristics, including cell size and density. Filtration-based microwells select for 

single and viable CTCs based on their size and rigidity, however recovery efficiency needs to be 

optimized as only ~ 2% of CTCs was retrieved in a recent study35. As described in chapter 6, the 

product of diagnostic leukapheresis yields thousands of viable CTCs and the use of large blood 

volumes increases the yield compared to a single tube of blood, which is in line with previous 

reports36,37. However, sufficient white blood cell depletion still poses a challenge when using the 

RosetteSep depletion cocktail with or without subsequent EpCAM-based selection of CTCs as 

demonstrated in chapter 6. Another promising approach to isolate CTCs in an unbiased manner is 

the use of oncofetal chondroitin sulfate (ofCS), a universally expressed cancer cell surface marker 

on cells of both epithelial and mesenchymal origin. A feasibility study efficiently isolated CTCs 

based on magnetic Dynabeads coated with recombinant VAR2CSA protein, specifically targeting 

ofCS, in patients with various types and stages of cancer, including prostate cancer38. This and 

other methods should be investigated further to improve CTC enrichment.
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Table 2. FDA-approved liquid biopsy tests

Analyte Platform/assay Test characteristic Marker type Tumor type

CTC CellSearch system Isolation/enumeration Prognostic Metastatic breast, prostate 
and colorectal cancer

cfDNA Cobas EGFR Mutation 
Test v2

Qualitative detection of specific 
mutations of the EGFR gene

Predictive Non-small cell lung cancer

cfDNA Therascreen PIK3CA 
RGQ PCR Kit

Qualitative detection of specific 
mutations of the PIK3CA gene

Predictive Breast cancer

cfDNA Epi proColon Qualitative detection of the methylation 
status of the SEPT9 promotor

Diagnostic 
(screening)

Colorectal cancer

CTC, circulating tumor cell
cfDNA, cell-free DNA

Liquid biopsy as proxy for tissue biopsy

A tissue biopsy might fail to capture all genomic aberrations as heterogeneity exists within a 

particular tumor site but also between multiple tumor loci. A liquid biopsy has the potential 

to better represent spatial tumor heterogeneity as it is assumed that it arises from multiple if 

not all metastatic sites in the patient. For a liquid biopsy to serve as a proxy for tissue biopsy, 

it is a prerequisite that they are an accurate reflection of the tumor’s molecular aberrations. 

Interestingly, success rates for obtaining tumor tissue from bone and detection of ctDNA in 

prostate cancer is fairly similar and can vary from 25% to 75%39-43.

Concordance between liquid vs. tissue biopsies
Genomic analyses of ctDNA in mCRPC have shown to recapitulate the genomic landscape of 

metastatic prostate cancer as established by comparison to (matched) tissue biopsies44-47. The 

most commonly affected genes in ctDNA are TP53, AR, FOXA1, APC, PTEN, RB1, MYC, BRCA2 and 
SPOP. Interestingly, 33% of somatic mutations in ctDNA were not detected in matched tissue 

biopsy and some of those were clear cancer drivers45. In part, this was traced back to technical 

reasons, like the use of different sequencing techniques for tissue and liquid biopsies and a 

difference in sequencing depth. In a cohort of newly diagnosed metastatic hormone-sensitive 

prostate cancer patients TP53 mutations and DNA damage repair defects (ATM, ATR, BRCA2, 
CDK12, MSH2 and RAD51C) could be identified in cfDNA in respectively 47% and 21% of patients 

using targeted next-generation sequencing (NGS)48. No AR alterations were observed. This was for 

80% concordant with matched prostate tumor tissue. 

Molecular analyses of CTCs showed that CTCs can provide a reliable overview of the tumor’s 

genomic landscape37,49. CTCs with unique mutations might be derived from minor subclones that 

are undetectable in tissue biopsies49. Only a few CTCs appear to be sufficient to represent up to 

half of the mutations detected in matched metastatic biopsies49. 

Overall, evidence so far indicates that both ctDNA and CTCs are an equivalent alternative for 

tissue biopsies. With the superior detection rate of ctDNA currently, it might be more sensible to 

use ctDNA over CTCs for genomic analyses, especially in the setting of minimal residual disease 

detection where CTCs are rare. 

Concordance among liquid biopsies
Assessing the concordance between CTCs and cfDNA in mCRPC identified shared alterations in 

TP53, FOXA1, AR, MYC, BRCA1, PTEN, and RB150,51. Furthermore, cfDNA concentration, ctDNA 

fraction and CTC number appear to be associated50,52. However, some genomic alterations, 

like MYCN gain, showed considerable discordance between CTCs and cfDNA and may suggest 

biological differences between these entities50. Some differences may be traced back to their 

origin, as CTCs are shed by tumor sites and ctDNA is shed from apoptotic or necrotic tumor cells, 

or to differences in sensitivity between methods, but further research is needed to elucidate this. 

In chapter 6, analysis of concordance between individual CTCs within a patient demonstrates 

both shared and unique copy-number alterations which could indicate different subclones with 

a shared genetic background and reflects the intra-patient and inter-tumor site heterogeneity. 

These results are in line with other reports37,51,53.

The prognostic value of liquid biopsy burden

CTCs are the most studied type of liquid biopsy in metastatic prostate cancer and CTC counts 

using the CellSearch system have proven its prognostic value in mCRPC, whereby patients with ≥ 

5 CTCs/7.5 mL of blood have an unfavorable prognosis54. Increasing numbers of CTCs over time 

also have prognostic significance55. 

Evidence for the prognostic value of cfDNA and ctDNA levels is also accumulating, but clear 

cut-off levels have not been established yet. CtDNA level and fraction (% of total cfDNA) both 

associate with clinical features of tumor burden, including metastasis location and levels of 

alkaline phosphatase, lactate dehydrogenase, hemoglobin and prostate specific antigen (PSA). 

Furthermore, ctDNA fraction gradually increases with number of lines of therapy52. Importantly, 

increased ctDNA fraction, defined as at least ≥ 10% ctDNA fraction or VAF ≥ 7%, was associated 

with worse PFS in mCRPC patients treated with AR-targeted therapy (ARTT, e.g. enzalutamide, 

abiraterone, apalutamide)44,47,58. This has to be further validated in prospective clinical trials.

Circulating tumor cell-based stratification using organoids

The use of living cells as ‘real life’ drug screening models, is a captivating outlook to personalize 

cancer treatment. Several clinical trials (e.g. TUMOROID NCT03821870) are currently including 

patients to investigate if treatment response of tumor biopsy derived organoids can predict 

treatment response in patients. Patient derived organoids of luminal-breast and metastatic gastro-

intestinal cancers have been shown to recapitulate patient responses in the clinic59,60. Phenotyping 

living tumor cells has the advantage to directly measure the response to treatment compared to 

‘phenotyping after fixation’ based stratification61. In chapter 6, we aimed to generate CTC derived 

organoids from metastatic prostate cancer patients. We obtained organoids in 9/18 samples 

after short-term culture, in which prostate cancer origin could be confirmed. Furthermore, we 

were able to establish one long-term organoid cell line. Up to now, efforts to establish prostate 

cancer cell lines have proven that prostate cancer is an inherently difficult tumor type to culture in 
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vitro and in vivo, so our long-term cell line is a valuable contribution to the scientific community. 

Interestingly, we could confirm the patient’s clinical response to enzalutamide in the organoid 

ex vivo, thereby providing proof-of-concept that individualized CTC derived organoids may serve 

as ‘real life’ drug sensitivity screening model in metastatic prostate cancer. However, the current 

take rate and growth speed of CTC derived organoids is too limited to allow guided treatment in 

the clinic. Our work showed that using diagnostic leukapheresis can overcome the main obstacle, 

which is the recovery of a sufficient number of CTCs to start organoid culture. Future efforts 

should investigate how to further improve the enrichment process to obtain a purer CTC sample 

using an unbiased method. In addition, culturing conditions need to be further improved and the 

use of short-term cultures need to be maximized by investing in the development of methods for 

visualization and cell viability assays. 

Circulating tumor DNA-based stratification using molecular markers

Up to now, there are four FDA approved tests for the analysis of liquid biopsies that can be used 

for specific tumor types and applications (Table 2). Various assays are being developed that mostly 

focus on the detection of specific alterations using PCR or (targeted) NGS62-65. 

For the analysis of ctDNA in metastatic prostate cancer the development of commercially 

available targeted panels lags behind, as only few driver genes are known, compared to lung 

cancer or colorectal cancer for example, for which actionable driver genes are known. CtDNA 

analysis is technically challenging, therefore Schweizer et al. investigated clinical determinants to 

improve ctDNA detection rate. They found that disease burden and CRPC status was significantly 

associated with successful detection of ctDNA alterations by NGS approaches66. These results 

have to be interpreted with caution since false positive results can occur due to low VAFs and 

clonal hematopoiesis52. 

AR alterations (amplifications and/or mutations) in ctDNA were predictive for poor response 

to ARTT and had a negative prognostic value for overall survival (OS) in mCRPC patients treated 

with ARTT44,67,68, and could be detected in 39% of pretreated mCRPC patients using a targeted 

NGS approach69. In a retrospective analysis in mCRPC patients, AR gain in ctDNA was associated 

with a longer progression-free survival (PFS) to docetaxel70. Furthermore, data suggest that AR 

copy-number-neutral mCRPC patients might benefit more from ARTT70-72 and missense mutations 

in the ligand-binding domain of AR was associated with a shorter PFS58.

Recent reports showed that alterations in BRCA2, TP53, ATM, and PI3K pathway detected 

in ctDNA have an unfavorable prognosis in CRPC patients, independently of clinical prognostic 

factors and ctDNA level44,58,73. These alterations were found in patients with poor response to 

ARTT, suggesting primary resistance44. Interestingly, TP53 inactivation outperformed any AR-

derived biomarker tested in CTCs and ctDNA73.

Detection of DNA damage repair alterations in ctDNA might be predictive for response and 

stratify patients for targeted therapies. In a prospective cohort of mCRPC patients before start of 

ARTT, > 25% of patients had deleterious mutations in BRCA1/2 or ATM58. Interestingly, another 

trial targeting HRD with the PARP inhibitor olaparib detected at disease progression multiple 

aberrations in cfDNA that restored the function of targeted genes (BRCA2, PALB2) as mechanisms 

of resistance74,75. MSI signature with high TMB and association with mismatch repair deficiency 

can be identified in ctDNA as well. This genomic phenotype has been identified in ~ 4% of ctDNA 

from patients with metastatic prostate cancer and might stratify patients for immunotherapy52,76. 

Prospective randomized trials are needed to confirm the utility of ctDNA analysis as a prognostic 

and/or predictive biomarker. Ideally, an unbiased NGS approach should be used to characterize 

ctDNA upfront and the overall molecular makeup of the tumor, rather than just a single driver 

gene, should be used to stratify patients for the appropriate treatment. 

Response evaluation using liquid biopsies

In CRPC it is challenging to accurately monitor treatment response with the current available 

response markers. PSA and radiological imaging are poor indicators of tumor load and reflect late 

response.

Both CTC counts and CTC-expression markers may inform on response. Heller et al. investigated 

CTC count and PSA response at treatment week 13 in mCRPC patients from five prospective trials 

(COU-AA-301, AFFIRM, ELM-PC-5, ELM-PC-4, and COMET-1)77. The endpoints ‘CTC0’ (≥ 1 CTCs 

at baseline and 0 at 13 weeks) and ‘CTC conversion’ (≥ 5 CTCs at baseline and ≤ 4 at 13 weeks) 

provided greater discriminatory power for OS than the endpoints percent change in CTC count or 

PSA response. Using the ‘CTC0’ endpoint 75% of eligible patients could be evaluated against 51% 

for the ‘CTC conversion’ endpoint, making this a clinically meaningful response measure. Lorente 

et al. demonstrated that ‘CTC progression’ (< 5 CTCs at baseline and increasing) during the first 

12 weeks of treatment was independently associated with reduced survival in mCRPC patients 

from the COU-AA-301 and IMMC-38 trials78. Paller et al. observed dynamic changes in prostate 

specific membrane antigen (PSMA) expression on CTCs during therapy and a decrease in PSMA 

expression was associated with concurrent decreases in serum PSA79. 

Quantification of ctDNA may be a biomarker for response as well. Promising results from the 

TOPARP-A trial (NCT01682772), a study of the PARP inhibitor olaparib in mCRPC, showed that VAF 

of somatic DNA repair mutations in cfDNA declined in responders74. Furthermore, responders 

showed > 50% decrease in cfDNA level after 4 weeks of treatment and a decrease in cfDNA levels 

was independently associated with OS. In line with this, patients responding to ARTT appear to 

have lower ctDNA fractions68,80. Mehra et al. found that changes in cfDNA levels correlate with 

both radiologic PFS and OS in mCRPC patients on chemotherapy57. 

