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CHAPTER 1 : INTRODUCTION 

1.1 HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 

Human immunodeficiency virus type 1 (HIV-1) is a lentivirus retrovirus that utilizes CD4+ 

T cells to replicate. As a result of this phenomena, CD4+ T cells no longer help with immunity; 

this leads to immune system failure and increased susceptibility to infections [1]. At this stage, the 

body cannot defend itself from foreign pathogens and succumbs to a HIV-1 related death [2]. Once 

the number of CD4+ cells drop below a certain quantity, the HIV-1 positive status will evolve into 

AIDS (Acquired Immune Deficiency Syndrome)[3].  

HIV-1 can be acquired from an infected person by unprotected sexual intercourse, during 

birth, or by a blood transfusion [4–6]. The transition to AIDS can take up to 15 years. The unique 

genome and structure of the virus makes it one of the greatest current threats to human health [1, 

3, 4]. 

1.2 HIV-1 EPIDEMIOLOGY 

Since the discovery of AIDS in 1981, there has been a rapid decrease in the number of 

infections in developed countries but in less developed countries there are still millions of new 

infections every year (Fig. 1-1). In 1983, it was determined that HIV-1 was the instrumental agent 

of AIDS [1, 7]. As of 2013, there were about 35.0 million people reported to be living with HIV-

1 internationally with 3.2 million being children under the age of 15, who reside mostly in low- to 

middle- income countries. In 2013, 71% of the 2.1 million newly infected patients resided in Sub-

Saharan Africa [8].  
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Figure 1-1: An International Outlook on the HIV-1 Epidemic. According to the World Health 

Organization, as of 2013, 35.0 million are infected with HIV-1, most of whom reside in Sub-

Saharan Afric (Adapted from http://www.unaids.org/). 
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1.3 HIV-1 GENOME 

The HIV-1 genome has genes that code for several structural proteins that are common to 

all the retroviruses; however, it also has over lapping and open reading frames for accessory 

regulatory proteins which make the HIV-1 genome unique [9].  

The genes of the HIV-1 genome that code for structural proteins are the gag, pol, and env 

proteins (Fig. 1-2). The gag gene encodes the capsid proteins. The gag precursor encodes four viral 

structural proteins – matrix (p17), capsid (p24), nucleocapsid (p7) and p6 – which are processed 

by the mature viral protease. The gag- pol gene encodes three viral replicating proteins Integrase 

(IN), Protease (PR), and Reverse Transcriptase (RT). The env gene encodes the surface 

lipoproteins gp120 and gp41 [9, 10].  

The essential regulatory elements of the HIV-1 genome are the tat and rev genes (Fig 1-2). 

The tat gene regulates the reverse transcription of the viral RNA. This gene is responsible for 

efficient synthesis of viral mRNAs and the regulation of the release of virions from infected cells. 

The rev gene stimulates the production of HIV-1 proteins and suppresses the expression of HIV-1 

regulatory genes [9].  

The accessory regulatory genes are the nef, vif, vpr, and vpu genes (Fig. 1-2). The nef gene 

encodes a protein that is located in the cell’s cytoplasm that retards HIV-1 replication. The vif gene 

increases infectivity of HIV-1 particles and encourages the cell to degrade APOBEC3G (host cell 

protein that acts as an innate antiviral agent). The vpr gene accelerates the production of HIV-1 

proteins and the vpu gene helps with the assembly of new virus particles, helps them to bud from 

the host cells and enhances the degradation of CD4+ proteins[9–12]. 
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Figure 1-2: The HIV-1 Genome. The HIV-1 genome consist of genes that encode structural and 

replication proteins: gag( lime), pol ( light blue), and env ( orange)  and regulatory proteins: vif 

(pink), tat(yellow), rev ( purple), vpu (red), vpr (gray) and nef (green).  
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1.4 HIV-1 LIFE CYCLE 

HIV-1 has a similar structure as many of the retroviruses. The outer coat is around 120 nm 

in diameter, roughly spherical and is composed of a lipid bilayer; this is known as the viral 

envelope (Fig 1-3). Embedded throughout the viral envelope are proteins from the host cell and 

72 copies of the HIV-1 surface envelope proteins called Env (Fig 1-3). Env spikes through the 

surface of the viral envelope and consist of three glycoproteins and one hundred and twenty caps 

that are anchored by stems. Beneath the viral envelope lies an HIV-1 protein called p17 or the 

matrix.  Past the matrix is the capsid formed by p24 proteins. Inside the capsid are non-covalently 

linked positive single stranded RNA strands and the replication enzymes RT and IN (Fig.1- 3)[13, 

14]. 
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Figure 1-3: The structure of HIV-1. HIV-1 consists of a spherical lipid membrane that encloses 

a capsid which encloses its genetic information and replication proteins. On the surface of the 

protein, there are docking glycoproteins that are required for docking and fusion into lymphocytes. 

(Adapted from www.NIAID.gov).  



7 
 

 

The HIV-1 life cycle has multiple steps that make it a highly infective provirus. First, a 

free HIV-1 particle interacts with the surface of a CD4+ lymphocyte. The viral glycoproteins (g120 

proteins) on the surface of the retrovirus bind to the CD4+ receptor and co-receptor on the surface 

of the host cell. Once bound, the membranes fuse together forming an opening. The virus releases 

a capsid containing two positive sense viral RNA strands, viral enzymes and viral core proteins 

into the cytoplasm of the host cell (Fig.1- 3 and 1-4). The capsid core proteins are degraded, and 

its contents are released into the cytoplasm. Reverse transcriptase takes the viral RNA strands and 

reverse transcribes them into viral DNA in the cytoplasm of the host cell (Fig. 1-4). Integrase 

integrates the viral DNA into the DNA of the infected cell by two mechanisms: 3’ processing and 

stand transfer.  

Once the infected cell is activated, the proviral DNA is transcribed into viral mRNA. The 

viral mRNA leaves the nucleus and enters the cytoplasm where a new virus is being synthesized. 

Some of the mRNA is translated into a polypeptide chain by a ribosome on the surface of the rough 

endoplasmic reticulum. The remaining viral proteins are assembled on the surface of the infected 

cell’s membrane. Once this occurs, two mRNA strands and the polyprotein chain are aligned on 

the opposite side of the membrane of the glycoproteins on the surface of the infected cell. From 

here, the new viral particle buds out the infected cell. Inside this new particle, protease cleaves 

itself from this long polyprotein and it begins to cleave the remainder of the chain, forming the 

matrix, the capsid, RT and IN establishing a mature virion (Fig. 1- 4) (review in ref. [15]).  
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Figure 1-4: HIV-1 replication cycle. HIV-1 using CD4+ T- cells to replicate. The process begins 

when a free HIV-1 virion attaches to the surface of the CD4+ cell and causes a fusion which result 

in the insertion of its viral genome. From here, the genome is reversed transcribed, integrated, and 

forms a new virion. The virion is not mature until the viral protease cleaves itself from the newly 

translated polyprotein and proceeds to cleave and form proteins that are required for the replication 

cycle. (Adapted from www.drcin.com). 
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1.5 STANDARD CARE 

 As of late 2012, there has been a 30% decrease in AIDS related deaths due to highly active 

antiretroviral therapy (HAART) [16]. Major risk factors for death by AIDS include a viral load 

that is greater than 400 copies/ mL and a CD4+ T cell count less than 200 cells/mL [16]. HAART 

subdues HIV-1 replication. This antiviral therapy consists of three drugs that target separate stages 

of the HIV-1 life cycle: 2 nucleotide reverse transcriptase inhibitors, a non-nucleotide reverse 

transcriptase inhibitor, integrase inhibitor, or protease inhibitor [17–19]. HAART provides 

treatment options for both naive and experienced patients. The treatment can decrease plasma 

concentrations of viral RNA to undetectable levels, increase amounts of CD4+ T cells, and decrease 

the occurrence of HIV-1 related diseases (such as cancer) and excess mortality [16]. 

Though HAART decreases the viral load below detectable levels, it does not eradicate the 

virus entirely due to viral latency and antiretroviral resistance. Post integration HIV-1 latency is a 

proviral complex that forms in resting CD4+  T cells.  CD4+  T cells that form this complex go 

undetected by the immune system [20]. Once these cells are activated by recall antigens or 

cytokines, the proviral complex can produce a virus that is able to replicate efficiently [21].  

Although rare, HIV-1 viral latency is established during an acute infection (a few days after 

exposure) [22]. Viral resistance also makes it impossible to eradicate HIV-1 entirely. HAART uses 

drugs that target different stages in the viral life cycle and the replication enzymes. The replication 

enzymes develop genetic mutational pathways that result in resistance to the inhibitor thus 

allowing the proteins to evade treatment. Over time, the enzyme will completely resist the inhibitor 

but continue to aid in the replication process. [23][24][25][26]. In order to keep these 

complications under control, the various HAART regimens must last for the patient’s lifetime 

[16][18]. 
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1.6 HIV-1 REPLICATION PROTEINS  

 There are three enzymes that are required for HIV-1 replication to be effective: reverse 

transcriptase (RT), integrase (IN), and protease (PR). The functions of these enzymes makes them 

major protagonist in HIV-1 infection. RT produces a complimentary DNA strand from the viral 

RNA template; IN integrates the viral genome into the host cell’s genome; and PR generates key 

counterparts for maturing virus particles that enable them to continue the replication process [27, 

28], [29]. 

