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CHAPTER 1: AUTOPHAGY IS UPREGULATED IN A DROSOPHILA FRDA MODEL AND 

ASSOCIATED WITH APOPTOSIS AND MITOPHAGY 

1. Introduction 

1.1 Friedreich’s ataxia: features and genetics 

Friedreich’s ataxia (FRDA) is the most prevalent inherited recessive ataxia, affecting about 

1 in 40,000-50,000 individual in the United States and Europe (4). It mostly affects Caucasians, as 

well as North Africans and Middle Easterners, without gender differences (5). The onset of FRDA 

is usually around puberty, but the range may vary from 2 years old to the late 30s (5). FRDA 

progressively affects the central nervous system (CNS) and peripheral nervous system (PNS), as 

well as the heart and skeletal muscles. The symptoms include muscle weakness in the arms and 

legs, heart disorders, loss of coordination, vision and hearing loss, dysarthria, scoliosis, and 

diabetes (6). Unfortunately, currently there is no treatment for FRDA. Recent studies show that 

the addition of the control Frataxin gene could rescue the Frataxin mutation cells in yeast, mice, 

and humans (7-9). However, the amount of Frataxin expression should be carefully monitored 

because over-expression up to 8-to-10 fold has deleterious effects in the Drosophila model (10). 

The above research indicates that more detailed information is required for effective treatment 

of FRDA. 

In 1996, Campuzano and colleagues found that FRDA is caused by expansion of GAA 

triplets at chromosome 9q13-9q21.1 region, which contains candidate gene X25 (11). They 

further clarified that the disease is caused by a deficiency of an 18kDa mitochondrial membrane 

protein encoded by X25, which they named Frataxin (FXN) (12). The human FXN gene has 7 

exons and extends for 95 kb on the genome (11). Frataxin protein is associated with the 
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mitochondrial inner membrane and crests. It is highly conserved from bacteria to plants and 

mammals (13, 14). The nuclear-encoded FXN gene is transcribed through the first five exons to 

produce a 210 AA (23 kDa) precursor protein isoform with N-terminal mitochondria targeting 

sequence. The precursor is then transported into the mitochondria and enzymatically cleaved 

between Gly41 and Leu42 to form a 169 AA intermediate m42-FXN (intermediate-FXN, 

corresponding to residues 42-210) by mitochondrial processing peptidases (MPPs) (15). The 19 

kDa intermediate then undergoes further cleavage by MPPs to produce the mature form of 

Frataxin protein (16). There are three mature different Frataxin protein isoforms reported, m56-

FXN, m78-FXN, and m81-FXN. Cavadini and colleagues first described a 155 AA, 17 kDa m56-FXN 

as a matured and functional form of Frataxin in humans in 2000 (16). In 2007, Condo and Testi 

published their finding of a 130AA, 14.2 kDa m81-FXN as the major form of Frataxin protein in 

human cells, such as human heart and peripheral blood lymphocytes and dermal fibroblasts (17).  

Another isoform was discovered by Yoon et al. in 2007, which is cleaved at site 78 to form a 

133AA, 14.5 kDa m78-FXN (18). Currently, it is still not clear about the major form of matured 

Frataxin in vivo. Some explanations were proposed that different isoforms may be the result of 

different physiological conditions. For example, Gakh and colleagues found that both m42 and 

m81-FXN were present in normal cells under steady-state conditions, but m42-FXN seems to be 

degraded faster than m81-FXN in FRDA patients. Besides that, the m42 and m81-FXN also differ 

in the ability of oligomerization and iron/iron-sulfur cluster delivery which will be discussed later 

(19). 

It is now established that the large expansion of trinucleotide repeats GAATTC within the 

first intron of the Frataxin gene occurs in most clinical cases of FRDA. Around 98% of FRDA 
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patients are homozygous for the GAA expansions, while the rest carry one expansion allele and 

one point mutation in the other allele (11). The length of the GAA repeat expansion in the 

smaller allele is positively correlated to disease progression and negatively correlated with the 

age of onset (20, 21). The repeats expansion ranges from 43 to more than 1700, compared to 

the 8-42 in unaffected people. Long repeats significantly reduce the level of Frataxin mRNA up to 

70% (11, 21). 

Multiple hypotheses have been proposed to explain how the increment of GAA repeats 

reduces the level of Frataxin mRNA. One of the major hypotheses suggests that when 

transcribed, the GAA repeats produced a corresponding mRNA segment that could bind to the 

DNA template forming DNA triplexes or DNA: RNA hybrid structures (22, 23). According to 

Grabczyk’s work, which was done in vitro with T7 RNA polymerase, the DNA: RNA hybrid 

structure forms during the transcription of the long repeats and arrests the RNA polymerase at 

the GAA.TTC region, thus reducing the level of Frataxin mRNA (22). The DNA triplex, through 

interactions with two neighboring long repeated regions, forms a GAA.GAA.TTC structure 

(termed sticky DNA). This “sticky DNA” not only reduces the transcriptional efficiency but also 

affects the genetic stability of the DNA locus containing the trinucleotide repeat (23). 

On the other hand, some researchers have shown that increasing the number of GAA 

repeats within the first intron of Frataxin does not affect pre-mRNA process, but rather the 

splicing efficiency of the first intron during the maturation (24). One new hypothesis comes from 

Saveliev’s work, which proposes that long repetitive repeats tend to trigger the 

heterochromatin-like effect on the genome, thus repressing gene transcription (25). But until 
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today, the connection between the length of the triplet repeat and Frataxin mRNA and protein 

reduction is still under debate. 

The Frataxin was expressed in all tissues, but it is enriched in heart, brown fat, kidney, 

liver, and certain neurons, most of which are highly metabolic and mitochondria-enriched tissues 

(14, 26).  Therefore, as expected, the deficiency of Frataxin in FRDA patients usually causes 

more significant damage to those mitochondria-enriched tissues than in the other organs. The 

importance of Frataxin for survival varies among species. Simple unicellular organisms such as 

yeast can survive without Frataxin, but the complete absence of Frataxin is lethal for all studied 

multi-cellular organisms such as mammals (27). Multiple reviews have been published on the 

pathology of nervous system dysfunction in FRDA in humans and animal models (5, 28-30). The 

neuronal system is usually the first to be affected. The early onset FRDA patients commonly 

show declining motor skills as the first symptoms of the disease (30). Most of the FRDA patients 

ultimately suffer from cerebellar and brain stem atrophy, as well as lesions of cerebral white 

matter (31). The FRDA patients show a reduction in spinal cord diameter up to 30% compared to 

control cases, especially in the thoracic region, indicating fiber loss, such as gracile and cuneate 

fasciculi (32). The magnetic resonance imaging (MRI) results also revealed more than 60% loss in 

superior cerebellar peduncle (SCP) volume in FRDA cases (33).  Dentate nuclei (DN) atrophy, 

accompanied by the degeneration of gray matter, occurs in most cases and becomes a 

biomarker for the diagnosis of FRDA (28, 34). 

Currently, the most accepted hypothesis is that Frataxin is involved in iron metabolism in 

the mitochondria (27). The deficiency of Frataxin usually results in the abnormal accumulation of 

iron deposits in the mitochondria, and this apparently causes multiple enzyme deficits, 
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mitochondrial dysfunction, and oxidative damage. Eventually, this leads to neuron degeneration 

and a shortened lifespan (35). The deposit of iron in myocardial cells of three FRDA cases were 

first confirmed by Lamarche et al. in 1980 (36). Based on structural analyzes, Frataxin is possibly 

required for the assembly of iron-sulfur clusters (ISC). The negatively charged amino acids on the 

Frataxin surface could bind ferrous iron and promote the mitochondrial synthesis of ISC by 

controlling the ability of iron to participate in redox reactions (37). The detailed role of Frataxin 

in the ISCs is also being extensively studied. The ISC are involved in a series of important 

processes such as electron transport, energy metabolism, DNA repair and iron handling (38).  

The cluster consists of a group of proteins, including two molecules of IscS (Nfs1 in mammals) 

and two molecules of IscU to form the scaffolds of the complex (37). It is still debatable if the 

Frataxin protein directly binds to the IscU proteins. 

1.2.1 ROS and Autophagy in FRDA 

Reactive Oxidative Species (ROS) refers to a group of highly reactive, oxygen-containing 

chemicals such as hydroxyl radical (•OH), hydrogen peroxide (H2O2), and superoxide radical (O2•-

). Under physiological conditions, ROS molecules such as O2•− were produced in the 

mitochondrial matrix by Complex I and III and quickly removed by matrix manganese superoxide 

dismutase (MnSOD) (39). Because the O2•− produced in the matrix cannot cross the membrane 

unless it is protonated, the O2•− accumulates in the mitochondrial matrix. ROS, especially •OH 

that is produced by Fe(II) and H2O2 through the Fenton reaction, attack and oxidize the lipid, DNA 

and protein molecules inside the cell, causing cellular structural changes that are often 

associated with diseases. 
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The connection between Frataxin deficiency and ROS damage was first discovered in 

yeast. The Frataxin deficiency yeast strains ΔYFH1 and YDL120 were hypersensitive to oxidative 

stress (40, 41). This was confirmed by Wong et al. in 1999 in mouse models when they observed 

that mouse FRDA fibroblasts show hypersensitivity to iron stress and hydrogen peroxide, 

suggesting the significant impact of ROS to disease progression (42). Amoros and colleagues 

reported that in SH-SY5Y human neuroblastoma cells with reduced Frataxin level have an 

increase in oxidative stress markers such as superoxide radical anion production and protein 

carbonylation, suggesting that there is an upsurge in oxidative stress upon Frataxin deficiency 

(43). Another piece of direct evidence for increased ROS production in Frataxin deficiency was 

attributed by measuring the level of O2•− in FRDA-mutant mouse lymphoblasts using the 

dihydroethidium (DHE) method, which is a dye that localizes to mitochondria with a normal 

electron density gradient. It showed that there is an increase in ROS in FRDA-deficient cells about 

80% compared to control cells(44). 

There are several theories being developed on the effect of ROS in FRDA model 

organisms (45-47). One of the major hypothesis is that the increased ROS cause damages by 

interfering with the essential Fe-S cluster synthesis associated with Frataxin. The integrity of Fe-S 

clusters in the mitochondrial respiratory complex enzymes must be well maintained to prevent 

the failure of electron transfer. It allowed the electron leakage to be kept at the minimal level to 

avoid the production of ROS (48). The O2
•− in FRDA-mutant E. coli inactivated prosthetic Fe-S 

cluster-containing enzymes through an oxidative attack (39). The research by Anderson et al. 

showed that ectopic expression of H2O2 scavenging enzymes, such as catalase (CAT) and SOD1, 

could partially rescue the short lifespan phenotype in Frataxin-deficient Drosophila (49). 
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The sensitivity of FRDA-deficient yeast cells to H2O2 was associated with an increase in 

the activated form of Caspase 3, a possible link to increased apoptosis (50). Second, it was 

proposed that the ROS-related damage in FRDA-deficient mouse cells includes mitochondrial 

DNA damage and nuclear DNA loss (51, 52). The work from Karthikeyan et al. confirmed that 

Frataxin-deficient yeast showed higher DNA damage reporter signals accompanied by increased 

ROS levels(53). Under normal conditions, superoxides are produced in the mitochondrial matrix 

and removed by superoxide dismutase (SODs) (54). The SODs, which belong to the Phase II 

detoxification pathways, were controlled by Nrf2 (nuclear factor-erythroid 2-related factor 2). 

Nrf2 is a cytosolic protein sequestered by Keap1 protein, and its activity is repressed at basal 

levels (3). Once the oxidative stress increases, the Keap1 protein is modified through oxidation, 

which releases Nrf2 into the nucleus. Nrf2 is phosphorylated by protein kinase C (PKC) at Ala 40 

and tethered with a small protein heterodimer MafG binds to antioxidant responsive elements 

(ARE) DNA sequences. The binding in turn activates the transcription of Phase II antioxidant 

genes, such as SODs, glutathione, glutathione reductase, and glutathione-S-transferase (GST) to 

counteract the stress (55-57). 

The defects of antioxidant mechanisms, including the reductions of SODs and 

glutathione, were also reported in FRDA cases. The SOD levels were only moderately up-

regulated, and its upstream Nrf2 signaling pathways were defective in FRDA cells. Data showed 

that in cultured human FRDA fibroblasts, Nrf2 failed to associate with the clustered, phalloidin-

reactive filamentous structure, termed actin stress fibers, to translocate into nucleus (58). As a 

result, the antioxidant enzymes such as catalase, GSTP1, NQO1, and SOD2 all showed 

significantly reduced induction under oligomycin or tert-Butylhydroquinone(tBHQ) treatment, 
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indicating a dysregulation of Nrf2 signaling during oxidative stress (58). In FRDA yeast, the total 

glutathione level was reduced to 20% compared to control samples, as well as glutathione 

peroxidase activity (59). 

There are studies published about the beneficial effects of antioxidant supplement 

methods, including ectopic expression of SODs and increasing glutathione levels. For example, 

some studies of FRDA drug therapies have investigated the use of idebenone, which is a 

synthetic short-chain benzoquinone similar to the mitochondrial antioxidant coenzyme Q10(60). 

Idebenone is capable of reducing the membrane damage and protecting mitochondrial function 

as an electron carrier in FRDA cells. Research has shown that idebenone is beneficial for reducing 

the neurological dysfunction in the Drosophila FRDA model. However, clinical trials of idebenone 

failed to provide significant therapeutic benefits in FRDA patients (61-64). These results indicate 

that the oxidative-stress reducing pathways through SODs are partially affected in FRDA patients. 

However, the anti-oxidative stress mechanisms in FRDA are affected by multiple factors and 

need further clarification. 

Besides antioxidant enzymes, autophagy is another major defensive mechanisms against 

ROS by removing oxidative-stress damaged cytosolic contents, especially long-lived and 

aggregated proteins and damaged organelles (65). Briefly, a double-membrane vesicle called the 

autophagosome extends and encompasses cytosolic components, such as defective 

mitochondria or large protein aggregates. The autophagosomes then fuse with the lysosomes or 

endosomes where the contents are degraded and subsequently recycled (65). Autophagy 

dysfunction has been linked to several diseases, including systemic lupus erythematosus, Danon 
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Disease, Parkinson’s diseases, and cancers (66-70). But the description of autophagy in FRDA is 

limited. 

The autophagy pathway includes initiation, nucleation, elongation, fusion and the final 

degradation steps, which require over 31 autophagy-related (Atg) genes (71). The protein mTOR, 

which is short for the mammalian target of rapamycin, is the major sensor of cellular nutrition 

deprivation and controls the initiation of the autophagy pathway. Autophagy starts with the 

initiation of a double-membrane structure called the phagophores, which form after stress 

signals such as starvation, hypoxia, or oxidative stress. The phagophores associate with other 

proteins such as RAPTOR (Regulatory Associated Protein of mTOR), DEPTOR (DEP-domain containing 

mTOR interacting protein), MLST8 (mammalian lethal with Sec-13 protein 8, also termed GβL (G 

protein beta subunit-like)), and PRAS40 (proline-rich Akt substrate of 40 kDa) to form mTOR 

complex 1 (mTORC1), which suppresses the activity of the Atg1 complex. The induction process 

requires the suppression of mTORC1 and activation of the Atg1 complex. The Atg1 complex in 

yeast contains Atg1-Atg13-Atg17, and the complex in Drosophila possesses Atg1, Atg13, and 

RB1CC1(72, 73). In mammalian cells, Ulk1 (unc-51 like autophagy activating kinase 1), which is 

the mammalian Atg1 homolog, Atg13, and RB1CC1 are constitutively bound. But under normal 

conditions, mTOR inhibit the Atg1/Ulk1 complex by hyper-phosphorylating Atg1/Ulk1 and Atg13 

(74, 75). 

During starvation or other stress signals, mTOR is inactivated. Ulk1 and Atg13 are 

dephosphorylated and activated. The dephosphorylation of Ulk1 activates its kinase activity, 

which phosphorylates FIP200(FAK-family interacting protein of 200 kDa, mammalian Atg17 

homologue) to form the Ulk1-Atg13-RB1CC1-FIP200 complex and translocate to the isolation 
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membrane, termed pre-autophagosome or phagophore (75). It is suggested that the binding of 

Atg13 increases Atg1 stability (76). Currently, the origin of the double membrane is not entirely 

understood. It is suggested that the source of raw materials to build the phagophores may be 

the rough endoplasmic reticulum (rER), Golgi or mitochondria (77). It is found that Atg9 may 

contribute to induction by collecting and chaperoning the membrane components from an 

unknown cytosolic pool to the phagophore assembly site (PAS) (78). The structure characteristic 

of autophagy, the double membrane phagophore, accumulates in the PAS and enters the next 

step of expansion. 

Current studies reveal that the expansion of the phagophore is controlled by 

phosphatidylethanolamine (PE) conjugated Atg8b, which is catalyzed by two ubiquitin-like (UBL) 

systems. The first UBL system is the direct binding of Atg8a to the pre-autophagosome 

membrane (79). Shortly after the synthesis of Atg8a protein or its mammalian ortholog LC3-I 

(microtubule-associated protein 1 (MAP1) light chain 3 form I), Atg8a/LC3-I is cleaved by Atg4 to 

reveal a C-terminal glycine residue and Atg8a/LC3-I then resides in the cytosol (79). Atg8a/LC3-I 

next conjugates to the PE to produce Atg8b/LC3-II. Atg8b/LC3-II incorporates into the 

autophagosome membrane and remains attached until the autophagosome is degraded by the 

lysosome when the two organelles fuse at the end of the autophagosome cycle. 

Atg8b/LC3-II is a widely used marker for autophagy quantification (80). The second UBL 

system is the formation of Atg12-Atg5-Atg16 complex, which is independent of Atg8a/b (81). 

After the activation by Atg 7, Atg12 is then covalently bound to Atg5 through a series of 

ubiquitin-like conjugation reactions. Atg16 is also necessary for the membrane biogenesis (82). 

The Atg12- Atg5 conjugate interacts with Atg16 to form the Atg12- Atg5- Atg16 complex which 
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possesses enhanced affinity for negatively charged lipid and help tethering the phagophores 

membrane (81, 83). The membranes gradually extend and engulf the cytosolic contents and fuse 

with endo-lysosome in the form of autophagosomes for degradation. The contents and the inner 

membrane of the autophagosomes are degraded by the lysozymes, and the remnant are 

released back into the cytoplasm for recycling (84). The induction of autophagy is relatively slow. 

For example, in Drosophila adults and larvae, the autophagosomes are typically induced in the 

fat body 60 minutes after starvation is initiated (85). 

The major function of autophagy is to maintain cellular homeostasis and to repair 

damage caused by stress such as ROS, through the constitutive or induced autophagy. 

Constitutive autophagy occurs at basal levels and is used as a general mechanism for cellular 

protein and organelle quality control under normal situation. The process is especially important 

in cells that do not readily replicate, such as neurons, cardiac cells, and hepatocytes. In a study 

by Sou et al., neural-cell specific Atg5-/- mice were created to inhibit autophagy (86). The mice 

exhibited ubiquitinated protein aggregates and symptoms of neurological pathology, suggesting 

that basal autophagy is critical to maintaining neural health. Induced autophagy occurs in 

response to nutrient deprivation, cell stress, and numerous pharmacological reagents. 

In cells undergoing nutrient deprivation, autophagy is used to break down cellular 

contents into amino acids and other components, and the cells can utilize the amino acids as an 

energy source (87). The importance of maintaining energy homeostasis during nutrient 

deprivation was stated in the study performed by Kuma et al. (88). Here, Atg5 -/- mice failed to 

survive the period of neonatal starvation that occurs following the birth and the sudden 

termination of transplacental nutrient supply. During this period, a massive increase in 
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autophagy was reported in the heart muscle, diaphragm and alveolar cells of WT transgenic mice 

labeled with a GFP-LC3 marker (88). 