In chapter 5, we aimed to detect structural variants in ctDNA of mCRPC patients with the 

ultimate goal to evaluate treatment response. Structural variants are genomic rearrangements 

of ≥ 50 base pairs and are widespread in cancer. In prostate cancer predominant alterations in 

involved signaling pathways are often caused by structural variants like amplification of AR and 

MYC, and ETS-fusion genes. Large structural variants, such as inter-chromosomal translocations 
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or long-range intra-chromosomal rearrangements, are of special interest since they represent 

unique DNA-molecules that are only present in tumor cells. These properties make them a specific 

cancer biomarker. To detect structural variants in ctDNA, we used a novel methodology called 

Oxford Nanopore portable sequencing to first identify structural variants in tumor tissue obtained 

from metastases. After a bioinformatic filtering pipeline and using Breakpoint PCR, we were able 

to detect structural variants in ctDNA. Our data suggest that the quantitative measurement 

of structural variants in ctDNA correlates with tumor load and that it may indicate disease 

progression earlier than PSA. Eventually, future studies should inform whether early intervention 

based on liquid biopsy dynamics improves patient outcome compared to awaiting changes in 

PSA level and radiological evaluation.  Nevertheless, our selection of structural variants needs to 

be further optimized, as in some patients we could not demonstrate the correlation with tumor 

load and disease progression, which may indicate that we did not select structural variants that 

represent the dominant tumor driving disease clone or that we missed the emergence of new 

resistant clones as we used a targeted approach for the longitudinal samples. When these new 

resistant clones would provide new targets for treatment, this would be of great interest to try to 

improve patient outcome. 

Part III: Steroidomics

In CRPC, tumor cells evolve to escape androgen suppression and disease progression occurs at 

castrate levels of testosterone. Nevertheless, several reports from Japan showed that the level of 

testosterone may be a prognostic and predictive marker in CRPC. Patients with high testosterone 

levels (> 0.05 ng/mL) before start of ARTT tended to have a better PSA response and PFS81-83. 

An inverse association was observed for taxane-based chemotherapy82,84. Interestingly, another 

study showed that a further decline of testosterone levels during docetaxel was associated with a 

longer PSA response and PFS85. This supports the concept of the continued importance of the AR 

pathway in CRPC and renewed interest has grown for steroidogenesis as it modulates circulating 

steroid levels. 

In vitro studies investigated the function of isozymes 17βHSD2 and 17βHSD4, whose activities 

leads to androgen inactivation, and 11βHSD2, which converts adrenal hydroxy-steroids (C11-oxy 

C19) to more potent keto-steroids (C11-keto C19, including the AR agonists 11-ketotestosterone 

(11KT) and 11-ketodihydrotestosterone (11KDHT)). 17βHSD2 and 17βHSD4 variant 2 was 

functionally silenced in prostate cancer cell lines and a xenograft model, indicating its tumor 

suppressor effect on androgen conversion86,87. By contrast, 11βHSD2 activity in prostate cancer 

cell lines probably contributes to prostate cancer progression by directly increasing 11KT 

concentration and through an interaction with cytochrome P450 17A1, thereby converting C11-

oxy C21 steroids to C11-oxy C19 steroids via the C11-oxy backdoor pathway88. 

In chapter 7 we show that CellSave preservation tubes, validated for CTC and cfDNA analysis, 

can also be used for steroid measurements, thereby optimizing the samples used in clinical 

trials and limiting the number of tubes that need to be draw from a patient. In chapter 8, we 

demonstrate that 11KT is the most abundant androgen in mCRPC patients and that its circulating 

levels exceed those of testosterone. In line with above mentioned results, we found that PFS 

was longer in our patients with high total androgen concentrations. Our and other reported data 

support the concept of continued importance of the AR pathway in CRPC. We believe that the 

11-oxygenated androgens are a major contributor to AR activation after castration. Our findings 

indicate that we have structurally underestimated androgen levels in prostate cancer patients and 

this implies that we should reconsider our definition for ‘castration’.

General conclusion

This thesis describes the genomic landscape of metastatic prostate cancer in more detail. We 

have identified several distinct genomic clusters looking at specific genomic events or so-called 

‘genomic scars’. This knowledge was incorporated to give a prospect on patient stratification using 

liquid biopsies. 

I believe that the use of liquid biopsies in metastatic prostate cancer has great potential as 

prognostic, predictive and therapy response biomarker. The main advantage of liquid biopsy 

analysis is that it is acquired by a simple blood draw, which is safe, minimally invasive and 

repeatable over time. Moreover, it provides a real-time snapshot of the biologic variables that 

affect tumor growth and progression in metastatic prostate cancer. Our work on standardization 

of preanalytical conditions that affect liquid biopsy analysis already has and continues to drive 

guidelines and consensus statements to implement liquid biopsies in clinical practice. 

Comprehensive analyses of ctDNA and CTCs demonstrate that they adequately reflect the 

genomic makeup of the tumor and may thus complement or even replace tumor biopsies. The 

assessment of genomic aberrations like structural variants in ctDNA can potentially predict 

therapy response and detect mechanisms of resistance. CTCs cannot only be enumerated as 

prognosticator in metastatic prostate cancer, but can also be used to culture ex vivo thereby 

providing novel disease models for metastatic prostate cancer and to predict therapy response. 

Furthermore, steroidomics has proven its continued importance in metastatic prostate cancer 

with the establishment of clinical relevance of significant levels of circulating 11-oxygenated 

androgens. 

The clinical utility of blood-based markers like liquid biopsies and circulating steroids as 

predictive and response markers has to be further validated in prospective clinical trials and 

should therefore be routinely sampled as PSA and radiological imaging is. Essential to the work 

on identifying novel biomarkers, is to further elucidate the complex biology of metastatic prostate 

cancer and to decode the oncogenic driver events and potential actionable targets of the large 

population of mCRPC without characteristic genomic scars. 



264 265

Part 4 Chapter 9

Discussion and general conclusion

References

 1. Robinson D, Van Allen EM, Wu YM, et al. Integrative Clinical Genomics of Advanced Prostate Cancer. Cell 
2015;161(5):1215-1228. (In English). DOI: 10.1016/j.cell.2015.05.001.

 2. Fraser M, Sabelnykova VY, Yamaguchi TN, et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 
2017;541(7637):359-364. (In eng). DOI: nature20788 [pii]

  10.1038/nature20788.
 3. van Dessel LF, van Riet J, Smits M, et al. The genomic landscape of metastatic castration-resistant prostate cancers 

reveals multiple distinct genotypes with potential clinical impact. Nat Commun 2019;10(1):5251. DOI: 10.1038/
s41467-019-13084-7.

 4. Cancer Genome Atlas Research N. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015;163(4):1011-25. 
(In eng). DOI: S0092-8674(15)01339-2 [pii]

  10.1016/j.cell.2015.10.025.
 5. Viswanathan SR, Ha G, Hoff AM, et al. Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed 

by Linked-Read Genome Sequencing. Cell 2018;174(2):433-447.e19. (Article) (In English). DOI: 10.1016/j.
cell.2018.05.036.

 6. Quigley DA, Dang HX, Zhao SG, et al. Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell 
2018;175(3):889. (In eng). DOI: S0092-8674(18)31328-X [pii]

  10.1016/j.cell.2018.10.019.
 7. Wu YM, Cieslik M, Lonigro RJ, et al. Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced 

Prostate Cancer. Cell 2018;173(7):1770-1782 e14. (In eng). DOI: S0092-8674(18)30565-8 [pii]
  10.1016/j.cell.2018.04.034.
 8. Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med 

2017;377(25):2500-2501. (In eng). DOI: 10.1056/NEJMc1713444.
 9. Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 

blockade in non-small cell lung cancer. Science 2015;348(6230):124-8. (In eng). DOI: science.aaa1348 [pii]
  10.1126/science.aaa1348.
 10. Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across 

multiple cancer types. Nat Genet 2019;51(2):202-206. (In eng). DOI: 10.1038/s41588-018-0312-8
  10.1038/s41588-018-0312-8 [pii].
 11. Hansen AR, Massard C, Ott PA, et al. Pembrolizumab for advanced prostate adenocarcinoma: findings of the 

KEYNOTE-028 study. Ann Oncol 2018;29(8):1807-1813. (In eng). DOI: S0923-7534(19)34146-8 [pii]
  10.1093/annonc/mdy232.
 12. Antonarakis ES, Piulats JM, Gross-Goupil M, et al. Pembrolizumab for Treatment-Refractory Metastatic Castration-

Resistant Prostate Cancer: Multicohort, Open-Label Phase II KEYNOTE-199 Study. J Clin Oncol 2020;38(5):395-405. 
(In eng). DOI: 10.1200/JCO.19.01638.

 13. Mateo J, Porta N, Bianchini D, et al. Olaparib in patients with metastatic castration-resistant prostate cancer with 
DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 
2020;21(1):162-174. (Article) (In English). DOI: 10.1016/s1470-2045(19)30684-9.

 14. Hussain M MJ, Fizazi K, Saad F, Shore ND, Sandhu S, Chi KN, Sartor O, Agarwal N, Olmos D, Thiery-Vuillemin A, 
Twardowski P, Mehra P, Goessl C, Kang J, Burgents J, Wu W, Kohlmann A, Adelman CA, De Bono J. PROFOUND: 
phase 3 study of olaparib versus enzalutamide or abiraterone for metastatic castration-resistant prostate cancer 
with homologous recombination repair gene alterations. Annals of Oncology 2019;30(5):5:v851-v934.

 15. Barták BK, Kalmár A, Galamb O, et al. Blood Collection and Cell-Free DNA Isolation Methods Influence the Sensitivity 
of Liquid Biopsy Analysis for Colorectal Cancer Detection. Pathol Oncol Res 2019;25(3):915-923. (Article) (In English). 
DOI: 10.1007/s12253-018-0382-z.

 16. Cavallone L, Aldamry M, Lafleur J, et al. A study of preanalytical variables and optimization of extraction method 
for circulating tumor DNA measurements by digital droplet PCR. Cancer Epidemiol Biomarkers Prev 2019;28(5):909-
916. (Article) (In English). DOI: 10.1158/1055-9965.Epi-18-0586.

 17. Gahlawat AW, Lenhardt J, Witte T, et al. Evaluation of storage tubes for combined analysis of circulating nucleic acids 
in liquid biopsies. Int J Mol Sci 2019;20(3) (Article) (In English). DOI: 10.3390/ijms20030704.

 18. Parackal S, Zou D, Day R, Black M, Guilford P. Comparison of Roche Cell-Free DNA collection Tubes® to Streck Cell-
Free DNA BCT®s for sample stability using healthy volunteers. Prac Lab Med 2019;16 (Article) (In English). DOI: 
10.1016/j.plabm.2019.e00125.

 19. Sorber L, Zwaenepoel K, Jacobs J, et al. Specialized Blood Collection Tubes for Liquid Biopsy: Improving the 
Preanalytical Conditions. Mol Diagn Ther 2019 (Article in Press) (In English). DOI: 10.1007/s40291-019-00442-w.

 20. Zhao Y, Li Y, Chen P, Li S, Luo J, Xia H. Performance comparison of blood collection tubes as liquid biopsy storage 
system for minimizing cfDNA contamination from genomic DNA. J Clin Lab Anal 2019;33(2) (Article) (In English). DOI: 
10.1002/jcla.22670.

 21. Lampignano R, Neumann MHD, Weber S, et al. Multicenter evaluation of circulating cell-free DNA extraction and 
downstream analyses for the development of standardized (Pre)analytical work flows. Clin Chem 2020;66(1):149-
160. (Article) (In English). DOI: 10.1373/clinchem.2019.306837.

 22. Ilie M, Hofman V, Leroy S, et al. Use of circulating tumor cells in prospective clinical trials for NSCLC patients-
standardization of the preanalytical conditions. Clin Chem Lab Med 2018;56(6):980-989. (Article) (In English). DOI: 
10.1515/cclm-2017-0764.

 23. Rodríguez-Lee M, Kolatkar A, McCormick M, et al. Effect of Blood Collection Tube Type and Time to Processing on 
the Enumeration and High-Content Characterization of Circulating Tumor Cells Using the High-Definition Single-Cell 
Assay. Arch Pathol Lab Med 2018;142(2):198-207. (Article) (In English). DOI: 10.5858/arpa.2016-0483-OA.