1.7 HIV-1 INTEGRASE 

HIV-1 IN inserts reverse transcribed viral DNA (vDNA) into the host cell genome. It is 

encoded by the end of the pol gene of the HIV-1 genome and functions as a multimeric protein 

[30, 31].  The 288 residues (32 kDa) of HIV-1 IN form three functional domains: the N- terminus 

domain, the catalytic core domain (CCD) and the C- terminus domain (Fig. 1-3)[31]. The N-

terminus domain (residues 1-49) contain an HHCC motif that binds Zn2+; this “zinc finger” 

homologue stabilizes the protein’s quaternary structure (Fig.1-3) [32–35]. The catalytic core 

domain (residues 50-212) contains a DD35E motif (the catalytic triad) that coordinates two Mg2+ 

cofactors in the presence of its substrate. In the apoprotein, one Mg2+ is coordinated between D116 

and D64. Once the vDNA is present, a second Mg2+ is coordinated between D64 and E152 [36, 

37]. Molecular dynamics experiments and crystallographic studies have revealed a flexible surface 

loop conformation that enters the active site during IN’s reaction with vDNA [38, 39]. This loop 

is named the 140’s loop because it consists of residues 138-152 [38, 40]. These residues participate  

in  catlysis and substrate binding reactions making it a vital part of IN’s enzymatic activties [40–

43].  The C- terminal domain (residues 213- 288) interacts both specifically and nonspecifically 
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with vDNA ensuring stability of the HIV-1 IN and vDNA (IN•vDNA) complex throughout 

catalysis (Fig. 1-5) [31],[37],[44]  
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Figure 1-5: The structure of HIV-1 IN. HIV-1 IN consists of 3 functional domains termed the N- 

terminus domain (NTD), the catalytic core domain (CCD) and the C- terminus domain (CTD). All 

three domains have been crystallized in pairs or truncated, but there is no crystal structure of the 

protein as an entity. (Adapted from Delelis et al., 2008) 
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1.7.1 HIV-1 IN MECHANISMS OF CATALYSIS 

IN generates the proviral status of HIV-1 by catalyzing 3’ processing and strand transfer 

(Fig. 1-6) [45–48].  

In the cytoplasm of an infected cell, after the viral RNA is reverse transcribed into viral 

cDNA (vDNA), the autonomous 3’ processing reaction begins (Fig.1-6a and b). During 3’ 

processing, dimeric IN specifically binds to the U3 and U5 regions of the long terminal repeats 

(LTR) of the vDNA (adjacent to a conserved CA dinucleotide) and catalyzes an endonucleolytic 

cleavage reaction resulting in the release a dinucleotide and the exposure of reactive 3’ hydroxyl 

groups [31][45, 49, 50]. 

After 3’ processing, the recombinant IN and vDNA complex (IN•vDNA) forms the pre- 

integration complex (PIC), a 61 Å diameter complex that includes other viral and intracellular 

proteins and aids in nuclear transport [15]. Once the PIC is in the nucleus, the strand transfer 

process begins [51–53],[54].  

Strand transfer is the mechanism where IN covalently inserts vDNA in to the hDNA (host 

DNA) (Fig. 1-6c and d).  IN (in its dimer of dimers conformation) disrupts the phosphodiester 

bonds of the hDNA via nucleophilic attack by the reactive 3’hydroxyl groups of the 3’ ends of the 

vDNA [2, 20, 21]. This reaction occurs simultaneously with 5 base pairs between the two points 

of insertion indicating that the reactive hydroxyl groups attack the hDNA at its major grooves [28, 

31, 55, 56],[15]. 

After stand transfer, the product consists of a 5’ overhang and 5 base pair gaps (Fig. 1-6e). 

The 5’ dinucleotide overhangs (resultant of the 3’ processing mechanism) are cleaved and the 5 

base pair gaps near the points of insertion are filled by cellular enzymes [31, 46]. In vitro studies 

have found that HIV-1 IN in the core catalytic domain catalyzes a disintegration mechanism which 

is the opposite reaction of strand transfer where the viral DNA is released from the host cell 
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genome [57–59]. It is suggested that IN performs the disintegration mechanism to facilitate the 

cleavage of the 5’ overhang, a step which is required for integration of vDNA to be complete [46].  

Although this has been observed in vitro, it has not been proven to take place in vivo [31]. 
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Figure 1-6: HIV-1 IN catalytic activities. HIV-1 IN catalyzes two autonomous reactions: 3’ 

processing and strand transfer. During the 3’ processing reaction, IN catalyzes an endonucleotyic 

cleavage of the 3’ ends of the reverse transcribed vDNA in the cytosol. During the strand transfer 

reaction, IN covalently inserts vDNA in hDNA via nucleophilic attack. (Adapted from Delelis et 

al., 2008) 
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1.7.2 THE PRE- INTEGRATION COMPLEX 

The formation of the PIC complex is essential for efficient viral replication; it ensures that 

integration of the viral genome is successful. PIC formation starts with the reverse transcriptase 

(RT) complex. Throughout the early steps of the life cycle, RT, IN, vDNA, and other viral and 

cellular proteins are a part of a larger complex. After RT transcribes vRNA (viral RNA) into 

vDNA, it is degraded from the assembly as it approaches the nucleus via the actin network and 

and PIC is formed. PIC aids in the translocalization of IN•vDNA into the nucleus [15, 60, 61].  

1.7.2.1 IN•VDNA COMPLEX DURING 3’PROCESING AND STRAND TRANSFER 

Because the  full length structure of HIV-1 IN has not been determined due to IN’s 

interdomain flexibility and high insolubility, the prototype foamy virus integrase (PFV IN) 

homology model  and many biochemical assays have  been used to model the complete structure 

of the IN•vDNA complex. Based on crystal structures of PFV IN in complex with vDNA and also 

in vitro studies performed on the full length HIV-1 IN, the substrate pocket has been proposed to 

consist of all three functional domains; the whole enzyme in its dimer and multimeric form is 

required for substrate binding (Fig. 1-7) [62, 63]. Monomer-1 (IN1) and monomer-2 (IN2) bind 

the U5 and U3 LTR in the hDNA, respectively. Monomer 1’ (IN1’) and monomer 2’ (IN2’) 

domains are required for stability during the catalytic mechanisms (Fig. 1-7).  
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Figure 1-7: HIV-1 IN binding to vDNA. The 3D model of HIV-1 IN in complex with vDNA by 

Dolan et al. suggest that IN1 (gray) active site is used to insert the U5 LTR 3’ end (green) into the 

hDNA (orange) and IN1’ (black) promotes stability during the reaction. IN2 (orange) active site 

is used to insert the U3 LTR 3’ end (blue) into the hDNA and IN2’ (green) promotes stability for 

this process. (Adapted from Dolan et al., 2009) 
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During the 3’ processing reaction, IN makes specific and nonspecific interactions with its 

vDNA substrate. IN interacts with the heterocyclic bases of codon A17. This interaction 

destabilizes the interaction between nucleotide 17 and 18 (thymine 18 and adenosine 17). The 

destabilization results in a high 3` processing rate. Base pairs at positions 8-11 have been shown 

to be important for 3’ processing. Residues 186-193 make up a flexible loop conformation that is 

located near the C-terminal end of the CCD. These residues bind specifically with the minor groove 

of the vDNA at positions 8- 11. Residues 246- 250 of IN1 and residue 20 of IN2 interact with the 

backbone of position 8’- 11’. These specific interactions consist of basic residues in the C-terminus 

and the phosphodiester backbone of the vDNA’s LTR. Residues 256- 264 in the C-terminal 

domain of IN2 nonspecifically interact with the bases at position 3’ and 4’. Residues R262, R263, 

K244, G247, Q53, and V54 of IN 2 interact with the phosphodiester backbone of nucleotides at 

position 5-7. These interactions with base pairs 3-7 are nonspecific and only promote stability 

among the complex during catalysis [62, 64, 65].  

IN makes specific and nonspecific interactions with viral DNA during strand transfer. 

When IN is in its multimeric form, the LTR of the vDNA and acceptor hDNA interact with two 

adjacent subunits (monomer 1 (IN1) inserts U5 and monomer 2 (IN2) inserts U3). The interactions 

between IN and the LTRs of U3 and U5 mirror one another. IN binds specifically to the LTR- LTR 

junction of the vDNA via residues 143, 148, 156, 159, 160, 230, 246, 262, 263, and 264; these 

residues have been observed in molecular models to be near the six base pairs of the LTR and the 

ends of the processed vDNA 3’ [56, 62, 64, 66].  A17 is within hydrogen bonding distance of the 

Mg2+ and its phosphate group forms hydrogen bonds with N155, K159 and T66. C16 is in the 

active site, adjacent to K156 and its carbonyl group points towards Q148 of the 140s loop. K156’s 

side chain forms hydrophobic interactions with the deoxyribose ring of C16 and it also interacts 
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with G4`. G4` forms specific interactions with Q148 via is carbonyl group; this interaction would 

account for IN active site’s specificity for this base pair. T3` is flipped out by Q146 of the active 

of IN1 causing it to interact specifically with Q53 and N144 in IN2 [56, 62, 64, 66].  