Autophagy could act as a pro-survival mechanism by antagonizing ROS and removing 

damaged organelles such as mitochondria. As stated above, ROS surging-induced Nrf2 could bind 

to ARE to increase the transcription of antioxidant-related genes, as well as autophagy-related 

genes, such as P62 (89). Another major connection between ROS and autophagy is tumor 

suppressor gene P53, which is also a central hub for stress signaling pathways. Under normal 

circumstances, cytosolic P53 suppresses autophagy by directly interacting with FIP200 (human 

ortholog of yeast Atg17) and inhibits Ulk1 complex. Increased ROS levels stimulate the 

redistribution of P53 from cytosol to nucleus, and directly regulates the transcription of several 

downstream genes related to autophagy, including subunits of AMPK (AMP-activated protein 

kinase), which activates autophagy triggered by starvation and hypoxia, and DRAM (damage 

regulated autophagy modulator), which promotes autophagy (90-93). 

The reduction of cytosolic P53 also releases the suppression of Ulk1 complex and induces 

the initiation of autophagy (91). At the same time, cytosolic P53 also translocates to the 

mitochondrial matrix and interrupts the proton electrochemical gradients across the 

mitochondrial membrane, thus reducing the mitochondrial membrane potential (ΔΨm). The 

reduction of ΔΨm may cause the selective autophagic removal of dysfunctional mitochondria 

(94). Evidence of direct interactions between ROS and autophagy proteins has also been found. 

Among the autophagy-related proteins, Atg3, Atg7 and Atg10 are the most sensitive to ROS 

because they are involved in the ubiquitin-like reactions to catalyze the conjugation of PE to LC3-

I, which depends on the thiol group of the cysteine residue (95). The Cys81 of Atg4 is modified by 
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starvation-induced ROS production, specifically H2O2, thus inducing autophagy, which is 

visualized by LC3-II incorporation into the autophagosome membrane (92). Conversely, the 

inhibition of autophagy may increase the formation of reactive oxidative species, as well as 

increased ubiquitinated proteins and dysfunctional mitochondria (96). In summary, the above 

evidence suggests that autophagy could be affected by the increase of ROS level in FRDA. 

In addition to its pro-survival roles, autophagy also shows a pro-apoptosis function as a 

mediator of cell death in many occasions. Autophagic cell death is accepted as a unique form of 

cell death and has received the title of Type II programmed cell death (97). The cells undergoing 

autophagic death exhibit an accumulation of autophagosomes in the cytoplasm. Yet the 

presence of autophagosomes in the cytoplasm is not sufficient evidence to conclude that a cell is 

undergoing autophagic death. Cell death can occur solely through autophagy as seen in MCF-7 

cells treated with the drug tamoxifen (98). There is also evidence that autophagic cell death can 

accompany apoptotic cell death, and the two pathways are not necessarily mutually exclusive. 

For example, in the removal of Drosophila salivary glands in the pupae, apoptotic features such 

as caspase activation and DNA fragmentation are observed alongside the accumulation of 

autophagosomes (99). 

Besides the above observations, it is also reported that autophagy can participate in the 

activation of traditional apoptosis. For example, treatment of cells with the pan-sphingosine 

kinase inhibitor SKI-I could induce apoptosis by activating caspase-8. But the absence of Atg3 or 

Atg5 reduces the caspase-8 activation. Young and colleagues found that Atg5 could facilitate 

apoptosis by forming a complex with caspase 8, FAS-associated death domain (FADD) and 

activating caspase-8 activity (100). Recently, it was reported that intrinsic apoptosis pathways 
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are activated in β-cells and neurons from FRDA rat, mediated by Bcl-2 family proteins Bad, DP5, 

and Bim (101). Mincheva-Tasheva et al. found induced apoptosis in the primary cultured 

neurons from FRDA rat dorsal root ganglion (DRG). They also found that the apoptosis could be 

reverted by the addition of BH4 domains from Bcl-xL protein, which inhibits autophagy through 

inhibitory interaction with Beclin-1/Atg6 (102). It is intriguing to explore if autophagy is involved 

in the loss of neurons, cardiomyocytes or other cell types in FRDA patients by promoting 

apoptosis under a certain level of stress. The above data suggest that the autophagy could 

function in anti-apoptosis and/or pro-apoptosis ways in FRDA. 

Currently, there are several autophagy modification chemicals available, including 

inducers and inhibitors, and some of them have been tested in clinical trials or therapies. The 

canonical autophagy inducer is rapamycin (sirolimus), a fungicide with immunosuppressive 

property (103). Rapamycin affects autophagy by forming complex with cytosolic FKBP12 proteins 

and destabilizing mTOR complex, thus activating Ulk1 complex for autophagy initiation (104). 

Another chemical, methylthioninium chloride, also named methylene blue (MB), was also 

discovered to be a strong inducer of autophagy. The report suggested that MB stimulates 

autophagy through the activation of AMPK, possibly by inhibiting mTOR and activating the Ulk1 

complex to initiate autophagy (105). At the same time, MB also reduces the phosphorylation 

level of Insulin Response Substrate (IRS), which in turn activates Insulin-like Growth Factor (IGF) 

receptor and the Phosphoinositide 3-kinase (PI3K). PI3k next phosphorylates Akt, which 

inhibitorily phosphorylates GSK-3 to lower its activity, thus facilitates the interaction of Bif-1 and 

BECN-1, leading to the formation of an SH3GLB1-BECN1 complex that activates PI3K to increase 

autophagy (106). 
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On the other hand, common autophagy inhibitors include chloroquine (CQ), bafilomycin 

A1, and 3-methyladenine (3-MA). CQ inhibits autophagy by altering the pH of the lysosome to 

interfere with lysosomal acidification, resulting in interrupted degradation of 

autophagosomes/autolysosomes (107). Similarly, bafilomycin A1 suppresses autophagy by 

blocking the vacuolar type H+-ATPase on the lysosomal membrane to disrupt the lysosome 

acidification and autophagosome/lysosome fusion (108). The function of 3-MA comes from its 

interaction with class III phosphatidylinoside-3-Kinase (PI3K) which inhibits the production of 

phosphatidylinositol 3-phosphate (PI3P), thus suppressing the recruitment of Atg proteins to the 

phagophore during the initiation stage (109). These modifiers provide us with powerful tools to 

study autophagy in FRDA. 

1.2.2 Mitochondria Homeostasis and Mitophagy in Neurodegenerative Diseases and FRDA 

Beside the quantification of autophagy in FRDA, we are also interested in the detailed 

mechanism of autophagy in FRDA progression. Currently, it is not clear the downstream events 

of the increased ROS and Fe-S cluster dysregulation in FRDA. The details of how autophagy 

affects neurons and cardiac cells in those neurodegenerative diseases are still unclear and 

sometimes controversial. As mentioned before, autophagy participates in the regulation of 

protein and organelle degradation, especially in the long-lived postmitotic cells like 

cardiomyocytes and neurons. Autophagy has been proven to be one of the major mechanisms in 

degrading aggregation of misfolded proteins in Alzheimer’s disease, Parkinson’s disease, and 

amyotrophic lateral sclerosis (110). We hypothesize that the autophagy could play a role in FRDA 

by affecting mitochondrial homeostasis, inducing apoptosis, or initiating mitophagy. In other 
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words, autophagy could be the link between mitochondrial dysfunction and the 

neurodegeneration and neuron loss in FRDA. 

As the powerhouse of the cells, mitochondria are subject to the ROS damages results 

from oxidative stress in diseases, including FRDA (111). When mitochondrial functions are 

interrupted, they become the major source of ROS production such as H2O2  and O2•- (112, 

113). The damaged mitochondria usually show up-regulated ROS production (114). Considering 

that Frataxin is localized in the matrix, the mitochondria are the direct target of the cellular 

stress and hence raise the possibility that the mitochondrial could be an important factor in 

FRDA pathogenesis. 

Defective mitochondria have been recognized as a key feature of Friedreich’s ataxia. The 

deletion of yeast Frataxin homolog YDL120 reduced the mitochondrial respiration ability up to 

40% compared to WT [26]. B. Amoros and colleagues reported that reduced Frataxin in SH-SY5Y 

human neuroblastoma cells caused dysfunctional mitochondria (43). The lower ATP production 

(50% or less), reduced Cytochrome C oxidase 1 and 2 (Cox I/ II) protein level and increased 

depolarization of mitochondrial membrane potential (reduced ΔΨm) were observed in SH-SY5Y 

cells (43). The lowered mitochondrial membrane potential was confirmed by Mincheva-Tasheva 

et al., who showed that in cultured DRG neurons, 5 days after the Frataxin KD, there is a 

significant reduction of mitochondrial membrane potential (102). 

It was reported that by measuring the ratio of citrate synthase and aconitase activities, 

the mitochondrial respiratory chain activity shows 84% decrease in FRDA patients’ heart samples 

(43). In the meantime, the abnormal iron contents inside the mitochondria were 8-12 times 

higher than the WT cells. The same pattern was observed in human FRDA patients. Iron 
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accumulation is also seen in heart samples from FRDA mouse (115). There were changes in 

mitochondrial morphology and reductions in mitochondria numbers, as well as an increase in 

mitochondrial fusion (43). But until today, the research of mitochondrial homeostasis in FRDA is 

relatively limited and often controversial. 

Several hypotheses were developed in the connection between dysfunctional 

mitochondria and FRDA, including the involvement of mitochondria induced apoptosis and the 

defects in mitochondrial quality control (MQC) pathways, such as fission/fusion and, to our most 

interest, mitophagy (101, 116-118). As stated above, autophagy could participate in type I or 

type II cell death, and the induced apoptosis of neuron cells has long been associated with 

neurodegenerative diseases. For example, Magrane et al. showed that morphologically altered 

mitochondria accumulate in familial amyotrophic lateral sclerosis (fALS) transgenic rat motor 

neurons right before the neuron death (119). 

It is still unclear about the connection between dysfunctional mitochondria and FRDA 

pathological symptoms such as neuron degeneration and myocardial cell loss. Multiple studies 

explored the possibility of apoptosis mediated by Frataxin deficiency in those cell types, but the 

results were controversial. Increased apoptosis was reported in rat DRGs neurons and was 

observed in Frataxin-deficient clonal rat INS-1E β-cells, and inducible Pluripotent Stem Cell 

(iPSC)-derived neurons originated from FRDA patients (102) (101). Bolinches-Amoros et.al 

observed limited proliferation rate and shorter survival time in Frataxin KD SH-SY5Y cell lines. 

The Frataxin KD cells showed a higher level of senescence related β-galactosidase (SA-β-gal) 

activities but no changes in apoptosis-related cytosolic cytochrome C contents and the overall 

active form of caspase-3 in Frataxin-KD cells. The conclusion was that Frataxin depletion 
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accelerates cell senescence but does not induce apoptosis. However, this finding is partially 

shadowed by the fact that the finding was observed in the SH-SY5Y neuroblastoma cell line, of 

which the anti-apoptotic property may produce bias while performing apoptosis assay (43). The 

debate on the mitochondrial homeostasis and possible mitochondrial induced apoptosis in FRDA 

will require more research in the future. 

Given the importance of providing essential energy for maintaining cellular activities, 

mitochondria are strictly monitored by multiple levels of MQC mechanisms. Different strategies 

of MQC are used against various types of stress. MQC can remove damaged mitochondria 

through mitochondrial fission/fusion to reduce the stress in the anti-apoptotic direction. While 

mitochondrial fission and division lead to apoptosis, mitochondrial fusion usually protects the 

cell against apoptosis (120, 121). Under other circumstances, MQC would promote 

mitochondrial fragmentation and mitochondrial autophagy (mitophagy) for energy and material 

recycling, as well as the aforementioned induced apoptosis. The presence of dysfunctional 

mitochondria in FRDA shows a possible absence or dysregulation of MQC, which may be caused 

by iron deposits and defective MQC components, or limited MQC capacity compared with 

increased abnormal mitochondria (122). We are especially interested in the function of 

mitophagy in FRDA. 

It has been confirmed that increased mitophagy occurs in Alzheimer ’s disease, which 

indicates that abnormal autophagy activities are associated with neurodegenerative diseases 

[44]. Evidence showed that the mitochondria, either healthy or dysfunctional, could be found in 

autophagosomes in rat hepatic cells (123). Studies conducted in S. cerevisiae verified that the 

strains with Atg mutations, including Atg1, Atg6, Atg8, and Atg12, show defects in mitochondrial 
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degradation (124). Lower mitochondrial electron transport chain activities and higher levels of 

ROS are detected in those strains, which were similar to FRDA symptoms, showing the 

importance of mitophagy in maintaining mitochondrial functions (125). 

Mitophagy, the removal of mitochondria through autophagy is considered selective. The 

specificity of mitophagy is confirmed by targeting the mitochondria through photo damaging 

agents. Chan et al. observed that in mouse lung cells with increased oxidative stress, GFP-LC3 

highly co-localized with RFP-labelled citrate synthase, a mitochondrial protein, indicating the 

removal of the damaged mitochondria through mitophagy (126, 127). Starvation followed by 

glucagon supplementation activates the engulfment of mitochondria with several fold increase 

of autophagosomes, indicating the selective removal of depolarized mitochondria through 

mitophagy (128). Starvation also increases the amount of autophagosomes and autolysosomes 

that co-localize with mitochondria remnants (129). 

It has been shown that it takes about 6 minutes for the mitochondria to be engulfed by 

phagophores or pre-autophagosomes (130). The sequestered mitochondria depolarize within 10 

minutes by losing their fluorescent signal after Tetra-methyl-rhodamine-methy-lester (TMRM) 

treatment, a dye fluoresces when mitochondria are depolarized (130). The real-time analysis 

reveals that it takes an average of 7 minutes to digest the mitochondria after their sequestration 

into the autophagosomes (129). 

Two major proteins involved in mitophagy are E3 ubiquitin ligase Parkin, which is 

encoded by Park2, and PTEN-induced putative kinase Pink1. When the depolarized ΔΨm is 

detected, Parkin re-distributes from the cytosol to the mitochondria, and is accompanied by the 

loss of mitochondrial markers such as Tom20, Cytochrome C, and TNF receptor-associated 
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protein 1 (TRAP1) (131). Pink1 is rapidly degraded by presenilin-associated rhomboid-like 

protein, a rhomboid protease in healthy mitochondria. But in dysfunctional mitochondria with 

diminished membrane potential, Pink1 is stabilized on the outer mitochondrial membrane while 

forming complexes and recruiting Parkin (132, 133). Research suggests that Pink1 recruits Parkin 

through its cytoplasmic kinase domain by phosphorylating Parkin at its Thr175 and Thr217 sites 

(134). The recruited Parkin then induces ubiquitination of mitochondrial membrane proteins 

such as VDAC and Mitofusin1/2, which promotes the degradation of the mitochondrial 

membrane and the following mitophagy (135-137). 

Research also indicates that Parkin could induce mitochondrial fragmentation to facilitate 

mitophagy, by degrading mitochondrial protein Mitofusin 1 and 2 by proteasomes (138). The 

mitophagy regulation signaling pathways are extensively studied, and multiple genes are linked 

to the events. The Dynamin-related protein 1 (Drp1), which is recruited to the outer 

mitochondrial membrane, was reported to initiate mitophagy by binding to the mitochondrial 

outer membrane protein Fission 1 (Fis1).  The deficiency of Drp1 causes diminished 

mitochondrial function in respiratory function and ATP production, as well as lost mtDNA. Most 

importantly, mitophagy in Drp1–KD cells is suppressed (139). On the other hand, Drp1 over-

expression promotes mitochondria elimination by promoting mitophagy (140). It is possible that 

Drp1-dependent mitochondrial fragmentation primes mitophagy (141). 

An interesting discovery is that the mitochondria, after a cycle of fusion/fission, can be 

divided into two categories: those that undergo refusion and those that do not (142). Currently, 

it is not clear what sorting mechanism is behind these two subpopulations (143). Generally, 

fission produced two subpopulations of mitochondria. Ones with lowered membrane potential 
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(ΔΨm) tend to incorporate with autophagosomes for degradation The other ones with higher 

potential remain in the cytosol for possible fusion(142).  Mitochondria that never undergo re-

fusion show a lower ΔΨm and tend to co-localize with LC3-GFP labeled autophagosomes, 

implying the possibility that mitophagy is the destination of unsalvageable mitochondria (144). 

The depolarized mitochondria are observed to be sequestered in the autophagosomes by 

the lysosomal inhibitor Pepstatin A and E64D (144). Optic atrophy 1 (OPA1) is also considered to 

regulate mitophagy since the over-expression of OPA1 can effectively reduce the mitochondrial 

fraction in autophagosomes (145). Recent findings also suggest that mutated NIX, which encodes 

a BH3 family protein, reduces the presence of mitochondria in autophagosomes. The NIX-/- 

reticulocytes containing mitochondria are more sensitive towards stress from anemia, implying 

that the inability of removing malfunctioning mitochondria may be detrimental to the cell (146). 

Currently, NIX, ULK1, and Parkin are identified as signals that could specifically activate 

mitophagy in mammalian cells (147). In addition, some Atg genes may also participate in the 

regulation of mitochondria degradation. For example, knockdown of Atg7 reduces mitochondria 

removal in K562 cells. It is interesting to note that the KD of the essential Atg5 gene does not 

impede mitophagy in reticulocytes from neonatal animals (147). 

In summary, the function of mitophagy has been associated with other 

neurodegenerative diseases such as Parkinson’s disease, but not in FRDA yet. We are interested 

in testing the status and possible role of mitophagy in FRDA Drosophila models. 

1.2.3 Drosophila models of cardiovascular disease and FRDA  

Drosophila melanogaster is used extensively as a model system for genetics and 

developmental studies. It has the great advantages of low cost and a short generation time (2 
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weeks). More importantly, the homologs of 75% of known human disease genes can be found in 

Drosophila, which implies that the knowledge obtained from the Drosophila model is 

transferable to humans (148). The genome projects of high-density P-element and PiggyBac 

element insertions throughout the Drosophila genome make it an even more powerful model 

organism (149, 150). The understanding of numerous diseases has benefited from the 

Drosophila model, including Parkinson’s disease, diabetes, cancer and, especially, heart disease 

(151). 

The Drosophila heart (dorsal vessel) is morphologically different from the vertebrate 

heart but is evolutionarily conserved (152).  In the Drosophila open circulatory system, the 

heart is defined as the section of the dorsal vessel between abdominal segments A5-A8 (153). 

The section anterior to the heart is a narrow tube called the aorta, which expands from thoracic 

segment T3 to abdominal segment A5 (153). In Drosophila pupae, the heart tube consists of two 

layers of cells. The inner cell layer contains two rows of myocardial cells, which form the tightly-

jointed inner surface for contractile functions and with ostia cells in between which permit the 

entrance or exit of hemolymph (Drosophila blood) (153, 154). The relatively loosely organized 

outer layer has two rows of pericardial cells with possible excretion functions. The myocardial 

cells can be distinguished by their expression patterns of tinman (Tin). The homeobox gene 

tinman is expressed in each segment of the dorsal vessel and in four of the six pairs of cardial 

cells. Its expression patterns provide a powerful tool for researchers to investigate the cardiac 

function and development in the Drosophila model. 

In Drosophila, different forms of cardiac dysfunction were observed such as cardiac 

arrhythmias, including atrial fibrillation and cardiac arrest (152). In addition, there are plenty of 
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well-established Drosophila techniques available, including edge-measurement microscopy and 

electrical pacing methods (155, 156). The recent development of optical coherence tomography 

(OCT) provides nondestructive and noninvasive ways to detect the in vivo cardiac morphological 

changes, which is difficult to achieve in mammalian models (151). By optically tracking the 

movement of both edges of the heart, OCT examines the heart rate and contractile function by 

measuring differences in diastole and systole diameter at the same point in time. OCT can be 

used to calculate the contractile velocity by determining the heart tube diameter changes in a 

certain time frame, using video recording and picture analysis software. In addition, external 

stress sources, such as square-wave electric pacing and chemical treatments can be applied to 

the Drosophila heart before and during the optical analysis. 