 24. Zavridou M, Mastoraki S, Strati A, Tzanikou E, Chimonidou M, Lianidou E. Evaluation of preanalytical conditions 
and implementation of quality control steps for reliable gene expression and DNA methylation analyses in liquid 
biopsies. Clin Chem 2018;64(10):1522-1533. (Article) (In English). DOI: 10.1373/clinchem.2018.292318.

 25. Luk AWS, Ma Y, Ding PN, et al. CTC-mRNA (AR-V7) Analysis from Blood Samples-Impact of Blood Collection Tube and 
Storage Time. Int J Mol Sci 2017;18(5). DOI: 10.3390/ijms18051047.

 26. Merker JD, Oxnard GR, Compton C, et al. Circulating Tumor DNA Analysis in Patients With Cancer: American Society 
of Clinical Oncology and College of American Pathologists Joint Review. J Clin Oncol 2018;36(16):1631-1641. (http://
ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=29504847).

 27. Compton CC, Robb JA, Anderson MW, et al. Preanalytics and Precision Pathology: Pathology Practices to Ensure 
Molecular Integrity of Cancer Patient Biospecimens for Precision Medicine. Arch Pathol Lab Med 2019;143(11):1346-
1363. (In eng). DOI: 10.5858/arpa.2019-0009-SA.

 28. Meddeb R, Pisareva E, Thierry AR. Guidelines for the preanalytical conditions for analyzing circulating cell-free DNA. 
Clin Chem 2019;65(5):623-633. (Article) (In English). DOI: 10.1373/clinchem.2018.298323.

 29. Sorber L, Zwaenepoel K, Jacobs J, et al. Circulating cell-free DNA and RNA analysis as liquid biopsy: Optimal 
centrifugation protocol. Cancers 2019;11(4) (Article) (In English). DOI: 10.3390/cancers11040458.

 30. Shishido SN, Welter L, Rodriguez-Lee M, et al. Preanalytical variables for the genomic assessment of the cellular and 
acellular fractions of the liquid biopsy in a cohort of breast cancer patients. J Mol Diagn 2020 (Article in Press) (In 
English). DOI: 10.1016/j.jmoldx.2019.11.006.

 31. Diefenbach RJ, Lee JH, Kefford RF, Rizos H. Evaluation of commercial kits for purification of circulating free DNA. 
Cancer Genet 2018;228-229:21-27. (In eng). DOI: S2210-7762(18)30250-3 [pii]

  10.1016/j.cancergen.2018.08.005.
 32. Warton K, Graham LJ, Yuwono N, Samimi G. Comparison of 4 commercial kits for the extraction of circulating DNA 

from plasma. Cancer Genet 2018;228-229:143-150. (In eng). DOI: S2210-7762(17)30267-3 [pii]
  10.1016/j.cancergen.2018.02.004.
 33. Morrison GJ, Goldkorn A. Development and Application of Liquid Biopsies in Metastatic Prostate Cancer. Curr Oncol 

Rep 2018;20(4) (Review) (In English). DOI: 10.1007/s11912-018-0683-0.
 34. Thalgott M, Rack B, Maurer T, et al. Detection of circulating tumor cells in different stages of prostate cancer. J Cancer 

Res Clin Oncol 2013;139(5):755-63. (In eng). DOI: 10.1007/s00432-013-1377-5.
 35. Andree KC, Abali F, Oomens L, et al. Self-seeding microwells to isolate and assess the viability of single circulating 

tumor cells. Int J Mol Sci 2019;20(3) (Article) (In English). DOI: 10.3390/ijms20020477.
 36. Andree KC, Mentink A, Zeune LL, et al. Toward a real liquid biopsy in metastatic breast and prostate cancer: 

Diagnostic LeukApheresis increases CTC yields in a European prospective multicenter study (CTCTrap). Int J Cancer 
2018;143(10):2584-2591. (Article) (In English). DOI: 10.1002/ijc.31752.

 37. Lambros MB, Seed G, Sumanasuriya S, et al. Single-cell analyses of prostate cancer liquid biopsies acquired by 
apheresis. Clin Cancer Res 2018;24(22):5635-5644. (Article) (In English). DOI: 10.1158/1078-0432.Ccr-18-0862.

 38. Agerbæk MØ, Bang-Christensen SR, Yang MH, et al. The VAR2CSA malaria protein efficiently retrieves circulating 
tumor cells in an EpCAM-independent manner. Nat Commun 2018;9(1) (Article) (In English). DOI: 10.1038/s41467-
018-05793-2.

 39. McKay RR, Zukotynski KA, Werner L, et al. Imaging, procedural and clinical variables associated with tumor yield on 
bone biopsy in metastatic castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 2014;17(4):325-31. (In 
eng). DOI: pcan201428 [pii]

  10.1038/pcan.2014.28.



266 267

Part 4 Chapter 9

Discussion and general conclusion

 40. Lorente D, Omlin A, Zafeiriou Z, et al. Castration-Resistant Prostate Cancer Tissue Acquisition From Bone Metastases 
for Molecular Analyses. Clin Genitourin Cancer 2016;14(6):485-493. (In eng). DOI: S1558-7673(16)30106-9 [pii]

  10.1016/j.clgc.2016.04.016.
 41. Ross RW, Halabi S, Ou SS, et al. Predictors of prostate cancer tissue acquisition by an undirected core bone marrow 

biopsy in metastatic castration-resistant prostate cancer--a Cancer and Leukemia Group B study. Clin Cancer Res 
2005;11(22):8109-13. (In eng). DOI: 11/22/8109 [pii]

  10.1158/1078-0432.CCR-05-1250.
 42. Efstathiou E, Titus M, Wen S, et al. Molecular characterization of enzalutamide-treated bone metastatic castration-

resistant prostate cancer. Eur Urol 2015;67(1):53-60. (In eng). DOI: S0302-2838(14)00415-1 [pii]
  10.1016/j.eururo.2014.05.005.
 43. Spritzer CE, Afonso PD, Vinson EN, et al. Bone marrow biopsy: RNA isolation with expression profiling in men with 

metastatic castration-resistant prostate cancer--factors affecting diagnostic success. Radiology 2013;269(3):816-23. 
(In eng). DOI: radiol.13121782 [pii]

  10.1148/radiol.13121782.
 44. Annala M, Vandekerkhove G, Khalaf D, et al. Circulating tumor DNA genomics correlate with resistance to abiraterone 

and enzalutamide in prostate cancer. Cancer Discov 2018;8(4):444-457. (Article) (In English). DOI: 10.1158/2159-
8290.Cd-17-0937.

 45. Wyatt AW, Annala M, Aggarwal R, et al. Concordance of Circulating Tumor DNA and Matched Metastatic Tissue 
Biopsy in Prostate Cancer. J Natl Cancer Inst 2017;109(12). DOI: 10.1093/jnci/djx118.

 46. Sonpavde G, Agarwal N, Pond GR, et al. Circulating tumor DNA alterations in patients with metastatic castration-
resistant prostate cancer. Cancer 2019;125(9):1459-1469. (Article) (In English). DOI: 10.1002/cncr.31959.

 47. Belic J, Graf R, Bauernhofer T, et al. Genomic alterations in plasma DNA from patients with metastasized prostate 
cancer receiving abiraterone or enzalutamide. Int J Cancer 2018;143(5):1236-1248. (Article) (In English). DOI: 
10.1002/ijc.31397.

 48. Vandekerkhove G, Struss WJ, Annala M, et al. Circulating Tumor DNA Abundance and Potential Utility in De Novo 
Metastatic Prostate Cancer. Eur Urol 2019;75(4):667-675. (Article) (In English). DOI: 10.1016/j.eururo.2018.12.042.

 49. Faugeroux V, Lefebvre C, Pailler E, et al. An Accessible and Unique Insight into Metastasis Mutational Content 
Through Whole-exome Sequencing of Circulating Tumor Cells in Metastatic Prostate Cancer. Eur Urol Oncol 2019 
(Article in Press) (In English). DOI: 10.1016/j.euo.2018.12.005.

 50. Gupta S, Hovelson DH, Kemeny G, et al. Discordant and heterogeneous clinically relevant genomic alterations 
in circulating tumor cells vs plasma DNA from men with metastatic castration-resistant prostate cancer. Genes 
Chromosomes Cancer 2019 (Article in Press) (In English). DOI: 10.1002/gcc.22824.

 51. Hodara E, Morrison G, Cunha A, et al. Multiparametric liquid biopsy analysis in metastatic prostate cancer. JCI Insight 
2019;4(5) (Article) (In English). DOI: 10.1172/jci.insight.125529.

 52. Mayrhofer M, De Laere B, Whitington T, et al. Cell-free DNA profiling of metastatic prostate cancer reveals 
microsatellite instability, structural rearrangements and clonal hematopoiesis. Genome Med 2018;10(1) (Article) (In 
English). DOI: 10.1186/s13073-018-0595-5.

 53. Ferrarini A, Forcato C, Buson G, et al. A streamlined workflow for single-cells genome-wide copy-number profiling 
by low-pass sequencing of LM-PCR whole-genome amplification products. PLoS ONE 2018;13(3):e0193689. (http://
ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medc1&AN=29494651).

 54. Moreno JG, Miller MC, Gross S, Allard WJ, Gomella LG, Terstappen LW. Circulating tumor cells predict survival in 
patients with metastatic prostate cancer. Urology 2005;65(4):713-8. DOI: 10.1016/j.urology.2004.11.006.

 55. Danila DC, Heller G, Gignac GA, et al. Circulating tumor cell number and prognosis in progressive castration-resistant 
prostate cancer. Clin Cancer Res 2007;13(23):7053-8. DOI: 10.1158/1078-0432.CCR-07-1506.

 56. Choudhury AD, Werner L, Francini E, et al. Tumor fraction in cell-free DNA as a biomarker in prostate cancer. JCI 
Insight 2018;3(21) (Article) (In English). DOI: 10.1172/jci.insight.122109.

 57. Mehra N, Dolling D, Sumanasuriya S, et al. Plasma Cell-free DNA Concentration and Outcomes from Taxane Therapy 
in Metastatic Castration-resistant Prostate Cancer from Two Phase III Trials (FIRSTANA and PROSELICA). Eur Urol 
2018;74(3):283-291. (Article) (In English). DOI: 10.1016/j.eururo.2018.02.013.

 58. Torquato S, Pallavajjala A, Goldstein A, et al. Genetic alterations detected in cell-free DNA are associated with 
enzalutamide and abiraterone resistance in castration-resistant prostate cancer. JCO Precis Oncol 2019;3 (Article) (In 
English). DOI: 10.1200/po.18.00227.

 59. Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic 
gastrointestinal cancers. Science 2018;359(6378):920-926. (In eng). DOI: 359/6378/920 [pii]

  10.1126/science.aao2774.

 60. Yu M, Bardia A, Aceto N, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized 
testing of drug susceptibility. Science 2014;345(6193):216-20. (In eng). DOI: 345/6193/216 [pii]

  10.1126/science.1253533.
 61. Ooft SN, Weeber F, Dijkstra KK, et al. Patient-derived organoids can predict response to chemotherapy in metastatic 

colorectal cancer patients. Sci Transl Med 2019;11(513) (In eng). DOI: 11/513/eaay2574 [pii]
  10.1126/scitranslmed.aay2574.
 62. Gao M, Callari M, Beddowes E, et al. Next Generation-Targeted Amplicon Sequencing (NG-TAS): An optimised 

protocol and computational pipeline for cost-effective profiling of circulating tumor DNA. Genome Med 2019;11(1) 
(Article) (In English). DOI: 10.1186/s13073-018-0611-9.

 63. Taavitsainen S, Annala M, Ledet E, et al. Evaluation of commercial circulating tumor DNA test in metastatic prostate 
cancer. JCO Precis Oncol 2019;3 (Article) (In English). DOI: 10.1200/po.19.00014.

 64. Troll CJ, Kapp J, Rao V, et al. A ligation-based single-stranded library preparation method to analyze cell-free DNA and 
synthetic oligos. BMC Genomics 2019;20(1) (Article) (In English). DOI: 10.1186/s12864-019-6355-0.

 65. Vitale SR, Sieuwerts AM, Beije N, et al. An Optimized Workflow to Evaluate Estrogen Receptor Gene Mutations 
in Small Amounts of Cell-Free DNA. J Mol Diagn 2019;21(1):123-137. (Article) (In English). DOI: 10.1016/j.
jmoldx.2018.08.010.