Throughout the strand transfer reaction, the 140s loop acts as a plough, keeping the U5 and 

U3 vDNA ends separated. This separation is due to the 5 base pair gap generated by insertion of 

the vDNA into the hDNA [56, 62, 64].  When the 140s loop residues are altered in ways that 

decrease mobility of the loop, viral activity is decreased substantially [40, 66].   

The preferred region of insertion for IN on the hDNA is typically an area where the 

phosophodiester backbone is bent and slightly unwound along its major groove. Residues S119, 

N120, C130, W132, and K159, (located along the cleft of the dimer IN) have been reported to 

interact with hDNA during the strand transfer reaction. IN binding  is mediated through the 

phosphodiester backbone of hDNA that is wrapped around nucleosomes [54, 62, 64]. 

1.7.2.2 PROTEIN- PROTEIN INTERACTIONS 

For HIV-1 IN activity to be efficient, the pre-integration complex must contain cellular and 

viral proteins that stabilize IN and stimulate its activity.. Investigators have found that PIC 

complexes are karyophilic; host cell proteins direct PIC complexes through the nuclear pore 

(reviewed in ref. [15]). The viral proteins that take part of the PIC are  IN (in complex with donor 

vDNA and highly karophilic), matrix proteins (regulates integration), Vpr (mediates the nuclear 

import of PICs in slowly or non-dividing cells, and stimulates transcription of viral LTRs and 

regulates cellular apoptosis [15, 61, 67].  

Host cell proteins that have been identified as part of the PIC are as follows: barrier-to-

autointegration factor (BAF) protects vDNA from autointegration and stimulates intermolecular 

recombination when target DNA is located; survival motor neuron–interacting protein 1 (Gemin2) 

stimulates reverse transcription and nuclear import of the PIC; cellular acetyltransferase (p300) 
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acetylates IN and controls its activity; the nonhistone chromosomal protein HMG I(Y) brings the 

vDNA ends together in the active site and acts as a sensor for regulatory input of vDNA during 

strand transfer; chaperonin hHSP 60 stimulates IN activity and protects IN from denaturation; 

WD- 40 repeat protein human EED  plays a role in intracellular and nuclear transport; importin 7 

(imp7) contributes to  nuclear import and reverse transcription; transcriptional activator integrase 

interactor 1 (INI1) which stimulates integration and targets vDNA to active genes, lens- 

epithelium- derived growth factor(LEDGF-p75) tethers IN to chromatin, protects it from 

denaturation and stimulates integration; uracil DNA glycosylase (UDG) participates in nuclear 

translocation of the PIC [68–78]. 

1.7.3 HIV-1 IN INHIBITORS 

Integrase inhibitors (INIs) decrease the replication rate of HIV-1 RNA by effectively 

disrupting mechanisms that IN performs during the HIV-1 life cycle. INIs have either been 

classified as strand transfer inhibitors (INSTIs) or allosteric inhibitors (NCINIs) [79],[80].  

Since there is no full length structure of IN interacting with INSTIs, various biochemical 

assays have been performed to determine the mechanism of action, binding modes, and therapeutic 

index of INSTIs [37, 81] 

 INSTIs consist of planar diketo acid (DKA) derived bioisoteric scaffolds that chelate the 

active site Mg2+ and a hydrophobic component that interacts with side chains of residues and 

vDNA in a ternary binding pocket that competes with the binding of vDNA (Fig. 1-8) [80][81] . 

The DKA moiety analogues enable the INSTI to compete with vDNA for the catalytic binding 

pocket and the halogenated hydrophobic component increases specificity and affinity of the 

inhibitors target protein [37, 80–82]. The chelating hydroxyl groups of the DKA analogues chelate 

the Mg2+ ions. The binding of INSTIs  halobenzyl ring (the hydrophobic component) via Van der 
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Waals interactions in the pocket of the active site where vDNA adenosine (A17) resides  displaces 

the vDNA and stabilizes the molecule, therefore disengaging the IN•vDNA complex [37, 80, 83]. 

The vDNA is then circularized by cellular enzymes and persists in the nucleus for an undetermined 

duration[37].   

The proposed binding site for INSTIs is based on INSTI resistance profiles.   INSTIs bind 

to IN only if the vDNA is present in the active site during the assembly of the PIC; after 3’ 

processing but before strand transfer [37, 80, 81].  Due to these mechanisms of action and binding, 

INSTIs are considered “metal dependent” compounds and “interfacial inhibitors” [37, 82].  

INSTIs have a resilient time- of- drug addition profile; these compounds have been 

observed to increase the formation of cDNA and hence decrease integration.  Mutations have been 

found in drug resistant INs;  and, in vitro, mutated viruses treated with an INSTI have been shown 

to  be inactive, which explains the high therapeutic index of INSTIs for IN [37]. 

Currently there are three HIV-1 inhibitors (INIs) approved by the Food and Drug 

Administration (FDA): Raltegravir (RAL), elvitegravir (ELV), and dolutegravir (DTG). All three 

INIs are considered integrase strand transfer inhibitors (INSTIs) due to their specific inhibition of 

the stand transfer process [84–86].  

 



22 
 

 

1.7.3.1 FDA APPROVED HIV-1 INTEGRASE STRAND TRANSFER INHIBITORS  

 

  

Figure 1-8: FDA approved INSTIs. The FDA has approved three INTIs for commercial usage: a: 

Raltegravir (RAL), b: Elvitagravir (ELV), and. c: Dolutetravir (DTG). The pharmacophores 

encircled in green are protruding scaffolds from RAL (oxadiazole ring) and ELV (1-

hyrdroxymethyl2- methylpropyl group) DKA core; blue are the halobenzyl groups of each INSTI; 

and red are the DKA analogues and the chelating oxygen atoms.  
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1.7.3.2 RALTEGRAVIR 

On October 7, 2007, raltegravir (RAL) became the first INSTI to be approved by the Food 

and Drug Administration. RAL was developed by Merck and Co. under the generic name 

Insentress; the patent expires October 3, 2023 [87],[88].  

RAL has a hydropyrimidone that acts as RAL’s DKA analogue and a carboximide side 

chain that acts as the heteroatomic feature. RAL’s oxadiazole ring makes a ∏ stacking connection 

with Y143 and P145 42,,58,[89]. RAL’s halogenated benzyl ring extends into the tight pocket created 

by the A17 nucleotide of the vDNA[90].   

1.7.3.3 ELVITEGRAVIR 
 

Elvitegravir (ELV)) is a cobicistat boosted INI that is administered in a quad pill 

formulation with the RT inhibitors tenofovir and emtricitabine called Stribild [91]. Stribild was 

developed by Gilead Sciences, which licensed the inhibitor from Japan Tobacco in 2008. 

Elvitegravir was approved by the Food and Drug Administration on August 27, 2012 and its patent 

expires in 2029 [92, 93]. 

ELV has a quinolone-3- carboxylic group which serves as a substitution for the DKA 

moiety and a carboxylic/ β- ketone scaffold that serves as the chelating heteroatoms [94]. ELV’s 

1-hydromethyl-2-methylpropyl groups serves as a substitution for RAL’s oxadiazole ring which 

interacts with Y143 and P145 via Van der Waals interactions [90, 95]. ELV also contains a linker 

that connects the DKA bioisoteric component to its flurobenzyl ring that interacts with E152 and 

vDNA [43, 56, 94]. 

1.7.3.4 DOLUTEGRAVIR 
 

Dolutegravir (DTG) is a second generation INI that was approved by the Food and Drug 

Administration on August 12, 2013. DTG (formerly known as S/GSK1349572) was developed by 
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ViiV Healthcare and is known by the generic name Tivicay [96],[97]. The patent expires October 

5, 2027 [97]. DTG is considered a second generation INI due to its ability to retain activity against 

viral strains that result in viral resistance to RAL and ELV in vitro. It is the first unboosted INSTI 

on the market[98–100].  

DTG has a tricyclic carbomoyl pyridine DKA analogue that contains three coplanar oxygen 

atoms which act as the chelating agents [98]. DTG’s hydrophobic component is a diflourophenyl 

ring which is attached to an extended flexible linker that occupies the tight pocket near the active 

site. This diflourophenyl ring interacts with carbon atoms of the catalytic residues E152 and Q148 

via Van der Waals contacts. This extended linker region digs deeper into the tight evacuated pocket 

enabling DTG to make more intimate interactions with the vDNA. It has the ability to adjust its 

position and conformation when there is a structural change in IN’s active site. DTG’s tricyclic 

chelating core extends toward G118. DTG spans the full width of the active site but only spans 

half of its height. [41, 43].  

1.7.3.5 CABOTEGRAVIR (GSK1265744) 

Cabotegravir (CAB) is similar to DTG with a carbamoyl pyridine DKA analogue and 

diflourophenyl pharmacophores [101, 102]. Administration of CAB is different from all of the 

existing INIs on the market.  While it is administered orally, it is also being tested as a monthly 

intramuscular injection that includes the NNRTI TMC278-LA [103]. ViiV Healthecare has run 

eight phase 1 and phase 2 trails to determine the pharmacokinetic parameters of CAB; they 

administered a two-drug regimen every 4 to 8 weeks via an intramuscular injection (800 mg) and 

oral (30 mg) formulations of CAB and rilpivirine (a non-nucleoside inhibitor) [103]. 