The frequency of stress-induced permanent or temporary arrests and the uncoordinated 

contraction of heart tubes, which is similar to atrial fibrillation in vertebrates, can be calculated 

as a measure of cardiac function (157). The effectiveness of cardiac assays in Drosophila has 

been proven in many publications. Occor et al. found that a KD mutation in the KCNQ potassium 

channel in myocardial cells increased the sensitivity to pacing-induced heart failure, which 

mimics the effects of aging (158). Wessells et al. investigated the role of insulin-IGF receptor 

signaling pathways for the reduction of cardiac function during the aging process. While the 

heart rate decreased and pacing-induced heart failure rate increased with aging, the cardiac 

function could be restored by overexpressing the phosphatase dPTEN or the transcription factor 

dFOXO (159). 

Friedreich’s ataxia affects not only the central nervous system but also other organs, 

especially the heart. Because of its high energy demand and extensive mitochondria enrichment, 
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the heart is one of the most affected organs in FRDA cases. Iron overload cardiomyopathy is the 

one of the leading causes of cardiovascular mortality in FRDA patient (160). Heart diseases in 

FRDA patients may be severe, which contributes to the disability and premature death, 

particularly in early-onset cases (161). A study conducted by Harding et al. found that among 115 

FRDA patients, more than 2/3 acquire the signs of cardiomyopathy. Other frequent symptoms 

included shortness of breath (in 40% of patients) and palpitations (in 11% of patients) (30). 

In one of the most sensitive investigations for FRDA-associated cardiomyopathy, 

electrocardiography shows inverted T-waves in virtually all patients and ventricular hypertrophy 

in most patients (162).  Around 5-10% of the patients are affected by atrial fibrillation (AF), 

which is one of the most common cardiac arrhythmias and usually leads to increased risk of 

cardiovascular mortality and stroke (163, 164). Studies show that various hypertrophic 

cardiomyopathies are present in almost all FRDA patients (165). Over 50% of the FRDA patients 

will eventually die from the complications associated with heart disease, which makes cardiac 

malfunction a leading cause of FRDA patients’ death (125, 166). In a survey of FRDA patients 

lethality, Tsou and colleagues reported 59% of the deaths in their FRDA samples were caused by 

cardiac dysfunction, which causes earlier death than in non-cardiac FRDA patients (median death 

age 29 vs. 17). Among deceased FRDA patients, the cardiomyopathy of FRDA includes congestive 

heart failure (29.5%), arrhythmias-related (16%), ischemic heart diseases (4.9%), and atrial 

fibrillation related stroke (6.6%) (167). 

Genetically, the deterioration of hypertrophic cardiomyopathy is associated with the size 

of repeat expansion in the smaller allele of Frataxin (21). Some observations of postmortem 

FRDA patients’ heart tissue made by Michael and colleagues showed that, besides the muscle 



25 
 

 
 

fiber necrosis and increased tissue scars, there were also perinuclear iron deposit granules 

accumulating between myofibrils. However, the total cellular iron in the left ventricular wall in 

FRDA patients is similar to control cells (168). Together with the findings of increased electron 

density of mitochondrial deposits, it pointed to the possibility that the mitochondrial damage is 

induced by iron deposits. It speculated that iron deposits lead to muscle fiber necrosis and 

myocarditis (168). Mottram et al. showed reduced left ventricular volume and increased 

thickness of the left ventricular wall in FRDA patients, as well as impaired peak systolic and atrial 

velocities. The peak systolic and early diastolic level were both reduced in FRDA cases (169). 

Research in animal models confirmed the findings that peak systolic and early diastolic 

level were both reduced in FRDA cases. For example, Puccio et al constructed two conditional 

Frataxin-deficient mouse lines, in which the mutant Frataxin allele is driven by tissue-specific Cre 

transgene controlled by either muscle creatine kinase (MCK) or neuron-specific enolase (NSE) 

promoters. The achieved muscle specific deficient FRDA mouse line, which has a heterozygous 

mutant allele of Frataxin in cardiac muscles, showed reduced left ventricular contractile 

function, both systolic and diastolic. The heart rate and the blood flow velocity in the ascending 

aorta were also reduced in the FRDA mouse model compared to control mouse (170, 171). Vyas 

and colleagues showed ultrastructure cardiac results of Frataxin KD mouse with disrupted arrays 

of sarcomeres and abnormally shaped mitochondria while the normal mouse heart shows 

orderly arranged myofibrils with uniformly shaped mitochondria (170). 

From the views of biochemistry and molecular pathology, the data from the Frataxin 

knockout fibroblast and mouse model constructed by Vyas et al. showed that the aconitase 

protein level and activity in whole heart were reduced (170). Aconitase is a mitochondrial 
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enzyme that is especially sensitive to inactivation by oxidative stress. The numbers of 

mitochondria in FRDA cardiomyocytes are widely increased with decreased number of 

myofibrils. There is nearly a 10-fold increase in activated caspase-3 positive cell staining, which 

suggestsa a possible increase in mouse cardiomyocytes apoptosis (170). All of the above data 

suggest that the Frataxin deficiency causes severe damage to the heart in FRDA. We are 

interested in finding if the heart damage also occurs in Drosophila and if it is related to the 

autophagy. 

In addition to the Frataxin deficiency, the condition of Frataxin overexpression is also 

interesting. In mammalian cells such as 3T3-L1 preadipose cells and mouse models, the 

overexpression has shown no adverse effects (172, 173). However, aforementioned 

overexpression of either human or Drosophila Frataxin impairs the nervous system and brain 

function, as well as locomotive ability (174). This indicates the Frataxin may be involved in 

different cellular response pathways under different concentrations. It is not clear how the 

Frataxin over-expression models relate to the symptoms present in FRDA patients since over-

expression has never been observed in patients. But since the overexpression situation is a 

potential danger in gene therapy, the study of Frataxin overexpression status will be helpful for 

future research. 

1.3 AMPK and SAPK stress response pathway are involved in inducing autophagy in FXN-KD 

Drosophila 

Increased autophagy could reduce the stress level by removing damaged organelles, thus 

enhance the tolerance towards stress. On the other hand, increased autophagy could promote 

autophagic death/apoptosis in the cells and cause malfunction of certain tissues. So we assume 
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that the stress response pathway may participate in autophagy regulation. It is known that 

autophagy activation from oxidative stress is controlled primarily at two critical hubs: 

mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK). Under 

conditions of low intracellular energy, activated AMPK induces autophagy both by 

phosphorylating Ulk1 for activation and by inhibiting mTOR complex 1 (mTORC1) via direct 

phosphorylation of mTOR binding partner raptor (175). 

The other important stress response pathway involves stress-activated protein kinase 

(SAPK/JNK) signaling pathways. In Alzheimer’s diseases, the interaction of abnormal 

mitochondria and oxidative stress response elements induces the production of oxygen species 

in dysfunctional neurons, which in turn activates SAPK as a long-term stress-responsive 

mechanism (176). Research in the intestinal epithelium showed that oxidative stress can induce 

autophagy requiring JNK signaling (177). The activation of JNK in the intestinal cells can increase 

autophagy and induce the expression of several Atg genes (178). Further details about the 

involvement of AMPK/SAPK in FRDA requires more research. 

Until now, a lot of work has been done on the effect of ROS in FRDA patients, but very 

few studies have investigated the fate of the malfunctioning mitochondria. My goal of the 

project is to determine whether the mitophagy process is altered in FRDA KD Drosophila. 

Considering that autophagy is also deemed as the major mechanism against oxidative stress as 

stated above, we propose that autophagy plays a significant role in the pathogenesis of FRDA in 

two possible ways: promoting apoptosis in certain cell types or removing damaged mitochondria 

through mitophagy, separately or combined. Our work will be the first to examine the possible 

role of turnover of damaged mitochondria through mitophagy in FRDA. If it is confirmed that the 
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mitophagy is affected in FRDA Drosophila, the manipulation of autophagy or mitophagy might be 

a possible direction for FRDA therapy. 

2. Statement of Problem 

Currently, a lot of work has been done on the mechanisms of how Frataxin deficiency 

affects FRDA patients. The role of Frataxin in iron sulfur cluster synthesis and in maintaining 

normal mitochondrial function has been well explored. However few details are available about 

the downstream activities of dysfunctional mitochondria due to the Frataxin reduction, such as 

the fate of the malfunctioning mitochondria, and status of mitochondria quality control 

mechanisms. As one of the major anti-stress response pathways and the damaged organelle 

removal mechanisms, the dynamic of autophagy under Frataxin deficiency is intriguing. Our 

work will be the first to examine the turnover of damaged mitochondria through mitophagy in 

FRDA. If it is confirmed that the mitophagy is affected in FRDA Drosophila, the manipulation of 

autophagy or mitophagy might be a possible direction for FRDA Therapy. 

3. Materials and Methods  

Drosophila culture: Drosophila strains: UAS-fh.IR (w[1]; P (w[+mC]=UAS-fh.IR)2), UAS-fh.wt (w[1]; 

P(w[+mC]=UAS-fh.A),1), UAS-Atg1.IR (y1 v1; P{TRiP.JF02273}attP2), w[*]; P(w[+mW.hs]=GAL4-

da.G32)UH1, UAS-GFP.IR, and FXN-D (Bl3694, Df(1)9a4-5, y[1] cv[1] v[1] f[1] car[1]/FM7C) were 

obtained from Bloomington Stocking Center. The GMH5-Gal4 stock was a gift from Dr. Robert 

Wessells. All Drosophila strains were maintained in 23 ml plastic vials on Bloomington recipe for 

Drosophila Medium. The vials were kept in the incubator of 18°C or 25°C and 50% relative 

humidity. Each vial were transferred to a new vial every 3-4 days. UAS-fh.IR or W1118 was used 

as a control strain. 

http://flybase.org/reports/FBal0018607.html
http://flybase.org/reports/FBal0017656.html
http://flybase.org/reports/FBti0115340.html
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Starvation and chemical treatment:  Starvation was initiated by transferring Drosophila into an 

empty vial with a cotton ball containing 4 ml H2O at the bottom to avoid dehydration. Numbers 

of surviving Drosophila were counted every 24 hours and recorded. Chemical treatments were 

using chemical incorporated medium in which the chemicals were dissolved in distilled water 

according to the different final concentrations of 1 liter medium. The dissolved solutions were 

added to food medium at 55°C during preparation. The medium was stirred for even distribution 

before poured into vials. For small quantity chemical treatments or reagents that were fragile to 

heat, such as rapamycin, the chemicals were dissolved in ethanol and add to 6% sucrose 

solution. Drosophila were transferred to vials containing cotton balls with 3ml of sucrose 

solution. Drosophila were transferred to new vials with the same treatment every four days. 

Locomotive Assay: For each experiment, 10 adult Drosophila 24 hours after eclosion were placed 

in one 30 cm graduated cylinder that were evenly marked for three parts: bottom, middle, and 

top sections. The Drosophila were placed in the cylinder for 5 minutes before the test. Next the 

Drosophila were gently knocked down to the bottom of the cylinder and the numbers of 

Drosophila climbing up to each section in 10 seconds was recorded. The experiment for each 

group was repeated three times. 

Real-Time PCR: Certain amount of Drosophila were homogenized in Trizol reagent from 

Invitrogen (Carlsbad, CA). RNA was extracted using the RNeasy mini kit from Qiagen 

(Hombrechtikon, Switzerland). The acquired RNA contents were quantified using Nanodrop 

(Wilmington, DE). The cDNA was synthesized using 20ng mRNA by oligo (dT) primers and 

Superscript III reverse transcriptase from Invitrogen (Carlsbad, CA). The Taqman primer 

sequences were adopted from previous publications and purchased from Applied Biosystems 
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(Foster City, CA). The PCR reaction was performed using Taqman PCR Master Mix and the ABI 

7500 PCR machine. The thermal cycling conditions were 95°C for 10minutes, 45 cycles at 95°C 

for 15 seconds/60°C for 60 seconds. The results were normalized by using internal controls such 

as GAPDH and 18s rRNA. The Ct (Cycle of threshold) value was detected automatically, and the 

relevant RNA abundance was calculated by ABI software. 

Immunostaining: Each 2 ml Eppendorf tube contained 20 larvae or 15 pupae, or 15 adults that 

were quickly frozen at -20°C after collection. The samples were homogenized in liquid nitrogen 

for 1 minute. Then 200 ul of Pierce RIPA lysis buffer (Thermo) with protease and phosphatase 

inhibitors (1:100, Thermo) was added to each vial and homogenizes for another 60 seconds. The 

samples were sonicated for 10-15 seconds and centrifuged for 15 minutes at 4°C and 15000 

rpms. The supernatants were collected for acetone precipitation to remove extra lipids, salts, 

polysaccharides, etc. Briefly, 4X sample volume of -20°C acetone was added to the supernatant. 

The tubes were vortexed for 10 seconds and incubated for 10 minutes at -70°C. The vials were 

then centrifuged 10 minutes at 13000 g and 4°C. The supernatants were carefully removed, and 

the vials were air dried for 5 min. The pellets were dissolved in 200 ul RIPA buffer with protease 

and phosphatase inhibitor and quantified using the Bradford method. The proteins were 

separated by SDS-PAGE 4-20% precast gradient polyacrylamide gels (Bio-Rad) and then 

transferred to nitrocellulose membranes using a semi-dry transfer machine (Bio-Rad). The 

membranes were hybridized using primary antibody and HRP second antibody stained by 

luminol solution (GE). The results were imaged and analyzed by ImageJ software. 

Measurement of heart rates and diastole/systole diameter: Methods was adopted from Wessells 

et.al (179). For each group, 50 gender and age-matched Drosophila from both mutant and 
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control strain were tested. The Drosophila were anesthetized by FlyNap (Carolina Biological 

Supply, Inc.) for 4 minutes and placed on the soft gel on top of the slice with the abdomen 

toward the light source. Each slice contained 8 Drosophila and the slice was placed under the 

microscope. The beating of each individual heart was recorded. For the purpose of precision, the 

measurement is performed on the first cardiac ventricle of the heart tube. For each Drosophila, a 

10-second movie was recorded. The video was reviewed later, and the results were presented as 

beats per minute. The end-diastolic and end-systolic dimensions were measured on the still 

images from the movie clips. The position is chosen at the midpoint between two of the major 

transversal tracheal tubes passing through the first cardiac ventricle. 

Electrical pacing: For each treatment group, the data of 50 male and 50 female Drosophila were 

collected. For the pacing, 50 Drosophila were anesthetized by FlyNap (Carolina Biological Supply, 

Inc.) anesthetizer for 4 minutes. Then the Drosophila were placed between two electrodes 

touching conductive gel spread over the electrodes. The hearts were shocked with a square 

wave stimulator (Phipps & Bird, Inc.) producing a current for 40 V and 6 Hz for 30 seconds. Heart 

failure rate is defined as the percentage of Drosophila that enter either cardiac arrest or 

fibrillation during or immediately after the pacing. The recovery rate is defined as the number of 

Drosophila return to normal after pacing-induced arrest or fibrillation within 2 minutes of pacing 

cessation. Total recovery indicates the proportion of Drosophila with normal heartbeat 2 min 

after cessation of pacing. During each pacing, 8 Drosophila were treated and recorded using 

Nikon NIS-Elements Advanced Research System. For each genotype, the data of 50 Drosophila 

were collected within 50 minutes to avoid the variation of anesthesia status. Each strain was 

repeated three times. 
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Statistical analysis: Experiments will be conducted in triplicates to reduce variation, except where 

noted. The data will be analyzed as Mean ± SEM in those experiments that had triplicates. In the 

experiments where duplicates were done, the spread was shown but p-value significance was 

not determined because it cannot be done with n = 2. A one-way analysis of variance (ANOVA) 

was performed to compare between groups, when indicated. 

4. Results 

4.1    Construction of Frataxin-deficient and overexpression Drosophila 

To test the autophagy activity in Frataxin-deficient and overexpression Drosophila, we 

obtained Drosophila stocks of Frataxin partially knock-down, Frataxin deficiency, and Frataxin 

overexpression. We used two types of Frataxin-deficient Drosophila. The Frataxin-deficient stock 

(BL3694, Df(1)9a4-5, y[1] cv[1] v[1] f[1] car[1]/FM7C) ,termed FXN-D line, was obtained from 

Bloomington Drosophila Stock Center. It contained segment deletion on X chromosome, from 

8C7 to 8E2. The deleted Frataxin gene was located at 8C14. The absence of the segment was 

balanced by balancer chromosome FM7C. The homozygous deficient progeny did not survive. 

Female heterozygous-deficient progeny are viable and fertile with a reduced Frataxin expression 

level. 

The Frataxin partial knock-down line daG32-fh.IR termed FXN-KD, was achieved using the 

UAS-Gal4 system (180). The Drosophila UAS-Gal4 system had been established for many years 

because of its versatility and convenience to manipulate gene expression. The ubiquitous or 

tissue specific expression of Gal4 proteins bind to the UAS promoter region to start the 

transcription of the inverted repeat product, a hairpin RNA which will be processed later by Dicer 

complex through siRNA pathways and will target and degrade endogenous Frataxin mRNA at 
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certain tissues. The UAS stocks that carried an inverted repeat sequence of Frataxin was UAS-

fh.IR (w[1]; P{w[+mC]=UAS-fh.IR}2 ) and was constructed by Anderson in 2005 (181). The other 

available Frataxin knock-down strain produced by Anderson is w1; P{UAS-fh.IR}1, which contains 

the insertion on the third chromosome. Because this stock is weak, and the survival rate is 

extremely low even at 18 degrees, we used the stocks with 2nd chromosome insertion for the 

following work. The inverted repeat sequences were located on the 2nd chromosome of UAS-

fh.IR strains. For the driver Drosophila stocks, we used daG32-Gal4 lines for whole body 

expression, which contains a daughterless (da) gene promoter that ubiquitously expresses the 

target gene in all tissues at a very high level. We also obtained Frataxin overexpressing 

Drosophila by crossing UAS-fh.wt (w[1]; P{w[+mC]=UAS-fh.A}1) stocks that carry wild-type 

Frataxin sequences to a daG32-Gal4 promoter stocks. For comparison, Atg1 deficient line, UAS-

Atg1.IR (y1 v1; P {TRiP.JF02273} attP2) was also obtained by crossing with promoter strains to 

provide negative controls for the investigation. Previous studies show that the GAL4 activity was 

properly initiated at 16°C, and 29°C provides the maximal effects without jeopardizing the 

viability and fertility of the fruit Drosophila. In our study, the original stocks were stored, 

collected, and crossed at 25 0C. The crossed strains which are larvae/pupal lethal stocks were 

crossed and raised at 18 0C until they developed into adults. The tests were performed at 25 0C 

in the adults. 

4.2    Characterization of FXN-KD stock 

http://flybase.org/cgi-bin/fbidq.html?FBst0024620
http://flybase.org/reports/FBal0018074.html
http://flybase.org/reports/FBti0078501.html
http://flybase.org/cgi-bin/fbidq.html?FBst0024619
http://flybase.org/reports/FBal0018607.html
http://flybase.org/reports/FBal0017656.html
http://flybase.org/reports/FBti0115340.html
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By crossing the daG32-Gal4 driver stock with Frataxin knock down stock (UAS-fh.IR), we 

obtained Frataxin partial knockdown Drosophila, daG32-fh.IR. The parental stocks, daG32-Gal4 and 

UAS-fh.IR, are viable, fertile, and with normal life span at 18 oC and 25 oC, which indicates the 

daughterless gene, and the insertion of inverted repeat sequences did not affect the Drosophila 

viability and fertility. The progeny daG32-fh.IR Drosophila are viable and fertile at 18oC. At 25oC 

the daG32-fh.IR Drosophila are viable through larval stage with a high lethality rate before pupal 

stage, while 100% of the pupal development terminated in late pupal stage (Table 1). The size of 

the larvae are larger compared to the control strain before the development stops. The result is 

  

Ubiquitous 18 oC 25 oC 29 oC 

daG32_fh.IR √ × × 

daG32_ Atg1.IR √ × × 

daG32_ fh.wt √ √ × 

daG32_ GFP.IR √ √ √ 

 
Table 1: Viability of daG32-Gal4 driven Drosophila strains under different temperatures. The 
ubiquitously expressed Gal4 strain daG32-Gal4 was crossed with different target strains in 
one of the three temperatures for diverse efficiency. The survival phenotype is indicated as 
“√” symbol while the lethal phenotype is indicated as “X” symbol. Frataxin inverted repeat 
containing strain, UAS-fh.IR (w[1]; P[w[+mC]=UAS-fh.IR]2 ) was crossed with daG32-Gal4 to 
obtain Frataxin KD daG32-fh.IR strain. The progeny survived at 18°C, but not 25°C and 29°C. 
Similar results were observed in Atg1 KD daG32-Atg1.IR strains 
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in accordance with the description from Anderson et al that the Frataxin deficiency causes 

shorter life span, high rates of early termination, and late pupal lethality (181). 