 66. Schweizer MT, Gulati R, Beightol M, et al. Clinical determinants for successful circulating tumor DNA analysis in 
prostate cancer. Prostate 2019;79(7):701-708. (Article) (In English). DOI: 10.1002/pros.23778.

 67. Lolli C, De Lisi D, Conteduca V, et al. Testosterone levels and androgen receptor copy-number variations in castration-
resistant prostate cancer treated with abiraterone or enzalutamide. Prostate 2019;79(11):1211-1220. (Article) (In 
English). DOI: 10.1002/pros.23804.

 68. Romanel A, Gasi Tandefelt D, Conteduca V, et al. Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med 
2015;7(312):312re10. DOI: 10.1126/scitranslmed.aac9511.

 69. Moses M, Koksal U, Ledet E, et al. Evaluation of the genomic alterations in the androgen receptor gene during 
treatment with high-dose testosterone for metastatic castrate-resistant prostate cancer. Oncotarget 2020;11(1):15-
21. (Article) (In English) (http://www.embase.com/search/results?subaction=viewrecord&from=export&id
=L630782915

  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6967778/pdf/oncotarget-11-15.pdf).
 70. Conteduca V, Jayaram A, Romero-Laorden N, et al. Plasma Androgen Receptor and Docetaxel for Metastatic 

Castration-resistant Prostate Cancer. Eur Urol 2019;75(3):368-373. (Article) (In English). DOI: 10.1016/j.
eururo.2018.09.049.

 71. Conteduca V, Castro E, Wetterskog D, et al. Plasma AR status and cabazitaxel in heavily treated metastatic castration-
resistant prostate cancer. Eur J Cancer 2019;116:158-168. (Article) (In English). DOI: 10.1016/j.ejca.2019.05.007.

 72. Sumiyoshi T, Mizuno K, Yamasaki T, et al. Clinical utility of androgen receptor gene aberrations in circulating cell-
free DNA as a biomarker for treatment of castration-resistant prostate cancer. Sci Rep 2019;9(1):4030. (Article) (In 
English). DOI: 10.1038/s41598-019-40719-y.

 73. De Laere B, Oeyen S, Mayrhofer M, et al. TP53 outperforms other androgen receptor biomarkers to predict abiraterone 
or enzalutamide outcome in metastatic castration-resistant prostate cancer. Clin Cancer Res 2019;25(6):1766-1773. 
(Article) (In English). DOI: 10.1158/1078-0432.Ccr-18-1943.

 74. Goodall J, Mateo J, Yuan W, et al. Circulating Cell-Free DNA to Guide Prostate Cancer Treatment with PARP Inhibition. 
Cancer Discov 2017;7(9):1006-1017. DOI: 10.1158/2159-8290.CD-17-0261.

 75. Quigley D, Alumkal JJ, Wyatt AW, et al. Analysis of Circulating Cell-Free DNA Identifies Multiclonal Heterogeneity of 
BRCA2 Reversion Mutations Associated with Resistance to PARP Inhibitors. Cancer Discov 2017;7(9):999-1005. DOI: 
10.1158/2159-8290.CD-17-0146.

 76. Ritch E, Fu SYF, Herberts C, et al. Identification of hypermutation and defective mismatch repair in ctDNA from 
metastatic prostate cancer. Clin Cancer Res 2019 (Article in Press) (In English). DOI: 10.1158/1078-0432.Ccr-19-1623.

 77. Heller G, McCormack R, Kheoh T, et al. Circulating tumor cell number as a response measure of prolonged survival 
for metastatic castration-resistant prostate cancer: A comparison with prostate-specific antigen across five 
randomized phase III clinical trials. J Clin Oncol 2018;36(6):572-580. (Conference Paper) (In English). DOI: 10.1200/
jco.2017.75.2998.

 78. Lorente D, Olmos D, Mateo J, et al. Circulating tumor cell increase as a biomarker of disease progression in metastatic 
castration-resistant prostate cancer patients with low baseline CTC counts. Ann Oncol 2018;29(7):1554-1560. 
(Article) (In English). DOI: 10.1093/annonc/mdy172.



269

Chapter 9

Discussion and general conclusion

268

Part 4

 79. Paller CJ, Piana D, Eshleman JR, et al. A pilot study of prostate-specific membrane antigen (PSMA) dynamics in men 
undergoing treatment for advanced prostate cancer. Prostate 2019;79(14):1597-1603. (Article) (In English). DOI: 
10.1002/pros.23883.

 80. Wyatt AW, Azad AA, Volik SV, et al. Genomic Alterations in Cell-Free DNA and Enzalutamide Resistance in Castration-
Resistant Prostate Cancer. JAMA Oncol 2016;2(12):1598-1606. DOI: 10.1001/jamaoncol.2016.0494.

 81. Hashimoto K, Tabata H, Shindo T, et al. Serum testosterone level is a useful biomarker for determining the optimal 
treatment for castration-resistant prostate cancer. Urol Oncol Semin Orig Invest 2019;37(7):485-491. (Article) (In 
English). DOI: 10.1016/j.urolonc.2019.04.026.

 82. Shiota M, Kashiwagi E, Murakami T, et al. Serum testosterone level as possible predictive marker in androgen 
receptor axis-targeting agents and taxane chemotherapies for castration-resistant prostate cancer. Urol Oncol Semin 
Orig Invest 2019;37(3):180.e19-180.e24. (Article) (In English). DOI: 10.1016/j.urolonc.2018.10.020.

 83. Sakamoto S, Maimaiti M, Xu M, et al. Higher serum testosterone levels associated with favorable prognosis in 
enzalutamide- and abiraterone-treated castration-resistant prostate cancer. J Clin Med 2019;8(4) (Article) (In 
English). DOI: 10.3390/jcm8040489.

 84. Ando K, Sakamoto S, Takeshita N, et al. Higher serum testosterone levels predict poor prognosis in castration-
resistant prostate cancer patients treated with docetaxel. Prostate 2020;80(3):247-255. (Article) (In English). DOI: 
10.1002/pros.23938.

 85. Ryan CJ, Dutta S, Kelly WK, et al. Androgen decline and survival during docetaxel therapy in metastatic castration-
resistant prostate cancer (mCRPC). Prostate Cancer Prostatic Dis 2019 (Article in Press) (In English). DOI: 10.1038/
s41391-019-0152-3.

 86. Gao X, Dai C, Huang S, et al. Functional Silencing of HSD17B2 in Prostate Cancer Promotes Disease Progression. Clin 
Cancer Res 2019;25(4):1291-1301. (In eng). DOI: 1078-0432.CCR-18-2392 [pii]

  10.1158/1078-0432.CCR-18-2392.
 87. Ko HK, Berk M, Chung YM, et al. Loss of an Androgen-Inactivating and Isoform-Specific HSD17B4 Splice Form 

Enables Emergence of Castration-Resistant Prostate Cancer. Cell Rep 2018;22(3):809-819. (Article) (In English). DOI: 
10.1016/j.celrep.2017.12.081.

 88. Gent R, du Toit T, Bloem LM, Swart AC. The 11β-hydroxysteroid dehydrogenase isoforms: pivotal catalytic activities 
yield potent C11-oxy C19 steroids with 11βHSD2 favouring 11-ketotestosterone, 11-ketoandrostenedione and 
11-ketoprogesterone biosynthesis. J Steroid Biochem Mol Biol 2019;189:116-126. (Article) (In English). DOI: 
10.1016/j.jsbmb.2019.02.013.



271

Part 4

Appendices

Appendices
Nederlandse samenvatting

Author affiliations
List of publications
Curriculum vitae

PhD portfolio
Dankwoord



273

Part 4

Appendices

A
Nederlandse samenvatting



274 275

Part 4 Appendices

Nederlandse samenvatting

Introductie

Prostaatkanker is de meest voorkomende kanker bij mannen wereldwijd en in Nederland werd 

in 2018 bij meer dan 12.000 mannen deze diagnose gesteld. Prostaatkanker staat bekend als een 

niet-agressieve kanker, maar mannen die bij de diagnose uitzaaiingen hebben of deze tijdens 

het ziektebeloop ontwikkelen vormen een groep met een slechte uitkomst. Gemetastaseerd 

prostaatkanker kan worden onderverdeeld in twee ziektefasen: hormoongevoelig prostaatkanker 

die uiteindelijk wordt opgevolgd door hormoonongevoelig ofwel castratieresistent prostaatkanker. 

Centraal in de behandeling van gemetastaseerd prostaatkanker staat het onderdrukken van de 

testosteronproductie uit de testes, ook wel androgeen-deprivatietherapie (ADT) genoemd. De 

meeste patiënten zullen aanvankelijk vaak langere tijd op ADT reageren (de hormoongevoelige 

fase), maar het is onvermijdelijk dat prostaatkanker cellen uiteindelijk ongevoelig zullen worden 

voor ADT (castratieresistente fase). Voortschrijding van de ziekte leidt tot aanzienlijke morbiditeit 

en uiteindelijk tot overlijden. Voor castratieresistente prostaatkanker patiënten zijn er de laatste 

jaren veel nieuwe behandelingsopties beschikbaar gekomen, waaronder chemotherapie, 

tweedelijns hormonale therapie, radioactieve middelen, immunotherapie en moleculair-gerichte 

therapie. Onlangs hebben sommige van deze behandelopties een toepassing gekregen in de 

hormoongevoelige fase. Hoewel het therapeutisch landschap voor gemetastaseerd prostaatkanker 

het afgelopen decennium drastisch is veranderd, blijft het een uitdaging om de juiste behandeling, 

op het juiste moment, in de juiste volgorde, of als combinatie voor een individuele patiënt te 

selecteren, omdat het ons aan biomarkers ontbreekt die kunnen voorspellen of een patiënt zal 

reageren en die we kunnen vervolgen om te evalueren of een behandeling aanslaat. Dit is van 

belang om de beste uitkomst voor een patiënt te realiseren en daarbij de kosten en bijwerkingen 

te minimaliseren. 

Mijn proefschrift beschrijft het genomische landschap van gemetastaseerd prostaatkanker. Dit 

onderzoek draagt bij aan een beter begrip wat deze ziekte drijft en hoe we hierop in kunnen 

grijpen. Met deze kennis heb ik geprobeerd om nieuwe biomarkers te vinden, genaamd ‘vloeibare 

biopten’. Een groot deel van dit onderzoek heeft zich gericht op het standaardiseren van de 

verzameling en analyses van vloeibare biopten, omdat dit een belangrijk vereiste is voor het 

toepassen van vloeibare biopten in de kliniek. Daarnaast laat ik in een aantal onderzoeken zien 

wat de mogelijke toepassingen van vloeibare biopten zijn. Als laatste heb ik ook gekeken naar een 

andere biomarker die van belang is in de progressie van gemetastaseerd prostaatkanker, namelijk 

de in de bloedbaan circulerende steroïde hormonen.

Deel I: Het genomische landschap van gemetastaseerd prostaatkanker

De afgelopen jaren hebben uitvoerige analyses aangetoond dat het genomische landschap van 

gemetastaseerd prostaatkanker erg complex is en meerdere mutaties en structurele varianten 

bevat, waarbij er veel verschil is tussen de prostaatkanker cellen van patiënten onderling. Een 

aantal genen hebben vaak afwijkingen bij gemetastaseerd prostaatkanker: AR, PTEN, TP53 en 

RB1; de genfusie TMPRSS2-ERG is de bekendste structurele variant. Structurele varianten zijn 

grove DNA afwijkingen van ≥ 50 basenparen en ze komen vaak voor in kanker. 

AR, het gen dat de DNA code bevat voor de androgeen receptor, is het belangrijkste 

aangrijpingspunt voor de behandeling van gemetastaseerd prostaatkanker door middel van ADT 

en tweedelijns hormonale therapie. Zoals hierboven beschreven is, worden prostaatkanker cellen 

uiteindelijk ongevoelig voor deze behandeling door verschillende resistentiemechanismen. Uit 

onderzoek is gebleken dat naast de AR signaalroute, ook andere mechanismen van belang zijn 

in gemetastaseerd prostaatkanker, zoals de PI3K, Wnt en DNA reparatie signaalroutes. Daarnaast 

lijken ook afwijkingen in niet-coderende delen van het DNA van voorspellende waarde voor het 

ziektebeloop te zijn en mogelijk hebben deze afwijkingen zelfs een bepaalde functie. In hoeverre 

we deze mechanismen en afwijkingen kunnen gebruiken als therapeutisch aangrijpingspunt of 

als marker om te vervolgen om respons op therapie te meten moet verder uitgezocht worden.