1.7.3.5 NON - CATALYTIC INTEGRASE INHIBITORS 

 

1.7.3.5.2 BI-224436 
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Another INI currently in clinical trials is BI-224436 which was developed by Boehringer 

Ingelheim  [104]. BI-224436 (BI2) disrupts the interactions between IN and LEDGF/p75 protein 

by binding to the allosteric binding pocket, which is located in the CCD dimer interphase at 

residues A124, T125, A128, E170, and H171; it is the first  NCINI to go into clinical trials [63, 

105].[106].  

BI2 has 3 substituents that provide metabolic stability (C4), potency (C7) and binding (C3 

and C4). The core pharmacophore of BI2 is a C4 moiety that consists of a hybridized chromane 

and quinolone arene system which provides potency and metabolic stability; C3 consists of an 

alkoxyl group that fills the hydrophobic pocket and provides favorable binding affinity and 

increased potency; C7 is connected to a hydrogen which enables  potency serum shifts [106].  

1.7.4 ANTIRETROVIRAL ACTIVITY  

1.7.4.1 RAL RESISTANCE 

 

Major mutation pathways that are associated with IN resistance to RAL are [Q148H/K/R] 

± [G140S/A] and {E138K/A], [N155H]±[E92Q], and [Y143C/R]± [T97A] [107–110]. Primary 

mutations Q148H/R/K decreases IN susceptibility to RAL by 5- to 50- fold whereas the double 

mutant Q148H/R/K and G140S/A reduces susceptibility by more than 100- fold; E138K/A is 

selected in combination with the primary mutation Q148H [111]. These genetic pathways have 

been associated with therapeutic failure. This decreased potency has been shown to result in near 

WT viral loads [111–114]. The mutation Y143C/R reduces susceptibility to RAL when selected 

alone [109]. When the double mutant Y143C/T97A is selected, IN susceptibility to RAL is reduced 

by more than 100-fold [109, 115]. [N155H] has been associated with RAL failure in patients 

because it restores viral activity to near WT levels [114].   

1.7.4.2 ELV RESISTANCE 
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The mutational pathways that are associated with the highest level of resistance to ELV are 

the primary mutants [Q148H/K/R] ± [G140S/A], [N155H]±[E92Q], and  [T66I/A/K] ± [S147G] 

[115–117]. According to in vitro and in vivo studies, the primary mutations Q148H/R/K, just as 

with RAL, reduce susceptibility to ELV and are associated with therapeutic failure [118, 119].  

[T66A/I/K] is a primary mutation that was observed to be selected by IN when under ELV pressure 

in preclinical trials. An in vivo study done on patients that had previously failed treatment with 

ELV, mutation [N155H] was observed to be selected within the first two weeks of the study (n=5 

out of 16) [120].  

1.7.4.3 DOLUTEGRAVIR RESISTANCE 

 

Just as with RAL and EVG, IN mutates in response to treatment with this second generation 

inhibitor. but the mutations produce minimal viral resistance. According to the Stanford HIV-1 

Drug Resistance Database, codons 92,138,140, and 148 acquire mutations that are responsible for 

IN resistance against DTG [115, 117].If the primary mutant Q148H/R/K and accessory mutants 

G140S/A and E138K/A are alone, there is no clinically significant reduction in susceptibility to 

DTG [54].  In vitro, IN has been shown to select the primary R263K mutation along with H51Y, 

M50I, and E138K as secondary mutations [106, 107].  
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Table 1-1: HIV-1 integrase resistance mutations 

 

 
M50 H51 T66 E92 T97 E138 G140 Y143 S147 Q148 N155 R263 

RAL 
   Q A A/K S/A R/H/C  H/R/

K 

H  

ELV 
  I/A/

K 

Q A    G H/R/

K 

H  

DTG 
I Y    A/K S/A   H  K 
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CHAPTER 2 : MATERIALS AND METHODS 

2.1 HIV-1 INTEGRASE CATALYTIC CORE DOMAIN SYSTEM PREPARATION FOR 

MOLECULAR DYNAMICS SIMULATION 

The WT catalytic core domain of HIV-1 IN was obtained from the Protein Data Bank 

(PDB: 1BL3). Chain C of 1BL3.pdb was used to construct homology models for the following 

mutants: [Q148H], [Q148H/G140S], [Q148R], [Q148H/G140S], [Q148R/G140A], and 

[N155H/E92Q]. The coordinates from the original PDB model (1BL3) and the new models were 

merged together to obtain crystallographic waters in the new models [42, 121].   

The IN structure requires Mg2+ metal ions in the active site (coordinated between the DDE 

motif). 1BL3 contained only one Mg2+ ion in the active site (coordinated between D64 and D116); 

therefore, the PFV IN crystal structure (PDB: 3OYA) was superimposed with the models to 

incorporate the other Mg2+ ion between residues D64 and E152  [42, 90]. 

Models of the INSTIs RAL, ELV, and DTG were obtained from the Zinc Database 

(http://zinc.docking.org/). Each INSTI was submitted to Paramchem 

(https://cgenff.paramchem.org) for the generation of topology files and parameter files [122].  

In order to properly coordinate the INSTIs RLT, ELV and DTG into the integrase active 

site, homologous structures containing the three inhibitors were obtained. The coordinates from 

the PFV IN complexed with RAL (PDB: 3OYA), ELV (PDB: 3L2U) and DTG (PDB: 3S3M) 

were used to manually dock the inhibitors into the active site of the CCD using the VMD TK 

console [41, 56, 90, 121].  The system was placed in a TIP3P water box (dimensions: 70x72x70 

Å) and was neutralized with  MgCl2  [121]. 
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2.2 ENERGY MINIMIZATION AND MOLECULAR DYNAMICS SIMULATIONS 

Energy minimization of the systems was accomplished using the conjugant gradient 

method.  The initial temperature of the system was set at 70K followed by an increase to 310K in 

5K time steps [42, 123].  

All of the MD simulations were performed with NAMD 2.9 for 40ns utilizing the 

CHARMM36 force field. Van der Waals (vdW) interactions were cut off at a 12Å distance. Long 

range electrostatic interactions were calculated using the Particle-Mesh Ewald (PME) method. 

Equations of motion were incorporated with a 2fs time step  [123, 124].  

The conserved NPT (model, pressure and temperature) ensemble was used to perform the 

simulations. To keep the system at a constant temperature of 310K, Langevin dynamics were used 

(the Langevin damping coefficient was set at 5ps-1) and the Nose- Hoover Langevin piston method 

was used to keep the pressure of the systems constant at 1atm [124, 125]. Twelve processors were 

used from the WSU high performance scientific computing GRID (www.grid.wayne.edu) to 

enable the MD simulations to run in parallel. 

2.3 ANALYSIS 

The molecular dynamics trajectory was loaded into VMD [121].  The VMD suite’s timeline 

tool was used to calculate the RMSD of each Cα atom for the last 5ns of the simulation. 

2.4 FULL LENGTH HIV-1 INTEGRASE SYSTEM PREPARATION FOR MOLECULAR 

DYNAMICS SIMULATION 

The full length HIV-1 integrase structure has not been successfully crystallized and solved. 

Therefore, the full length HIV-1 integrase model was generated based on the crystal structure of 

the prototype foamy virus (PFV) structure (pdb: 3OYA). The full length HIV-1 integrase sequence 

was submitted  to the Swiss-Model server using chain A of the PFV structure (pdb: 3OYA) as a 

http://www.grid.wayne.edu/
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template [126, 127]. PFV has the same active site conformation with the DDE motif aiding in 

catalysis and functional domains as HIV-1 IN making it a suitable template (Fig. 2-1). The 

previously published integrase structures for the CCD (pdb: 1BL3), NTD, plus CCD (pdb: 1K6Y), 

and CTD plus CCD (pdb: 1EX4) domains were then superposed onto the SwissModel structure. 

The linker regions generated from the SwissModel server were merged with the known 

crystallographic structures to generate our full length HIV-1 integrase model. After generation of 

the full length model, each system was prepared for simulation as previously described [42]. 
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Figure 2-1: Full length HIV-1 integrase modeled from PFV integrase. (a). Prototype foamy 

virus integrase from PDB 3OYA with the CCD shown in blue, CTD shown in magenta, NTD 

shown in yellow and NED shown in dark grey. (b). Full length model of HIV-1 integrase with 

same color scheme for each domain. The HIV-1 IN model was built from the CCD structure 

(1BL3), NTD and CCD structure 1K6Y, and the CTD and CCD structure (1EX4). 

a

. 

b

. 



32 
 

 

2.5 ANALYSIS 

The last 5ns of the trajectory was loaded into VMD 1.9.2. Then, for each simulation the 

backbone RMSD of each residue was calculated using the timeline tool with the first frame post 

energy minimization acting as a reference. The Ramachandran analysis tool was used to analyze 

the φ and ψ angles of the 140s loop residues over the duration of the trajectory. The depicted 

residues are those that showed significant  φ and ψ angle differences to what was observed in our 

prior work [42].  