The partially KD adults are viable and could be collected at 18oC, but the survival rate is 

very low. The collected adults have lifespans of about 7-14 days at 18oC. When they were 

transferred to 25oC immediately after collection, they had a much shorter longevity about 24-72 

hours, with few escapers that can survive up to 5 days (Figure 1). The difference in the longevity 

is possibly due to the siRNA efficacy of the UAS-Gal4 system, which was more efficient at 25oC 

than at 18oC. The Frataxin mRNA level was reduced to a lower level at 25oC compared to that of 

18oC, which produce more deleterious effects such as lower survival rate and shorter longevity. 

The results showed that the daG32-fh.IR Drosophila have the phenotypes of Frataxin 

deficiency matching the previous reported Frataxin knock-down studies. To avoid the possibility 

of unspecific effects of Gal4 protein or the inverted repeat structure in the siRNA, we also tested 

the daG32-Gal4 and daG32-GFP.IR lines, which ubiquitously silence the GFP gene as negative 

controls. Both lines were viable, fertile, and within the normal range of lifespan in both 18 and 

25oC. It excluded the non-specific influence of Gal4 protein and inverted repeat insertion. 
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To exclude the possibility of Frataxin siRNA off-target effects, we crossed the UAS-fh.wt 

stocks, which carried an allele of wild type Frataxin, with the UAS-fh.IR siRNA stock, and the 

lethal phenotypes were partially rescued. But one of the constructs, UAS-FF2-h, which contains a 

recombinant chromosome carries both wild-type Frataxin allele (UAS-fh) and the short hairpin 

frataxin allele stock (UAS-fh.IR). When crossed to daG32–Gal4, its progeny, daG32-FF2-h, showed 

10-fold overexpressed Frataxin mRNA levels, but nevertheless displayed similar phenotypes to 

the FXN-KD Drosophila. The overexpression is possibly caused by the insertion of multiple copies 

of wild type Frataxin allele during construction. A similar strategy was applied by Anderson et. al 

and their cross rescued the knock-down phenotypes. We concluded that the daG32-fh.IR fit into 

the description of the original knock-down strain and the Frataxin knock down is effective. 

              

Figure 1: Frataxin reduction significantly reduce the life span of Drosophila The longevity and 
survival assay for control (UAS-fh.IR) and FXN-KD (daG32-fh.IR) Drosophila at 25°C showed that 
FXN-KD Drosophila have a lower survival rate. Control and FXN-KD adult Drosophila from 18 oC 
were immediately transferred and maintained in 25oC for 10 days. 
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Next, we performed a series of assays to measure the impact of Frataxin reduction on 

daG32-fh.IR Drosophila. First, we tested the longevity of partially Frataxin knock-down Drosophila. 

The adult daG32-fh.IR Drosophila were collected from eclosion within 24 hours at 18oC and 

transferred immediately into incubation at 25oC. The Drosophila were transiently transferred to 

new vials every 72 hours at room temperature and immediately returned to 25oC. The 

daG32_fh.IR Drosophila show significant shorter life span compared to UAS-fh.IR adult Drosophila 

at 25oC (Figure 1). It confirmed the essential role of Frataxin in maintaining normal survival and 

development of the Drosophila. 

Because one of the defects of Frataxin deficiency is progressive mobility deterioration, 

we measured the locomotive ability of control and daG32-fh.IR Drosophila through mobility assay. 

Briefly, 10 1-day old Drosophila were placed in a 19 cm gradient cyclinder at room temperature. 

The cylinder was evenly marked into 3 sections: top, middle, and bottom. The Drosophila were 

tapped down to the bottom of the tube and were given 10 seconds to climb to the top base on 

their anti-gravity instinct. After 10 seconds, the numbers of the Drosophila stayed at each 

section were recorded. The high percentage of flies to stay on the top section indicated stronger 

locomotive ability. The adult Drosophila of FXN-KD at 1 day of age showed lower percentage to 

be able to stay on the top section of the cyclinder during climbing assays, which indicate reduced 

mobility in Frataxin reduced Drosophila (Figure 2). The shorter longevity and lower mobility 

resembled the features of human FRDA patients. 
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Next, we used quantitative real time-PCR (qRT-PCR) to measure the Frataxin knock down 

level in daG32-fh.IR Drosophila. The test was carried out on adult Drosophila collected from 18oC 

and immediately transferred to 25oC for 24 hours. The Frataxin mRNA level was reduced 50% in 

female Drosophila and 30% in male Drosophila at the age of 24 hours (Figure 3). Because the 

further reduction of Frataxin would be lethal for daG32-fh.IR Drosophila, we consider this 

moderately knock-down Frataxin Drosophila to be a proper FRDA model. The western blot 

showed that the Frataxin protein levels in female daG32-fh.IR Drosophila are also reduced 

   

Figure 2: Climbing assay confirms the declined locomotor ability in FRDA Drosophila. The 
assay was performed using a 2.4cm diameter and 19cm high glass measuring cylinder. 
The column is demarcated evenly into three sections: Bottom, Mid, and Top. At 24 hours 
after eclosion, two groups of 10 Drosophila from each phenotype were tested for three 
times individually. The Drosophila were allowed for 10 seconds movement, and the 
numbers of the Drosophila that stay in each section will be counted and calculated to 
show their mobility. Both male and female FXN-KD showed lower locomotive activity 
comparing to Control (UAS-fh.IR) Drosophila 
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compared to the control Drosophila, which indicates the successful knock down of Frataxin 

through RNAi (Figure 4). 

 

 

Figure 3: TaqMan Real-Time PCR (qRT-PCR) showed the Frataxin mRNA levels were reduced in 
FXN-KD Drosophila 24 hours after eclosion at 25 degrees. The Drosophila eclosed at 18oC and 
were immediately transferred to 25oC and maintained for 24 hrs. Each sample were pooled 
using 20 files and were homogenized and extracted for mRNA. For PCR, each sample with 
three technical repeats was tested and plotted for comparison. The FXN-KD females showed 
more than 50% reduction of Frataxin mRNA compared to controls (p < 0.001). The FXN-KD 
males showed about 25% reduction in mRNA compared to control males (p < 0.01). 
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4.3    Autophagy is upregulated in Frataxin partial knock down daG32-fh.IR Drosophila 

Next, we characterized the autophagy activity in daG32-fh.IR Drosophila. First we 

measured FXN-KD Drosophila’s mRNA level of Atg1 and Atg5. Atg1 is a protein kinase which 

plays a key role in the initiating autophagy. The Atg1 knock down stock, daG32-Atg1.IR, was used 

as a positive control. The RT-PCR results of daG32-fh.IR adult Drosophila 24 hours after eclosion 

showed that Atg1 mRNA level in was up-regulated 100% in female Drosophila, and over 30% in 

male Drosophila, indicating the increased initiation of autophagy when Frataxin is reduced 

(Figure 5 A). As positive control, the realtime-PCR results showed that Atg1 mRNA level in daG32-

Atg1.IR Drosophila was decreased to less than 50%. 

The mRNA level of Atg5, which is another marker for autophagy activity, was also 

examined. We do not observe dramatic change of Atg5 mRNA levels compared to the controls in 

the female and male daG32-fh.IR Drosophila (Figure 5:B). The explanation could be that the Atg5 

 

Figure 4: Frataxin protein expression is decreased in FXN-KD female Drosophila at 25 oC. The 
Drosophila eclosed at 18 oC were immediately transferred to 25 oC and maintained for 24 hrs 
before tests. Ten Drosophila were pooled for each sample. The daG32-fh.IR female showed 
less Frataxin protein compared to UAS-fh.IR control females. 
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transcription level does not change in Frataxin deficiency. Another explanation for the relatively 

stable transcription level is that the Atg5 is downstream of Atg1 in the expanding stage of the 

autophagy pathway, parallel to the LC3/Atg8 branch. The results indicate that the Frataxin 

deficiency does induce autophagy increase in the transcriptional stage in daG32-fh.IR Drosophila, 

and may be associated with Atg5 independent autophagy mechanisms. 

The most convincing marker for the autophagy activation is the level of Atg8 protein,  

   

Figure 5: The measurement of Atg1 and Atg5 mRNA levels in FXN-KD adult Drosophila 24 
hours after eclosion. The Atg1 KD strain, daG32-Atg1.IR was used as positive control. The 
Drosophila eclosed in 18 oC were immediately transferred to 25 oC and maintaining for 24 
hrs. Each sample containing 10 adult Drosophila were homogenized in lysis buffer. The 
mRNA were extracted and quantified by Nanodrop. (A) The FXN-KD female showed 90% 
increase of Atg1 mRNA compared to UAS-fh.IR controls(p < 0.001), while The FXN-KD male 
Drosophila showed 30% increase in Atg1 mRNA compared to control (p<0.001). The Atg1 
KD female and male Drosophila both showed 70% reduction in Atg1 mRNA (p < 0.001). (B) 
The female FXN-KD Drosophila showed relatively decreased Atg5 mRNA compared to 
control in female Drosophila. The male FXN-KD Drosophila showed unchanged Atg5 mRNA 
compared to control males. Both male and female Atg1 KD Drosophila showed increased 
Atg5 mRNA level (p<0.01) and (p<0.05). 
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which indicates the quantity of 1autophagosome formation (182). Atg8a indicates the 

unlipidated form of Atg8, which is free, cytosolic form dissociated from autophagosomes.  

Atg8b is the lipidated and autophagosome-membrane-bound form. We performed western blot 

on Atg8 to compare its levels between Frataxin deficiency stocks vs control Drosophila in 

different development stages, including larvae, pupae, and adults 24 hours after eclosion. In the 

larval stage, we found that daG32-fh.IR showed higher level of both Atg8a and Atg8b protein. The 

quantification of Atg8 showed that the daG32-fh.IR had three-fold more Atg8 protein compared 

to control Drosophila while Atg8b also had more than three-fold up-regulation in the larval stage 

(Figure 6). The increase of Atg8 proteins in larval stages of FXN-KD implicated the 

autophagosome accumulation and upregulated autophagy activity in the Frataxin deficiency 

Drosophila. 

   

 

Figure 6: Atg8 a/b protein levels increase in FXN-KD larvae. Third stage larvae were collected at 
25 oC. Each sample contained 20 larvae and was homogenized in lysis buffer. Proteins were 
extracted, purified and quantified by the Bradford Method(3). The ratio of Atg8/Actin was used 
to determine the relative Atg8 protein level. The daG32-fh.IR females showed a 2-fold increase in 
Atg8 total protein and over three-fold increase in Atg8-II protein, which indicates the quantity 
of autophagosomes, compared to control larvae. 
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Next, we tested the Atg8 protein level in daG32-fh.IR pupae. Because the observed pupae 

development termination in daG32-fh.IR, we collected pupae at 48 hours after the pupation, right 

before the termination at the dark pupal stage. The western blot showed that the Atg8a is 

moderately increased in daG32-fh.IR pupae while the Atg8b exhibits 2.5 fold increases compared 

to control Drosophila (Figure 7). The increase in Atg8b indicated the upregulation of autophagy 

in the Frataxin deficiency in the pupal stage.  

The adult stage FXN-KD Drosophila were tested too. The daG32-fh.IR female Drosophila 

and control Drosophila. The western blot results showed that FXN-KD female Drosophila showed 

higher Atg8 level than UAS-fh.IR Drosophila (Figure 8), confirmed that Frataxin deficiency induces 

autophagy in all developmental stages. 

    

Figure 7: Atg8 protein level increases in FXN-KD pupae. White pupae were collected at 25 oC. 
Each sample contained 20 pupae and was homogenized in lysis buffer. Proteins were 
extracted and quantified. The ratio of Atg8/Actin was used to determine the relative Atg8 
protein level. The FXN-KD showed a 150% increase in Atg8-II protein compared to UAS-
fh.IRcontrol pupae. 
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Along with Atg8 levels, we also found that another Atg family member, Autophagy 

related 16-like 1 (Atg16 L1) protein level was up-regulated in FXN-KD compared to UAS-fh.IR 

Drosophila, which provide further support for the autophagy activation in Frataxin partial 

knockdown Drosophila (Figure 9). 

 

 

Figure 8: The Atg8 protein level increases in FXN-KD adults 24 hours after eclosion. The FXN-
KD showed significantly higher levels of Atg8 protein than the control W1118 
Drosophila.The FXN-KD Drosophila were eclosed at 18oC, immediately transferred to 25oC 
and maintained for 24 hrs. Each sample contained 20 larvae and was homogenized in lysis 
buffer for western blot.  
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To further test the status of autophagy in Frataxin deficiency, another Frataxin X-

chromosome deficiency strain FXN-D (Df(1)9a4-5, y[1] cv[1] v[1] f[1] car[1]/FM7C) was also 

tested. Since only the FXN-D adult females are hemizygous for Frataxin deficiency, we compared 

the Atg8 protein level between FXN-D and w1118 female adults. The western blot results 

showed that FXN-D female Drosophila showed higher Atg8 protein level than W1118 Drosophila, 

confirming that Frataxin deficiency induces autophagy (Figure 10). The similar results from two 

different Frataxin reduction stocks supported the upregulation of autophagy induction in the 

Frataxin deficiency Drosophila. 

 
Figure 9: The protein level of Atg16 increases in daG32-fh.IR larvae. The daG32-fh.IR and 
UAS-fh.IR strains were maintained and tested at 25oC. Each sample contained 20 3rd 
instar larvae and was homogenized in 200 ul lysis buffer. Proteins were extracted, 
purified and quantified by the Bradford Method. The daG32-fh.IR showed increased 
Atg16L1 protein level compared to controls. It indicated up-regulation of autophagy 
activities in daG32-fh.IR Drosophila.  
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Then we asked the question: what is the function of autophagy in Frataxin deficiency 

Drosophila? Based on previous research, there are two possible theories. First, the autophagy 

could have a anti-oxidative and pro-survival role in Frataxin deficiency Drosophila. Treatment of 

autophagy inducer should increase the longevity of FXN-KD Drosophila while an autophagy 

inhibitor should show negative effect on the FXN-KD Drosophila. We treated the daG32-fh.IR with 

media that contains autophagy inducer methylene blue (MB), concentrations of 0.1 µM, 0.5 µM, 

1.0 µM, 5.0 µM, and 10 µM. The treatment of UAS-fh.IR control Drosophila in MB does not 

 

Figure 10: The Atg8 protein level increases in Frataxin deficiency (FXN-D) adult females. 
(A) The FXN-D female showed less Frataxin protein compared to W1118 control 
females. (B)The FXN-D females showed significantly increased Atg8 protein level 
compared to control (p < 0.05), indicating a higher level of autophagy. The total 
protein was shown to be approximately equivalent by Ponceau S staining. The FXN-D 
and control strains were maintained at 25 oC. Each sample contained 10 files and was 
homogenized in lysis buffer. Proteins were extracted, purified and quantified by the 
Bradford Method.  
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shown difference up to 7 days after eclosion from 0.1 uM to 0.5 uM ( Figure 11). The higher dose 

of MB from 1.0 to 5.0 uM showed certain level of toxicity by reducing the larvae survivor number 

and pupae formation. Together it showed that the autophagy induced by MB does not affect 

wild type Drosophila, especially in lower doses. 

But when we crossed UAS-fh.IR and daG32-fh.IR in media containing 0.1 µM, 0.5 µM, 1.0 

µM, and up to 5.0 µM MB at 25 oC, the outcomes were different according to the concentration. 

In lower doses of MB from 0.1 µM to 0.5 µM, we observed significant less death rates of 2nd and 

3rd stage larvae compared to that of control media. The number of 3rd stage larvae was directly 

associated with the concentration of MB between 0.1 µM and 0.5 µM. More pupae were formed 

in 0.1-0.5 uM range, which indicates the beneficial effect of induced autophagy. But none of the 

lower doses of MB treatments were able to rescue the papae lethal phenotype. 

When the concentration of MB increased to 1.0 µM and 5.0 µM, we found that almost 

100% daG32-fh.IR larvae die before they reach 3rd stage. Very few 2nd stage larvae and no pupae 

were formed (Figure 1B). The beneficial effect of low concentration and the deleterious effect of 

high concentration of MB may indicate that mild induction of autophagy could partially rescue 

the phenotype of FXN-KD larvae while the over-induction of autophagy will produce contrary 

effect. Although the induction of autophagy cannot rescue the pupal lethal phenotype in daG32-

fhIR Drosophila, this piece of evidence supported that induction of autophagy within certain 

ranges could act as protective role in Frataxin deficiency Drosophila.  
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4.4 Apoptosis is induced in FXN-KD larvae 

 

Figure 11: Autophagy inducer Methylene Blue treatment partially rescues the larval lethal rates 
of daG32-fhIR larvae. (A) 0.1-0.5uM methylene blue does not affect larvae viability and pupae 
formation rate in UAS-fh.IR Drosophila. The treatment of 0.1-0.5uM MB does not affect the 
larvae viability and pupae formation rate, while 1.0 uM and 5.0 uM concentration showed 
increased toxicity by reducing the number of larvae and pupae. The methylene blue was 
dissolved in ethanol and added to the media to the final concentration of 0.1uM, 0.5uM, 
1.0uM and 5.0uM. For each concentration, 3 vials were tested, including control vials with 
normal media. 10 female and 10 male of UAS-fh.IR Drosophila were maintained in each vial for 
48 hours and then removed. The vials containing eggs were cultured in 25oC. The number of 
newly emerged larvae and pupae were recorded daily (B) The 0.1-0.5uM methylene blue 
restored larvae viability and pupae formation rate in FXN-KD Drosophila. The 1.0 uM and 5.0 
uM MB showed reduced number of larvae and pupae. The media preparation is stated above. 
For each concentration, 3 vials were tested, including control vials with normal media. In each 
vial, 10 virgin female UAS-fh.IR and 10 male da-Gal4 were maintained for 48 hours and then 
removed. The vials containing eggs were cultured in 25oC. (C) The Frataxin overexpression 
daG32-FF2-h did not affected by MB treatment at 0.1 and 0.5 uM, but the larvae survival rate 
and pupae formation were reduced at higher MB concentration at 1.0 and 5.0uM. For each 
vial, 10 virgin female of UAS-FF2-h and 10 male da-Gal4 Drosophila were maintained in each 
vial for 48 hours and then removed. The vials containing eggs were cultured in 25oC.  
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Because FRDA features accelerated loss of the sensory neurons in DSG, it is reasonable to 

question if an abnormal apoptosis process is involved in the progression of FRDA (183). However, 

current findings about apoptosis in FRDA are limited and controversial. It is found that the 

apoptotic cell death is observed in rats’ primary DSG cells in a rat FRDA model (102). Mariana 

et.al reported that the Frataxin knock-down human iPSC derived neurons, and rat β-cells show 

signs of intrinsic apoptotic pathway activation (101). Our findings of early development 

termination in both larval and pupal stage in daG32-fh.IR Drosophila also implicated the possible 

role of apoptosis in FRDA Drosophila. It is interesting that although Frataxin is generally 

considered a protective role in cells by anti-oxidative stress and DNA damages, recent evidence 

also revealed its role as tumor-suppressor by promoting apoptosis (184). 

Based on the above evidence, we asked whether the Frataxin deficiency could trigger the 

increased apoptosis in the FRDA Drosophila, and whether it is through the induction of 

autophagic cell death (Type II apopotosis). So we hypothesized that Frataxin deficiency induces 

apoptosis and causes the increment of caspase-3 and possibly cytochrome C, which is a 

mitochondrial protein related intrinsic apoptosis pathway, in FXN-KD Drosophila. First we tested 

the apoptosis marker caspase-3 levels in FXN-KD Drosophila vs. control Drosophila. The western 

blot results showed that daG32-fh.IR larvae showed a significant increase of cleaved caspase-3, 

indicating up-regulation of apoptosis pathways in Frataxin-deficient larvae (Figure 12). 