In hoofdstuk 2 van dit proefschrift hebben we bij een grote groep gemetastaseerde 

castratieresistente prostaatkanker patiënten uitgebreide genomische analyses verricht. We 

hebben DNA van tumorweefsel, wat verkregen is door een biopt van een metastase te nemen, 

afgelezen door middel van ‘next-generation sequencing’ (NGS). Vervolgens hebben we op basis 

van genomische kenmerken deze patiënten geclassificeerd, waarbij we acht subgroepen of 

clusters hebben geïdentificeerd:

A) Microsatelliet Instabiliteit (MSI) karakteristieken met hoge ‘tumor mutational burden’ (TMB) 

en geassocieerd met mismatch reparatie deficiëntie; 6,6% van ons cohort;

B) Tandem duplicatie (> 100 kbp) fenotype geassocieerd met biallelische CDK12 inactiviteit; 

6,6% van ons cohort;

D) Homologe Recombinatie Deficiëntie (HRD) karakteristieken met veel (> 100 kbp) deleties 

en geassocieerd met (somatische) mutaties in BRCAness-geassocieerde genen; 11,2% van ons 

cohort;

F) Tumoren verrijkt voor chromothripsis; 10,2% van ons cohort;

C, E, G, H) Niet-significante genomische kenmerken zonder bekende biologische associatie; 

65,4% van ons cohort. 

Verschillende clusters bevatten patiënten die op basis van hun genomische kenmerken mogelijk 

in aanmerking komen voor moleculair-gerichte therapie. Zo bevat cluster A patiënten die 
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mogelijk in aanmerking komen voor immunotherapie met immuun check-point inhibitoren, zoals 

pembrolizumab. Van andere kankersoorten die soortgelijke genomische kenmerken hebben, 

is een hoge gevoeligheid voor immuun check-point inhibitoren beschreven. Twee klinische 

studies hebben dit verder onderzocht, de KEYNOTE-028 en de KEYNOTE-199, en zij lieten een 

langdurige respons zien in een subset van gemetastaseerde prostaatkanker patiënten behandeld 

met immuun check-point inhibitoren. Deze subset van patiënten was voornamelijk geselecteerd 

op de expressie van PD-L1 in hun tumoren; dit is het aangrijpingspunt van pembrolizumab. 

Helaas is er (vooralsnog) niets bekend over het genomische landschap van deze tumoren. De 

patiënten in cluster D komen mogelijk in aanmerking voor behandeling met poly(ADP-ribose) 

polymerase (PARP) inhibitoren, wat DNA schade reparatie (DDR) signaalroutes blokkeert. Twee 

klinische studies, de TOPARP-B en de PROfound trial, hebben aangetoond dat de PARP inhibitor 

olaparib een anti-tumor effect en een verbeterde overleving bewerkstelligt in gemetastaseerde 

castratieresistente prostaatkanker patiënten met DDR gen afwijkingen, zoals BRCA2 deficiëntie.  

Dit zijn veelbelovende resultaten die in toekomstige studies verder gevalideerd moeten worden.

Desalniettemin is er een grote groep van gemetastaseerde castratieresistente prostaatkanker 

patiënten (cluster C, E, G, H; ongeveer 66% van de patiënten) die vooralsnog niet geclassificeerd 

kunnen worden op basis van klinisch-relevante of biologische kenmerken. Toekomstig onderzoek 

moet zich op deze groep patiënten richten om zo te onderzoeken of er therapeutische 

aangrijpingspunten zijn. Van belang hierbij is dat we recent een cellijn gecreëerd hebben die de 

genomische kenmerken van cluster E weergeeft, verder beschreven in hoofdstuk 6. Deze cellijn 

kan bijdragen aan verder onderzoek om de biologie achter dit cluster op te helderen. 

Deel II: Vloeibare biopten

Met behulp van biomarkers kunnen we (patho)fysiologische processen of reacties op een 

interventie vastleggen. Dit kan met behulp van klinische metingen, metingen in het laboratorium 

of door middel van beeldvorming. Er zijn biomarkers met verschillende toepassingen: diagnostisch, 

prognostisch, predictief en monitoring (van bijvoorbeeld respons op therapie). 

In de diagnose en evaluatie van gemetastaseerd prostaatkanker wordt gebruik gemaakt 

van verschillende laboratorium metingen, waaronder PSA (prostaat-specifiek antigeen), en 

beeldvorming door middel van botscan, CT-scan, MRI en recent ook de PSMA-PET CT-scan. Echter 

deze biomarkers hebben hun tekortkomingen. PSA is een prostaat-specifieke marker, maar geen 

prostaatkanker-specifieke marker en PSA staat onder invloed van testosteron. Dit betekent dat 

er een PSA daling te verwachten is onder ADT en tweedelijns hormonale therapie, maar dat dit 

niet per definitie betekent dat de prostaatkanker cellen ook stoppen met groeien. Daarnaast 

komen in gemetastaseerd castratieresistent prostaatkanker PSA level en uitgebreidheid van 

ziekte en klinische uitkomsten niet altijd overeen. Beeldvorming kan verandering in tumorgroei 

vastleggen, maar dit effect is niet direct zichtbaar, waarbij je eigenlijk achter de feiten aan loopt. 

Verder laat een botscan veranderingen in het botmetabolisme zien en weerspiegelt dus niet de 

prostaatkanker cellen zelf. 

Met de ontdekking van ‘vloeibare biopten’ is er een nieuwe manier beschikbaar gekomen om 

tumor DNA te verkrijgen dat gebruikt kan worden als biomarker met verschillende toepassingen. 

Vloeibare biopten omvatten verschillende entiteiten: circulerend cel-vrij DNA (cfDNA) en RNA 

(cfRNA), circulerende tumorcellen (CTC’s) en exosomen. Het grootste voordeel van vloeibare 

biopten is dat ze, in tegenstelling tot weefsel biopten, op een minimaal invasieve en veilige 

manier verkregen kunnen worden en daarom gedurende het ziektebeloop frequent afgenomen 

kunnen worden. Het gaat namelijk om een afname van bijvoorbeeld bloed, urine of ascites. 

Een ander belangrijk voordeel is dat alle tumorlocaties in het lichaam deze biomarkers kunnen 

afgeven waardoor het mogelijk beter de heterogeniteit van de tumor weergeeft dan wanneer je 

van één enkele plek een biopt afneemt. Aangezien dit proefschrift zich richt op cfDNA en CTC’s, 

zullen deze twee biomarkers in meer detail worden besproken.

Cel-vrij DNA

Cel-vrij DNA zijn kleine fragmenten van nucleïnezuur (lengte van 180−200 bp) die in de 

bloedcirculatie vrijkomen wanneer weefselcellen en bloedcellen afsterven. In het geval van 

tumorcellen wordt dit circulerend tumor-DNA (ctDNA) genoemd. De hoeveelheid cfDNA in de 

bloedcirculatie hangt af van meerdere factoren, zoals (patho)fysiologische omstandigheden 

(inspanning, ziekte) en pre-analytische condities (opslagtemperatuur, type bloedbuis), maar is 

meestal laag met ongeveer 10 ng per ml plasma. De fractie van ctDNA hangt af van het tumortype 

en het ziektestadium en kan variëren van extreem laag (< 0,01%) tot zeer hoog (60%) maar is vaak 

minder dan 1% van het totale cfDNA.

Circulerende tumorcellen

Circulerende tumorcellen zijn tumorcellen in de bloedcirculatie die afkomstig zijn van de primaire 

tumor en/of van de metastasen. Aangezien CTC’s afkomstig kunnen zijn van alle tumorplaatsen in 

het lichaam, wordt aangenomen dat ze de genetische en biologische heterogeniteit van de tumor 

weerspiegelen. Net als ctDNA, komen CTC’s weinig voor in het bloed met over het algemeen 

1 CTC per ml bloed. Voor het detecteren en kwantificeren van CTC’s heeft de FDA (U.S. Food 

and Drug Administration) het CellSearch systeem goedgekeurd. Dit systeem scheidt CTC’s van 

andere bloedcellen met behulp van met magnetische EpCAM-gecoate ferrofluids (vloeistof 

met daarin magnetische nanodeeltjes). Binnen gemetastaseerd prostaatkanker zijn CTC’s het 

meest bestudeerd en er is bekend dat CTC’s een prognostische en predictieve waarde hebben. 

Gemetastaseerde prostaatkanker patiënten met ≥ 5 CTC’s per 7,5 ml bloed hebben een slechtere 

uitkomst en toenemende aantallen CTC’s in de loop van de tijd hebben ook een prognostische 
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betekenis. Expressie van AR splice variant 7 (AR-V7) in CTC’s, wat een androgeen-onafhankelijke 

activatie van AR oplevert, is sterk geassocieerd met een slechte respons op tweedelijns hormonale 

therapie. Daarentegen wordt juist een goede respons op chemotherapie gezien bij patiënten met 

AR-V7 expressie in CTC’s.

Pre-analytische condities

Voor de implementatie van vloeibare biopten in de standaard oncologische zorg is het essentieel 

om de pre-analytische condities en werkprocessen te standaardiseren. Op deze manier worden 

betrouwbare en consistente resultaten gewaarborgd. 

In hoofdstuk 3 hebben we verschillende pre-analytische condities onderzocht om cfDNA/ctDNA 

optimaal te bewaren voordat verdere analyses opgestart worden. We ontdekten dat het gebruik 

van verschillende bloedafname buizen de detectie van ctDNA niet beïnvloedde, maar dat sommige 

bloedafname buizen de hoeveelheid cfDNA in de loop van de tijd wel stabiliseerde. Aangezien in 

veel onderzoeken variant allel frequentie (VAF; fractie ctDNA van cfDNA in %) wordt gerapporteerd, 

kan dit mogelijk leiden tot een onderschatting van de VAF wanneer een bloedmonster niet op tijd 

wordt verwerkt. Andere onderzoeken hebben ook verschillende bloedafname buizen getest en 

vonden net als wij dat, indien het bloedmonster binnen enkele dagen wordt verwerkt, het type 

bloedbuis triviaal is. Tabel 1 geeft een overzicht van de meest gebruikte bloedafname buizen. 

Concluderend geldt dat voor RNA-analyses van CTC’s een EDTA-buis die binnen 48 uur verwerkt 

wordt optimaal is, en voor cfDNA/ctDNA analyses een EDTA-buis die binnen zes uur verwerkt 

wordt óf een cel-stabilisatiebuis die binnen 2-7 dagen verwerkt wordt, even geschikt zijn.

Tabel 1. Meest gebruikte bloedafname buizen voor vloeibare biopten

Type bloedbuis Monster Entiteit Cel stabilisatie

K2EDTA Plasma
cfDNA
CTC

Niet-gestabiliseerd

Cell-Free DNA BCT® Plasma
cfDNA
CTC

Gestabiliseerd

PAXgene Blood ccfDNA Plasma cfDNA Gestabiliseerd

Cell-Free DNA BCT® Plasma cfDNA Gestabiliseerd

CellSave Preservation Tubes Plasma
cfDNA
CTC

Gestabiliseerd

TransFix/EDTA Vacuum BCT Plasma CTC Gestabiliseerd

CTC, circulerende tumor cel
cfDNA, cel-vrij DNA

De volgende stap in de analyse van cfDNA is de isolatie van cfDNA uit plasma; de handmatige 

‘QIAamp Circulating Nucleic Acid’ methode van Qiagen wordt beschouwd als de gouden 

standaard met de hoogste cfDNA opbrengst. Echter geautomatiseerde methoden hebben de 

voorkeur, omdat bij het implementeren van vloeibare biopten in de standaard oncologische zorg 

er veel samples binnen een korte tijd verwerkt zullen moeten worden en er zo min mogelijk 

variatie mag optreden tussen de laboranten die de analyses uitvoeren. In hoofdstuk 4 beschrijven 

we een directe vergelijking van de QIAamp met twee geautomatiseerde isolatiemethoden, de 

QIAsymphony (Qiagen) en de Maxwell (Promega). In onze handen presteerde QIAsymphony 

vergelijkbaar met QIAamp. Hoewel de cfDNA opbrengst het laagst was met Maxwell, was de 

VAF vergelijkbaar tussen alle methoden. Resultaten van een ander onderzoek toonden aan dat 

QIAsymphony en Maxwell beiden toereikende geautomatiseerde isolatiemethoden zijn, wat 

in lijn is met onze resultaten. Verdere optimalisatie van de cfDNA isolatie kan bereikt worden 

door het plasmavolume te vergroten en het extractievolume te minimaliseren. In hoofdstuk 4 

hebben we het QIAamp protocol verder geoptimaliseerd door het extractievolume driemaal her 

te gebruiken, waardoor de cfDNA opbrengst toenam.