Interactions between the ligand, viral DNA and protein were quantified to determine 

differences in molecular recognition. LigPlot+ version 1.4.5 and Nucplot v.1.0 were used to 

analyze INSTI-protein and viral DNA-INSTI interactions, respectively [128] [129]. The number 

of interactions were measured every 2000th frame of the 20,000 frame simulation and were 

averaged over the resulting ten frames. 
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CHAPTER 3 : REDUCED HIV-1 INTEGRASE FLEXIBILITY 

CORRELATES WITH RALTEGRAVIR, ELVITEGRAVIR AND 

DOLUTEGRAVIR DRUG RESISTANCE 

 

3.1. INTRODUCTION 

 

HIV-1 integrase (HIV-1 IN or IN) is a multimeric enzyme that integrates the HIV-1 

genome into the DNA of infected CD4+ T-cells. HIV-1 IN is encoded by the end of the pol gene 

[37, 47]. This 288 amino acid enzyme (32 kD) consists of three functional domains: the N-terminal 

domain (NTD), catalytic core domain (CCD), and C-terminal domain (CTD). The CCD has a 

catalytic triad (D64, D116, and E152) that coordinates two Mg2+ and a flexible catalytic loop (140s 

loop) that is required for activity [40, 130]. HIV-1 IN catalyzes two autonomous reactions termed 

3’-processing and strand transfer. 3’processing involves endonucleolytic cleavage of the 3’ ends 

of the viral DNA by dimeric IN resulting in the exposure of reactive hydroxyl groups [130]. Strand 

transfer mediates the covalent insertion of viral DNA into the host cell DNA through a 

transesterification reaction using the reactive hydroxyls produced via 3’ processing as nucleophiles 

[31, 51, 53].    

Currently there are three HIV-1 IN inhibitors (INIs) approved by the Food and Drug 

Administration (FDA) for clinical use: raltegravir (RAL), elvitegravir (ELV), and dolutegravir 

(DTG). All three drugs function as strand transfer inhibitors (INSTIs) [37, 80–83, 131] and have 

a planar diketo acid (DKA) derived bioisoteric scaffold that chelates the active site Mg 2+ and a 

halogenated hydrophobic component in the form of a halobenzyl group that increases specificity  

and affinity (Fig 1-8 and Fig. 3-1) [80, 82, 95, 132].  
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Figure 3-1: HIV-1 integrase (PDB: 1BL3) active site in complex with elvitegravir. Elvitegravir 

(ELV) diketo acid motif chelates the active site Mg2+ in HIV-1 IN’s active site. ELV is shown as 

yellow sticks, Mg2+ are shown as blue spheres, the IN catalytic triad is shown as sticks, and the 

drug resistance mutations are shown as purple sticks. 
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According to the Stanford HIV Drug Resistance Data Base (http://hivdb.stanford.edu) 

RAL and ELV share a cross resistance profile. The mutations that IN acquires when challenged 

with RAL or ELV include the single mutants [Q148H] and [Q148R] and the double mutants 

[N155H/E92Q], [Q148H/G140S], and [Q148R/G140A] [112, 115, 118, 133]. These mutation 

pathways decrease IN susceptibility to RAL and ELV and increase therapeutic failure [31, 41, 43, 

111–114, 118, 134–140] .   In our previous work, we studied the protein flexibility and 

secondary structural alterations that occurred in the CCD domain of WT HIV-1 IN [Q148H/R] 

and [Q148H/R, G140S/A], in a 10 ns molecular dynamics simulation when bound to RAL [42]. 

We found that the mutants displayed a decreased flexibility relative to the WT model. We also 

discovered that the 140s loop in each mutant adopted a rigid hairpin conformation that functioned 

as a gate and decreased the RAL residency time [42]. To further investigate these findings, we ran 

a 40 ns molecular dynamics simulation on the IN CCD of WT, [Q148H/R], [Q148H/R, G140S/A] 

and [N155H, E92Q] as apoproteins and in complex with RAL, ELV, and DTG to investigate a) 

the effect that these mutations have on protein flexibility, b) how IN flexibility affects INSTI 

complexes and c) to determine if there is a relationship between IN flexibility and INSTI 

resistance.  A decrease in flexibility is observed in the apoprotein mutants relative to the apoprotein 

WT. The mutant forms of IN that display the most resistance in viral susceptibility studies display 

high RMSD values in the 140s loop region relative to their corresponding WT-INSTI complex. 

These findings suggest that the conformational changes that occur in these mutants decrease the 

flexibility of the CCD which changes the shape of the active site. When this occurs, IN-INSTI 

complex interactions are weakened, ultimately causing drug resistance. 
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3.2 RESULTS 

To investigate the effects that [Q148H], [Q148R], [Q148H, G140S], [Q148R, G140A] and 

[N155H, E92Q] mutations had on the flexibility of the CCD of HIV-1 IN, the RMSD of each 

residue in each structure was calculated. Calculations were derived from the last 5 ns of a 40 ns 

simulation of the CCD as an apoprotein and also in complex with RAL, ELV, and DTG. From 

these data, the effect that [Q148H/R], [Q148H/R, G140S/A] and [N155H, E92Q] had on HIV-1 

IN CCD flexibility and the relationship between IN flexibility and INSTI resistance was identified. 

According to the results, the drug resistance mutations produced a less flexible apoprotein CCD 

relative to the WT apoprotein. As result, the 140s loop becomes more flexible in versions of mutant 

IN that display a higher level of resistance in reported in vitro work. This suggest that INSTIs 

binding mode to the 140s loop is altered as a result of the active site structural change.  

3.4.1 MUTATIONS [Q148H], [Q148H, G140S], [Q148R], [Q148R, G140A] AND [N155H, 

E92Q] INCREASE THE RIGIDITY OF THE HIV-1 INTEGRASE PROTEIN 

As shown in Fig. 3-2, the apoprotein IN mutants are less flexible than apoprotein WT IN. 

Also, in Table 2, the 140s loop is less flexible in the mutants that in WT IN.. These results suggest 

that conformational changes that occur is in the CCD changes the shape of the active site.  
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Figure 3-2: Flexibility (RMSD) of the apoprotein HIV-1 integrase models. The VMD suite 

timeline tool was used to calculate the root mean square deviation of Cα (RMSD) in each residue. 

The apoprotein IN displays the most flexibility relative to the various mutants. 
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Table 3-1: The RMSD of the 140s loop of apoprotein wild type and mutant HIV-1 integrase 

Mutants studied 140s loop RMSD  

WT 9.30Å 

Q148H 5.27Å 

Q148H, G140S 4.72Å 

Q148R 2.58Å 

Q148R, G140A 3.35Å 

N155H, E92Q 4.05Å 

 

Note: The average root mean square deviation (RMSD) values for each complex was used as an indicator of 

HIV-1 integrase flexibility. The mutant HIV-1 integrase are less flexible than the wild type HIV-1 integrase.  
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3.4.2 HIV-1 INTEGRASE STAND TRANSFER INHIBITOR RESISTANCE 

CORRELATES WITH THE FLEXIBILITY OF THE 140S LOOP 

 To investigate the relationship between IN flexibility and INSTI resistance, the RMSD of 

the 140s loop in each mutant in complex with RAL, ELV, and DTG were calculated (Fig. 3-3a-

d). Results indicate that the 140s loop is more flexible in IN mutants that display the highest 

reported EC50 FC (fold change). These findings suggest that increased rigidity of the mutants 

reduces INSTI binding to the 140s loop. 

The conformational changes in the CCD caused by drug resistant mutations resulted in 

increased flexibility of the 140s loop when in complex with RAL; this observation is indicated by 

increased flexibility of the 140s loop in mutants relative to WT RAL complexes (Fig. 3b). As 

presented in Table 3, all mutations display an increased EC50 FC value and higher140s loop 

RMSDs when under RAL pressure relative to the WT- RAL complex (Table 3). This is an 

indicator of weakened interactions between RAL and IN.   

The increased rigidity of the CCD caused by mutations increases the flexibility of the 140s 

loop in the CCD-ELV complexes. In Table 3, EC50 FC and RMSD values are highest in the 

[Q148H, G140S], [Q148R] and [Q148R, G140A] ELV complexes relative to the WT ELV 

complex (Fig. 3-3c). These mutants display a correlation between flexibility and resistance (Table 

3). 

When complexed with DTG, the mutants that exceed the WT EC50 display increased 

flexibility in the 140s region (Table 3). As presented in Fig. 3-3d, [Q148H] and [Q148R] in 

complex with DTG display decreased flexibility relative to WT-DTG because of the structural 

changes. In Table 3, [Q148H, G140S] and [N155H, E92Q] in complex with DTG display the 

highest EC50 FC values and an increased RMSD in the 140s loop relative to the WT DTG complex. 
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The effect of [Q148R, G140A] on IN susceptibility to DTG has not been studied in vitro, however, 

the 140s loop in this mutant is the most flexible. These data indicates a relationship between HIV-

1 IN flexibility and resistance. 
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Figure 3-3a-d: Flexibility (RMSD) of HIV-1 integrase mutants in complex with raltegravir, 

elvitegravir, and dolutegravir. a) HIV-1 IN catalytic core domain outlining the catalytic triad 

(highlighted in orange) and the locations of the mutations (E92Q is highlighted in purple, the 140s 

loop is highlighted in yellow and α4 is highlighted in cyan). The plots in figure 3-3 display b) root 

mean square deviation of Cα (RMSD) of the wild type and mutant IN raltegravir complexes, c) 

the RMSD of the wild type and mutant IN elvitegravir complexes; and d) the RMSD of the wild 

type and mutant IN dolutegravir complexes. The yellow box enclose the 140s loop.  
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Mutants Raltegra

vir EC50 

(fold 

change) 

Elvitegravir 

EC50 

(fold change) 