50 
 

 
 

 

Figure 12: The protein level of apoptosis-related activated caspase-3 increases in da-fh.IR 
FXN-KD) larvae. The protein level of apoptosis-related activated caspase-3 increases in 
daG32-fh.IR (FXN-KD) larvae. It showed that adult female Drosophila contain a higher level 
of cleaved caspase-3, indicating a higher level of apoptosis. Two different repeats are 
shown with HSP60 as the loading control. The FXN-KD and control strains were 
maintained in 25oC. Each sample containing 10 Drosophila was homogenized in lysis 
buffer. Proteins were extracted, purified and quantified by the Bradford method. 
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Because Frataxin deficiency is closely associated with mitochondrial homeostasis and apoptosis, 

we decided to test if the apoptosis is activated through intrinsic pathway. A previous study 

showed when the apoptosis pathways were triggered, mitochondrial cytochrome C were 

released into cytosol and bound with Apaf-1 and caspase-9 to cleave and activate caspase-3 

protein for apoptosis (185). The western blot results showed that in the daG32-fh.IR larvae and 

pupae, total cytochrome C was significantly higher than the control Drosophila in both stages 

(Figure 12 and Figure 13), indicating an increase of cytochrome C level in the Frataxin deficiency 

Drosophila early developmental stages. It implied the increase of apoptosis in FRDA Drosophila is 

through intrinsic pathway. In summary, the deficiency of the Frataxin deficiency induced 

apoptosis in FRDA Drosophila, possibly through intrinsic pathways. 

 

Figure 11: The protein level of cytochrome C increases in daG32-fh.IR (FXN-KD) larvae. The 
apoptosis-related cytochrome C protein in the larvae of FXN-KD Drosophila was 
upregulated, but not significantly, indicating a possible higher level of apoptosis. Two 
different replicates are shown with HSP60 as the loading control. The FXN-KD and UAS-
fh.IR control trains were maintained at 25oC. Each sample contained 20 whole larvae and 
was homogenized in lysis buffer. Proteins were extracted, purified and quantified by the 
Bradford method. 
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4.5 Autophagy is induced in Frataxin-overexpression daG32-FF2-h Drosophila 

 Our previous study showed detrimental phenotype in FRDA Drosophila, so we decided to 

test if overexpressing wildtype Frataxin in Frataxin deficiency background could rescue the 

phenotypes such as larval and pupae lethal. We crossed the UAS-FF2-h stock with daG32-Gal4 to 

obtain the Frataxin overexpressing daG32-FF2-h progeny. The progeny was pupal lethal at 25oC 

and had normal fertility and viability at 18oC. Real-time PCR showed that daG32-FF2-h Drosophila 

have over 10 folds Frataxin mRNA level compared to control Drosophila, in both genders (Figure 

14). Considering the abnormal fertility and viability of daG32-FF2-h Drosophila in 25oC, the 

significant Frataxin overexpression negatively affected Drosophila viability and fertility, similar to 

the Frataxin deficiency Drosophila. In summary, both Frataxin deficiency and overexpression in a 

 

Figure 12: The protein level of cytochrome C increases in pupae of daG32-fh.IR (FXN-KD). 
The apoptosis-related cytochrome C in the pupae of FXN-KD Drosophila was upregulated, 
although not significant, indicating a possible higher level of apoptosis. Two different 
replicates are shown with HSP60 as the loading control. The FXN-KD and control UAS-fh.IR 
strains were maintained at 25oC. Each sample contained 20 pupae and was homogenized 
in lysis buffer. Proteins were extracted, purified and quantified by the Bradford method. 
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large scale both negatively impact the survival rate and longevity of Drosophila. 

 To assess if Frataxin overexpression is associated with autophagy alterations, we 

compared Atg1 and Atg5 mRNA levels in daG32-FF2-h Frataxin-overexpression Drosophila and 

control UAS-FF2-h Drosophila. The real-time PCR results showed that Atg1 mRNA level increased 

about 2.5-fold and 3-fold compared to female and male control Drosophila. The Atg1 level in 

Frataxin overexpression Drosophila was 25% and 80% higher than that of Frataxin-deficient 

Drosophila (Figure 15A). When comparing Atg5 mRNA levels, we found that similar to Frataxin-

      

Figure 13: The Frataxin mRNA level increase in Frataxin overexpressing (daG32-FF2-h) 
Drosophila 24 hours after eclosion. The Frataxin mRNA level increase in Frataxin 
overexpressing (daG32-FF2-h) Drosophila 24 hours after eclosion. The Frataxin 
overexpressing female showed 12 fold increase of Frataxin mRNA compared to control (p < 
0.001) while Frataxin overexpression male showed a 15-fold increase over control males (p 
< 0.001). The Drosophila eclosed at 18 oC and were immediately transferred to 25 oC and 
maintained for 24 hrs. Each sample contained 10 Drosophila and was homogenized in lysis 
buffer. The mRNA was extracted, purified and quantified by Nanodrop. The experiments 
were done in triplicate. *, p-value<0.05; **, p-value < 0.01; ***, p-value < 0.001. The 
significance symbols are the same for all of the gene expression figures that follow. 
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deficient Drosophila, Frataxin overexpression Drosophila do not show a significant increase in 

Atg5 transcription levels. On the contrary, the Atg5 mRNA was reduced in both male and female 

daG32-FF2-h Drosophila (Figure 15B). Based on the above results, we concluded that the 

overexpression of Frataxin in Drosophila increases Atg1 mRNA but does not change Atg5 mRNA. 

We also treated the daG32-FF2-h Drosophila with autophagy inducer MB. The Frataxin 

overexpression daG32-FF2-h were not distintly affected by MB treatment at 0.1 and 0.5 uM, but 

the larvae survival rate and pupae formation were greatly reduced at higher MB concentration at 

 

Figure 14: The mRNA level of Atg1 and Atg5 genes in FXN-KD and overexpression Drosophila. 
(a) Atg1 mRNA levels in Frataxin-deficient (daG32-fh.IR), overexpressing (daG32 –FF2-h), and 
UAS-fh.IR control adult Drosophila 24 hours after eclosion are different. The Atg1 KD strain, 
daG32 -Atg1.IR was used as positive control. The Frataxin overexpressing female showed 
150% increase in Atg1 mRNA while FXN-KD Drosophila showed 100% increase in Atg1 
mRNA compared to control adults (p < 0.001). The FXN-KD male Drosophila showed 30% 
increase in Atg1 mRNA compared to WT (p<0.001) while Frataxin overexpressing 
Drosophila showed a 200% increase in Atg1 mRNA compared to control male Drosophila. 
(b) Atg5 mRNA level in FXN-KD, daG32 –FF2-h, and control adult Drosophila 24 hours after 
eclosion. The female Frataxin overexpressing Drosophila showed about 15% reduction in 
Atg5 mRNA (p<0.05) compared to control females, similar to FXN-KD females. The male 
Frataxin overexpressing Drosophila showed 25% reduction in Atg5 mRNA compared to 
control males (p<0.01). The Drosophila eclosed at 18oC and were immediately transferred 
to 25oC and maintaining for 24 hours Each sample contained 20 larvae and was 
homogenized in lysis buffer for PCR.  
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1.0 and 5.0uM, showing further increase of autophagy would be detrimental (Figure 11C). 

4.6   Pathways of mitochondrial quality control and mitophagy in FRDA Drosophila  

As mentioned before, damage of mitochondria was intensively studied in FRDA. It is still 

not clear about the possible events downstream of dysfunctional mitochondria. Based on our our 

results, we asked the question that if the changes of autophagy are associated with 

mitochondrial function or the mitochondrial autophagy (mitophagy), a major mechanism to 

remove damaged mitochondria. First, we examined the status of mitochondria in FXN-KD. The 

levels of two mitochondrial proteins were tested. The mitochondrial matrix protein Hsp60 was 

measured as mitochondrial quantity while the pyruvate dehydrogenase is measured as an 

indicator of mitochondrial function. The western blot results showed that the Hsp60 protein level 

remains stable in FXN-KD larvae compared to controls, in both 18 oC and 25 oC, suggesting that 

the quantity of mitochondria does not change (Figure 16). The pyruvate dehydrogenase protein 

level, however, was reduced in daG32-fh.IR at 25oC, suggesting a possible dysfunction of the 

mitochondria (Figure 16) and matches the description from previous research of mitochondria in 

FRDA models. 
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Next, we tested the level of mitophagy by mitophagy marker protein Parkin, whose level 

usually increases upon environmental stress factors, in 24 hours old FXN-KD Drosophila. The 

results showed that the level of Parkin is slightly but not significantly increased in daG32-fh.IR 

adult Drosophila (Figure 17). It is also possible that the Parkin does not change dramatically in 

translational level during the induction of mitophagy, but changes the distribution between 

cytosolic and mitochondrial. 

              

Figure 15: The protein level of Hsp60 and pyruvate dehydrogenase in daG32-fh.IR (FXN-KD) 
larvae. The results showed that the mitochondrial marker Hsp60 does not change, but the 
amount of pyruvate dehydrogenase is reduced in FXN-KD Drosophila, indicating possible 
functional loss in the mitochondrial respiratory chain, but the mitochondrial quality is not 
altered. 
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4.7   Heart functions are not changed in Frataxin-deficient Drosophila 

One of the most distinct features of FRDA patients is high rates of cardiomyopathy 

incidences (30). So we attempted to test if the Drosophila heart function in Frataxin deficiency 

Drosophila is also affected using heart pacing assay (156). We chose to perform the heart assay 

 

Figure 17: The Heart Pacing Assay in da-fh.IR Drosophila at 24 hours and 48 hours after 
eclosion. The KD-FXN female Drosophila showed reduced heart failure rate at 24 hours of 
age compared to control female Drosophila, but the differences is not significant at 48 
hours. The male KD-FXN Drosophila showed higher heart failure rate at 24 hours of age 
compared to control males but not at 48 hours of age. The adult Drosophila were 
collected right after eclosion and maintained 24 hours at 25oC. In each group, 50 
Drosophila were anesthetized with flynap and electrically pacing for 10 seconds at 20 
Volts under microscope. 

 

Figure 16: The mitophagy related protein Parkin is not changed in da-fh.IR adult 
Drosophila. The adult Drosophila were collected right after eclosion and maintained 24 
hours at 25oC. The whole-Drosophila protein was extracted and purified. The 
concentration of Parkin was measured by the ratio of Parkin/HSP60 with duplicate.  
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on two different Frataxin deficiency stocks, the ubiquitous Frataxin knock-down strain FXN-KD 

daG32-fh.IR and the heart-specific Frataxin knock down strain GMH5-fh.IR. To obtain the GMH5-

fh.IR, we crossed the UAS-fh.IR Drosophila with heart-specific GMH5-Gal4 Drosophila (Gift from 

Dr. Wessells) to get the GMH5-fh.IR Drosophila, which were normal in viability and fertility at 

25oC. In summary, we did not observe a significant difference in stress-induced heart failure rate 

between daG32-fh.IR and control Drosophila at 24 hours and 48 hours after eclosion (Figure 18). 

The same result was observed on the GMH5-fh.IR Drosophila with a very high variation range. 

Our explanation is that the strength of the heart pacing assay may be too intense to distinguish 

the chronical cardiac changes between Frataxin deficiency Drosophila and control Drosophila. 

4.8   AMPK, but not pSAPK was upregulated in Frataxin Deficiency Drosophila 

The above data of our study showed increased autophagy in Frataxin deficiency 

Drosophila and its possible relationship with apoptosis and mitophagy. We are also interested in 

the upstream events that may be inducing autophagy. As one of the central controller of the 

oxidative stress response, AMPK is associated with autophagy induction by phosphorylating and 

activating Atg1, under stress or starvation condition (186). First, we examined the level of 

phosphorylated AMPK in FXN-D Drosophila 24 hours after eclosion because AMPK is activated 

through phosphorylation. We measured the phosphorylated AMPK (pAMPK) level in hemizygous 

Frataxin deficiency FXN-D female Drosophila vs. FXN-D male Drosophila as a control. The test was 

performed in both whole-body and heads (neurons) from adults 24 hours after eclosion. The 

results showed that the pAMPK level is increased in FXN-D females, in both whole body and 

neurons (Figure 19). It indicated the increased phosphorylation level of AMPK in the whole body 

and neurons in Frataxin deficiency Drosophila. The similar expression pattern of pAMPK and Atg8 
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suggests a possible role of AMPK in regulating autophagy in FXN-D Drosophila. 

 Besides AMPK, the other stress regulating pathway, the SAPK pathway, also attract our 

attention. It is proposed that neurons in Alzheimer disease are exposed to low, but chronic, levels 

of oxidative stress that lead neurons to elicit adaptive responses such as the activation of stress-

activated protein kinase pathways (SAPK) (187). We tested the level of phosphorylated SAPK 

(pSAPK) in FXN-KD Drosophila at 24 hours after eclosion. The result shows the level of pSAPK in 

FXN-KD is not changed (Figure 20). This may indicate the change of Frataxin level in FXN-KD  

Drosophila does not alter the phosphorylation status of SAPK. In summary, the experiments 

 

Figure 18: pAMPK level increases in FXN-D adult Drosophila. FXN-D male and female 
Drosophila at the age of 1 day were collected. The protein was extracted and detected 
using beta-Actin and Phospho-AMPK-α (Thr 172) antibody (1:500). The ratio of 
pAMPK/Beta-Actin was recorded. 
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showed that the increase of pAMPK was observed in Frataxin deficiency Drosophila, but not the 

pSAPK level. 

5. Discussion 

As an evolutionarily conserved process, autophagy plays an important role in many 

biological activities. To investigate its involvement in Drosophila FRDA model, we first obtained 

two Frataxin deficiency stocks, daG32-fh.IR, which expresses an inverted repeat hairpin RNA of 

Frataxin gene under control of Gal4, which we term FXN-KD, and FXN-D, which is a deficiency 

stock. The FXN-KD efficiently reduced the Frataxin mRNA and protein levels to 50-70% and 40%, 

respectively, from real-time PCR and Western blot results. The percentage of reduction in the 

Drosophila model resembles the Frataxin protein levels in FRDA patients, which is around 40-70% 

percent reduction (11).  A review of recent studies of Frataxin KD experiments from other 

laboratories shows that the viable KD strains maintain an average of 25%-50% protein levels 

compared with wild-type levels. The KD efficiency in existing FXN-KD mouse models and cell lines 

 

Figure 19: pSAPK protein level is not changed in daG32-fh.IR Drosophila. FXN-KD male and 
female Drosophila at the age of 1 day were collected. The protein were extracted and 
detected using beta-Actin and Phospho-SAPK/JNK (Thr183/Tyr185) antibody (1:500). 
The ratio of pSAPK/Beta-Actin were recorded. 
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vary from 20%-80% (171, 188). The further reduction of Frataxin in Drosophila by up-regulating 

the expression of the UAS-Gal4 system from 18C to 25 oC renders premature death of daG32-fh.IR 

pupae. So the 60% reduction in Frataxin protein level in our model could be deemed an effective 

KD. 

The reduced longevity and diminished mobility in FXN-KD Drosophila may be due to the 

increasing accumulation of oxidative stress damage from the Frataxin reduction. This is in 

accordance with the results obtained by Anderson et.al in 2005 (181). This result proved the 

constructed daG32-fh.IR line resembles the phenotype in human FRDA patients. Since the UAS-

GAL4 system depends on the siRNA pathway, we constructed control strains to avoid the effects 

from hairpin RNA. The daG32-GFP.IR showed normal longevity and fertility in 25oC, proving the 

daughterless gene from daG32-Gal4 strains and inverted repeat hairpin RNA structure do not 

interfere with control Drosophila. For further confirmation of the Frataxin knock down deficiency, 

we also tested the FXN-D deficiency strains with hemizygous Frataxin allele deficiency. Although 

the FXN-D strain has better fertility, the similar phenotypes in longevity and locomotive ability 

proves that the defects are associated with the Frataxin deficiency, which proves the daG32-fh.IR 

and FXN-D Drosophila qualify for FRDA model animals for the following works. 

The autophagy has been closely associated with ROS metabolism and mitochondrial 

homeostasis in FRDA patients and other model systems. We are the first lab to characterize and 

quantify the autophagy in FXN-KD Drosophila models. We detected an increase of Atg1 in 

transcription level in FXN-KD daG32-fh.IR adult Drosophila that were 24 hours old. It has been 

reported that the BmAtg1 (the Atg1 homologue in silkworm, Bombyx mori) mRNA increased 50% 

to 400% in different stages in the fat body of silkworms under starvation compared to control 
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samples (189). The Ulk1 mRNA level doubles when the drug Baicalein induces autophagy 

in  HT29, HCT116, MCF7 and U373-MG cell lines (190). So the observed increase of Atg1 mRNA 

strongly supports that autophagy activity is induced in FXN-KD Drosophila. 

On the other hand, the mRNA level of Atg5, another essential gene for autophagy, did not 

change in FXN-KD Drosophila. It is possible that Atg5 mRNA level does not change significantly 

Previous studies showed that Atg5 mRNA and protein levels increase when the oxidative stress 

level increases in rats (191). One possible explanation is that the induction of autophagy in FRDA 

may be through the Atg5-independent pathway which is regulated by Ulk1 and beclin-1. This 

Atg5/Atg7 independent autophagy pathway in mouse MEFs was described at 2009 and 2014 by 

Nishida and colleagues (157, 192). In the lens of the mouse’s eye, Atg5 knockout did not affect 

the organelle degradation, which also indicates the existence of Atg5 independent autophagy 

pathway (193). Although currently it is no evidence that such pathway exists in Drosophila, the 

further study will be helpful to examine if the relatively unchanged Atg5 mRNA levels in the FXN-

KD Drosophila model is a result of the Atg5/Atg7 independent autophagy induction pathways. 

The western blot results showed an increase of autophagy marker Atg8a/b protein levels 

in FXN-KD. The increased levels of both Atg8a and Atg8b proteins in all stages (larvae, pupae, and 

adult) indicated the accumulation of autophagosomes, which indicating up-regulation of 

autophagy in FXN-KD and FXN-D Drosophila. We also tested the level of Atg16, and it showed 

signs of increase. Although the increase is not significant, the increase served as another line of 

proof for the upregulation of autophagy. 

After the confirmation of autophagy increase, we further looked into the possible 

functions of autophagy in Frataxin deficiency Drosophila model. We decided to observe the 
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effect of autophagy inhibitors and inducers on the Frataxin deficiency Drosophila. Our results 

indicate that inhibitor chloroquine reduced the longevity of FXN-KD Drosophila while autophagy 

inducer methylene blue increased the longevity of FXN-KD and FXN-D, showing a protective role 

of autophagy in Frataxin deficiency. But increased concentration of MB could not be able to 

increase the survival rate of pupal lethal in FXN-KD at 25OC. Additionally, when the lower 

concentration of MB (0.1 to 0.5 uM) reduced the lethal rates and increased number of 3rd instar 

FXN-KD in larvae, higher concentration of MB (1.0-5.0 uM) showed limited number of survival 

larvae and no sign of 3rd instar lavae and pupae. This indicates that the protective mechanism of 

autophagy induced by Frataxin deficiency may be affected by multiple factors, and further 

research is required. 