Om CTC’s te isoleren voor verschillende experimentele doeleinden, zoals ex vivo celkweken 

en analyseren van cel heterogeniteit, zijn op filtratie gebaseerde microwells en diagnostische 

leukaferese interessante methoden. Deze methoden zijn gebaseerd op biofysische kenmerken 

van CTC’s, waaronder celgrootte en celdichtheid. Microwells selecteren individuele CTC’s op 

basis van hun celgrootte en celstijfheid, maar de efficiëntie van de CTC opbrengst is slechts ~ 

2%, zoals werd aangetoond in een recente studie. Zoals beschreven in hoofdstuk 6, levert het 

product van diagnostische leukaferese duizenden levensvatbare CTC’s op door het gebruik van 

grote bloedvolumes. In vergelijking met de opbrengst van CTC’s vanuit een enkele buis met bloed 

is dit enorm en dit is in lijn met resultaten uit eerdere studies. Echter, afdoende depletie van witte 

bloedcellen vormt nog steeds een uitdaging bij het gebruik van de ‘RosetteSep depletie’ techniek, 

al dan niet gevolgd door EpCAM-gebaseerde selectie van CTC’s, zoals aangetoond in hoofdstuk 6, 

en dit moet verder geoptimaliseerd worden.

Op circulerende tumorcellen-gebaseerde stratificatie met behulp van organoïden

Het gebruik van levende cellen als ‘real-life’ screeningsmodellen voor de respons op therapie 

schept een interessant toekomstbeeld om de behandeling van kanker te personaliseren. Dit kan 

gedaan worden middels een tumorbiopt dat bij een patiënt is afgenomen, wat in het laboratorium 

wordt gekweekt tot een mini-tumor oftewel een organoïde. Verschillende klinische onderzoeken 

(bijv. TUMOROID NCT03821870) includeren momenteel patiënten om te onderzoeken of de 

respons op therapie in organoïden, afkomstig van tumorbiopten, respons op therapie in diezelfde 

patiënten kan voorspellen. Soortgelijk onderzoek met organoïden van borstkanker patiënten en 

patiënten met gemetastaseerde gastro-intestinale kankers laten zien dat de respons in organoïden 

en patiënten overeenkomen. 

In hoofdstuk 6 hebben we ons gericht op het kweken van organoïden afkomstig van CTC’s van 

patiënten met gemetastaseerd prostaatkanker. We verkregen organoïden in 9 uit 18 (50%) monsters 
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na kortdurende kweek waarin we konden aantonen dat deze CTC-organoïden oorspronkelijk 

prostaatkanker cellen waren. Bovendien waren we in staat om een   organoïde cellijn op te zetten 

die langdurig in kweek gehouden kon worden (met de genomische kenmerken van cluster E; zie 

hierboven). Tot nu toe is gebleken dat het erg moeilijk is om prostaatkanker cellijnen tot stand 

te brengen, dus onze nieuwe cellijn is een waardevolle toevoeging voor het wetenschappelijk 

onderzoek. In deze organoïde cellijn hebben we de respons op enzalutamide getest, een vorm 

van tweedelijns hormonale therapie, en dit kwam overeen met de respons van deze patiënt 

op enzalutamide in de kliniek. Hiermee konden we een ‘proof-of-concept’ leveren dat patiënt-

specifieke organoïden, afkomstig uit CTC’s, kunnen dienen als ‘real life’ screeningsmodel voor de 

respons op therapie bij gemetastaseerd prostaatkanker. Echter, het huidige slagingspercentage en 

de groeisnelheid van organoïden afkomstig uit CTC’s is momenteel nog te beperkt om dit concept 

toe te passen in de kliniek.

Responsevaluatie met behulp van circulerend tumor DNA

In gemetastaseerd castratieresistent prostaatkanker is het een uitdaging om de respons op 

therapie nauwkeurig en tijdig te bepalen met de huidige biomarkers zoals eerder genoemd. 

In hoofdstuk 5 hebben we ons gericht op het detecteren van structurele varianten in ctDNA 

van patiënten met gemetastaseerd castratieresistent prostaatkanker om de respons op therapie 

te evalueren. In prostaatkanker zijn structurele varianten betrokken bij biologisch relevante 

signaalroutes, zoals overexpressie van AR en MYC, en ETS-fusiegenen. Grote structurele varianten, 

zoals translocaties tussen chromosomen of binnen chromosomen zijn interessant omdat dit 

unieke DNA-moleculen zijn die alleen in tumorcellen aanwezig zijn. Dit maakt dat ze een specifieke 

biomarker voor kanker zijn. Om structurele varianten in ctDNA te detecteren, hebben wij een 

nieuwe methodologie gebruikt, genaamd ‘Oxford Nanopore portable sequencing’. Hiermee zijn 

eerst structurele varianten geïdentificeerd in tumorcellen verkregen uit weefselbiopten van 

metastasen. Na een bioinformatische analyse en met behulp van Breakpoint PCR, waren we 

in staat om structurele varianten in ctDNA te detecteren. Onze eerste resultaten laten zien dat 

de kwantitatieve meting van structurele varianten in ctDNA overeenkomt met de hoeveelheid 

kanker in het lichaam en dat deze meting eerder kan wijzen op ziekteprogressie dan een PSA 

bepaling. Echter, de selectie van structurele varianten moet verder worden geoptimaliseerd, 

omdat we bij sommige patiënten de correlatie met hoeveelheid kanker en ziekteprogressie niet 

konden aantonen. Dit kan erop wijzen dat we geen structurele varianten hebben geselecteerd die 

het meest representatief zijn voor de tumor.

Deel III: ‘Steroidomics’

In gemetastaseerde prostaatkanker patiënten die behandeld worden met ADT zijn de 

circulerende testosteron levels onder castratie niveau. Desondanks kan er ziekteprogressie 

plaatsvinden in gemetastaseerde castratieresistente prostaatkanker patiënten door verschillende 

resistentiemechanismen. Onderzoek toont aan dat de AR signaalroute hierbij van belang blijft en 

dat resistentie niet alleen afhankelijk is van genomische afwijkingen (bijvoorbeeld overexpressie 

van AR), maar ook van veranderingen in de aanmaak en het metabolisme van steroïden. 

Steroïde hormonen zijn kleine signaal moleculen die genexpressie reguleren door te binden aan 

receptoren. Steroïden worden gemaakt uit cholesterol en omvatten vijf groepen van hormonen, 

waaronder glucocorticoïden en androgenen. Het mannelijk hormoon testosteron behoort tot 

deze laatste groep. Bepalingen van steroïden worden verricht op bloed-serum monsters met 

behulp van ‘massa spectrometrie’ (MS) technieken. 

Het effect van ADT wordt geëvalueerd door circulerende testosteron levels in het bloed te 

bepalen en hoewel dit onder castratie niveau is, is aangetoond dat de hoeveelheid testosteron 

van voorspellende waarde kan zijn. Patiënten met een relatief hoog testosteron level voor 

start van therapie hebben een betere uitkomst bij de behandeling met tweedelijns hormonale 

therapie. Patiënten met een relatief laag testosteron level voor start van therapie hebben een 

betere uitkomst bij de behandeling met chemotherapie. Verder laat onderzoek een associatie 

zien bij patiënten met een dalend testosteron gehalte tijdens chemotherapie en PSA respons en 

ziekteprogressie-vrije overleving. 

In hoofdstuk 7 laten we zien dat CellSave bloedbuizen, die ook gebruikt worden voor CTC 

en cfDNA analyses, ook gebruikt kunnen worden voor steroïde metingen. Hierdoor kunnen 

studie samples optimaal gebruikt worden en hoeven er minder verschillende bloedbuizen 

afgenomen te worden bij patiënten. In hoofdstuk 8 tonen we aan dat 11-ketotestosteron (11KT), 

een 11-ketogeen androgeen, de meest voorkomende androgeen is in de bloedcirculatie van 

gemetastaseerde castratieresistente prostaatkanker patiënten. De circulerende levels van 11KT 

zijn veel hoger dan die van testosteron en daarnaast is bekend dat 11KT in staat is om de androgeen 

receptor te activeren. Wij denken dat 11-geoxygeneerd androgenen een belangrijke rol spelen in 

AR signaalroute activatie na castratie. Hierop aansluitend zagen we dat onze patiënten met een 

hoog totaal androgeen (11KT + testosteron) level een langere progressievrije overleving hadden. 

Uit onze resultaten en ander onderzoek blijkt dat ook in castratieresistent prostaatkanker de AR 

signaalroute een belangrijke speler blijft. 

Conclusie

Ik ben ervan overtuigd dat de toepassing van vloeibare biopten in gemetastaseerd prostaatkanker 

een grote potentie heeft als prognostische, voorspellende en therapie respons biomarker. Een 

belangrijk voordeel van vloeibare biopten is dat het te verkrijgen is door een simpele bloedafname. 

Dit is veilig, minimaal invasief en makkelijk te herhalen gedurende de tijd. Bovendien geeft het 
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een ‘real-time’ overzicht van de biologische karakteristieken en genomische kenmerken die 

tumorgroei en ziekteprogressie kunnen beïnvloeden in gemetastaseerd prostaatkanker. Ons 

onderzoek naar het standaardiseren van pre-analytische condities die van invloed kunnen zijn 

op de analyse van vloeibare biopten is van groot belang om het gebruik van vloeibare biopten 

in de klinische praktijk te implementeren. Uitgebreide analyses op ctDNA en CTC’s tonen aan 

dat ze de genomische karakteristieken van de tumor weergeven en dus complementair zijn aan 

tumor biopten en deze wellicht kunnen vervangen. Het analyseren van genomische afwijkingen, 

zoals structurele varianten, in ctDNA kan mogelijk therapie respons en resistentiemechanismen 

voorspellen. Naast de voorspellende waarde van CTC aantallen, kunnen CTC’s ook gebruikt 

worden om buiten het lichaam te kweken tot organoïden. Op deze manier draagt dit bij aan de 

ontwikkeling van nieuwe ziektemodellen voor gemetastaseerd prostaatkanker en kan het mogelijk 

toegepast worden om therapie respons te voorspellen. Daarnaast hebben we aangetoond dat 

‘steroidomics’ van belang blijven in gemetastaseerd prostaatkanker met ons onderzoek naar de 

klinische relevantie van circulerende 11-ketogene androgenen. 

Het gebruik van op bloed-gebaseerde biomarkers, zoals vloeibare biopten en circulerende 

steroïden, als voorspellende markers en therapie response markers moeten verder onderzocht en 

gevalideerd worden in prospectieve klinische studies. Het is daarom belangrijk om dit standaard 

mee te nemen in klinische studies naast PSA en radiologische beeldvorming. Daarnaast is het 

essentieel om meer inzicht te krijgen in de complexe biologie van gemetastaseerd prostaatkanker 

en om meer te weten te komen over welke genomische afwijkingen belangrijk zijn en mogelijk 

als aangrijpingspunt kunnen dienen in de grote subgroep van patiënten met gemetastaseerd 

castratieresistent prostaatkanker zonder duidelijke genomische kenmerken. 
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Lisanne Francisca van Dessel was born on 

the 29th of January 1989 in Rotterdam, the 

Netherlands. She completed her secondary 

school education at Comenius College 

in Capelle aan den IJssel in 2007. During 

this period she participated in the Leiden 

Advanced Pre-University Programme 

for Top students (LAPP-Top) at the Pre-

University College of Leiden University. 

After graduation, she started her medical 

training at the Erasmus University Medical Center Rotterdam. In 2009, she commenced with the 

research master’s program Molecular Medicine at the Erasmus University Rotterdam, which she 

graduated from in 2012. This research master’s programme focuses on genetic, molecular, and 

cellular principles of health and disease and involves two large laboratory research projects. She 

conducted her senior medical internship at the department of Urology at the Erasmus University 

Medical Center Rotterdam. During her studies she actively participated in the student rowing 

club A.R.S.R. Skadi, participated in several committees and the Co-Raad of the Medical Faculty 

Association Rotterdam (MFVR) and travelled for 6 months through Asia and Australia. In May 2015 

she obtained her medical degree after which she started her PhD project on metastatic prostate 

cancer at the departments of Medical Oncology and Experimental Urology at the Erasmus MC 

Cancer Institute Rotterdam under the supervision of Prof. dr. R. de Wit, Prof. dr. ir. G. Jenster, 

Prof. dr. ir. J.W.M. Martens, and Dr. M.P.J.K. Lolkema. Her research projects are described in this 

thesis and were presented at various (inter)national congresses. During her PhD training she 

participated in the PhD committee of the  Postgraduate School Molecular Medicine and organized 

multiple (social) activities and research meetings for her laboratory group. Furthermore, she was 

actively involved in education and supervised several students in extracurricular research and 

their master thesis. In 2017 she was awarded the Pieter de Mulder Award which enabled her to 

take on an international research internship at the department of Experimentelle Chirurgische 

Onkologie at the Universitätsklinikum Düsseldorf in Germany under the supervision of Prof. Dr. 