Dolutegravir 

EC50 

(fold change) 

140s loop 

RMSD in 

RAL 

complexes 

(Å) 

140s loop 

RMSD in 

ELV 

complexes 

(Å) 

140s loop 

RMSD in 

DTG 

complexes 

(Å) 

WT 1.0 1.0 1.0 1.94Å 2.50Å 3.08Å 

Q148H 13±5.0 

[113] 

7.3±2.3 

[113] 

0.97±0.090 

[113] 

2.58Å 1.92Å  2.65Å 

Q148H_G140S >130 

[113] 

>890 

[113] 

2.6±1.4 

[113] 

2.53Å 2.69Å 3.10Å 

Q148R 47±9.3 

[113] 

240±91 

[113] 

1.2±0.21 

[113] 

2.41Å 3.41Å 2.85Å 

Q148R_G140A >100 

[112] 

>350 

[112] 

No data 2.19Å 3.58Å 3.47Å 

N155H_E92Q >130 

[113] 

320±39 

[113] 

2.5±1.2 

[113] 

2.49Å 2.50Å 3.07Å 

  

Table 3-2: Reported EC50 fold change (EC50 mutant/ EC50 wild type ratio) in vitro data   

*Note: These fold changes in EC50 values (ratio: EC50 of mutants/EC50 of wild type) are derived 

from reported in vitro studies and correlate positively with our RMSD data. EC50 fold changes for 

dolutegravir were substantially lower than both raltegravir and elvitegravir in the presence of 

mutations that typically lead to therapeutic failure [112, 113]. 
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3.3 DISCUSSION 

3.3.1 VIRAL ENZYME FLEXIBILITY AND DRUG RESISTANCE 

Protein flexibility has been implicated in HIV-1 protease and HIV-1 IN resistance [95, 133, 

141, 142]. IN flexibility (especially for the 140s loop) has been shown to be important for catalysis 

as well [40, 66, 130, 143]. Previously we found that the IN mutants [Q148H/R] and [Q148H/R, 

G140S/A] produce rigidity in the CCD when in complex with RAL. In this study, we observed the 

effects various drug resistance mutations had on CCD flexibility and the correlation between our 

molecular dynamics simulation results and reported experimental results. IN takes on a rigid 

conformation when the mutations are introduced. As a result of the structural alterations, IN’s 140s 

loop flexibility is increased in the mutants that display the highest EC50 FCs in table 2.  

The highest RMSD peaks in the models are in the 180s loop region (residue 185-195) (Fig. 

3-3a). The 180s loop interacts with the minor groove of viral DNA during catalysis; the spike in 

RMSD is expected due to the absence of DNA in this study.  

3.3.2 DOLUTEGRAVIR RETAINS EFFICACY AGAINST DRUG RESISTANT VIRUS 

DTG showed the least sensitivity to the drug resistance mutations studied. The mutant IN 

DTG complexes RMSD deviated the least from the WT DTG complex. DTG also displayed the 

lowest EC50 FCs in the reported in vitro data (Fig. 3-3d). This is due to DTG’s structural features. 

DTG contains the same active pharmacophores as RAL and ELV but structural differences enable 

DTG to have a prolonged residency time. DTG contains an extended linker that anchors its 

halobenzyl component deeper into the donor DNA’s pocket in the active site and makes more vdW 

interactions with the backbone of the catalytic residue E152 causing increased rigidity of the active 

site (Fig. 1-8 and Fig. 3-3b) [41]. Also, DTG’s flexible structure gives it the ability to change its 

conformation with the active site of mutant HIV-1 IN, prolonging its residency time. These 
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features makes DTG less vulnerable to being pushed out of the active site in the resistant strains 

of IN. 

3.3.3 IN SILICO METHODOLOGY AND DESIGN OF HIV-1 INTEGRASE 

INHIBITORS THAT RETAIN EFFICACY AGAINST THE DRUG RESISTANT VIRUS 

The correlation between our in silico results and the in vitro reports show that this 

methodology can be a useful drug design and screening tool. New experimental inhibitors should 

show WT like binding patterns for mutant IN, which, in our studies, has shown minimal resistance. 

With this approach, INSTIs could be modified prior to synthesis to promote more rigidity of the 

140s loop, minimizing the chance of drug resistance.   

To further investigate the mechanism of drug resistance, we studied structural changes in 

HIV-1IN mutants [Q148H], [Q148H, G140S], [Q148R], [Q148R, G140A], and [N155H, E92Q]. 

In particular, changes in the HIV-1 IN 140s loop were examined. We then investigated the 

relationship between IN flexibility and drug resistance. Our findings suggest: a) the mutations 

cause IN flexibility to decrease, b) mutant INSTI complexes have increased 140s loop flexibility 

relative to the WT-INSTI complexes, and c) increased 140s loop flexibility in mutants correlates 

with higher in vitro EC50 fold change reported earlier. 
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CHAPTER 4 : REDUCED FLEXIBILITY OF FULL LENGTH HIV-1 

INTEGRASE CORRELATES WITH DRUG RESISTANCE TO 

RALTEGRAVIR, ELVITEGRAVIR, AND DOLUTEGRAVIR 

 

4.1 INTRODUCTION 

HIV-1 integrase (IN) is a 32 kD multimeric enzyme that integrates the HIV genome into 

the DNA of infected CD4+ T-cells [37, 47]. IN contains three functional domains: the N-terminal 

domain (NTD), catalytic core domain (CCD), and the C-terminal domain (CTD) (Fig. 1a). The 

CCD contains the catalytic triad (residues D64, D116, and E152) that coordinates divalent metal 

ion cofactors (Mg2+, Mn2+) , and a flexible catalytic loop (140s loop) which plays a major role in 

IN activity [40, 130] (Fig. 1b). IN catalyzes two autonomous reactions: 3’ processing and strand 

transfer. 3’ processing is the endonucleolytic cleavage of the viral DNA 3’ ends by IN resulting in 

the exposure of reactive hydroxyl groups [130]. Strand transfer mediates the covalent insertion of 

viral DNA into the host cell DNA through a transesterification reaction using the reactive hydroxyl 

groups as nucleophiles [31, 51, 53].    

Currently there are three HIV-1 IN inhibitors (INIs) approved by the U.S. Food and Drug 

Administration (FDA): raltegravir (RAL), elvitegravir (ELV), and dolutegravir (DTG). These 

inhibitors function as strand transfer inhibitors (INSTIs) [37, 80–83, 131]. INSTIs consist of a 

planar diketo acid (DKA) derived bioisosteric scaffold that chelates the active site Mg 2+ ions, and 

a halogenated hydrophobic component that increases specificity and affinity for the IN active site 

(Fig. 1b; Fig. 2) [80, 82, 95, 132].   

C- Terminal 

domain  

Catalytic 

core 

domain 

Active site 

Viral DNA a. 
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Figure 4-1: HIV-1 INTEGRASE HOMOLOGY MODEL AND ACTIVE SITE IN 

COMPLEX WITH ELVITEGRAVIR. The full length HIV-1 IN homology model was 

used to study secondary structural and molecular recognition differences between mutant 

and WT complexes. (a)The ternary complex consisting of viral DNA, the full length 

homology model which includes the n-terminal domain (yellow), the c- terminal domain 

(magenta), and the catalytic core domain (blue), and a INSTI. (b). The active site of the 

full length homology model showing ELV (green sticks) bound, ; Mg2+ are shown as 

orange spheres, the catalytic triad is shown in cyan sticks, and the mutant residues are 

shown in magenta sticks. 
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According to the Stanford HIV Drug Resistance Database [144, 145], RAL and ELV share 

a cross resistance profile. IN acquires several resistance mutations under RAL and ELV treatment 

pressure including the single mutants [Q148H] and [Q148R] and the double mutants 

[N155H/E92Q], [Q148H/G140S], and [Q148R/G140A] [112, 115, 118, 133]. These mutations 

decrease IN susceptibility to RAL and ELV and increase viral activity, ultimately leading to 

therapeutic failure [31, 41, 43, 111–114, 118, 134–140].   

 40 ns molecular dynamics (MD) simulations with the full length WT IN  and the 

[Q148H/R], [Q148H/R, G140S/A] and [N155H, E92Q] IN drug resistant mutants as binary 

(protein and viral DNA) and ternary ( protein, viral DNA, and INSTI) complexes were performed 

to investigate the following: a) the effect of these mutations on protein flexibility, b) secondary 

structural changes produced in the 140s loop, and c) the effect of these mutations on molecular 

recognition of the ligand by the protein and substrate. The mutant models displayed reduced 

flexibility, alternative 140s loop secondary structure conformations, and altered molecular 

recognition patterns compared to the wild-type model. These findings suggest that the decreased 

flexibility of the enzyme causes conformational changes in the active site of the mutants that may 

result in decreased INSTI binding affinity and residence time. 