In the MB treatment experiments, we observed that when the concentration of MB 

increases to more than 5 µM, the beneficial effect on FXN-KD Drosophila diminished. The FXN-KD 

Drosophila in a higher concentration of MB showed high levels of early larval lethal rates and 

resembled the high lethal rate in non-treatment FXN-KD larvae at 25oC. So we hypothesize that 

the Frataxin-deficiency may induce apoptosis in certain stages, possibly through autophagy. Our 

test confirmed that apoptosis marker, cleaved caspase-3 protein levels are significantly increased 

in the third larval stage of FXN-KD with 97-99% lethal rate. The following test showed the 

increase of cytochrome C indicating the increased apoptosis could be due to the cytochrome C 

mediated apoptosis. This type of apoptosis is originated from the damage of mitochondrial, 

which is in accordance with the previous observations in FRDA samples. Further works to test the 

outcome of apoptosis inhibitor and autophagy inhibitor in FXN-KD Drosophila could help one 

understand the mechanisms in more detail. 
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We also found that the Frataxin overexpression Drosophila, daG32-FF2-h, which have 6-10 

fold higher levels of Frataxin mRNA than control, also showed an increased Atg1 mRNA level, as 

well as defects in longevity. To our knowledge, this is the first time that Frataxin overexpression is 

associated with autophagy upregulation. The previous studies recorded various results from 

Frataxin overexpression animal models. Some research shows that the overexpression of wild-

type FRDA in FRDA-mutant cells could rescue the mutant phenotype. For example, Tan et.al 

showed Frataxin overexpression by transfecting Frataxin cDNA into FRDA lymphoblast, with 147% 

and 85% mRNA level compared to controls, reverts the symptoms such as decreased 

mitochondrial membrane potential and increased filterable mitochondrial iron (8). The Frataxin 

overexpression up to 4 fold in Drosophila showed resistance to oxidative stress insults, increased 

antioxidant production and extended longevity (194). Overexpression of Frataxin at 4 fold in 

hearts and at 10 fold in the pancreas showed similar phenotypes as their controls and did not 

show a significant difference in antagonizing DOX (doxorubicin) induced cardiotoxicity (195). 

Similar to our results, there is also a study that showed that the overexpression of 

Frataxin in Drosophila at high levels disrupts development (10). When the Frataxin level was 

brought to 9-fold, the Drosophila had a shorter life span and reduced locomotor phenotypes. 

Frataxin overexpression is also induced cell degeneration and lipid droplet accumulation in glial 

cells. The sensitivity to oxidative stress damage was also increased in Frataxin over-expressing 

cells, with a reduction in both aconitase activity and NDUFS3 protein level (10). Collectively, our 

results showed that Frataxin high dose overexpression (10 fold) in Drosophila exhibits similar 

symptoms as Frataxin-deficient Drosophila, which is in agreement with the findings of Navarro et 

al. (10). As we found with FXN-KD Drosophila, we also found that Atg1 mRNA is increased in 
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Frataxin overexpression Drosophila. The similarity of responses of the Atg genes at the 

transcriptional level from our study indicates that both deficiency and high dose overexpression 

of Frataxin in Drosophila introduces detrimental effects on longevity and locomotive activity 

through autophagy activation. This piece of information will be helpful for the clinical 

applications for FRDA patients. 

Because previous research does not reveal the detailed outcomes of the damaged 

mitochondria in FRDA, we started to look at the status of mitochondrial quality control 

mechanisms in the Frataxin deficiency Drosophila, especially the mitophagy process. Since 

previous reports did not find a significant reduction in mitochondrial contents despite the 

extensive evidence of damage, we hypothesize that there is a potential failure in mitophagy, the 

major mitochondria removal pathway. We showed the relatively stable level of HSP60 in FXN-KD 

larvae, indicating the mitochondrial contents do not change significantly. Our further test of 

mitochondrial protein pyruvate dehydrogenase showed decreased protein level in daG32-fh.IR 

larvae at 25oC, implicating the reduction of mitochondrial function. To measure the status of 

mitophagy, we tested the protein level of PARKIN in the daG32-fh.IR larvae. The level of PARKIN in 

whole-cell lysate from daG32-fh.IR larvae remains the same level. This indicates the PARKIN does 

not change in translation level. The test of mitochondrial membrane-bound PARKIN will be more 

accurate to determine the status of mitophagy in daG32-fh.IR. 

We also extended our research into the possible cardiac defects in FXN-KD Drosophila, 

and whether those defects could be detected using electric heart pacing arrays. However, the 

heart pacing results were inconclusive. When being paced at 20 volts, daG32-fh.IR Drosophila did 

not show significant differences in the rate of heart failure and fibrillation compared to control 
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Drosophila. Our explanation is that the sensitivity of the heart pacing assay may not be enough to 

detect the chronical progression of heart function loss caused by Frataxin deficiency. Another 

possibility is that in daG32-fh.IR Drosophila, the reduction of Frataxin in the heart may not as 

much as cardiac cell specific knockout. Another work recently published by Tricoire and 

colleagues, used a heart-specific Hand-GS Gal4 promoter to construct HandGS/ (fhRNAi) FRDA 

Drosophila. The knockdown effect was induced by RU486 treatment in the media. Their video 

imaging to measure the heart tube M-Mode patterns showed that the Frataxin reduced heart 

has impaired dilatation and systolic function (196). Our work, together with their findings, 

showed the value of FXN-KD Drosophila as an in vivo system for the neurodegenerative and 

cardiac diseases such as FRDA. 

In summary, our work shows that autophagy increases in both Frataxin deficiency and 

overexpression Drosophila. The mitochondria function changes in FRDA Drosophila but the 

mitophagy level does not change significantly. Our work proves the further value of the 

Drosophila FRDA model in better understanding the mechanisms of this devastating disease in 

humans. 
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CHAPTER 2: THE DROSOPHILA TET ORTHOLOG, dTET, IS REQUIRED FOR 
HYDROXYMETHYLATION OF NUCLEAR AND MITOCHONDRIAL DNA AND 
ENHANCES THE POLYCOMB-MUTANT PHENOTYPE IN ADULTS 

1. Introduction 

1.1 DNA methylation and mitochondrial DNA.  

The regulation of gene transcription by epigenetic modification during essential 

developmental stages, such as cell differentiation and genomic imprinting, has drawn an 

increasing amount of attention in recent years. Interest has grown dramatically after the 

discovery of the importance of epigenetic reprogramming during the generation of induced 

pluripotent stem cells (iPSCs). The epigenetic modification process includes DNA and histone 

modification, among which DNA methylation is one of the most understood mechanisms. The 

major form of DNA methylation is 5-methylation of cytosine (5-mC), which involves the addition 

of a methyl group (CH3-) to the number 5 carbon of the cytosine base. 5-mC is enriched in CpG 

dinucleotides, and it has been shown to be involved in transcriptional silencing, X chromosome 

inactivation, normal development, and carcinogenesis (197).  Recent research has revealed that 

the relatively stable 5-mC pattern in stem cells is the result of a dynamic balance between DNA 

methylation by DNA methyltransferase and demethylation by Dnmt1. The DNA methylation 

process consists of de novo DNA methylation by DNA methyltransferase (Dnmt3a and 3b in 

mammals) and maintenance of DNA methylation after DNA replication by DNA 

methyltransferase 1 (Dnmt1). Dnmt3a/3b enzymes bind to unmethylated DNA sequences for de 

novo methylation while Dnmt1 preferentially binds to hemi-methylated DNA strands and 

methylates the 5-mC sites on the daughter strand after DNA replication (198, 199). In 

comparison, however, the demethylation process, which happens largely during zygotes and the 
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primordial germ cell (PGC) stage, has remained largely unknown until the recent discovery of 5-

hydroxymethylcytosine (5-hmC) and Ten-Eleven-Translocation (TET) family proteins which convert 

5-mC to 5-hmC (200, 201). Previous studies have shown that there are two possible ways for 

demethylation - passive dilution through cell replication and active removal of methylcytosine 

through enzymatic reactions converting 5-mC to 5- hmc and further oxidative products, 5 

carboxyl-cytosine (5-caC) and 5-formly-cytosine (5-fC), which is the focus of our current 

research(201, 202). 

1.2    DNA demethylation and hydroxymethylation 

Similar to 5-mC, 5-hmC is another epigenetic DNA marker, which was found several 

decades ago in T4 bacteriophage (203). In 2009, researchers discovered that 5-hmC is enriched in 

mouse embryonic stem (ES) cells and Purkinje neurons (204, 205), although the role of 5hmc is 

still to be elucidated. Some studies have suggested that 5-hmC is a stable epigenetic mark that is 

enriched in active transcriptional promoters. Recent findings also suggested that 5-hmC may act 

as an intermediate in the process of DNA active demethylation. The TET family proteins were 

found to convert 5-mC to 5-hmC through α-ketoglutarate- and Fe (II) dependent dioxygenase 

reactions (206). 

Currently, there are three members found in the mammalian TET family: Tet1, Tet2, and 

Tet3 (206).  Mouse TET1 and TET2 proteins are mainly  expressed in embryonic stem cells 

(ESCs) while TET3s are highly expressed in germline cells (207). The conversion of 5-mC into 5-hmC 

requires cofactors such as a-ketoglutarate (α-KG) and Fe (II), and vitamin C (201). Because α-KG 

was produced in the mitochondrial TCA cycle by isocitrate dehydrogenase (IDH) family proteins, 

we speculate that the IDH expression level is closely related to the hydroxymethylation process. 
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It is reported that mutant IDH was found in several types of cancers, which could reduce the 

hydroxymethylation level by irreversibly converting the TET co-factor α-kG into R-2-

hydroxyglutarate (R-2HG) (208). 5-hmC could be further oxidized by TET into 5-Formylcytosine (5-

fC) and 5-Carboxylcytosine (5-caC)(209). The following removal of 5-fC or 5-caC through thymine-

DNA glycosylase (TDG) and the base excision repair (BER) pathway could replace the original 5-

mC with unmodified cytosine,  finishing the demethylation process (210), The changed 5-hmC 

level and mutation of TET and IDH had been reported in multiple diseases. Genome-wide 

mapping of 5-hmC showed its level was reduced in melanoma but not in benign tumors. It was 

accompanied by the down-regulation of IDH2 and TET proteins, and could be rescued by 

reintroducing active TET2 and IDH2 (211). The same trends were reported in breast, liver, gastric, 

and colorectal cancers (212-215). At the same time, reduced 5-hmC level was correlated to the 

up-regulation of TDG proteins, indicating the active demethylation process (216). But the exact 

detail of this demethylation pathway is still unclear. 

In addition to the role of TET protein’s essential role in demethylation pathways, recent 

research has found that TET may be engaged in epigenetic modification of histones through its 

partnership with O-linked -N-acetylglucosamine (O-GlcNAc) transferase (OGT). OGT catalyses 

O-GlcNAcylation through the addition of O-GlcNAc onto the hydroxyl moiety of serine/ threonine 

residues through post-translational modification (217). In Drosophila, OGT is encoded by a 

Polycomb Group (PcG) gene, super sex comb (sxc), located on chromosome 2R (218, 219).  It 

has been confirmed that both TET2 and TET3 directly interact with OGT in vivo in mammalian 

cells. Yu, etc. found that in mouse ES cells. 
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TET2 interacted with OGT through its carboxyl terminal catalytic double-strand β-helix 

(DSBH) domain and OGT’s N-terminal tetratricopeptide repeats (TPR) 5 and 6 (220). Currently 

there is no evidence that the interaction of TET and OGT altered DNA property beyond the 

conversion of 5-mC to 5-hmC  because no new base modifications were detected after the 

incubation of TET2 and OGT together with 5-mC in vitro (220). It was observed that when TET2 

level is reduced using short hairpin RNA (shRNA) in ES cells, the interaction between OGT and 

chromatin was abolished, as well as the H2B Ser112 GlcNAcylation. The conclusion was made 

that TET2 might be essential for OGT’s function and its targeting on chromatin (220). Conversely, 

however, when the OGT was KD with shRNA, it did not affect its function and the association 

with TET2. Furthermore, the enzymatic null TET2 mutant could still interact with OGT and 

maintained the GlcNAcylation, which suggests the OGT’s physical interaction with TET2, instead 

of enzymatic activity, is more important for OGT function. 

With the great potential of TET in both DNA and histone modifications, more work is 

needed to understand better the role of TET in regulating epigenetic states. Here we 

characterized the phenotype of a loss of function dTET KD Drosophila by using a powerful and 

robust Drosophila model. We found that the dTET KD Drosophila had reduced 5-hmC content, 

similar to the observation in mammalian models. We also showed that dTET is a Polycomb Group 

protein member because it has genetic interactions with the Polycomb4 (Pc4) mutation. 

Furthermore, we showed that the mitochondrial genes and genes near the chromosome 3L 

telomere region have been greatly reduced in mRNA and hydroxymethylation levels in dTET KD 

Drosophila. 
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The jumonji C domain-containing histone lysine demethylase KDM2A was reported to 

bind to unmethylated CpG in ribosomal DNA (rDNA) promoter region through its CXXC zinc 

finger motif, which also presents in dTET protein, and inhibit the rDNA transcription(221). 

Further investigation revealed that another KDM family member, KDM4D, requires PARP-1 and 

RNA-binding to associate to DNA damage sites. Its accumulation may be related to double 

strands break repair in mammal cells (222). This finding associates the change in chromatin 

protein property with the activity of DNA transcription, showing that some enzymes could 

regulate epigenetic changes by regulating histone and DNA at the same time. 

The human mitochondrial genome is a double-stranded, circular structure of 16,569 

bases. It contains two ribosomal RNAs (rRNA), 22 tRNAs, cytochrome c oxidase subunits I-III, 

cytochrome b, ATPase subunit 6 and several predicted proteins coding sequences (223). The 

non-coding region of the mitochondrial DNA sequences were termed D-Loop, which provides the 

interaction and transcription sites for nuclear-encoded mitochondrial proteins (224). In 2008, 

Zhang lab identified there are 940 mitochondrial proteins in murine cardiac cells, of which 99% 

were encoded in the nucleus (225). Recently, the Lee lab reported that the mitochondrial DNA 

(mtDNA) copy numbers are regulated by the methylation level of the mtDNA-specific 

polymerase gamma A (POLGA) exon 2.  The cancer cells and pluripotent cells were highly 

methylated at the exon 2 of POLGA while possessing low mtDNA copy numbers. After the 

demethylation agent treatment of 5-azacytidine for 28 days, the glioblastoma cells showed 

increased mtDNA copies accompanied by decreased POLGA exon2 methylation (226).  This is 

another possible mechanism to regulate the expression of mitochondrial genes. 

2. Statement of Problem 
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 The research on 5-hmC and TET protein were dramatically expanded after the discovery of 

their possible roles in active demethylation process. But the details of the involvement of TET 

protein in the hydroxymethylation process is far from clear. Although TET knock-down/knock-out 

animals were produced, few works were carried out in the Drosophila model. In this project, we 

are characterizing the outcome of dTET (Drosophila TET) knock down in dTET deficiency 

Drosophila. The epigenomic landscape of the dTET deficiency Drosophila was analysed, especially 

global hydroxymethylation. Genetic crossing were performed to further explore the property of 

dTET. Because the DNA repair proteins participated in the DNA active demethylation process, so 

the global distribution pattern of typical DNA repair related proteins were also tested. The 

outcome of this project could reveal more details of TET protein and its analogue in Drosophila, 

one of the most important epigenetic models. Our findings will accelerate the understanding of 

DNA active demethylation and provide insights for the future therapy for diseases such as 

cancers and neurodegenerative diseases. 

3. Materials and Methods 

Drosphila Stocks: All of the stocks are from the Drosophila Stock Center in Bloomington, IN. :” 

OgaP (y1 w67c23; ry506 P[SUPor-P]OgaKG04950); dTETEP (w1118; P[w+mC]=EP]EP995[EP995]/TM6B,Tb1); 

Pcl11 (In(2R)Pcl11/SM5); ScmD1 (st1 in1 kniri-1 ScmD1/TM3,Sb1); sxc6 (OGT) (sxc6 bw1 sp1/SM1); Scr17 

(Scr17/TM6B, Tb1), Df(3L)TL (dTet-Left Deficiency) (w1118; Df(3L)Exel6091, P[w+mC]=XP-

U]Exel6091/TM6B,Tb1), Df(3L)TR (dTet-Right Deficiency) (w1118; Df(3L)Exel6092, P[w+mC]=XP-

U]Exel6092/TM6B,Tb1); Df(3L)BigT (Df(3L)BSC23, rhove-1 e1/TM2, pp); w1118; KrIf-1* (made in our 

lab);  T(2;Y)kisL124 and Pc4 pp/TM3,Sb1 (gift from J. Kennison); mt2hw (gift from K. Maggert). In 

this study, we generated the stocks: 1) T(2;Y) kisL124 ; Pc4 pp/TM3,Sb1 that was used to test for 
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enhancement or suppression of the extra-sex-combs phenotype; 2) w1118;  dTETEP OgaP/TM6,Tb1 

which has dTET and Oga on the same chromosome; and 3) w1118; dTETRev1 /TM6,Tb1 was made by 

excision of the P-element in dTETEP by crossing it to Drosophila with the genotype w1118; Sb1 (2-

3)/TM2 (which expresses the P-element transposase), isolating F1 males with the genotype w1118; 

dTETEP/Sb1 (2-3), crossing the males in individual vials to w1118 ; TM2/TM3, Sb1 virgin females, 

and selecting 50 F2 Drosophila with white eyes. Three precise-excision lines, dTETRev1 , dTETRev2  

and dTETRev3 , were saved and validated to be precise excisions of the P-element by PCR.  The 

w1118; KrIf-1 (without ELBOs) and the w1118; KrIf-1* (with ELBOs) stocks were made as described 

previously (227). 

Statistical analysis of RNA-Seq data: *.Fastq files for RNA Seq was aligned to the dm3 build 

reference genome using TopHat2. The *.sam files were converted to *.bam files and sorted 

according to genomic position using samtools. The rmdup function from samtools was used to 

remove potential PCR duplicates. The processed *.bam files were further analyzed using R 

package DESeq2(228). A FDR corrected p-value cut-off of 0.1 was used to call differentially 

expressed genes. Correlation and overlaps were performed in R (R> 3.0.0). 

DNA digestion with PvuRst1L and DNA sequencing: PvuRts1I (Pvu) restriction enzyme can directly 

cleave hydroxymethylated DNA 12-14 bps away from the 5hmC site(229). We developed a new 

technique that we call Pvu-seq which allows direct detection of 5hmC without chemical 

modification of 5hmC or bisulfite conversion. A paper describing this technique was published in 

BMC Genomics (230). Briefly, the whole genomic DNA extracted from dTet KD, Mt2 KD and 

w1118 pupae, was digested with PvuRts1I and sequenced using 50 bps paired end sequencing 

reads in Illumina™ HiSeq 2500. 
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Statistical analysis for Pvu-Seq data: Pvu-Seq was used to confirm the presence of 5hmC in the 

predicted Pb-dependent high density 5hmC clusters (230). *.Fastq files for Pvu-Seq was aligned 

to the dm3 (UCSC) reference genome build using bowtie2. The *.sam files were converted to 

*.bam files and sorted according to genomic position using samtools. rmdup function from 

samtools was used to remove potential PCR duplicates. The data was further filtered using a 

mappability score cut-off of 10 and only reads with mapped mate pairs was used for downstream 

analysis. The differential coverage between w1118 and dTet was calculated using R package 

MEDIPS within 200bps genomic windows (R> 3.0.0). Genome wide differential coverage between 

two groups of samples where modelled as a negative binomial distribution. For this, MEDIPS 

applies edgeR(231) and its functions for normalization, estimation of over dispersion, and 

statistical testing. The log2 fold change is coverage was estimated as log2 (Experiment/w1118, 

control). DhMs were called for all peaks with FDR corrected p-value ≤ 0.1. Adjacent windows 

were merged together to form larger windows to reduce the number of regions. Reads per kilo 

base per million reads (rpkm) values were processed *.bam files and outputted as *.wig files for 

visualization in Integrative genome viewer. Distance of the peaks from the nearest 5’ end of 

genes, and the distance from the gene were calculated using annotatePeak function from R 

package ChIPSeeker, using TxDb.Dmelanogaster.UCSC.dm3.ensGene as the reference database. 

Correlation and overlaps were performed in R (R> 3.0.0). 

Motif Discovery: For discovery of the consensus sequences for dTET enzymatic activity, we 

selected all unmerged significant DhMs and did a de-novo motif discovery using motifRG package 

in R (R> 3.0.0) (232). We used the dm3 genome build tile into 200 bps regions as the background 

sequence to estimate the seed motif, and search for the enrichment of seed motif in DhMs. The 
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top 5 motifs are reported in the paper.  For determination of known transcription factor binding 

motifs in DhMs located in the Promoter regions of the differentially expressed genes we used 

PWMEnrich package  in R (R> 3.0.0) and search for significant enrichment against a database of 

known transcription factor binding motifs, which can found in Bioconductor database 

PWMEnrich.Dmelanogaster.background in R (R> 3.0.0). 