Med. N.H. Stoecklein. From December 2018 on, she started working as a medical resident (ANIOS) 

at the Urology department of the Amphia hospital in Breda and subsequently of the Franciscus 

Gasthuis & Vlietland hospital in Rotterdam. In 2021 she will start her residency training (AIOS) in 

Urology in Rotterdam.
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1. PhD training Year Workload

General courses
- Research Integrity
- BROK (‘Basiscursus Regelgeving Klinisch Onderzoek’)
- Biostatistical Methods I: Basic Principles
- BKO-training ‘Omgaan met groepen’
- Photoshop and Illustrator CS6
- Biomedical English Writing and Communication
- Re-registration BROK

2015
2015
2016
2016
2017
2018
2019

0.3 ECTS
1.5 ECTS
5.7 ECTS
0.3 ECTS
0.3 ECTS
3.0 ECTS
1.0 ECTS

Specific courses (e.g. Research school, Medical Training)
- Course Biomedical Research Techniques XIV
- NGS in DNA Diagnostics Course
- Course Next Generation Sequencing data analysis
- Course Open Clinica
- Course on R
- Real Time PCR training
- The Galaxy for NGS

2015
2015
2015
2015
2016
2016
2017

1.5 ECTS
1.0 ECTS
1.4 ECTS
0.3 ECTS
1.4 ECTS
0.2 ECTS
1.0 ECTS

Seminars and workshops
- Erasmus MC Bladder Cancer Research Day
- 4th/5th Daniel den Hoed Day
- Molecular Medicine Day
- Research in mCRPC
- PhD Day
- Illumina 2016 European Genomic Technology Forum
- Symposium Novel Options for Cancer Imaging: Focus on Urological Tumors
- Scientific Meeting Medical Oncology
- Illumina Whole Genome Sequencing Symposium

2015
2016/2017
2016/2017
2016
2015/2016
2016
2016
2015-2017
2016

0.3 ECTS
0.6 ECTS
0.6 ECTS
0.3 ECTS
0.6 ECTS
0.3 ECTS
0.3 ECTS
0.9 ECTS
0.3 ECTS

Presentations
- Scientific Meeting Medical Oncology – oral
- 20th Molecular Medicine Day – poster
- Research in mCRPC – oral
- Nederlandse Vereniging van Urologie (NVU) Voorjaarsvergadering – oral
- 11th EORTC pathobiology group meeting – oral
- 6th Dutch Uro-Oncology Study group (DUOS) Year Symposium – oral
- Jonge Oncologen avond – oral
- Medical Oncology Research Meeting – oral
- Interlab meeting Twente – oral
- Interlab meeting Antwerpen – oral
- EORTC Gynecological Cancer Group Meeting Porto – oral
- NVMO Oncologiedagen – Pieter de Mulder Award – oral
- AC Urogenitale Tumoren retraite – oral
- CancerID CTC DLA workshop Dusseldorf – oral
- Scholingsdag Nederlandse Vereniging van Oncologie Datamanagers (NVvOD) – oral
- JNI Scientific Lab Meeting – oral
- American Society of Clinical Oncology (ASCO) Annual meeting – poster presentation
- Brigitte and Dr. Konstanze Wegener Seminar / DCC-Net Retreat Krickenbeck – oral
- Tour d’Europe – oral
- Externe refereeravond Urologie – oral

2016
2016
2016
2016/2018
2016
2016
2017
2017
2017
2017
2017
2017
2018
2018
2018
2018
2018
2018
2018
2019

0.2 ECTS
1.0 ECTS
0.2 ECTS
0.4 ECTS
0.2 ECTS
0.2 ECTS
0.2 ECTS
0.2 ECTS
0.2 ECTS
0.2 ECTS
0.2 ECTS
0.2 ECTS
0.2 ECTS
0.2 ECTS
0.2 ECTS
0.2 ECTS
1.0 ECTS
0.2 ECTS
0.2 ECTS
0.2 ECTS

(Inter)national conferences
- 5th-9th Dutch Uro-Oncology Study group (DUOS) Year Symposium
- CPCT symposium
- CMBD-themadag ‘Cell free DNA: grensverleggende innovatie in de moleculaire diagnostiek’
- Nederlandse Vereniging van Urologie (NVU) Voorjaarsvergadering/Najaarsvergadering
- European Association of Urology (EAU) Annual Congress
- 2nd/3rd Brigitte and Dr. Konstanze Wegener Seminar / DCC-Net Retreat Krickenbeck

2015-2019
2015/2016
2017
2016-2018
2018/2019
2018/2019

1.5 ECTS
0.6 ECTS
0.3 ECTS
0.9 ECTS
2.0 ECTS
2.0 ECTS

Other
- Medical Oncology Journal Club
- Urology Lab Meeting
- Medical Oncology Research Meeting
- JNI Scientific Lab Meeting
- JNI Oncology Lecture

2015-2018
2015-2018
2015-2018
2015-2018
2015-2018

3.0 ECTS
1.0 ECTS
2.0 ECTS
3.0 ECTS
2.0 ECTS

2. Teaching

Lecturing
- Klinische les polikliniek ‘CIRCUS studie’ 2017 0.2 ECTS

Supervising practicals and excursions, Tutoring
- Urology Skills Training 2nd year medical students
- Tutoring 1st year medical students
- Supervisor “Clinical orientation on the medical profession” for 1st year medicalstudents

2015-2017
2016-2017
2018

1.0 ECTS
1.5 ECTS
0.5 ECTS

Supervising Master’s theses
- Stéphanie Perridon 2017 1.5 ECTS

Other
- Supervising ‘Minor’ medical student 2017 0.5 ECTS

3. Other

- Organizer Medical Oncology Journal Club
- Secretary cfDNA meetings
- Member of PhD committee of the Erasmus Postgraduate School Molecular Medicine
- Research internship Dusseldorf

2015-2018
2016-2018
2017-2018
2018

1.5 ECTS
1.5 ECTS
1.0 ECTS
5.0 ECTS
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Voor u ligt misschien wel het belangrijkste, maar in ieder geval het meest gelezen hoofdstuk van 

een proefschrift. En niet zonder reden, want dit proefschrift was er niet gekomen zonder de hulp, 

bijdrage en ondersteuning van een hoop mensen. 

Allereerst wil ik de patiënten bedanken die hebben deelgenomen aan de klinische studies 

beschreven in dit proefschrift. Het is bewonderenswaardig dat u zonder enkel belang of voordeel 

bereid bent geweest materiaal te doneren en uw kostbare tijd beschikbaar te stellen voor het 

wetenschappelijk onderzoek. De hoed op de cover van dit proefschrift is een blijk van dank; ik zet 

mijn ‘hoed’ (pet) voor u af!

Veel dank gaat uit naar de vaste begeleiders van mijn promotietraject de afgelopen jaren. Ik ben 

begeleid door een gevarieerd team, waarbij ik heb kunnen leren van ieders kwaliteiten. Fijn dat 

jullie het vertrouwen in mij hebben gesteld om dit traject tot een goed einde te volbrengen. 

Prof. dr. De Wit, beste Ronald, naarmate mijn traject vorderde, is ons contact intensiever 

geworden. Hoewel mijn onderzoeksprojecten af en toe wat technisch waren, zijn jouw expertise 

en up-to-date kennis van klinische studies op het gebied van prostaatkanker indrukwekkend. 

Jouw hulp als mijn referent bij mijn sollicitatie voor de opleiding tot uroloog waardeer ik enorm. 

Prof. dr. ir. Jenster, beste Guido, via jou ben ik bij dit promotietraject terecht gekomen dus daar 

wil ik je natuurlijk allereerst voor bedanken! Ik kende je al een beetje via mijn onderzoeksmaster 

en Geneeskunde studie en het enthousiasme voor het onderzoek dat je daar uitstraalde, heb je 

na al die jaren nog steeds. Dit werkt enorm motiverend en jouw standaard afsluiting van elke 

email ‘have fun’ is daar een weerspiegeling van. 

Prof. dr. Martens, beste John, jij hebt mij opgenomen in jouw onderzoekslab en mij wegwijs 

gemaakt in het meer fundamentele aspect van translationeel onderzoek. Ondanks dat ’s ochtends 

vroeg niet jouw sterkste punt was (waar ik helemaal in kan komen), kon je ineens scherp uit de 

hoek komen bij de werkbesprekingen. Dat we op een heerlijke zomerdag deze bespreking een 

keer bij jou in de tuin hebben gedaan, is een van de vele leuke herinneringen. De gezellige sfeer 

op het lab is ook zeker dankzij jouw Brabantse inborst.

Dr. Lolkema, beste Martijn, jij hebt me onder je hoede genomen gedurende dit traject. Altijd 

boordevol ideeën en met humor. Je gaf me de ruimte om ook eigen ideeën in te brengen, maar wist 

altijd een stip op de horizon te stellen. Jouw beeldende metaforen (iets met zand en tennisballen) 

waren behulpzaam als ik het ook weleens even niet zag zitten. Naast jouw drukke agenda was er 

ook tijd voor gezelligheid, zoals een bijzonder diner met al jouw PhD’ers bij jou in de tuin of een 

drankje doen in een soul-bar in Chicago tijdens de ASCO. Ondanks jouw overtuigingskracht heb 

ik toch voor een vervolg in de urologie gekozen, ik hoop dat je me deze koppigheid vergeeft ;-) 

Daarnaast wil ik de leden van mijn kleine commissie, prof. dr. Schalken, prof. dr. Dingemans en 

prof. dr. Bangma bedanken voor de tijd en moeite die jullie gestoken hebben in het beoordelen 

van mijn proefschrift.  

Prof. dr. Van Moorselaar, prof. dr. Van der Graaf, dr. ir. Van Weerden, prof. dr. Terstappen, prof. 

dr. De Rijke en prof. dr. Van Laere, bedankt dat jullie bereid zijn om als grote commissie met mij 

van gedachten te wisselen over mijn proefschrift. Prof. dr. De Bono thank you for the time and 

effort you have put into reviewing my thesis.

Prof. dr. Sleijfer, beste Stefan, als een ietwat ‘buitenbeentje’ mocht ik aansluiten bij de Liquid 

Biopsies Helden bespreking op dinsdagochtend met jouw promovendi. Naast de gezellige noot, 

heb ik ontzettend veel geleerd hier van alle discussies en kritische vragen. Ook jouw input op 

mijn manuscripten was zeer nuttig. Ik heb jou niet alleen leren kennen als een deskundig arts, 

afdelingshoofd en wetenschapper, maar ook als een swingende muzikale encyclopedie 

Maurice, zonder jou waren een hoop projecten niet gelukt. Al was het alleen niet voor jouw 

eindeloze en altruïstische bloeddonaties als ‘healthy control’. Jij hebt je vol overgave gestort op 

de cel-vrij DNA projecten en ik ben blij dat we hierbij altijd zo fijn hebben kunnen samenwerken. 

Hierbij heb ik veel van jou kunnen leren. Ontzettend leuk ook dat je mij de mogelijkheid gaf om 

een presentatie over cel-vrij DNA in Porto te geven.  

Dr. Kraan, beste Jaco, jouw praktische skills en CTC-kennis maken jou onmisbaar voor het lab. 

Hoewel jouw relaxte houding een beetje haaks staat op mijn planningsdrang, had je (meestal) 

gelijk dat het wel goed kwam. Naast de serieuze lab-zaken was er ook tijd over voor de gezellige 

zaken, zoals een dansje in Schloss Krickenbeck of een ludiek afscheidsfilmpje, jij was overal voor 

in! 

Als ik met een bioinformatisch of computer-gerelateerd probleem zat, wist ik jou, Marcel, altijd 

te vinden, want jij had het binnen no-time opgelost. Je hebt mijn leven vaak makkelijker gemaakt. 