4.2 RESULTS 

Mutations at position 92, 140, 148, and 155 cause decreased flexibility of HIV-1 IN. Our previous 

work reported decreased flexibility of the [Q148H], [Q148H, G140S], [Q148R], and [Q148R, G140A] 

CCD IN mutants in complex with RAL relative to the WT-RAL complex [42]. To examine whether these 

results could be reproduced with the full length model, we performed 40 ns simulations on binary 

complexes (protein and viral DNA) of WT and the mutants ([Q148H], [Q148H, G140S], [Q148R], [Q148R, 

G140A] and [N155H, E92Q]).  
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4.2.1 MUTATIONS DECREASE FLEXIBILITY OF HIV- 1 INTEGRASE 

Mutations at position 92, 140, 148, and 155 cause decreased flexibility of HIV-1 IN. Previous work 

with the CCD IN reported decreased flexibility of the [Q148H], [Q148H, G140S], [Q148R], and [Q148R, 

G140A] mutant IN- RAL relative to the WT-RAL complex [42]. To examine whether these results could 

be reproduced with the full length model, we performed 40 ns simulations on binary complexes (protein 

and viral DNA) of WT IN and the mutants ([Q148H], [Q148H, G140S], [Q148R], [Q148R, G140A] and 

[N155H, E92Q]).  

The binary mutant IN-RAL complexes displayed decreased flexibility relative to the WT-RAL 

complex as shown in Fig. 4. The average RMSD of the WT, [Q148H], [Q148H, G140S], [Q148R], [Q148R, 

G140A] and [N155H, E92Q] complexes are 5.88 Å, 2.29 Å, 2.43 Å, 1.98 Å, 1.97 Å, and 2.10 Å, 

respectively. (Fig. 4).  
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 Figure 4-2: Resistance mutations reduce the flexibility of the IN-DNA binary complexes. 

The VMD suite timeline tool was used to calculate the root meant square deviation of Cα 

(RMSD) for each residue in the binary mutant and WT complexes. This approach analyzed the 

effects that mutants had on HIV-1 IN flexibility. The mutant HIV-1 IN structures are more rigid 

than WT IN. 
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4.2.2 CHANGES IN 140S LOOP SECONDARY STRUCTURE IN ELVITEGRAVIR AND 

DOLUTEGRAVIR COMPLEXES 

 

It was also investigated whether or not transient helix formation occurs in the full length 

model as it did previously with the CCD [42] (Fig. 5 and 6). In the IN-ELV complexes, there is 

evidence of a transient α-helix conformation in residues 139,146, 147 and 148 in the mutant 

structures.  The Ramachandran plots in Figure 5 show residue 148 with φ and ψ angles 

corresponding to a β-sheet secondary structure in the WT-ELV complex.  However, in the [Q148H, 

G140S] and [Q148R, G140A] mutants, residue 148 adopts a α-helix secondary structure. (Fig. 5). 

Residue 139 is found in a β-sheet conformation in all complexes except for in [Q148R] where 

residue 139 is in a right handed helix (Fig. 5). Similarly, residue 146 is also in a β-sheet 

conformation in all complexes except in the [Q148H, G140S] mutant where it exhibits a right 

handed helix (Fig. 5). For residue 147, the WT-ELV and [Q148R, G140A]-ELV complexes have 

a β-sheet secondary structure. However, in [Q148H], [Q148R], and [N155H, E92Q], residue 147 

adopts a left handed α-helix conformation. [Q148H, G140S] adopts a helical conformation as well, 

but it is right-handed (Fig. 5). The mutations at residues 92, 140, 148 and 155 cause the 140s loop 

(at residues 139, 146, 148 and 147) form a  loop that could reduce drug potency; this was observed 

in  prior work with the CCD in complex with RAL [42]. Due to the location of the 140s loop, most 

likely these residues form a β-strand when in the β-sheet conformation rather than a β-sheet. It is 

possible that a transient α-helix reduces the flexibility of this region more than a β-strand. 

Therefore, the reduced flexibility of this region could be attributed to these transient 

conformational changes.  

Evidence of a transient α-helix conformation is also present for the mutant structures at 

residues 146 and 148 when complexed with DTG. Residue 148 displays a β-sheet conformation 



52 
 

 

in the WT-DTG complex, whereas in [Q148H, G140S], [Q148R, G140A] and [N155H, E92Q], 

residue 148 corresponds to the right handed α helix conformation (Fig.6). Residue 146 in the WT 

DTG complex is in a β sheet conformation whereas it is in a right handed helix in the [Q148R] and 

[N155H, E92Q] complexes (Fig. 6).  
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Figure 4-3: Secondary structure changes of 140s loop residues in ELV complexes. The 

Ramachandran tool in the VMD suite was used to calculate φ and ψ angles of the 140s loop 

residues in wild type and mutant HIV-1 IN in complex with elvitegravir over the 20000 frame 

trajectory. Residues displaying the most secondary structural differences are shown.  
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Figure 4-4: Secondary structure changes of 140s loop residues in DTG complexes. The 

Ramachandran tool in the VMD suite was used to calculate φ and ψ angles of the 140s loop 

residues in wild type and mutant HIV-1 IN in complex with dolutegravir over the 20000 frame 

trajectory. Residues displaying the most secondary structural differences are shown. 
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4.2.3 DECREASED FLEXIBILITY OF THE HIV-1 IN MUTANTS RESULT IN 

ALTERED MOLECULAR RECOGNITION OF HIV-1 INTEGRASE INHIBITORS 

  

Notable changes in molecular recognition of RAL, ELV and DTG by IN occurred in the 

IN mutant ternary complexes. Interactions between the INSTI and IN, and the INSTI and DNA 

were quantified every 4 ns of the 40 ns simulation by LigPlot+ and NucPlot and were averaged 

over these frames[128, 129]. Decreased flexibility of mutant IN alters the binding mode of RAL 

to the protein and the viral DNA (Table S1). All mutant complexes display a decrease in the 

number of hydrogen bonds compared to the WT-RAL complex, suggesting an altered hydrogen 

bonding network in the mutant complexes. The [Q148R, G140A] and [Q148H, G140S] mutants 

contain the fewest hydrogen bonds and van der Waals interactions with RAL as well as decreased 

RAL-140s loop interactions.  This suggests that decreased flexibility through changes in secondary 

structure of the 140s loop caused by mutations at residues 140 and 148 disrupts RAL stabilizing 

interactions (Table S1). 

In the ELV complexes, there were no differences in the hydrogen bond network between 

IN, viral DNA and ELV except for Q148R hydrogen bonding with ELV in the [Q148R] and 

[Q148R, G140A] complexes (Fig. 7). The positively charged arginine side chain from the Q148R 

mutation has been noted for its ability to disrupt ELV’s chelation mechanism via hydrogen 

bonding with the ELV carboxyl group [95]. Our LigPlot analysis revealed hydrogen bonds 

between the ELV carboxyl group and Q148R in the [Q148R] and [Q148R, G140A] mutants. The 

hydrogen bond between ELV and Q148R is present in all of the frames selected for analysis 

throughout the entire simulation in these mutants. This is further evidence for the role of Q148R 

in ELV resistance.  
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In the IN-DTG complexes, minor differences in the number of hydrogen bonds and van 

der Waals interactions were observed between DTG, IN, and viral DNA in the mutant complexes 

compared to the WT complex. As opposed to the RAL complexes, the mutations did not cause any 

differences in DTG–140s loop interactions nor did they cause changes to the hydrogen bonding 

network (Fig. 8). Non-covalent interactions between viral DNA and DTG, particularly hydrogen 

bonds and van der Waals interactions, are decreased in the [Q148H, G140S] complex compared 

to the WT (Table S2). [N155H, E92Q] also displays a decrease in van der Waals interactions with 

viral DNA relative to the WT-DTG complex (Table S2).  
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Table 4-1: Raltegravir interactions with HIV- 1 IN, the 140s loop, and viral DNA. 

Mutant 

studied 

Average raltegravir-

protein interactions 

Average raltegravir 

140s loop interactions 

Average raltegravir- 

viral DNA (substrate) 

interactions 

H-

bonds 

van der 

Waals 

interactions 

H-bonds van der 

Waals 

interactions 

H-bonds vdW 

interactions  

WT 4.4±0.8 33.3±5.7 0.6±0.5 15±4.2 0.0 26.6±5.5 

Q148H 4.1±1.4 42.3±5.7 0.4±0.5 15.9±5.3 0.1±0.3 16.8±7.7 

Q148H, 

G140S 

3.8±1.0 30.4± 6.5 0.3±0.5 8.7±6.0 0.2±0.4 20.7±11.8 

Q148R 3.5±0.8 30.2±9.3 0.2±0.4 10.2±7.0 0.0 11±6.1 

Q148R, 

G140A 

3.5±1.4 25±7.0 0.8±0.6 6.5±5.5 0.2±0.4 38.6±10.1 

N155H, 

E92Q 

4±0.8 32.4±7.8 0.8±0.4 16.6±6.7 1±0.5 15.6±6.0 

 

Note: LigPlot+ and NucPlot were used to calculate hydrogen (H-bonds) and van der Waals 

interactions between raltegravir, HIV-1 IN and viral DNA substrate. (Average +/- 1σ). The 

changes in raltegravir interactions with HIV-1 IN is a result of HIV-1 IN structural 

alterations. 
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Figure 4-5: Hydrogen bonding interactions between HIV-1 IN and ELV (A) WT complex (B) 

Q148R_G140A complex (C) Q148R complex. Residues involved in hydrogen bond with ELV are 

shown in sphere representation to demonstrate their van der Waals volume. 
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Figure 4-6: Hydrogen bonding interactions between HIV-1 IN and DTG (A) WT Complex (B) 

N155H_E92Q Complex (C) Q148H_G140S Complex. Residues involved in hydrogen bond with 