4. Results 

4.1 Sequence comparison of TET homologs 

While mammals possess three types of TET protein, TET1, TET2 and TET3, Drosophila has 

only one TET homolog, CG2083 (CG43444), which we renamed dTET. The dTET gene is located on 

chromosome 3L, is 92kb long and has 12 exons (233). The translated product of dTET (isoform F) 

contains 2921 amino acids. To determine the possible function of the dTET, we first compared 

 

Figure 20: Comparison of the similarity of predicted protein secondary structure of dTET and 
its homologs from different species using ScanPosite analysis. The comparison sequences 
include TET1_human, TET1_Mouse, TET2_Human, TET3_Mouse, TET2_Human, 
TET2_Mouse, LOC580376_Sea Urchin, CG2083_Drosophila, V1g22996_nematostella, 
gp2_mycobacterium phage cooper, FRAAL2749_Frankia alni, JBP1_Trypanosoma Brucei, 
JBP2_Trypanosoma Brucei, CC1G_03999_Coprinopsis, LACBIDRAFT_316849_Laccaria, 
P4H_Chlamydomonas (PDB:2JIJ), ALKB_Ecoli (PDB:2FD8).  
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the predicted amino acid sequence of dTET with its homologs in different species (Figure 21). 

ScanPosite analysis showed that dTET contained a Zinc Finger CXXC structure from AA647 to 

AA687. There were two Tet/JBP family signature domains, between sequences AA1857 -AA2091 

and AA2527-AA2727, which consisted of a double-stranded beta helix (DSBH) fold domain 

belonging to the 2-oxogluatarate (2OG)-Fe (II)-dependent dioxygenase (2OGFeDO) superfamily. 

All three mammalian TET members possess the DSBH domain, and this  is essential for the 

binding of metal ions that catalyze the oxygenase function (234). 

The CXXC domain is only possessed by TET1/3 and is required for the binding to 

chromatin. However, the mammalian TET2 lacks the CXXC domain and needs the assistance of 

another protein, IDAX, (possible Drosophila homolog: CG9973) for binding (235). The analysis of 

multiple sequence alignment through Blast protein indicated that dTET shared a similar Zinc 

Finger CXXC domain, Tet/JBP family-specific structure, and the amphipathic helix pattern with 

TET1 and TET3 in human and mouse, as well as orthologs in Sea urchin and Nematostella. The 

similarity extended into the DSBH-2OG-Fe (II)-dependent dioxygenase domains, shared by the 

characteristic residues and beta strand. 

It is clear that the dTET possessed all structural elements and catalytic residues 

characteristic of the TET/JBP superfamily: Histidine and Aspartic acid, a small amino acid in the 

strand after the N-terminal Helix and the Histidine, the small amino acid, Arginine and the 

aromatic amino acid in the stands close to the C-terminal. But it is worth noticing that dTET 

shares more similarity with TET1 and TET3 than mammalian TET2 because TET2 lacks the Zinc 

Finger CXXC domain. As mentioned above, since dTET possesses the catalytic domain of DSBH 

and the chromatin binding domain of CXXC Zinc Finger, it is possible dTET can directly interact 
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with chromatin. 

4.2     dTET is Required for Optimal Transcription and Hydroxymethylation of the Nuclear and 

Mitochondrial Genome 

Our investigation on the role of dTET has been carried on a loss-of–function dTET 

mutation strain, the pupal-lethal dTETEP/EP, which has a homozygous PiggyBack insertion between 

exon 6 and 7. The allele information was shown in Table 2. Next, we compared the dTET mRNA 

level in control Drosophila (w1118) and dTET mutants using an RNA sequencing technique. The 

data showed that the dTET mRNA level in dTETEP/EP was significantly reduced compared to w1118 

Drosophila (Figure 22, a and b), which indicates successful dTET KD in dTETEP/EP strains at the 

transcription level. Next we explored how the reduction of dTET protein would affect the genome 

hydroxymethylation level in Drosophila. 

We used Pvu-sequencing to identify hydroxymethylation sites in both w1118 and 

dTETEP/EP pupae. Pvu-sequencing is a new technique developed in the Ruden laboratory by 

digesting the purified genomic DNA sample with PvuRts1I, which is a Type 2 restriction 

endonuclease that recognizes single 5-hmC sites within CGAT/CG sequences and generates 

fragments with 3’-cohesive termini, followed by next-generation DNA sequencing (236). Since 

the distances between the cleavage sites and 5-hmC sites are often 11-13 nucleotides in the top 

strand and 9-10 nucleotides in the bottom strand(237), Pvu-seq could be an ideal method to 

detect the density and distribution of 5-hmC in the genome and also the relative genomic 5- hmC 

levels in particular regions. As expected, we observed about a 50% reduction of 5-hmC levels in 

dTETEP/EP mutant Drosophila while the distribution pattern of 5-hmC was similar between mutant 

and control Drosophila (Figure 22, c and d). We also noticed that long intron in which EP995 
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resides is poorly spliced in the KD pupae. It shows the insertion mutation of the EP995 

transposon between exons 6 and 7 in the dTET gene (Figure 22, e). The results confirmed that 

dTET was KD at the transcription level and was directly associated with generation 5-hmC in 

Drosophila. 

In addition to the nuclear 5-hmC level reduction, we also observed that the global 

hydroxymethylation level in dTETEP/EP Drosophila was significantly reduced compared to control 

Drosophila (Figure 235, dTET gene as example). This shows the importance of dTET in the process 

of maintaining DNA hydroxymethylation level in Drosophila. We also observed substantially 

reduced hydroxymethylation in mitochondrial genes, such as Co1, CoII, and ATPase6, etc. (Figure 

23 b). It is worth noting that the hydroxymethylation regions on the 19kb mitochondrial genome 

were nearly eliminated. Thus, the deficiency of dTET caused greater 5-hmC reduction in 

mitochondrial DNA than in the nuclear DNA in dTETEP/EP Drosophila and control. 

 

Figure 21: The global hydroxymethylation level in dTETEP/EP Drosophila was significantly 
reduced compared to WT Drosophila. (a) 5-hmC and oxidative modification marker results of WT 
and dTETEP/EP at the dTET site. (b) 5-hmC and oxidative modification marker results of WT and 
dTETEP/EP at mitochondrial DNA. Both results showed a reduction of 5-hmC in dTETEP/EP strains 
and the sites are similar to the distribution of oxidative modification markers. 
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4.3 dTET is Required to Oxidatively Modify the Mitochondrial Genome 

Recent discoveries revealed that TET proteins may have participated in the oxidation of 5-

mC into 5-hmc, 5-fC, and 5-caC followed by the BER DNA repair pathway. It is possible that oxidative 

damage could have occurred at a higher rate near hydroxymethylation sites. After confirming the 

role of dTET in global hydroxymethylation, we conducted a series of assays to measure different 

types of DNA oxidative damage in control and dTETEP/EP Drosophila. The experiment was 

performed by treating control and dTETEP/EP Drosophila DNA with five different DNA oxidation 

damage specific glycosylases followed by next-generation DNA sequencing to reveal the 

distribution of oxidative damage (Figure 23 and Table 5). The glycosylases we tested includes 2-

Genotype Phenotype 

dTETRev-1 / T-L Precise Excision of EP; adults survive 

OgaP / OgaP Adults survive; partial male sterile 

dTETEP / T-R Adults survive; weak climber 

dTETEP OgaP / T-R Adults survive; weak climber 

T-L / T-R Some adults survive; weaker climber 

dTETEP / T-L Black pupal lethal 

dTETEP OgaP / dTETEP OgaP Black pupal lethal 

dTETEP OgaP / T-L Black pupal lethal 

dTETEP / dTETEP White pupal lethal 

Table 2. Allelic Series of dTET and Oga single and double mutant phenotypes. The weakest 
phenotype is on the top, and the most severe phenotype is on the bottom. 
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Methyladenine DNA Glycosylase Type II (AAG), which initiated base excision repair (BER) when 

certain substrate bases were recognized such as  3-methyladenine, 3-methylguanine,  and 7-

methylguanine, etc., after DNA damage; Concanavalin A (ConA) is a lectin (carbohydrate-binding 

protein) which specifically interacts with glycoprotein and glycolipids; Human 8-Oxoguanine 

glycosylase 1(hOGG1) recognizes and remove the DNA damage product 7,8-dihydro-8 oxo 

guanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-fromamidopyrimidine (FaPy);  Thymine glycol 

DNA glycosylase (TGDG) removes DNA bases damaged by UV light and produces a single 

nucleotide gap, Uracil-DNA glycosylase (UNGase) eliminates uracil produced from cytosine 

deamination through BER pathways. 

According to the results, we found that like 5-hmC, the distribution of oxidative-damaged 

DNA nucleotides are enriched in the promoter regions (Figure 23 a). Surprisingly, in the 

mitochondria, the levels of DNA oxidative damages in the promoter regions of mitochondrial 

genes are significantly reduced in dTETEP/EP Drosophila compared to control Drosophila (Figure 23 

b). The relatively greater abundance of ConA in both control and dTETEP/EP, in both nuclei and 

mitochondria, is different compared to other oxidative damage markers. We conclude that 5-hmC 

oxidative modifications to DNA correspond to several other types of oxidative changes to DNA. 

This suggests that dTET, like the BER enzymes, is a DNA repair enzyme that is involved in 

removing 5-mC from the genome. 

4.4 dTET Mutations Enhance the Extra-Sex Combs Phenotype of PcG Mutations. 

The Polycomb Group (PcG) is a protein family which regulates gene silencing through 

epigenetic chromatin remodeling and plays important roles in development (238). Conversely, 

the Trithorax Group (TrxG) proteins antagonize the effects of PcG proteins by maintaining an 
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activated status of target genes. An additional copy of the TRXG gene kismet (kis) was used in the 

genetic assay to screen for suppressor of Polycomb (Pc) activity because the insertion of an 

added copy of TrxG gene kismet sensitizes the genetic background and enhances the penetrance 

of the extra-sex-comb phenotype of PcG loss-of-function mutations. 

In heterozygous TET mutant dTETEP/TM6 male adult Drosophila, we observed an 

enhancement of the extra sex combs phenotype, which is the unique property of PcG mutations: 

the ectopic sex combs are on 2nd and 3rd pair of legs instead of only the first pair (Figure 24 a, E-

 

Figure 22: Extra sex combs in heterozygous TET mutant dTET EP/TM6 male adult 
Drosophila. (A) Cross scheme of extra sex comb assay. The duplication of kismet 
sensitizes the genetic background for the phenotype penetrance. (B) The cross scheme 
of introducing PcG mutation showed extra sex comb on the second and third legs. (C) 
The introducing of TrxG mutation showed limited extra sex comb on the second and 
third legs. (D) The introduction of an additional copy of PcG gene increased an extra sex 
comb number on second and third legs. (E-G) Microscope Images of sex combs on 1st. 
2nd, and 3rd legs of dTETEP/TM6 males.  
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G).This indicates that dTET belongs to the PcG family. To confirm this finding, we introduced 

series of mutant PcG alleles into dTETEP/TM6 Drosophila (Table  and Table 1). As we expected, 

the additional sex comb number was further increased due to the enhancement from the 

mutant PcG alleles. On the other hand, when a mutated O-GlcNAcase (Oga) allele was introduced, 

which is a TrxG member; the number of extra-sex combs on the 2nd and 3rd pairs of legs was 

suppressed. This suggests that Oga and dTET genetically interact. The TrxG property of Oga 

counteracted with dTET mutation and reduced the extra sex combs. 
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4.5 The ELBO Assay Indicates that dTET is in the PcG 

Genotype Leg1 Leg2 Leg3 Comments 

T124; Pc4 pp/TM3,Sb 1

0.19 

5 2

.62 

Reference 

T124; Scr17/ Pc4 5

.75 

0

.75 

0 Scr is in TrxG 

T124; OgaP, 

dTETEP/Pc4 

9

.85 

1

.3 

0

.5 

Oga suppresses 

dTET 

T124; OgaP / Pc4 1

0.33 

4

.33 

2

.18 

Oga has no effect 

on Pc 

T124; dTETEP / Pc4 1

1.05 

8

.3 

5

.7 

dTET is in PcG 

T124; sxc6/ Pc4 1

0.4 

6

.125 

4

.44 

sxc is in PcG 

T124; T-R/ Pc4 1

0.75 

7

.9 

7

.3 

Df(3L)(T-R) is in 

PcG 

T124; PCL11/ Pc4 9

.8 

9

.15 

7

.95 

Pcl is in PcG 

T124; Scm01/ Pc4 1

0.88 

1

0.5 

9

.25 

Scm is in PcG 

Table 1: Mutations in dTET enhance the Pc4 ectopic sex comb phenotype. 
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We further deployed another well-established model, the Ectopic Large Bristle 

Outgrowths (ELBO) phenotype, which was developed in the Ruden laboratory in 2003 (Sollars et 

al.), to assess whether dTET belongs to the PcG family (). The Kruppel (Kr) gene encodes a 

transcriptional factor that maintain the development of thoracic and abdominal sections(239). Its 

dominant allele KrIrregular facet, also called KrIf-1, showed a sensitized background responding to the 

mutation of TrxG or PcG genes. The inheritable epiallele could be induced by TrxG mutation and 

suppressed by PcG mutation, which exhibit the ectopic expression of Kr proteins in the ventral 

region of eye imaginal disc. This ectopic expression not only results in the crude appendage-like 

structure protruding from ventral regions but also reduced the size of eyes (240).  As we 

expected, the presence of a dTETEP reduced the rate of ELBO formation from 60-70% to below 

10% while the KrIf-1 heterozygous Drosophila only show less than 1% ELBO progeny in the 

presence of the dTET mutation. The introduction of ELBO enhancer and suppressor alleles 

increases or decreases the rates of ELBO phenotype, individually (Table 4, Figure 25 C and D). All 

of the results confirm that dTET belongs to PcG family. 
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Mother’s Genotype Father’s 

Genotype 

F1 Genotype % ELBOs (total) Comments 

KrIf-1/ KrIf-1 w1118 KrIf-1 / w1118 0% (533) Negative control 

KrIf-1*/ KrIf-1* w1118 KrIf-1* / w1118 67% (551) Positive control 

Scr17 / Bal KrIf-1*/ KrIf-1* KrIf-1*/+; Scr17/+ 95% (508) Scr is in the TrxG 

Scr17 / Bal KrIf-1*/ KrIf-1* KrIf-1*/+; Bal/+ 64% (555) Scr has no ME 

OgaP / Bal KrIf-1*/ KrIf-1* KrIf-1*/+; OgaP /+ 94% (568) OgaP is in the TrxG 

OgaP / Bal KrIf-1*/ KrIf-1* KrIf-1*/+; Bal/+ 62% (531) OgaP has no ME 

dTETEP/Bal KrIf-1*/ KrIf-1* KrIf-1*/+; dTETEP /+ 5% (539) dTET is in the PcG 

dTETEP /Bal KrIf-1*/ KrIf-1* KrIf-1*/+; Bal/+ 69% (500) dTET has no ME 

Pc4 / Bal KrIf-1*/ KrIf-1* KrIf-1*/+; dTETEP /+ 7% (598) Pc4 is in the PcG 

Pc4 / Bal KrIf-1*/ KrIf-1* KrIf-1*/+; Bal/+ 62% (583) Pc4 has no ME 

dTETEP OgaP / Bal KrIf-1*/ KrIf-1* KrIf-1*/+; dTETEP 

OgaP /+ 

9% (587) Oga suppresses 

dTET 

dTETEP OgaP /Bal KrIf-1*/ KrIf-1* KrIf-1*/+; Bal/+ 69% (542) Oga and dTET have 

no ME 

Table 4. Mutations in dTET suppress the Ectopic Large Bristle (ELBO) Phenotype. 



86 
 

 
 

4.6 The Genes Near the Chromosome 3L Telomere Require dTET for mRNA expression 

   

Figure 23: Ectopic Large Bristle Outgrowths (ELBO) phenotype, to assess whether dTET 
belongs to the PcG family. (A) The negative control cross plan showed maternal Kr [If-1] and 
WT had normal progeny. (B) The positive control cross plan showed Kr [If-1]* induces 
increased ELBO in progeny. (C) The introducing of TrxG gene showed more ELBO progeny. 
(D) The introduction of the extra copy of PcG gene showed reduced ELBO progeny. The 
electronic microscope results showed that compared with (E) WT, the Kr [If-1] mutant (F) 
showed irregularly formed and smaller eyes. (G-H) Microscope Images of bristle-like 
appendage structure (*). 
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Another interesting finding is that besides mitochondrial DNA, the telomere region near 

chromosome 3L (from 0 kb to 140 kb) was also significantly hypo-hydroxyl methylated in 

dTETEP/EP pupae. Also, the mRNA transcription level of the genes in the 3L region was significantly 

reduced in dTETEP/EP pupae. As shown here, the Pvu-sequencing res7ults show that the 5-hmC 

level near mth18 gene promoter region and within the gene body, which is within the first 140 kb 

of chromosome 3K, was diminished to an undetectable level (Figure 26 A). The RNA-Seq results 

showed that the mRNA level of mth18 is also brought down to less than 1% compared to control. 

We also examined the other genes within the 140k region of 3L telomere locus in dTETEP/EP pupae, 

including CG43149, Lsp1gamma, and Pdk1. All of the genes showed a reduction in the 5-hmc level 

NGS Technique Method Results 

Pvu-seq Digest DNA with PvuRts1l (Active Motif) Maps 5hmC sites 

(Ruden et al., 2013; in press) 

AAG-seq Digest DNA with mouse 3-methyladenine 

DNA glycosylase type II (Aag protein, 

Trevigen) 

Maps 3-methyl adenine (3mA) 

(This grant) 

ConA-seq Purify sonicated DNA with concanavalin A 

lectin (ConA protein, Sigma) 

Maps glycosylated sites in DNA (glcDNA) 

(This grant) 

OGG1-seq Digest DNA with human 8-oxoguanine DNA 

glycosylase (hOGG1 protein, Trevigen) 

Maps 8-oxoguanine sites in DNA (8oxoG)         

(This grant) 

TGDG-seq Digest DNA with thymine glycol-DNA 

glycosylase (E. coli Endonuclease III, 

Trevigen) 

Maps thymine glycol sites in DNA              

(This grant) 

UNG-seq Digest DNA with Uracil-N-

glycosylase (E. coli UNGase, Trevigen) 

Maps uracil sites in DNA           (This 

grant) 

Table 5. Next-generation sequencing (NGS) techniques developed by the Ruden laboratory 
to map oxidized DNA. To detect 5mC DNA in mtDNA, we will use the enzyme MbrBC, 
which cleaves 5mC DNA (1, 2) 



88 
 

 
 

and transcription levels (Figure 26 B and C). The Pdk1 gene, which was located furthest from the 

telomere region, shows a relatively moderate reduction in both 5-hmC and transcription. The 

difference between Pdk1 and other tested genes may be due to the distance from the 3L 

telomere. Since we do not observe the similar pattern in other telomere regions, it is possible 

that the 3L telomere region may contain certain chromatin structures with unique properties 

that affect hydroxymethylation and transcription activity. In summary, the genes within 

chromosome 3L telomere region show hypo-hydroxymethylation and limited transcription 

activity similar to mitochondrial genes. To our knowledge, this is a unique observation for which 

 

Figure 24: The Pvu-seq and RNA seq results compare dTET mutant (dTET-) and WT (dTET+) 
Drosophila.  (A) Pvu-Seq and RNA-Seq showed dTET mutant had lower 5-hmC level and mRNA 
transcription near 3L telomere region at mth18 gene promoter sites and within the gene. (B) 
CG43149 and Lsp1gamma showed both lower 5-hmC and transcription level. (C), Pdk1 also 
showed lower 5-hmC and transcription level, indicating reduced hydroxymethylation and 
transcription in 3L telomere regions.  
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we have no explanation. Furthermore, we also looked at the distribution pattern of oxidative 

damage markers within the Chromosome 3L telomere regions. As we expected, control 

Drosophila show peaks of all six oxidative damage markers co-localized with 5-hmC peaks (Figure 

27 and Figure 28), indicating possible oxidative damage sites coincide with hydroxymethylation 

locus.  The dTETEP/EP Drosophila, however, have less oxidative damage in the 3L region. This 

phenomenon is much like the results in the mitochondrial genome. We also notice that when 

located further from the 3L telomere region, the CG13405 and CG12483 shows less reduction in 

hydroxymethylation level in dTETEP/EP Drosophila (Figure 28 C). 