En wat heb ik kunnen lachen om jouw photoshop talent en 1 april grappen :-D

Saskia, jouw komst naar het lab is echt een aanwinst. Hoewel het CIRCUS methylatieproject 

niet goed van de grond kwam, vond ik het erg leuk om met jou hierover te sparren en ik vind het 

mooi om te zien dat er nu een prachtig manuscript ligt over methylatie-profiling van cfDNA.

Lieve Anieta, ondanks dat je er niet meer bent, verdien jij ook zeker een plek hier. Jouw kennis 

over PCR was ongeëvenaard. Ik ben dankbaar voor je pipeteerlessen, je PCR lessen en jouw hulp 

bij het ontwikkelen van ingewikkelde assays. Wat een gemis.

De post-docs Jozien Helleman en Antoinette Hollestelle wil ik ook bedanken. Ondanks dat we 

niet echt gezamenlijke projecten hadden, was het altijd gezellig tijdens meetings en lunches. 
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Lieve Joan, onze lab-mama, wat fijn dat je er altijd voor mij was. Wat hebben we gelachen, 

gekletst, koffietjes gedronken en (gelukkig maar heel af en toe) gehuild. Vraagbaak en rots-in-

de-branding voor mij en het lab met jouw ervaring en kennis. Ik weet zeker dat je gemist wordt, 

maar heerlijk dat je nu van je pensioen en je (klein)kinderen kan genieten, je hebt het verdiend! 

Jean, ook jou ben ik veel dank verschuldigd voor jouw hulp en input bij mijn projecten. Wat 

betreft digital PCRs heb ik veel van je kunnen leren. 

Mai, Michelle, Kirsten en Corine, wat hebben jullie mij goed geholpen met het verwerken van 

de stroom CTC en cfDNA samples. Jullie inzet en precisie zijn voor mij heel waardevol geweest. 

Verder wil ik Mieke, Wendy, Vanja, Anita en Renee bedanken voor de praktische hulp op en 

rondom het lab. 

 

Ook veel dank aan de secretaresses, in het bijzonder Rosita en Gerdien, voor alle hulp bij het 

inplannen van afspraken in de drukke agenda’s van de heren en allerhande praktische zaken 

waar jullie het antwoord op wisten. Rosita, je hebt jezelf in korte tijd onmisbaar weten te maken 

door voor alles een oplossing te hebben (iemand een droge broek nodig?) en door jouw altijd 

opgewekte humeur. Gerdien, wat jammer dat je weg bent gegaan, maar ik hoop dat je het naar 

je zin hebt bij je nieuwe uitdaging.

Voor hun hulp met de statistische analyses wil ik graag Maxime Look en Esther Oomen-de Hoop 

bedanken. Als de getallen mij begonnen te duizelen dan waren zij de reddende engelen. 

Graag wil ik ook de krachten van het Clinical Trial Center (CTC), Soumia, Nelly, Martin, Susan en 

Louise bedanken voor hun hulp met het opzetten van de PROuD database, alle studielogistiek en 

het invullen van de klinische dataformulieren. 

Ook wil ik de medische studenten, Thomas en Stephanie, die ik heb mogen begeleiden bedanken 

voor hun hulp en inzet.  

Bij een hoop van mijn onderzoeksprojecten heb ik nauw samengewerkt met verschillende 

afdelingen en collega PhD’ers, wat ontzettend leuk en leerzaam was. 

Silvia, thank you for your help with our cfDNA projects. You are very passionate about your 

work and life and I hope that this will help you to finish your PhD as well. Arrivederci!

Lisanne M., hoe heeft Martijn zijn PhD’ers zo kunnen kiezen… ;-) ik heb ontzettend fijn met 

je kunnen samenwerken aan ons CIRCLE project. Je bent een ware ‘organoid whisperer’ en we 

kunnen trots zijn op onze mooie publicatie! Ook buiten de projecten om was het altijd gezellig. Ik 

wens je veel succes met je verdediging en je nieuwe uitdaging in Canada. 

Ook wil ik hier Sigrun en Wytske bedanken voor hun ondersteuning en input voor het CIRCLE 

project, dit was echt een team effort.

Job en Harmen, jullie bioinformatische expertise is van groot belang geweest voor meerdere 

projecten met als kers op de taart natuurlijk onze publicatie in Nature Communications. Job ik 

wens je veel succes met het afronden van je PhD, maar dat komt ongetwijfeld goed. 

Gido en Hans, jullie hebben mij wegwijs gemaakt in de wereld van LC-MC/MC en steroïden, 

echt weer een andere tak van sport. Bedankt voor de fijne samenwerking!

Prof. dr. Stoecklein, dear Nick, thank you for welcoming me in your lab those two months. I 

really enjoyed to ‘een kijkje in een andere keuken nemen’. Also, I’m grateful for your hospitality at 

the DCC-Net Retreat in Schloss Krickenbeck; science and fun are a great combination!

Rui and Guus thank you for your guidance at the lab, I really learned a lot. And off course thank 

you, and Christiane, Rosa, Elina, Maria and the other colleagues, for all the nice times and tips in 

Dusseldorf. 

Mijn klinische studies waren niet mogelijk geweest zonder de hulp van de oncologen in het 

Erasmus MC, Franciscus Gasthuis & Vlietland, Haga Ziekenhuis en Maasstad Ziekenhuis. Met 

name veel dank aan dr. Hamberg, dr. Van der Veldt, dr. Houtsma en dr. Sandberg (MSZ), en aan de 

research- en oncologie verpleegkundigen Hans, Suzan en Suraya. 

Beste dr. Hamberg, jouw inclusiesnelheid is ongekend, waarvoor veel dank. Heel leuk dat ik ook 

als ANIOS urologie met je heb kunnen samenwerken. 

Dr. Te Boekhorst veel dank voor de hulp van u en de hematologie afdeling bij het afnemen van 

de diagnostische leukaferese samples. 

Ook wil ik graag alle co-auteurs bedanken voor hun input en hulp bij het tot stand komen van de 

manuscripten in dit proefschrift. 

Beste Ietje, wat fijn dat ik jou heb leren kennen, want anders had ik niet zo’n mooi proefschrift 

gehad. Ontzettend bedankt voor je hulp en flexibiliteit bij het vormgeven van mijn proefschrift. 

De eindsprint hebben we samen gered!

Uiteraard wil ook graag mijn mede-promovendi bedanken voor de gezellige lunches, besprekingen 

en uitjes: Lindsay, Inge, Marjolein, Nick, Anouk, Pauline, Wendy, Tomasso, Teoman en Manouk.

Het begon met een reisje naar Stockholm en kreeg een vervolg als Texelse beachbabes, 

Dusselsche dirndels en Volendamse viswijven. Lindsay, Inge en Marjolein, jullie zijn het levende 

bewijs dat leuke collega’s je promotietijd maken. Natuurlijk hebben we veel aan elkaar gehad op 

en rond het lab, zoals in onze zelfbenoemde ‘Coffee Company Be414’, tijdens de Kerstbrunches en 

pre-work ontbijtjes, maar ook daarbuiten tijdens gezellige etentjes, borrels en reisjes! 

Marjolein, mijn R-buddy, je hebt je staande weten te houden tussen al die gekke cliniclowns 

met prikdrang. Jouw biomedische achtergrond en Limburgse gezelligheid was hierop de perfecte 

aanvulling. Jij begreep mijn euforie als ik eindelijk erin geslaagd was om dat ene streepje in R te 

programmeren ;-)
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Lindsay, een van mijn paranimfen! Jij staat altijd voor iedereen klaar en wat fijn dat je mij op deze 

spannende dag wilt bijstaan :-D Ik ben blij dat we je weggesleept hebben uit die andere kamer. 

Als vroege vogel had jij er al een halve werkdag opzitten als iedereen kwam binnendruppelen en 

het bijkletskwartier (zeg maar gerust een uur) met een Nespresso of Starbucks koffietje begon. 

Dat jij kan doorpakken blijkt wel uit die superverdiende AIOS-plek en een supermooie promotie 

op de planning (jammer dat we het toch niet voor elkaar hebben gekregen om er een symposium 

met Inge van te maken :-P ). 

Inge, de ‘mama’ van het halfbroertje van Bintang, in de kattenliefde hadden we elkaar al gauw 

gevonden ;-) Jouw creativiteit en fotografie-skills kennen geen grenzen en ik vind het knap dat 

je je eigen weg gevonden hebt. Chicago was maar half zo leuk geweest als we dat niet samen 

hadden kunnen doen :-D En laten we ook zeker de Fika erin houden!

Nick, ten eerste complimenten dat je het met al die vrouwen in Be-414a hebt weten uit te 

houden. Jij als senior PhD’er en ik als junior, wist ik gelukkig toch snel je favoriete collega te 

worden ;-) Bedankt voor de leuke borrels en etentjes en natuurlijk ook voor je hulp toen ik net 

kwam kijken. 

Anouk, wat fijn dat jij mijn studies hebt willen overnemen, want ik weet dat ze in kundige 

handen zijn. Veel succes met jouw promotietraject!

En natuurlijk ook de promovendi van de ‘andere kant’ wil ik bedanken: Florence, Bodine, Femke, 

Koen, Sander, Daan, Melissa, Yarne en Maud. 

Florence, wij blijken een hoop gemeenschappelijk te hebben, zoals onze copromotor Martijn 

en onze liefde voor katten en shoppen in Chicago. Je bent een heerlijke chaoot, maar tegelijk ook 

enorm gefocust. Veel succes met de laatste loodjes van je proefschrift!

Lieve uro-onderzoekers, ook al werkten we niet direct samen gedurende mijn PhD, ook jullie wil ik 

bedanken voor de gezellige tijd tijdens de EAU congressen, RUAG borrels en onderwijsmomenten. 

Hopelijk kunnen we dit snel weer oppakken.

Ook wil ik de urologen bedanken in het Amphia en Francisus Gasthuis & Vlietland, waar ik heb 

gewerkt als ANIOS terwijl ik mijn onderzoek nog aan het afronden was. Ik heb veel bij jullie 

geleerd en wat leuk om mijn onderzoek te presenteren tijdens de onderwijsmomenten en 

refereeravonden!

Lieve PIT’jes, ‘Independent doctors’, TSN en mijn andere vriendinnen, bedankt dat jullie zorgden 

voor een leven buiten mijn promotie :-D Even over iets anders kletsen en lachen tijdens gezellige 

etentjes en borrels, heerlijk! 

Stefanie, wat fijn dat ook jij mij bij wilt staan als paranimf tijdens deze spannende dag. De rust 

die jij uitstraalt kan ik vast goed gebruiken!

Allerliefste pap en mam, zonder jullie onvoorwaardelijke steun en liefde was ik niet waar ik nu 

ben. Hoe ontzettend dankbaar ik hiervoor ben, kan ik niet in woorden uitdrukken. Jullie staan 

altijd voor mij klaar, ik hou van jullie! 

Lieve Sab(ine), als mijn grote zus ben jij een voorbeeld voor mij als ik zie hoe je van het leven 

geniet met je prachtige gezin met Jim en de kids. Onze bijzondere band blijkt wel uit dat we 

elkaars getuigen zijn op elkaars bruiloft :-D 

Ook wil ik mijn lieve schoonouders Zvonko en Monique, mijn zwager Nick, en mijn (schoon)

familie bedanken voor alle fijne momenten met elkaar!

Jelte, soms lijk jij mij beter te kennen dan ik mijzelf. Bij alle hoogte- en dieptepunten was jij er 

voor mij. Een promotietraject is hoe dan ook enerverend, maar wij besloten ook alle ‘life changing 

events’ tijdens deze periode te doen: trouwen, eerste huis kopen, een kind krijgen. Want je hebt 

gelijk, het komt nooit goed uit en dan blijkt het perfect te kloppen. Met alles ben jij mijn steun 

en toeverlaat.

Allerliefste Melle, misschien dat mijn proefschrift er eerder ondanks, dan dankzij jou is gekomen, 

want je weet je moeder wel bezig te houden… ;-) Toch weet je mijn leven ook een stuk simpeler 

te maken, want met een lach is alles weer goed. Ik geniet van alles met jou!

Mijn dankwoord zou niet compleet zijn zonder mijn kat Bintang te noemen. Mijn gehele 

promotietraject stond hij aan mijn zijde en kon ik als het nodig was de stress van mij af ‘aaien’1.

1Allen, K. et al. 
Cardiovascular Reactivity and the Presence of Pets, Friends, and Spouses: 
The Truth About Cats and Dogs. 
Psychosomatic Medicine: September 2002



Unravelling 
the Genomic Landscape 

of Metastatic 
Prostate Cancer

a prospect on 
patient stratification using 
blood-based biomarkers