RAL are shown in sphere representation to demonstrate their van der Waals volume. 
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Mutant 

studied 

 

Average 

dolutegravir-

protein interactions 

Average 

dolutegravir 140s 

loop interactions 

Average 

dolutegravir- viral 

DNA (substrate) 

interactions 

H-

bonds 

van der 

Waals 

interactions 

H-

bonds 

van der 

Waals 

interactions 

H-

bonds 

van der 

Waals 

interactions 

WT 3.3±1.3 31.8±3.2 0.0 13.4±6.8 1.5±0.7 16.4±4.7 

Q148H 2.2±0.9 25.4±3.7 0.0 9.4±2.8 0.9±0.3 22.9±4.9 

Q148H, 

G140S 

2.4±1.1 28.8±3.8 0.0 17.6±3.5 0.1±0.3 10.6±3.8 

Q148R 2.9±1.4 28.9±8.5 0.8±0.9 14.1±7.2 2.1±0.7 13.1±3.3 

Q148R, 

G140A 

2.2±1.0 29.9±5.2 0.0 15±4.1 1.9±0.7 14.1±5.5 

N155H, 

E92Q 

2.2±1.0 33.7±5.1 0.0 18.8±5.7 1.5±0.5 13.4±6.2 

Note: LigPlot+ and NucPlot were used to calculate hydrogen (H-bonds) and van der 

Waals interactions between raltegravir, HIV-1 IN and viral DNA substrate. (Average +/- 

1σ). The changes in dolutegravir interactions with HIV-1 IN is a result of HIV-1 IN 

structural alterations. 

 

Table 4-2: Dolutegravir interactions with HIV- 1 IN, the 140s loop, and viral DNA 
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4.3 DISCUSSION 

In this study, the effect of HIV-1 IN mutations [Q148H], [Q148H, G140S], [Q148R], 

[Q148R, G140A] and [N155H, E92Q] on INSTI-target interactions was investigated. Our results 

suggest decreased flexibility of IN leads to a change in secondary structure and limited 

conformational space. The mutations appear to affect IN both locally and globally while also 

disrupting molecular recognition of RAL and ELV. 

4.1 RESISTANCE MUTATIONS AFFECT HIV-1 IN CONFORMATION BOTH 

LOCALLY AND GLOBALLY. 

On a local scale, mutations affect the conformation of the 140s loop and active site, thereby 

affecting IN and drug interactions. Conformational changes in the [Q148H/R, G140S/A] and 

[N155H, E92Q] mutants appear to reduce interactions between RAL and the IN 140s loop and 

viral DNA. Conformational changes in [Q148R] and [Q148R, G140A] caused residue 148 to 

hydrogen bond with ELV’s carboxyl, disrupting its chelation mechanism which is essential for its 

activity. Also, [Q148H, G140S], [Q148R], [Q148R, G140A] and [N155H, E92Q] all display 

changes in the secondary structure of the 140s loop when in complex with ELV. These changes 

may reflect reduced inhibitor–140s loop interactions resulting in lowered RAL and ELV potency. 

In the DTG complexes, the mutants adopted a α-helix conformation in two residues in the 140s 

loop relative to IN-ELV complexes (which had 4 residues adopt the α-helix conformation). Also, 

DTG had similar interactions in the 140s loop when in complex with WT and mutant structures. 

The mutations affect IN on a global scale as evidenced by the decreased RMSD over all three 

functional domains compared to the un-complexed WT structure. 
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4.2 VIRAL SUSCEPTIBILITY DATA (EC50) CORRELATES WITH DECREASED 

FLEXIBILITY AND ALTERED INTERACTION NETWORKS IN SILICO 

The results from our in silico experiments correlate with reported in vitro data presented in 

Table 1.  The double mutants ([Q148H, G140S], [Q148R, G140A], and [N155H, E92Q]) display 

the largest EC50 fold change (FC) under RAL and ELV pressure. These mutants display transient 

secondary structural changes by adopting a α-helical structure in the 140s loop during the 40 ns 

simulation. Changes in the molecular recognition pattern of RAL are also seen, as indicated by the 

loss of hydrogen bonds and van der Waals interactions with RAL. Furthermore, IN variants 

containing the Q148R mutation displayed hydrogen bonds with the key ELV carboxyl group, 

thereby causing mechanistic disruptions to the ELV chelation mechanism. In addition, interactions 

between RAL and viral DNA decrease, which are required for ligand specificity and affinity. 

Decreased flexibility of HIV-1 IN suggests changes in active site conformation may lead to 

decreased drug binding/potency. 

5. CONCLUSION 

In conclusion, 40 ns MD simulations revealed mutant forms of IN displayed reduced 

flexibility, alternative 140s loop secondary structure conformations, and altered molecular 

recognition patterns compared to the wild-type enzyme. The results presented here with a full 

length IN model in complex with INSTIs and viral DNA are consistent with our previous reports 

using the CCD of IN in complex with RAL. Furthermore, the correlation between our results and 

the reported in vitro data shows that this methodology can be a useful drug design and screening 

tool. For example, in silico studies with new inhibitors should reveal similar flexibility patterns 

between the wild type and a mutant target for optimal inhibitor potency. 
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CHAPTER 5 : IN SILICO METHODOLOGY TO COMPARE HIV-1 

IN STRAND TRANSFER INHIBITORS USING QIKPROP 
 

Qikprop was used to predict the ADME/toxicity (administration, distribution, metabolism, 

and excretion) parameters of the HIV-1 integrase strand transfer inhibitors raltegravir (RAL), 

elvitegravir (ELV), dolutegravir (DTG), cabotegravir (CTV) and BI-224436 (BI-22). QikProp is 

part of the Schrödinger small-molecule drug discovery suite and is used to predict ADME/toxicity 

properties of preexisting and candidate drugs prior to synthesis and clinical trials for compound 

modification (Schrödinger, 2013). QikProp also compares molecular properties to preexisting 

approved drugs. This in silico approach saves time, resources and streamlines therapy. Based on 

the ADME analysis, QikProp calculates stars (descriptor values), which evaluate the organic 

properties of a drug based on Lipinski’s role of five, Jorgenson’s rule of three, and ADME factors. 

Table 6.1 compares the chemical structure and QikProp star values for the first generation INIs 

RAL and ELV to the second generation INIs  DTG, CTV, and BI-22. 
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HIV- 1 IN generic 

name  

HIV-1 IN inhibitor chemical structure  Qik Prop Stars  

Raltegravir  

 

0 

Elvitegravir 

 

0 

Dolutegravir 

 

0 

Cabotegravir 

 

1 

BI- 224436 

 

0 

  

 

Table 5-1: HIV-1 integrase inhibitor Qik Prop ADME stars ratings 
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RAL, ELV, DTG, CTV, and BI-2 MOL2 files were submitted to QikProp. QikProp 

generated an output file that listed various ADME/toxicity parameters. The drug’s star value 

reflects how its chemical properties lie within range of the typically approved drug.  

All of the inhibitors had a stars score of 0-1 with CTV having the 1 star. CTV has one star 

because it falls out of range (below) for the human serum albumin binding prediction which is a 

distribution factor of the drugs pharmacology. However, most of the parameters for CTV are 

similar to DTG's, indicating that they, theoretically, share an ADME profile. This qualifies CTV 

as a second generation inhibitor. 
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ABSTRACT 

HIV INTEGRASE MECHANISMS OF RESISTANCE TO RALTEGRAVIR, 
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HIV-1 integrase (HIV-1 IN or IN) is a multimeric enzyme that integrates the HIV-1 

genome into the chromosomes of infected CD4+ T-cells. Currently there are three FDA approved 

HIV-1 IN strand transfer inhibitors (INSTIs) used in clinical practice: raltegravir (RAL), 

elvitegravir (ELV), and dolutegravir (DTG). The [Q148H], [Q148H, G140S], [Q148R], [Q148R, 

G140A] and [N155H, E92Q] mutations decrease IN susceptibility to RAL and ELV and may result 

in therapeutic failure. As an indicator of protein flexibility, the root mean square deviation 

(RMSD) of each HIV-1 IN residue in the last 5 ns of a 40 ns molecular dynamics simulation was 

calculated for HIV-1 IN catalytic core domain as an apoprotein and in complex with RAL, ELV, 

and DTG to study how the mutations affect HIV-1 IN flexibility. In addition, we studied the 

relationship between HIV-1 IN flexibility and resistance. We found that the mutants reduced 

overall HIV-1 IN flexibility relative to the WT IN apoprotein. We also observed that the catalytic 

140s loop in the HIV-1 IN-INSTI complexes were more flexible in mutants that displayed higher 

reported EC50 FC (fold change) values. To further investigate the mutations effect on the more 

complexed full length HIV-1 IN structure, we used molecular dynamics simulations to study the 
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impact of the mutants on binary (IN-viral DNA complex) and ternary (IN-viral DNA- INSTI) IN 

flexibility. RMSD analyses revealed that that the mutants have a rigid structure relative to the WT 

IN. Furthermore, mutant IN showed transient changes in the secondary structure of the 140s loop 

compared to the WT. In addition to these reduced flexibility and structural changes, resistance 

mutations alter the binding mode of RAL, ELV, and DTG to IN and viral DNA. This study is the 

first to identify a structural basis of IN mechanism of resistance to INSTI’s resistance that develops 

under treatment pressure in HIV-1 IN. 
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