 

 

Figure 25: Protocol for glycosylase-seq experiments to analyze DNA damage in mtDNA and 
ncDNA. (a), Oxidized mtDNA and ncDNA is digested with a DNA repair glycosylase, which 
generates abasic sites in the DNA. hAPE1 (Sigma, Inc.) cleaves the DNA at the abasic sites, and 
the DNA is purified on an agarose gel. The next-generation sequencing (NGS) library is made 
with the short dsDNA with the Rubicon ThruPlex™ FD Prep Kit that requires only 5-10 ng of 
DNA. b, Agarose gene showing Drosophila pupae DNA digested with the indicated 
glycosylases and hAPE1 (this grant). 
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5. Discussion 

           

Figure 26: WT and dTET Drosophila show peaks of all six oxidative damage markers co-
localized with 5-hmC peaks in 3L telomere region. WT and dTET Drosophila show peaks 
of all six oxidative damage markers co-localized with 5-hmC peaks in 3L telomere region. 
(A) Pvu-seq and showed dTET mutant had lower 5-hmC level, and the distribution 
pattern is similar to oxidative modification marker at mth18 locus near 3L telomere 
region. (B) CG43149 and Lsp1gamma both showed lower 5-hmC level in dTET mutant 
which co-localized with oxidative modification markers. (C) Pdk1 also showed lower 5-
hmC in dTET mutant and a similar pattern as oxidative modification markers 



91 
 

 
 

The Drosophila model has been deemed as one of the most powerful models in 

epigenetics research. However, the existence of DNA modification in Drosophila is still 

controversial despite the detection of a trace amount of 5-mC in Drosophila by Achwal and 

colleagues in 1983 (241). The missing of 5-mC from Drosophila genome raises the important 

question whether the DNA modification, including methylation and hydroxymethylation is 

essential for eukaryote cell development. It is well accepted that 5-mC does not exist in the 

Drosophila genome until the identification of Dnmt2 homolog in Drosophila in 1999(242). The 

presence of 5-mC was exploited and quantified by Gowher and colleagues at 2000 using 

methylation dependent restrictive enzyme McrBC analysis and HPLC. They quantified the 

percentage of 5-mC to be 1 in 1000 to 2000 cytosines(243). Further research revealed more 

detailed information about the function and dynamic regulation of DNA methylation. The 

expanding investigation has advanced in recent years, especially after the significant progress 

towards the 5-hmC function and the methylation dioxygenase TET family proteins (201, 204). 

The role of TET in converting 5-mC to 5-hmC, and to further products such as 5-fC and 5-

caC, provides us with possible answers to a long-lasting question of how the 5-mC is dynamically 

regulated and removed from the genome at certain development stages. But, when extensive 

studies had been conducted in mammalian models, ours is the first study of the 5-hmc distribution 

and function in Drosophila models. Currently, there is no publication about the characterization 

of Drosophila TET homolog, dTET, nor the systematic analysis of its function. Our lab’s previous 

study showed enriched non-CG hydroxymethylation in introns of honey bees (Apis Mellifera) 

using a highly sensitive whole-genome shotgun Pvu bisulfite sequencing method (244). To 

further characterize the properties and functions of TET, we extended the study to the field of 
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Drosophila. 

The bioinformatics analysis shows that the Drosophila TET homolog CG2083 shares 

structural similarities with mammalian TET 1/3.  The C-terminal conserved CXXC domain and 

Tet/ JBP family specific domain indicate that dTET is capable of binding chromatin independently 

without the assistance of partner proteins such as IDAX in mammalian cells. We obtained dTET 

mutant strain by inserting EP995 transposon into the dTET gene, resulting in a pupal lethal 

dTETEP/EP strain with more than 90% dTET mRNA reduction in the early pupal stage. Our findings 

from the Pvu-sequencing of dTETEP/EP confirm over 50% reduction of global 5-hmC level. In 

previous study of mouse embryonic stem cell, the TET1 depletion causes about 40% loss of 5-hmC 

level, which is similar to our results and confirms the essential role of dTET in hydroxymethylation 

process(207). 

An unexpected finding is that we observed that the mitochondrial 5-hmC level was nearly 

diminished compared to the control. At the same time, the mRNA levels of several mitochondrial 

genes like Co1, CoII, and ATPase 6 are significantly reduced in dTETEP/EP Drosophila, together with 

3 fold reduction of hydroxymethylation level in the gene body. This is the first time that a 

significant impact of TET protein decrease in the mitochondrial gene transcription and 

hydroxymethylation levels were reported. The reduction of gene transcriptions matches the role 

of 5-hmC in facilitating gene activation from previous research. Currently, there are very few 

studies on the mitochondrial DNA epigenetic modifications. In 1973, Nass showed that mtDNA in 

mouse, hamster, and hamster cells are hypomethylated compared to ncDNA(245). The existence 

of mtDNA methylation and hydroxymethylation were confirmed in mammalian cells again in 

2011 by Shock et.al(246). They proposed that a special mtDNMT1 protein, which carries a 
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mitochondrial targeting sequence, translocated to mitochondria and processed the mtDNA 

methylation. Our finding suggests that dTET is essential for both the mitochondrial gene 

transcription and mtDNA hydroxymethylation. Currently, we have not identified how the dTET is 

associated with the reduction of mitochondrial DNA transcription, nor the causal relationship 

between the reduction of transcription and 5-hmC level in mitochondrial. There may be possible 

interactions between dTET and the critical mitochondrial transcriptional factors such as POLRMT 

(mitochondrial RNA polymerase), TFAM (mitochondrial Transcription Factor A), or TFB2M 

(mitochondrial Transcription Factor B), which will be further tested (247, 248). 

While some genes’ transcription in dTETEP/EP show reduction compared to control, we 

observed a group of genes showing upregulation the mutant strains. Among the 200 most up-

regulated genes are a group of 21 Cytochrome P450 (CPR) genes, including the top three: Cpr30B 

(up 13.39 folds), Cpr30F (up 12.13 folds), and Cpr76Bb (up 11.75 folds). CPR genes are required 

for the electron transfer and function of cytochrome P450 in the endoplasmic reticulum 

(ER)(249). It is not clear about the function of Cpr30B/30F/76Bb or the association with dTET 

reduction, but it may reflect a particular ER feedback to encounter the mitochondrial 

malfunction. The changes in dTETEP/EP strains were not only in the expression level of the gene 

but also the transcription pattern. We observed that the transcription direction of CG34199 gene 

was reversed in TET mutant Drosophila compared to control Drosophila. The Cpr56F gene in 

dTETEP/EP, which is a skipped intron in the CG34199 transcription in control Drosophila, was 

transcribed instead. This phenomenon hasn’t been reported before and may be associated with 

the different expression patterns in control and mutant Drosophila. 

Another interesting finding is that although the Drosophila global genomic 
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hydroxymethylation is affected by the absence of dTET, most of the ncDNA regions still have 

measurable amounts of 5-hmC left. The only exception is the chromosome 3L region, expanding 

about 140 kb from the 3L telomere, with almost undetectable 5-hmC levels. Currently, it is not 

clear why the 3L telomere region has such significant reductions because the other telomere 

regions show average levels of 5-hmC. A Study reported that 3L distal region has a lower-than-

average gene density, which includes a dominant Polycomb group suppressor gene, lethal 1, and 

a lethal 3 gene which corresponds to a trithorax group gene verthandi (vtd)(250). The reduction 

of 5-hmC may not be related to the formation of heterochromatin because previous studies show 

that the heterochromatin structure in chromosome 3L is genetically similar to chromosome 

2L(251). The study from Zhang et.al shows Tet catalyzing active DNA demethylation mainly in 

distally located enhancers in mouse ESCs (252). They also observed Tet KD Escs have increased 

telomere-sister chromatid exchanging rates, indicating Tet may be related telomere homeostasis.  

The similarity of chromosome 3L and mtDNA in hydroxymethylcytosine distribution pattern and 

the aforementioned BER pathway enzymes will be further investigated. 

Previously studies hypothesized that TDG activation and BER pathways may be 

downstream of the hydroxymethylation process to demethylate actively 5-mC into cytosine. 

Muller et.al demonstrated that purified TET1 catalytic domain could reactivate the genes 

silenced by methylation. Interestingly, the reactivation requires the participation of a group of 

BER glycosylases such as TGD, PARP1, XRCC1, and LIG3(253). Sun and colleagues reported that 

when overexpressing TDG in Germinal Vesicle (GV) stage mouse oocyte, they observed 

decreased genomic 5-mC, as well as decondensed chromatin (28). We tested five different types 

of DNA oxidation residues, such as AAG and ConA, using specific antibodies immunoprecipitation 
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followed by sequencing. We found their distribution patterns are similar to the 5-hmC pattern, 

and all the oxidation nucleotides are enriched in promoter regions. The most similar pattern 

comes from ConA, which resembles most of the peaks from 5-hmC in control Drosophila and 

dTETEP/EP Drosophila. We also observed the same similarity in Drosophila mitochondrial. This 

result supports the theory that dTET oxidizes DNA in the nuclear genes promoter region, and the 

product, such as 5-fC and 5-caC, might be recognized by Glycosylase members from BER 

pathways and restored to unmodified cytosine. 

Since the OGT protein, which glycosylates histones, is encoded by a PcG gene Super Sex 

Comb (sxc) in Drosophila, we tested if dTET also belongs to the Polycomb Group. The testing of 

Sex Comb Model shows that when the T(2, Y) kismet allele sensitizing the multi-sex comb 

phenotype, the introducing of dTET allele increased extra sex combs on first pair of legs, and 

developed ectopic sex combs on the second and third pair of legs, which showed that dTET is a 

polycomb group protein. The ELBO model results also confirmed it. While the previous studies 

revealing that the connection between TET and PcG protein OGT in mouse ESCs, our findings 

provide evidence that these two PcG proteins could coordinate for a novel demethylation 

pathway by iteratively oxidizing 5-mC(254). It is worth noticing that the OGA protein, which 

counteracts the OGT activity by catalyzing the reverse reaction of 5-hmC oxidation, is a TrxG 

protein. The antagonism of OGA and OGT in oxidizing 5-hmC could perfectly fit into the 

counteraction of PcG and TrxG members. 

The model for How dTET Regulates Expression of the Mitochondrial Genome 

Recently, Forneris et al. proposed that the lysine specific demethylase 1 (LSD1) could play 

a major role in de novo DNA methylation and formation of heterochromatin (255). It reported 
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that LSD1 not only act as a transcriptional co-repressor, but may also activate transcription by 

colocalize with RNA Pol II on many target gene’s promoters(256). The crystallography results 

showed that LSD1 share 20% sequential similarity with flavin-dependent monoamine and 

polyamine oxidase (MAOs and PAOs) and are possible to act as amine oxidase under certain 

circumstances. It is very interesting that research shows the demethylation ability of LSD1 is not 

limited in Histone 3 lysine 4 tails. Reports revealed that LSD1 could also demethylate Histone 3 

lysine 9 without change the methylation status of H3K4, which indicate the possibility of LSD1 to 

demethylate other Histone residues (257). More importantly, unlike the other jumonji family 

histone demethylases, LSD1 could produce H2O2 during the demethylation process, which acts as 

a signaling molecule for multiple pathways (258). And Perillo et al. reported that the DNA 

oxidation could also be promoted by the estrogen treatment induced H3K4/H3K9 demethylation 

process by LSD1, during which the produced H2O2 causes oxidative damages and recruited the 8-

oxoguanine-DNA glycosylase 1 to modify DNA bases. (259). This observation could be further 

extended to explain the trigger for the demethylation process of 5-mC to 5-hmC in dTET nuclear 

and mitochondrial DNA. Based on the above results and previous studies, we propose a model 

that, under normal circumstances, the histones surrounding nuclear DNA were demethylated by 

Jumonji family proteins such as LSD1 or KDM2. The demethylation produced hydrogen peroxide, 

which may trigger hydroxymethylation by TET and/or recruits glycosylase to the nuclear DNA for 

oxidative damage modification, and turns on the gene transcription by Pol II. (Figure 29 A).In 

control mitochondria, although no histone and histone demethylase presents, dTET protein 

alone could still demethylate the 5-mC and producing hydrogen peroxide to modify the bases and 

activate transcription. (Figure 29B). In contrast, the dTET mutant Drosophila lack the dTET protein, 
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but the nuclear histone and DNA can still be demethylated by LSD1. The 5-hmC can be removed by 

oxidation modification caused by glycosylase for DNA modification while maintaining the 

transcription level (Figure 29 C). So this could explain the relatively unchanged transcription 

activity in ncDNA between control and dTET mutants. But in dTET mutant mitochondria, because 

there are no histone demethylases available, the methylation level remains constant, and no 

hydrogen peroxide is produced to modify mtDNA. The transcription level remains low compared 

to control (Figure 29 D). 
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According to the previous research showing that TET is interacting with OGT, we 

    

Figure 27: The Hypothetical model for dTET function. (A) Under normal conditions, the histones 
surrounding nuclear DNA are demethylated by Jumonji family proteins such as LSD1. The 
demethylation reaction by dTET produces formaldehyde which may modify the DNA and 
increase transcription by Pol II. (B) In WT mitochondria, where there are no histones on mtDNA, 
TET alone demethylates the 5-mC and produces formaldehyde which modifies the bases and 
activate transcription. (C) In dTET mutant Drosophila, the nuclear histones and DNA can still be 
demethylated and by Jumonji proteins and oxidize the DNA. (D) In dTET mutant mitochondria, 
because there are no histone demethylases available, and no formaldehyde is produced to 
modify mtDNA. Therefore, the transcription levels of mitochondrial genes remain low. 
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constructed a series of dTET and Oga single and/or double-mutant to examine the outcome of 

mutation (Table 2).  Here we found that dTET double mutant dTETEP/EP showed the severe 

developmental arrest and caused white pupal lethal, indicating the importance of dTET in 

development.  While the dTETEP/T-L with deleted dTET catalytic domain was black pupal lethal, 

dTETEP/T-R, which has deleted 5’ part of dTET gene but still contain the catalytic domain, shows 

only reduction of climbing ability, implying the dysfunction induced by limited dTET activity.  In 

comparison, the homologous Oga mutant OgaP/OgaP showed relatively unchanged survival rates 

but a fraction of the male adults were sterile, indicating possible alternative pathways to 

substitute Oga functions. Interestingly, the dTET and Oga double knockout dTETEP OgaP / dTETEP 

OgaP showed black pupal lethal, which is less severe than dTET mutation. 

Currently, it is not clear why the Oga mutant delays the developmental arrest in dTET 

mutation. The dTETEP OgaP / T-R line contains one copy of Oga and one copy of dTET catalytic 

domain, showing declined locomotor ability but with normal viability. In contrast, the dTETEP 

OgaP / T-L lost both copies of dTET catalytic domains, showing interrupted development during 

the black pupal stage. Taking together, the increasing survival rates of adults among dTETEP / 

dTETEP, dTETEP / T-L, and dTETEP / T-R showed that one copy of 5’ end dTET with no catalytic 

domain could delay the development stoppage a copy of 3’ end dTET with catalytic domain could 

support partial adult survival but with reduced locomotor activity. But it is currently unknown 

why the dTETEP / T-R showed better survival than T-L / T-R. When the Oga mutant was introduced 

into dTET mutation background, we found that even with both copies of Oga deleted, the 

phenotype of progeny of dTETEP OgaP / dTETEP OgaP did not worsen compared to dTETEP / dTETEP 

single knockout. And the comparison between dTETEP / T-R vs. dTETEP OgaP / T-R, and dTETEP / T-L 
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vs. dTETEP OgaP / T-L, showed that the absent of one copy of Oga on the background of TET 

heterozygous mutation background does not cause significant changes. 

In conclusion, our work characterized and confirmed the vital role of TET function in DNA 

hydroxymethylation and demethylation, as those findings in other eukaryotes and mammalian 

organisms. By RNA-seq, we showed a reduction of dTET mRNA levels in dTET-mutant Drosophila. 

Pvu-seq demonstrates that the 5-hmc levels in nuclear and mitochondrial DNA were both 

significantly reduced, which confirms the role of dTET in the conversion of 5mc to 5hmc  both 

nuclear and mitochondrial DNA. Finally, we propose a model that, under normal circumstances, 

dTET and Jumonji proteins bind to the promoter regions of target genes. In the nucleus, the dTET 

and the Jumonji histone demethylase families of dioxygenase proteins will produce formaldehyde 

and oxidize DNA in the promoters. This will lead to increased transcription by increasing the 

access to RNA polymerase. However, in mitochondria, Jumonji proteins are also absent because 

there are no histones, the oxidation is only produced by dTET. This helps explain why 

transcription is more dependent on dTET in the mitochondria than in the nucleus. 

Ethics: 

Since Drosophila is a member of the invertebrate and is used as an alternative subject in 

human research, it will not be considered bio-hazardous during the study. 
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Friedreich’s ataxia (FRDA) is an inherited autosomal recessive neurodegenerative disease. 

It affects 1 in every 50,000 people in central Europe and North America. FRDA is caused by 

deficiency of Frataxin, an essential mitochondrial iron chaperone protein, and the associated 

oxidative stress damages. Autophagy, a housekeeping process responsible for the bulk 

degradation and turnover of long half-life proteins and organelles, is featured by the formation 

of double-membrane vacuoles and lysosomal degradation. Previous researches indicate that 

Danon’s disease, the inherited neural disorder disease that shares similar symptoms with FRDA, 

is due to the malfunction of autophagy. Based on this, we raise the question whether the 

autophagy activity is modified and what is its role in FRDA. Study has shown that oxidative stress 

may play a major role in the progression of neurodegenerative diseases by attacking the 

cytoplasmic molecules and organelles, and autophagy is the major pathway in reducing oxidative 

stress and removal of malfunctioned organelles. Additionally, autophagy has been closely related 
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to cell apoptosis and organism remodeling. Mitochondrial Autophagy (mitophagy) is also the 

major turnover pathway for damaged mitochondria. Therefore, the dysfunctional autophagy in 

removing the malfunctioned mitochondria in FRDA may responsible for its pathogenesis. Since 

the mechanism of autophagy in the development of FRDA is still largely unknown, a systematic 

analysis of the status and function of autophagy pathway is needed.  

My thesis is targeting at four goals: (1) to construct FRDA Drosophila model and 

characterize autophagy expression pattern in each stage; (2) to determine the effect of 

autophagy modification on the symptoms of the FRDA Drosophila; (3) to identify the potential 

downstream events of autophagy; (4) to explore the possible upstream activities by examine 

whether the AMPK or SAPK stress response pathway is involved in FRDA Drosophila. Our 

hypothesis is the up-regulation of autophagy occurs in the early stage of FRDA and may induce 

apoptosis or mitophagy. We identified that autophagy level is up-regulated in FRDA Drosophila 

at both transcriptional and translational levels. Moreover, the overexpression of Frataxin also 

increases autophagy activity. The comparable Atg5 mRNA level in both Frataxin deficiency and 

overexpression Drosophila indicates this induction of autophagy in FRDA Drosophila is Atg5 

independent. Autophagy inducer Methylene blue and rapamycin could partially prolong the 

longevity and restore the fertility of FRDA Drosophila, but could not rescue the pupal lethal 

phenotype. When treated with the autophagy inhibitor chloroquine, FRDA KD Drosophila 

showed reduced longevity and locomotor activity, implying the beneficial effect of autophagy in 

certain development stages. The FRDA KD Drosophila also showed up-regulated caspases-3 and 

cytochrome C level, indicating enhanced apoptosis in cells with reduced Frataxin. We also 

attempt to apply the heart pacing assay to evaluate the FRDA Drosophila cardiac function. 
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Although the results are inconclusive, the heart pacing assay appears to be a valuable tool for 

future research. 
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